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Transcriptome Analysis of a Petal Anthocyanin
Polymorphism in the Arctic Mustard, Parrya nudicaulis
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1 Department of Biology, Santa Clara University, Santa Clara, California, United States of America, 2 Biological Sciences Department, University of Alaska Anchorage,
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Abstract

Angiosperms are renown for their diversity of flower colors. Often considered adaptations to pollinators, the most common
underlying pigments, anthocyanins, are also involved in plants’ stress response. Although the anthocyanin biosynthetic
pathway is well characterized across many angiosperms and is composed of a few candidate genes, the consequences of
blocking this pathway and producing white flowers has not been investigated at the transcriptome scale. We take a
transcriptome-wide approach to compare expression differences between purple and white petal buds in the arctic
mustard, Parrya nudicaulis, to determine which genes’ expression are consistently correlated with flower color. Using mRNA-
Seq and de novo transcriptome assembly, we assembled an average of 722 bp per gene (49.81% coding sequence based on
the A. thaliana homolog) for 12,795 genes from the petal buds of a pair of purple and white samples. Our results correlate
strongly with qRT-PCR analysis of nine candidate genes in the anthocyanin biosynthetic pathway where chalcone synthase
has the greatest difference in expression between color morphs (P/W = ,76). Among the most consistently differentially
expressed genes between purple and white samples, we found 36more genes with higher expression in white petals than
in purple petals. These include four unknown genes, two drought-response genes (CDSP32, ERD5), a cold-response gene
(GR-RBP2), and a pathogen defense gene (DND1). Gene ontology analysis of the top 2% of genes with greater expression in
white relative to purple petals revealed enrichment in genes associated with stress responses including cold, drought and
pathogen defense. Unlike the uniform downregulation of chalcone synthase that may be directly involved in the loss of
petal anthocyanins, the variable expression of several genes with greater expression in white petals suggest that the
physiological and ecological consequences of having white petals may be microenvironment-dependent.
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Introduction

The loss of floral anthocyanins in white flowers provides an

unparalleled opportunity to examine the genes underlying a

distinctive phenotypic transition. The diversity of flower colors

among angiosperms is most often attributed to the preferences of

their pollinators [1,2,3,4,5,6], yet the underlying anthocyanin

pigments are also involved in a diversity of stress-related functions

not directly related to pollinator attraction (e.g., UV-protection,

drought tolerance, cold stress and herbivore resistance; [7,8,9]).

To disentangle the roles of pollinator and non-pollinator agents of

selection on flower color, we studied a habitat in interior Alaska,

where pollinators are exceedingly rare [10,11] and non-pollinator

agents of selection are predicted to be paramount [12].

The purple-white flower color polymorphism in the arctic

mustard, Parrya nudicaulis, offers a unique perspective on

potential non-pollinator agents of selection (Fig. 1; [13]). Pollinator

observations in interior Alaska and along the Arctic Coastal Plain

confirm the relative rarity of pollinators [14], making it unlikely

that pollinator preferences alone are responsible for such

geographically widespread variation. Since the frequency of white

individuals is positively correlated with the length of the growing

season, we suspect climatic factors (or correlated, non-pollinator

selective agents) interacting with the petal color contribute to the

maintenance of this polymorphism [13]. We have also detected

selection against individuals with lighter colored petals along the

Arctic Coastal Plain, but not in interior Alaska where the climate

during the growing season is more benign [14].

Previously, a candidate gene approach focusing on nine genes in

the anthocyanin biosynthetic pathway revealed a 24-fold expres-

sion reduction of chalcone synthase (CHS) in white petals, with no

comparable expression change in the sepals or leaves [13].

However, our candidate gene approach was limited to the

anthocyanin biosynthetic pathway genes and was not capable of

revealing any consequences of the loss of floral anthocyanins

outside of the genes immediately involved in this biochemical

pathway. Although genomic resources for P. nudicaulis are

limited (prior to this study, Genbank contained only 14 accessions),

the close relationship to Arabidopsis thaliana (approximately 89%

nucleotide similarity in coding regions) allows us to utilize a wealth

of genome-scale information such as TAIR’s RefSeq database

[15], the Gene Ontology database [16], the ATTED-II gene co-

expression database [17], a collection of functional gene networks

in ARANET [18], and the Arabidopsis Co-expression Tool [ACT

[19]].
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Transcriptome analysis can generate the sequences of most

genes present in a target tissue at a particular developmental stage

and simultaneously estimate their expression levels. Expressed

sequence tags (ESTs) and serial analysis of gene expression (SAGE)

have been used as a form of transcriptome analysis for decades

[20,21,22,23], but the amount of Sanger sequencing necessary for

accurate expression estimates from ESTs and even SAGE was

prohibitively expensive for all but a few model organisms. The

advent of massively parallel sequencing technologies has made

transcriptome analysis possible for many non-model species

[24,25,26,27]. Dubbed mRNA-Seq on the Illumina platform

(Illumina, San Diego, CA), the production of millions of relatively

short reads (40–300 bp long) is technically feasible and relatively

inexpensive for any organism in which RNA can be adequately

preserved. Acquiring the data is relatively straightforward [26]

compared to the challenge of re-assembling the reads into

contiguous sequences, annotating the contigs, and accurately

estimating expression. Although such studies have been largely

restricted to model organisms with complete reference genomes

such as human, mouse, yeast, A. thaliana, and rice

[28,29,30,31,32], transcriptome assembly and expression analysis

without a reference genome (de novo) has been adopted in many

non-model organisms [24,27,33]. In eukaryotes, one of the many

hurdles in de novo transcriptome assembly is differentiating

orthologous and paralogous sequences, a complication that can

be exacerbated by recent whole-genome duplication events (i.e.

polyploidy).

We first investigate the ploidy levels of P. nudicaulis in our focal

populations. We then describe the de novo assembly and

expression analysis of the petal bud transcriptome of P. nudicaulis
from purple- and white-flowered individuals from two populations

(hereafter referred to simply as ‘‘transcriptome’’). We validate our

assembly and expression results for purple and white petals using

quantitative real-time PCR (qRT-PCR) for nine candidate genes

in the anthocyanin biosynthetic pathway. Broadening our

perspective to the transcriptome has uncovered several unexpect-

ed, yet consistently differentially expressed genes between purple

and white petals potentially involved in plants’ stress response.

Some of these genes may reflect the consequences of the loss of

floral anthocyanins and could provide clues to additional targets of

selection by non-pollinator agents. Our transcriptome approach

has produced several testable hypotheses regarding the nature of

the genes with differential expression in the petal bud that are

consistently correlated with flower color variation in P. nudicaulis.

Materials and Methods

Genome Size Estimation
To estimate genome size, we used flow cytometry on fresh

leaves from one to three individuals representing three populations

of P. nudicaulis including the two populations used in subsequent

transcriptome analysis (Table 1). Tissue was kept on ice until it

could be homogenized. Cells were lysed in Galbraith’s buffer [34]

and nuclei were stained with propidium iodide (50 mg/ml) and

RNase (50 mg/ml). Flow cytometry measurements were performed

on a Becton Dickinson FACScan flow cytometer equipped with a

488 nm argon laser. Genome size was estimated in comparison to

A. thaliana [2C = 0.32 pg; [35]]. Peak positions and genome size

estimates were similar whether A. thaliana was used as an internal

or external standard. Conversion from picograms of diploid

nuclear DNA to base pairs followed Dolezel et al. [36]: 1 pg

diploid nuclear DNA = 978 million base pairs.

RNA Sampling
Petal buds were collected at two Alaskan P. nudicaulis

populations: Savage River in Denali National Park and the 12

Mile Summit located approximately 200 km northeast of Fair-

banks (Fig. 1). Denali National Park granted permits for sampling

at the Savage River population (Denali Permit number DENA-

2008-SCI-0024). At each population, petals from three to five

individuals per color morph were pooled in the field and

immediately frozen in liquid nitrogen until total RNA could be

extracted using the RNeasy Plant Mini Kit (Qiagen, Valencia,

CA). Only the Savage River samples were used for de novo petal

bud transcriptome assembly. Samples from both Savage River and

12 Mile Summit were used for expression analysis (see below).

RNA integrity numbers were determined on a Bioanalyzer

(Agilent Technologies, Santa Clara, CA) and ranged from 5.7–

9.7 (mean = 7.85). The quality was sufficient to proceed with the

mRNA-Seq library preparation [37].

Library Preparation and Illumina Sequencing
Total RNA extracts were prepared for mRNA-Seq on the

Illumina Genome Analyzer II following the manufacturer’s

suggested protocols (Illumina). Briefly, poly-A+ RNA was isolated

from tRNA and rRNA using poly-T oligonucleotides attached to

magnetic beads. The mRNA was then eluted and fragmented

using a proprietary fragmentation buffer relying on divalent

cations and high temperature. cDNA was synthesized from the

mRNA templates using random hexamers and adapters were

ligated to each blunt end cDNA. Fragments of 200 bp (+/225 bp)

were gel extracted from an agarose gel and PCR amplified for 15

cycles. Each of the four mRNA-Seq libraries were loaded on

individual lanes of the Illumina GAII (UC Davis Genome Center),

followed by 40 cycles of single-end sequencing-by-synthesis

reactions. Reads are available from Genbank’s Sequence Read

Archive (Accession# SRA028419).

De Novo Assembly
Although P. nudicaulis shares ,89% DNA sequence similarity

to A. thaliana in several coding regions [13], it is too divergent to

Figure 1. Arctic mustard flower color polymorphism and
sampling localities. The arctic mustard, Parrya nudicaulis, exhibits
variation in petal anthocyanins within populations across Alaska. RNA
was collected from pooled buds of purple- and white-flowered
individuals at Savage River (SAV) and 12 Mile Summit (12 MI) indicated
with filled squares. Landmark cities are indicated with open circles.
doi:10.1371/journal.pone.0101338.g001
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accurately perform a reference-guided assembly (Butler and

Whittall, unpublished data). Therefore, we developed a bioinfor-

matics pipeline for de novo transcriptome assembly and expression

analysis (Fig. 2). We used the de novo assembler Velvet v.1.0.03

and Oases v.0.1.11. The latter is specifically designed for the

uneven coverage depths and alternative splicing common in

transcriptome analysis and can generate multiple isoforms per

contig to account for different alleles, paralogs, and splice variants

[38]. Using the unfiltered fastq files produced by the Illumina

pipeline, we compared assemblies across a range of Velvet/Oases

parameter values (kmers 19–29) for the two Savage River samples.

The upper kmer limit was based on recommendations in Zerbino

[maximum kmer = (read length–10); [39]]. The lower kmer limit

was constrained by computational time.

Contigs were then identified using nucleotide blast to the A.
thaliana RefSeq database [TAIR version 9; [15,40]] limiting our

results to those contigs with E-values ,10210. Reciprocal best-hit

nucleotide blast with the contigs as the database and the A.
thaliana RefSeq nucleotides as the query was used to confirm

orthology using the same E-value cutoff of less than 10210 [41].

Contigs with E-values .10210 and those that did not pass the

reciprocal best-hit blast criteria were removed. Multiple contigs

per gene for both purple and white samples were aligned to the A.
thaliana Reference Sequence for each individual kmer run using

muscle v.3.8.31 [42]. We then removed the A. thaliana sequences

and produced a consensus sequence representing all variable sites

among the P. nudicaulis contigs as ambiguities. Any missing

sequence regions in the P. nudicaulis consensus were padded with

n’s (Fig. 2). For each gene, we chose the longest Velvet/Oases

kmer assembly that was unlikely to represent misassembly or

misalignment based on the proportion of ambiguities (excluding

n’s) in the consensus as our reference for expression analysis. An

earlier attempt to use all the contigs from all kmer analyses

produced excessive ambiguities due to occasional misassembly or

misalignment (Butler and Whittall, unpublished data). This

approach has also been criticized because of the likelihood of

assembling chimeric consensus sequences (D. Zerbino, pers.

comm.).

As part of our quality control, we examined 566 alignments that

produced consensus sequences with more than 1.9% ambiguities -

the maximum expected intraspecific nucleotide variation in coding

sequence based on previous sequence comparisons on a much

larger sampling of individuals across the species’ range [13].

Among these 566 alignments, the most common source of

variation was misalignment of the contigs, which was corrected

by hand or if not possible, the culprit contig was removed from the

alignment altogether. Occasionally, the elevated ambiguity was

caused by alignments with nearly identical coding regions, but

highly divergent UTR sequences. These were assumed to be

paralogs and since their coding regions were highly conserved and

they passed our reciprocal best-hit blast filter, their similar function

and likely duplication since the split with A. thaliana justified their

inclusion in the consensus sequence. Another frequent problem in

the subset of alignments with more than 1.9% ambiguity was

contigs with highly divergent coding sequences. Although these

genes passed our reciprocal best-hit nucleotide blast criteria, one

set of contigs was always much more similar to the A. thaliana
coding sequence, so the more divergent contigs were removed.

Consensus sequences created from these individually examined

alignments were included along with the rest of the reference

sequences with less than 1.9% ambiguity for expression analysis.

Expression Analysis
Expression levels were estimated by mapping reads from both

Savage River and 12 Mile Summit populations back onto the

de novo assembled reference transcriptome using the Mosaik

assembler since it utilizes IUPAC ambiguity codes in the reference

sequences and allows for a range of mismatches per hash (Michael

Stromberg, Boston University). Mosaik parameters followed the

recommendation of the authors - a hash length of 14 and two

allowed mismatches. Qualitatively similar results were obtained

with a hash length of 17 and four mismatches (Whittall,

unpublished data). Only uniquely mapped reads were used in

comparing expression as reads per kbp exon per million reads

mapped (RPKM). Genes in which any of the four samples had

very low expression (less than 10 reads mapped) were removed

since the low number of reads produced spurious estimates in the

purple-white fold-change calculation.

We used linear regression (Jmp 4.0, SAS Institute, Cary, North

Carolina) to compare our mRNA-Seq expression results to a pre-

existing qRT-PCR dataset using the same four RNA samples for

nine anthocyanin biosynthetic pathway-related genes [13]. The

RPKM expression estimates and the linearized qRT-PCR data

[(1+Efficiency)DCT] were both log10-transformed to meet assump-

tions of normality. We also compared the mRNA-Seq results to

the qRT-PCR estimates for P/W fold-change using linear

regression after removing the CHS outliers.

In order to identify consistently differentially expressed genes, we

compared the paired purple and white samples from Savage River

to those from 12 Mile Summit. To visualize genes with purple

expression greater than white (P.W) and genes with white

expression greater than purple (W.P) on a single continuous axis,

we calculated the relative difference (RD) in expression between

purple and white samples using RPKM values for P and W

samples as RD = (P – W)/[max(P,W)]. Genes in which the

Table 1. Sample localities and genome size estimates for P. nudicaulis.

Latitude Longitude Population Individual Genome Size –2C (pg)

68.47uN –149.56uW Galbraith 1 2.08

2 2.03

3 1.88

65.40uN –145.99uW 12 Mile 1 2.09

2 2.17

65.47uN –145.43uW Eagle Peak 1 2.04

Mean61SE 2.0860.039

SE = Standard Error.
doi:10.1371/journal.pone.0101338.t001
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expression difference between purple and white was greater than

50% of the larger of the two (RD.0.5 or RD,–0.5) were

considered differentially expressed. We then determined the

consistency between the relative difference at each population

as: Consistency = RDSavageRiver – RD12MileSummit. We applied a

threshold for consistency of 60.25. If samples were evenly

distributed across the consistency spectrum (–1.00 to 1.00), this

cutoff represents the most consistent quartile of all genes. Using

these metrics, we identified two sets of genes that are consistently

differentially expressed (P.W and W.P).

qRT-PCR Validation of Consistently Differentially
Expressed Genes

We examined seven consistently differentially expressed genes

using qRT-PCR on a larger set of RNA samples. Among genes

with P.W, we chose the most differentially expressed gene after

chalcone synthase, GDSL-motif lipase/hydrolase family protein

Figure 2. De novo transcriptome analysis pipeline. A seven-step bioinformatics pipeline for de novo transcriptome analysis of mRNA-Seq data.
For each color sample, multiple assemblies using a range of kmer values were conducted separately using Velvet/Oases (not shown). The kmer
parameter providing the greatest average contig length per gene for both purple and white was used to create the consensus sequence that became
our reference for estimating expression. Expression was measured as reads per kilobase exon per million uniquely mapped reads (RPKM). In the
example illustrated, the purple sample has twice the expression of the white sample assuming an equal number of uniquely mapped reads across the
entire transcriptome.
doi:10.1371/journal.pone.0101338.g002
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(AT5G45950; P/W = 2.80). For W.P, we chose six genes based

on their W/P value, overall expression levels and functional

annotation in A. thaliana homologs. The W.P set consists of a

7SL RNA gene with the greatest expression difference

(AT2G31141; W/P = 12.29), one gene with unknown function

in A. thaliana (AT1G10020), three genes of ecological interest

[drought response (CDSP32; AT1G76080), dehydration response

(ERD5; AT3G30775), and defense against pathogens (DND1;

AT5G15410)], and a consistently differentially expressed gene

with the highest overall expression (EXL5; AT2G17230). For each

gene, we examined expression in the same four samples used for

transcriptome analysis and added another eight similarly pooled

samples representing a range of floral developmental stages (two

purple and six white from bud to anthesis stages). All additional

samples are from the same two populations used in the

transcriptome analysis. TaqMan qRT-PCR assays were used to

validate the transcriptome expression levels following the DDCT

method [43]. Fragment lengths averaged 72.25 bp (range 70–

75 bp). Amplification efficiencies for each locus were determined

from a standard curve [mean = 0.963 (range 0.926–1.000)] and

expression was standardized in comparison to the endogenous

control (GAPC2; AT1G13440) as described in Dick et al. [13]. We

then compared standardized expression between purple and white

samples by relativizing to a single purple sample (Savage River 23).

Gene Ontology Analysis
We tested for enrichment in gene ontology terms among the top

2% of differentially expressed genes within our consistency

threshold (N = 92) for P.W and W.P. Using a 2% cut-off

produced a set of genes with a large enough sample size to detect

enrichment since approximately 1/3 of the most differentially

expressed genes were unannotated in A. thaliana. We tested

specifically for enrichment in gene ontology (GO) terms associated

with Biological Process using the hypergeometric test with a

Benjamini and Hochberg correction for multiple testing

(FDR = 0.01) using the GO Stats Enrichment/Depletion Statisti-

cal Assessment in the GO Toolbox [[16] GO Toolbox website.

Available: http://genome.crg.es/GOToolBox/. Accessed 2014

June 22]. We compared the top 2% of consistently differentially

expressed genes with P.W and W.P to a null set of the

remaining 10,802 genes with at least 10 reads in the expression

analysis (RPKM.,1).

Results

Genome Size Estimation
Since recent polyploidy can complicate transcriptome analysis

due to genome-wide paralogy, we examined the genome size of six

P. nudicaulis samples from three populations using fresh leaf tissue

extracts on a flow cytometer. The size of the diploid P. nudicaulis
nuclear genome was consistently estimated at 2.08 pg (Table 1).

Our genome size estimates suggest the haploid genome measures

approximately 1.02 Gbp [44]. There was no evidence of within or

between population polyploidy, which reduces complications from

paralogy during the transcriptome analysis.

Illumina Sequence Results and De Novo Transcriptome
Assembly

Four lanes of 40 bp single-end reads from the Illumina GAII

generated between 15.3–28.7 million reads (mean = 21.6 million

reads) totaling 3.5 Gbp (Table S1 in File S1). Since the assembly

parameters can dramatically affect the length and reliability of

contigs, we ran Velvet/Oases de novo assembly on each of the two

Savage River samples separately across kmers 19–29. This analysis

produced a nearly two-fold range in the number of contigs

produced for each sample (purple 27,351–47,884; white 22,772–

40,228 contigs). Oases isolated 1–35 isoforms of each contig

(mean = 1.4 isoforms per gene). Blastn to the A. thaliana RefSeq

database identified 11,483 genes from the purple sample and

10,586 genes for the white sample. To improve our confidence in

the transcript identification, we conducted reciprocal best-hit

nucleotide blast filtering on both the purple and white assemblies.

We then merged them to create a transcriptome of 12,795 unique

genes. Approximately 72.5% of these genes had more than one

contig per gene (mean = 1.475 contigs per gene; range 1–11

contigs per gene). After combining contigs from purple and white

samples into a single alignment for each kmer assembly, we chose

the kmer that produced the longest assembly (per gene) that was

unlikely to contain misassembly or misalignment errors (less than

1.9% ambiguities in the consensus). The majority of contigs in the

final transcriptome came from kmers 19 and 21 (,58%). On

average, we sequenced 722 bp of each gene, assembled 49.81% of

each gene’s coding sequence, and sequenced the entire coding

sequence for over 2,000 genes (,16% of the assembled

transcriptome).

For the nine anthocyanin biosynthetic pathway candidate genes,

we sequenced an average of 89.0% of their coding sequences plus

an average of 103 bp of their UTRs (Table 2). For two

anthocyanin biosynthetic pathway genes, CHS and flavonol

synthase, we obtained the entire coding sequence and greater

than 100 bp of UTR sequence. Less sequence was recovered from

the regulatory gene, myb111 (62%) likely due to its lower overall

expression level and membership in a large gene family (see

Expression Analysis below). One of the structural genes in the

anthocyanin biosynthetic pathway, chalcone isomerase, did not

pass the Blastn cut-off filter of E-value,10210 likely due to

previously reported elevated sequence divergence in A. thaliana
[45] and the presence of at least one pseudogene in the A. thaliana
genome [AT1G60290 [15]]. However, chalcone isomerase contigs

were identified in the preceding step – the Velvet/Oases contig

assembly. A previously characterized Sanger-sequenced version of

this gene was appended to the transcriptome assembly in order to

estimate expression differences for purple and white samples for all

anthocyanin biosynthetic pathway loci.

Expression Analysis
The de novo assembled transcriptome became the reference for

remapping the reads to compare expression differences between

purple and white samples from Savage River and 12 Mile Summit.

Of the 86.35 million reads generated among the four samples,

37.27 million were aligned to the reference transcriptome (43.2%;

Table S1 in File S1). A large portion of the generated reads was

filtered-out because they had greater than two mismatches with

the reference (41.53 million reads, 48.1%). Only a small portion of

the aligned reads mapped to multiple locations (4.11 million reads;

4.8%), leaving 33.16 million reads that were uniquely aligned and

used in the expression estimates (38.4%). The number of uniquely

mapped reads used in the expression analysis was 6.29 and 6.96

million for the purple and white Savage River samples and 9.88

and 10.04 million for the purple and white 12 Mile Summit

samples (Table S1 in File S1). The higher number of uniquely

mapped reads in the 12 Mile Summit samples reflected the higher

number of reads generated in these two samples due to

improvements in the mRNA-Seq library prep during the nine

months separating the Illumina runs of the two populations. In the

end, the percent of uniquely mapped reads compared to the total

number of reads generated ranged from 34.9% to 43.2%.

Arctic Mustard Flower Color
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To avoid spurious comparisons of genes with very low

expression, we removed 1,809 genes that had less than 10 unique

reads mapped for any of the four samples. This removed nearly all

genes with less than one RPKM (except three genes), a standard

cutoff used for robust expression estimates of ,2 kbp transcripts

[29]. This left 10,986 genes in the transcriptome expression

analysis. The length of the remaining genes ranged from 102 bp–

3506 bp (median length = 676 bp). Expression estimates ranged

from 0.779 to 14,720 RPKM.

The six core anthocyanin biosynthetic pathway enzyme coding

genes had very high expression, all within the top 3.5% of genes in

the transcriptome. CHS (purple) and dihydroflavonol 4-reductase

were the most highly expressed anthocyanin biosynthetic pathway

genes in the transcriptome falling within the top 0.21% and 0.39%

of all genes identified in the transcriptome, respectively. Additional

genes associated with the anthocyanin biosynthetic pathway (yet

not typically considered core enzyme coding genes) including

phenylalanine ammonia-lyase-1, flavonol synthase, and the

regulatory locus, myb111, had much lower overall expression

levels, ranking 8.4%, 35.9% and 71.9% in the transcriptome,

respectively.

We used these six anthocyanin biosynthetic pathway core

enzyme coding genes and three genes associated with the

anthocyanin biosynthetic pathway (described above) to test for

correlations between expression estimated from mRNA-Seq data

and previous expression estimates from qRT-PCR. Although the

expression levels of these nine genes span a large range (5–4,285

RPKM), we found a very strong correlation for the same four

RNA samples in qRT-PCR [log(RPKM) = 0.84*log(linear DCT)+
2.53; r2 = 0.78, F1,35 = 119.89, P,0.0001; Fig. 3). Furthermore,

CHS has the largest P/W fold-change in expression using both

methods (Fig. 4), but the P/W fold-change from the mRNA-Seq

data is lower (P/WSavageRiver = 6.35; P/W12MileSummit = 7.72) than

the fold-change estimated from qRT-PCR (P/WSavageRi-

ver = 12.09; P/W12MileSummit = 9.23). After removing CHS as an

outlier, there was still a significant correlation between mRNA-Seq

and qRT-PCR estimates of the P/W fold-change (qRT-PCR

Fold-change = 0.60*RPKM Fold-change+0.23; r2 = 0.61,

F1,15 = 21.84, P = 0.0004; Fig. 4 inset).

When examining read density across the coding region for

CHS, we detected the expected 39 bias in all four samples based on

the poly-A+ RNA based libraries [Savage River samples depicted

in Fig. 5A [30]], yet the fold-change comparison across the coding

region showed no consistent trend (Fig. 5B). The middle 500 bp of

the coding region has lower than average expression differences

and the 59 and 39 ends have much more erratic P/W estimates

(Fig. 5B).

Table 2. Transcriptome assembly results of anthocyanin biosynthetic pathway associated loci.

Locus1
Parrya nudicaulis
CDS Length (bp)2

Parrya nudicaulis
Assembly Length (bp)

Percent CDS
Coverage

Additional 59

UTR (bp)
Additional 39

UTR (bp)

PAL1 2178 2035 93.4 0 25

CHS 1185 1185 100 54 175

F3H 1185 976 82.4 18 0

FLS 1011 1011 100 14 109

DFR 1128 1105 98.0 51 0

ANS 1173 1071 91.3 86 6

3GT 1350 1142 84.6 0 0

MYB111 1056 655 62.0 0 287

MEAN 89.0

CDS = coding sequence.
1Abbreviations are as follows: PAL1: phenylalanine ammonia-lyase 1, CHS: chalcone synthase, F3H: flavanone 3-hydroxylase, FLS: flavonol synthase, DFR: dihydroflavonol
4-reductase, ANS: anthocyanidin synthase, 3GT: UDP-glucose anthocyanidin 3-O-glucosyltransferase. Chalcone isomerase is not included since it did not have a
significant BLAST hit E-value,10210.
2All coding sequence lengths except 3GT determined from cDNA sequences as in Dick et al. [13]. Coding sequence length for 3GT was based on alignment to A.
thaliana.
doi:10.1371/journal.pone.0101338.t002

Figure 3. mRNA-Seq expression estimates validated with
quantitative real time PCR (qRT-PCR) for anthocyanin biosyn-
thetic pathway associated genes. mRNA-Seq expression estimates
are strongly correlated with qRT-PCR for nine genes associated with the
anthocyanin biosynthetic pathway for purple- and white-flowered
samples from two populations – Savage River (filled triangles = purple
petals; open triangles = white petals) and 12 Mile Summit (filled
circles = purple petals; open circles = white petals). mRNA-Seq expres-
sion estimates are measured in reads per kilobase exon per million
uniquely mapped reads (RPKM) and log transformed to fit assumptions
of normality. The qRT-PCR data, measured using the DCT method, have
been linearized and log transformed for comparison to the Illumina
expression estimates.
doi:10.1371/journal.pone.0101338.g003
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To identify individual genes with consistently different expres-

sion between purple and white petals, we examined the results as

two pairs of purple-white samples (Savage River samples depicted

in Fig. 6A and 12 Mile Summit samples depicted in Fig. 6B). We

then applied a consistency cutoff of 60.25 (Consistency = Relati-

veDifferenceSavageRiver – RelativeDifference12MileSummit), allowing

us to focus on genes with the most consistent relative expression

differences between purple and white. For the Savage River purple

versus white comparison, 10.9% of the 1,405 differentially

expressed genes (genes with RD.0.5 or RD,–0.5) fell within

our consistency cut-off. For the 12 Mile Summit comparison,

22.3% of the 557 differentially expressed genes were within the

consistency cut-off. Using the average RD from both population

comparisons, 59.1% of the 208 differentially expressed genes fell

within our (arbitrary) threshold for consistency.

Among the 4,593 consistently expressed genes, CHS had the

largest relative difference when examining genes where purple

expression was greater than white (P/W average = 7.03; Fig. 7).

Although there were seven other genes that were consistently

differentially expressed with P.W, the fold-change was consider-

ably smaller than that observed for CHS (remaining seven genes

P/W ranged from 2.14–2.80; Table S2 in File S1). On the

opposite end of the spectrum, there were 25 genes that consistently

exhibited W.P (Fig. 7; Table S3 in File S1), none of which have

been previously associated with the anthocyanin biosynthetic

pathway [46]. Two of the three most differentially expressed genes

with W.P were unknown proteins (AT1G10020.1, AT3G01950.1

with W/P = 3.04, and 2.85, respectively). Twenty of the remaining

22 genes with consistent W.P expression differences blast to

known genes in A. thaliana.

Validation of Consistently Differentially Expressed Genes
We conducted TaqMan qRT-PCR assays on seven consistently

differentially expressed genes (Tables S2 and S3 in File S1) for the

original four pooled samples used in the transcriptome analysis

and an additional eight samples. As expected, the gene from the

transcriptome analysis with the second highest P/W ratio (GDSL-

motif lipase/hydrolase family protein, AT5G45950) had higher

qRT-PCR-based expression in the purple-flowered sample from

both Savage River and 12 Mile Summit (average P/W = 1.96;

Fig. 8). For the six W.P genes examined with qRT-PCR, the 12

Mile Summit pair of samples had consistently higher expression in

white petals compared to purple as expected from mRNA-Seq

analyses (Fig. 8). However, for the Savage River pair of samples,

Figure 4. Purple/white fold-change comparison of mRNA-Seq and quantitative real time PCR (qRT-PCR) expression estimates. For
both methods, chalcone synthase (CHS) had the greatest expression difference between purple- and white-flowered samples among nine genes in
the anthocyanin biosynthetic pathway (Savage River = filled triangles; 12 Mile Summit = open circles). The remaining anthocyanin biosynthetic
pathway genes have comparable expression between purple- and white-flowered samples and show a significant correlation between mRNA-Seq
and qRT-PCR expression estimates (inset).
doi:10.1371/journal.pone.0101338.g004
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only two of these six genes had greater expression in the white-

flowered sample (a drought stress gene, AT1G76080, and a

defense gene, AT5G15410), two genes had similar expression

between the two color morphs (an early response to dehydration

gene, AT3G30775, and a gene with unknown function, EXL5,

AT2G17230), and the last two had greater expression in the

purple-flowered sample (a 7SL RNA gene, AT2G31141, and the

unknown gene, AT1G10020), contrary to the results from the

mRNA-Seq analysis.

After expanding the sampling of purple and white petal samples

from four to a total of 12, we found no consistently differentially

expressed genes across a range of floral developmental stages

(Fig. 8). Differential expression was most consistent between the

Illumina samples and the broader sampling for the pathogen

defense gene DND1 (AT5G15410 with five out of six additional

cDNA samples having W.P expression). Three of the additional

samples were from bud-stage petals and still show substantial

deviations from the expression levels predicted by mRNA-Seq,

suggesting that variation is not due to changes arising in later

developmental stages. The lack of consistency could reflect our

pursuit of false positives or be caused by variation among

individuals sampled at different developmental stages.

Gene Ontology Analysis
We tested for significant enrichment in GO terms among the

top 2% of consistently differentially expressed genes between the

two populations (N = 92 genes). For P.W, we found eight terms

enriched at the P,0.01 level and an additional 26 terms enriched

at the P,0.05 level. Significantly enriched gene ontology terms

represented by more than one gene include ‘‘response to abiotic

stimulus’’ (six genes; P = 0.016) and ‘‘response to radiation’’ (3

genes; P = 0.048). Thirty of the 92 genes in the top 2% of

consistently differentially expressed genes were unannotated and

therefore not included in the GO analysis.

Among the top 2% of genes with consistently higher white

expression than purple, there were 18 significant terms (P,0.01)

and 42 marginally significant terms (P,0.05) exhibiting enrich-

ment. There were ten genes in the general category ‘‘response to

stress’’ (P = 0.0049) which includes sub-categories such as

‘‘response to cold’’ (three genes; P = 0.009), ‘‘plant-type hypersen-

sitive response’’ (i.e. pathogen response; two genes; P = 0.002),

‘‘innate immune response’’ (three genes; P = 0.020) and ‘‘response

to water deprivation’’ (two genes; P = 0.032). Another 28 of the 92

genes in the top 2% of consistently differentiated genes with W.P

were unannotated and therefore not included in this analysis.

Discussion

Expression of Anthocyanin Biosynthetic Pathway
Candidate Genes

Expression analysis of the petal bud transcriptome clearly

indicates that CHS has the greatest expression difference between

purple and white petal buds and is the top expression candidate for

the potential cause of white petals in P. nudicaulis [13]. Among

the ,10,000 genes assayed for expression in the petal, CHS had

the largest P.W fold-change difference, more than 2.56 greater

than the next most differentially expressed gene with P.W (Table

S2 in File S1). The strong correlation between expression

estimated by mRNA-Seq and qRT-PCR for anthocyanin biosyn-

thetic pathway associated genes validated our de novo transcrip-

tome assembly and expression estimates. However, the average P/

W ratio for CHS was consistently lower for mRNA-Seq (mean P/

W = 7.036) than that previously documented for qRT-PCR

(mean P/W = 10.666). This discrepancy was unlikely caused by

the small region assayed by qRT-PCR since the mean mRNA-Seq

P/W fold-change estimated across the 78 bp length of the qPCR-

amplified region is very similar to the expression estimated for the

entire gene by mRNA-Seq (P/W = 7.706; Fig. 5). Furthermore, it

is unlikely that the discrepancy in CHS fold-change is due to

inherent errors in the mRNA-Seq methodology or bioinformatics

pipeline since most anthocyanin biosynthetic pathway associated

genes show higher expression in mRNA-Seq when compared to

qRT-PCR (Fig. 4).

Tissue-specific downregulation of a single gene at the entry

point to the anthocyanin biosynthetic pathway is rare among

angiosperms in which the loss of floral anthocyanins has been

characterized [4,47,48]. Most cases of natural, tissue-specific loss-

of-floral anthocyanins involve downregulation of multiple antho-

cyanin biosynthetic pathway associated loci often caused by R2R3

myb regulatory elements [4,47,49]. Transcriptome analysis of P.
nudicaulis identified 53 mybs expressed in petal buds compared to

the 126 mybs in the entire A. thaliana genome [50]. We did not

assemble any of the known tissue specific regulators of the

anthocyanin biosynthetic pathway [Atmyb75, Atmyb90, At-

Figure 5. Expression profile for chalcone synthase (CHS). (A)
mRNA-Seq detects substantially higher expression in purple than in
white Savage River samples along the entire coding region of CHS.
Some 39-bias is apparent from the increased expression estimates
towards the 39 end of the coding region. (B) A comparison of the
purple/white fold-change along the entire coding region of CHS
indicates no consistent effect of the 39-bias on the ratio of purple to
white expression. The average fold-change across the gene for the
Savage River samples is indicated with a dotted line (P/W = 6.35).
doi:10.1371/journal.pone.0101338.g005
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myb113 and Atmyb114; [50,51]] and the majority of the mybs

assembled had very low expression in P. nudicaulis (median

expression = 35.01 RPKM). For Atmyb111, a known regulator of

CHS along with chalcone isomerase, flavanone 3-hydroxylase,

flavonol synthase and UDP-glucose anthocyanidin 3-O-glucosyl-

transferase in A. thaliana cotyledons [51], we confirmed the

absence of any consistent differences in expression between purple

and white petals in P. nudicaulis (P/W = 0.87). Since expression of

Atmyb111 is unlikely the cause of the CHS downregulation, we

looked more broadly at the ten most highly expressed mybs in the

P. nudicaulis petal transcriptome (greater than 80 RPKM). Only

two mybs show consistent differential expression between purple

and white petals in the two populations surveyed in this study

(Atmyb32 and Atmyb4). These two mybs are closely related and

essential regulators for flavonoid production, a key component to

pollen viability in A. thaliana [50,52]. Furthermore, overexpres-

Figure 6. Transcriptome-wide comparison of purple and white expression. Expression estimates are measured in reads per kilobase exon
per million uniquely mapped reads (RPKM). The red line indicates equal expression in purple and white samples. Chalcone synthase is indicated with
a triangle. (A) Savage River samples; (B) 12 Mile Summit samples.
doi:10.1371/journal.pone.0101338.g006
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sion of Atmyb4 downregulates CHS along with two upstream

genes, 4-coumarate-CoA ligase 3 and 4-coumarate-CoA ligase 1 in

A. thaliana [52]. In P. nudicaulis, both of these mybs have W.P

(mean W/P = 1.66 and 1.36), yet we find no correlated

expression differences between purple and white petals for the

other two regulatory targets in A. thaliana: 4-coumarate-CoA

ligase 3 and 4-coumarate-CoA ligase 1 (mean P/W = 1.2 for both

genes in P. nudicaulis). Future studies examining sequence

differences in these mybs are necessary to assess any involvement

they may have in the purple-white color difference in P.
nudicaulis.

Expression of Non-Anthocyanin Biosynthetic Pathway
Related Genes

Transcriptome-wide expression analysis revealed a much larger

set of genes that are consistently differentially expressed where

W.P. None of these genes are immediately associated with the

anthocyanin biosynthetic pathway across a diversity of angio-

sperms [15,17,18,19], nor have they been identified in the broader

metabolic network of A. thaliana [18]. Differential expression of

these genes is unlikely due to co-expression of genes physically

adjacent to CHS [53] since only six of the 25 genes with W.P are

on the same chromosome as CHS (chromosome five) and the

closest gene is greater than 515 kbp from CHS (DND1,

AT5G15410.2) in A. thaliana. Genome wide coexpression of

neighboring genes in A. thaliana was undetectable beyond 12 kbp

[53] and is weak once separated by two or more intervening genes

[54].

One hypothesis is that these consistently differentially expressed

genes with W.P represent a physiological consequence of the loss-

of-petal anthocyanins in white flowers in response to increased

sensitivity to petal-specific abiotic stress. Of the 25 consistently

differentially expressed W.P genes, 20 were probed in a

collection of nine A. thaliana microarray experiments primarily

involving abiotic stress-induction [17]. Sixteen genes were

correlated with CHS at least once, but none of these genes were

correlated in more than three stress experiments. In one particular

cold stress experiment (GEO Accession: GSE6177), four genes in

our W.P list had correlated expression with CHS (P,0.05).

Several of these genes have known functions in cold and drought

stress consistent with the stress-related function of anthocyanins.

Species with floral anthocyanin polymorphisms have demonstrat-

ed a decreased performance (and sometimes decreased fitness) of

white morphs under stressful environments [e.g., heat, drought,

herbivory, pathogen attack [4,7,8]], even when the loss of

anthocyanins is restricted to the flower petals, like in P. nudicaulis.
We hypothesize that the transcriptional consequences documented

here compensate for the loss of petal anthocyanins in these more

benign southern populations, but may not be sufficient to do the

same in more northern populations leading to the recently

documented selection against lighter colored morphs and the

exclusion of white flowered individuals along Alaska’s Arctic

Coastal Plain [13,14]. Additional field and molecular studies are

necessary to test this hypothesis.

A qRT-PCR survey of additional individuals for seven genes

with W.P revealed that these genes are not universally

differentially expressed in white-flowered individuals of these

Figure 7. Identification of consistently differentially expressed genes. Consistently differentially expressed genes were identified by
comparing the mean relative difference (RD) between purple- and white-flowered samples from Savage River and 12 Mile Summit to the consistency
of the RD estimates between those two populations. RD was calculated for each purple-white pair of samples at a population [RD = (purple RPKM –
white RPKM)/max(purple RPKM, white RPKM)]. Consistency is the difference between RD Savage River and RD 12 Mile Summit. We focused on points
with RD.0.5 or RD,–0.5 and with consistency less than 0.25 and greater than –0.25 (larger red filled circles). Chalcone synthase is indicated with a
red triangle as the most consistently differentially expressed gene with greater expression in purple than white. There are approximately three times
more consistently differentially expressed genes with white expression greater than purple (25 genes) compared to the number of consistently
differentially expressed genes with purple greater than white (8 genes).
doi:10.1371/journal.pone.0101338.g007
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populations. Either (1) the low expression levels of most of these

genes causes dramatic fluctuations in P/W ratio by chance alone

producing false positives (four out of six genes had less than 100

RPKM), or (2) the inconsistent stress-response level in white-petals

(or dampened response in purple-petals) is not universal and may

be dependent on the individual’s specific microenvironment.

When we rank the genes in this survey by their overall expression

levels, we see no trend in the consistency of W.P suggesting that

low expression alone is not the primary cause of the variation

among samples. We conclude that the increased sensitivity of

white-flowered individuals as detected in their transcriptional

response is microenvironment-dependent. Controlled manipula-

tive experiments that induce a consistent stress-response on both

color morphs will be necessary to determine if these are false

positives or if these genes with W.P are a consequence of the loss

of petal anthocyanins.

Methodological Concerns
The de novo transcriptome assembly pipeline developed for P.

nudicaulis captured sequences for nearly half of the coding

sequence of ,13,000 genes [approximately half of the known

genes in A. thaliana; [15]], yet our method has some limitations.

First, spurious expression differences producing false positives can

easily arise when relying on few samples, especially when

repeatedly examining fold-changes for genes with low-expression

(53.2% of the genes surveyed for expression have less than 50

RPKM). For example, if we only used one pair of samples, we

would have falsely inferred several genes involved in cell wall

biosynthesis were differentially expressed (see 27 genes with W.P

in Fig. 6B that are not differentially expressed in Fig. 6A; also

visible in the upper left quadrant of Fig. 7). We have reduced the

probability of spurious fold-change estimates by pooling individ-

uals of the same developmental stage and petal color into a single

sample, including pooled samples from geographically distinct

populations, and removing all genes with less than 10 mapped

reads. Our sampling design was not ideal for drawing robust

statistical conclusions, but rather was designed to identify

candidate genes and develop hypotheses for future exploration.

Second, by using a very stringent cut-off for the blastn and

reciprocal best-hit nucleotide blast analyses (E-value,10210) to

increase the probability of correct homolog identification, we

compromised our ability to identify genes that have high

divergence from A. thaliana. For instance, several contigs for

CHI were assembled de novo, but the elevated coding region

sequence divergence (22.5% compared to 11% for remaining

anthocyanin biosynthetic pathway genes) failed to meet our blastn

threshold. Yet even in this case, chalcone isomerase still appears to

be under strong purifying selection compared to A. thaliana (Ka/

Ks = 0.098). In general, using stringent blastn and reciprocal best-

hit nucleotide blast cut-offs leads to an underestimate of the petal

transcriptome size and removes genes with elevated rates of

molecular evolution in comparison to A. thaliana. Although

sequence divergence and expression divergence can be correlated

[[55], but see exceptions [56,57]], this unlikely biased our P/W

comparison within P. nudicaulis.
A third limitation of de novo transcriptome assembly is

discerning closely-related paralogs that are simultaneously ex-

pressed in the same tissue [25]. Paralogs complicate the contig

assembly and expression estimates, yet can be partly accommo-

Figure 8. Quantitative Real Time PCR (qRT-PCR) survey of
targeted consistently differentially expressed genes. Seven
genes from the transcriptome analysis were selected for a qRT-PCR
survey across a broader set of RNA samples (see Tables S2 and S3 in File
S1 for expression results for these genes). Based on mRNA-Seq results,
we selected the second highest differentially expressed gene with
greater expression in purple compared to white (GDSL-motif lipase/
hydrolase family; AT5G45950 depicted in A.) and six genes with
consistently higher expression in white petals [B. 7SL RNA gene
(AT2G31141); C. unknown protein (AT1G10020); D. CDSP32 (cp
drought-induced 32 kD stress-induced protein; AT1G76080); E. EXL5
(exordium like 5; AT2G17230); F. ERD5 (early responsive to dehydration
5; AT3G30775); G. DND1 (defense no death 1; AT5G15410)]. Each bar
represents the P/W ratio for a pooled sample at that developmental
stage. mRNA-Seq based expression estimates from Savage River (early
bud) and 12 Mile Summit (late bud) are represented with filled grey
bars. The mean expression difference from the transcriptome analysis of
these two populations is indicated with a red dashed line. The same

samples used in mRNA-Seq were validated with qRT-PCR depicted as
the white filled bars to the left of the vertical dashed line. Six additional
P/W comparisons were made across developmental stages (white bars
to the right of the vertical dashed line).
doi:10.1371/journal.pone.0101338.g008
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dated using analytical methods that are optimized for heteroge-

neous datasets [e.g., Velvet/Oases; [39]]. In attempts to reduce

the assembly of paralogous sequences, we included a reciprocal-

best-hit blastn step into our de novo assembly pipeline using a

stringent E-value threshold. Even with this procedure, we

identified 566 alignments with sequence variation greater than

that expected in natural populations. Upon visual examination of

these alignments, we identified numerous paralogs with similar

coding regions, yet highly divergent untranslated regions. We

considered these together in the expression analysis since their

function is inferred to be similar based on their nearly identical

coding regions and coexpression in the same tissue. We also

confirmed each of the consistently differentially expressed genes

(Tables S2 and S3 in File S1) using only purple and only white

contigs to form the reference for expression analysis in case the two

color morphs were expressing different paralogs. There was no

consistent bias in the P/W fold-change estimates based on the

sequences that were used for the reference sequence (likely

ameliorated by the accommodation of 2–4 mismatches by

Mosaik). Future studies employing longer read-lengths (greater

than 200 bp including paired-end reads) can improve the chances

of detecting paralogs assuming they are sufficiently differentiated

at the sequence level.

Polyploidy can also complicate transcriptome analysis by

creating genome-wide paralogy and plants of high northern

latitudes are renown for the high frequency of polyploids [58]. In

particular, P. nudicaulis has been reported to have diploid

(2n = 14) and tetraploid populations [2n = 28 [59]], yet we found

no evidence of polyploidy within the Alaskan populations studied

here. The diploid genome size reported here (2C = 2.08) is very

similar to twice the haploid genome estimate of P. nudicaulis
(1C = 1.08 pg) with diploid chromosome counts of 2n = 14 [35].

Although the P. nudicaulis genome is over six times larger than

the A. thaliana genome [1C = 0.16 pg [60]], it is only ,26 larger

than the inferred ancestral state for the Brassicaceae [1C = 0.504

pg [35]]. In a previous study [13], we used degenerate primers

designed to amplify the anthocyanin biosynthetic pathway

associated genes across angiosperms. After sequencing more than

12 clones per RT-PCR, we consistently found the same alleles

expressed in petals and leaves with no evidence of paralogy. This,

in combination with a genomic DNA survey of the anthocyanin

biosynthetic pathway loci, which included sequence comparisons

of intron and/or untranslated regions (which are most likely to

reveal young paralogs), showed no evidence of recent genome

wide duplication [13].

Conclusions

Transcriptome analysis is consistent with a previous study

suggesting the loss of petal anthocyanins in P. nudicaulis is

correlated with downregulation of CHS. We documented 36
more genes with consistently greater expression in white petals

than in purple petals, many of which are involved in stress-

response consistent with the numerous non-pollinator roles of

floral anthocyanins. However, the physiological and ecological

consequences of the loss of floral anthocyanins may be environ-

ment-dependent and require additional controlled stress experi-

ments to confirm the cause of these consistently differentially

expressed genes with higher expression in white petals compared

to purple petals.
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