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II Figures  

Figure 1. Simulated maize planting dates compared to observed planting dates and 

panel-regression derived predictions for the two study areas (P. 78). 

Figure 2. Simulated maize yields compared to observed district yields and panel-

regression derived predictions for the two study areas (P. 79). 
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1. Introduction 

The research undertaken for this dissertation served an interdisciplinary research project 

titled: “Structure and Functions of Agricultural Landscapes under Global Climate Change 

- Processes and Projections on a Regional Scale”. Part of a microeconomic contribution 

to the project was the author’s task to construe the decision-making process of field crop 

management and calibrate and validate a mechanism to incorporate it into 

agroecosystem modelling. This is to broaden the scope of regional simulation to include 

economic actors whose actions, as ecological interventions, reverberate throughout 

agricultural landscapes. A robust human behavior element is a significant contribution to 

an interdisciplinary approach to furthering the discussion of how agroecosystems 

change with the climate.  

1.1. Climatic Context 

Germany is getting warmer. Trend analysis of troposphere temperatures throughout 

Germany between 1950 and 2013, by Pattantyús-Ábrahám & Steinbrecht (2015), shows 

an increase of ≈ 0.2 ± 0.1 K decade-1. As temperature is the primary driver of the plant 

maturation process, the trend inevitably exerts a notable effect on crop production in the 

country. Besides temperature, precipitation is among the most important meteorological 

factors determining local agricultural productivity. The German Weather Service (DWD, 

2016) uses an ensemble of weather generation models to provide a multifaceted 

approach to projections of future climate in Germany. Precipitation in Germany has, 

during the last decade, exceeded the norm during the meteorological reference period 

1961-1990 and is projected to further increase in the future. In contrast, in the Southwest 

of the country, the recent trend has been negative, and projections of precipitation levels 

by the ensemble of weather models do not diverge much from the average during the 

reference period. These predicted trends could bode well for Germany as a whole, but 

are a bit worrisome for the Southwest, where warmer temperatures in conjunction with 

relatively constant precipitation could lead to increased water stress. To accompany 

these trends is a noticeable recent increase in weather extremes in the country (Kropp, 

2015), which further threatens the productivity in the agricultural sector. Even in the 

unlikely event of relatively constant climate, agricultural production should be adapted to 

better take advantage of local conditions. Climate change makes adaptation imperative. 

The following uses historic and simulated future weather to plot the likely adaptation 

pathways that will help German farmers cope, and even benefit from, the changing 

environmental conditions in the country.  

1.2. Simulation modelling 

Integrated crop modelling has emerged as an effective means of evaluating possible 

adaptation pathways. The goal of this dissertation is to elucidate some of the most 



3 
 

important mechanisms by which agricultural production will likely be adjusted to future 

environmental conditions. A farmer can be expected, in the future as today, to weigh the 

risks and benefits relevant to strategic management decisions. A main focus of the work 

is therefore planting dates, one of the more flexible and influential decisions facing 

German farmers. For example, planting maize earlier in the spring is a way to increase 

expected yield, but this is tempered by the possibility of late frost that can irreparably 

damage or destroy the crop and thus entail additional costs for replanting. Or in late 

summer, when deciding when to harvest a mature or nearly mature crop, there is a 

deliberation of alternatives involving grain moisture and drying costs, damage to the soil 

incurred by driving on it when wet, and the uncertainty with regard to the suitability of the 

same conditions in the near future.  

An agent-based model is used to simulate the important strategic agronomic decision of 

when to plant crops, both in the fall and spring, at specific research field locations, as 

part of a collaborative project. A statistical model is also developed to represent the 

decision-making process throughout Germany, regarding the spring planting of silage 

maize. Another pliable farming action is the timing of harvest. There are complementary 

criteria to consider, such as soil trafficability and grain moisture content, both of which 

become less favorable with increased precipitation. There are also conflicting gauges of 

the suitability of a day for action. For instance, up to a certain point, crops continue to 

accrue economically important biomass (especially seeds) as harvest is prolonged. 

However, there are also advantages to harvesting before peak biomass is reached, such 

as freeing a field for planting of consequent crops and reducing the risk of worsening 

environmental conditions. The agent-based model is used to account for these risks and 

incorporate them into the decision-making of a simulated farmer. Simulating strategic 

farmer actions in this way systematically represents an economic agent responding to 

the specific local environmental conditions with which it is faced. The repetition of these 

actions through time and space results in patterns of significant events occurring on 

agricultural landscapes that are linked to ultimate crop productivity, therefore grounded 

in rational agronomy, and thus provide a plausible outlook on the dynamic appearance, 

function and productivity of future agricultural landscapes. The effects of preferences, 

e.g. risk aversion, by acting agro-economic agents, or system-manipulative interventions 

such as goal-oriented subsidy changes can then be traced through the simulated 

agricultural system from input to eventual output, that is, the effect on the system as a 

whole and selected components can be observed, at broader temporal and spatial 

scale. 

Crop growth simulation modelling has been improving for decades. Modern models, 

improved over many generations, were used to simulate growth processes of winter 

wheat, summer and winter barley, maize and winter rapeseed, five crops that cover 

80%, 75% and 50% of cropland in Baden-Württemberg, Germany and Europe, 

respectively. Realistic simulation of the management and growth of these crops can 
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provide definitive scenario analysis with regard to questions of food security, land-use 

and policy planning.  

The primary objective of this work is presenting a methodology for projecting future 

farmer behavior, which is, like crop modelling, valuable for scenario analysis as long as 

it can realistically capture natural processes. The timing of cropping actions, especially 

planting, has a distinct impact on crop performance and is therefore an important part of 

reliable simulation. This can be easily overlooked when using crop modelling without 

dynamic management.   

1.2.1. FARMACTOR/EXPERT-N  

The principle method to achieve the given objective focuses on using the recently 

developed agent-based, field-level model named FARMACTOR, as integrated with the 

crop-growth simulation model EXPERT-N. The integrated model package is applied to 

two arable regions of Southwest Germany, the Kraichgau and its sharply contrasting 

counterpart, the Schwäbische Alb, as part of a collaborative research project on dynamic 

land-use under climate change. A third region, the Wetterau, has been simulated in a 

parallel study. 

FARMACTOR summarizes the multitude of factors involved in the on-farm decision-

making process into several rules that determine the timing of field-level actions, 

including planting and harvesting, based on farmer reactions to simulated field 

conditions. 

The model replicates this decision-making process with virtual farmers responding to 

current weather and soil conditions on a daily basis, as well as learning from historic 

patterns to generate expectations and steer behavior. The model is built to test different 

expectation-building algorithms where the temporal weighting of historic data as well as 

the number of years in it, are adjusted as agent profile scenarios1. Expectations for each 

simulated season include crop yields which determine gross margins and nutrient losses 

that determine fertilizer inputs, and the beginning of the period suitable for performing an 

action such as planting crops. Within its period, performance of an action is triggered by 

thresholds including soil and air temperature and moisture, plant development and field 

workflow.  

After definition of a learning algorithm to establish the windows for action, calibration 

focused on daily action triggers. During calibration, in reducing the error between 

observed and simulated planting dates, short-term (less than one week) temperature 

                                                           
1
 Without a significant difference resulting from opposing learning scenarios or other criteria, a running 

average over ten years was used in most consequent work. Later survey results however, revealed that 
an exponential decrease in weighting, inverse with time, with a history horizon of eight years was the most 

reasonable to respondent farmers. 
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sums were the most influential, followed by simulated soil moisture as a measure of 

workability/trafficability. Simulated planting dates were less sensitive to single-day 

precipitation and air and soil temperatures, such that the latter could be omitted without 

much loss of accuracy. The initial FARMACTOR trigger implementation and calibration 

were the author’s contribution to a paper introducing the model (Aurbacher et al. 2013).   

Model development continued, and this author led a paper included in this cumulative 

dissertation, “Simulating regional climate-adaptive field cropping with fuzzy logic 

management rules and genetic advance” (Parker et al. 2016a), in part to introduce 

alternative methods for reconciling the daily values of all the triggers used as threshold 

criteria for management action. Fuzzy logic and trending criteria or “shifting triggers” 

were implemented. In validation the new trigger paradigms showed improved accuracy 

in simulated planting dates by incorporating flexibility in the trade-offs between action 

triggers. Fuzzy logic proved especially advantages and is thus part of the base settings 

in the current model. Further research can quantify the link between risk aversion and 

field actions by modifying the fuzzy logic parameters that resolve conflicting messages 

from simultaneous observations in the simulated agricultural system. It is a rudimentary 

field management artificial intelligence available for experiment. 

Results from these simulations, incorporating the heterogeneity of soil, weather and 

responsive management are also being used as input for ongoing farm-level economic 

modelling as part of the regional project. Further work should also work on regional 

calibrations of the agent-based and crop models. This would dampen the overall 

environmental influences on management and yield at the regional level, as is the case 

in reality, to make regional projections more robust. 

1.3. Climatic and agricultural data 

Calibration of crop and farm-agent models is dependent on data from experiments and 

observations containing the information that goes into simulation. For this reason, a 

significant portion of the work in this dissertation involved the preparation of relevant 

data from various sources.  

Through the interdisciplinary collaboration, detailed soil profile information, precise 

weather records at sub-hourly measurements and exceptionally detailed plant 

phenotype measurements were all available at multiple points in project-specific 

experimental fields from the two starkly contrasting locations in Southwest Germany. 

Courser, publically available data was also assembled where longer time series and 

broader geographic scale were needed. Daily climate station data was selected for 

proximity in/to one of the two study areas and duration/completeness of time series. 

Calculation of global radiation and some gap-filling was necessary. Parallel data were 

likewise refined from a patchwork of phenological stations in the study areas that have 
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records of the development phases of crop development, including the day of 

management actions or “false-phases”. The assembled data was then used to calibrate 

and validate both a mechanistic and a statistical model, to generate an outlook on field 

management and how it interacts with crop performance, including plant development 

and potential yield. The goal being to accurately replicate historic, site-specific 

observations that can instill confidence in hypothetical scenarios, including cropping on 

previously unexploited areas, or in the future using generated weather scenarios.  

Historic yield data has been recorded at the district level for several decades, in 

complete time series, for hundreds of districts in Germany. There is a difference 

however between these and yields from experimental farms, including in state trials, 

which can be interpreted as nearing potential yield, district averages include less 

productive land and scientific management practices. So that when comparing a 

simulation calibrated to yield potential with a district average there is also an indication 

of the yield gap, or how much local agricultural productivity could improve under optimal 

management. Moving from point simulation to spatial coverage should then lower this 

yield gap indicator, depending on how well the models can capture the heterogeneity of 

weather, soil, plant and human interactions at the given scale.  

The yield gap makes district averages less than ideal candidates for model validation. 

Correlation between simulated and observed yields is thus emphasized as a measure of 

validity. Ongoing work is to spatially aggregate simulated results to incorporate regional 

heterogeneity into simulated regional averages, to better match historic district yields. 

There is further potential to use yield data at the field level from throughout regions. If 

within the model framework, crop yields can be well enough assigned to the concomitant 

set of managed environments on which they were achieved, this field level data could be 

valuable for extended model calibration and validation. Ongoing research is pursuing 

this possibility.  

To exploit the abundance of high-quality environmental and productivity records 

spanning the whole of Germany, in line with the dissertation theme of climate-

management-yield, at broader geographic scale, a statistical model was proposed, partly 

as something against which to compare the coupled FARMACTOR/EXPERT-N models. In 

the third paper included in this cumulative dissertation Parker et al. (2016b), a spatial-

panel regression model is used to predict maize planting dates at network observatories 

throughout the country, to a degree of accuracy comparable to that of the agent-based, 

mechanistic model2. This is achieved through summing weekly temperature and 

precipitation, controlling for large geographic regions and assigning individual intercepts 

to each station in the panel regression. Planting dates and the weekly weather after 

them were further spatially assigned to districts to continue the statistical analysis 

                                                           
2
 Both the statistical and agent-based models achieved a root-mean-squared-error between simulated and 

observed maize planting dates of less than one week, over the thirty years 1981-2010 in both study areas. 
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through to yields attained. German farmers were shown to be mitigating climatic risk by 

planting later than they could for maximum yield, in order to avoid the increasing danger 

of late frosts that are easily hidden behind the obvious general warming trend. Through 

the timing of their plantings and the selection of maize cultivars of varying maturity 

classes, farmers can further mitigate, here the risk of early frost or other yield 

interference in the fall. Combining planting dates and crop maturity are simple and 

effective means by which farmers can adapt their production to perceived climatic risk. 

How much later than a statistical optimum German farmers actually plant their maize is a 

quantifiable link to foregone opportunity, or the price of being more certain that a 

recently planted crop will not be destroyed by an anomalous weather event. If the 

method proves robust, it could for instance create a range of planting date 

recommendations based on the intended level of climatic risk. It can also be applied to 

several other German field crops for which sufficient data is available. The statistical 

model has another advantage in terms of run-time, so that its offers an efficient way to 

create comparative results or even provide management inputs for more complex 

models. Comparative results can be quickly produced with the same scenario-generated 

weather data that drives the mechanistic models. It cannot however, provide daily 

simulation of dozens of agroecosystem variables in the way that physiological process-

based models can represent the interactive system, especially when the human element 

is incorporated into the system to increase its functional complexity.   

The simulated future weather used in the main body of this work is statistical in nature in 

that randomized, resampled historic data was modified through assumptions of a 

popular future emissions scenario. This weather data is oriented to existing weather 

stations, therefore useful for point analysis. Due to its random nature it must be utilized 

in aggregate, so that multiple weather model generations are used to force simulation 

scenarios from which the results are then aggregated. This increases model runtime and 

results in dampening of weather extremes. Meteorologists argue for the use of an 

alternate weather-generation method. Dynamics-based modeling circumvents the 

limitations of resampling. There is weather data of this nature from a weather model 

intercomparison project for which simulated weather is compiled on a raster basis, 

downscaled to twelve square kilometers, available for all of Germany. In one 

collaborative experiment, a version of this dynamic weather simulation data that was 

produced within the regional climate change project were combined with soil profile 

mapping data to force simulations of the entire Schwäbische Alb. This work was 

presented as a poster titled: “Generated Weather Raster and Soil Profiles in Simulating 

Adaptive Crop Management and Consequent Yields for Five Major Crops throughout a 

Region in Southern Germany” at an international crop modeling conference. It 

emphasizes the method to spatially refine weather and soil data as model inputs, and 

then aggregate the results based on the prevalence of each soil/weather combination in 

the region. This should convey more realistic regional yields and management 

projections. Further analysis of the same model runs compared the effect of weather-
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generation models on predicted management and crop yields and was presented at the 

German national climate conference. “Generated Weather Raster and Soil Profiles in 

Simulating Adaptive Crop Management and Consequent Yields for Five Major Crops 

throughout a Region in Southern Germany” 

1.4. Technology 

The Green Revolution, as referred to by Gould (1969), revolved around advances in 

genetics being complemented by improved fertilizer and irrigation practices and political 

mandates, to facilitate rapid growth in agricultural productivity. Hayami and Ruttan 

(1971) introduced their “induced development model” to explain how synergy between 

agriculture, industry, politics and consumers, especially in the developed world, has 

driven technical innovation to enable increasing productivity. Adoption of new technology 

is still vital to increasing productivity in the developing world, while other concerns such 

as environmental protection are gaining importance in countries such as Germany, 

where food security is not a pressing concern (Loevinsohn, et al., 2013). The continuing 

motivation to produce more food and fiber associated with decreased negative 

externalities will further drive innovation that changes the face of contemporary 

agriculture. Precision agriculture is the modern catchphrase for optimized management 

to increase yields and simultaneously reduce costs. This work addresses some of the 

limitations of modern agriculture that may eventually be overcome, but for now 

characterize the management of agricultural landscapes. An example of this is 

mechanized traffic, which plays a major role in farm management, and is addressed 

below. Perhaps the most deterministic technological component of agriculture is crop 

genetics, which is therefore given special attention in this work. 

Crop model calibration is a process to account for crop genetic factors as they interact 

with the atmosphere and soil. Existing calibrations based on regional and experimental 

were redone and expanded by the author to include the five major crops in the study 

area, winter wheat, winter barley and winter rapeseed, spring barley and silage maize. 

Further calibrations for grain maize are starting to be used, and rye calibrated to data 

from the Wetterau in the state of Hesse has been presented in a conference paper. 

Experimental data from cultivar trials of rye, barley and maize were received from 

institutional sources and used to calibrate crops for which no project experimental data 

were available.  

In the search for experimental data with enough detail it became clear to the author that 

simulating a crop species becomes a broad undertaking when considering the genetic 

diversity within a species. Genetic heterogeneity is a source of model uncertainty, much 

like that of geographic and economic elements. Using finer scale in weather data 

interpolation improves model accuracy, especially where there is diverse topology. 

Simulated management, as shown above, reduces uncertainty by distributing the causes 



9 
 

for action over several criteria. Extending this reasoning to the highly influential genetic 

component of the modelling system, it became pertinent to augment the model to 

account for genetic diversity or flexibility in some way.       

Reviewing the contemporary literature on yield simulations showed that technological 

progress, especially through breeding, was an oft-cited source of uncertainty in 

simulation studies and that it would therefore be an important step in model 

improvement to break away from simulating at the species level. Literature also showed 

a clear trend in yield-driving plant physiological characteristics that could be easily 

incorporated into the crop model being used. Comprehensive historic to modern cultivar 

trials demonstrated a linear annual trend in the number of grains per ear. Maize genetic 

advance is not so clearly explained, but one pliable trait within cultivars is the amount of 

photo-thermal accumulation needed to induce flowering. Rapeseed plants have been 

being bred to reduce plant height and redirect this growth to fruit. Genetic advance is 

thus simply portrayed as an annually changing seed size in oil crops, length of season in 

maize and number of grains per head in cereals. This was then built into the model by 

the author to be genetic coefficients that are dependent on the year of the simulation, so 

that older cereal varieties with fewer grains, maize that ripens faster and rapeseed with 

smaller seeds are used to simulate historic scenarios. A linear extrapolation of grain 

number into the future, capped at fifty grains per head has a noticeable impact on 

projected yields, in some cases reversing a prognosis from declining to increasing 

productivity in the near future. Further work should delve deeper into the sources of 

breeding success, and how to simulate this to better capture some of the technological 

progress wanted by current work in agroecosystem simulation.  

In Parker et al. (2016a), FARMACTOR was run to project management and crop 

performance as it would occur on the experimental fields in the Kraichgau. Fuzzy logic 

was used for future scenarios and dynamic genotype-specific parameters were 

compared to the static alternative. Simplifying genetic advance to a linear trend in one 

parameter is a start toward more detailed representation of how an agriculture system is 

adapted to changing or even relatively constant growing conditions. The method 

developed, in which simulated farmers can choose progressively more productive 

cultivars may be found in future research forecasting adaptive agricultural activity. 

1.5. Risk & Learning 

Two themes that were to be addressed in this work were risk aversion and learning on 

the part of agro-economic agents. While a thorough assessment of the role of risk in 

decision making was not pursued, several mechanisms were developed that enable the 

incorporation of risk management profiles that should be useful in ongoing research. 

Learning was also a theme in the microeconomic portion of the overarching climate 

change project that was principally managed by other project participants, but similarly 
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to risk, a framework was validated for incorporating different functional forms 

representing how farmers build expectations relevant to agricultural production. Learning 

was solely used to determine the beginning of planting periods when there is potential to 

use it to further capture agricultural adaptation, or how agronomic and economic 

adjustments are planned by farmers, such as adjusting fertilizer applications to expected 

yields or planning crop shares with consideration of expected crop prices. A more 

thorough representation of how previous experience affects decision-making, together 

with a quantitative way to account for the influences of risk aversion, are important next 

steps in the development and application of the FARMACTOR model. Crop selection and 

patterns of crop rotations are key components of adaptation to changing climate. It is 

possible to simulate the shares of individual crops in a rotation, in individual fields in the 

model, depending on expected gross margin, which is driven by price and yield. As 

volatile as yields and commodity prices can be, in reality and in simulation, there is a 

need to dampen the variance of simulated gross margins over time, via learning; and an 

additional element, risk aversion, to decelerate the response by farmers to changing 

production circumstances, relative to exogenous factors such as market prices, climate 

and political mandates. Scrupulously accounting for both learning and risk, as 

FARMACTOR is designed to do, partly to enable dynamic annual crop selection, is 

arguably a missing element in this dissertation. The three components were, however, 

assigned to others in the interdisciplinary project and there were pressing needs that 

arose regarding crop model calibration that needed to be addressed to move the whole 

project forward. The extensive work with crop growth simulation can thus be seen as a 

distraction from the economic gist of this work, or alternatively, seen as an agronomic 

complement. One advantage of FARMACTOR is the ability to combine biophysical 

processes with those of microeconomics to reconcile what could be conflicting 

influences, or conversely, factors, such as the increasing productivity of a crop together 

with an increase in its demand, are additive in their influence on changes in agricultural 

landscape function. Moreover, mechanisms to account for risk and learning have been 

validated in this work but not yet used to create scenarios reflecting the diversity of 

economic agent attributes and how they will influence the course of adaptation through 

time. 

1.6. Aims and structure of the thesis 

This work is a test of improved methods in bio-economic simulation aimed at reducing 

uncertainty in agricultural landscape modeling. It was undertaken to integrate agent-

based field management with crop growth simulation to account for human behavior in 

modeling of agricultural landscape systems. This mechanism for adaptive management 

was complemented by an outlook on trends in available crop genetics built into the 

model, to address a further source of uncertainty in crop performance projections. 
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 A statistical model was also developed to predict local field management (planting dates 

of maize) in response to weather at the national scale. 

Success in this endeavor is defined by the accuracy in simulating field management 

actions, especially planting, in a way that is robust outside the conditions used for 

calibration. The calibrated model must perform adequately across a range of 

environmental conditions, specifically soil and weather heterogeneity, and over a vector 

of time.  

Projecting crop genetics must be based on observable phenotypic trends, rationally 

accounted for in crop model calibration, while effectively reducing the error between 

simulated and observed crop performance criteria, e.g. yield, over an adequate 

validation range, e.g. years. 

The paper introducing the agent-based bio-economic simulation model FARMACTOR 

(Aurbacher et al., 2013), though not part of this cumulative dissertation, involved work to 

establish the agronomic context and demonstrate the functionality of the model’s field 

management decision mechanism, as a foundation for consequent work. The author 

provided research on the availability of days for fieldwork which verified the existing 

model framework and led to completion of action trigger definitions. Further contribution 

was in the acquisition and preparation of weather data and verification of an existing 

database including soil parameters, farm mechanization and field inputs that interact 

during simulation. The FARMACTOR interface to EXPERT-N was managed by the author; 

performing and reporting on model runs to be published. This work was relevant to, or 

repeated in, the following papers. 
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Paper 1: Simulation-based projections of crop management and gross margin variance 

in contrasting regions of Southwest Germany 

The first paper submitted under the auspices of this doctoral work, (Parker et al., 2015a), 

was a study to employ the updated model to both the Schwäbische Alb and the 

Kraichgau to merge both projected climatic and market risk into one measure, gross-

margin variability. This utilized a randomized price forecast developed by the author, 

who was assisted with the background and analysis of agricultural risk. 

The goal of the paper was to demonstrate the accuracy of the calibrated models in 

predicting planting and harvest dates, and yields of the major crops in two contrasting 

biomes in Baden-Württemberg. Management and yields were projected into the future 

and coupled with simulated future prices to provide an augmented simulation of risk 

factors in the future. Environmental and economic risk were coupled and made available 

to the model, which was developed to be able to respond to these and other risks in the 

form of adaptive management.  

This paper also featured new calibration of EXPERT-N to project-collaborator field 

observations, and expansion of modelling capacity through calibration of additional 

crops to external data. Additional duties were development of the methodology to 

simulate genetic advance by programming annually changing crop model parameters 

and assistance in the conception and implementation of and reporting on the genetic 

algorithm used to calibrate agent parameters determining planting and harvest dates 

and the implementation of fuzzy logic as a means of considering complementary or 

conflicting criteria for field work.  

The author’s work for this paper constituted calibration of the crop model and the agent-

based management procedure for all five crops at both locations; also the design and 

preparation of the future price generator, with consultative supervisorial contributions. All 

model runs, preparation of results and the majority of the paper text were completed by 

the author.   

Paper 2: The resilience of different cultivars of winter cereals wheat, barley and rye to 

climate change in Central Europe – a localized regional simulation study 

The second paper, a conference presentation, along with a pair of conference posters, 

applied the point simulation methods from the first two papers to gridded regional 

simulations in two regions of Germany. These contributions focused on the sensitivity of 

simulated yields and gross margins to soil and weather (dis)aggregation. The author’s 

work for these presentations included, in addition to the groundwork established in 

previous work, preparing all simulation runs, combining gridded weather data with soil 

polygons; also, guidance in the calibration process, done, in part, as a portion of a 

coauthor’s master’s thesis. The preparation of text and figures, almost 100%, as well as 

the delivery of conference presentations was done by the author. 
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Paper 3: Simulating regional climate-adaptive field cropping with fuzzy logic 

management rules and genetic advance 

The third paper examined the benefits of several alternatives in the simulation of how 

agronomic criteria are weighed by an economic agent (farmer). Fuzzy logic and a 

shifting tradeoff mechanism were tested against the simpler precursor with rigid criteria. 

Here was also introduced a method for dynamic crop genetics to account for breeding 

progress in historic and future simulations. The paper focused on a single field in the 

Kraichgau, partially in preparation for regional gridded simulations to follow. The Author 

conceived and constructed the shifting trigger mechanism and contributed to 

implementation (coding) of the fuzzy logic alternative. Construction of the genetic 

algorithm was the work of a coauthor. Half of the crop model calibrations (All crops, 

submodule CERES) and all management calibrations were performed by the author. 

Validation and projection runs were likewise the author’s responsibility, together with 

approximately 80% of the text and all figures and tables.  

Paper 4: Cause and consequence in maize planting dates in Germany  

The fourth paper presents the statistical alternative to agent-based modeling that is not 

as detailed, but still viable for integration in agroecosystem modeling. A panel regression 

isolated the observatories of maize planting dates throughout Germany to assign each a 

base (intercept) planting day, and for all observatory locations, one set of coefficients 

responding to observed local weekly weather totals for precipitation and temperature. 

Consultation on choice of data resources and statistical methods was provided by 

coauthors; otherwise the author was responsible for the entirety of the work, and 

approximately 90% of the text in the paper. 

In all four papers of the work presented here, literature review was almost completely 

done by the author, with the exception of agricultural risk in the first paper. 

 

  



14 
 

2. Simulation-based projections of crop management and gross margin variance 

in contrasting regions of Southwest Germany 

 

P. Parker1,2, E. Reinmuth3, J. Ingwersen4, P. Högy5, E. Priesack6, Hanz-Dieter 

Wiezemann7, and J. Aurbacher1 

 

1 Institute of Farm and Agribusiness Management, Justus-Liebig-University Gießen, 35390 Gießen, Germany 

2 Centre for Agricultural Landscape Research (ZALF), 15374 Müncheberg, Germany 

3 Institute for Farm Management, Section Production Theory and Resource Economics (410a) University of 

Hohenheim,Schloß-Osthof-Südflügel, 70593 Stuttgart, Germany 

4 Institute of Soil Science and Land Evaluation (310), University of Hohenheim, 70593 Stuttgart, Germany 

5 Institute of Landscape and Plant Ecology (320), University of Hohenheim, 70593 Stuttgart, Germany 

6 Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Soil Ecology, 

85764 Oberschleissheim, Germany 

7 Institute of Physics and Meteorology (120), University of Hohenheim,Garbenstrasse 30, 70593 Stuttgart, 

Germany 

 

Published in: 

Journal of Agricultural Studies, (2015) 

3/1, 79-98  

 

 

 

 

 

 



15 
 

 



16 
 

 



17 
 

 



18 
 

 



19 
 

 



20 
 

 



21 
 

 



22 
 

  



23 
 

  



24 
 

  



25 
 

  



26 
 

  



27 
 

  



28 
 

  



29 
 

  



30 
 

  



31 
 

  



32 
 

  



33 
 

  



34 
 

   



35 
 

3. The resilience of different cultivars of winter cereals wheat, barley and rye to 

climate change in Central Europe - a localized regional simulation study 

 

P. Parker1,2, F. Gebser1 

and J. Aurbacher1 

 

1 Institute of Farm and Agribusiness Management, Justus-Liebig-University Gießen, 35390 Gießen, Germany 
2 Centre for Agricultural Landscape Research (ZALF), 15374 Müncheberg, Germany 

 

 

An Oral Presentation at: 

The Second International Conference on Global Food Security, in Ithaca, NY, USA, 

October 11-14, 2015 

  

 

 



36 
 

[09.18] 

The resilience of different cultivars of winter cereals wheat, barley and rye to climate 

change in Central Europe - a localized regional simulation study 

P.S. Parker*, F. Gebser, J. Aurbacher 
1
Justus Liebig University of Giessen, Germany, 

2
Liebniz Centre for Agricultural Landscape 

Research, Germany 

 

lntroduction: 

Cereal crops are the predominant food source produced in Central Europe and the level 

of their production is of utmost importance to future global food security. Despite 

extensive work modelling crop responses to changing climate, there are numerous 

factors responsible for uncertainty in yield projections that have yet to be sufficiently 

addressed. One of these is the varied response of different crop cultivars to identical 

environmental conditions. Methods to estimate the range of response within a crop 

species are therefore a step in the direction of more robust projections of future yields 

under anticipated climate change. lt was therefore undertaken to calibrate a crop growth 

model to three cultivars each of winter wheat, winter barley, and winter rye in an effort to 

capture the possible divergence of yield levels among the different genotypes. A 

significant difference in cultivar productivity could indicate which should be given 

preference as local climate changes. 

 

Methods: 

This "cultivar choice" was combined with the adaptation of sowing dates to annual and 

long- term weather trends within an agent-based model governing field management in 

simulations, also calibrated to local conditions. The region of study encompasses all 

cropland in a highly productive administrative district (Wetterau Landkreis) in the state of 

Hesse, near the geographic center of Europe. Historic weather and local soil data were 

used to calibrate a dynamic sowing date algorithm to historic observations from a 

phenological observation network and the crop model to records from state experimental 

stations. After validation to parallel datasets, ten soil types present in the district 

(mapped at 1/1,000,000 scale) were combined with a generated weather raster at 10 

km2 resolution (see Fig. 1) to extend simulations up to the year  2050.  Results quantify  

the  trend  in  autumn  sowing  dates,  subsequent  harvest    and projected yields by 

comparing 2011-2020 simulation averages with those from 2041-2050. Associated gross 

margins based on a simple price forecast model replicating the trend and fluctuations in 

prices over the last sixty years are included as potential drivers of farmer decision-

making. Production costs were held constant into the future as they should not differ 

much between crops. 
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Results: 

Validation shows high correlation between simulated and observed district yields, albeit 

with an overestimation bias common when comparing to regional averages. Simulations 

indicate that ubiquitous later planting and earlier temperature-driven crop maturity will 

significantly shorten the growing seasons of all crops and cultivars examined. Without 

adaptation to mitigate this shortened seasoned (e.g. later-ripening cultivars, irrigation) 

district average yields of all cultivars of winter wheat and barley will suffer from projected 

climate change (see Table 1), though in some weather/soil combinations yields will 

increase (see Fig. 2a-b). For winter rye, a more positive outlook is generated, where 

yields in general increase, though not for all three cultivars (Table 1), nor on all 

simulated fields (see Fig. 2c). 

 

Discussion: 

Winter wheat, the most important crop in Central Europe in terms of food security, 

appears to  be the most vulnerable to climate change, followed by winter barley, while 

winter rye could benefit from the climatic shift. Despite these yield trends, gross margins 

increase the most for winter wheat, due to the assumption of persistent historic drivers of 

prices (e.g. population growth, decreasing marginal productivity) which may be 

exaggerated by static production costs. Profitability being a determining factor in 

agricultural resource use, the integrated model could provide useful insight into how 

agricultural landscapes are likely to change in the future, from which implications of local 

and global food supply can be derived. Based on the model output, cultivation of rye 

could gain importance in the region studied, at the expense of wheat and barley, crops 

more popular for human consumption. However, if a similar trend is seen at greater 

scale in Central European landscapes, prices of the former crops would likely adjust 

(increase) to compensate for the relatively poorer yields. The model's extended capacity 

to determine crop selection based on dynamic gross margin expectations could quantify 

changing crop rotations, or inversely, produce price-change projections based on 

simulated yields in static crop rotations. The integrated model may in this way be useful 

with its dynamic response to environmental and economic drivers. 
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Table 1. 
 
winter barley 

  

change in sowing (days) 11.87 

cultivar Lomerit Souleyka Nerz 

change in harvest (days) -5.33 -5.02 -5.05 

change yield (dt/ha) -0.16 -0.26 -0.44 

change in gross margin (€/ha) 
499.15 455.99 508.72 

winter rye    

change in sowing (days) 20.06   

cultivar Dukato Mephisto Helltop 

change in harvest (days) -1.66 -1.59 -2.12 

change yield (dt/ha) -3.37 1.73 5.50 

change in gross margin (€/ha) 
462.72 559.29 635.58 

winter wheat    

change in sowing (days) 14.24   

cultivar JB Asano Julius Kerubino 

change in harvest (days) -7.11 -6.19 -7.56 

change yield (dt/ha) -5.13 -5.34 -4.37 

change in gross margin (€/ha) 704.92     671.35    676.08 
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Fig. 1 Study region Wetterau District (Landkreis) partitioning of soil and weather 

 

 
 

 

 

Fig. 2 Changes in average yields between 2011-2010 and 2031-2050 for: a) winter 
wheat cv. 
Kerubino; b) winter barley cv. Souleyka; c) winter rye cv. Dukato 

 
a) 
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6. Discussion 

The FARMACTOR model framework to integrate an agent-based agricultural management 

model with a crop growth simulation model builds upon historic work examining how 

farm decision-making exists in concert with ecological processes. Previous work in this 

area includes that by Berger (2001), Gömann et al. (2005), Audsley et al. (2006), Busch 

(2006), Flichman et al., 2006, Van Ittersum et al., (2008), Verburg et al. (2009) and Van 

Ittersum (2009). Driven by a different research focus, or limited model complexity, these 

earlier studies are conducted at coarser spatial and/or temporal resolution. The focus is 

either at the regional scale, necessarily ignoring the heterogeneity within a region, or 

aggregated temporal scale, likewise omitting the effects of daily environmental 

conditions. None of these studies are able to address in sufficient detail the complex 

reaction of an individual farmer with the environment. They may, however, include more 

comprehensive consideration of socio-economic factors, such as multi-agent 

interactions (Berger, 2001) factors of competing demand regarding agricultural lands 

(Gömann et al., 2005; Busch, 2006), and input constraints such as labor (Flichman et al. 

2006; Van Ittersum et al., 2008).  What FARMACTOR, as coupled with EXPERT-N offers is 

a dynamic relationship between management and crop performance, a complete 

feedback loop at the field scale, where modifications to either model affect the combined 

performance of the coupled modeling system. Variation in the simulated timing of field 

management is a model-endogenous process based on integrated simulation of plant-

atmosphere-soil interactions, rather than being solely dependent on model inputs such 

as weather time series and site characteristics. This dynamic feedback is an important 

component to the plausibility of adaptation scenarios, and also allows the creation of 

scenarios based on the preferences of the economic agents represented by 

FARMACTOR, and the parameters, such as genetics, underlying EXPERT-N biophysical 

simulation. Another clear advantage to the FARMACTOR integrated model framework is 

the ability to extract a range of agroecological outcomes, such as nitrogen leaching, on a 

daily basis, which can be directly linked to agent parameters and/or scenario-based field 

management.  

With respect to the scale of the above studies, at this stage in its development/usage 

FarmActor can be seen as a precursory simulation tool, able to deliver detailed 

projections pertaining to field management and crop performance to such such studies, 

whose analysis is more land-use or policy-oriented, with macroeconomic implications. 

Either those models should be expanded to account for the detail in FarmActor, or the 

latter could be expanded to perform the broader-scale functions.   

6.1. Methodology 

Results from FARMACTOR and the panel statistics model are both encouraging in terms 

of their accuracy in replicating historic data and their plausibility in projecting future 
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developments on agricultural landscapes. In general, prediction of planting dates is 

much easier for spring-sown crops, due to their greater dependence on environmental 

factors rather than other farm management activities, for instance, through crop rotations 

that effect phenological observations but are not revealed in the data, the harvest of a 

crop preceding overwintering crops is influential on the date of its planting. This effects 

winter wheat, winter barley and winter rapeseed planting dates, important input for the 

crop growth simulation model. Attesting to the accuracy of the EXPERT-N crop model is 

the fact that harvest dates are relatively well-simulated. Results corroborate findings by 

Bondeau et al. (2007), Waha et al. (2012)  and Olesen et al. (2012), that predict a trend 

toward earlier maturity in the future. Maize harvest date is also dependent on cultivar 

choice, and the phenological data used for validation does not take into account the 

differences in maturity of different cultivars.  

While the statistical model is based on observed district-level yields and therefore is able 

to accurately reproduce them, the FARMACTOR/EXPERT-N coupled models were 

calibrated to experimental fields. The average of district yields by definition leads to 

smoothing of spatial variation in the time series, so that simulated results fluctuate much 

more, and as the district average includes much less productive fields, overall values are 

depressed. This leads to an inherent discrepancy between observed district yield 

statistics used for validation and simulated yields. One solution is to validate the model 

to state field trials, where growing conditions and management are similar to the 

conditions used for model calibration.  

Use of a genetic algorithm to optimize the chosen triggers was a methodological 

approach to exploring the domain of possible trigger combinations3. A major limitation 

was the computational time required, which increases with the number of years 

simulated, in which comparisons are made between predicted and observed planting 

dates, driving the iterative adjustment of triggers, and further by the number of triggers to 

be optimized and the number of permutations tested for each trigger. It was found that 

after 10 iterations, each with 16 trigger permutations, (more variations of the most 

influential triggers compounded with fewer variations of less influential ones), the most 

effective triggers (aggregate temperature and soil moisture), varied within a relatively 

narrow range, while the triggers to which model accuracy is less sensitive varied within a 

broader range. Considering conventional use of genetic algorithms, 10 iterations is a 

relatively low number, this can be justified however, by how quickly the parameters 

                                                           
3 An alternative was explored to fill a database with simulated daily soil moisture levels and learning-

defined planting window start dates, which were combined with daily weather measurements (available 

for aggregation). This reduced the time required to test trigger settings against observations from 

around 30 minutes to a few seconds, and produced comparable results, but was not an automated 

procedure, nor deemed scientifically robust enough for publication and thus abandoned.  
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being optimized converged, so that further iterations would bring very little benefit in 

terms of model accuracy. 

One significant accomplishment in this work, included in Parker et al. (2016a) was 

dynamic simulation of breeding progress through time. The significance of this 

methodology is immense, as it transformed simulations of declining future yield trends 

into an outlook with increasing yields. An increase in the number of grains per head, as 

reported in Ahlemeyer & Friedt (2012), is a quantified and major cause of the trend in 

increasing grain yields over recent decades. This trend, at approximately 1.7 grains per 

head, per year, is arguably an essential component of simulation into the future. 

Simulating dynamic genetics in maize, however, did not refer to breeding progress, but 

rather to adaptation on the part of farmers, to choose already-existing, later-ripening 

cultivars (as a result of greater photothermal accumulation requirements) as ambient 

temperatures increase, historically and in projected future weather. Breeding progress in 

the remaining simulated crop, rapeseed, is not as clearly defined as for cereals and 

maize, so that a dynamic genetic parameter (initial leaf nitrogen content) was selected 

based on simulated yield sensitivity, in a pragmatic, if less realistic, way to mimic 

breeding progress. While in the course of this dissertation it has been possible to 

develop a mechanism to account for breeding progress, there are other components of 

technological change that can be expected to bolster yields in the future (Bindi et al., 

2011). One still missing element in the coupled models as they have been applied for 

this work is that EXPERT-N is not yet capable of dynamically simulating atmospheric CO2 

concentration, which with grain and oil crops the “C3 pathway” increased CO2 increase 

yields (Högy et al., 2010), (Ko et al., 2010). Models that do incorporate CO2 fertilization 

effects in simulation demonstrate the significance of the ambient atmospheric level of 

the gas. Challinor & Wheeler (2009) summarized the results of an ensemble study of 

crop model response to variable CO2 to show that within the ensemble, yield increases 

attributed to CO2 were between 0 and 73%. This effect, as with dynamic genetic 

parameters to account for breeding progress, has major implications when simulating 

future scenarios. The results published in this dissertation could thus be interpreted as 

pessimistic, because rising atmospheric CO2 should increase projected future yields. 

This increase would favor cereals and oil crops with respect to maize and other C4 

crops not included in this work. While the scope of this work did not go so far as to 

include the dynamic crop rotation based on simulated yields that is part of FARMACTOR’s 

facilities, CO2 fertilization could be expected to play a significant role in this mechanism.   

6.2. Empirical findings 

Using FARMACTOR has many advantages over the panel statistics model, the latter only 

advantageous in terms of the simplicity with which it can generate planting dates and 

yields. The statistical model is further dependent on the existence of comprehensive 

data throughout the country and has so far only been applied to silage maize. Figure 1 
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demonstrates how both FARMACTOR and the panel regression model are able to predict 

historic planting dates in response to historic weather records at nearby stations. This 

demonstration is an important component in validating both models before being used to 

predict future planting dates based on simulated future weather, as one way to represent 

adaptation to anticipated climate change. The graphics reflect the correlation between 

observed day of planting and simulated (statistic) day of planting in (a)) the Alb to be 

0.25 (0.41), respectively and (b)) the Kraichgau to be 0.62 (0.74), respectively. The 

positive correlation affirms the benefit of using a dynamic planting day model to capture 

farmer response to annual weather and edaphic conditions, for more robust agricultural 

simulation. The linear form of the data in Figure 1 for observed planting day 𝑑, in year 𝑦 

is: 𝑑 = 0.1146 ∙ y +  118.86  for the Alb, compared to 𝑑 = −0.3635 ∙ y +  124.37 with 

dynamic simulation and 𝑑 = −0.2923 ∙ y +  119.43 with panel statistics. While the 

general error, or model bias, of within a week is reassuring, the annual change in both 

models being of opposite sign than observed trend raises the question of “over-

adaptation” by both models, however, the fact that the Schwäbische Alb is 

geographically exceptional (and hence part of the study) is reiterated by the greater 

accuracy in reproducing trends in the Kraichgau. This is a more typical Central 

European landscape that is following the trend in Germany toward earlier planting, which 

is predicted to continue by Bondeau et al. (2007) and Olesen et al. (2012). In observed 

planting dates the trend was 𝑑 = −0.2766 ∙ y +  114.29 while with simulation it was 

𝑑 = −0.3024 ∙ y +  112.26 and with panel statistics it was 𝑑 = −0.2168 ∙ y +  114.13, the 

two models straddling observations.  

That learning paradigms (the way in which historic, e.g. over a ten-year period, 

temperatures determine the start of a planting period, and thus the entire planting 

window), only roughly influence the simulated planting date, their optimal values were 

considerably variable. As long as they enabled simulated planting to be as earlier as the 

earliest observations, the importance of their optimal values was subordinate to the 

triggers considering only the field conditions during individual years.  

Among these, the most important, that is, the one to which the accuracy of simulated 

planting dates is the most sensitive, is an aggregated measurement of temperatures 

over several days. In the statistical model, weekly average temperatures were used, and 

in FarmActor, a 4-day period was found to be the most accurate predictor of observed 

planting dates. For spring planting this is a minimum temperature, meant to represent 

the consideration by farmers of recent temperatures, in determining if temperatures in 

the immediate future will be conducive to crop growth. In fall planting a maximum 

temperature is utilized, delaying planting to a point where temperature sums until the 

end of the year are appropriate for crop development. One question arising in calibration 

is if the triggers actually represent farmer decision making, or are only an artifact of the 

relationship between weather and the timing of field management actions. 
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Following aggregated temperatures, soil moisture was the most influential trigger in 

terms of predicting planting dates. This trigger concept, that farmers will wait for soil 

moisture levels to be a predictable amount less than field capacity, adheres to 

agronomic principles (avoiding soil compaction and smearing etc.), is less vulnerable to 

the question of weather/action correlation mentioned above. In the panel statistics 

model, weekly precipitation sums were conceived as a proxy for soil moisture, so that 

between weekly temperatures and precipitation, the statistical model was able to 

replicate the most influential triggers utilized in FARMACTOR.  

After short-term temperature aggregates and soil moisture constraints, the efficacy of 

triggers in predicting planting dates falls off sharply. The daily temperature trigger, again 

a minimum in spring and maximum in fall, together with daily precipitation alternated 

between third and fourth-most influential in improving the accuracy of site-specific 

planting dates. While their contribution to model accuracy was small, both were 

maintained in model applications. Daily soil temperature, originally included as a trigger, 

was dropped from the criteria after it showed to have negligible ability to improve the 

accuracy of simulated to observed planting dates.    
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Figure 1. FARMACTOR simulated maize planting dates (dashed lines), compared to 

observed planting dates (solid lines, [DWD 2016]) and panel-regression predictions 

(dotted lines), for a) Nellingen in the Schwäbische Alb and b) Oberderdingen in the 

Kraichgau.  

  

 

Source: Own representation of data from Parker et al, (2016a) and Parker et al. (2016b) 

  

a) 

b) 
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Figure 2. Simulated maize yields (dashed lines), compared to observed district yields 

(solid lines [DESTATIS, 2014]) and panel-regression predictions (dotted lines), for a) Alb 

Donau Kreis (Biberach, adjoining district in statistical model) in the Schwäbische Alb and 

b) Karlsruhe Landkreis (Rhein Neckar Kreis, adjacent district in statistical model) in the 

Kraichgau. 

 

 

Source: Own representation of data from Parker et al., (2016a) and Parker et al. (2016b) 

a) 

b) 
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In a master’s thesis supervised by the author and used for a conference paper titled: 

“The resilience of different cultivars of winter cereals wheat, barley and rye  

to climate change in Central Europe - a localized regional simulation study “ (Parker et 

al., 2015b Conference Paper), dynamic weather and soil mapping was used as in the 

Schwäbische Alb study, and interacted with a cadre of winter wheat, barley and rye 

cultivars, to project the influence of climate change on gross margin variance throughout 

agricultural landscapes in the Wetterau district in the federal state of Hesse. 

In Parker et al. (2015a), the current author calibrated and ran FARMACTOR/EXPERT-N to 

mimic the experimental fields in the Schwäbische Alb and the Kraichgau into the coming 

decades. The statistics-based weather generation was used and a roughly similar 

method was developed to forecast price scenarios. Agricultural commodity prices 

received in Germany served as the population, from which the actual price fluctuations 

in recent years were randomly resampled into future years, while also being driven by an 

underlying geometric trend calculated from the historic data, resulting in increasing 

prices with the same volatility as recently experienced. Multiple generations of price 

scenarios were each allocated a weather generation, assigned a scenario and then 

aggregated for a single projected measurable, a gross margin for each crop each year. 

With this, the study is able to provide a spatially explicit, albeit temporally vague 

prediction of crop performance based on adaptive management, at around a certain time 

in the future. Results of the study emphasize the multiplicity of risks to agricultural 

enterprise under anticipated climate change. Both volatile weather and markets can 

counteract the best farm management practices. Mitigating risk is a subject of planning 

and must be informed. This work seeks to improve on defining and simulating the 

interactions within agro-economic/ecological systems to ultimately explore paths toward 

resilience. The likely consequences of proposed adaptation scenarios can be traced 

from differentiation within the framework of the coupled models to the simulated field 

workflow and eventual outputs. If this linking of global economics to local ecology can 

produce reasonable forecasts, it will support private and public sector efforts to promote 

more climate-smart agriculture. The author’s results indicate that if current demographic 

and climate trends continue, Germany should maintain or gain relevance in terms of 

world supply of staple nutrition, and this could become noticeable on agricultural 

landscapes throughout the country. Such modelling activity to trace and quantify 

productivity will add to the discussion of how conflicting land-use options will chase a 

fleeting equilibrium.  

Ongoing effort to exploit the accomplishments of this work could take many directions. In 

the broader perspective of the regional climate change project the bioeconomic model 

FARMACTOR could be dynamically linked to a weather simulation model that would use 

model output such as land use or vegetative cover changes as input, closing the loop of 

field-atmosphere interaction. As a link between the environment and human activity 

FARMACTOR can provide recursive dynamic adaptation that forces changes in the 



81 
 

environment. The model can be run to test hypothetical future combinations of political 

and economic scenarios, to see how a dynamic agricultural landscape model can predict 

future pathways of civil-natural interface. the potential shift away from customary crop 

rotations. 

In the effort to reproduce the decision-making process that is at the foundation of farm 

management, there are some areas where FARMACTOR could see some improvement. 

Criteria for the harvest of crops were not as rigorously calibrated as those for planting. 

And while a proxy for grain moisture content was incorporated, in the form of recent 

temperature and precipitation, a more specific calculation could better account for this 

important economic decision that, through drying costs, is largely responsible for the 

timing of harvest. As such management actions are linked to the work flow of the entire 

farm enterprise, increased accuracy in predicting the timing of harvest would reverberate 

throughout the simulation process.  

Further, this dissertation did not go so far as to define parameters for crop fertilization, 

another crucial aspect of field management alongside planting and harvest. Considering 

the increasing concerns with nitrogen runoff and ongoing developments in farm input 

efficiency (e.g. precision agriculture), accurately simulating fertilizer applications should 

be an important field of further research, one for which the FARMACTOR framework is 

well-suited. 

Unlike planting and harvest, observational records for the timing of fertilizer applications 

are not comprehensive at the regional scale. State field trials do provide data that could 

be used for model calibration, but the lack of data available for validation would be a 

hurdle to model application.  

From the perspective of model uncertainty, there are several areas in which the coupled 

FARMACTOR and EXPERT-N models could be made more complementary. Frost damage 

and pest prevalence are completely missing, when there are ways to incorporate them 

that would bring dividends in model accuracy. FARMACTOR is a field-action model that 

could be slightly modified to create events that change the trajectory of a growing 

season. Incorporating frost kill could be as simple as assuming a percentage of plants 

per hectare dead, and reducing yield by that portion. Additionally, in maize especially, a 

non-lethal occurrence of cold stress could trigger a modification in genotype, as a set of 

EXPERT-N parameters that determines plant growth for the rest of the simulated season. 

Pest infestation is more complicated at the plant physiological scale, so as to test the 

ability of the two models to exchange information. A reduction in leaf area, for example 

due to insect predation or disease infestation, may be best kept EXPERT-N internal. The 

dynamic crop rotation capacity of FARMACTOR was never fully utilized in the course of 

this dissertation, but it has potential to equate a well-calibrated crop model to major 

changes in field management, namely,   
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7. Summary 

The work performed in the course of this dissertation has been to define a systematic 

agricultural management response to environmental and economic conditions that is 

functional under hypothetical scenarios, especially involving climatic forecasts into the 

future. This was done through the use of the FARMACTOR/Expert-N coupled modelling 

framework that links agent-based management parameters with crop growth simulation, 

as the two are strongly interconnected. Starting with the completed FARMACTOR 

framework that had yet to be thoroughly tested, this work involved the verification of the 

modelling procedure, population of appropriate data resources for calibration and 

application, and the presentation of simulation experiments in peer-reviewed publication. 

The innovative linkage of agent-based management with biophysical simulation has led 

to FARMACTOR becoming a reference for international research on integrated 

economic/ecological study, impacting the scientific community through its unique 

contribution to analysis of anthropogenic landscape systems. 

FARMACTOR, as adapted in the course of this dissertation, has presented concepts that 

add to the robustness with which agroecosystem simulation is conducted on field and 

regional scale. Breaking away from the convention of static management input into crop 

models is an important step in this regard. Especially under scenarios of future climate 

change, dynamic field management lends to the plausibility of projected crop 

performance. If simulation modelling is to be an important tool in efforts to mitigate 

and/or adapt to climate change, elements such as dynamic management may be 

indispensable components of modelling frameworks. The impact of management has 

too great of an influence on agroecosystem functioning to be ignored.  

The effort in the course of this dissertation to systematically account for the likewise 

crucial factor of subspecies genetic variation is also an early example of improving 

agroecosystem simulation. As of the commencement of this work, agricultural species 

were, for the most part, simulated as just that, a species, when the variance of growth 

process within a species is a fundamental component of agronomy. Cultivar choice is 

one of the most important tools available to agricultural practitioners in terms of 

regional/localized agriculture. At least the simulation of multiple cultivars, or agricultural 

subspecies, is necessary to capture the heterogeneous responses to identical 

environmental conditions. This work has presented a sound methodology to account for 

breeding progress, based on observed trends in crop phenotypes, while also 

demonstrating a methodology for comparing results of the regional simulation of multiple 

cultivars. 

Spatial or temporal adaptation to climate is mandatory in terms of agricultural-sector 

profitability and food security, from local to global scales. Simulation modelling could 

eventually prove to be a useful tool in predicting the suitability of different crops or 

cultivars for unique biomes, whether in terms of agricultural intensification, producing 
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more on a fixed land area, or expanding production into new areas. Simulation will most 

likely prove be an effective alternative to resource-intensive field trials, at the very least 

the two are complementary. This dissertation has, in part, demonstrated the potential for 

utilizing field experiments, to varying degrees of specificity, through model parameter 

optimization procedures, to produce local and regional projections of crop performance 

and adaptive measures likely to be undertaken by farmers.  

A statistical model developed alongside, and sharing the principals of environmental 

planting triggers incorporated in the agent-based model, was used to define a predictive 

model for maize planting dates throughout Germany. The two models achieved 

comparable accuracy, while differing in their advantages and drawbacks. The statistical 

model is not associated with a complete set of economic and biophysical attributes that 

can both be drivers of the bioeconomic model and informative outputs. Its advantage lies 

in its simplicity in regional applicability, able to predict (or project, if using future 

simulated weather), planting dates throughout the whole of Germany. The yield 

component of the statistical model demonstrates that the date of planting is a stronger 

driver of yields than the weather during the weeks that influence planting dates. Because 

maize is planted in spring, on bare fields, as opposed to wheat and other fall crops 

planted following the harvest of a previous crop, the statistical model is not as effective 

in predicting fall planting dates as FARMACTOR which can accurately simulate the harvest 

date of a crop preceding fall sowing. Furthermore, the bioeconomic model, by simulating 

all relevant processes on a given field, has the capacity to accurately predict the timing 

of all actions in a given season, as well as produce a myriad of output variables that can 

be equated with the ecological and economic performance of a farm system.  

By utilizing both statistical and process-based models to predict and project 

management actions and crop performance on German cropland, this dissertation has 

added to the body of work on agricultural adaptation to climate. Its methods and results 

should provide helpful reference for further research, and also generate confidence in 

the use of modelling as part of the toolkit for technology transfer to agricultural 

practitioners. Thanks in part to this work FARMACTOR should be considered a useful 

computational tool to help with practical advice and policy development relevant to 

agricultural landscapes.   
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8. Zusammenfassung 

Der Klimawandel stellt ein dauerhaftes Herausforderung für die Agrarwirtschaft dar. Das 

steigende wissenschaftliche Interesse an landwirtschaftlicher Produktivität unter 

veränderten Umweltbedingungen ist zielführend für diese Arbeit. Die Modellierung 

umwelt- und ökonomiebedingter Anpassungen landwirtschaftlicher Feldarbeiten ist eine 

Methode um dieser Fragestellung zu begegnen. Diese Modellierung kann unter 

hypothetischen Szenarien und insbesondere für Prognosen zukünftiger 

Klimaauswirkungen genutzt werden. Hierzu wurde das gekoppelte Modellsystem 

Farmactor/Expert-N verwendet, das die beiden interagierenden Bereiche des 

agentebasierten Managements und das Pflanzenwachstum miteinander verbindet. 

Beginnend mit dem FARMACTOR Modell, beinhaltet diese Dissertation eine 

Überprüfung der Modellfunktion, die Diskussion geeigneter Datenressourcen für die 

Kalibrierung und Anwendung, sowie die Präsentation der Ergebnisse von 

Simulationsexperimenten. Letztere wurden in peer-review Publikationen veröffentlicht. 

Durch die innovative Verbindung von agentenbasierten Management-Parametern und 

biophysikalischer Simulation ist FARMACTOR zu einer internationalen Referenz in der 

Forschung von integrierten ökonomischen / ökologischen Studien geworden und findet 

Berücksichtigung im wissenschaftlichen Diskurs zur Analyse anthropogener 

Landschaftssysteme.  

Die Anwendung von FARMACTOR im Rahmen dieser Arbeit trägt wesentlich zur 

Erhöhung der Plausibilität von Agroökosystemsimulationen auf dem Feld und auf 

regionaler Ebene bei. Die Abwendung von der Annahme des statischen Managements 

in Modellierungssystemen ist dabei ein wichtiger Schritt. Gerade unter Szenarien 

zukünftiger Klimaänderungen steigt die Plausibilität der projizierten Erntemengen und 

anderer simulierter Leistungen durch die Annahme dynamischer 

Managementmethoden. Bei dem Einsatz der Simulationsmodellierung zur Anpassung 

an den Klimawandel sind Elemente wie das dynamische Feldmanagement daher 

unverzichtbare Komponenten von Modellierungssystemen. 

Einen weiteren Beitrag zur Verbesserung der agrarökologischen Simulation leistet diese 

Arbeit durch die Berücksichtigung des Faktors der genetischen Variation. In bisherigen 

wissenschaftlichen Publikationen wurden landwirtschaftliche Pflanzenarten zum größten 

Teil nur als eine Spezies simuliert, obwohl die Varianz des Wachstumsprozesses 

innerhalb einer Spezies eine grundlegende Komponente der Agronomie darstellt. Die 

Sortenwahl ist eines der wichtigsten Instrumente der Landwirte zur regionalen/lokalen 

Anpassung an veränderte Umweltbedingungen. Diese Arbeit hat eine fundierte Methodik 

vorgestellt, um den Züchtungsfortschritt in das Modellsystem einzufügen. Dies erfolgte 

auf Grund der beobachteten Trends in Pflanzenphänotypen. Weiterhin wurde eine 

Vorgehensweise entwickelt, um die Ergebnisse der regionalen Simulation mehrerer 

Sorten zu vergleichen.  
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Räumliche und zeitliche Anpassung an das Klima sind notwendig in Bezug auf die 

Rentabilität des landwirtschaftlichen Sektors und für den Erhalt der 

Ernährungssicherheit auf lokaler sowie globaler Ebene. Simulationen können in der 

Vorhersage der Eignung verschiedener Managementverfahren, Kulturen und Sorten ein 

nützliches Werkzeug sein, ob im Hinblick auf die Intensivierung der Landwirtschaft - 

mehr auf bestehender Fläche zu produzieren - oder im Hinblick auf die Erschließung 

neuer Anbaugebiete. Der Einsatz von Simulationen kann eine wirksame Alternative zu 

ressourcenintensiven Feldversuchen darstellen oder zumindest komplementär zu diesen 

eingesetzt zu werden. Diese Dissertation hat das Potenzial der Verwendung von 

Feldversuchsdaten in Modellparameteroptimierungsverfahren aufgezeigt, um lokale und 

regionale Projektionen der Ernteleistung und Anpassungsmaßnahmen zu erstellen.  

Zeitgleich wurde ein statistisches Modell entwickelt, um eine Vorhersage für 

Maisaussattermine in Deutschland zu erstellen. Die beiden in der Arbeit verwendeten 

Modelle erreichen eine vergleichbare Genauigkeit, während sie sich in ihren Vor- und 

Nachteilen unterscheiden. Das statistische Modell ist nicht mit einem kompletten Satz 

von wirtschaftlichen und biophysikalischen Eigenschaften ausgestattet, die sowohl Input 

als auch Output des bioökonomischen Modells sein können. Der Vorteil des 

statistischen Modells liegt in seiner Einfachheit und in der regionalen Anwendbarkeit, 

Aussaattermine vorherzusagen (oder zu projizieren). Die Ertragskomponente des 

statistischen Modells zeigt unter anderem, dass der Aussaattermin ein stärkerer Treiber 

für Erträge ist, als das Wetter während der Wochen, die die Aussaattermine 

beeinflussen. Mais und andere Sommerkulturen werden hauptsächlich auf kahlem 

Boden ausgesät, im Vergleich zu Winterkulturen wie Weizen, dessen Aussaat stark von 

der Vorkultur abhängig ist. Daher ist das statistische Modell hier nicht vergleichbar 

effektiv. Das bioökonomische Modell hingegen hat den Vorteil, mit Einbeziehung von 

Fruchtfolge und zuverlässiger Simulation von Ernteterminen, die Herbstaussaat 

zuverlässiger zu treffen. Weiterhin bietet FARMACTOR die Möglichkeit, alle 

Feldverfahren und deren zugehörigen ökologische und ökonomische Auswirkungen in 

den Modellausgaben zu berücksichtigen.  

Diese Dissertation hat mit der Einführung beider Modelle einen Beitrag zur Erforschung 

der landwirtschaftlichen Klimaanpassung geleistet, indem Feldverfahren und damit 

einhergehende Leistungen zuverlässiger projiziert werden können. Methoden und 

Resultate sollten hilfreiche Referenzen für weitere Forschung liefern und ebenso das 

Vertrauen zur Nutzung von Systemmodellen als Teil des landwirtschaftlichen 

Wissenstransfers steigern. Mit Hilfe dieser Arbeit sollte FARMACTOR in der praktischen 

Beratung sowie der Politikentwicklung im landwirtschaftlichen Sektor Berücksichtigung 

finden. 

 

  



86 
 

References 

Aurbacher, J., Parker, P. S., Calberto Sánchez, G. A., Steinbach, J., Reinmuth, E., 

Ingwersen, J. & Dabbert, S., 2013. Influence of climate change on short term 

management of field crops – A modelling approach. Agricultural Systems 119, 44–57. 

Audsley, E., Pearn, K.R., Simota, C., Cojocaru, G., Koutsidou, E., Rounsevell, M.D.A., 

Trnka, M., Alexandrov, V., 2006. What can scenario modelling tell us about future 

European scale agricultural land use, and what not? Environmental Science & Policy 

9, 148-162. 

Ahlemeyer, J. & Friedt, W., 2012. Winterweizenerträge in Deutschland stabil auf hohem 

Niveau – Welchen Einfluss hat der Züchtungsfortschritt. Getreidemagazin 17, 38–41. 

Berger, T. (2001). Agent-based spatial models applied to agriculture: a simulation tool 

for technology diffusion, resource use changes and policy analysis. Agricultural 

economics, 25(2-3), 245-260. 

Bindi, M., & Olesen, J. E., 2011. The responses of agriculture in Europe to climate 

change. Regional Environmental Change, 11(1), 151-158. 

Bondeau, A., Smith, P.C., Zaehle, S., Schaphoff, S., Lucht, W., Cramer, W., Gerten, D., 

Lotze-Campen, H., Müller, C., Reichstein, M., Smith, B., 2007. Modelling the role of 

agriculture for the 20th century global terrestrial carbon balance. Global Change 

Biology 13, 679-706. 

Busch, G., 2006. Future European agricultural landscapes - What can we learn from 

existing qualtitative land use scenario studies? Agriculture, Ecosystems and 

Environment 114, 121-140. 

Challinor, A.J., Wheeler, T.R., 2009. Use of a crop model ensemble to quantify CO2 

stimulation of water-stressed and well-watered crops, Agricultural and Forest 

Meteorology 148, 1062-1077. 

DESTATIS Statistisches Bundesamt, 2014. 

https://www.regionalstatistik.de/genesis/online/data accessed March 15, 2014 

DWD Deutsche Wetterdienst, German Weather Service, 2016. 

http://www.dwd.de/EN/climate_environment/climateatlas/climateatlas_node.html 

accessed January 19, 2016 

Flichman, G., Donatelli, M., Louhichi, K., Romstad, E., Heckelei, T., Auclair, D., Garvey, 

E., van Ittersum, M., Janssen, S., Elbersen, B., 2006. Quantitative models of 

SEAMLESS-IF and procedures for up-and downscaling, SEAMLESS Report No.17. 

Wageningen. 



87 
 

Gould, P., 1969. Spatial Diffusion. Annals of the Association of American Geographers, 

Resource Paper no. 4. 

Gömann, H., Kreins, P., Herrmann, S., Wechsung, F., 2005. Impacts of Global Changes 

on Agricultural Land-use in the German Elbe region – Results of an Operational 

Modelling Tool for Planning, Monitoring and Agri-environmental Policy Counselling, 

ICID 21st European Regional Conference 2005. Frankfurt (Oder). 

Högy, P., Keck, M., Niehaus, K., Franzaring, J., Fangmeier, A., 2010. Effects of 

atmospheric CO2 enrichment on biomass, yield and low molecular weight metabolites 

in wheat grain. Journal of Cereal Science 52, 215-220. 

Hayami, Y. and Ruttan, V. W., 1971. Agricultural development: an international 

perspective. Baltimore, Md/London: The Johns Hopkins Press. 

Ko, J., Ahuja, L., Kimball, B., Anapalli, S., Ma, L., Green, T. R., ... & Bader, D. A., 2010. 

Simulation of free air CO 2 enriched wheat growth and interactions with water, 

nitrogen, and temperature. Agricultural and Forest Meteorology, 150(10), 1331-1346. 

Kropp, S., 2015. Climate Change and Risk of Flooding in Germany. Challenges for 

Governance Structures in Urban and Regional Development, 155. 

Loevinsohn, M., Sumberg, J., Diagne, A., & Whitfield, S., 2013. Under what 

circumstances and conditions does adoption of technology result in increased 

agricultural productivity? A Systematic Review. 

Olesen, J.E., Børgesen, C.D., Elsgaard, L., Palosuo, T., Rötter, R.P., Skjelvåg, A.O., 

Peltonen-Sainio, P., Börjesson, T., Trnka, M., Ewert, F., Siebert, S., Brisson, N., 

Eitzinger, J., van Asselt, E.D., Oberforster, M., van der Fels-Klerx, H.J., 2012. 

Changes in time of sowing, flowering and maturity of cereals in Europe under climate 

change. Food Additives & Contaminants: Part A 29, 1527-1542. 

Parker, P. S., Reinmuth, E., Ingwersen, J., Högy, P., Priesack, E., Wizemann, H. D., & 

Aurbacher, J., 2015a. Simulation-based Projections of Crop Management and Gross 

Margin Variance in Contrasting Regions of Southwest Germany. Journal of 

Agricultural Studies, 3(1), 79-98. 

Parker, P. S., Gebser, F., & Aurbacher, J., 2015b. The resilience of different cultivars of 

winter cereals  wheat, barley and rye to climate change in Central Europe – a 

localized regional simulation study. Journal of Agricultural Studies. 

Parker, P., Ingwersen, J., HÖGY, P., Priesack, E., & Aurbacher, J. 2016a. Simulating 

regional climate-adaptive field cropping with fuzzy logic management rules and 

genetic advance. The Journal of Agricultural Science, 154 207-222. 



88 
 

Parker, P., Shonkwiler, J.S., & Aurbacher, J., 2016b. Cause and Consequence in Maize 

Planting Dates in Germany. Journal of Agronomy and Crop Science 

Pattantyús-Ábrahám, M., & Steinbrecht, W., 2015. Temperature trends over Germany 

from homogenized radiosonde data. Journal of Climate. 

van Ittersum, M.K., Ewert, F., Heckelei, T., Wery, J., Alkan Olsson, J., Andersen, E., 

Bezlepkina, I., Brouwer, F., Donatelli, M., Flichman, G., Olsson, L., Rizzoli, A.E., van 

der Wal, T., Wien, J.E., Wolf, J., 2008. Integrated assessment of agricultural systems 

- A component-based framework for the European Union (SEAMLESS). Agricultural 

Systems 96, 150-165. 

van Ittersum, M.K., 2009. Integration across disciplines: the lessons learnt from the 

integrated project SEAMLESS. Aspects of Applied Biology 93, 55-60. 

Verburg, P.H., Eickhout, B., van Meijl, H., 2008. A Multi-scale, Multi-model Approach for 

Analyzing the Future Dynamics of European Land Use. Annals of Regional Science 

42, 57-77. 

Waha, K., van Bussel, L.G.J., Müller, C., Bondeau, A., 2012. Climate-driven simulation 

of global crop sowing dates. Global Ecology and Biogeography 21, 247-259. 

 

  



89 
 

Acknowledgments 

 
Many thanks are due to my colleagues in the Institute for Farm and Agribusiness 

Management who have provided a professional and friendly atmosphere in which to 

conduct research and teaching, especially Dr. Joachim Aurbacher, whose supervisorial 

and collegial patience and support inspired and has enabled the accomplishment of this 

work. Drs. Bernd Honermeier and Wolfgang Friedt, also from the University of Gießen 

have both contributed significantly to the thematic and technical developments portrayed 

above.  

Further acknowledgment is due to a cadre of professionals from the University of 

Hohenheim, including Dr. Joachim Ingwersen, Dr. Petra Högy, Dr. Christian Troost, Dr. 

Kerstin Warrach-Sagi, Dr. Sebastian Gayler, Evelyn Reinmuth and Germán Calberto 

Sanchez. Dr. Eckart Priesack also played a crucial role in a consultative faculty. 

Employees of the German Weather Service (Deutsche Wetterdienst, or DWD) and the 

Association for Technology and Structures in Agriculture (Kuratorium für Technik und 

Bauwesen in der Landwirtschaft, or KTBL) also provided important services to bring this 

work to fruition. 

My most profound appreciation must be expressed to my compassionate wife Johanna 

Elisabeth Parker, and in conjunction, her family that bid me welcome to Germany and 

have supported me tremendously throughout my stay.     

  



90 
 

Eidesstattliche Erklärung 

Ich erkläre: Ich habe die vorgelegte Dissertation selbständig und ohne unerlaubte 

fremde Hilfe und nur mit den Hilfen angefertigt, die ich in der Dissertation angegeben 

habe. Alle Textstellen, die wörtlich oder sinngemäß aus veröffentlichten Schriften 

entnommen sind und alle Angaben, die auf mündlichen Auskünften beruhen, sind als 

solche kenntlich gemacht. 

 

Bei den von mir durchgeführten und in der Dissertation erwähnten Untersuchungen 

habe ich die Grundsätze guter wissenschaftlicher Praxis, wie sie in der „Satzung der 

Justus-Liebig-Universität Gießen zur Sicherung guter wissenschaftlicher Praxis“ 

niedergelegt sind, eingehalten. 

 

 

 

Ort, Datum        Unterschrift 

Gießen, 25.12.2016      


