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Abstract
A class of distribution-free tests for two-sample location problem is based on the
signs of most extreme observations in the sub-samples of sizes c and d from X
and Y samples respectively. The test statistics have been expressed in terms of
linear rank statistics. The asymptotic normality of the test statistics is established.
Asymptotic efficiencies indicate that members of our class do well in comparison
with some already existing test statistics for light and medium tailed distributions.

1. Introduction

The two sample location problem is one of the fundamental problems encountered in

Statistics. In many applications of statistics, two-sample problems arise in such a way as

to lead naturally to the formulation of null hypothesis to the effect that the two samples

come from identical populations. There are many non-parametric tests available in
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literature for the two sample location problem, their relative efficiency and suitability

depending on the nature of the (unknown) underlying distribution. Wilcoxon-Mann-

Whitney W -test is a popular nonparametric test for this problem. Besides W-test a

number of distribution-free tests are available in the literature. Mathisen [4] proposed

a test for this problem based on the number of observations in the X-sample not ex-

ceeding the median of Y -sample. Moods median test (M) is particularly effective in

detecting shift in location in the normal distribution. Gastwirths [3] L and H tests are

effective in detecting shifts in moderately heavy tailed distributions. The RS test due

to Hogg, Fisher and Randles [5] is effective in detecting shifts in distributions that are

skewed. During the last decade or so, new classes of tests based on the so called sub-

sample approach have been proposed for the above problem, notable among them being

Deshpande and Kochar [2], Stephenson and Ghosh [12], Shetty and Govindarajulu [10]

and Shetty and Bhat [11] and Ahmed [1]. While Shetty and Govindarajulu [10] and

Shetty and Bhat [12] based their tests on sub sample medians which tend to emphasize

the centre of the underlying distributions, the other two are based on statistics involv-

ing sub sample extreme with the object of gaining more information from the tails of

sampled distributions. The results of these papers demonstrate that the sub sample

approach, applied selectively, does help to improve upon the efficiency performance of

the tests in an overall sense. For example, Shetty and Govindarajulu [10] test performs

on one hand better than the Mann-Whitney test for heavy-tailed distributions, while

performing better than the median test for light-tailed distributions on the other.

Deshpande and Kochar [2] test, on the other hand, being sensitive to light tailed dis-

tributions, performs substantially better than Mann-Whitney test for such underlying

distributions and some what better for normal, while maintaining reasonable level of

efficiency under heavy tailed distributions. Stephenson and Ghosh [12] and Ahmed [1]

tests are also relatively more sensitive than the Mann-Whitney test but less sensitive

than the Deshpande and Kochar [2] test to the light tailed distributions.

In this paper, we propose a new class of the distribution-free test statistics which is

the convex combination of two U -statistics. Among the U -statistics involved in the

combination, one has the kernel based on subsample maxima and the other has the

kernel based on sub sample minima. The distributional properties of the proposed

class is studied and the asymptotic relative efficiencies of few members of the class
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are investigated relative to few other statistics exist in the literature, particularly the

optimal member of the class proposed by Xie and Priebe [13].

The SG test proposed by Shetty and Govindarajulu [10] based on subsample medi-

ans takes care of two suspected outliners at extremes of both the samples. Deshpande

and Kochar [2] test is effective in detecting shift in distributions that are light tailed.

Stephenson and Ghosh [12], U(c, d) and Shetty and Bhat [11] T (c, d) tests are few other

test procedures for this problem. In this section, we propose a class of distribution

free tests which are effective in detecting the shifts in distributions that are symmetric,

medium and light tailed. The test statistics is proposed in section 2. An alternative

expression for the class of test statistics is given in section 3. The distributional prop-

erties of the proposed class of tests are presented in section 4. Section 5 is devoted to

the study of Pitman asymptotic relative efficiency and section 6 for some comments.

2. Methods

2.1. The Proposed Class of Tests

Suppose X1, X2, · · · , Xm and Y1, Y2, · · · , Yn are independent random samples form con-

tinuous distribution with c.d.f.’s F (x) and F (x − θ) respectively. We wish to test

H0 : θ = 0 against H1 : θ > 0 with F (x) + F (−x) = 1.

We propose a test based on U -statistic which is given by,

V(c,d)(X1, X2, · · · , Xm, Y1, Y2, · · · , Yn)

=
1(

m
c

)(
n
d

)∑
A

h[Xi1, Xi2, · · · , Xic;Yj1, Yj2, · · · , Yjd]

where A denotes the sum over all
(
m
c

)(
n
d

)
combinations of X and Y sample

observations and h(x1, · · · , xc; y1, · · · , yd) = h2(y1, · · · , yd)− h1(x1, · · · , xc).

Here

h1(x1, · · · , xc) =


1 if the largest in absolute value among

(x1, · · · , xc) is positive

0 otherwise
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and

h2(y1, · · · , yd) =


1 if the largest in absolute value among

(y1, · · · , yd) is positive

0 otherwise

2.2. An Alternative Expression for V (c, d)

The computational effort associated with the evaluation of V (c, d) is enormous when

the sample sizes are large. However, it is possible to derive an alternative expression for

V (c, d) as linear rank statistics.

Suppose X|1|, · · · , X|m| are the observations arranged in the order of increasing absolute

value. Consider distinct sub-samples of size c for which X\|k| is the largest in absolute

value. For k ≥ c, we have (c−1) places in the sub samples that can be filled with (k−1)

objects. X|1|, · · · , X|k−1|, each of which may appear at most once. Therefore, there are(
k − 1
c− 1

)
= bc(k), distinct sub-samples for which

h1(xi1, xi2, · · · , xic) =


1, if X|k| > 0

0, otherwise

The sum of (xi1, xi2, · · · , xic) over all distinct sub-samples of size c, 1 ≤ i1 ≤ i2 · · · ≤
ic ≤ m, is equivalently given by

V1 =
m∑
k=c

bc(k)γk, where γk =


1, if X|k| > 0

0, otherwise.

On similar lines, we can prove that the sum of h2(yj1, yj2, · · · , yjd) over all distinct

sub-samples of size d, 1 ≤ j1 ≤ j2 · · · ≤ jd ≤ n, is equivalently given by

V2 =
n∑
k=d

bd(k)ξk, where ξk =


1, if Y|k| > 0

0, otherwise.

Hence Y|1|, · · · , Y|n| are the observations arranged in increasing absolute value. Then

the statistic V (c, d) can be written as(
m
c

)(
n
d

)
V (c, d) =

(
m
c

)
V2 −

(
n
d

)
V1

=
(
m
c

) n∑
k=d

bd(k)ξk −
(
n
d

) m∑
k−c

bc(k)γk.
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3. Results

3.1. Distributional Properties of V (c, d)

The mean of V (c, d) is given by

µ(θ) = E[V (c, d)] =
∫ ∞
−θ

[F (y)− F (−y − θ)]d−1f(y)dy − 1
2
> 0.

Under H0, E[V (c, d)] = 0.

However, under H1

E[V (c, d)] =
∫ ∞
−θ

[F (y)− F (−y − θ)]d−1f(y)dy − 1
2
> 0, for d ≥ 2.

Here, one can notice that V (c, d) is distribution free under H0. Since V (c, d) is a U -

statistic with a square integrable kernel, the asymptotic normality of V (c, d) follows

from Lehmann [6]. Under H0,
√
N V (c, d) is asymptotically normal with mean zero and

variance given by

σ2
c,d =

c2ζ10

λ
+
d2ζ01

1− λ
,

where

ζ10 =
1

4(2c− 1)
, ζ01 =

1
4(2d− 1)

and λ = lim
N→∞

m

N
, N = c+ d.

3.2 Asymptotic Relative Efficiency

For the sequence of Pitman alternatives θN = θ
√
N the efficacy of V (c, d) is given by

e2v(d) = 4d2(d− 1)2
{∫ ∞

0
[2F (y)− 1]d−2f2(y)dy

}2

/σ2
c,d, d ≥ 2.

When sub sample sizes are equal i.e, c = d = r, the efficacy of V (r) is given by

e2v(r) = 16(r − 1)2(2r − 1)
{∫ ∞

0
[2F (y)− 1]r−2f2(y)dy

}2

/λ(1− λ), r ≥ 2.

Table 1, lists asymptotic relative efficiency of V (r) with respect to the two sample t test

T for various continuous distributions for some values of r. Table 2, gives the ARE’s

of V (r) with respect to Mann Whitney test M . The ARE’s of V (c, d) with respect to

Deshpande and Kochar [2] Test L(c, d) for c = 1 and d = 2, 3, 4 for equal sample sizes

are given in Table 3. In Table 4, the ARE’s of V (c, d) with respect to Stephenson and

Ghosh [12] test U(c, d) are presented.
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Table 1: Asymptotic Relative Efficiency of V (r) relative to T

Density r = 2 r = 3 r = 4 Comment
Cauchy 0.3040 0.1792 0.1093 Max at r = 1
Laplace 1.5000 1.1111 0.8750 Max at r = 1
Logestic 1.0966 1.0281 0.9212 Max at r = 2
Normal 0.9549 0.9774 0.9386 Max at r = 3
Triangular 0.8889 0.9481 0.9752 Increasing in r

Parabolic 0.8640 1.0635 1.1836 Increasing in r

Uniform 1.0000 1.6667 2.3333 Increasing in r

Inv. Triangular 2.6667 6.4000 10.2857 Increasing in r

Table 2 : Asymptotic Relative Efficiency of V (r) relative to M

Density r = 2 r = 3 r = 4
Cauchy 0.1014 0.0597 0.0363
Laplace 1.0000 0.7407 0.5833
Logestic 1.0000 0.9375 0.8401
Normal 1.0000 1.0236 0.9829
Triangular 1.0000 1.0667 1.0971
Parabolic 1.9812 2.4387 2.7141
Uniform 4.6182 5.7731 8.0821
Inv. Triangular 5.6558 13.5737 21.8148

Table 3 : Asymptotic Relative Efficiency of V (1, d) relative to L(1, d)

Density d = 2 d = 3 d = 4
Laplace 1.1429 0.9524 0.8632
Logestic 1.1428 1.2054 1.175
Normal 1.1427 1.3158 1.3379
Uniform 1.1428 2.2948 2.6437

Table 4 : Asymptotic Relative Efficiency of V (1, d) relative to U(1, d)

Density d = 2 d = 3 d = 4
Cauchy 1.0000 0.6288 0.4808
Laplace 1.0000 0.7407 0.7347
Logestic 1.0000 1.0000 1.0000
Normal 1.0000 1.0918 1.1389
Triangular 1.0000 1.1378 1.2461
Uniform 1.0000 1.7778 2.2500
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4. Discussions

1. It follows from Lehmann [6] that the test is consistent for testing H0 against H1.

Since expected value of V (c, d) under H1 is greater than its expected value under

H0 and the asymptotic distribution of the test statistic is normal.

2. The proposed class of test statistic is constructed in such a way that the statistic

is based on the signs of the observations that is the largest value in subsamples of

sizes c and d taken from X and Y samples.

3. The performances of the members of our class are better than Mann-Whitney

statistics for light tailed distributions or the distributions with finite range.

4. For medium tailed distribution, the members of our class are better for r > 2.

5. For r = 2, our test is the best test statistics for light as well as heavy tailed

distribution except for Cauchy distribution.

6. It can be seen that ARE’s increase with increase in the sub sample size r. For

heavy tailed distributions, ARE’s decrease as r increases and for medium tailed

distributions, ARE’s increase and then decrease as r increases.

7. The performance of the members of our class is better as compared to Deshpande

and Kochar’s [2] test for both heavy and light tailed distributions.

8. The performance of the members of our class is better as compared to Stephenson

and Ghosh [12] test for light and medium tailed distributions.
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