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Abstract

The class of increasing failure rate average distributions plays a central role in the statistical theory of
reliability. It is the smallest class of probability distributions which contains the exponential distribution
and is closed under formation of coherent systems. Also these distributions arise as life distributions from
various useful shock models. Deshpande (1983) proposed a class of tests for testing exponentiality against
the increasing failure rate average class of non exponential probability distributions. He investigated some
properties of these tests and compared its performance with Hollander-Proschan test and cumulative time
on test statistic in terms of Pitman asymptotic relative efficiency. A generalization of the class of tests
proposed by Deshpande (1983) based on sub sample minima is considered in this paper. Some properties
of the tests are investigated and the performances in terms of Pitman asymptotic relative efficiency are
evaluated. An alternative expression in terms of ranks is given and the actual cut-off points (10% and 5%)
are tabulated to facilitate the application of tests. Small sample comparisons are also made.

Keywords : ARE, Cumulative time on test, Hollander-Proschan statistic, New better than used, U-statistics.
IFRA.

1. Introduction

Increasing failure rate average (IFRA) distributions naturally arise when coherent systems
are formed from components with independent increasing failure rate distributions. Also, it
naturally arises when one considers cumulative damage shock models. The class of increasing
failure rate average distributions contains the class of increasing failure rate distributions as
subclass. [IFRA class of distributions is the smallest class of distributions which contains the
exponential distribution and is closed under formation of coherent systems.

Let F be a probability distribution such that F(0)=0. Then F is an increasing failure rate
average distribution (IFRA) if [1_5 (r)]'/' isdecreasingint>0, orequivalently, forx>0,0<b<1,

Fbx)2{F(x)) (1.1)

*Author for correspondence.



294 Parameshwar V. Pandit et al.

where F = |- F. Theequality in (1.1) holds if and only if F is an exponential distribution.

Tests for exponentiality designed to detect the alternative hypotheses relevant in reliability
theory include those of Proschan and Pyke (1967), Bickel and Doksum (1969),
Ahmed (1975), Hollander and Proschan (1972, 1975) and Koul (1977, 78). However, the
test that have been developed specifically for testing for increasing failure rate average
alternative only is due to Deshpande (1983). The following Lemma gives a characterization
of IFRA distribution which is useful in the development of our class of test statistics.

Lemma 1.1: F is said to be [FRA distribution if and only if
F*(bx)> F*(x), for x>0,0<b<l, k=1

Proof: Let F be a IFRA distribution. Then by (1.1)
F*(bx)2 F'(x),x>0,0<b<1.

Hence, fork > 1,
F*(bx)> F*(x).

The converse holds if we take k=1.

In section 2, we propose new class of statistics which are U-statistics whose kernel
depends on sub sample minima. We also give an alternative expression based on ranks for
the class of statistics. In section 3, asymptotic normality and consistency of the proposed
class of tests is presented. Section 4 deals with Pitman ARE comparisons. Section 5 deals

with unbiasedness of these tests. Also empirical powers of the tests are considered in section
6.

2. Proposed class of test statistics

Let X, X,, ..., X_be arandom sample from a continuous probability distribution function
F such that F(0)=0. We wish to test the null hypothesis

H,=F(bx)=F"(x),x>0,0<b<1
against

H =F(bx)>F’(x),x>0,0<b<1
with strict inequality for some x.

Define the parameter M, (F)= J'F' (bx)dF(x).
0

If F belongs to H_ then M,(F) = (bk+1)", whereas for all F belonging to H,

M, (F)= J'F " (bx)dF(x) > IF“ (x)dF(x)=(bk+1)".
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Define a kernel

hu:( ) L, if min(X,,...,X*)>bXM
K 0, otherwise

where b is a fixed number such that 0 <b < 1. Define V(b.k) as U-statistic depending on
the symmetric version & *'(X,,..., X, , ), that is

Tyl

V(b,k):(:+l)-th,,'(X,i,...,X )

where summation is taken over all combinations of integers (i;s .-, 1,) chosen out of integers

k+1

(1, 2, .oy ) and (X5 X, ) =(k+ 1) D A(X,, ... X;,)). It can be seen that
i=1

E[V(b.k)] = M,(F). Large values of V(b,k) lead to rejection of H, against L, i
Alternative Expression of V(b,k)

Let X(l o X(n) be the order statistics of X, ., X, and Ym, oo Y w be the order
statistics °fY1= - Y, with Y=bX_ fori=1,2, .., n Suppose S, is the rank of Y, in the
combined rankmg of Xand Y observatlons Then, following Shetty and Bhat (1994), V(b.k)
can be written as

om0 )6)

3. Asymptotic Normality and Consistency

The statistic V(b,k) is the U-statistic corresponding to the kernel 4,. Using the results
of Hoeffding (1948), the asymptotic distribution of vn[V'(b,k) - M, (F)] is normal with
mean zero and variance (k+1)*G, , where

¢ = E[7(X,)]-[M.(F)]

and ¥,(x,) = E{h(X,. X,..... X,,,)}. provided ¢, >0.
Under the null hypothesis, M,(F) = (bk+1)" and

k+1)’
Gripe, ety 2 1l b (k4 )z
26k +1 b(k-D)+1[bk+1 bk(b+1)+1] (bk+1)
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G [ b _2b]+ K’
(b(k—1)+1)" | B@k~1)+2 bk+1] (b(k-1)+1)°

Since E[V(b,k)]> (bk+1)", the class of test statistics is consistent against increasing
failure rate average alternatives.

Now F is new better than used implies that F(z/¢)> F"*(z), forevery z>0 andc =2, 3,

... . The equality holds only for the exponential distribution. Hence V(b.k) test for b= 1/c
(c=2, 3, ...) is consistent against continuous new better than used distributions.

4. Asymptotic Relative Efficiency

For asymptotic relative efficiency comparisons, we have considered three parametric
families of distributions, namely, Weibull, Makeham and Linear Failure Rate distributions.
These depend upon a real parameter 8 in such a way that 6 = 8, yields a distribution
belonging to null hypothesis whereas 6 > 8, yields distribution from the alternative. These
are

(i) Weibull distribution,

F,(x)=exp(-x"), x>0,0621, 6, =1
(ii) Makeham Distribution

Fy(x) =exp[-x +6(x+¢7 = 1), x>0, 820, 0,=0
(iii) Linear Failure Rate Distribution

2
}_‘;(x)=exp|:(—x+952—)], x>0,020,0,=0

The Pitman ARE's of V(bk) for (b=0.1, 0.25, 0.5, 0.9 and k = 2, 3) with respect to
Deshpande (1983) J, test are given in Table 1.

Table 1 : Pitman ARE's of V(b.k) for different values of b w.r.t. J,.

k=2 k=3
b— 0.1 0.25 0.5 0.9 0.1 0.25 0.5 0.9
Makeham 1.0142 1.0574 1.1458 1.3563 1.0222 1.0795 1.1937 1.4943
LFR 0.7925 0.6134 0.6759 0.5689 0.6233 0.4005 | 0.4582 | 0.3711
Weibull 0.9312 | 0.8835 0.8458 0.9445 0.8703 0.7848 | 0.4461 | 0.7648

5. Unbiasedness of the test statistic

To show unbiasedness of V(b.k) test we have to know that the probability of rejection is
not less than c, the size of the test whenever the alternative hypothesis is true. Let G be
exponential with 6 = 1. Let F be a distribution in the alternative hypothesis i.e.. for b € (0,1),
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Table 2 : Monte Carlo estimates of critical values, exact levels of signifi

V(9.2) and V(.9, 3).
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cance and powers of V(.5,2), V(.5.3),

b=0.5
a n— 5 7 9 11
05 0.130 0.057 0.052 0.070
0.10 | V(b,2) 0.0995 0.0897 0.0983 0.0986
~ V(b,3) 0.0937 0.0994 0.0995 0.0996
L 0.043 0.035 0.033 0.048
0.05 [ V(b.2) 0.0349 0.0494 0.0483 0.0497
V(b.3) 0.0446 0.0434 0.0488 0.05
1, 16 32 51 73
0.10 | V(b.2) 25 76 168 316
Ciiteoff ‘ponts V(b,3) 21 105 321 775
5 17 33 52 74
0.05 | V(b,2) 30 83 181 337
V(b.3) 28 120 356 850
Weibull| LFR |Weibull| LFR |Weibull] LFR Weibull | LFR
2 0.193 | 0.578 | 0.102 | 0.506 | 0.100 0.572 | 0.142 | 0.703
0.10 | V(b.2)| 0.4387 [0.1439] 0.5767 |0.1692 0.7037 | 0.2035 | 0.7860 |0.2225
Froricl power V(b.3)| 0.4344 [0.1499| 0.5264 |0.1568 | 0.6505 | 0.1883 0.7374 [0.1889
I, 0.074 | 0.340 | 0.068 | 0.405 | 0.067 | 0.481 0.099 | 0.631
0.05 | V(b.2)| 0.2736 | 0.0676| 0.4418 [0.1019| 0.5477 | 0.1238 0.6408 |0.1208
V(b3)| 0.2495 | 0.0777| 0.3504 [0.0846| 0.4968 | 0.1082 0.5783 |0.1082
b=0.9
a n— 5 7 9 11
/8 0.073 0.075 0.056 0.106
0.10 | V(b,2) 0.0544 0.0919 0.0855 0.0941
Exacta V(b,3) 0.0961 0.0823 0.095 0.0979
i 0.024 0.021 0.021 0.043
0.05 | V(b,2) 0.0306 0.0376 0.0432 0.0476
V(b,3) 0.0282 0.0483 0.0498 0.0494
3 12 24 40 59
0.10 | V(b,2) 14 43 101 193
Cut-off points V(b3) $ i 1o 409
X 13 25 a1 60
0.05 | V(b,2) 15 46 105 199
V(b.3) 11 53 172 432

Table 2 continued...
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Table 2 continued...

Weibull| LFR | Weibull| LFR |Weibull| LFR |Weibull | LFR
I 0.096 | 0.233 | 0.102 | 0.281 | 0.082 | 0.278 | 0.152 | 0.452
0.10 | V(b2)| 0.1758 | 0.0736| 0.3247 |0.1431| 0.3551 |0.1232 | 0.4570 [0.1517
V(b.3)| 0.2263 | 0.1210| 0.2623 [0.1084 | 0.3251 | 0.1313 | 0.4046 |0.1545
%% 0.032 | 0.092 | 0.030 |0.117| 0.034 | 0.139 | 0.066 | 0.279
0.05 | V(b2)| 0.1130 | 0.0426| 0.1770 |0.0647| 0.2358 |0.0688 | 0.3107 |0.0804
V(b3)| 0.1036 | 0.0435| 0.1695 [0.0654| 0.2261 |0.0713 | 0.2581 [0.0760

Empirical power

~logF (bx) < —blog F (x).

LetX,, .., X, be arandom sample from F. Let U, = G F(X,) =—log F(X,). Then U,

...y U, have the same probability distribution as a random sample Y, ... Y, from G. Now,
min(X,, ..., X)) <bX,, implies

G™'F(min(X,,... X,)) <G F(bX,, ) <bG'F(X,,,),
So that min(X,, ..., X)) < X, implies min(U, ..., U,) < bU

k+1*

Therefore, #*'(U,,....U,,,) < B*(X,..... X,,,). But A*'(Y,,....Y,.,) has the same

distribution as &*'(U,,...,U,,,). Hence V(b,k) based on X,s - X, and V(b.k) based on

Y,, ..., Y_have the same distribution. V(b,k) based on X, - X is stochastically larger than
these. Hence

P,,.[V(b,k)ZC']zPG[V(b,k)Zc'] (5.1)

where ¢’ is the cut-off point of the null distribution of V(b,k). The left hand side of (5.1)
represents the power of the test at a fixed alternative F of H, and the right hand side is equal
to o, which implies unbiasedness of the V(b,k) test.

6. Empirical Powers

The Monte-Carlo study is carried out to estimate power of V(b,k) test for two specific
alternatives corresponding to a significance level a=0.05 and a=0.10. The values of b and k
considered for this purpose are b=0.5, 0.9 and k=2, 3. The study is done for different values
of n each value being based on 10000 samples of required size. The two alternatives to the
null hypothesis H, of exponentiality with 8=1 for which the power has been estimated are
the Weibull distribution of index 2 and Linear Failure Rate distribution with 6=1. Both these
distributions are increasing failure rate distributions and hence also is increasing failure rate
average distributions. Table 2 gives Monte Carlo estimates of critical values, exact levels of
significance and power of V(0.5,2), V(0.5,3), V(09.2) and V(0.9.3). Monte Carlo estimates
of critical values, exact levels of significance and power of n(n-1)J; for b=0.5 and 0.9 are
also included in the Table 2 for the purpose of comparison.
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Table 2 indicates that V(b,k) performs better than J, test in terms of small sample power
for Weibull alternatives for both b=0.5 and 0.9 whereas J, test beats V(b.k) for LFR
alternatives.
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