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Abstract 

A new class of tests based on convex combination of the two statistics 
is proposed. These are functions of sub-sample order statistics. The 
classes of tests proposed by Kochar and Gupta [6], Shetty and Pandit 
[16], Pandit and Kumari [11] and Kendall’s test lie in the proposed 
class of test statistics. The asymptotic normality of the proposed class 
of tests is established. It has been observed that some members of        
the class perform better than the existing tests. Unbiasedness and 
consistency of the proposed class of tests are established. 
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1. Introduction 

One of the widely studied concepts in probability and statistics is         
the dependence relations between random variables. The relation between 
random variables X and Y is explored by designing some studies such as 
determining whether X and Y are independent or dependent. For example,         
a doctor may be interested in studying the relationship between obesity and 
blood pressure. Particularly, he may be interested in testing whether obesity 
(X) and blood pressure (Y) are independent against the alternative that they 
are positively associated. Testing the hypothesis that the time until it takes an 
infant to walk alone (X) is independent of the infant’s IQ at a later age (Y) 
versus the alternative that children who learn to walk early tend to have 
higher IQs may be a problem of interest to the psychologists. 

Let ( )YX ,  be absolutely continuous random variable with joint 

distribution function ( )yxF ,  and survival function 

( ) [ ].,, yYxXPyxF >>=  

Let F and G denote the marginal distribution functions of X and Y, 
respectively, with corresponding survival functions FF −= 1  and .1 GG −=  
The definition of particular type of dependence namely positive quadrant 
dependence (PQD) due to Lehmann [9] is given below. 

Definition 1.1. A random vector ( )YX ,  is said to be positive quadrant 

dependent (PQD) if ( ) ( ) ( ),, yGgFyxF ≥  for all ( )., yx  or ( ) ≥yxF ,  

[ ],, yYxXP >>  for all ( )., yx  The dependence is strict if the inequality 

holds at least for one pair ( )., yx  

A concept that is symmetric to PQD is the concept of negative quadrant 
dependence (NQD), which swaps the inequality in the definition of PQD. 
The relation between both the concepts can be seen in terms of monotonic 
transformations. However, if an increasing function is applied to one random 
variable and a decreasing function to the other random variable, then the 
quadrant dependence of the transformed couple of random variables is 
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changed. The probabilistic approach says that the probability that random 
variables be jointly large is greater than that when are looked separately. 

Positive quadrant dependence might be a very realistic assumption             
in many situations. For example, in the study of life expectancies among       
men and women in various countries, one would expect that a higher life 
expectancy for men in one country goes along with a higher life expectancy 
for women in that country. Recently, there is more attention on the effects        
of positive dependence among risks. Positive dependence may lead to 
substantial deviations in the stop-loss premiums, compared to independence 
case. In mathematical finance, positive (or negative) dependence is an 
important concern. For instance, one wishes to know whether certain stocks 
are negatively dependent in order to build a well-balanced portfolio. 

A measure of general positive association between two random variables 
X and Y is defined in terms of covariance between every pair of non- 
decreasing real functions f and g as ( ) ( )[ ] .0, ≥YgxfCov  However, if a        

pair ( )YX ,  is PQD, then ( ) .0, ≥YXCov  Equality holds if X and Y are 

independent. Furthermore, if the pair of functions f, g are real and non-
decreasing, then ( )YX ,  is PQD implies that ( ) ( )[ ]YgXf ,  is PQD which,  

in turn, implies that ( ) ( )[ ] .0, ≥YgXfCov  Consequently, general positive 

association and PQD are equivalent. The concept of PQD has been used to 
construct conservative confidence intervals for the components of the mean 
vector in bivariate normal distribution. Many applications of this concept 
may be founding the study of contaminated independence models, slippage 
problems, tests of symmetry, etc. 

In this paper, we consider the problem of testing the null hypothesis of 
independence ( ) ( ) ( ),,:0 yGxFyxFH =  for all ( )yx,  against the alternative 

of PQD ( ) ( ) ( ),,:1 yGxFyxFH ≥  for all ( )yx,  with strict inequality on a 

set of non-zero probabilities. It should be noted here that since F and G are 
unknown, 0H  and 1H  are both composite. Moreover, the alternative 1H          

is ordered which gives rise to general difficulties associated with ordered 
restricted inference. 
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For testing independence against PQD, Kochar and Gupta [6, 7] 
proposed some competitors of Kendall’s sample tau coefficient. Schriever 
[13] contained a large number of tests, available in the literature for the 
problem of independence. Shetty and Pandit [15-17] proposed distribution-
free tests for this problem based on the ordering of observations in sub-
samples. The statistic proposed by Kochar and Gupta [7] is a member of the 
test proposed by Shetty and Pandit [17]. In this paper, we propose a class of 
distribution-free tests for this problem. 

In Section 2, we propose a new class of distribution-free tests based on 
U-statistics for testing 0H  against .1H  The distribution of the test statistics  

is considered in Section 3. Section 4 is devoted to asymptotic relative 
efficiency properties. Some remarks and conclusions are given in Section 5. 

2. The Proposed Class of Test Statistics 

Let the random sample ( ) ( ),,...,,, 11 nn YXYX  2≥n  be drawn from the 

distribution H, the problem is to test 

( ) ( ) ( ),,:0 yGxFyxFH ⋅=  for at least one ( )yx,  

against 

( ) ( ) ( ),,:1 yGxFyxFH ⋅≥  for all ( )yx,  and with strict inequality 

for at least one ( )., yx  

Let 2≥k  be a fixed positive integer. Then the proposed test statistic is 
based on U statistic with kernel defined by 

( ) ( )[ ]kkk yxyxh ,...,,, 11  

( )[( ) ( )] ( ) ( ) ( ) ( )[ ],,...,,,1,...,,, 11
2

11
1

kkkkkk yxyxhyxyxh δ−+δ=  

( ) ( ) ( )[ ]kkk yxyxh ,...,,, 11
1  

( )
( )

⎪⎩

⎪
⎨
⎧

=
otherwise,0

pairsamethetobelongs...,,of
smallestthifand...,,ofsmallestthif1

1

1

k

k
yy

rxxr
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( ) ( ) ( )[ ]kkk yxyxh ,...,,, 11
2  

( ) ( ) ( )
( )

⎪⎩

⎪
⎨
⎧ +−+−

=
otherwise.0

pairsamethetobelongs...,,ofsmallest
th1and...,,ofsmallestth1if1

1

1

k

k
yy

rkxxrk
 (2.1) 

Then the test statistic ( )rkU ,  corresponding to the kernel kh  is 

( ) [( ) ( )]∑
−

⎟
⎠
⎞

⎜
⎝
⎛= ,,...,,,, 11

1

kk iiiik YXYXh
k
n

rkU  

where the summation is over all combinations of k integers ( )kiii ...,,, 21  

chosen out of n integers ( )n...,,2,1  without replacement. 

The statistic ( )rkU ,  can be easily computed as follows. Without loss of 

generality, assume that nXX ≤≤1  and denote the corresponding Ys by 

[ ] [ ]....,,1 nYY  

Let ( ) rankL j =  of ( )jY  among [ ] [ ]....,,1 jYY  and ( ) =jM  number of 

[ ]siY  greater than or equal to [ ] [ ] [ ]....,,, 1 njj YYY +  Then ( )rkU ,  can be 

written as 

( )

( ) ( ) ( ) ( ) ( )
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Woodworth [18] called ( )jL  the third quadrant layer rank of ( [ ])., jj YX  

3. Distributional Properties of ( )rkU ,  

The expectation of ( )rkU ,  is given by 

( ) ( ){ }rkUEF ,=γ  

( ) ( )[ ]{ }kkk yxyxhE ,...,,, 11=  
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{ thrPδ=  smallest of ( )kxx ...,,1  and rth smallest of ( )kyy ...,,1  belong 

to the same } ( ) {( )th11pair +−δ−+ rkP  smallest of ( )kxx ...,,1  and 

( )th1+− rk  smallest of ( )kyy ...,,1  belong to the same }pair  

[ { ( ) ( ),...,,min...,,max
1
1

111 krrr xxxxxP
r
k

k +− <<δ⎟
⎠
⎞

⎜
⎝
⎛

−
−

=  

( ) ( )}krrr yyyyy ...,,min...,,max 111 +− <<  

( ) { ( ) ( ),...,,min...,,max1 211 krkrkrk xxxxxP +−+−− <<δ−+  

( ) ( )}]krkrkrk yyyyy ...,,min...,,max 211 +−+−− <<  

( ) ( ) ( )
⎩
⎨
⎧ δ−+δ⎟

⎠
⎞

⎜
⎝
⎛

−
−

= ∫ ∫
∞

∞−

∞

∞−
−− 1,,

1
1 1 yxdFFyxF

r
k

k rkr  

( ) ( ) .,,1

⎭
⎬
⎫⋅ ∫ ∫

∞

∞−

∞

∞−
−− yxdFyxFF rrk  

Under ( ) ( )[ ] ,1,
1
1

, 2
00 +−β⎟

⎠
⎞

⎜
⎝
⎛

−
−

=γ rkr
r
k

kFH  where 

( ) ( )∫ −− −=β
1

0
11 .1, dxxxnm nm  

Theorem 1. Under the alternative ( ) ( )., 01 FFH γ>γ  

Proof. Under ,1H  

( ) ( )[ ] ( ) ( )∫ ∫
∞

∞−

∞

∞−⎥⎦
⎤

⎢⎣
⎡

−
−

≥=γ ,,,
1
1

, yxdFyxB
r
k

krkUEF  

where 

( ) [ ( ) ( ) ( ) ( )]yGyGxFxFyxB rkrrkr −−−−δ= 11,  

( )[ ( ) ( ) ( ) ( )]yGyGxFxF rrkrrk 111 −−−−δ−+  

and ( ) ( ) ( ) ( ).1,1 yGyGxFxF −=−=  
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Since ( ) ( )∞−≡≡∞− ,0, xByB  and B is of bounded variation on finite 

intervals, we can integrate by parts and obtain 

( ) ( )∫ ∫
∞

∞−

∞

∞−⎥⎦
⎤

⎢⎣
⎡

−
−

yxdFyxB
r
k

k ,,
1
1

 

( ) ( )∫ ∫
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∞
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⎤
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⎡

−
−

= yxdByxF
r
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k ,,
1
1

 

( ) ( ) ( )∫ ∫
∞

∞−

∞

∞−⎥⎦
⎤

⎢⎣
⎡

−
−

> yxdByGxF
r
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k ,
1
1

 

( ) ( ) ( ) ( )∫ ∫
∞

∞−

∞

∞−
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⎤
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⎡

−
−

= .,
1
1

0 FyGxdFyxB
r
k

k  

Hence, under ( ) ( )., 00 FFH γ>γ  

The asymptotic distribution of ( )rkU ,  is emphasized in Theorem 2, the 

proof of which is the consequence of Hoeffding [5]. 

Theorem 2. Under the assumed model and ,0 1 ∞<ξ< u  

( ) ( )( )[ ]rkUErkUn ,, −  converges in distribution to ( )ukN 1
2,0 ξ  random 

variable as ,∞→n  with  { [( ) ( ) ( )]},,,...,,, 11111 yxyxyxhVar kkku |=ξ  where 

( )⋅kh  is as defined by (2.1). 

Under ,0H  ( ) ,
01

2,2
0 UkrkU ξ=σ  where 

[ {( ) ( ) ( )}] ( )FYXYXYXkhEU kk
2
0,...,,,,,2

01 2211 γ−=ξ  
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( ) ( )[ ] .21,
1
1
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r
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Now, 

[ {( ) ( ) ( )}] ( )FYXYXYXkhE kk
2
0,...,,,,,2

2211 γ−  

( )[ ] ( )FIIE 2
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2
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The corresponding asymptotic variances of ( )rkU ,  for 6,5,4=k  and 

2=r  under 0H  are 

( ) ,13528.0006349.0006349.02,4 22
0

+δ−δ=σU  

( ) ,021676.0011999.0011999.02,5 22
0

+δ−δ=σU  

( ) .014576.0013536.0013536.02,6 22
0

+δ−δ=σU  
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4. Asymptotic Relative Efficiencies 

Pitman introduced a method for asymptotic comparison of test 
procedures popularly known as Pitman asymptotic relative efficiency (ARE). 
It is defined as the limiting ratio of sample sizes of the two test procedures 
required to attain the same limiting power for the sequence of alternatives 
converging to the null hypothesis. 

For the sequence of Pitman alternatives, the efficacy of ( )rkU ,  is 

defined as 

( )[ ]
( )[ ]

( )[ ]
.

,

,
lim,

0

0
rkUnVar

rkUEd
d

rkUEff
Hn

=θ
∞→

⎟
⎠
⎞⎜

⎝
⎛
θ

=  

The asymptotic relative efficiency of ( )rkU ,  with respect to any other 

test T is given by ( )[ ] ( )[ ]
( ) .,,,

2

⎥⎦
⎤

⎢⎣
⎡= TEff

rkUEffTrkUARE
 

For Pitman asymptotic relative efficiency comparisons, three            
models namely Morgenstern [10] distribution, Woodworth [18] family of 
distributions and Block and Basu [2] distributions are considered. 

First we consider Woodworth [18] family of distributions, which is given 
by the pdf 

( ) [ ( ) ][ ( ) ] .1,10,11111, 2 ≥≤θ≤+−+−θ+= mmymxmyxf mm  

Woodworth [18] family of distributions contains Morgenstern [10] 
distribution as a particular case when .1=m  

The asymptotic relative efficiencies (AREs) of the ( )rkU ,  relative to 

Kendall’s tau nT  for different values of k, r and m are presented in Tables 1.1 

to 1.4, for 4,3,2=m  and 5. 

Also, AREs of ( )rkU ,  relative to Kendall’s tau nT  for Morgenstern [10] 

distribution are given in Table 2. 
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Table 1.1. AREs of the ( )rkU ,  for 2=m  

δ  ( )[ ]nTUARE ,2,4  ( )[ ]nTUARE ,3,4  ( )[ ]nTUARE ,2,5  ( )[ ]nTUARE ,4,5  

0 1.0840 0.8085 1.0969 0.6219 

0.1 1.0720 0.8480 1.0981 0.6981 

0.2 1.0561 0.8859 1.0877 0.7748 

0.3 1.0362 0.9217 1.0642 0.8490 

0.4 1.0127 0.9551 1.0275 0.9178 

0.5 0.9855 0.9855 0.9782 0.9780 

0.6 0.9551 1.0127 0.9180 1.0273 

0.7 0.9217 1.0362 0.8493 1.0641 

0.8 0.8859 1.0561 0.7751 1.0875 

0.9 0.8480 1.0720 0.6985 1.0981 

1.0 0.8085 1.0840 0.6222 1.0969 

Table 1.2. AREs of the ( )rkU ,  for 3=m  

δ  ( )[ ]nTUARE ,2,4  ( )[ ]nTUARE ,3,4  ( )[ ]nTUARE ,2,5  ( )[ ]nTUARE ,4,5  

0 1.2247 0.7439 1.3343 0.5105 

0.1 1.1905 0.7996 1.2992 0.6056 

0.2 1.1522 0.8552 1.2491 0.7069 

0.3 1.1099 0.9100 1.1840 0.8120 

0.4 1.0640 0.9635 1.1050 0.9150 

0.5 1.0151 1.0151 1.0142 1.0143 

0.6 0.9635 1.0640 0.9150 1.1051 

0.7 0.9100 1.1099 0.8111 1.1841 

0.8 0.8552 1.1522 0.7068 1.2492 

0.9 0.7996 1.1905 0.6056 1.2993 

1.0 0.7439 1.2247 0.5105 1.3344 

Table 1.3. AREs of the ( )rkU ,  for 4=m  

δ  ( )[ ]nTUARE ,2,4  ( )[ ]nTUARE ,3,4  ( )[ ]nTUARE ,2,5  ( )[ ]nTUARE ,4,5  

0 2.0353 1.0531 2.3287 0.6617 

0.1 1.9543 1.1556 2.2273 0.8238 

0.2 1.8670 1.2601 2.1001 1.0028 

0.3 1.7740 1.3657 1.9485 1.1941 

0.4 1.6763 1.4710 1.7760 1.3916 

0.5 1.5750 1.5750 1.5881 1.5882 

0.6 1.4710 1.6763 1.3915 1.7761 

0.7 1.3657 1.7740 1.1940 1.9486 

0.8 1.2601 1.8670 1.0027 2.1002 

0.9 1.1556 1.9543 0.8238 2.2274 

1.0 1.0531 2.0353 0.6617 2.3288 



On Testing Against Positive Quadrant Dependence … 117 

Table 1.4. AREs of the ( )rkU ,  for 5=m  

δ  ( )[ ]nTUARE ,2,4  ( )[ ]nTUARE ,3,4  ( )[ ]nTUARE ,2,5  ( )[ ]nTUARE ,4,5  

0 1.4587 0.6616 1.7288 0.3882 

0.1 1.3874 0.7393 1.6330 0.5043 

0.2 1.3121 0.8197 1.5186 0.6361 

0.3 1.2335 0.9021 1.3873 0.7806 

0.4 1.1523 0.9857 1.2428 0.9336 

0.5 1.0693 1.0693 1.0896 1.0897 

0.6 0.9857 1.1523 0.9336 1.2429 

0.7 0.9021 1.2335 0.7806 1.3875 

0.8 0.8197 1.3121 0.6361 1.5187 

0.9 0.7393 1.3874 0.5043 1.6331 

1.0 0.6616 1.4587 0.3882 1.7286 

Table 2. AREs of the ( )rkU ,  for Morgenstern [10] distribution 

δ  ( )[ ]nTUARE ,2,4  ( )[ ]nTUARE ,2,5  ( )[ ]nTUARE ,4,5  

0 0.9184 0.8202 0.8202 

0.1 0.9335 0.8632 0.8632 

0.2 0.9456 0.8999 0.8999 

0.3 0.9544 0.9280 0.9281 

0.4 0.9598 0.9458 0.9459 

0.5 0.9616 0.9519 0.9520 

0.6 0.9598 0.9458 0.9459 

0.7 0.9544 0.9280 0.9281 

0.8 0.9456 0.8999 0.8999 

0.9 0.9335 0.8632 0.8632 

1.0 0.9184 0.8202 0.8202 

We also consider the AREs of the newly proposed tests for the absolutely 
continuous bivariate exponential distribution of Block and Basu [2] with 
density function: 

( ) ( ) ( ) ( ) ( ) ( ){ }[ ] .0,,,max1,minexp212
1, ≥θ++−+θ+θ= yxyxyxyxf  

This distribution is PQD when 0>θ  and the variables are independent when 
.0=θ  
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The values of the AREs of the ( )rkU ,  tests with respect to the Kendall’s 

tau nT  are presented in Table 3 given below: 

Table 3. AREs of the ( )rkU ,  for Block and Basu [2] distribution 

δ  ( )[ ]nTUARE ,2,4  ( )[ ]nTUARE ,2,5 ( )[ ]nTUARE ,4,5 ( )[ ]nTUARE ,3,6 ( )[ ]nTUARE ,4,6 ( )[ ]nTUARE ,3,7  

0 1.2255 1.2693 0.6892 1.1696 0.8868 1.2206 

0.1 1.2079 1.2665 0.7781 1.1538 0.9248 1.2137 

0.2 1.1860 1.2499 0.8681 1.1347 0.9614 1.1964 

0.3 1.1596 1.2185 0.9559 1.1126 0.9963 1.1681 

0.4 1.1292 1.1718 1.0381 1.0875 1.0292 1.1290 

0.5 1.0948 1.1110 1.1111 1.0595 1.0598 1.0795 

0.6 1.0570 1.0380 1.1719 1.0289 1.0877 1.0211 

0.7 1.0160 0.9559 1.2185 0.9961 1.1129 0.9555 

0.8 0.9725 0.8680 1.2500 0.9611 1.1350 0.8848 

0.9 0.9269 0.7780 1.2666 0.9246 1.1540 0.8112 

1.0 0.8799 0.6892 1.2694 0.8866 1.1699 0.7369 

5. Some Remarks and Conclusions 

(1) The proposed class of test statistics ( )rkU ,  is unbiased for testing 

0H  against .1H  

(2) The proposed class of test statistics ( )rkU ,  for testing 0H  against 

1H  is consistent. 

Proof. Since ( )[ ] ( )[ ]rkUErkUE HH ,, 01 >  and ( )rkU ,  is asymptotically 

normal, it follows from Lehmann [8] that ( )rkU ,  is consistent for testing 

0H  against .1H  

(3) The AREs of members of the class are studied for three alternatives 
namely, Morgenstern distribution [10], Woodworth family of distributions 
[18] and Block and Basu distributions [2]. 

(4) For Block and Basu bivariate [2] alternative, the performances of 
( )3,4U  and ( )2,4U  relative to Kendall’s tau are better for values 3.0≤δ  

and ,7.0≤δ  respectively. 
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(5) It is observed that the performances of ( )4,5U  and ( )4,6U  relative 

to Kendall’s tau are better for values 4.0≥δ . When the alternative is Block 
and Basu bivariate distribution [2], ( )2,6U  is better for .6.0≥δ  

(6) The performances of ( ),2,5U  ( )3,6U  and ( )3,7U  are better than 

Kendal’s tau test when 6.0≤δ  for Block and Basu bivariate distribution [2].  

(7) For Woodworth’s family [18], if ,4=m  then the performances of 

( ),2,4U  ( )3,4U  and ( )4,5U  are uniformly better as compared to Kendall’s 

tau and that of ( )2,5U  is better for .8.0≤δ  

(8) It is observed that, for Woodworth’s family [18], the performances of 
( )2,4U  and ( )2,5U  relative to Kendall’s tau test are better when 4.0≤δ   

and that of ( )3,4U  and ( )4,5U  relative to Kendall’s tau are better for 

,6.0≥δ  when .2=m  

(9) If 3=m  and 5, the performances of ( )2,4U  and ( )2,5U  are better 

than Kendall’s tau test when 5.0≤δ  and that of ( )3,4U  and ( )4,5U         

are better compared to that of Kendall’s tau test for ,5.0≥δ  when the 

alternative is Woodworth’s family of distributions [18]. 
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