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Abstract: The two-sample location problem is one of the fundamental problems encountered in Statistics. In many applications of
Statistics, two-sample problems arise in such a way as to lead naturally to the formulations of the null hypothesis to theeffect that
the two samples come from identical populations. A class of nonparametric test statistics is proposed for two-sample location problem
based on U-statistic with the kernel depending on a constant’a’ when the underlying distribution is symmetric. The optimal choice of
’a’ for different underlying distributions is determined.An alternative expression for the class of test statistics is established. Pitman
asymptotic relative efficiencies indicate that the proposed class of test statistics does well in comparison with many of the test statistics
available in the literature. The small sample performance is also studied through Monte-Carlo Simulation technique.
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1 Introduction

Let X11,X12, ...,X1n1 andX21,X22, ...,X2n2 be two independent random samples from absolutely continuous distributions
with c.d.f’s F(x) and F(x − ∆) respectively, whereF(x) + F(−x) = 1 for all −∞ < x < ∞. Here ∆ is the location
parameter. A popular nonparametric test for testingH0 : ∆ = 0 versusH1 : ∆ 6= 0 is the Wilcoxon-Mann-Whitney (W)
[8] test. Besides, W-test, a number of distribution-free tests are available in the literature. Mathinsen [9] proposed a test
for this problem based on the number of observations in X-sample not exceeding the median of Y-sample. Moods
median (M) [10] test is particularly effective in detecting shift in location in distributions which are symmetric and heavy
tailed. The Normal scores (NS)(refer Randles and Wolfe [12]) test, Gastwirth’s L and H [3] tests and the RS test due to
Hogg, Fisher and Randles [4]are effective in detecting shift in normal distribution, shifts in moderately heavy tailed
distributions and shifts in skewed distributions respectively . The SG test proposed by Shetty and Govindarajulu [13]
takes care of two suspected outliers at the extremes of both the samples. Deshpande and Kochar [2], Stephenson and
Ghosh [15] Shetty and Bhat [14] are few other test procedures for this problem among others. The generalization of the
test due to Deshpande and Kochar [2] is considered by Kumar, Singh and Ozturk [6]. Ahmad [1] proposed a
generalization of Mann-Whitney test for this problem basedon subsample extremes. Recently Pandit and Savitha kumari
[11] proposed a class of tests for two sample location problem based on subsample quantiles. In this paper, we propose a
class of distribution-free tests which are effective in detecting the shift in distributions that are symmetric.

The class of test statistics is proposed in section 2. An alternative expression for the proposed class is also given in
section 2. Section 3 contains the distributional properties of the proposed class of test statistics. Section 4 is devoted to
study the performance of the proposed class of tests in termsof Pitman asymptotic relative efficiencies(ARE) and
empirical power. Section 5 contains some remarks and conclusions.
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2 The proposed class of statistics

We propose a test based on the following U-statistic which isgiven by

Ua = 1
n1 n2

n1

∑
i = 1

n2

∑
j = 1

h( x1i , x2 j) ;n = n1 + n2

where

h
(

X1i,X2 j
)

=











1 i f min
(

X1i,X2 j
)

> 0
a(−a) i f X1i,X2 j < 0 and X1i +X2 j > 0(<)0
−1 i f max

(

X1i,X2 j
)

< 0
0 otherwise

The test based onUa rejectsH0 : ∆ = 0 againstH1 : ∆ 6= 0 when|Ua| is too large. The test is distribution-free for all
n, with null distribution depending on the choice of′a ′.

Alternative expression for Ua

Let m =
2
∑

i=1

ni

∑
j=1

I [Xi j > 0] andl =
2
∑

i=1

ni

∑
j=1

I [Xi j < 0] so thatn = m+ l and letn∗ = m−1.

Further,
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where R+
i j is the the rank ofXi j in |X11| , |X12| , ..., |X1n1| and |X21| , |X22| , ..., |X2n2| and setW = W+−W−. Note that

W++W− = n(n+1)
2 .

Similarly , we can set

U±
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(
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Here W+ (W−) represent the signed-rank statistic corresponding to the number m(l) of positive (negative)Xk j
′s. Then,

we can establish the following relation betweenU
′
a = n1 n2 Ua , W+ and n∗ as

U+′
a = aW+ +

(m + 1
2

)

(1− a)

and U−′
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so that
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n∗(n+1)(1− a) (1)
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Exact null distribution

The exact null distribution ofUa can be enumerated in general by simply noting that , underH0 , each combination of
signed ranks±1,±2, ...,±n yielding a value ofU

′
a has probability 1

2n , the total number of such combinations being 2n.

The c.d.f. ofU
′
a can then be conveniently written using (1) for any given or predetermined value of ’a’. Thus the range of

values ofU
′
a is random and depends on the selected value of ’a’.

3 Distributional properties of Ua

The mean ofUa is given by

µ(∆) = E(Ua)

= P[Min(X1k,X2 j)> 0]+ aP[X1k,X2 j < 0,X1k +X2 j > 0]

− aP[X1k,X2 j < 0,X1k +X2 j < 0]−P[Max(X1k,X2 j)< 0]

= A1+ aA2−A3

where

A1 =
1−F(−∆)

2

A2 =

0
∫

−∞

[1−2F(−x−∆)]dF(x)+

−∆
∫

−∞

[1−2F(−x−∆)]dF(x)+F(−∆)
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F(−∆)

2
.

Under H0 , E[Ua] = 0 andVar(Ua) =
1

n1n2

l
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l−d

)
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whereζ0,0 = 0, ζ1,0 = ζ0,1 = 1+ a2

3 and ζ1,1 =
1
2(1+ a2)

Since Ua is a U-statistic, its asymptotic distribution of
√

nUa, underH0 is N(0,σ2
a ) where

σ2
a =

ζ1,0
λ +

ζ0,1
1−λ = 1

4(1+
a2

3 ) , which is the direct consequence of Lehmann(1951).

4 Asymptotic Relative Efficiency and optimal value of ’a’

The asymptotic relative efficiency ofUa with respect to two-sample t-test, T is given by

ARE(Ua,T ) = 4

1+ a2
3

[

(1− a) f (0)+2a
∞
∫

−∞
f 2(x)dx

]2

,

assumingσ2 = Var(F) is one. The optimal valuea∗ of ′a′ is obtained by solvingd
da ARE(Ua,T ) = 0 and verifying

d2
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The asymptotic relative efficiency of the proposed test withrespect to Wilcoxon’s(W), Mood’s median test(M), Gastwirth
L and H tests(1965), Normal Scores(NS)test(refer Randles and wolfe 1979), Hogg, Fisher and Randles(RS)test(1975),
Shetty and Govindarajulu(SG)(1988)test, Shetty and Bhat(1994)testT (b,d), Deshpande and Kochar(1982)testL(c,d)
and two-sample test T are given in the following tables 1-3.

Table 1: Asymptotic relative efficiency ofUa∗ with respect to T, W, T (1,3), T (1,5), T (2,3), T (2,5)
Asymptotic relative efficiency of Ua∗ relative to

Distribution a∗ T W T (1,3) T (1,5) T (2,3) T (2,5)
Cauchy 0 0.4052 1.1323 1.1430 1.0623 1.1833 1.0865
Laplace 0 2.0000 1.3333 1.2432 1.1998 1.2872 1.2270
Logistic 1 1.0966 1.0000 1.0013 1.0288 1.0475 1.0525
Normal 3(

√
2−1) 0.9643 1.0098 1.0645 1.1048 1.1047 1.1323

Triangular 1 0.8889 1.0000 1.0833 1.2005 1.1266 1.1582
Uniform 3 1.3333 1.0000 1.4571 1.7921 1.5085 1.7400

Table 2: Asymptotic relative efficiency of Ua∗ relative to RS, M, H, L, NS, SG
Asymptotic relative efficiency of Ua∗ relative to

Distribution RS M H L NS SG
Cauchy 1.6656 0.9996 0.9953 5.0502 1.8834 1.6023
Laplace 1.6664 0.994 1.1842 2.6658 1.5740 1.1998
Logistic 1.2374 1.3199 1.0479 1.2720 1.0326 1.0184
Normal 1.2613 1.5132 1.1608 1.0891 .09642 1.1045

Triangular 1.2500 1.334 1.1965 1.0000 0.7883 1.1325
Uniform 1.2505 3.0045 2.0007 0.5002 ∞ 1.7013

Table 3: Asymptotic relative efficiency ofUa∗ with respect to L(c,d)
Distribution d = 1 d = 2 d = 3

Laplace 1.5238 1.7143 1.9730
Logistic 1.1428 1.2857 1.3987
Normal 1.1539 1.2982 1.3745
Uniform 1.5237 1.8357 1.5107

Empirical Powers

Monte Carlo simulation is carried out for finding the empirical powers of our test statisticUa∗ for three distributions
namely, Normal, Uniform and Cauchy whenn1 = n2(= 8) andα(= 0.01,0.05,0.10) . Empirical power is the proportion
of 10000 trials for which the test based onUa∗ rejects H0 : ∆ = 0
versusH1 : ∆ > 0 . In table 4 and 5, the empirical powers ofUa∗ are presented.
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Table 4: Empirical powers of Ua∗n1 = n2(= 8)
Normal Distribution Cauchy Distribution

∆ ↓ α → 0.01 0.05 0.10 0.01 0.05 0.10
1 0.0466 0.1763 0.2582 0.0418 0.1562 0.2311
2 0.1297 0.6438 0.7008 0.0999 0.3119 0.4265
4 0.2830 0.6812 0.7578 0.2087 0.5351 0.6633
5 0.3259 0.7071 0.8297 0.2550 0.6008 0.7307
6 0.3619 0.7699 0.8724 0.2906 0.6482 0.7707
8 0.4165 0.8391 0.9149 0.3272 0.7173 0.8239
10 0.4428 0.8661 0.9379 0.3753 0.7621 0.8681

Table 5: Empirical powers of Ua∗n1 = n2(= 8) for Uniform Distribution
∆ ↓ α → 0.01 0.05 0.10

0.1 0.0195 0.1005 0.1594
0.2 0.0622 0.2327 0.3428
0.3 0.1405 0.0.4263 0.5583
0.4 0.2320 0.6021 0.7530
0.5 0.3235 0.7598 0.8778

5 Remarks and Conclusions

1.The class of tests proposed in this paper,Ua∗ is consistent for testingH0 : ∆ = 0 against H1 : ∆ > 0.
2.Ua∗ is more efficient thanRS, M, H, L, NS, T (b,d) andSG tests for light and medium tailed distributions.
3.The test based onUa∗ is better thanL(c,d) for c = 1 for all symmetric distributions.
4.The gain in efficiency ofUa∗ with respect toW test is more for heavy tailed distributions. However, the gain is moderate

for medium and light tailed distributions.
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