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CLASSIACATION: MORE THAN JUST BRANCHING PATTERNS OF EVOLUTION 

Too R STUESSY 1 

Natural History Museum of Los Angeles County, 900 Exposition Blvd., Los Angeles, CA 
90007-4057; Research Associate, Rancho Santa Ana Botanical Garden, 

1500 N. College Ave.,Claremont, CA 91711-3157. 

ABSTRACT 

The past 35 years in biological systematics have been a time of remarkable philosophical and 
methodological developments. For nearly a century after Darwin's Origin of Species, systematists 
worked to understand the diversity of nature based on evolutionary relationships. Numerous concepts 
were presented and elaborated upon, such as homology, parallelism, divergence, primitiveness and 
advancedness, cladogenesis and anagenesis. Classifications were based solidly on phylogenetic con
cepts; they were avowedly monophyletic. Phenetics emphasized the immense challenges represented 
by phylogeny reconstruction and advised against basing classifications upon it. Pheneticists forced 
reevaluation of all previous classificatory efforts, and objectivity and repeatability in both grouping 
and ranking were stressed. The concept of character state was developed, and numerous debates 
focused on other concepts, such as unit character, homology, similarity, and distance. The simultaneous 
availability of computers allowed phenetics to explore new limits. Despite numerous positive aspects 
of phenetics, the near absence of evolutionary insights led eventually to cladistics. Drawing directly 
from phenetics and from the Hennigian philosophical school, cladistics evolved as an explicit means 
of deriving branching patterns of phylogeny and upon which classifications might be based. Two 
decades of cladistics have given us: refined arguments on homology and the evolutionary content of 
characters and states, views of classifications as testable hypotheses, and computer algorithms for 
constructing branching patterns of evolution. In contrast to the phenetic movement, which was note
worthy for seeking newer concepts and methods, even including determining evolutionary relationships 
(which led eventually to numerical cladistics), many cladists have solidified their approaches based 
on parsimony, outgroups, and holophyly. Instead of looking for newer ways to represent phylogeny, 
some cladists have attempted to use branching patterns: (1) as a strict basis for biological classification 
and nomenclature and (2) to explain the origin of biological diversity even down to the populational 
level. This paper argues that cladistics is inappropriate to both these goals due to: (1) inability of 
branching patterns to reveal all significant dimensions of phylogeny; (2) acknowledged patterns of 
reticulate evolution, especially in flowering plants; (3) documented nonparsimonious pathways of 
evolution: and (4) nondichotomous distribution of genetic variation within populations. New concepts 
and methods of reconstructing phylogeny and developing classifications must be sought. Most impor
tant is incorporation of genetic-based evolutionary divergence within lineages for purposes of grouping 
and ranking. 

Key words: cladistics, classification, explicit phyletics, phenetics, phylogeny. 

INTRODUCTION 

The history of biological systematics is essentially 
as old as biology itself, going back to the Ancient 
Greeks (Mayr 1982). Early insights to plant classifi
cation were provided by Theophrastus around 300 B. 
C. (see Theophrastus 1916), although these largely 
stressed simple differences in habit. From these early 
beginnings fiowed numerous efforts to organize the 
living world into increasingly predictive systems of in
formation retrieval. Plant classification emphasized 
medicinal properties (The Age of the Herbalists, 1470-
1670; Arber 1912), structural features (e.g., Cesalpino 
1583), and even specific numbers of stamens and car
pels (Linnaeus 1735). Slowly a more balanced system 

1 Present Address: Institut ftir Botanik, Universitlit Wien, Rennweg 
14, A-1030 Wien, Austria e-mail: tod.stuessy@univie.ac.at(Cl). 

appeared with the post-Linnaean "natural systems" of 
Jussieu (1789) and Candolle (1824-1838). 

Darwin's (1859) Origin of Species provided a con
vincing rationale for why classifications had predictive 
value: similarity based on descent from a common an
cestor. Although the theory of evolution by means of 
natural selection provided no new classifications di
rectly, perspectives on classification changed dramati
cally. The newer, post-Darwinian classifications, such 
as that of Engler and Prantl (1887-1915) were based 
on evolutionary assumptions and ideas. The influential 
"dicta" of Bessey ( 1915) were a series of evolutionary 
assumptions that had major impact on classificatory 
perspectives. The importance of monophyletic groups 
(i.e., those that derive from a common ancestor) to 
classifications was recognized and search for them in
tensified. Numerous phylogenetic branching diagrams 
were produced, and it was accepted that monogra-
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phers, especially at the generic level, would provide 
evolutionary discussions and a phylograrn as part of 
the expected syntheses. Evolutionary (phylogenetic) 
systematics thrived for a century and major systems 
of classification were produced, such as Hutchinson 
(1926, 1934), Thome (1968, 1976, 1992), Tak:htajan 
(1969, 1980), Dahlgren (1980), Cronquist (1981), and 
Dahlgren and Clifford (1982). 

In the late 1950s, however, some workers began to 
question some of the methods of evolutionary classi
fication. Perhaps due to the increasingly quantitative 
nature of other areas of biology and perhaps also a 
reaction to the century-old intuitive methods almost 
approximating apprenticeship, focus turned to how bi
ological classifications might also be made more quan
titative (Sneath 1957; Michener and Sokal 1957). This 
perspective led to the development of phenetics, which 
emphasized use of many equally weighted (or non
weighted) characters clustered to provide branching 
patterns (Sokal and Sneath 1963; Sneath and Sokal 
1973). Such a quantitative approach to classification 
was made possible by the availability of computing 
machines, without which advances in phenetics in the 
1960s and 1970s would have been severely hindered 
if not rendered impossible. 

Phenetics taught us many things. It showed the im
portance of carefully examining characters for infor
mation content, and it gave us the useful concept of 
character state. It focused on the difficult problem of 
homology and it forced a total reevaluation of the phi
losophy, concepts and methods of classification. It also 
showed how different procedures often lead to differ
ent results. The main problem with phenetics was that 
in attempting to be totally quantitative and objective, 
it ignored evolutionary assumptions on the grounds 
that they were too subjective and complex. But this 
perspective proved ultimately frustrating to systema
tists who knew that taxa had derived from the process 
of evolution and who suspicioned this background 
should probably be reflected in a classification of high 
information content. Phenetics, then, proved not the 
final solution to the needs of biological classification. 

The stimulus of phenetics, combined with new 
philosophical and methodological perspectives from 
Hennig (1950, 1966) and especially workers at the 
American Museum of Natural History (e.g., Nelson 
1971, 1972), led to cladistics. Hennig was following 
the German school of interest in phylogeny but react
ing against the idealistic-morphological systems of 
classification in popular use (Mayr 1995). Examples 
of workers interested in cladistics who carne from phe
netics included Camin and Sokal (1965), Estabrook 
(1%8) and Farris (1970). This cladistic approach em
phasized explicit construction of branching diagrams 
of phylogeny and basing classifications upon them. 

During the past two decades, cladistics has been 

successful in many ways and for a variety of reasons. 
It certainly has provided explicit means for the recon
struction of branching patterns of phylogeny. It has 
also stressed that classifications are testable scientific 
hypotheses. It is superficially easy to do, especially 
with aid of computer programs such as PAUP (Swof
ford 1993). It has provided a convenient vehicle for 
analysis of DNA sequence and restriction site data that 
are accumulating in increasing quantities. And, other 
biologists, now more comfortable with molecular phy
logenies that seemingly have higher levels of confi
dence through statistical evaluation, are seeking and 
using phylogenies as never before (e.g., Harvey et al. 
1996). Study of phylogeny has returned to its rightful 
important role in comparative biology that it enjoyed 
from 1859 to the early decades of this century. This 
also helps emphasize the significant role that system
atics has for other areas of biology. In fact, we have 
reached a point where the major innovations in tech
niques for tree construction and evaluation are being 
developed by workers who are not systematists! They 
are frequently molecular population geneticists with 
strong mathematical backgrounds who earlier showed 
little interest in phylogeny reconstruction because of 
lack of statistical rigor. 

Despite all these positive contributions of cladistics, 
the impact on actual plant classification has been min
imal. During the past 20 years, we have continued to 
refine our concepts and philosophy about interpreting 
relationships, but few new classifications have resulted 
from these analyses. Those that have appeared have 
been the subject of considerable discussion (e.g., An
derberg 1990, 1992; Orchard 1992). 

Cladistics, then, is at a crossroads. It either will be
gin to have greater impact on actual plant classifica
tions, or it will evolve into something else as occurred 
earlier with phenetics. It is the thesis of this paper that 
we should intensify our efforts to go beyond cladistics 
and achieve explicit evolutionary classification. In this 
fashion, we build upon the positive developments and 
experiences from both phenetics and cladistics to pro
vide a quantitative approach to evolutionary classifi
cation that has been the principal method for nearly a 
century and is still the dominant method worldwide 
for practicing taxonomists. 

The purposes of this paper, therefore, are to: (1) re
view some of the problems with cladistics; (2) com
ment briefly on the impact of DNA data in cladistic 
analysis; (3) discuss why cladistics finds itself now at 
a crossroads; and (4) review methods of explicit phy
letic (= evolutionary) classifications as improvements 
over simple cladistic approaches, including a new 
quantitative method for determining apomorphic sup
port for recognition of taxa. 
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PROBLEMS WITH CLADISTICS 

As with previous approaches to classification, now 
after more than 20 years it is appropriate to reevaluate 
the efficacy of cladistics. There already have been nu
merous critiques (e.g., Mayr 1974; Cronquist 1987; 
Stuessy 1990), and much has been said on nearly ev
ery topic. However, the fact remains that new cladistic 
classifications have not replaced all previous ones 
based largely on phyletic(= evolutionary) approaches. 
We might ask, therefore, why is this so? The answer 
seems to lie with numerous problems with methods, 
concepts and philosophy, some unique to cladistics, 
and others also problematic for phyletics or phenetics 
(i.e., for any method of biological classification). 

First are methodological problems. Studies of evo
lutionary groups require that they are well enough un
derstood to include all known representatives. Such 
groups are believed to have come from a common an
cestor and hence monophyletic. The difficulty is that 
many groups are simply not well known; hence cla
distic analysis can yield only the most tentative of hy
potheses, subject to drastic change as new relatives are 
encountered. 

Selection of characters and states that have evolu
tionary import is a central area of cladistic analysis. 
Because fewer characters are usually employed, estab
lishing the proper evolutionary significance of each 
character and its states is much more critical in cla
distics than in phenetics, which stresses maximum 
character information. This is an area that has not yet 
received sufficient critical attention (see, however, a 
careful analysis of the problem by Stevens [1991]). 
What are the levels of confidence that tell us we have, 
in fact, captured the relevant evolutionary data? We 
have relied on the concept of "conservation" in many 
instances, and an attempt has been made to quantify 
this measure (Farris 1966), but this is not entirely sat
isfactory as a measure of evolutionary information 
content. The issue of weighting of cladistic characters 
is also of concern (e.g., Wheeler 1986). Allied to this 
is difficulty in establishing logical interconnectedness 
of character states to form a character-state network. 
Parsimony is invoked, usually because no data are 
available to the contrary. More and more workers are 
tending not to order completely their states evolution
arily, which has the effect of lessening evolutionary 
constraints in this part of the analysis, and in some 
ways more closely approximates weighted phenetics. 

One of the greatest difficulties with cladistics, as 
also with phyletics, has been the determination of evo
lutionary polarity (i.e., which character states are prim
itive and which are derived). Difficulty with this point 
was one of the main stimuli for the development of 
phenetics. As we often have little direct evidence that 
bears on the issue, we must rely on a series of as-

sumptions and indirect evidence, all of which have 
problems (Crisci and Stuessy 1980; Stuessy and Crisci 
1984). Many cladistic practitioners have focused en
tirely on outgroup comparison, often restricted to sister 
groups (e.g., Watrous and Wheeler 1981 ). Other work
ers have stressed a broader outgroup vision (e.g., Don
oghue and Cantino 1984; this criticized as "relaxed 
parsimony" by Nixon and Carpenter 1993) as well as 
allowing ontogenetical perspectives (e.g., Forey et al. 
1992). The problem here is that the further one goes 
from the study group, the higher goes the probability 
that similar character states are nonhomologous. The 
greatest problem with outgroup analysis, long used in 
phyletic classification, is not the concept-but its un
critical use. As pointed out by Stuessy and Crisci 
(1984), strict sister-taxon (or close relative) outgroup 
can fail in certain instances. Disney (1993) stresses 
problems with outgroup and mosaic evolution. The so
lution to the problem is not abandonment of the con
cept, but a reminder of caution and a plea for maxi
mum biological information before final polarities are 
determined. Developmental data and ecological cor
relations are among the other insights that should be 
sought. Stressing outgroup alone narrows our ability 
to make the most informed evolutionary decisions re
garding one of the most critical aspects of cladistic 
analysis. 

As happened with phenetics, several algorithms for 
branching pattern reconstruction within cladistics have 
evolved, the most prominent being parsimony, char
acter compatibility, and maximum likelihood (e.g., 
Felsenstein 1984). For DNA, numerous additional al
gorithms exist due to simplicity of the characters and 
states, their differential rates of permutation, and their 
large numbers of data points. For morphological data, 
in recent years the parsimony method, especially using 
PAUP, has reigned supreme. However, increased inter
est on weighting of character states and lowering of 
homoplasy of trees has led to convergence of parsi
mony toward character compatibility. Morphologically 
based cladistics, therefore, has tended to solidify on 
outgroup comparison (especially with reference to sis
ter taxa), unordered character state networks, and par
simony algorithms as found in PAUP. 

The second set of problems with cladistics is con
ceptual. That evolution is not always parsimonious has 
been demonstrated on several occasions (e.g., Gastony 
1986; Sang et al. 1995; Schilling and Panero 1996). 
The numerous documented cases of reticulate evolu
tion in vascular plants (see Grant, 1981, for many ex
amples) as well as many progenitor-derivative species 
pairs (e.g., Gottlieb 1973; Crawford and Smith 1982; 
Crawford et al. 1985; Kadereit et al. 1995) remind us 
that simple dichotomous branching diagrams cannot 
do justice to the real world of higher plant phylogeny. 
Lamboy (1994) has recently demonstrated this point 
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convincingly. We must remember that cladograms are 
models (or hypotheses) of relationships that discard 
unwanted information ("noise"; Gauch 1993) and rep
resent, therefore, different degrees of reflections of re
ality. 

Another serious conceptual problem with cladistics 
is its reliance on few characters. Obviously with gene 
sequence data this point is obviated, but with morpho
logical data it is serious. Frequently, branch points on 
cladograms are supported by only single synapomor
phies. If and when such units are accepted formally in 
the classification, it represents a return to single-char
acter taxonomy that was discarded during the 19th 
century for lack of predictive quality of resultant 
groups. Further, this type of minimal support for 
branch points makes the phylogeny (and any resultant 
classification) unstable, changing dramatically with a 
change in characters and states or the addition of new 
evolutionary units in the analysis (Stuessy 1990). Cla
distics need not be so narrow in selection of characters 
and states, however, as emphasized by Thiele (1993). 
The impact of extinction in cladistic analysis has rarely 
been addressed. Because of the low stability of dado
grams due to use of few characters, the degree of miss
ing taxa due to extinction could markedly impact tree 
topology. Olson and James (1982a, b) have deter
mined, based ori fossil evidence, that many of the birds 
of Hawaii have become extinct, up to 75% of known 
species on Oahu. This sort of error can lead to drastic 
alteration of tree structure, depending on the nature of 
variation lost. The important point is that we should · 
be seeking new ways to infer extinction events such 
as by the insertion of hypothetically extinct taxa and 
evaluating the robustness of branch points in the anal
ysis (similar to jackknifing, e.g., Lanyon, 1987, but 
adding, rather than subtracting, taxa). 

The most serious problem for cladistics, and in my 
opinion a fatal one as it relates to classification, is use 
of only branching information in phylogeny. Phylog
eny has many dimensions, including cladistics, chron
istics, patristics, character-state divergence, rate of 
evolutionary change, and others. Traditional evolution
ary classification attempted successfully to interpret all 
aspects of phylogeny and to incorporate these data into 
a highly informative classification. The problems here 
lay not with the information content, but rather with 
the lack of explicit approaches. Cladistics has lost 
much to gain confidence of explicit methods. 

Another problem with cladistics is its sole reliance 
on synapomorphies as a criterion for determining re
lationships. The stress on synapomorphy vs. symple
siomorphy is in part semantic: the former becomes the 
latter if looked at from above a node. I believe that 
shared primitive character states can indeed be helpful 
in defining taxa, especially in the context of polythetic 
rather than monothetic groups (for definition, see So-

kal and Sneath 1963). Who would argue against the 
primitive character states of laminar placentation, es
sential oils, undifferentiated stamens, etc. as helping to 
define Magnoliales? More importantly, other dimen
sions of relationships are ignored, such as crossing ( cy
togenetic) data. These biologically informative data 
such as degree of stainability of pollen in artificially 
generated interspecific hybrids, derive from interac
tions between taxa and therefore are more akin to co
efficients of association rather than synapomorphic 
data. Nonetheless, they are extremely valuable, es
pecially as they relate to biological bases of species. 
Recent macromolecular studies of the tarweeds (Com
positae, Madiinae) by B. Baldwin (1996, 1997) show 
remarkable congruence with cytogenetic data by Clau
sen et al. (1945) and Carr and Kyhos (1981, 1986; see 
also summaries by Clausen, 1951, and Kyhos et al. 
1990). Some cladists have criticized cytogenetic data 
(i.e., crossability) on the grounds that they are ple
siomorphic data of no value to phylogenetic recon
struction (Funk 1985). This is simply not true. As spe
cies diverge from a common ancestor via diploid al
lopatric means (a simple example), they accrue genetic 
and reproductive differences from the common ances
tor and this occurs in parallel (this is also one of the 
reasons why cladistics can also be regarded as parallel 
anagenesis; Stuessy et al. 1990). Crossing of distinct 
species, therefore, measures the degree of difference 
from the ancestor: the less they cross, the more they 
have diverged and the less related they are judged to 
be. 

Once again, at the conceptual level there are many 
cladistic algorithms from which to choose. In fact, 
there are so many different techniques available, es
pecially statistical evaluations, that they far outstrip the 
veracity of the data themselves. We need to reinvigo
rate efforts on understanding characters and states rath
er than seeking the shortest tree which probably is a 
gross simplification of the real phylogeny. One might 
argue that we should be seeking trees deliberately lon
ger that the shortest one, perhaps by adding biological 
constraints such as hypothetical extinction, progenitor
derivative and reticulate relationships, and developing 
statistical evaluations of the results. Most impressive 
are the existing measures for evaluating robustness of 
tree topologies. These have proliferated due to input 
from mathematically inclined population geneticists 
who have new confidence in phylogenetic reconstruc
tion. Methods are available for evaluation of the data 
relative to the tree topology in the form of Consistency 
Index (Kluge and Farris 1969), Distortion Coefficient 
(Farris 1973), Retention Index (Farris 1989a, b), Res
caled Consistency Index (Farris 1989 a), and Deci
siveness (Goloboff 1991). Other measures deal with 
evaluation of the tree topology by resampled data or: 
taxa such as the Bootstrap (Felsenstein 1985; Sander-
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son 1989), Clade Stability by character removal (Davis 
1993), Jackknife (Miller 1974), Homoplasy Excess 
Ratio (Archie, 1989a, b), Permutation Tail Probability 
(Faith and Cranston 1991), Homoplasy Slope Ratio 
(Meier et aL, 1991), and Topiary Pruning (Wills 1996). 
Still other measures include the Decay Index ( = 

branch support; Bremer 1988, 1994), generation of and 
comparison with random trees (Penny and Hendy 
1985), and through assessing distribution of apomor
phies within cladograms, e.g., by Successive Approx
imations Character Weighting (Carpenter 1988, after 
Farris 1969), and the Homoplasy Distribution Ratio 
(Sang 1995). 

The third set of problems with cladistics is philo
sophicaL Although there is nothing inherent in cladis
tic methods that requires employment at all levels of 
the taxonomic hierarchy, some practitioners have so 
extended its use even down to the populational level 
(e.g., Davis and Nixon 1992). Such zeal has led to 
renewed debates on the nature of species focusing on 
how they should be defined in a cladistic context (e.g., 
Davis 1995). This has reached such exaggerated levels 
that most species must now be regarded as "meta
species" (Donoghue 1985; de Quieroz and Donoghue 
1988) because they are clearly paraphyletic (Riesberg 
and Brouillet 1994; Crisp and Chandler 1996). This 
zest to extend cladistic analysis pervasively throughout 
the living world seems based on the idea that having 
a uniform and comprehensive mode of classification 
would once and for all insure a "scientific" and phil
osophically supportable classification of all life forms. 
While laudable, such a perspective naively assumes 
that the processes of evolution have been sufficiently 
similar in all groups so that the generated diversitY can 
be dealt with in equal fashion. With so many typesof 
genetic variation partitioned in so many different types 
of organisms, with vastly differing reproductive re
gimes, this effort would seem futile (for agreement, 
see Doyle 1995). A number of these problems have 
been pointed out, and alternative algorithms based on 
population genetic data suggested, by Crandall et al. 
(1994). 

Perhaps the most serious philosophical problem 
with cladistics is the belief that only holophyletic taxa 
can be accepted in classification. The original defini
tion of monophyletic, derived from Darwin (1859), 
Haeckel ( 1866) and others of the last half of the 19th 
century, stressed groups that have a common ancestor. 
Hennig (1966) modified this century-old definition to 
apply to groups that have a common ancestor and that 
contain all the descendants of that ancestor. Groups 
that are monophyletic but do not contain all the de
scendants were called paraphyletic (Hennig 1966). 
Such paraphyletic groups are not accepted in strict cla
distic classification. By definition, these perspectives 
exclude paraphyly as being a nonevolutionary, and 

therefore inappropriate, basis for classification, simply 
because for more than 150 years nearly all workers 
have agreed that classification should be based on 
monophyletic groups. Ashlock (1971, 1984), seeing 
the problem clearly, suggested the term holophyletic 
for the narrower definition of monophyly. Under this 
perspective, monophyly consists of both holophyly 
(the only evolutionary unit accepted by cladists) and 
paraphyly, both being accepted by evolutionary sys
tematists. This voluntary loss of evolutionary infor
mation in classification is the most serious problem 
with strict cladistic approaches. 

Finally, because of the recommended dictum of cla
distic classification that sister-taxa should be classified 
at the same rank in the Linnaean hierarchy (e.g., Hen
nig 1966), serious difficulties arise. The main problem 
is the proliferation of categories needed to reflect the 
numerous units resulting from such a rigid perspective, 
as shown clearly in other papers in this Symposium, 
and has led some workers to suggest abandonment of 
the Linnaean hierarchy (e.g., de Quieroz [1997]). The 
overwhelming practical taxonomic and nomenclatural 
problems aside, after more than 200 years of organ
ismic classification using the Linnaean hierarchy as the 
point of reference, one must ask what the achievement 
would be? For cladists the success of having a com
plete correspondence between cladogram and classifi
cation might be reward enough. In my opinion, this 
narrowed perspective with reduced evolutionary infor-' 
mation content is no gain at all and certainly not de
sirable. Even if theoretically desirable, it would still 
be suspiciously viewed in the face of enormous prac
tical diffiqulties. I would add that in this urgent climate 
of seeking to inventory "the world's biota (Anonymous 
1994), and requesting funds from the, rest of society to 
do So; it would be highly counterproductive to simul
taneously recommend whole-scale change of names of 
organisms for any reason. 

DNA DATA AND CLADISTICS 

DNA sequence and restriction site data analyzed 
with cladistic methods have already had a marked im
pact on interpreting relationships among plants (e.g., 
Crawford 1990), particularly in reconstruction of phy
logeny. A spectacular example is the work of Jansen 
and colleagues (e.g., Jansen and Palmer 1987; Jansen 
et al. 1990, 1991, 1992) on higher-level relationships 
in Compositae, a family so natural and cohesive that 
it has defied understanding of close relatives and in
trafamilial classification (i.e., subfamilies and tribes). 
Restriction site (Jansen and Palmer 1987) and se
quence data (Jansen et al. 1992) from cpDNA pointed 
to subtribe Barnadesiinae of Mutisieae as basal for the 
family. This was an unexpected result. Members of 
this subfamily form a complex of nine genera and 



118 Stuessy ALISO 

some 90 species distributed in southern and Andean 
South America. These initial DNA phylogenies al
lowed new perspectives to be developed on the origin 
and early biogeography of the family (e.g., DeVore 
and Stuessy 1995; Stuessy et al. 1996). 

The spectacular success of many new DNA phylog
enies in complex groups that had previously proved 
nearly intractable suggests that any serious future ef
forts to reconstruct phylogeny must take DNA rela
tionships into account. These successes and the robust 
statistical evaluations that the large amounts of data 
allow, have made molecular phylogenies sought after 
by all manner of evolutionary biologists (A vise 1994; 
Harvey et al. 1996). Although morphologically de
rived phylogenies (cladograms) have been produced 
for more than two decades, it has been molecular data 
that have caused the great interest due to higher levels 
of confidence in the results. Other biologists need to 
know the phylogenetic constraints of their organisms 
as they investigate comparative morphology, anatomy, 
cytology, phytochemistry, behavior and ecology. This 
has also helped position systematics in its rightful cen
tral role in all of biology. 

But despite all these positive dimensions of DNA 
data in phylogeny reconstruction, there are also prob
lems, again methodological, conceptual and philosoph
ical. The methodological problems deal with several 
issues, including which portion of the genome to sam
ple, how to properly align the sequences obtained, and 
how to analyze massive amounts of data. In plant sys
tematics, the initial data for macromolecular phyloge
nies came mostly from cpDNA restriction site data 
(e.g., Palmer 1987) and then moved quickly to se
quences from the chloroplast genome and now to nu
clear genes. New regions are constantly being explored 
for taxonomic potential. Some regions are so conser
vative as to be useful only at higher levels of the hi
erarchy (e.g., rbcL [cpDNA]) whereas others seem bet
ter suited for revealing relationships at lower levels 
(e.g., ITS [nrDNAJ). We can only guess at the hun
dreds and thousands of new gene sites that will be 
evaluated for systematic potential in the years ahead. 
The practical matter of alignment of sequences is also 
problematic if considerable variation exists in the data 
sample, but statistical techniques are available to offer 
at least the best judgement possible (e.g., the computer 
programs CLUSTAL, Higgins et al. 1992; MALIGN, 
Wheeler and Gladstein 1994). Dealing with vast quan
tities of data has also been problematic, requiring fast
er and faster computers to yield parsimonious solu
tions. 

Conceptual problems are also encountered with 
DNA data in phylogeny reconstruction. Homology, 
strangely enough, has been reduced in DNA to a com
parison of four base pairs ( = positional homology; 
Hillis 1994 ). One would think that we have finally 

reached a point of dealing simply and directly with the 
slippery homology issue, but this is clearly not the 
case (see recent discussions in Hall 1994). The issue 
has moved to another and more subtle plane: the iden
tity of base pairs is not alone sufficient because we do 
not always know how they became identical. We must 
now employ concepts of orthology, paralogy and xen
ology (for definitions, see Hillis 1994). That is, de
pending upon the evolutionary history of the group, 
similar base pairs may be judged homologous in dif
ferent ways; the statistical evaluation of related base 
pairs in the sequence being important to determine. A 
further problem for homology is the knowledge of 
transposable elements (e.g., Mazodier and Davies 
1991; MacRae 1995) that complicates simple analyses 
of sequences. Usually such events affect a substantial 
section of DNA and hence are detectable, but we will 
doubtless learn much about the limits and occurrences 
of transposable elements in the years ahead and sur
prises are to be expected. 

Unequal rates of sequence evolution are also a prob
lem for cladistic analysis with DNA data. We already 
assume that transitions are more likely than transver
sions, but what of other sequence alterations, rates of 
mutation, etc.? We also know about unequal rates of 
evolution throughout the genome (e.g., Wilson et al. 
1987; Li 1993 ), which interfere with application of the 
molecular clock hypothesis, and which also complicate 
interpretation of cladistic results. Much will be re
vealed in the years ahead: caution must be exercised 
at this time in basing classification solely on these 
data. 

And philosophically, the problem exists as to wheth
er we are looking at the proper parts of the genome 
for our comparisons. We usually examine genes that 
workers in other areas of biology have already discov
ered with their techniques. What portion of the ge
nome contains the most significant evolutionary infor
mation? This is not unlike attempting to select the 
most evolutionarily significant morphological charac
teristics. Decades will pass before we will understand 
the limits of much of the genome for systematic pur
poses. It is not inconceivable that after learning much 
more about gene interactions, especially developmen
tal constraints, we might decide that DNA sequences. 
by themselves are not the data of choice for recon
structing phylogeny, at least not in isolation. PerhapE 
"supercharacters" will be used that combine DNA se
quences with developmental interactions and anatom
ical and morphological data. This would be slightl~ 
similar to the concept of "total evidence" for phylog_ 
eny reconstruction (e.g., Chavarr'a and Carpente 
1994), but obviously at a more sophisticated and in 
tegrative level. 



VOLUME 15, NUMBER 2 More than Branching Patterns 119 

CLADISTICS AT THE CROSSROADS 

These numerous problems with both morphological 
and DNA data in cladistics raise concerns about its 
present status and future directions. In my opinion, 
cladistics is at a crossroads. It must either go the road 
of totally replacing existing classifications (such as 
recommended by Christoffersen, 1995, and others in 
this Symposium), or it must take the path of being 
modified into an improved system. After nearly 20 
years of stimulating activities, cladistics has yet to 
make a major impact on plant classification. Most of 
the results so far have confirmed taxa established pre
viously on phyletic bases, but some have not. In these 
cases, the all-too-frequent conclusion is that further 
study is needed before a final answer can be reached. 
Occasionally, direct taxonomic and nomenclatural ac
tion h.a:' been taken, sometimes meeting with strong 
opposttton from phyletic workers (e.g., Anderberg 
1990, 1992; Orchard 1992). Methods of analysis have 
now far outstripped veracity of character data es
pecially morphological. Workers have been hesita'nt to 
act on cladistic results in the past due to: numerous 
problems discussed above; unclear correspondence of 
cladistic units to the Linnaean hierarchy; and failure 
of cladistics to deal effectively with autapomorphic 
data. A good example can be taken from Baldwin's 
(1996) excellent work on the Madiinae. Molecular data 
(ITS) reveal all the Hawaiian tarweeds, including Ar
gyroxiphium and Wilkesia, to tie cladistically within 
the Madia-Raillardiopsis complex on the California 
mainland. Because the result renders the mainland taxa 
paraphyletic, cladistic rules rejecting paraphyly would 
recommend combining the extremely morphologically 
divergent island taxa into Madia or Raillardiopsis. 
Such a suggestion has been met less than enthusiasti
cally by island taxonomists (B. Baldwin, pers. comm.) 
perhaps due to failure of cladistics to take into account 
the large amount of anagenetic (or patristic) genetic 
and evolutionary character-state divergence from 
mainland to island relatives. 

The time has come, I believe, for cladistics to ma
ture into a more lastingly effective system of classifi
cation that will be evolutionarily based and informa
tion rich. This will then serve the real needs of society 
as a general-purpose evolutionary classification in the 
context of the Linnaean (or other) hierarchy. Such a 
maturation involves change into quantitative phyletics 
or explicit evolutionary classification (Stuessy 1990). 

METHODS OF EXPLICIT PHYLETIC CLASSIFICATION 

General purpose classification of high evolutionary 
information content must be sought by a modification 
of cladistics into explicit phyletics. Evolutionary clas
sifications have not been rejected in recent years on 
theoretical or conceptual grounds-they have simply 

b~e~ ignored on the grounds that because they are in
tUitively generated, direct comparisons with cladistics 
and phenetics have not been possible. 

Several methods for explicit phyletics already exist. 
Estabrook (1986) recommended "convex phenetics" 
(and his new program CONPHEN) as the method of 
choice. Here the basic analysis is phenetic clustering, 
but the phenogram is constrained to only allow convex 
(i.e., monophyletic s.l.; Meacham and Duncan 1987) 
groups. This has been used effectively by Carpenter 
(1993) in classification of Caesionid fishes. 

Stuessy (1987, 1990) recommended several exten
sions of cladistic analysis to yield different types of 
phylograms of increased information content The sim
~lest are cladograms but with branch lengths propor
tional to the degree of character-state divergence. This 
was also clearly demonstrated in the Wagner Ground
plan Divergence graphic method (Wagner 1980) and 
is available in PAUP. Consensus techniques blending 
cladograms, patrograms (a dendogram based on pa
tristic distance) and/or phenograms were also recom
mended, as were resemblance matrix additions. For 
this latter method, quantitative values for patristic re
lationships were added to cladistic distances all de
rived from cladistic analysis and reclustered to yield a 
phylogram. A two-dimensional graphic technique was 
also recommended, vector analysis, whereby points in 
phenetic space were separated outward from each oth
er based on their cladistic (and/or patristic) quantitative 
relationships. 

Hall (1988, 1991, 1995) has offered a series of com
plex perspectives involving self-graded deweighting of 
homogeneity and agglomerative clustering and dila
tion. His computer program UNITER was developed 
to handle the calculations. Despite the positive direc
tion. of the~e e~orts and his proper emphasis on poly
thettc classification, the unavailability of the computer 
program (it requires a FORTRAN compiler) and the 
complexity of the concepts make them difficult to 
evaluate critically. 

Ashlock (1991) has developed a method called "an
agenetic analysis" that uses character weighting, ana
genetic distance between nodes and taxa, subtended 
taxa values, and precise phylogram construction. This 
has the advantage of being done manually so that the 
relationships can be easily recognized. 

There already exist sufficient methods of explicit 
phyletics to begin to evaluate the results of such clas
sification in comparison with cladistics. Carpenter 
(1993), to my knowledge, is the only person actually 
to provide such direct comparison (in Caesionid fish
es). W?rking with CONPHEN and cladistic parsimony 
analysts to construct branching diagrams, he used con
ventional cladistic sequencing methods for taxa rec
ognition (Wiley 1981) and invented a new means for 
delimiting taxa directly from the phylogram. Using an 
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information optimality model as yardstick (Duncan 
and Estabrook 1976), he judged phyletic classification 
superior to that from cladistics. Many more studies of 
this nature need to be executed. 

All these methods attempt to modify cladistic anal
ysis by adding anagenetic information. The central is
sue is: how to form taxonomic groups from enhanced 
evolutionary phylograms. It may be impossible or un
desirable to have absolute rules for such efforts. Cer
tainly, phenetics failed with its attempt at absolute 
phenon lines for ranking (for original concepts, see 
Sokal and Sheath 1963). Cladistics has still not been 
successful with its various sequencing and/or ranking 
conventions (Wiley 1981), due largely to the problem 
of resultant "cornucopia of categories" (Colless 
1977). I would now agree that general-purpose biolog
ical classification should be a combination of cladistic 
and patristic data, with phenetic data (i.e., numerous 
unweighted characters and states selected without any 
concern for evolutionary information content) being 
profitably used for studies with complex character 
trends and associations, especially at the populational 
level, and not employed solely to develop general-pur
pose classifications of high predictive value. 

To help in better understanding the value of auta
pomophic and anagenetic data in phyletic classifica
tion, a new approach is offered here. The issue is to 
evaluate these data for their import in recognizing tax-

ABSOLUTELY 

MUST 

RECOGNIZE 
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APOMORPIDC SUPPORT FOR A CLADE OR TERMINUS 
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Fig. 2. Relationship between degree of apornorphic support for a group and degree of total apornorphic differences between it and 
other clades or termini, showing increasing support for formal taxonomic recognition. 



VOLUME 15, NUMBER 2 More than Branching Patterns 121 

100 

75 

50 

25 

0 

0 25 50 75 100 

APOMORPHlC SUPPORT FOR A CLADE OR TERMINUS 
(% of total steps in tree) 

Fig. 3. Plot of hypothetical taxa (from Fig. I) evaluated for apomorphic support for formal taxonomic recognition. Taxon B has a high 
level of support for treatment as a distinct taxon. 

anomie groups. It is proposed to evaluate these· data 
as follows. First, complete a cladistic analysis (see ex
ample in Fig. 1). Second, determine the degree of apo
morphic support for a clade or terminus as a percent 
of the total steps on the tree (Fig. 1 ). The higher the 
percent of support of apomorphic character informa
tion, the greater the level of confidence for treating the 
unit as a formal taxon in the classification. Because 
this only stresses the total amount of apomorphic sup
port, it is also necessary to compare these values with 
the total apomorphic difference between clades and 
termini with each other (Fig. 1). Any unit that is high 
in apomorphic support and also high in total mean 
apomorphic difference from other units must be treated 
as a distinct taxon in the classification (Fig. 2). Units 
scoring toward the lower levels of the spectrum of 
apomorphic support would not be recommended for 
taxonomic recognition based on apomorphic evidence 
alone (Fig. 2). Cladistic structure in these cases should 
be sufficient to reveal evolutionary information con
tent of the group and result in predictive classification. 
Figure 3 gives the graphic results of the hypothetical 
example presented in Fig. 1, revealing strong support 
for taxonomic recognition for Taxon B. Some workers 
might wish absolute quantitative values for group rec
ognition (obviously easily devised, if so desired), but 
I would caution against this. The point is not to have 
absolute values upon which taxonomic decisions are 
mandated, but rather to have a clear and explicit rep-

resentation of data that communicates how and why 
such decisions can and have been made. 
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