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THE FOSSIL RECORD OF BASAL MONOCOTS 
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Department of Biological Sciences, University of Alberta, Edmonton, Alberta, T6G 2£9, Canada 
(ruth. stockey@ ualberta. ca) 

ABSTRACT 

The fossil record of basal monocots (Acorales and Alismatales) extends back to the Cretaceous in 
the Northern Hemisphere. While many fossils were originally assigned to these basal groups, rigorous 
paleobotanical studies show many of them to be misidentified. Acarus fossils have been reliably 
reported from the Eocene while those of Alismatales extend back to the early Cretaceous. The fossil 
record of basal monocots is usually represented by leaves, fruits, and seeds; however, some localities 
preserve stems with attached leaves and roots and even whole plants. A detailed examination of leaf 
venation patterns in alismatids has recently allowed the description of a new taxon from the Upper 
Cretaceous of Alberta based on leaves attributed to Limnocharitaceae. Anatomically preserved alis
matid petioles (Heleophyton helobiaeoides) and well-preserved flowers/fruits are known from the 
Middle Eocene Princeton chert of British Columbia. A complete developmental sequence from flower 
to fruit is known, and this material has good possibilities for whole plant reconstruction. The extinct 
floating aquatic Limnobiophyllum (Araceae!Lemnoideae) and the genus Pistia have been the subject 
of morphological cladistic analyses and competing hypotheses of relationships among aroids and 
duckweeds. The fossil record and recent molecular studies support separate origins of Pistia and the 
duckweeds from within Araceae. The fossil taxon "Pistia" corrugata has been reexamined in light 
of new evidence and indicates the presence of a new genus that shows leaf morphology unlike that 
seen in extant Pistia, but with a similar growth habit. Fossil evidence indicates that the floating aquatic 
habit probably arose at least three times within Araceae. 

Key words: Acorales, Alismataceae, Alismatales, Araceae, Lemnaceae, Limnobiophyllum, Limno
charitaceae, Pistia. 

INTRODUCTION 

The fossil record of basal monocots (Acorales and Alis
matales) extends back to the Cretaceous in the Northern 
Hemisphere. While many fossils were originally assigned to 
these basal groups, rigorous paleobotanical studies have 
shown many of them to be misidentified. The fossil record 
of monocots was reviewed by Daghlian (1981), and most 
recently by Herendeen and Crane (1995). The early Creta
ceous record was later reviewed by Gandolfo et al. (2000). 
As Herendeen and Crane (1995) point out, there are diffi
culties in recognizing monocots as fossils due to the lack of 
synapomorphies for the clade and the types of morphological 
characters that might be seen in fossils. Furthermore, mono
cots make up only 22% of the total species diversity for 
flowering plants (Mabberley 1987; Herendeen and Crane 
1995). Since most monocots are small and herbaceous and 
their flowers are mainly insect pollinated, potential for pres
ervation of their pollen is especially low (Herendeen and 
Crane 1995). Nevertheless, good examples of monocots are 
present in the fossil record including flowers, pollen, fruits, 
seeds (some with embryos), leaves, stems (some with at
tached roots and leaves), and even whole plants are known 
in some cases (see Daghlian 1981; Muller 1981; Erwin and 
Stockey 1991, 1992, 1994; Herendeen and Crane 1995; Gan
dolfo et al. 2000; Smith and Stockey 2003). The fossil record 
suggests that monocots diversified rapidly in the Late Cre
taceous but that their origins were much earlier (Gandolfo 
et al. 2000). 

Phylogenetic analyses based on morphology (Dahlgren 
and Rasmussen 1983; Dahlgren et al. 1985; Donoghue and 

Doyle 1989; Loconte and Stevenson 1991; Doyle and Don
oghue 1992; Stevenson and Loconte 1995), those based on 
molecular characters (Chase et al. 1993, 2000; Duvall et al. 
1993a, b; Qiu et al. 1993, 2000; Bharathan and Zimmer 
1995; Davis 1995; Nadot et al. 1995; Nickrent and Soltis 
1995; Davis et al. 1996, 1998; Rice et al. 1997; Soltis et al. 
1997, 1998, 1999, 2000; Angiosperm Phylogeny Group 
(APG) 1998; Duvall 2000; Graham et al. 2000, 2006; Sa
volainen et al. 2000; APG II 2003; Borsch et al. 2003; Hilu 
2003; Duvall and Ervin 2004; Tamura et al. 2004) and com
bined morphological and molecular analyses (Doyle et al. 
1994; Chase et al. 1995; Doyle and Endress 2000; Stevenson 
et al. 2000) all indicate that the monocots are nested deeply 
within the angiosperms. The placement of monocots within 
angiosperm phylogeny as a whole varies with the taxa and 
genes that are included in an analysis. Despite these mor
phological and molecular analyses, the sister group of the 
monocots is still not completely resolved (Duvall 2001; Du
vall and Ervin 2004). Nonetheless, most workers agree that 
the group is monophyletic, usually with Acorus at the base 
of the monocot clade, based on molecular characters (e.g., 
Duvall et al. 1993b, 2001). However, morphological analy
ses have often conflicted with this interpretation and several 
molecular studies do not place Acorus in the basal position 
definitively (Nadot et al. 1995; Soltis et al. 1997; Qiu et al. 
2000; Stevenson et al. 2000; Duvall 2001; Duvall and Ervin 
2004). 

The fossil record has the potential to provide important 
data for first occurrences of major monocot groups. Remem
bering that first occurrences in the fossil record provide min-
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imal dates for the antiquity of monocot taxa, one can assume 
that groups were present prior to their first occurrence as 
fossils. It is, therefore, very important that fossil plants be 
studied rigorously and that the data they provide be used 
cautiously when estimating dates of first occurrence. Each 
fossil has a certain amount of morphological, and sometimes 
ecological, data to impart and it is important that we pay 
attention to the signals these fossils provide. Ideally, we 
should aim for whole plant reconstructions. While such re
constructions are often tedious and time consuming, the data 
that they provide, about character evolution and the complex 
nature of character changes with time, are vital for resolving 
the overall pattern of phylogeny and for understanding the 
evolutionary pathways that have led to extant lineages. Such 
data provide the crucial link between the paleobotanist and 
neobotanist that is needed to develop more robust phyloge
nies. 

The goal of this paper is to review the fossil record of 
basal monocots, Acorales and Alismatales (including Ara
ceae), and evaluate the characters used to assign the fossils 
to these groups. New fossil evidence is also presented for 
Cretaceous aquatic plants from North America from several 
different localities based on leaves, infructescences and 
whole plants. The importance of fossils in our understanding 
of monocot evolution, and for dating the nodes in cladistic 
analyses are explored. 

Acorales 

The earliest report of fossil Acarus L. was that of Heer 
(1870) from the Miocene of Spitsbergen. Acarus brachys
tachys Heer was thought to represent an inflorescence or 
spadix that was attached to and jutting out at an angle from 
a leaf-like spathe (Fig. 1). Closer examination of these spec
imens (Bogner 2001) showed that they were not Acarus in
florescences, and flowers were not present; but a series of 
helically arranged scars can be seen on the surface. K vacek 
in Bogner (2001) has suggested that these specimens are 
actually Eocene in age and the short shoots of Nordenskioel
dia borealis Heer emend. Crane, Manchester et Dilcher, also 
found at the same locality. Nordenskioeldia borealis, a dicot 
from Trochodendraceae, was a widespread taxon in the 
Northern Hemisphere that probably grew by long-shoot/ 
short-shoot growth (Crane eta!. 1991). Specimens like these 
were linked to the characteristic fruits of N. borealis by an
atomical similarities to the infructescence axes, the form and 
arrangement of the lenticels on the long shoots, and their co
occurrence at numerous localities (Crane eta!. 1991). 

Another potential acoralean, Acoropsis eximia (Goeppert 
et Menge) Bogner (Conwentz 1886; Bogner 1976) from the 
Eocene Baltic Amber, was reexamined by Bogner (1976). 
While the specimen is well preserved, Bogner (1976) and 
Mayo et a!. ( 1997) regard this infructescence as an aroid, 
family Araceae, tribe Monstereae, because of its lack of te
pals. So while this specimen is not acoralean, it may still be 
an early representative of the basal monocots. 

The type specimen of Aracaeites fritelii Berry (1916) was 
reexamined by Crepet (1978). The specimen is incomplete, 
but shows little morphological similarity to Acarus. Like 
"Acarus" brachystachys, this specimen shows helically ar
ranged diamond-shaped scars and may represent a short 

shoot of some dicot like Nordenskioeldia. Aracaeites pari
siense Fritel (1910), from the Paleocene of France, a taxon 
based on what was described as an incomplete inflorescence, 
is even more poorly preserved and its affinities remain in 
doubt (Mayo et a!. 1997). 

The only fossil material described to date, for which af
finities to Acarus are accepted, are two small spadix speci
mens lacking a spathe from the Lower Eocene Wilcox flora 
of the southeastern USA. Originally described as Acarus 
heeri Berry (1930), Acorites heeri (Berry) Crepet, known 
from one inflorescence attached to a slender axis, was re
investigated by Crepet (1978). An additional partial speci
men from the same locality, originally found by Dilcher 
(1971), shows cuticular preservation that could be closely 
compared to extant taxa. Acorites heeri shows helically ar
ranged perfect flowers on an inflorescence axis with a tri
locular ovary, bilocular anthers, and a small orbicular stigma 
(Crepet 1978). One specimen shows remains of perianth and 
paracytic stomata. Crepet ( 1978) suggests that these inflo
rescences are most closely comparable to Acarus based on 
morphology of the spadix, lack of a spathe, presence of a 
floral envelope, and structure of the epidermis. However, the 
presence of stomata on the perianth and a longer stalk on 
the inflorescence in the fossil indicate that some differences 
occur between this taxon and extant Acarus. Without whole 
plants, however, it is unadvisable to put these remains into 
the extant genus; and Crepet (1978) described them as Acor
ites rather than leaving them in Acarus. The acceptance of 
these fossils as representatives of Acoraceae (Mayo et a!. 
1997) make these the oldest known fossils of the family. 

Fruits and seeds thought to belong to Acorales were listed 
by Nikitin (1976) from the Quaternary Mamontovoj Gory 
Flora of Russia. Katz eta!. (1965: Plate 24, Fig. 3-7) illus
trate these specimens showing an obovoid fruit that still 
shows some stylar remains and an obovoid seed that shows 
small isodiametric cells in surface view. Mayo eta!. (1997) 
accept this record of fruits and seeds because of similarities 
of this material to those of extant Acarus species. 

To show the problems of interpretation for fossil com
pression remains of monocots, I illustrate structures that look 
like elongated spadices with four-parted flowers from the 
Paleocene Hanna Formation of Wyoming (Fig. 2, 3). Fossils 
like these are also known from the Paskapoo Formation (Pa
leocene) of Alberta and are found in the coarser sandstones, 
and in overly fine-grained mudstones containing leaves of 
Zingiberopsis Hickey et Peterson (Stockey pers. obs.). We 
have not been able to demonstrate the floral nature of these 
structures. In fact, the larger specimens (e.g., Fig. 3) have 
been thought to represent rooting structures of some kind 
(Brown 1962; D. R. Braman pers. comm., 2003). Only fur
ther extensive collecting at such sites will provide the data 
needed to interpret these fossil remains. 

Recently, one specimen has been found of what appears 
to be a very large unisexual spadix bearing fruits (Fig. 4). 
Fruits are ovoid and slightly striated or ribbed showing what 
is probably an attenuate style tip. Where the fruits have ab
scised, there are densely packed scars (Fig. 4). Similar, but 
smaller, infructescences are known infrequently in the fossil 
record (e.g., Berry 1931 ). These fossils are most often found 
as isolated occurrences and the foliage to which they belong 
is unknown. Therefore, unless more specimens or well-pre-
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Fig. 1- 7.- Fossil monocots and putative monocots.-1. "Acarus" brachystachys (S RM 50252) X 1.5.-2. Spadi x- like structure (DMNH 
22479) X 0.8.-3. Several axes, like that in Fig. 2, attached at right angles showing root-like nature (TMP 88.02.22) X 1.1.-4. Spadix
like structure with dispersed seeds aod seed scars on axis (DMNH 232 19) X 0.7.-5. Cardston.ia tolman.ii leaf (UAPC-ALTA S55 138A) 
X 3.5.-6. Cardston.ia tolman.ii leaf margin showing primary veins aod secondary veins at right angles (UAPC-ALTA S52272) X 8.-7. 
Cardston.ia tolman.ii leaf showing secondary ve ins and polygons of aerenchyma ti ssue overlapping veins (APC-ALTA S52263A) X 32. 
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served specimens are found their affinities remain in doubt. 
Paleobotanists have decided to get at this problem in two 
ways. Firstly, to look for localities where monocot fossils 
are common. Secondly, we collect and study this material in 
a more systematic manner, trying whenever possible to re
construct whole plants. This is the most difficult and time
consuming job. 

Alismatales 

Alismatales today contain aroids and alismatids (formerly 
Arales, Alismatales, Hydrocharitales, Aponogetonales, 
Scheuchzeriales, Potamogetonales, and Triuridales) and all 
of the taxa formerly regarded as Helobiae (Tomlinson 1982). 
One of our localities near Cardston, Alberta, Canada, in the 
Late Cretaceous (late Cenomanian to early Maastrichtian) St. 
Mary River Formation has yielded large numbers of aquatic 
plants, both dicots and monocots, as well as heterosporous 
aquatic ferns (Rothwell and Stockey 1993; Stockey and 
Rothwell 1997; Riley and Stockey 2004). Three types of 
broad-leaved monocots and leaves of sabaloid palms are 
present at the Cardston site. Over 50 specimens of leaves of 
Cardstonia tolmanii Riley et Stockey (2004) have recently 
been described (Fig. 5). Leaves range from 3.5-8.5 em wide 
and 5-12 em long with cordate bases. They are long petio
late and were buried in situ with the petioles extending 
downward into the sediment (Fig. 5, 8). Five to seven major 
veins enter the petiole, and the outermost branch to form 
23-27 primary veins that converge just beneath the leaf apex 
at an apical pore (Fig. 5, 8, 9; Riley and Stockey 2004). 
Major and minor secondary veins in an ABAB pattern 
(Hickey and Peterson 1978) diverge at angles of 45-65° near 
the midvein and 90° near the leaf margin (Fig. 6, 8). Details 
of leaf venation were compared to several taxa of Alisma
tales that showed some similarity in form, including those 
in Alismataceae, Aponogetonaceae, Hydrocharitaceae, Lim
nocharitaceae, Potamogetonaceae (as well as those of Ama
ryllidaceae, and Stemonaceae). Compressions are preserved 
in such fine-grained sediments that the underlying structure 
of aerenchyma can be seen (Fig. 7). Riley and Stockey 
(2004) placed these leaves into a new genus Cardstonia 
Riley et Stockey of Limnocharitaceae with closest similari
ties to Limnocharis Bonpl. This study pointed out the need 
for a careful reexamination of leaves of extant alismatids and 
their venation patterns, which has so far not been done in a 
systematic way. 

Fossil leaves similar to those of Cardstonia have been 
described by various authors in the genus Haemanthophyl
lum Budantsev. The type specimen of Haemanthophyllum 
(H. kamtschaticum Budantsev 1983) from Kamchatka and 
some of the described species, e.g., H. cordatum Golovneva 
(1987) from the Maastrichtian to Danian deposits of the Kor
yak Highlands, Russia, show most similarities to Cardstonia. 
The merging of the primary veins with the leaf margin (a 
character common in Alismataceae but not Cardstonia) dis-

tinguishes Cardstonia from fossil Haemanthophyllum 
leaves. 

Further confusion over Haemanthophyllum has resulted in 
use of this name by various authors for leaves of differing 
morphology. Some of the described species have leaves 
more similar to those of Aponogeton L. f. (Golovneva 1997). 
Furthermore, if incomplete specimens are known (e.g., a 
portion of a cordate base with primary and secondary ve
nation present), these pieces of fossil leaves might even be
long to Stemonaceae or other widely divergent monocot 
families (Riley and Stockey 2004). It is, therefore, important 
to collect complete specimens and as much of a fossil plant 
as possible before taxonomic decisions are made as to affin
ities. 

Leaves, previously assigned to Alismataceae that have 
been rejected due to incomplete preservation, include: Alis
macites primaevus Saporta (1894), rejected by Teixeira 
(1948); Alismaphyllum victormasonii (Ward) Berry (191J), 
rejected by Doyle (1973), and Doyle and Hickey (1976); 
Alismaphyllum cretaceum Berry (1925), rejected by Dagh
lian (1981). Alismaphyllites grandifolius (Penhallow) Brown 
(1962) and fruits of Sagittaria megaspermum Brown (1962) 
from the Paleocene of North Dakota and Wyoming were 
tentatively assigned to the family by Daghlian (1981). How
ever, in light of the studies of Haemanthophyllum and Cards
tonia (discussed above), these remains need to be reinves
tigated with well-preserved material. Haggard and Tiffney 
(1997) reject Sagittaria megaspermum as a member of the 
family. 

Most of the fossil pollen record of Alismataceae, like that 
of megafossils, is dubious (Erwin and Stockey 1989). All of 
the described pollen listed in Muller (1981) is regarded as 
pending further documentation. 

The fossil record of fruits of Alismataceae was reviewed 
by Haggard and Tiffney (1997). Seven extant genera so far 
have been recorded in the Miocene and Pliocene of Europe 
and Siberia (Haggard and Tiffney 1997). Fruits of Alisma L. 
have been reported from the Oligocene of England (Chan
dler 1964) and the Miocene of Russia (Katz et al. 1965). 
These seem to be well documented and well preserved. Al
isma-like fruits and seeds are also known from the Oligocene 
of Russia and have been included in the genera Sagisma 
Nikitin and Caldesia Pari. (Dorofeev 1963; Tahktajan et al. 
1963; Daghlian 1981). Fruits included in the genera Alisma 
and Butomus L. by Mai (1985, 2000) are known from the 
Miocene and Oligocene of Europe from several localities. 

The fossil record of Caldesia was extensively reviewed 
by Haggard and Tiffney ( 1997), with a leaf record reported 
from the Miocene Clarkia Flora of Idaho (Smiley and Rem
ber 1985). Fruits of Caldesia are known from the Oligocene 
through the Pleistocene (Dorofeev 1977; Haggard and Tiff
ney 1997; Mai 2000) and occur in North America in the 
Miocene Brandon Lignite (Haggard and Tiffney 1997). The 
study of Haggard and Tiffney (1997) is particularly impor-

Fig. 8-15.-Basal monocots.-8. Cardstonia tolmanii showing cordate leaf base and petiole dipping into matrix (UAPC-ALTA S50947A) 
X 7.5.-9. Cardstonia tolmanii leaf showing primary veins converging at apical pore (UAPC-ALTA S52295) X 4.-10. Heleophyton 
helobiaeoides petiole cross section showing five series of vascular bundles (UAPC-ALTA P2313 B top #1) X 50.-11. Heleophyton 
helobiaeoides vascular bundle showing protoxylem lacuna (dark) and two large thin-walled tracheary elements beneath (UAPC-ALTA 
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P23 13 B top #0) X 465.-1 2. Heleophyron helobiaeoides longitudinal section of protoxylem lacuna showing ce ll s with thickened inner 
walls and scalariform th.ickenings on thin-walled xylem (UAPC-ALTA P23 I 3 B side #0) X 415 .-13. Small fl ower in cross section showing 
four carpels, two tepals, bract, and remajns of stamens (U APC-ALTA P583 1 B bottom #8) X 70.- 14. Longitudinal section of flower 
showing apocarpus gynoecium and two stamens (UAPC-ALTA Pl 63 1 B top a #15) X 75.-15. Oblique transverse section of flower 
showing carpels with styles that extend out late ra lly (UAPC-ALTA B bottom b #42) X 75. 
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tant because these authors not only describe new material, 
but study seeds of extant Caldesia using scanning electron 
microscopy of sections as well as external surfaces. This 
type of anatomical study and/or sectioning of alismatid plant 
material are needed to help paleobotanists interpret the iso
lated organs found in many deposits. 

One locality that preserves fossil alismatids in anatomical 
detail is the Princeton chert of British Columbia, Canada. 
The first of the described taxa was Heleophyton helobiaeo
ides Erwin et Stockey (1989), based on a petiole of an aquat
ic alismatid. The H. helobiaeoides petiole is rectangular in 
section with 36 circular-to-oval vascular bundles in five se
ries (Fig. 1 0), similar to those described for Sagittaria L. 
and Echinodorus Rich. ex Engelm. (Meyer 1932, 1935). In
dividual vascular bundles are most similar to those described 
for Butomus L. (Cheadle and Uhl 1948), with a protoxylem 
lacuna that is surrounded by a ring of cells with a thickened 
inner wall, thin-walled xylem with annular, helical-to-sca
lariform secondary wall thickenings, and a well-developed 
phloem strand (Fig. 11, 12). Several types of monocot stem 
remains are also present in the chert and we are trying to 
reconstruct the Heleophyton Erwin et Stockey plant. 

One possible alismataceous floral type has also been iden
tified in the Princeton chert (Fig. 13-15). Large numbers of 
these flowers are found scattered throughout the chert ma
trix. The small flowers (0.8 mm in diameter) are apocarpous, 
with four carpels, four stamens, two tepals, and a bract or 
prophyll. While the anthers are filled with gold contents, the 
structures inside are only 6-8 1-1m in diameter and were de
scribed by Currah and Stockey (1991) as the spores of smut 
fungi, the first evidence of Ustilaginales in the fossil record. 
The structure of these flowers is similar to those of Apon
ogetonaceae, however, the presence of four rather than six 
stamens precludes their assignment to this family. The po
sition of stamens relative to carpels precludes assignment in 
Potamogetonaceae. Further study of these flowers and a re
construction of their morphology is underway (Smith and 
Stockey 2004 ), as well as a developmental sequence of the 
laterally flattened fruits (Fig. 16) produced by these flowers. 
Large numbers of vegetative remains occur along with the 
flowers and fruits and it is hoped that a whole plant recon
struction will be possible. 

Leaves assigned to Aponogetonaceae were described by 
Zhilin (1974a, b, 1989) and Pneva (1988) from the Oligo
cene of Kazakhstan. However, Golovneva (1997) has treated 
some of this material in Haemanthophyllum. Much of it is 
known from small fragments and more material is needed to 
describe these taxa in detail. Boulter and K vacek's (1989) 
material of narrow, oblong leaves with parallelodromous pri
mary venation, from the late Paleocene/early Eocene of Ire
land, resembles Aponogeton tertiarius Zhilin (1974b), but 
more material is needed to confirm the affinities of this and 
other fossil leaf fragments assigned by some to Haemantho
phyllum, Aponogetonaceae, or Potamogetonaceae (see Riley 
and Stockey 2004 for a review). 

Potamogetonaceae are well represented in the fossil record 
of the Tertiary at some localities (Mai 2000). Exceptionally 
well-preserved Potamogeton L. leaves have been reported 
from the late Miocene Styrian Basin at Worth near Kirch
berg/Raab in Austria that show epidermal cell outlines (Ko
var-Eder and Krainer 1990; Kovar-Eder 1992). The fruit rec-

ord of Potamogetonaceae was reviewed by Collinson (1982) 
in which she emends Reid and Chandler's (1926) diagnosis 
of the extinct genus Limnocarpus Reid and describes five 
new fossil taxa: Selseycarpus, Eulimnocarpus, Limnocarpel
la, Medardus, and Palaeoruppia. These five genera contain 
taxa formerly treated in Limnocarpus by Chandler (1961 ), 
Dorofeev (1968), and Buzek and Holy (1981). Collinson 
(1982) describes a new genus based on fruits, Midravalva 
Collinson from Saudi Arabia that shows affinities to modem 
Ruppia L. The genus Limnocarpus is now restricted to bi
carpellate, laterally flattened fossil fruits with a triangular 
germination valve. Collinson (1982) provides a table of com
parison of these taxa and the results of a morphological cla
distic analysis using 15 fruit characters. In light of recent 
cladistic analyses (Les et al. 1997), Ruppia is considered to 
be in its own family and its inclusion in Hydrocharitaceae 
makes the family biphyletic (Judd et al. 2002). Clearly, 
whole plant data for many of the fruits and seeds known in 
the Tertiary would be invaluable in our understanding of 
these taxa. 

Hydrocharitaceae are represented by seeds of Hydrocharis 
L. (Mai 1999, 2000) from the Miocene of Lausitz and Stra
tiotes L. beginning from the Late Paleocene of England 
(Collinson 1986, 1990; Collinson et al. 1993), Eocene and 
Upper Oligocene to Upper Miocene in Europe (Mai 2000; 
Kvacek 2003). Mai (1999) provides a key to the Eocene 
seeds. Mai and Walther (1978, 1985) recognize Ottelia Pers., 
Hydrilla Rich., Vallisneria Scop., Hydrocharis, and Strati
otes based on seeds from the Upper Eocene WeiBelster
Becken near Leipzig, Germany. Stratiotes by far has the best 
fossil record with 15 extinct species described (Cook and 
Urmi-Konig 1983). Leaves similar to Thalassia Banks and 
their crystals were described by Brack-Hanes and Greco 
( 1988) from the Eocene of Florida and the seagrass com
munity by Ivany et al. (1990). Wilde (1989) described leaves 
similar to Hydrocharis based on venation and well-preserved 
cuticle with anomocytic stomata in the freshwater deposits 
from the Eocene of Messel, Germany. Leaves of Hydro
chariphyllum buzekii Kvacek (2003) have been described 
from the Miocene Most Formation of north Bohemia, Czech 
Republic. 

Najadaceae seeds are common in the Oligocene of Europe 
(Friis 1985; Mai 1985; Collinson 1988; Collinson et al. 
1993). These resemble extant Najas L. and about 17 species 
have been described from the Tertiary (Friis 1985), most of 
these from Russia (Dorofeev 1963, 1966, 1969, 1978). 

Cymodoceaceae, a family of five marine genera, Posidon
iaceae with one genus, and Zosteraceae with three genera, 
which live in marine or brackish water (Cook 1990), have 
very problematic fossil records. Daghlian ( 1981) and Kuo 
and McComb (1998a, b, c) have reviewed these records and 
agree that most of them are unreliable. Kuo and McComb 
(1998a) do accept the records of Thassocharis Debey from 
the Upper Cretaceous of The Netherlands (Voigt and Domke 
1955) and Thalassodendron den Hartog from the Eocene of 
Florida (Lumbert et al. 1984). These authors did not review 
the records of Posidoceafrickingeri Gregor (1991) from the 
Paleocene of Italy or the newly described Posidonia Konig 
fossils from the Eocene near Hallthurm (Gregor 2003) that 
are believed to be reliable (J. Bogner pers. comm., 2004). 

A preliminary report of two types of timorous staminate 
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Fig. 16-20.-Basal monocots.-16. Longitudinal section of fruit showing uniform fruit wall and one seed (UAPC-ALTA P 1631 C bottom 
#23) X 70.-17. Longitudinal section of Keratosperma allenbyense seed showing micropyle with cover (at top), epistase, hypostase, and 
podium. Hollow area at right indicates position of the raphe (UAPC-ALTA P5836 El bottom #2b) X 40.-18. Limnobiophyllum scutatum 
group of four small rosettes attached by stolons (not visible) (UAPC-ALTA S37120A) X 1.5.-19. Stan1inate flower of Limnobiophyllum 
scutatum (UAPC-ALTA S37247) X 187.-20. Limnobiophyllum scutatum leaf surface showing smaJJ epidermal ceJJs, trichomes (dark), 
and large polygons of underlying aerenchyma tissue (UAPC-ALTA S37267B) X 40. 

flowers similar to Triuridales appeared in the Allon Flora of 
the Late Cretaceous (Santonian) of Georgia, USA (Heren
deen et aJ. 1999), but these flowers have not yet been for
mally described. Additional evidence of the family Triuri
daceae was reported by Gandolfo et aJ. (2000) with well-

preserved, charcoalified flowers from the Old Crossman 
Clay Pit in New Jersey. These flowers from the Raritan For
mation are Upper Cretaceous (Turonian) in age and are aJso 
the oldest known unequivocal monocot flowers (Gandolfo et 
al. 2002). Only small staminate flowers have so far been 
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identified but they are well preserved, with six tepals and 
three stamens containing prolate, monosulcate pollen. Gan
dolfo et al. (2002) describe these remains in three separate 
species: Mabelia connatifila Gandolfo, Nixon et Crepet, M. 
archaia Gandolfo, Nixon et Crepet, and Nuhliantha nyan
zaiana Gandolfo, Nixon et Crepet. Mabelia connatifila has 
basally connate filaments, ornamented anthers, pores on the 
connective extensions, psilate pollen, and a fiat glabrous re
ceptacle, while M. archaia has sunken anthers, lacks anther 
ornamentation and pores, and has reticulate pollen and an 
elevated glandular receptacle (Gandolfo et al. 2002). Nuhl
iantha nyanzaiana has a central pistillode surrounded by the 
stamens, shorter connective extensions, and finely reticulate 
pollen (Gandolfo et al. 2002). Gandolfo et al. (2002) com
pare their flowers to those of the All on locality and state that 
one of the flowers described by Herendeen et al. ( 1999) is 
very similar to their species Mabelia archaia; the other 
seems to be a new taxon (Gandolfo et al. 2002). Gandolfo 
et al. (2002) further suggest that this fossil material may 
indicate that the triurids are a very early branch within the 
monocots or that the monocots themselves are much older 
than was previously recognized. It is possible that this floral 
type is basal. Cladistic analyses using these floral remains 
found them nested within a completely saprophytic Triuri
daceae (Gandolfo et al. 2002). With only floral remains, 
however, it is difficult to say what kind of habit these plants 
displayed. It is hoped that more localities, such as these two 
from the Cretaceous of North America, will be found and 
that vegetative remains may help in our understanding of the 
evolution of the saprophytic/mycotrophic habit that occurs 
in the extant monocots of this family. 

Araceae 

Araceae have been the subject of extensive review in the 
past few years (Mayo et al. 1997; Keating 2002). Mayo et 
al. ( 1997) devote a short chapter to the fossil record includ
ing leaves, spadices, fruits and seeds, and pollen. Fossils 
excluded from Araceae are also discussed by these authors. 
Additional reviews appear in Gregor and Bogner ( 1984, 
1989) and Grayum (1990). Keating (2002) emphasized sev
eral interesting aspects of this record and added some recent 
data. Some of these taxa have been discussed above, e.g., 
the reproductive structures of Acoropsis eximia. I will only 
discuss the new or most significant records here. 

The oldest Araceae fossils reported to date are mesofossils 
of Mayoa portugallica Friis, Pedersen et Crane from Torres 
Vedras in the Western Portuguese Basin (Friis et al. 2004). 
This species was described based on large masses of pollen 
attached to a cutinized structure. However, preservation is 
too poor to allow for the interpretation of inflorescences or 
flowers (Friis et al. 2004). Grains are inaperturate, elliptical 
with a striate surface, and are compared with pollen of sub
family Monsteroideae, tribe Spathiphylleae (Friis et al. 
2004). 

The oldest megafossil remains of Araceae may be those 
of an aroid infructescence from the Late Cretaceous (Cam
panian) of southern Alberta, Canada (Bogner et al. 2005). 
The specimen, although incomplete, is permineralized and 
represents what is interpreted as a spadix that probably had 
bisexual flowers with a trilocular gynoecium and one ellip-

soidal, ribbed, anatropous seed per locule (Bogner et al. 
2005). Fruits are surrounded by the remains of six tepals in 
whorls of three, and the carpels show attenuated styles. Bog
ner et al. (2005) believe that this fossil spadix shows affin
ities to subfamily Orontioideae, but that it probably repre
sents a new genus with spadix and stylar region similar to 
those of Symplocarpus Salish. ex Nutt. (Orontioideae) (Bog
ner et al. 2005). 

The best-known aroid fossils are those of fruits and seeds 
(Mayo et al. 1997). These have been reviewed in detail by 
Madison and Tiffney (1976), and Gregor and Bogner (1984, 
1989). There is a good fossil record of subfamilies Mon
steroideae and Lasioideae from European brown coals of 
Oligocene, Miocene, and Pliocene age (Mayo et al. 1997). 
Three fossil genera: Epipremnites Gregor et Bogner, Scin
dapsites Gregor et Bogner, and Urospathites Gregor et Bog
ner are known from Europe (Gregor and Bogner 1984, 
1989). The best known of the fossil aroid seeds is Kerato
sperma allenbyense Cevallos-Ferriz et Stockey (1988) from 
the Middle Eocene Princeton chert of British Columbia, 
Canada (Fig. 17; Smith and Stockey 2003). Seeds are ana
campylotropous with a warty seed coat (containing scattered, 
round idioblasts), a single dorsal ridge, and two lateral ridges 
(Smith and Stockey 2003). There is a thin micropylar cover, 
an epistase or nucellar cap (Fig. 17), and evidence of mu
cilage in the space below the micropyle. Seeds have a prom
inent hypostase and podium at the chalaza! end. Endosperm 
and a monocotyledonous embryo were reported in some 
seeds (Cevallos-Ferriz and Stockey 1988). These seeds were 
compared in detail anatomically to those of extant aroids 
(Seubert 1993, 1997) and represent the oldest evidence of 
the lasioid clade (subfamily Lasioideae) (Smith and Stockey 
2003). 

The fossil leaf record, like that of alismatids, is problem
atic, but some good examples are known in North America, 
and some of these are from aroid groups that, according to 
molecular phylogenetic analyses, are derived (Mayo et al. 
1997). Hickey (1977) described large leaves of the genus 
Peltandra Raf. from the early Eocene Camel's Butte Mem
ber in the Golden Valley Flora. These large leaves have from 
8-10 parallel veins running along the margin and show the 
distinct pattern of Peltandra. Peltandra primaeva Hickey 
differs from extant species in having a greater number of 
marginal veins and a wider marginal zone (Hickey 1977). 
Large leaves described as Philodendron limnestis Dilcher et 
Daghlian (1977) from the Eocene Claiborne Formation of 
Tennessee, with well-preserved upper and lower epidermis, 
show prominent vein patterns typical of some Araceae. 
Dilcher and Daghlian ( 1977) originally classified these re
mains in Philodendron Schott subgen. Meconostigma Schott. 
In a later monograph of this subgenus by Mayo (1991), it 
was suggested that these leaves are probably more similar 
to the genus Typhonodorum Schott. Typhonodorum and Pel
tandra today are classified in the subfamily Aroideae, tribe 
Peltandreae (Mayo et al. 1997) that seems to have been com
mon during the Eocene in North America. 

Nitophyllites zaizanica Iljinsk., from the Paleocene of Ka
zakhstan, was originally thought to represent an alga, but 
was later included in Podostemaceae (Iljinskaya 1963). In 
1975 Fedotov placed this material in Araceae. He compared 
this taxon to Alocasia G. Don and Colocasia Schott, but 
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these leaves are fragments and better material is needed for 
a full description (Dilcher and Daghlian 1977). They differ 
from "Philodendron" limnestis in having numerous anas
tomoses of the marginal veins, stomata rarely found on the 
adaxial surface, and lack of epidermal papillae (Dilcher and 
Daghlian 1977). 

Other tribes of Araceae, subfamily Aroideae, are repre
sented by leaves. The best known of these are Caladiosoma 
miocenicum Berry from the Miocene of Trinidad (Berry 
1925) that may represent tribe Caladieae Schott. This leaf is 
generally accepted as aroid and similar to Caladium Venten
at or Xanthosoma Schott (Mayo et a!. 1997). 

Araceophyllum Krause! (1929) leaves were described 
from the Miocene and Pliocene of Sumatra. Mayo et a!. 
(I 997) distinguish two types of leaves: Araceophyllum en
gleri Krause! that they include in subfamily Pothoideae Engl. 
and Araceophyllum tobleri Krause! in subfamily Monstero
ideae, tribe Monstereae Engl. Clearly this genus needs to be 
recircumscribed and the two species described in separate 
genera. Other species assigned to Araceophyllum, A. stria
tum Weyland (1957) and A. tarnocense Risky (1964), are 
regarded as too incomplete to even be included in the family. 

Araciphyllites austriacus J. Kvacek et Herman nom. inval. 
(2004) is a species recently described from the Cretaceous 
(Campanian) of Grtinbach, Austria. Unfortunately, this spe
cies is based on a type ("Araciphyllites tertiarius (Engelh.) 
Wilde, Z. Kvacek et Bogner 2003") that has not been pub
lished and the genus is, therefore, nomen nudum. K vacek 
and Herman (2004) describe this genus as showing a vena
tion pattern similar to Lysichiton Schott and Orontium L. 
(Araceae, subfamily Orontioideae Mayo, Bogner et Boyce) 
with an incomplete, wide, multistranded midrib. Lateral 
veins in A. austriacus arise at steep angles from the midrib 
and parallel venation of three weakly differentiated subsets 
of veins are arranged in a BdCdB pattern (K vacek and Her
man 2004). Transverse veins are oriented obliquely or per
pendicularly and areoles are elongate and polygonal-quad
rangular (Kvacek and Herman 2004). 

All the taxa of Araceae described above are based on iso
lated organs, but whole plants are known from compression 
fossils described as Limnobiophyllum scutatum (Dawson) 
Krassilov emend. Z. Kvacek (1995). These plants were orig
inally allied with Lemnaceae, in particular the genus Spiro
dela Schleid., because of their large size, and a relationship 
to the genus Pistia L. was suggested (see Mciver and Bas
inger 1993 and Kvacek 1995 for a complete discussion of 
the nomenclatural problems for these plants). A similar 
plant, Limnobiophyllum expansum (Heer) K vacek ( 1995), 
was described from the Miocene of Europe and differs from 
L. scutatum in having a vascular strand in the stolons, small
er rosettes of leaves that may lack an apical notch (Stockey 
et a!. 1997). Large numbers of specimens of Limnobiophyl
lum scutatum from lacustrine sediments at the Paleocene Jof
fre Bridge locality in central Alberta, Canada, (Fig. 18-20) 
were studied by Stockey et a!. ( 1997). Whole plants were 
preserved, including stems with attached leaves (Fig. 18) 
with well-preserved epidermis and some internal tissues 
(Fig. 20), stolons, roots, and flowers (Fig. 19), including an
thers with in situ pollen. Whole plants were reconstructed 
and phylogenetic relationships among Limnobiophyllum, liv
ing genera of Lemnaceae, Pistia, and other genera of Ara-

ceae were tested with cladistic analysis using the morpho
logical characters of fossils as well as extant plants (Stockey 
et a!. 1997). 

Traditional morphological studies have indicated a close 
relationship between the floating aroid Pistia and Lemnaceae 
(Rothwell et a!. 2004 ). A single origin of a floating aquatic 
habit is supported by molecular analyses using the chloro
plast gene rbcL (Duvall et a!. 1993a; Les et a!. 1997) and 
the morphological analysis by Stockey et a!. ( 1997) using a 
combination of fossil and living species. However, other 
analyses using chloroplast restriction site data remove Pistia 
and Lemnaceae to distantly related clades and embed both 
within Araceae (e.g., French et a!. 1995; Mayo et a!. 1997; 
Renner and Weerasooriya 2002). Conflicting morphological 
data (Grayum 1990, 1992; Tarasevich 1990) also indicates 
that this might be the case. Some of the discrepancies be
tween relationship and phylogenetic position of Lemnaceae 
within the aroids may have been due to low sampling of 
aroid and lemnoid genera in molecular analyses and the in
clusion of too few taxa to overcome exemplar effects (Roth
well et al. 2004). To help distinguish between the competing 
hypotheses of affinities and phylogenetic position of Lem
naceae, a broad range of samples using chloroplast DNA 
sequences of the trnL-trnF intergenic spacer region were 
used in a study by Rothwell et a!. (2004). These data agree 
with the results of French et a!. (1995), Renner and Weera
sooriya (2002), Cabrera eta!. (2003), and Renner and Zhang 
(2004) that there were probably at least two independent 
origins of a floating aquatic habit in extant aroids (including 
Lemnoideae, formerly Lemnaceae). 

Recent work on Cretaceous fossils from western North 
America, Russia, and now China (Johnson et a!. 1999; K. 
Johnson pers. comm., 2003) on the plant known as "Pistia" 
corrugata Lesq. (Fig. 21-24) indicates that there may be at 
least three or more independent origins of this floating, 
aquatic growth habit. "Pistia" corrugata (Lesquereux 1878) 
has been reported now from numerous sites ranging in age 
from Campanian to Late Maastrichtian (Johnson eta!. 1999). 
Recently, over 70 whole plants have been uncovered at Di
nosaur Park (Campanian, Dinosaur Park Formation) near 
Brooks, Alberta, that show as many as six plantlets attached 
by stolons on one rock slab (Fig. 21). These small rosettes 
have stems with attached roots and leaves with a basal 
"pouch" that was probably filled with aerenchyma in life 
(Fig. 22). Several vascular bundles enter the leaf base on the 
abaxial side and some of these branch to supply the venation 
on the adaxial leaf surface (Fig. 23). Leaves were trumpet
shaped with a large aerenchymatous base and a blade that 
probably floated on the surface of the water. There is a sub
marginal collective vein and at least two marginal veins with 
branching veins that form a fringe or rim around the leaf. 
Examination of compressed leaves from the abaxial surface 
shows that the aerenchymatous tissue did not extend into 
this leaf margin, but was centered under the main circular 
area within the margins. Leaves have a prominent apical 
notch and their surfaces are covered with trichomes. The 
apical notch and several veins entering the leaf blade are 
similar to those seen in Pistia, but details of venation are 
markedly different. Venation in the lateral rim is similar to 
that described by Mayo et a!. (1997) in Carlephyton Jum. 
or Arophyton Jum. (Araceae, subfamily Aroideae, tribe Ar-
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Fig. 21-24.-"Pistia" corrugata.-21. Several plants attached by stolons and showing branched aquatic roots (TMP 95.98.29A) X 

7.5.-22. Leaf showing basal " pouch" and major abaxial venation (DMNH 10383) X 15 .-23. Leaf showing adaxial venation and lateral 
rim (DMNH 10376) X 16.-24. Leaf showing venation on adaxia l surface and in rim (DMNH 8658) X 25. 

ophyteae) that form a submargi nal collective vein and one 
to two marginal veins. These taxa differ considerably in leaf 
shape, however, from "Pistia" corrugata and are not float
ing aquatics. While these fossil plants known as "Pistia" 
corrugata resemble Pistia in growth habit, they are clearly 

very different morphologically and are being described in a 
new genus. 

Use of taxa such as " Pistia" corrugata or other fossils to 
date the nodes of phylogenetic trees is currently being done 
by some authors. Bremer (2000) followed this approach for 
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the early Cretaceous monocot lineages. These dates, how
ever, are only as good as the fossil evidence. Descriptions 
of fossils of basal monocots such as Tofieldiaceae (at the 
base of the Alismatales clade, in Graham et al. 2006), based 
on Dicolpopollis pollen that is listed as pending (Muller 
J 981 ), are tentative at best. Clearly the fossil record of Pistia 
(only parts of which are described above) is misinterpreted. 
Many supposed "Pistia" -like plants have been described 
(Mciver and Basinger 1993; Stockey et al. 1997), but some 
of these are so badly preserved that their affinities are very 
doubtful. All of these taxa need to be reexamined and in 
many cases better fossil material discovered. Many similar 
looking aquatics are often lumped into genera with which 
they have nothing in common. 

The genus Porosia Hickey ( 1977) was a name given to 
round, suborbiculate, or reniform bodies that are permeated 
with tubules oriented at right angles to the surface. Porosia 
verrucosa (Lesq.) Hickey has been confused with Limnobio
phyllum scutatum, L. expansum, Pistia, and maybe other 
taxa as well (Hickey 1977; Serbet 1997; Manchester 2002). 
Krassilov (1973) placed them in Araceae and they have been 
treated as aerenchymatous leaves. Some of the specimens 
actually may be leaves, but others appear to be seeds or 
fruits (Hoffman 1995; Serbet 1997). Serbet (1997) sectioned 
one such "Porosia" -like structure from the Cretaceous near 
Drumheller, Alberta, and found that these were actually 
seed-like bodies rather than leaves. The seed-like bodies are 
also present in the Paleocene Joffre Bridge Flora (Hoffman 
1995), but their preservation does not allow for detailed 
study using sections. The external ornamentation varies from 
that illustrated by Hickey ( 1977), and it is obvious that sev
eral types of things are being confused because of their sim
ilar size, shape, and sometimes ornamentation. 

DISCUSSION 

While the fossil record of basal monocots is very incom
plete, there do seem to be well-preserved and well-identified 
taxa. Prior to the 1970s much of what was described must 
be taken with extreme caution. Rigorous paleobotanical 
study in the past 30 years has resulted in more carefully 
described and interpreted fossil remains. The lack of anatom
ical and morphological study in extant basal monocots (in 
fact, most angiosperms) has made the paleobotanist's job 
difficult, and often forces us to supply that data as well. 
While most paleobotanists have realized that isolated plant 
organs do not constitute a whole plant, neobotanists often 
do not understand this concept of morphotaxon. 

It has been known for some time that isolated organs of 
very different plants can appear similar or identical in the 
fossil record. This is not only due to the vagaries of pres
ervation, but is the real result of different rates of evolution
ary change in morphological characters in different parts of 
the plant. In the dicots a good example of this phenomenon 
would be the extinct taxa included in Cercidiphyllaceae. The 
extinct genera Trochodendrocarpus Kryst., Nyssidium Il
jinsk., and Joffrea Crane et Stockey all have leaves similar 
to those of extant Cercidiphyllum Sieb. et Zucc. (Crane and 
Stockey 1986). Fruits are follicles with several winged seeds 
and a similar morphology in all taxa. However, when these 
fossil plants are reconstructed, important differences emerge. 

Cercidiphyllum and Joffrea grow by long-shoot/short-shoot 
growth, while Nyssidium and Trochodendrocarpus have only 
been demonstrated to have long-shoot growth. Infructes
cences of Cercidiphyllum are small with only 2-8 follicles 
per infructescence, while those of the fossil taxa can reach 
15-40 and are borne on elongate racemes (Crane and Stock
ey 1986). Phyllotaxy varies when attached leaves and leaf 
scars are examined (see Crane and Stockey 1986 for a com
plete comparison). Thus, if one isolated organ such as a leaf 
or fruit is found, or even an entire infructescence, we do not 
know which of these taxa is present. 

For other types of fossil plants, we know that roots are 
conservative organs and that a root alone is often not enough 
to determine the parent plant (Stewart and Rothwell 1993). 
It is very difficult to tell, with our current state of knowledge 
about fossil monocots, whether these types of problems are 
significant, and caution is advised. While most monocots are 
herbaceous and the interpretation of growth habits of plants 
that are represented by leaves is probably somewhat reliable, 
the differences in rates of evolution of reproductive struc
tures and vegetative organs, and the combinations of char
acters present in certain taxa, can only be determined when 
whole plants are reconstructed. An inflorescence similar to 
a particular aroid genus, may indicate that this genus is pres
ent in the fossil record. However, it may only truly indicate 
that this type of inflorescence is present in the fossil record 
and a level of character evolution for this plant part is 
known. What the whole plant looked like that produced the 
inflorescence is still unknown. Knowing what we know 
about fossil dicots should cause us to question our interpre
tations based on a single organ and the use of these organs 
in other types of analyses. 

The floating aquatic habit of the plant known as "Pistia" 
corrugata has caused early workers to place this taxon into 
Araceae and the genus Pistia (Lesquereux 1878; Mciver and 
Basinger 1993). However, we now know that this and other 
taxa such as Limnobiophyllum scutatum (Stockey et al. 
1997) have been completely misidentified. 

Evidence of this type of problem from fossil monocots is 
seen in the plant Limnobiophyllum. Isolated pollen was iden
tified as belonging to Pandanaceae (Elsik 1968; Jarzen 1983; 
Fleming 1990). Even detailed morphological and ultrastruc
tural characters seemed to indicate a close relationship of 
this pollen (Pandaniidites Elsik [ 1968]) to extant Pandana
ceae (Hotton et al. 1994 ). However, the discovery of this 
pollen type in the anthers of the flowers of Limnobiophyllum, 
a plant more closely related to Araceae, subfamily Lemno
ideae, changed our perspective of these as whole plants and 
reinforced the similarities of this pollen type to that de
scribed for extant duckweeds (Stockey et al. 1997). This 
finding explains the conflicting climatic data suggested by 
the presence of Pandanaceae (primarily tropical) vs. Lem
naceae (geographically widespread) in Paleocene sediments 
(e.g., Sweet 1986). 

Cladistic analysis and molecular phylogenies have sug
gested relationships between taxa that have previously been 
difficult to place in a taxonomic framework based on mor
phology alone. In some cases, conflicts between morphology 
and molecular phylogenies remain unresolved. This is where 
the fossil record has become increasingly important in our 
understanding of the evolution of flowering plants. Further 
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work on basal monocots, using well-preserved and recon
structed whole plants, promises to provide evidence of many 
of the important character changes that have resulted in the 
combinations of characters that we see in extant basal mono
cots and will help to determine the mode and tempo of evo
lution for these groups. 
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