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Abstract

The American vaccine pricing market has many actors, making it a complex
system to model. Because of this, previous papers have chosen to model
only vaccine manufacturers while leaving out the government. However,
the government is also an important actor in the market, since it buys over
half of vaccines produced. In this work, we aim to introduce the government
into vaccine pricing models to better recommend pricing strategies to the
Centers for Disease Control and Prevention.
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Chapter 1

Introduction

1.1 The Vaccine Market

Vaccines play a key role in preventative health care. For children born
in the United States in 1994-2013, vaccinations are estimated to prevent
732 thousand deaths, 21 million hospitalizations and 322 million illnesses
(Whitney et al. (2014)). The government has a large role in providing vaccines
to the public: 57% of vaccines by volume are purchased by federal, state and
local public agencies at federal contract prices, while the remaining vaccines
are distributed across private markets (Orenstein et al. (2005)).

The government negotiates vaccine prices with manufacturers through
several federal organizations. Every year, the Advisory Committee on
Immunization Practices (ACIP) looks at all of the vaccines approved by
the Food and Drug Administration (FDA) and suggests changes to the
Recommended Childhood Immunization Schedule (RCIS) (Behzad et al.
(2014)). The RCIS dictates which vaccines doctors administer to children
and at what times, and thus largely determines the vaccine demand for that
year (Robbins et al. (2013)). The Centers for Disease Control and Prevention
(CDC) negotiates federal contract prices for vaccines listed on the RCIS
(Robbins et al. (2013)). State and local governments then purchase vaccines
at the federal government contract prices (Robbins et al. (2013)).

The number of manufacturers involved in the vaccine market is dwin-
dling, likely due to large vaccine research costs and low profit margins. As of
2014, there are only five vaccine manufacturers left in the American vaccine
market (Robbins and Jacobson (2015)). Of these, only three manufacturers
(Merck, GlaxoSmithKline, and Sanofi Pasteur) make competing vaccines,



2 Introduction

meaning vaccines that satisfy the same immunization requirements (Behzad
et al. (2014)).

Keeping a large number of vaccine manufacturers in the market is
in the government’s best interest. Vaccine manufacturers do research to
improve vaccine quality and disease coverage, and the government has more
negotiating power in vaccine markets that are not monopolies. In order
to encourage manufacturers to stay in the market, the government must
keep prices high enough to maintain manufacturer profitability. However,
the government doesn’t want vaccine costs to get too high, since then not
only will the government spend more money on health care, but high prices
may also discourage people from getting vaccines. Thus, the government
must balance its desire for manufacturer profitability (high prices) with
affordability and coverage (low prices). This begs the question - what vaccine
prices are best, from the perspective of the government?

1.2 Existing Models

As the government’s ability to process and store data grows, so does the
government’s ability to use mathematical models to guide public policy.
Techniques in operations research and game theory meant to better under-
stand optima and equilibria can be applied to real-world problems to suggest
ideal prices, schedules and other policy components(Stokey (1991)).

Previous research has looked at the American vaccine pricing market
from a variety of perspectives. At first, researchers focused on optimizing
the vaccine schedules themselves, to help the Centers for Disease Control
and Prevention create schedules that minimize costs while incorporating
newly released vaccines. For example, a pilot integer programming model
by Jacobson et al. minimized overall vaccination cost while following the
1997 Childhood Immunization Schedule, taking into account the order in
which vaccines must be administered and limiting the number of vaccines
that could be administered in a single clinic visit (Jacobson et al. (1999)).

Jacobson then moved on to work with Robbins et al. to look at vaccine
pricing itself (Robbins et al. (2013)). Using a static Bertrand oligopoly to
model a set of vaccine manufacturers, the group analyzed the prices of two
competing vaccines, Pediarix® and Pentacel®. Their model suggested that
the two vaccines should be priced more similarly, and indeed the price gap
between the two vaccines shrank in the years following the analysis. To
describe demand, they used a weighted set covering optimization where
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the weights were the prices each manufacturer set within the Bertrand
competition. They then looked at the results of both a static and repeated
game using Nash equilibria (Robbins et al. (2013)).

Although Bertrand oligopolymodels are useful, theymake three assump-
tions: Bertrand assumes that all manufacturers can fill all of market demand
(no capacity constraints), that all manufacturer products are completely inter-
changeable (zero product differentiation), and that manufacturers compete
only once (static competition) (Tirole (1988)). Other models have since been
created that relax some of those assumptions. Bertrand-Edgeworth competition
examines duopolies with capacity constraints. In Bertrand-Edgeworth com-
petition, the existence of equilibria is guaranteed only in mixed strategies
(Vives (2001)).

Relaxing the first two constraints of the Bertrand framework, Bertrand-
Edgeworth-Chamberlin competition looks at capacity constrained symmetric
manufacturers who sell differentiated products. Behzad et al. used this
framework to analyze the vaccine market (Behzad et al. (2015)). The team
first proved the existence of equilibria in Bertrand-Edgeworth-Chamberlin
competition oligopolies using linear demand and a quadratic utility function,
then applied those equilibria to three instances of competition in the vaccine
market (Behzad et al. (2015)). This model was expanded upon in a later
paper that looked at the same setup but with asymmetric manufacturer
capacities (Behzad and Jacobson (2016)).

Although these models tackle many of the original assumptions made
about manufacturers, none include the government as an actor along with
the manufacturers. In the following chapters, we examine possible models
that consider not only the actions of the vaccine manufacturers but also the
government. The CDC sets the prices in the public sector market, and by
creating models that focus on the CDC’s choices, we can help suggest to the
CDC what prices will allow them to best maintain a long-term supply of
low-cost vaccines.





Chapter 2

A Preliminary Model of the
Public Sector

2.1 Setup

In order to understand the vaccine pricing market overall, we can look at the
market in progressivelymore complex steps. As a first step, consider amodel
of only the public sector, two competing manufacturers, and one vaccine.
Assume that the products made by the two manufacturers are identical
and that each manufacturer has an infinite capacity to make vaccines. We
choose to ignore the private sector while introducing this initial supply and
demand model, but will add in the private sector and additional math to
accommodate for it in later chapters.

We can define p1 and p2 to be the vaccine prices set by the first and
second manufacturers respectively. Let the marginal cost of a vaccine be
defined as the production cost incurred by a manufacturer for producing
an additional vaccine, given they have already produced a certain number
of vaccines (Samuelson (1976)). Let MC1 be the marginal cost for the first
manufacturer and MC2 be the marginal cost for the second manufacturer.
We then get constraints

p1 ≥ MC1

p2 ≥ MC2

which force any vaccine produced by either manufacturer to generate a
profit. This is useful in keeping manufacturers in the market, since the profit
margins on vaccines are currently low. Along similar lines, if we let q1 and
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q2 be the quantity produced by each of the two manufacturers, we can force
both manufacturers to remain in the market with the constraints

q1 ≥ DT1

q2 ≥ DT2

for some constant minimum percent thresholds of market share T1 and T2
and annual demand for the vaccine D. Now thatwe have bothmanufacturers
in the market and making a profit, we also want to satisfy demand. Looking
at the quantity sold by both manufacturers,

q1 + q2 ≥ D

which allows manufacturers to collectively exceed or meet demand as
appropriate. Finally, we relate quantity and price using a linear demand
curve (Lau and Lau (2003)). To do so, let

q1 � a1 − b1p1 (2.1)

q1 � a2 − b2p2 (2.2)

for non-negative constants a1 , b1 , a2 and b2. Here the ai represent the
component of the demand that’s independent of the price and the bi represent
the component of demand that depends on the price. This allows us to
solve for quantity in terms of price for each of the two manufacturers, and
leaves us with a linear program of two variables, p1 and p2. Since we
are using constraints to ensure that manufacturers remain in the market,
we can then minimize government costs. This leads us to the objective
function min p1q1 + p2q2, or equivalently with the substitutions from above,
min p1(a1 − b1p1)+ p2(a2 − b2p2). Putting this all together gives the program

min p1(a1 − b1p1) + p2(a2 − b2p2)
p1 ≥ MC1

p2 ≥ MC2

a1 − b1p1 ≥ T1D
a2 − b2p2 ≥ T2D

(a1 − b1p1) + (a2 − b2p2) ≥ D
p1 , p2 ≥ 0

(2.3)
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Table 2.1 Public Sector Model Variables and Parameters

Name Type Meaning
pi Variable (float) Price set by manufacturer i
qi Variable (float) Quantity sold by manufacturer i
MCi Parameter Vaccine marginal cost for manufacturer i
Ti Parameter Minimum threshold percent market share for manufacturer i
ai Parameter Constant in linear demand curve qi � ai − bi pi
bi Parameter Constant in linear demand curve qi � ai − bi pi
D Parameter Total vaccine demand

Figure 2.1 Public Sector 2D Model Feasible Region

This figure shows the feasible region of the public sector model defined in
equation 2.3 as a function of p1 and p2. A1 indicates the line p1 ≥ MC1, A2
indicates the line p2 ≥ MC2, B1 indicates the line p1 ≤ a1−T1D

b1
, B2 indicates

the line p2 ≤ a2−T2D
b2

and C indicates the line (a1 − b1p1) + (a2 − b2p2) ≥ D.
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2.2 Analysis

The feasible region of this first model is drawn in figure 2.1. The region is
the intersection of the rectangle with vertices (MC1 ,MC2), ( a1−T1D

b1
,MC2),

( a1−T1D
b1

, a2−T2D
b2
) and (MC1 ,

a2−T2D
b2
) and the inequality

(a1 − b1p1) + (a2 − b2p2) ≥ D. (2.4)

Therefore, for the problem to be feasible we need

MC1 ≤
a1 − T1D

b1

MC2 ≤
a2 − T2D

b2

meaning that the marginal cost of each vaccine must be lower than the
maximum manufacturer price (manufacturers will set their prices highest
when they sell the smallest quantity, TiD). Looking at the intersection of
equation 2.4 and the other inequalities that dictate the feasible region, we
also get that the problem is only feasible if at the bare minimum prices
p1 � MC1 and p2 � MC2 that equation 2.4 still holds. Plugging in the
marginal costs as p1 and p2,

(a1 − b1MC1) + (a2 − b2MC2) ≥ D (2.5)

is required in order for the problem to be feasible. We note that if

T1 + T2 ≥ 1 (2.6)

then not only does equation 2.5 always hold, but also and that the inequality
2.4 will not constrain the feasible region. We note that equation 2.6 implies
that T1 and T2 constrain manufacturers to collectively control at minimum
100% of market share, which is a feasible although not necessary way to set
T1 and T2. For example, saying that both manufacturers need to cover 50% of
the market would satisfy equation 2.6 while saying that each manufacturer
would need to cover only 20% of the market would not.

If equation 2.6 is satisfied, the feasible region will be a rectangle R. Let
O(p1 , p2) � p1(a1 − b1p1) + p2(a2 − b2p2) represent the value of the objective
function at a given set of prices (p1 , p2). The optimal solution to equation 2.3
will occur on the boundary of the feasible region, the rectangle R seen in
figure 2.1. Checking the first and second derivatives of the objective function
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along the edges of R shows that no local minima exist along the edges, only
local maxima. Therefore, the minimum value of the objective function will
be on one of the four corners of R.

Similarly to in figure 2.1, let A1 � MC1, B1 � MC2, A1 �
a1−T1D

b1
and

B2 �
a2−T2D

b2
. The objective function at each of the four corners is

O(A1,A2) � MC1(a1 − b1MC1) + MC2(a2 − b2MC2)

O(A1, B2) � MC1(a1 − b1MC1) + T2D
a2 − T2D

b2

O(B1,A2) � T1D
a1 − T1D

b1
+ MC2(a2 − b2MC2)

O(B1, B2) � T1D
a1 − T1D

b1
+ T2D

a2 − T2D
b2

To better understand what these objective function values mean, we first
note that A1 indicates setting the price for manufacturer 1 at its marginal
cost MC1 and will have manufacturer one produce its maximum allowable
amount a1 according to its linear demand curve, equation 2.1. B1 indicates
setting the price for manufacturer 1 at a1−T1D

b1
, the highest cost the manufac-

turer can demandwhile still selling the minimum amount of vaccines T1D to
the market as according to its demand curve, equation 2.2. The quantity sold
q1 in situation B1 is the minimum amount T1D. The interpretation of A2 and
B2 are comparable to A1 and B1 respectively but deal with manufacturer 2.

We can interpret these objective function values using a few examples.
If MC1 � MC2 � 0, then O(A1,A2) � 0 will be the minimum value of the
objective function. In this case, both manufacturers will set their price to
zero, and their quantities to a1 and a2, the maximum possible quantities
they can sell.

If the marginal cost of one vaccine is much higher than the other, then
we’ll likely end up in the (A1, B2) case or the (A2, B1) case. If both marginal
costs are high, then likely both manufacturers will try to minimize the
amount that they sell but sell at higher prices (as long as together they still
fulfill demand).

2.3 What to Glean from a Simple Model

Although this model oversimplifies our problem, the small number of
variables allows us to visualize what’s going on. Here, we already see
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some of the problems that arise in later more complex models - infeasibility
when parameters are set too high or too low and optimal solutions that are
sometimes symmetric across manufacturers and sometimes asymmetric,
even when all inputs for the two manufacturers are identical. Although the
objective function of this model is quadratic, the geometry of the solution
often still allows us to check the corner points for solutions rather than
having to check on the edges of the feasible region. This model allows us
to get a visual grasp of the situation, before moving on to more complex
problems. Even in the next chapter, adding in the private sector and a few
more variables will make this convenient visualization no longer possible.



Chapter 3

Incorporating the Private Sector

3.1 Setup

Although looking at a model that focuses exclusively on the public sector
can be useful to better understand the workings of this problem, such a
model doesn’t paint the whole picture. In reality, only 57% of vaccines are
sold to the public sector, while the other 43% are sold to the private sector
(Orenstein et al. (2005)). Therefore, a more complete model will look at not
only at the prices and quantities sold in the public sector but also the prices
and quantities sold in the private sector.

Let M be a set of manufacturers. Let pui and qui represent the public
sector prices and quantities of a given vaccine for manufacturer i. Similarly,
let pri and qri represent the private sector prices and quantities of that same
vaccine for manufacturer i. Like before, we want all vaccines to be sold at a
profit for the manufacturer, so if a manufacturer has marginal cost MCi to
create a vaccine,

pui ≥ MCi ∀i ∈ M
pri ≥ MCi ∀i ∈ M.

(3.1)

To require that quantities sold to the public sector should equal public
demand, we get that ∑

i∈M

qui � 0.57D. (3.2)

for overall demand D. Similarly in the private sector,∑
i∈M

qri � 0.43D. (3.3)
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We choose to force supply to exactly meet demand rather than allow supply
to exceed demand since unlike in our previous example where overflow
production might enter the private sector, here we have accounted for the
entire vaccine market in our model. Since children are often required to be
vaccinated and have no incentive to receive the same vaccine more than once,
we assume that any vaccines produced that exceed the total demand will
not be purchased and therefore will neither contribute to the government’s
costs nor the manufacturer’s profits.

Next, we want to ensure that all manufacturers stay in the market. To do
so, we can constrain the problem by mandating that every manufacturer i
sells at least TiD vaccines, whether those vaccines be sold in the public or
private sectors. This gives a constraint

qui + qri ≥ TiD ∀i ∈ M. (3.4)

Next, we can make use of our assumed linear supply and demand relation-
ship in both sectors. This gives

qui � aui − bui pui ∀i ∈ M (3.5)

for the public sector and

qri � ari − bri pri ∀i ∈ M (3.6)

for the private sector.
Data from many years of vaccine prices in the public and private sectors

indicate that the prices of a given vaccine in each sector can be described
through a roughly linear relationship. For a given vaccine, we can constrain
the prices using the equation

(δi pui + βi) − κi ≤ pri ≤ (δi pui + βi) + κi ∀i ∈ M (3.7)

for constants δi and βi from a linear fit and κi representing the error of that
linear fit.

After thinking through the constraints, we must also choose an objective
function. Since the private sector costs are somewhat tied to public sector
costs and our main focus is still the government’s pricing choices, we can
keep our previous objective function that minimizes government costs. This
means our objective function will be

min
∑
i∈M

qui pui (3.8)
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Putting all of these equations together, we get the mathematical program

min
∑
i∈M

qui pui

pui ≥ MCi ∀i ∈ M
pri ≥ MCi ∀i ∈ M∑

i∈M

qui � 0.57D∑
i∈M

qri � 0.43D

qui + qri ≥ TiD ∀i ∈ M
qui � aui − bui pui ∀i ∈ M
qri � ari − bri pri ∀i ∈ M

δi pui + βi − κi ≤ pri ∀i ∈ M
pri ≤ δi pui + βi + κi∀i ∈ M

pui , pri , qui , qri ≥ 0 ∀i ∈ M

(3.9)

3.2 Applying this Model to Pediarix® and Pentacel®

We can now see how this model behaves by applying it to a real situation in
the American vaccine market. To do so, we look at Pediarix® and Pentacel®,
two competing combination vaccines (Robbins et al. (2013)). Pediarix® is
manufactured by Merck, and Pentacel® is manufactured by Sanofi Pasteur,
two competingdrugmanufacturers. Both vaccines protect against diphtheria,
tetanus, pertussis, haemophilus influenzae type b, hepatitis B and polio
(Robbins et al. (2013)). These are the only two vaccines on the market that
protect against this combination of diseases, so we can model this as an
instance of our model with one vaccine and two competing manufacturers.

First, we have to determine the values of all constants in the model as
applies to Pediarix® and Pentacel®. Let Merck be manufacturer 1 and Sanofi
Pasteur be manufacturer 2. In order to determine the relationship between
public and private sector costs for the two vaccines (to find the δi and βi
from equation 3.7), we can use data posted by the CDC. The Pediarix® and
Pentacel® public and private sector prices from the past ten years can be
seen in table 3.1.

We fit a linear regression model on these prices and find for Pediarix®
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Table 3.1 Pediarix® and Pentacel® Vaccine Prices

Pediarix® Pentacel®
Contract End Date CDC Private Sector CDC Private Sector

3/31/2017 $54.90 $72.73 $56.91 $87.48
3/31/2016 $53.86 $70.72 $54.38 $87.48
3/31/2015 $53.86 $70.72 $52.43 $80.43
3/31/2014 $52.58 $70.72 $56.02 $80.43
3/31/2013 $52.10 $70.72 $54.50 $80.43
3/31/2012 $51.15 $70.72 $52.55 $80.43
3/31/2011 $49.75 $70.72 $50.70 $77.48
3/31/2010 $48.75 $70.72 $51.49 $75.33
3/31/2009 $48.75 $70.72 $50.10 $72.91

Cost per dose for Pentacel® and Pediarix® in the private and public sectors
from 2009-2016 (Vaccines for Children Program (2017)).

that
pr1 � 0.15pu1 + 63.13 (3.10)

and for Pentacel® that
pr2 � 1.64pu2 − 7.99 (3.11)

and thus δ1 � 0.15, β1 � 63.13, δ2 � 1.64 and β2 � −7.99.
To find the demand D, we use a similar calculation to Behzad et al. (2015).

According to the National Vital Statistics Report, about 4 million births
occurred in 2011 (Martin et al. (2013)). The number of children younger than
five immigrating to the US is small compared to the number of children born
in the US, so we will assume that 4 million shots is a reasonable estimate of
the vaccine demand D (Behzad et al. (2015)).

Next, we consider what minimum presence threshold values T1 and
T2 will ensure that both manufacturers are making enough profits to stay
in the market. Here, there are two approaches to consider. The first is to
look at markets in general and ascertain what fraction of market share a
company needs on average in order to survive. Economics literature has
shown that inequality in market share affects market power in a wide range
of market types (Barla (2000)). After determining what minimum fraction of
the market share T is necessary in a duopoly, we’d get the two constraint

qui + qri ≥ TD ∀i ∈ {1, 2}. (3.12)
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To find the marginal costs MC1 and MC2 of Pentacel® and Pediarix®, we
can consult (Robbins et al. (2013)) and (Douglas et al. (2008)). For vaccines
where these data are not available, a possible proxy for marginal cost is the
price the manufacturers sell their vaccines to UNICEF and other foreign aid
organizations (LeMoyne (2016)). Assuming that vaccine manufacturers do
not have an incentive to sell their products at a loss, the prices they negotiate
with UNICEF can be considered an upper bound on marginal costs.

Lastly, we can gather data for the demand curve a few different ways. To
create a lineardemandcurve,we canuse the strategyoutlinedby (Behzadet al.
(2015)). This method uses product differentiation to define demand, with
the number of adverse events per vaccine dose determining differentiation.
A second nonlinear approach would be to use a logistic function to represent
each manufacturer’s fraction of the market share as a function of the price
of their vaccine. To determine the functional relationship between market
share and price, we can consult NHS data on each company’s market share
in tandem with the CDC’s yearly price records.

3.3 What toGlean fromaSlightlyMoreComplexModel

Without coding up this model and analyzing the results, it’s hard to tell
whether or not its assumptions are within the scope of reason. However, this
model does raise some good questions - how do we approximate constants
that are not easily findable, and how do we allow for public-private sector
interactions in our model?

We won’t always know what the correct value for constants like MCi ,
Ti , δi and βi . Some we can approximate, like using UNICEF prices as a
proxy for marginal cost. Some, we may be forced to parameterize, and
simply observe what happens to prices as a parameter value changes over a
reasonable range.

Also, how to mathematically relate the public and private sectors is by no
means clear. We relate the two in some of our constraints, such as requiring
that manufacturers make a certain number of vaccines across the two sectors
combined. We also try directly relating the prices in both sectors, since in
general the two appear to be linearly correlated. These ideas might come in
handy in future work, and could possibly even be combined with the model
concepts in chapter 4.





Chapter 4

An EquilibriumModel

4.1 Equilibrium Strategies

In sections 2 and 3, the models considered do not incorporate manufacturer
self-interest. Left to their own devices, we would expect manufacturers
to set their prices in a way that maximizes their profits. Since our models
focus on the CDC’s choice of prices in the public sector, we won’t assume
that manufacturers can simply maximize their public sector profits and
disregard the CDC’s negotiating power. However, in the private sector, there
are no large negotiating powers preventing manufacturers from reaching
their maximum profit potentials. To model these maximum profits, we look
to game theory.

Game theory studies how players behave when they are placed in
situations (games) in which participants’ decisions affect not only their
own outcomes but the outcomes of other players. Players often make
choices based off of an optimal strategy, in which the choices they make will
maximize their output. In some games, the optimal strategy is a pure strategy,
in which the player will make the same choice every time. In other situations,
the optimal strategy may be a mixed strategy, in which the player will make
different choices dependent on some random variable. An equilibrium is
said to be reached between the players in a game if no player can change
their strategy to improve their outcome (Trick (1998)).

Games in which one player’s gain is another one’s loss are said to
be zero-sum games, meaning player interests are directly opposed (Trick
(1998)). In 1950, John Nash proved the existence of equilibrium points
in all two player zero-sum games (Nash et al. (1950)). In our case, we
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look at Bertrand-Edgeworth-Chamberlin equilibrium points, a subset of
the equilibrium points Nash analyzed. More background on Bertrand-
Edgeworth-Chamberlin equilibria can be found in section 1.2.

4.1.1 Vaccine Manufacturers as Players in a Game

Here, we have a two player game involving the two vaccine manufacturers,
in which each manufacturer can choose its selling price in the private market.
If a manufacturer sets its price too high, it will lose customers to the other
manufacturer. On the flip-side, if a manufacturer sets its price too low,
it won’t make as much profit as it wants on the vaccines it does sell. By
phrasing this situation as a game, we can calculate the ideal pricing strategy
for each manufacturer that will maximize their profits.

We can describe each manufacturer in terms of two qualities: manufac-
turing capacity and product differentiation. Manufacturing capacity ki of
manufacturer i is the number of vaccines that manufacturer can produce in
a given year, and is determined by the number of factories and amount of
raw materials a manufacturer has. Product differentiation γ describes the
degree of difference between two competing manufacturer products, with γ
ranging from 0 (indicating complete product independence) to 1 (indicating
perfect substitutes) (Behzad and Jacobson (2016)).

4.1.2 Three Strategies

Manufacturers described with ki and γ as in section 4.1.1 above will act
optimally according to one of three equilibrium strategies: a competitive
strategy, a mixed strategy, or a Bertrand-Chamberlin strategy. Which type of
strategy a manufacturer will use depends on their manufacturing capacity
ki (Behzad and Jacobson (2016)).

For example, a pure strategy Bertrand-Chamberlin equilibriumwill occur
when capacity is high and there is no risk of scarcity. More specifically, the
Bertrand-Chamberlin equilibrium occurs when ki ≥ k(γ), in which k(γ) is
defined as

k(γ) � α
γ

[
1 −

2(1 + (n − 2)γ)1/2(1 − γ)1/2

(1 + (n − 1)γ)1/2(2 + 2(n − 2)γ − (n − 1)γ)

]
(4.1)

where α is a constant further discussed in section 4.7.1 and n is the
number of manufacturers. Here we only consider the case where n � 2,
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which allows equation 4.1 to simplify to

k(γ) � α
γ

[
1 −

2(1 − γ)1/2

(1 + γ)1/2(2 − γ)

]
. (4.2)

On the other hand, if capacity is low and there is a scarcity of vaccines,
then manufacturers will optimally find themselves acting with a competitive
strategy. Specifically, this occurs when ki ≤ qC, where qC is defined as

qC
i �

α − γ ∑
j,i

k j

2 . (4.3)

The final strategy, a mixed strategy, occurs when qC < ki < k(γ). In this
case, there is neither a clear scarcity nor a clear abundance of vaccines.

4.2 Assuming a Linear Demand Curve

In order to use the equilibria described in section 4.1, there are several
assumptions we must make. One of these assumptions is that the demand
for vaccines behaves linearly with price, as is done in Vives (1999). We can
use the same linear demand function used in Behzad et al. (2015) and Behzad
and Jacobson (2016), in which demand Di of vaccines sold by manufacturer
i is negatively correlated with the price of its vaccine pi and positively
correlated with the price of its competitors vaccines p j . Specially, we define

Di(pi) � a − bpi + c
n∑

j�1, j,i

p j (4.4)

where
a �

α
1 − (n − 1)γ (4.5)

b �
(1 + (n − 2)γ)

(1 + (n − 1)γ)(1 − γ) (4.6)

and
c �

γ

(1 + (n − 1)γ)(1 − γ) . (4.7)

Our analysis will deal with the case when n � 2, in which equations 4.5, 4.6
and 4.7 simplify to

a �
α

1 − γ (4.8)
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b �
1

(1 + γ)(1 − γ) (4.9)

and
c �

γ

(1 + γ)(1 − γ) . (4.10)

4.3 DesigningaBertrand-ChamberlinEquilibriumModel

In chapter 3, we consider a model formulation that incorporates both the
public and private sectors, but fails to mimic manufacturer tendency to
maximize private sector profits. Here we employ game theory to add in
private sector optimization.

To make the game-theoretic formulations simpler, we will assume here
that the marginal cost of each vaccine is zero. Since most of the cost of
vaccines is research and development, this assumption is reasonable. This is
different than in chapter 3, where each vaccine has a specified marginal cost.

Like in equation 3.8, our objective function will still be to minimize public
sector costs. The variables are still the public and private sector vaccine
prices and quantities pui , pri , qui and qri , with the addition of kri , a measure
of private sector capacity. In this model, every manufacturer will start out
with an initial overall annual vaccine capacity Ki , which is the number of
vaccines themanufacturer canmake that year as determined by itsmaximum
current factory and supply output. That capacity will be used up to some
extent by public sector vaccine purchases, after which kri will keep track of
remaining capacity for private sector sales.

To better understand themodel constraints, we can view them in a certain
order. First, allow the CDC to choose a certain set of public sector prices
pui . Then the quantities qui sold in the public sector will follow as per the
demand function defined in equation 4.4, giving

qui � aui − bui pui + cui

n∑
j�1, j,i

pu j (4.11)

where constants aui , bui and cui are defined according to equations 4.8,
4.9 and 4.10 respectively.

Once the quantities sold in the public sector are known, we can calculate
the capacity kri each manufacturer has left to sell in the private sector. Since
vaccines are sold only on the public or the private market, we can subtract
the public quantity sold directly from the total capacity Ki to find kri , giving
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kri � Ki − qui . (4.12)

Next, we calculate the prices manufacturers will set in the private sector,
assuming that they want to maximize their profits. In this chapter we will
first consider the case where private sector manufacturer capacities are high
(where there is no vaccine scarcity). Specifically, we require that

kri ≥ k(γ) (4.13)

where k(γ) is defined in equation 4.1, so that manufacturers will behave
according to the Bertrand-Chamberlin equilibrium. As proved by Behzad
and Jacobson (2016), manufacturers whose capacity falls within the Bertrand-
Chamberlin equilibrium range will price their vaccines according to

pri �
ari

2bri − (n − 1)cri
(4.14)

where constants ari , bri and cri come from the private sector demand
curve, described below in equation 4.15.

As in the public sector, we assume that demand follows linearly with
price. Therefore, we get a quantity sold of

qri � ari − bri pri + cri

n∑
j�1, j,i

pr j (4.15)

where ari , bri and cri are again defined according to equations 4.8, 4.9
and 4.10.

These price and quantity calculations will produce values in the public
and private sectors, but might overly minimize manufacturer profits or not
make enough vaccines to meet full market demand. To account for this, we
add a few additional constraints into the model. First off, to ensure that the
entire demand D is met across the public and private sectors, we require∑

i∈M

(
qri + qui

)
≥ D. (4.16)

Equation 4.16 is an inequality rather than an equality as to not over-
constrain the system. Empirical testing shows that results often don’t exceed
demand by much. Some excess of vaccine production is desirable, since then
some doses can be lost or go unused as normally will occur with a small
percentage of vaccines produced each year.
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We also require that vaccine manufacturers make enough profits as to
want to continue participating in the vaccine market. There are two main
ways we can do this: dictate that each manufacturer must be responsible for
some minimum percentage of the market, or dictate that each manufacturer
must make some minimum profit each year. Here we opt for the second
option, since it is easier to quantify. Thus, we require

qui pui + qri pri ≥ Pi (4.17)

where Pi is the minimum profit a manufacturer needs to make annually
to maintain profitability. For a discussion on how to calculate Pi , consult
section 4.7.2.

Putting together equations 4.11 through 4.17, we get a complete mathe-
matical program of

min
∑
i∈M

qui pui

qui � aui − bui pui + cui

n∑
j�1, j,i

pu j∀i ∈ M

kri � Ki − qui∀i ∈ M
kri ≥ k(γ) ∈ M

pri �
ari

2bri − (n − 1)cri

qri � ari − bri pri + cri

n∑
j�1, j,i

pr j∀i ∈ M∑
i∈M

(
qri + qui

)
≥ D

qui pui + qri pri ≥ Pi ∀i ∈ M
pui , pri , qui , qri , kri ≥ 0 ∀i ∈ M

(4.18)

which describes the public and privatemarketswhen bothmanufacturers
have large capacities and don’t get close to scarcity conditions. This isn’t
always the case, and there are two other equilibrium points to add to our
model to account for this. However, equation 4.18 is the most complex
continuous program we will consider - when more equilibria are added,
integer variables get thrown into the mix. Therefore, this system is solvable
more simply than the systemwe will build in the following sections. We will
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call this model the Bertrand-Chamberlin model, and we computationally
analyze some of its proposed prices in chapter 5.

4.4 Considering Other Equilibria

The Bertrand-Chamberlin equilibrium is not the only possible equilibrium
state. At low capacity, vaccines are scarce and manufacturers will price
their vaccines differently. This competitive equilibrium is determined by a
threshold qC, defined in equation 4.3.

If k ≤ qC, then we hit a competitive equilibrium given by P(k), where

Pi(ki ,
∑

k j) � α − ki − γ
∑

k j . (4.19)

If qC < k < k(γ), then we hit a mixed strategy equilibrium. The
distribution function of the mixed strategy is described in Behzad and
Jacobson (2016). Rather than deal with a probability distribution, in this
model wewill assume thatmanufacturers will choose themaximumpossible
value of their mixed strategy distribution. Since the range of possible
strategies suggested by the distribution function is small, this assumption
won’t hugely impact model results. The maximum price p in the mixed
strategy case is defined in Behzad and Jacobson (2016) as

p � argmax
p
{p(α − p − γ

n∑
i�2

ki)} (4.20)

where kr1 is fixed as the largest capacity of all the kri . We can find p
by taking the derivative of the right hand side and setting it equal to zero,
getting

p �

α − γ
n∑

i�2
kri

2 . (4.21)

Since the second derivative of the right hand side of equation 4.20 is
−2 < 0, we indeed know that this is a maximum and not a minimum price.

Combining these three equilibrium strategies, we get the set of equations
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If kri ≥ k(γ) then pri �
ari

2bri − (n − 1)cri

If kri ≤ qC then pri � α − ki − γ
∑

k j

If qC < kri < k(γ) then pri �

α − γ
n∑

i�2
ki

2 .

(4.22)

4.5 Defining Indicator Variables

In order to incorporate the three possible equilibria outlined in section 4.4
into our mathematical program simultaneously, we can use binary indicator
variables. These indicators zic , zim and zib will indicate if manufacturer i falls
into a competitive, mixed or Bertrand-Chamberlin equilibrium respectively.
We denote

zie �

{
1 if manufacturer i is using equilibrium e
0 otherwise.

(4.23)

To guarantee that exactly one equilibrium strategy is in use at any one
time, we can use the equation

zic + zim + zib � 1 ∀i ∈ M. (4.24)

Since we don’t know which of the two kri will be larger (but the mixed
equilibrium strategy requires kr1 > kr2), we need an additional binary
indicator zk for which

zk �

{
1 if kr1 > kr2

0 otherwise.
(4.25)

To guarantee that this indicator will indeed be equal to one if and only if
kr1 > kr2, we can use the equations

kr1 − kr2 ≤ Nzk (4.26)

and
kr2 − kr1 ≤ N(1 − zk). (4.27)
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If kr1 > kr2, then the left hand side of equation 4.26 is positive, forcing zk � 1.
Similarly, equation 4.27 forces zk � 0 if kr2 > kr1.

Finally, since the definition of qC (see equation 4.3) allows qC to be
negative for large private sector capacities, we need a binary indicator
variable to maintain the nonnegativity of our qC variable so that we can
formulate our program in AMPL. Call this binary indicator ziq , and let

ziq �

{
1 if qC

i < 0 according to equation 4.3
0 otherwise.

(4.28)

We then want to prevent qC
i from being negative by setting it to zero if

ziq � 1. To do so, we need the equation

qC
i �

α − γ ∑
j,i

k j

2 (1 − ziq). (4.29)

In order to ensure that ziq acts as specified, we need two more equations.
To enforce that if equation 4.3 produces a positive number then ziq � 0, we
can require that

α − γ ∑
j,i

k j

2 ≤ N(1 − ziq). (4.30)

Similarly, to enforce that if equation 4.3 produces a negative number then
ziq � 1, we can require that

−
α − γ ∑

j,i
k j

2 ≤ Nziq . (4.31)

4.6 Designing a Three-EquilibriumModel

Now that we have our three different equilibrium states and indicator
variables to go along with them, we can consider a new model. We will call
this final model the three-equilibrium model.

To create this model, we can use our indicator variables and a large
number N to remove the if statements from equation 4.22. As an example,
consider the mixed equilibrium case. If manufacturer i selects the mixed
strategy, then zim � 1, but otherwise zim � 0. To use this, we can split the
original price equation found in equation 4.22 into two inequalities.
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pri ≤
α − γ

n∑
i�2

kri

2 + N(1 − zim) (4.32)

pri ≥
α − γ

n∑
i�2

kri

2 − N(1 − zim) (4.33)

If zim � 0, then neither of these equations then constrain pri at all, as
desired.

If instead zim � 1, then equations 4.32 and 4.33 together guarantee that

pri �

α − γ
n∑

i�2
kri

2 (4.34)

as needed for the mixed equilibrium condition. For the competitive
and Bertrand-Chamberlin equilibria, this manipulation of one equality into
two inequalities is all that is necessary to get the program into a workable
form. However, the mixed equilibrium requires an additional step. Since the
equation in 4.22 defines kr1 to be the largest of the kri , we need to split the pri
calculation into two parts: one that’s true if kr1 is the largest (fulfilled when
zk � 1) and one that’s true if kr2 is the largest (fulfilled when 1 − zk � 1).
Adding on to equations 4.32 and 4.33, we get the final equations

pri ≤
αri − γkr2

2 zk +
αri − γkr1

2 (1 − zk) + N(1 − zim) (4.35)

pri ≥
αri − γkr2

2 zk +
αri − γkr1

2 (1 − zk) − N(1 − zim) (4.36)

Performing similar operations on the competitive andBertrand-Chamberlin
equilibria, we get the following set of binary indicator equations:
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kri ≥ k(γ) − N(1 − zib)

pri ≤
ari

2bri − (n − 1)cri
+ N(1 − zib)

pri ≥
ari

2bri − (n − 1)cri
− N(1 − zib)

kri ≤ qC
ri + N(1 − zic)

pri ≤ αri − kri − γ
∑

kr j + N(1 − zic)

pri ≥ αri − kri − γ
∑

kr j − N(1 − zic)

kri > qC
ri − N(1 − zim)

kri < k(γ) + N(1 − zim)

pri ≤
αri − γkr2

2 zk +
αri − γkr1

2 (1 − zk) + N(1 − zim)

pri ≥
αri − γkr2

2 zk +
αri − γkr1

2 (1 − zk) − N(1 − zim)

kr1 − kr2 ≤ Nzk

kr2 − kr1 ≤ N(zk − 1)
zic + zim + zib � 1

qC
i �

α − γ ∑
j,i

k j

2 (1 − ziq)
α − γ ∑

j,i
k j

2 ≤ N(1 − ziq)

−
α − γ ∑

j,i
k j

2 ≤ Nziq .

(4.37)

We can add these on to the existing framework from the Bertrand-
Chamberlin model to get our final three-equilibrium model. Table 4.1 keeps
track of all of the variables and parameters used in the three-equilibrium
model, including the binary indicators.
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Table 4.1 Three-EquilibriumModel Variables and Parameters

Name Type Meaning
qui Variable (float) Public vaccine quantity sold
qri Variable (float) Private vaccine quantity sold
pui Variable (float) Public vaccine price
pri Variable (float) Private vaccine price
kri Variable (float) Private manufacturing capacity
qC

i Variable (float) Competitive equilibrium threshold
zci Variable (binary) Competitive equilibrium indicator
zmi Variable (binary) Mixed equilibrium indicator
zbi Variable (binary) Bertrand equilibrium indicator
zk Variable (binary) Private capacity size indicator
aui Parameter Public demand curve constant
bui Parameter Public demand curve constant
cui Parameter Public demand curve constant
ari Parameter Private demand curve constant
bri Parameter Private demand curve constant
cri Parameter Private demand curve constant
Ki Parameter Maximum production capacity
Pi Parameter Minimum necessary profit
k(γ)i Parameter Bertrand equilibrium threshold
γ Parameter Product differentiation
D Parameter Total vaccine demand
n Parameter Number of manufacturers
N Parameter Constraint relaxation large number

4.7 Calculating Input Parameters

To apply this model to real-world situations, we need to find realistic values
for the parameters. Some of these parameters are more easily calculated
than others. In this paper, we only consider the case of two manufacturers,
so n � 2 in all cases. In the following section, we discuss how to calculate
the rest of these parameters.

4.7.1 Demand Curve Parameters

In order to find public parameters aui , bui , cui and private parameters ari , bri ,
cri , we can use the process outlined in Behzad and Jacobson (2016). Refer
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back to equation 4.4. If all the prices pi are set to zero, then wewould assume
that each manufacturer would sell an equal number of vaccines, half of the
total market demand D. Thus for a given manufacturer i,

aui �
Du

2 and ari �
Dr

2 . (4.38)

where Du is the total demand from the public sector perspective and Dr
is the total demand from the private sector perspective. Since the public
sector bargains as a collective, we allow Du � 0.57D. The private sector, on
the other hand, does not bargain as a collective. Therefore, we set Dr � D.
Since the private sector competes in a higher demand market, we would
expect it to have higher prices on average than the public sector prices.

Although a is dependent on demand, b and c only depend on γ. Both
the public and private sector b and c can be found using equations 4.9 and
4.10 respectively.

4.7.2 Minimum Necessary Profit

In equation 4.17, Pi represents theminimum total profitmanufacturer i needs
across the public and private sectors to willingly continue to participate in
the vaccine market. Vaccine research and development costs far outweigh
their production costs (Behzad and Jacobson (2016)), so we’ll focus only on
R&D costs here and assume production costs to be roughly zero.

In order to calculate how much profit each vaccine should produce, we
can look at each vaccine manufacturer’s R&D costs Ci and the total number
of types of vaccines they sell to the American government vi . In order to
maintain a manufacturer’s current R&D costs using only vaccine profits,
each vaccine must make on average

Pi �
Ci

vi
(4.39)

since then total across all vi vaccines, manufacturer i would make at least
Ci profits. Defining Pi as above lets us assume that manufacturers will
continue to participate in the vaccine market in following years and continue
to research and develop new vaccines, as desired.

The 2016 R&D spending Ci for each manufacturer can be found on their
website or approximated as shown in section 4.7.3 (GlaxoSmithKline (2017),
Sanofi (2017)). The number of types of vaccines the American government
purchases from each vaccine manufacturer vi can be found on the CDC
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Table 4.2 Vaccine Manufacturer R&D Per Vaccine

Manufacturer Number of Vaccines Vaccine R&D Million USD R&D
Name in Production (Million USD*) Spending/Vaccine
GlaxoSmithKline 13 645 49.6
Merck 11 1047** 95.2
Sanofi Pasteur 17 599 35.2

* All euro to USD conversions done on 3/21/17
** Approximated according to a process outlined in section 4.7.3

Data from 2016 financial reports and the CDC webpage (GlaxoSmithKline
(2017), Merck (2017), Sanofi (2017), CDC (2017)).

webpage (CDC (2017)). The results of these searches can be found in table
4.2.

4.7.3 Research and Development Cost Estimation

Although GlaxoSmithKline and Sanofi Pasteur have their 2016 research and
development costs available on their websites, Merck’s 2016 R&D spending
is not easily available (GlaxoSmithKline (2017), Sanofi (2017)). However, we
can use Merck’s overall R&D costs combined with the ratio of their vaccine
sales compared to their overall sales to make an approximation of their
vaccine R&D. Specifically, we can approximate vaccine R&D spending using

Vaccine R&D Spending ≈
(
Vaccine Sales
Overall Sales

)
(Total R&D Spending). (4.40)

This is the approximation used to get the Merck vaccine R&D value in
table 4.2. To check the validity of such an approximation, we use the same
formula to approximate the vaccine R&D spending of GlaxoSmithKline and
Sanofi Pasteur, and compare the approximated values found to the actual
values. The results are in table 4.3. At best, we find an error of only 0.5%,
and at worst, 26.4%. Thus, we can use this estimation method with some
confidence.

4.7.4 Product Differentiation

The product differentiation γ is a parameter that describes the amount of
difference between two competing products, with γ ranging from 0 to 1.
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Table 4.3 Vaccine Manufacturer R&D Estimation

Manufacturer GlaxoSmithKline Sanofi Pasteur
Total R&D Spending 3600 5172
Vaccine Sales 46000 4577
Total Sales 27900 33821
Predicted R&D/Vaccine 594 700
Actual R&D/Vaccine 597 554
Percent Error 0.50 26.4

Data from 2016 financial reports (GlaxoSmithKline (2017), Sanofi (2017)).
All monetary values are in millions of euros.

Table 4.4 Public Sector Vaccine Demand

Vaccine Public Sector Demand (millions)
DTap (Infanrix®, Daptacel®) 2.3
HepB (Engerix B®, Recombivax HB®) 5.2
DTap-IPV-HIB (Pentacel®) 4.5
DTap-HepB-IPV (Pediarix®) 1.5

Calculations from Behzad et al. (2015), explained in section 4.7.6.
Data from 2012 National Immunization Survey.

In this scheme, γ � 0 represents two products being independent while
γ � 1 represents two products being perfect substitutes (Behzad et al. (2015)).
Behzad et al. approximates the degree of product differentiation between
vaccine pairs by looking at the number ofmedical adverse effects that happen
per dose for each vaccine. For more details on these calculations and and a
list of calculated results for a wide variety of vaccines, consult Behzad et al.
(2015) and Behzad and Jacobson (2016).

4.7.5 Bertrand-Chamberlin Threshold

Once ari has been calculated as per section 4.7.1 and γ has been calculated as
per section 4.7.4, then k(γ) can be calculated using equation 4.2. Although
equation 4.1 refers to αri , we can substitute αri for ari using equation 4.8.



32 An Equilibrium Model

4.7.6 Total Demand

Here we again use a strategy outline in Behzad et al. (2015). In order to
approximate the total demand for a specific vaccine type in a given year, we
can look at the National Immunization Survey (NIS), which collects data on
vaccine usage across the country (National Immunization Survey (2015)).
The NIS reports what percentage of people take each vaccine, and howmany
doses each recipient received. This information can be used to calculate
an expected number of doses per person, which we can multiply by the
expected number of vaccine-age children in the upcoming year to find an
expected vaccine demand. Using this method, the expected number of doses
used in 2012 is reported in table 4.4.

In order to approximate the number of vaccine-age children in the
upcoming year, we can look at the year’s birth cohort size. Although not all
children in a given birth cohort will be vaccinated, a high enough percentage
will to make this estimation reasonable (Behzad et al. (2015)). Birth cohort
data (the number of babies born in the US in a given year) can be found from
the CDC (National Center for Health Statistics (2017)).

4.7.7 Total Capacity

Since manufacturers do not tend to publish their total capacity, for the
three-equilibrium model we choose to use a wide variety of possible Ki
values and note their effects rather than try to approximate a correct value
for Ki . This allows us to examine the effects of both scarcity and abundance
conditions on optimal pricing strategies.

For the Bertrand-Chamberlin model, we can use a value of Ki that is
large enough to meet the Bertrand Chamberlin constraint (equation 4.13)
regardless of how many vaccines get sold in the public sector. Any value of
Ki > D should be adequate for such a case, and increasing the value of Ki
beyond that should not change the results.



Chapter 5

Results

5.1 Applying the Bertrand-Chamberlin Model to In-
fanrix® and Daptacel®

In this chapter, we look at how parameter variations affect the output of the
Bertrand-Chamberlin model from equation 4.18. We focus on the Infanrix®
Daptacel® duopoly. Both vaccines contain DTap, which immunizes chil-
dren against tetanus, pertussis (whooping cough) and diphtheria (Tartof
et al. (2013)). GlaxoSmithKline makes Infanrix® and Sanofi Pasteur makes
Daptacel®. For the current prices of each, see table 5.1.

Looking at table 5.1 shows us that the actual private sector prices are
higher than the actual public sector prices, and that the public sector prices
of the two vaccines are almost identical while the private sector ones are
not. These are qualitative traits to look for when comparing our model to
actual vaccine prices. Also, since we have the demand for DTap vaccines
as a whole rather than each specific brand, the input parameters for each
of these vaccines are identical in this analysis. This means that although
we are interested in if the optimum CDC prices are different for each
manufacturer, which manufacturer receives the lower price is not of interest
(the manufacturers are essentially interchangeable, from the perspective of
the model).

There are a few more computational details to work out before the
three-equilibrium model can provide feasible results, so we won’t discuss
results of that model here.
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Table 5.1 Infanrix® and Daptacel® Vaccine Prices

Vaccine Infanrix® Daptacel®
Public Sector Price $16.15 $16.04
Private Sector Price $20.96 $28.41

Data from the Vaccines for Children Program (2017).
Prices from a contract that spans 3/31/15-3/31/2016.

5.2 Varying the Minimum Required Profit

In section 4.7.2, we approximate a minimum required profit for each vaccine
manufacturer. Although our resulting Pi values (found in table 4.2) seem
reasonable at first glance, they are too large for our model to handle. Since
we are using a linear demand curve, there is a limit to how much each
manufacturer can make - as they raise their prices, they will sell fewer
vaccines. If the Pi values are set higher than this limit, the problem becomes
infeasible.

Thus, our first investigation is: what is the maximum Pi value such that
our model will produce prices that satisfy all of our constraints? Looking at
theDTap vaccine case, we run a series of variations on ourmodelwith a range
of Pi values and with other parameters taken from Behzad and Jacobson
(2016). The results can be seen in figure 5.1. For simplicity, we let P1 � P2,
assuming that both manufacturers require the same minimum profits. The
model is feasible for any Pi ≤ $15.2 million, which is a little under half of our
estimate for the minimum profit required for Sanofi Pasteur ($35.2 million)
and a third of our estimate for GlaxoSmithKline ($49.6 million).

Since the private sector price is determined by the Bertrand-Chamberlin
equilibrium, it remains a constant $10.76 throughout. More interestingly,
the public sector prices shift as we increase Pi . For low Pi , the government
can afford to buy vaccines at next to no cost from one manufacturer, since
both manufacturers can make enough profits from the private sector alone.
As Pi increases, the government is forced to buy vaccines at higher costs - a
small number from the higher priced Daptacel® and a larger number from
the lower priced Infanrix®. The two public prices converge to $1.94 then
collectively rise to $3.33 just before Pi reaches infeasibility.

Excitingly, these values of $3.33 for the public sector and $10.76 for the
private sector qualitatively mimic reality, with the public sector price being
smaller than the private sector price. The $7.43 gap between the two prices is
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Figure 5.1 E�ects of Minimum Profit Required on Price and Quantity Sold

This figure shows the prices pui and pri (above) and the quantities sold qui
and qri (below) for Infanrix® and Daptacel® for Pi ranging from 0 to
15.2 × 106 (the problem is infeasible for larger Pi). Here, γ � 0.23 and
D � 4 × 106 (meaning public demand is 2.3 × 106), like in Behzad and

Jacobson (2016). Ki � 4 × 106 for both manufacturers.
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in between the $4.81 gap between the actual Infanrix® prices and the $12.37
gap between the actual Daptacel® prices.

5.3 Varying the Degree of Product Differentiation

Product differentiation, discussed further in section 4.7.4, is also a difficult
quantity to estimate. In figure 5.1, we produced feasible results using
γ � 0.23, but would all gamma values produce feasible solutions? Figure
5.2 looks at a range of γ values from 0 to 1, using the Pi threshold of $15.2
million determined in section 5.2. Here, we find feasible solutions for γ � 0
and γ ranging from 0.22-0.83.

There are several other features of figure 5.2 that are worthy of notice.
For one, the public price is below the private sector price, except for γ ≥ 0.80.
This shows that except for large γ, overall qualitative behavior is not sensitive
to changes in γ. We can also see in the bottom half of figure 5.2 that more
vaccines are being sold in the private sector than the public sector, regardless
of γ value.

Our goal is to have around 57% of the vaccines be sold in the public
sector. Since more vaccines are being sold to the private sector, our model
isn’t maintaining the desired public-private quantity ratios. To mitigate this
problem, we might want to constrain the amount sold in each sector, rather
than just constraining the overall number sold between both sectors.

Along similar lines, we can also see that the number of vaccines sold
overall does not stay constant. For lower values of γ, around 4 million
vaccines are sold overall (approximately the total demand) while for the
highest feasible γ values around 4.7 million vaccines are sold. While 4.7
million vaccines is still within reason, the fluctuation in total production
is something worth keeping an eye on. At what point should we consider
constraining the number of vaccines made exceeding overall demand?
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Figure 5.2 E�ects of Product Di�erentiation on Price and Quantity Sold

This figure shows the prices pui and pri (above) and the quantities sold qui
and qri (below) for Infanrix® and Daptacel® for γ ranging from 0.22 to 0.83
(the problem is infeasible elsewhere). We use D � 4 × 106 from Behzad and
Jacobson (2016). Pi � 15.2 × 106 and Ki � 4 × 106 for both manufacturers.





Chapter 6

Model Concerns

6.1 Model and Input Issues

Although we do our best to model the vaccine pricing market with this
approach, we can’t capture everything. The following are a set of drawbacks
and problems this model faces.

6.1.1 Data and Parameter Estimation

This model requires many pieces of data for input. Some, such as the
demand D for a vaccine, can be approximated in a logical manner using a
years’ National Immunization Survey and the number of children born in the
United States that year. Others, like the minimum profit Pi a manufacturer
requires in order to continue to sell and research vaccines, are less clearly
calculated. Even after choosing an approximationmethod to find Pi , it’s hard
to do error analysis on the calculation, since manufacturers don’t publish
their minimum desired profit margins.

Output accuracy is also difficult to gauge, since formany of these vaccines,
we don’t have many years of data to compare to. The CDC only publishes
NIS results from 1995 onward (National Immunization Survey (2015)). On
top of that, many vaccines in duopoly markets have only been recently
developed. Pediarix® was approved in 2002 and Pentacel® in 2008, so the
only relevant annual price negotiations in that duopoly have happened since
2008. This means that any model parameters that depend on annual data
(such as the linear regression models in section 3.2) will be heavily affected
by outliers and short-term trends.

There are also some smaller data discrepancies that are more easily fixed.
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In this paper, we use 2016 data to approximate Pi , the most recent numbers
available. However, these numbers don’t match up with our calculations for
D, which are based off of 2012 data. The NIS data takes a while to process, so
the most current data available is the 2015 dataset (National Immunization
Survey (2015)). Ideally, one would use the most recent NIS data available.
Whether or not it is better to use NIS and vaccine R&D data that are in the
same year or the most recent versions of each available is up for debate.

6.1.2 Modeling the Demand Curve

Demand is a tricky quantity to model, since there are many ways to describe
the price-demand relationship. We choose to use a linear relationship
between price and quantity sold, since it allows us to access the game theory
results shown in Behzad and Jacobson (2016). However, a linear fit is not
necessarily the best way of describing this relationship. Demand for vaccines
is very inelastic, since most will choose to get vaccinated regardless of price
fluctuations within a certain range. Also, consumers rarely pay the full
price of their vaccines due to health insurance coverage, also implying that
price fluctuations may not result in a large change in quantity sold. A more
complex relationship, such as a logistic curve, may be more appropriate in
this scenario. However, the nonlinearities introduced into the system due to
the use of a logistic curve both add theoretical complexity and computational
complexity.

After choosing a demand curve, another issue to consider is the amount
of deviation one should allow from that curve. Our demand curve, as seen
in equation 4.4, is an equality condition. That means that we do not allow
any leeway - choosing a price exactly determines the quantity sold. This
may not be the ideal way to set up a model. Future models might look at
the demand curve as a suggested relationship between price and quantity,
with some room to adjust as needed. Having more leeway both allows for a
better understanding of the market forces in play in a given solution (were
the prices higher or lower than expected, according to the demand curve?)
and gives a higher likelihood of finding a feasible solution.

Similarly to how much we constrain the demand curve, we also should
consider how much we constrain equation 4.16, the part of the model where
we ensure that we meet overall demand. There are two choices to consider
here: do we dictate that the number of vaccines sold exactly equals demand,
or that it equals or exceeds demand? Also, should we look at the private
and public sectors individually, or as a whole?
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For the first question, there are positives and negatives to either choice.
Exactly constraining the model ensures that you won’t create a large excess
of vaccines which a market would not have need for. Some number of
vaccines are needed in addition to demand, since some small percentage of
vaccineswill be handled incorrectly as to render themunusable or distributed
unevenly such that there are extra vaccines in some locations. The exact
percentage extra needed is unclear, but one could approximate and then
demand that number exactly using an equality.

If you choose not to exactly constrain the model and instead allow
production to meet or exceed demand, you no longer get the exact control
over howmany vaccines are made. However, the system does gain flexibility.
Since we are dealing with a highly constrained system, that added flexibility
can be key to finding feasible solutions. Also, since the objective function
(equation 3.8) is to minimize public sector costs, the tendency of the system
is to not exceed vaccine demand by much. Due to the increased flexibility of
the system, we choose this option rather than using an equality. However,
this requires checking periodically to see how many vaccines are being
over-produced, and deciding if the number over-produced is reasonable.
If over-production becomes an issue, one could add another constraint to
the system limiting the number of vaccines produced to some factor of total
demand.

Looking at the second question, there are two different approaches:
checking to see if demand is met in each sector individually (as seen in
equations 3.2 and 3.3) and checking to see if demand is met overall (as seen
in equation 4.16). The first method allows specific control over the ratio of
vaccines sold in the public sector vs. the private sector, whereas the second
method provides more flexibility. While we originally chose the first method
for greater flexibility, the second may be the better choice, since the results in
chapter 5 show that the public-private sector quantity ratio is not necessarily
maintained without additional constraints.

6.1.3 Manufacturer Incentives

In this model, we’ve chosen to assume that manufacturers want to optimize
their profits in the private sector. In the public sector, we only look to
minimize government costs, with the thought that government negotiating
power overrides manufacturers’ incentives to make profits. However, this
might not be the case - in an ideal world, we’d want to consider manufacturer
incentives in both the public and private sectors, since they have roles in
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both.

6.1.4 Marginal Cost

In chapter 4, we assume that vaccines can be produced at no marginal cost.
Although it is true that the main cost of vaccine production is the years of
R&D spending (Behzad et al. (2015)), vaccines do have a nonzero marginal
cost. This cost is difficult to find directly, since manufacturers do not tend
to post such information publicly. However, we can approximate marginal
costs by using the prices manufacturers offer to UNICEF and other foreign
aid organizations, as discussed in section 3.2. The game theory used in both
equilibrium models in chapter 4 relies on vaccines having zero marginal
cost, so for now this assumption remains. After more theory work, this
assumption could potentially be relaxed.

6.2 Coding and Output Issues

To test out model, we coded it up in AMPL. The Bertrand-Chamberlin
model can be solved with the MINOS solver, a solver that can handle linear
constraints and a nonlinear objective function well (AMPL Optimization Inc.
(2013)).

6.2.1 Coding up the Three-EquilibriumModel

The three-equilibrium model requires a solver that can handle integer
variables, quadratic constraints, and a quadratic objective function. MINOS
doesn’t solve integer problems and thus another solver must be found.

CPLEX or Gurobi might be good choices to solve the three-equilibrium
model. However, maintaining qC

i ≥ 0 (equation 4.29) currently requires a
quadratic equality constraint, which neither solver can handle. In order to
properly code up the three-equilibrium model, either that constraint will
need to be re-written or a different solver needs to be found.

6.2.2 Quantitatively Analyzing Price Output

Prices suggested by equilibrium calculations in Behzad et al. (2015) and
Behzad and Jacobson (2016) are almost always far lower than actual vaccine
prices. The same is true in this paper - our prices suggested in chapter 5
never go above $10.83, while the actual prices are between $16.04 and $28.41.
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Capturing these prices exactly is difficult, since there are many aspects of
the health care system (subsidies, insurance companies, etc.) that we don’t
even begin to attempt to put in the model. For now, this may mean that we
have to rely more on qualitative results than quantitative ones - which prices
are higher and by how much?

6.2.3 Feasibility

As is shown with the Pi and γ calculations in chapter 5, this model doesn’t
always produce a solution at all. Sometimes, the parameters are set such that
the model is over-constrained, and no solution exists. This is problematic
because it limits the situations with which we can use our model. For
example, we cannot use our original predicted values for Pi , since those fail
to produce feasible solutions. The three-equilibrium model may be more
flexible and have a larger solution set, but without a working coded version
and appropriate solver that is difficult to determine.





Chapter 7

Conclusions and Future Work

7.1 Conclusions

Previous work by Behzad et al. (2015) and Behzad and Jacobson (2016)
have modeled the public sector of the vaccine pricing market alone, with-
out looking at the government as an actor. Here, we use that work and
mathematical programming to incorporate the CDC into vaccine pricing
models and expand those models to span both the public and private sectors.
We suggest two main model model approaches: the Bertrand-Chamberlin
model, which dealswith systems that have an abundance of vaccines, and the
three-equilibrium model, which can analyze systems with either a scarcity
or abundance of vaccines.

Results from the Bertrand-Chamberlin model show predicted prices that
are lower than actual prices, but are qualitatively similar, with the public
sector prices being several dollars less than the private sector prices. These
qualitative differences are somewhat resilient to changes in the degree of
product differentiation γ for smaller values of γ. For γ ≥ 0.80, public sector
prices become larger than private sector ones.

Although our estimates for Pi , the minimum profit required for each
manufacturer to maintain interest in the market, are too large and make the
system infeasible, we can find the maximum feasible Pi computationally.
For Infanrix® and Daptacel®, the model maintained feasibility for Pi ≤
$15.2 × 106. This allows us to rethink our original Pi estimates, and perhaps
come up with a new estimation method that better reflects the feasible
minimum profits we see within the model.

This model helps us understand the impact of government pricing on
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the market as a whole, and helps to optimize not only for government prices
but also to keep vaccine manufacturers in the market. In a market where
the number of manufacturers is on the decline and health care costs are
rising, both of these priorities are key. Although mathematical models
can’t perfectly suggest ideal vaccine prices, they can bring in an additional
perspective and help policymakersmake informed choices. For salient issues
like health care, the time spent on extra doses ofmathematical understanding
are a price worth paying.

7.2 Future Work

This work has many possible extensions. Most pressingly, the three-
equilibrium model has yet to be analyzed computationally. Solving the
coding issues described in section 6.2.1 and choosing an appropriate solver
is a key next step in this modeling process.

Once computable, the three-equilibrium model opens up another line
of inquiry: what happens to prices as manufacturer capacity Ki changes?
Knowing how the CDC should price differently in times of scarcity vs
abundance, or if one manufacturer has a much smaller production capacity
than another, could be informative for policy making.

One could also do a more thorough investigation of the minimum
required profit Pi . What is the maximum Pi value for different γ, Ki and
D values? Further thought into why our system limits the maximum
profit a manufacturer can make and how to increase that limit through
different modeling choices would also be of use, since then we may be able
to incorporate our original estimates for Pi into our model.

As seen from the Bertrand-Chamberlin model results, our current mod-
eling approach doesn’t always maintain the private-public sector quantity
ratios we would hope for. Demand constraints like equation 4.16 might
be better supplemented with sector-specific constraints (see equation 3.2),
which would change model dynamics. Whether additional constraints
should be equalities or inequalities and whether they should constrain both
the public and private sectors or just one sector warrants additional thought.

As discussed in section 6.1.2, the linear demand curve may not be the
best price-quantity relationship to employ in our situation. As a possible
future line of research, other demand curves could be examined. This
would involve theoretical work to recalculate equilibrium values, as well as
computational work to then compare demand curve results.
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Lastly, future research could try these models on a wider variety of
cases. We looked at the Infanrix® Daptacel® duopoly, but there are many
others. One key case to look at is the Pentacel® Pediarix® duopoly, where
the government keeps track of the demand for both vaccines separately.
Many of the analytical methods described in this research extend to more
than two competing vaccines, so cases with three competing vaccines could
also be investigated.
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