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Abstract

This paper examines the mathematical properties of Sudoku puzzles defined
on a Torus. We seek to answer the questions for these variants that have
been explored for the traditional Sudoku. We do this process with two
such embeddings. The end result of this paper is a deeper mathematical
understanding of logic puzzles of this type, as well as a fun new puzzle
which could be played.
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Chapter 1

Introduction

Pick up any newspaper in the country and flip through it, and eventually
you will find the puzzle section. Though this section will likely not catch
you up on the happenings of the world, it is a useful way to check one’s
ability to make logical deductions or know what cultural cues are relevant.
A Sudoku puzzle is one such logic puzzle which is typically found here in
the paper, as well as in airplane magazines, puzzle books, and numerous
other places intended to help brains stay active. In essence, what a Sudoku
puzzle asks you to do is to use a set of numbers (‘clues’) to deduce where
the rest of the numbers must be placed. It is a fun activity using numerical
symbols to understand how one element can affect another, and a gentle
introduction to logic.

Sudoku were first created in 1979 Hayes (2006), but we will later see that
they are related to a mathematical tiling question that has been studied since
at least the 18th century. Originally named ‘Number Place’, the puzzles
eventually took on themoniker Sudoku, Japanese for ‘digit single’, indicating
that each digit must be placed once and only once (a single time) per row,
column, or box. They have since spread across the globe as a fun way to
exercise one’s brain and logic skills.

My first experience with Sudoku was when I was 9 (the same age as the
dimension of the typical Sudoku square!). It was at this time that my father
began to figure out coding so that he could generate his own puzzles. Thus,
Sudoku became a part of my family and are still something I turn to as a
way to relax while checking my brain’s capabilities. While I’ve had people
tell me that Sudoku stress them out because they’re “too math-y" I always
felt the opposite way, that Sudoku puzzles were a fun way to interact with
numerical symbols without a chance to make algebra mistakes. It was only
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recently that I began to look at Sudoku as a mathematical construct, and
thus this thesis was born.

Sudoku are fascinating to mathematicians not just because they’re a fun
logic puzzle, but because of the sometimes puzzling nature of the game
itself. Not only is it a useful tool for helping students gain comfort with
logic and math, as discussed in the introduction to Taking Sudoku Seriously
Taalman (2011), but there are interesting questions to be asked about the
puzzles themselves. While we understand how to design puzzles, in a sense,
it is much harder to find out how many puzzles there are, and what rules
the clues must follow. Thus, something that at first seems mathematically
trivial is, rather, a complex example of how using mathematics to invent
tools doesn’t always give us all of the mathematical details of the tool itself.

Many puzzlers have found their familiarity with the Sudoku structure
allows them to make certain logic jumps in how they do the puzzles, making
finding solutions less of a challenge. As such, variants are also in popular
demand, either by increasing the size of the puzzle, modifying an existing
rule, or adding a new rule. Such variants allow users to feel some level of
comfort with the puzzle, as the rules are familiar, but the individual logic
steps change enough to present a challenge. One goal of this thesis is to find
interesting variants of Sudoku, motivating topological intuitions.

While Sudoku may be off putting to those who are concerned with
their math abilities, they are not necessarily so. The phrase ‘topological
intuitions’ however, is a hefty one, and needs unpacking. One issue with
higher mathematics, such as topology, is finding ways to help students
visualize the new spaces they’ll be working within, which is usually done
with a combination of words, graphics, and examples that students may
already know. For example, when explaining how to visualize living in a
torus, it is common to rely on students understanding of the game Pacman,
and how the characters in that gamemove as comparable to how those living
on a torus would move. Placing puzzles on a torus, then, is a similar way to
help motivate those interested in Sudoku into gaining insights which could
help them with other mathematical topics.

The motivation of this thesis, then, is to use topological concepts to
generate a new variant of Sudoku, both as a source of interest in itself, as
well as to understand how answering questions about a particular variant
can help us answer questions about Sudoku puzzles as a whole.
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1.1 Sudoku

In order to proceed, we must mathematically define a Sudoku tiling. To do
so, we first define a Latin Squares tiling.

Definition 1.1. A Latin Square is an n x n square with each square labeled with
a number i ∈ {1, . . . n} so that the numbers 1 . . . n appear once and only once in
each row and column.

1 2 3
2 3 1
3 1 2

Figure 1.1 A 3x3 Latin Square Tiling

A Sudoku tiling, then, is a Latin Square tiling, but with the further
constraint that there are n regions, that also must contain the numbers 1 . . . n
once and only once. Traditionally, a Sudoku square is on a 9 x 9 grid, so that
theseregions are 3 x 3 squares. An example is in Figure 1.2.

While finding any Sudoku tiling is tricky in and of itself, a puzzle is
traditionally defined as a Sudoku tilingwithmost of the tilesmissing, leaving
only the necessary clues which can be used to find a unique completed tiling.
A Sudoku puzzle, then, implies the existence of at least one tiling, which
must be unique to that puzzle. An example is shown in Figure 1.3, and the
reader is encouraged to attempt to solve the puzzle.
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1 2 3 4 5 6 7 8 9

4 5 6 7 8 9 1 2 3

7 8 9 1 2 3 4 5 6

2 3 4 5 6 7 8 9 1

5 6 7 8 9 1 2 3 4

8 9 1 2 3 4 5 6 7

3 4 5 6 7 8 9 1 2

6 7 8 9 1 2 3 4 5

9 1 2 3 4 5 6 7 8

Figure 1.2 A 9x9 Sudoku Tiling

Figure 1.3 A 9x9 Sudoku Puzzle Danburg-Wyld (2005)

1.2 Literature Review and Questions

Jason Rosenhouse and Laura Taalman’s book, Taking Sudoku Seriously Taal-
man (2011) is a novel-length exploration of how Sudoku and themathematics
can be used to help students engage in mathematics in a more meaningful
way. By taking a ‘game’, and then using it as an example in mathematical
queries and proofs, they hope to engage readers and show them how accessi-
ble mathematics can be. They further lay out the mathematical foundations
of Sudoku, from the older problem of Latin Squares to the combinatorics,
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group theory, graph theory, and algebraic elements which are used in the
puzzles. The 214 pages not only explore Sudoku, but also use Sudoku as an
avenue to exploring deep mathematics.

Some of the questions which the book explores are things such as how
many distinct Sudoku tilings are there? What is the minimal number of
clues needed to generate a unique tiling? What is the maximal number
of clues that can fail to generate a unique tiling? Other questions, such as
how one can generate one tiling from another, are also of interest. The book
uses mathematical proofs to answer some of these questions, but others are
answered by computational power alone.

The concept of puttingpuzzles andgamesonto a torus inorder tomotivate
topological understandings came to me from the book, The Shape of Space
Weeks (1985). The book, which seeks to help readers develop topological
intuitions, and become better able to visualize different spaces, uses tic-tac-
toe and chess as examples of games which can be easily transferred to a
torus via gluing the edges correctly. While Weeks’ has further developed
this idea, with an entire website of such games and puzzles at http://www.
geometrygames.org/TorusGames/ , I found Sudoku to be ameaningful example
which had yet to be explored, and so took it upon myself to do so.

1.3 Variants

There are 6,670,903,752,021,072,936,960 different Sudoku puzzles Taalman
(2007), which should be more than enough to keep any game enthusiast
busy. Unfortunately, many find that using the same logic steps over and
over is unsatisfying and instead search out variants of the game to keep
themselves occupied. Such variations often involve changing the size of the
board, changing constraints, or adding additional ones.

One simple example is to change the shape of the boxes which are being
filled. Another variant which brings to mind more topological ideas is to
have a constraint requiring the tiling of diagonals as well, using ‘wrapping’
to make each diagonal the same size. Figures of both are included, and
readers are encouraged to attempt both!

My goal is to use topological polygonal presentations in order to find
satisfying variants of Sudoku, both to create new and delightful games,
as well as to develop intuitions on which properties of a Sudoku board
constrain answers to our questions in different ways.

http://www.geometrygames.org/TorusGames/
http://www.geometrygames.org/TorusGames/
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Figure 1.4 A Sudoku Variant With Changed Constraints Danburg-Wyld (2005)

Figure 1.5 A Sudoku Variant With Additional Constraints Taalman (2007)
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Board Structure

2.1 Constructing a Variant

One of the most frequently cited manifolds of topology is the torus, collo-
quially known as the surface of a doughnut. When we’re working with a
Sudoku puzzle then, the question of how to embed it in this space can seem
tricky, as bending a Sudoku puzzle into a coffee mug seems more annoying
than placing it onto a doughnut. However, topological understandings
of these spaces can be more easily viewed for puzzles by looking at their
polygonal presentations. Since any topological manifold can be represented
by a polygon with pairs of edges identified (Su, 2016 Draft), it now seems
logical to embed puzzles onto these polygons, which we can more easily
visualize, rather than to put puzzles arbitrarily into topological spaces. Since
the torus is one of the easier topological manifolds to visualize, regardless
of presentation, it seemed sensible to begin by placing puzzles there, such
as in Figure 2.1.

If we are to claim that the puzzle is on a torus, however, we must be able
to prove that the space it is on is indeed a torus. For example, a square with
the proper edge identifications is topologically equivalent to a torus. This is
shown in Figure 2.2

When trying to embed a Sudoku puzzle into a torus, I first began with
the polygonal presentation discussed above, of the square. However, closer
observance shows that doing so doesn’t actually change the puzzle in
the least, as rows and columns will remain adjacent only to themselves.
This representation just shows how the Sudoku can naturally fit into this
environment. Torus ideas can be used to help define additional constraints
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Figure 2.1 A Torus Represented by a Square

Figure 2.2 A Square Being Deformed into a Torus Weeks (1985)

that may exist to add interest to the puzzle, as seen in Figure 1.5.
In order to create a new variant, I thus looked at a completely different

polygonal representation of the torus. I found the hexagonal presentation to
be of particular interest, and so explored how we could use this to create a
new puzzle. The representation in interest is shown in Figure 2.3, as well
as how it may be deformed into a torus. We see the sides opposite each
other are marked as having arrows on them that denote where they are to
be ‘glued’ to each other, to complete the torus. This identification is shown
later in this paper through color coding.
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Figure 2.3 A Hexagon Being Glued into a Torus Weeks (1985)
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2.2 Making the Hexagon a Sudoku

Now that we have a fun polygonal presentation of a torus, we have to find a
way to turn it into a board. To do this, we first divide the hexagon into 6
parts, and then use barycentric subdivisions to make each ‘big triangle’ have
six subtriangles, comparable to a traditional sudoku board. Big triangles are
considered neighbors if they are either right next to each other, or across
from each other, as understood from the gluing. See Figure 2.4.

Figure 2.4 A Hexagonal Torus Made into a Sudoku-like Board

2.3 Terminology

To make sense of Figure 2.4, we must determine a set of words which will
be used to refer to its various parts throughout this thesis. We do this as
follows:
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• Board will refer to the hexagon which is subdivided as seen above,
and is blank.

• Tilingwill refer to a board which has been completely filled according
to the rules of the game.

• Puzzle will refer to a partially filled in board, which will produce a
unique tiling.

• Clue will refer to a number or symbol which has been used to fill in a
part of the board.

• Big Trianglewill refer to one of the six triangles that form the hexagon.

• Triangle will refer to a triangle that helps form a big triangle.

• Band will refer to a set of twelve triangles which fall within a set of
parallel lines.

• Bar will refer to one of the lines dividing the board up into a Band.

• Vertical Band will refer to the band whose bars are vertical to the
bottom of the page.

• Diagonal Band will refer to the band whose bars start in the upper
left of the hexagon.

• Anti-Diagonal Band will refer to the only other type of band there is.

• Vertexwill refer to a point at which multiple big triangles meet.





Chapter 3

First Variant: Sudodici

3.1 Finding a Solution

Figure 3.1 The Bands in Question

Now that we have a board, we should determine a set of rules with
which this board is to be labeled. The most important analog seems to be
use the bands, displayed in Figure 3.1, which mimic the columns and rows
of a Sudoku or Latin Squares tiling. There seem to be 3 vertical bands of 12
triangles, each of which fit this requirement, where the external edges form
a band together. Additionally, there are 3 diagonal bands in each direction,
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and so it seems sensible to require that each of these bands contain the
numbers 1 . . . 12, and that the adjacent Big Triangles do the same. We will
hence call this puzzle the Sudodici- keeping the Japanese ’su’ for digit and
using the Italian ’dodici’ for twelve, as it sounds best. The overwhelming
question, then, becomes whether or not there exists a valid tiling of this
Sudodici board.

Luckily, the answer is yes, as displayed in Figure 3.2.

Figure 3.2 A Hexagonal Sudoku Tiling

3.2 Properties of the Sudodici

What is most interesting to me about this tiling was that in addition to the
constraints I wanted, the tiling satisfies some additional constraints. The
regions that have the numbers 1 . . . 12 appear once and only once are:

1. Each band, including the third band formed by the gluing

2. Each adjacent pair of big triangles

3. Each set of triangles adjacent to a vertex
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Figure 3.3 An Illustration for Constraint (4)

4. Each set of triangles at ‘distance’ n from a vertex (where n � 0, 1, 2), as
seen in Figure 3.3

In addition, the solution is incredibly symmetric, with each ‘diamond’
being mirrored across the hexagon. This solution, then, seems improbable
to be discovered by coincidence unless it reveals something about the overall
set of solutions for this type of board.

3.3 Answering Sudodici Questions

In order to answer Sudoku-type questions for this board, we begin by looking
at what was implied by the presence of one clue. That is, how does the
positioning of one triangle affect the others, in order to determine howmany
distinct completed tilings there could be. We start by placing one such clue,
x, and seeing how it can exclude other positionings for x, first by the bands
and then by the triangle constraints, as these are sufficient to imply all further
constraints. We will use this to prove our first theorem.
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Theorem 3.1. There exists a unique tiling for the Sudodici board with constraints
(1)-(4).

Proof. We begin by placing one x, and looking at where we can place the
other xs. We do this by a process of elimination. First, we notice which
triangles are ruled out from the band constraint, as seen in Figure 3.4.

Figure 3.4 An Illustration of Which Triangles are Ruled out by the Band Con-
straint

We next look at which triangles are ruled out by the neighboring big
triangles constraint, as in Figure 3.5.

We now use the fact that each band needs x at least once, and use that to
find where the other numbers must go. By placing an x where necessary for
each diagonal band, we then use the vertical bands to complete our proof.
We now have found where all xs must be placed based solely on one clue.

By placing one x, then, we followed a series of logic steps to determine
that the other two xs must only appear in the positions determined in
Figure 3.6. Trying to place an x anywhere else will lead to an inability to
complete the puzzle, as you are encouraged to try. We can further see that
by symmetry, this will carry over to all numbers.

We have now proved that there exists precisely one tiling for this board
with this constraints, and can now back-build puzzles to find the total
number of puzzles.

�
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Figure 3.5 Available Positionings for x

Figure 3.6 All xs Have Been Determined by One Placement

In order to have a meaningful puzzle, however, it should have a minimal
number of clues, where minimal means that each clue gives information that
cannot be gained otherwise. We thus look for the minimum and maximum
number of clues possible for a puzzle.

Theorem 3.2. The minimal and maximal number of clues necessary for a Sudodici
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Figure 3.7 The Positioning of x Does Not A�ect Positioning of y

puzzle is 11.

Proof. We begin by noting that a puzzle with 11 clues, each a distinct number,
is indeed solvable, as seen in Figure 3.8. As we have shown in the previous
section, these clues determine where the other iterations of 1-11 appear, and
leave a remaining 3 places for 12. We further note that as the positioning
of one clue determines the other two iterations of it, these 11 clues can
be positioned wherever in the puzzle, and not just around the center, as
pictured here.

We next note that if we had more than 11 clues, we would either
have an extraneous instance of the 12th number, which we argued above is
unnecessary, orwewould have the same number twice, which is unnecessary
as a clue need only appear once in order to know where the other two
iterations are. Thus, 11 is the maximum number of clues needed.

Further, we argue that if less than 11 clues appeared, we would have at
least two numbers that didn’t appear at all on the starting puzzle, but when
the rest of the board was filled in at least 6 triangles would be left empty, and
we showed with our symmetry argument earlier that the positioning of one
clue does not affect another, so these two numbers that didn’t appear would
be effectively interchangeable. Hence, 11 is also the minimum number of
clues needed.
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�

Figure 3.8 A Solvable Puzzle

We can thus find the number of minimal puzzles using simple combina-
torics. If we have 11 clues, selected from 12 numbers, which can each be put
in one of 3 positions, we will end up with 311x12! puzzles. However, as they
all have the same solution, they may not be the most enjoyable game to play.

3.4 Conclusions on the Sudodici

The Sudodici is an interesting Sudoku-like problem because it allows us so
much information with just the placement of a single clue. For a traditional
Sudoku, placing one symbol will rule out 20 (out of 81) other positions for
another iteration of that symbol, for a Sudodici, we end up ruling out 33
(out of 36). Traditionally, a Sudoku’s difficulty is ranked in part by how
much information one clue gives the player. This should should imply that
the Sudodici is much ’easier’, as the placement of one clue gives us a lot of
information. However, the complicated form of the board means that this
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doesn’t actually hold true. Indeed, while there is only one unique tiling for
the Sudodici board, it is remarkable that this randomly constructed board
could both have a solution, but also such symmetric properties. Further, the
topological nature of the board and the varying shapes mean that you could
almost certainly stump someone with this puzzle multiple times, especially
if you varied your labels.



Chapter 4

Second Variant: Suroku

4.1 Constructing a Non Trivial Variant

Seeing that the first variant had a unique tiling, there were only so many
questions we could ask about it, and they all had relatively easy to compute
solutions. Therefore, it made sense to try and create a more complex variant,
whose questions and answers could be more easily related to a traditional
Sudoku.

To create this variant, more flexibility had to be built into the puzzle.
This was achieved by changing it so that each band has the numbers 1-6
appear twice, and each Big Triangle having the numbers appear once. We
call this new puzzle the Suroku, where ‘roku’ is Japanese for six, indicating
that we will now have the natural numbers up to six appear.

4.2 Features of the Suroku

We first note that this board with these rules does have multiple tilings
which obey the rules. We do this by observing Figures 4.1 and 4.2.

By looking at the upper left corner of these boards, it is observable that
these tilings are not just relabelings of each other. It is further noticeable that
these tilings are very similar to each other. This is because there are a series
of moves through which we can translate one tiling to another, and still have
them be valid labelings.
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Figure 4.1 A Valid Tiling
Figure 4.2 Another Valid
Tiling

4.2.1 Moves

It seems like a useful task to catalog the ways in which we canmove from one
valid board to another, then. These moves will be seen as ways of switching
labels for arbitrary symbols x and y, which aren’t just relabel the tiling. It
thus becomes reasonable to assume that these moves can only be formed by
pairs or triplets of xs and ys, as moving just one clue will obviously mean
that the initial tiling was wrong, and two and three are the only factors of six.
That is, because we have up to six symbols, if we tried to swap out four or
five iterations of xs and ys, we would end up with an invalid permutation as
it would disrupt either too many or not enough things, and we would have
to continue making swaps until we ended up back with something that was
a multiple of 6 swaps. Else, the four or five iterations must have actually just
been a combination of a move upon a pair or triplet.

Hence, we have managed to look at all possible ways of arranging pairs
or triplets of xs and ys so that switching them does not change the validity
of the board. These moves were found by looking at the distinct ways that
we could position an x and y in relation to each other, and then seeing what
swaps preserved the band and triangle constraints. These are displayed in
Figures 4.3a through 4.3i.
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a. Move 1 b. Move 2 c. Move 3

d. Move 4 e. Move 5 f. Move 6

g. Move 7 h. Move 8 i. Move 9

Figure 4.3 The Moves
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4.2.2 Tiles

We gained intuition for the Sudodici by looking at how one clue constrained
the other iterations of that symbol. In order to understand how Suroku
tilings operate, we can do a similar procedure by placing two clues. As
there are 1260 ways of doing this, we instead look for different “equivalence
classes” of these pairs. We now bring in the topological intuition to note
that all the vertices can, and should, be viewed as equivalent. As there are
only twelve triangles around each vertex, this means if we are to place both
clues around one vertex, we have brought down the number of cases to only
132. We can further note that due to the fact that each clue will knock out
its entire big triangle, we’re actually down to 120 cases. This is still a large
number, so we next look at how these clues can share bands. Each pair of
clues can be in either 0, 1, 2, or 3 bands together. This means we only have
four cases, if we rely upon symmetry, for having both of the pair be around
the same vertex. It further turns out that while it is possible for any vertex to
have 0, 1, 2, or 3 of the same symbol around it, at least one vertex will have 2,
meaning that by looking at all boards formed by having a pair around an
arbitrary vertex, we have captured all possible ways of laying out the clues.

The options are below, where v0 denotes the center vertex:
An interesting and important note is that the number of iterations of a

symbol around each vertex is not constant across vertices. Indeed, we have
found (0, 3, 3), (2, 2, 2), and (1, 2, 3) pairs. These are indeed the only options,
as placing anymore iterations of a symbol around one vertex would interfere
with the bands constraint. Further, the fact that the number of clues around
a vertex is not constant can be seen in Figure 4.3g, as Move 7 changes this
value. It would thus be insensible to not be able to have different numbers
around different vertices in different boards.

4.3 Relations of Boards

We now have a sequence of moves as well as a grasp on how different boards
can be tiled. We can view the possible tilings for each symbol as a sort of
puzzle of their own, where the number of possible tilings is the complete set
of ways in which we ‘fit’ the tilings together.

The major question which arises out of these sets of moves and tiles is
whether or not all completed tilings are ‘reachable’ from one another by the
moves in question. A proof strategy is to observe how each of the tile-options
only have a subset of moves even possible for the individual symbol, and
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a. 0 clues around
v0, 3 around
other vertices

b. 2 clues around
v0, 3 bands in
common

c. 2 clues around
v0, 1 bands in
common

d. 2 clues around
v0, 0 bands in
common

e. 2 clues around
v0, 0 bands in
common

f. 2 clues around v0,
0 bands in com-
mon

g. 2 clues around
v0, 0 bands in
common

h. 2 clues around
v0, 0 bands in
common

i. 2 clues around v0,
0 bands in com-
mon

j. 2 clues around v0,
0 bands in com-
mon

k. 3 clues around
v0, from 2 bands
in common

l. 3 clues around v0,
from 2 bands in
common

m. 1 clue around v0 n. 1 clue around v0 o. 1 clue around v0 p. 1 clue around v0

Figure 4.4 Ways to Tile One Symbol for Suroku
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that these boards will become even more constrained once the other symbols
are placed. A loose proof is to show that each of the individual symbol
tilings is reachable via a series of moves, showing that the different board
types are indeed related. However, while this does give us a connected
graph of some sort of tilings, it doesn’t actually give us a connected graph of
all tilings. We would have to further include at least one more variable in
order to show that just because one board of type a is reachable from one
board of type b, all boards of type a are reachable from type b.

4.4 Conclusions

This board type will be more similar to a Sudoku than a Sudodici in a few
interesting ways, despite the fact that it looks more like a Sudodici. First, the
number of minimal clues in a puzzle should vary, as we can see in the ‘tiling’
section that we can have multiple ways of placing a couple of symbols that
can cause different final tilings. The results from this puzzle should allow
us to begin answering questions in a way which is built upon our work with
the Sudodici, but can be compared to the Sudoku and give us intuitions and
insights into its combinatorics as well.
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