
Claremont Colleges
Scholarship @ Claremont

HMC Senior Theses HMC Student Scholarship

2017

Classifying the Jacobian Groups of Adinkras
Aaron R. Bagheri
Harvey Mudd College

This Open Access Senior Thesis is brought to you for free and open access by the HMC Student Scholarship at Scholarship @ Claremont. It has been
accepted for inclusion in HMC Senior Theses by an authorized administrator of Scholarship @ Claremont. For more information, please contact
scholarship@cuc.claremont.edu.

Recommended Citation
Bagheri, Aaron R., "Classifying the Jacobian Groups of Adinkras" (2017). HMC Senior Theses. 102.
https://scholarship.claremont.edu/hmc_theses/102

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Scholarship@Claremont

https://core.ac.uk/display/84114464?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholarship.claremont.edu
https://scholarship.claremont.edu/hmc_theses
https://scholarship.claremont.edu/hmc_student
mailto:scholarship@cuc.claremont.edu

Classifying the Jacobian Groups of Adinkras

Aaron Bagheri

Dagan Karp, Advisor

Stefan Mendez-Diez, Reader

Department of Mathematics

May, 2017

Copyright © 2017 Aaron Bagheri.

The author grants Harvey Mudd College and the Claremont Colleges Library the
nonexclusive right to make this work available for noncommercial, educational
purposes, provided that this copyright statement appears on the reproduced
materials and notice is given that the copying is by permission of the author. To
disseminate otherwise or to republish requires written permission from the author.

cbna
Theauthor is alsomaking thisworkavailableunder aCreativeCommonsAttribution–
NonCommercial–ShareAlike license.

See http://creativecommons.org/licenses/by-nc-sa/3.0/ for a summary of the rights
given, withheld, and reserved by this license and http://creativecommons.org/licenses/
by-nc-sa/3.0/legalcode for the full legal details.

http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/legalcode
http://creativecommons.org/licenses/by-nc-sa/3.0/legalcode

Abstract

Supersymmetry is a theoretical model of particle physics that posits a sym-
metry between bosons and fermions. Supersymmetry proposes the existence
of particles that we have not yet observed and through them, offers a more
unified view of the universe. In the same way Feynman Diagrams represent
Feynman Integrals describing subatomic particle behaviour, supersymmetry
algebras can be represented by graphs called adinkras. In addition to being
motivated by physics, these graphs are highly structured andmathematically
interesting. No one has looked at the Jacobians of these graphs before, so we
attempt to characterize them in this thesis. We compute Jacobians through
the 11-cube, but do not discover any significant discernible patterns. We
then dedicate the rest of our work to generalizing the notion of the Jacobian,
specifically to be sensitive to edge directions. We conclude with a conjecture
describing the form of the directed Jacobian of the directed n-topology. We
hope for this work to be useful for theoretical particle physics and for graph
theory in general.

Contents

Abstract iii

Acknowledgments ix

1 Adinkras 1

2 The Jacobian Group of a Graph 5
2.1 Defining the Jacobian . 5
2.2 Finding a Graph Jacobian . 9
2.3 An Easier Approach to Jacobians 12

3 Jacobians of Adinkras 15

4 Generalizing the Jacobian 21
4.1 Directed Topologies . 21
4.2 Arborescences . 25
4.3 Finding a General Directed Jacobian 30

5 Further Work 33
5.1 Patterns among Jacobians . 33
5.2 A Different Way to Find Jacobians 34
5.3 Adinkras from Sub-Adinkras 34
5.4 Codes and n , k-Adinkras . 35
5.5 General Directed Jacobian . 35
5.6 Other Jacobian Generalizations 35
5.7 Physical Significance of Adinkra Jacobians 36

A Code for Adinkra Jacobian Computation 37

B Code for Smith-Normal Form Computation 43

vi Contents

Bibliography 49

List of Figures

1.1 A simple Hasse diagram of the power set of a two element set. 2
1.2 A Hasse diagram for the vertices of a 3-cube. 2
1.3 A 2-adinkra. 3
1.4 A 3-adinkra. 3
1.5 A 4-adinkra. 4

2.1 A graph, G, with labeled vertices. 5
2.2 The graph G with integers assigned to each vertex. 6
2.3 The graph G undergoing two chip firing moves. 6
2.4 K3, the complete graph on three vertices, with labeled vertices. 10
2.5 A sampling of divisors equivalent to 0 in K3. 10
2.6 A sampling of divisors equivalent to v0 − v1 in K3. 11
2.7 A sampling of divisors equivalent to −v0 + v1 in K3. 11

3.1 A 2-topology, simply a diamond. 15
3.2 A labeled 2-topology with its adjacency matrix. 16

4.1 An n � 3 adinkra topology. Assigning heights is equivalent
to directing all edges upward. 21

4.2 An n � 2 directed adinkra topology undergoing two moves
of this new chip firing scheme. 22

4.3 An n � 2 directed adinkra topology with an even number of
chips at its root undergoing chip-firing moves along outgoing
(upward) edges only. 23

4.4 An n � 2 directed adinkra topology with an odd number of
chips at its root undergoing chip-firing moves along outgoing
(upward) edges only. 24

4.5 The two arborescences of the directed 2-topology. 26

viii List of Figures

4.6 The lowest three edges of the directed 3-topology are required
for any arborescence. 26

4.7 There are eight different ways to have an arborescence reach
vertices 4, 5, and 6. 27

Acknowledgments

I want to express my appreciation to Harvey Mudd College and the De-
partment of Mathematics for supporting this thesis. In particular, I would
like to thank Professor Dagan Karp for all of his help and direction as my
advisor. Finally, I thank Professor Stefan Mendez-Diez for reading my thesis,
Professor Lisette de Pillis for organizing the thesis class, and my thesis
classmates for providing feedback on several occasions over the year.

Chapter 1

Adinkras

Adinkras are graphs that represent supersymmetry algebras. The physics
behind these graphs will not be addressed in this thesis and can be found in
Faux and Gates (2005). We devote this chapter to defining an adinkra. We
follow the definitions of Zhang (2013).

Definition 1.1. An n-dimensional adinkra topology is a finite connected simple
graph that is bipartite and n-regular.

Sincewewill beworking onlywith adinkra topologies, wewill henceforth
simply refer to them as n-topologies.

Definition 1.2. We call a colored graph quadrilateral if for any distinct i , j,
the edges with colors i and j form a disjoint union of 4-cycles.

Definition 1.3. An n-chromotopology is an n-topology with a quadrilateral
coloring of n colors assigned to it such that every vertex is incident to exactly
1 edge of each color.

Now to define an adinkra, we need two more properties.

Definition 1.4. We will call a quadrilateral graph odd-dashed if its edges are
dashed in such a way that every 4-cycle contains an odd number of dashed
edges.

Lastly, we would like to define a height assignment, but need another
definition first.

Definition 1.5. A Hasse diagram, as defined by Weisstein (b), is a graphical
representation of a partially ordered set, or poset that illustrates the covering

2 Adinkras

relationship between elements of the set. An element z of a poset covers
another element x if there exists no third element y in the poset for which
x ≤ y ≤ z. Weisstein (a). A point is drawn for each element of the poset, and
line segments are drawn between these points according to the following
two rules:

(a) If x < y in the poset, then the point corresponding to x appears lower
in the drawing than the point corresponding to y.

(b) The line segment between thepoints corresponding to any twoelements
x and y of the poset is included in the drawing if and only if x covers
y or y covers x.

For example, the Hasse diagram for the power set of a two element set, {a , b}
with R ≤ S if R ⊆ S would be the following.

{a , b}
{a} {b}

∅

Figure 1.1 A simple Hasse diagram of the power set of a two element set.

Definition 1.6. We give a graph a height assignment by identifying it with
the Hasse diagram of cube vertices. Each vertex of an n-cube can be defined
by an n-digit binary string, and for two strings s and t, we have s ≤ t if s
has a 1 in the same positions as t. For a 3-cube, this looks like the following.

111

110 101 011

100 010 001

000

Figure 1.2 A Hasse diagram for the vertices of a 3-cube.

3

It is intuitive to draw the heights assigned to each vertex by placing them
physically higher on the page.

Definition 1.7. We finally define an n-adinkra as a quadrilateral dashed
n-chromotopology with a height assignment.

All of these properties can be seen in the following examples of 2,3, and
4-adinkras, produced by Adinkramat (2012).

Figure 1.3 A 2-adinkra.

Figure 1.4 A 3-adinkra.

4 Adinkras

Figure 1.5 A 4-adinkra.

Note that, in general, we have n , k-adinkras. The graphs we have defined
as n-adinkras are equivalent to what would more generally be known as
n , 0-adinkras. We proceed with our definition of the n-adinkra because it
is simpler than that of the general n , k-adinkra and because we limit our
investigations in this thesis to the case where k � 0. In this case, the topology
of the n-adinkra is that of an n-cube. For the more general case of the
n , k-adinkra, consult Zhang (2013).

Chapter 2

The Jacobian Group of a Graph

We now define the Jacobian group of a graph and present several useful
theorems discussed in Hoppenfeld (2014).

2.1 Defining the Jacobian

To begin defining the Jacobian of a graph, consider a finite graph topology
G with labeled vertices, as below.

v3

v2

v0

v1

Figure 2.1 A graph,G, with labeled vertices.

On our graph G, we can fire chips as follows. An integer chip value is
assigned to each vertex. For example, we could assign chip values to the
vertices of G as follows.

6 The Jacobian Group of a Graph

1

2

-2

4

Figure 2.2 The graphG with integers assigned to each vertex.

With each firing of chips, a single vertex either takes or fires 1 chip along
every edge it is incident to. For example, legal moves starting from G could
be as follows.

1

2

-2

4 v1 fires
−−−−−→

2

3

-1

1 v3 takes
−−−−−−→

4

2

-1

0

Figure 2.3 The graphG undergoing two chip firing moves.

Definition 2.1. Every assignment of numbers is called a divisor of the graph,
and is represented

D �

∑
v∈V(G)

av v ,

where V(G) is the vertex set of a graph G and av is the number assigned to
vertex v.

Thus, the first divisor in Figure 2.3 might be referred to as D � −2v0 +

4v1 + 2v2 + v3. Note that “+” is being used here as a notational tool rather
than regular addition.

Definition 2.2. The degree of a divisor, D, is

deg(D) �
∑

v∈V(G)
av .

Definition 2.3. A zero divisor of a graph is a divisor, D, with

deg(D) � 0.

Defining the Jacobian 7

Definition 2.4. We define an equivalence class on divisors with D ∼ D′ if
D′ can be obtained from D through some chip firing sequence. We write
[D] for the equivalence class of the divisor D and D′ ∈ [D].

We can verify that this is indeed an equivalence relation:

• D ∼ D because D � D with 0 moves.

• If D ∼ D′, reverse move order to get D′ ∼ D.

• If D ∼ D′ and D′ ∼ D′′, concatenate sequences of moves to get D ∼ D′′.

Note: all divisors in an equivalence class have the same degree because
every firing of chips preserves degree.

As an example, writing out the divisors of the three graphs above shows
us that the divisors

D � v1 + 2v2 − 2v3 + 4v4 ,

D′ � 2v1 + 3v2 − v3 + v4 ,

D′′ � 4v1 + 2v2 − v3

of G are all equivalent.

Definition 2.5. The collection of all divisors on a graph G is

Div(G) �

∑
v∈V(G)

av v : v ∈ V

.

This collection of divisors forms a group under componentwise addition,
i.e.
∑

av v +
∑

bv v �
∑(av + bv)v. We can quickly verify group properties:

• Closure: Let A �
∑

v∈V(G) av v and B �
∑

v∈V(G) bv v be divisors of G.
We see that the sum

A + B �

∑
v∈V(G)

(av + bv)v ∈ Div(G)

because the integers are closed under addition.

• Associativity: Given divisors A �
∑

av v, B �
∑

bv v, and C �
∑

cv v,
we see that the sumsA+(B+C) and (A+B)+C are equal by associativity
of integer addition:∑

v∈V(G)
[av + (bv + cv)] v �

∑
v∈V(G)

[(av + bv) + cv] v.

8 The Jacobian Group of a Graph

• Identity: We have an identity element 0 �
∑

0v since

A + 0 �

∑
v∈V(G)

(av + 0)v �

∑
v∈V(G)

(0 + av)v �

∑
v∈V(G)

av v � A.

• Inverses: For a divisor A �
∑

av v, we have an inverse divisor −A �∑
−av v:

A + (−A) �
∑

v∈V(G)
(av − av)v � 0.

Definition 2.6. The collection of all zero divisors on a graph G is

Div0(G) �

∑
v∈V(G)

av v : v ∈ V,
∑

v∈V(G)
av � 0

.

We can verify that Div0(G) ≤ Div(G):
• Closure: We verify that the sum of two zero divisors, A �

∑
av v , B �∑

bv v, is also a zero divisor by looking at the degree of the sum:

deg(A + B) �
∑

v∈V(G)
av + bv �

∑
v∈V(G)

av +
∑

v∈V(G)
bv � 0 + 0 � 0.

• Inverses: Taking the same inverse element as before, we see that the
inverse of a zero divisor, A �

∑
av v, also has degree zero:

deg(−A) �
∑

v∈V(G)
−av � −

∑
v∈V(G)

av � 0,

as desired.

Definition 2.7. For a graph G, the collection of zero divisors under the
equivalence class defined above is called the Jacobian group:

Jac(G) � Div0(G)/ ∼
or

Jac(G) � �[D] : D ∈ Div0(G)	 .
This set is also commonly known as the sandpile group of G.

Finding a Graph Jacobian 9

Again, we can verify that the Jacobian group is indeed a group, where
addition is componentwise as before, i.e. [∑ av v] + [∑ bv v] � [∑(av + bv)v].
This follows closely the verification that Div(G) is a group.

• Closure: Let A � [∑v∈V(G) av v] and B � [∑v∈V(G) bv v] be equivalence
classes of divisors of G. We see that the sum

A + B �

∑
v∈V(G)

(av + bv)v

∈ Jac(G)

because integers are closed under addition and we get the equivalence
class of another divisor.

• Associativity: Given divisor classes A � [∑ av v], B � [∑ bv v], and
C � [∑ cv v], we see that the sums A + (B + C) and (A + B) + C are
equal by associativity of integer addition:

∑
v∈V(G)

[av + (bv + cv)] v

�

∑
v∈V(G)

[(av + bv) + cv] v

.

• Identity: We have an identity element 0 � [∑ 0v] since

A + 0 �

∑
v∈V(G)

(av + 0)v

�

∑
v∈V(G)

(0 + av)v

�

∑
v∈V(G)

av v

� A.

• Inverses: For a divisor A � [∑ av v], we have an inverse divisor
−A � [∑−av v]:

A + (−A) �

∑
v∈V(G)

(av − av)v

� 0.

2.2 Finding a Graph Jacobian

Now thatwe have defined the Jacobian, wewould like to find some. However,
doing so from the definition is nontrivial. To demonstrate, we will attempt
to find the Jacobian group of K3, the complete graph on 3 vertices. To do so,
we first draw and label K3.

10 The Jacobian Group of a Graph

v2

v0 v1

Figure 2.4 K3, the complete graph on three vertices, with labeled vertices.

We can assign integers to this graph. Let us begin by looking at some
divisors equivalent to 0.

0

0 0
v2 takes
−−−−−−→

2

-1 -1
v1 takes
−−−−−−→

1

-2 1

0

0 0
v2 fires
−−−−−→

-2

1 1
v1 takes
−−−−−−→

-3

0 3

0

0 0
v2 fires
−−−−−→

-2

1 1
v1 fires
−−−−−→

-1

2 -1

Figure 2.5 A sampling of divisors equivalent to 0 in K3.

It does not seem like there is an easy way to get the divisor v0 − v1, so
let us propose that as being in a different equivalent class and find divisors
equivalent to it.

Finding a Graph Jacobian 11

0

1 -1
v2 takes
−−−−−−→

2

0 -2
v1 takes
−−−−−−→

1

-1 0

0

1 -1
v2 takes
−−−−−−→

2

0 -2
v0 takes
−−−−−−→

1

2 -3

0

1 -1
v1 takes
−−−−−−→

-1

0 1
v0 takes
−−−−−−→

-2

2 0

Figure 2.6 A sampling of divisors equivalent to v0 − v1 in K3.

We see here that we can permute the vertices so that the ±1 rotate around
the graph, but we cannot switch them. That is, we were able to find divisors
v0 − v1, v1 − v2, and v2 − v0, but not divisors −v0 + v1, −v1 + v2, and −v2 + v0.
Perhaps these live in their own equivalence class.

0

-1 1
v2 takes
−−−−−−→

2

-2 0
v1 takes
−−−−−−→

1

-3 2

0

-1 1
v2 takes
−−−−−−→

2

-2 0
v0 takes
−−−−−−→

1

0 -1

0

-1 1
v0 takes
−−−−−−→

-1

1 0
v1 takes
−−−−−−→

-2

0 2

Figure 2.7 A sampling of divisors equivalent to−v0 + v1 in K3.

We have only taken in the last two samplings, but one can check that
giving will reach the same divisors as sequences of taking. It does seem
from these examples that [v0 − v1] is a different (and opposite) equivalence
class from [−v0 + v1], but this would require proof. It turns out that
Jac(K3) � Z/3Z, the group of order 3, so we are done, but this is unclear

12 The Jacobian Group of a Graph

from the equivalence classes and would require further study. This example
illustrates the need for an easier way to find the Jacobian group of a graph.
A very helpful theorem will give us this (and could be used to verify that
Jac(K3) � Z/3Z).

2.3 An Easier Approach to Jacobians

In this section, we present a theorem that will be incredibly useful in our
computation of Jacobians. Before we can though, we need a few more
definitions.

Definition 2.8. The adjacency matrix of a graph G on n vertices is the n × n
matrix whose i , jth entry is 1 if there is an edge from vertex i to vertex j and
0 otherwise.

Notice that the adjacency matrices for our undirected graphs will be
symmetric since every edge is bidirectional. This will not be true later when
we consider Jacobians of directed graphs.

Definition 2.9. The Laplacian of a graph G on n vertices is defined to be an
n × n matrix

∆ � D − A,

where D is the diagonal matrix with the degrees of the vertices along the
diagonal and A is the adjacency matrix of G.

Definition 2.10. The reduced Laplacian, denoted ∆̃, with respect to some
vertex v of a graph G on n vertices is the minor of G with respect to v. That
is, ∆̃ is the n − 1 × n − 1 matrix obtained by removing the row and column
of the Laplacian matrix that correspond to vertex v.

We can now present a useful theorem:

Theorem 2.11. For any graph G on n vertices, we have

Jac(G) � Zn−1/im
�
∆̃

�
.

To use this theorem, it is convenient to compute the invariant factors of
Zn−1/im

�
∆̃

�
by finding the Smith-Normal form of ∆̃.

Definition 2.12. We say that an m × n integer matrix is in Smith-Normal form
if it is a diagonal matrix with diagonal entries a1 , a2 , . . . , an and if ai | ai+1
for all i.

An Easier Approach to Jacobians 13

As discussed in Hoppenfeld (2014), any integer matrix can be reduced
to Smith-Normal form through a series of the following row and column
operations:

(a) Swapping any two rows (or any two columns)

(b) Negating any row (or any column)

(c) Adding any row (or any column) to another.

Though not directly relevant to our work, something that will prove useful
to us is the relationship between the Jacobian group and the spanning trees
of a graph. From Theorem 2.11 and Kirchhoff’s matrix tree theorem, we get
the following theorem.

Theorem 2.13. For a graph G, |Jac(G)| � the number of spanning trees of G.

Wewill keep this fact in mind going forward to inform our generalization
of the Jacobian.

Chapter 3

Jacobians of Adinkras

Now that we have seen both adinkras and Jacobians, we may begin finding
Jacobians of adinkras. Notice that our definition of the Jacobian does not
consider coloring, dashing, or height-assignment. A generalization of the
notion of the Jacobian is necessary in order to find the Jacobian of an adinkra.
As a first step, we begin our discussion with Jacobians of adinkra topologies.

Let us begin with an example of a 2-topology, as below.

Figure 3.1 A 2-topology, simply a diamond.

We recall Theorem 2.11 from our discussion of Jacobians that for a graph
G on n vertices,

Jac(G) � Zn−1/im(∆̃),
where ∆̃ is the reduced Laplacian of G, and ∆ � D −A, the adjacency matrix,
A, subtracted from the digonal matrix of vertex degrees, D. As discussed
earlier, our approach for finding the Jacobian of the 2-topology will be to
find the reduced Laplacian, reduce it to Smith-Normal form, and use the
Theorem 2.11. To do this, we first number the vertices and find the adjacency
matrix:

16 Jacobians of Adinkras

v3

v2

v0

v1 A �

0 1 1 0
1 0 0 1
1 0 0 1
0 1 1 0

.

Figure 3.2 A labeled 2-topology with its adjacency matrix.

Note that the 2-topology is 2-regular, so our diagonal matrix is simply

D �

2 0 0 0
0 2 0 0
0 0 2 0
0 0 0 2

,

and our Laplacian is

∆ � D − A

�

2 0 0 0
0 2 0 0
0 0 2 0
0 0 0 2

−

0 1 1 0
1 0 0 1
1 0 0 1
0 1 1 0

�

2 −1 −1 0
−1 2 0 −1
−1 0 2 −1
0 −1 −1 2

.

Removing the last row and column gives us the reduced Laplacian

∆̃ �

2 −1 −1
−1 2 0
−1 0 2

.

Reduced to Smith-Normal form, we are left with

∆̃ �

1 0 0
0 1 0
0 0 4

.

17

We find an image

im
�
∆̃

�
�

a
b
4c

: a , b , c ∈ Z

� Z ×Z × 4Z,

and a Jacobian
Z4−1/ (Z ×Z × 4Z) � Z/4Z.

Thus, the Jacobian group of the 2-topology is isomorphic to Z/4Z.
While this process is not difficult, it is tedious since an n-topology

contains 2n vertices. We have, therefore, written a computer algorithm to
automate it. Our code can be found in Appendix A. Given an integer n,
we return the entries along the diagonal of the Smith-normal form of the
reduced Laplacian for the n-cube. Our algorithm for doing so comes from
Hoppenfeld (2014) and consists of

(a) computing the adjacency matrix for the n-cube, which requires:

• enumerating binary strings of length n. Each string with k 1’s
represents a vertex in the k-th level of our height assignment.

• creating a 2n
× 2n matrix of 0’s.

• for each vertex i and each vertex j in a higher level than i, changing
the i , j-th entry to a 1 if the binary string associated with vertex j
has 1’s in the same locations as does the binary string associated
with vertex i.

• reflecting the resulting upper triangular matrix across the diago-
nal, leaving the diagonal with 0’s.

(b) computing the Laplacian of the n-cube by subtracting the above
adjacency matrix from a diagonal matrix with n’s on the diagonal.

(c) acquiring the reduced Laplacian by removing the last row and column
of the Laplacian.

(d) computing the Smith-normal form of the reduced Laplacian by

• swapping rows and columns so that the entry with the smallest
nonzero absolute value is in the 1,1 position.

18 Jacobians of Adinkras

• addingmultiples of thefirst row/column to eachother row/column
to reduce the entire first row and column (except for the 1,1 entry)
as far as possible. After each addition, we check to see if there
are new smallest nonzero absolute values in the matrix. If so, we
move them to the 1,1 position. At the end of this process, the
entire first row and column are 0 except for the 1,1 entry.

• repeating this process, treating each entry on the diagonal as the
1,1 entry of the smaller matrix acquired by removing the rows
and columns that have already undergone the process.

• swapping rows and columns to rearrange the diagonal if it is not
sorted by divisibility.

While the Smith-normal form algorithm above works, Stein et al. (YYYY) has
a more efficient Smith-normal form function that we have used instead. Our
original function can be found in Appendix B. The first few Smith-normal
form diagonals we have found are

D2 � [1, 1, 4], as expected,
D3 � [1, 1, 1, 1, 2, 8, 24],
D4 � [(1, 8), (2, 2), (8, 1), (24, 3), (96, 1)],
D5 � [(1, 16), (2, 5), (6, 1), (24, 4), (48, 1), (192, 3), (960, 1)],
D6 � [(1, 32), (2, 10), (6, 2), (12, 4), (24, 1), (96, 4), (192, 4), (960, 6)],
D7 � [(1, 64), (2, 21), (6, 7), (12, 1), (48, 8), (96, 5), (480, 1), (960, 14), (1920, 5),

(13440, 1)],
D8 � [(1, 128), (2, 43), (6, 13), (12, 2), (48, 13), (240, 3), (480, 12), (960, 28),

(1920, 5), (13440, 7), (107520, 1)],
D9 � [(1, 256), (2, 86), (6, 34), (12, 9), (60, 1), (240, 16), (480, 26), (960, 47),

(6720, 1), (13440, 26), (53760, 1), (215040, 7), (645120, 1)],
D10 � [(1, 512), (2, 171), (6, 69), (12, 18), (60, 18), (120, 26), (480, 16), (960, 73),

(6720, 75), (26880, 1), (107520, 26), (215040, 8), (645120, 10)],
D11 � [(1, 1024), (2, 341), (6, 155), (12, 54), (60, 12), (120, 32), (240, 99),

(1680, 1), (6720, 164), (13440, 1), (53760, 100), (215040, 9), (645120, 54),
(7096320, 1)].

where each tuple gives the diagonal entry followed by the number of times
it appears, e.g. D4 is the diagonal matrix with diagonal

19

[1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 8, 24, 24, 24, 96]. These diagonals give us Jacobians of
J2 � Z3/ (Z ×Z × 4Z) � Z/4Z

J3 � Z7/
�
Z4
× 2Z × 8Z × 24Z

�
� (Z/2Z) × (Z/8Z) × (Z/24Z)
...

To check these Jacobians, we can find the order of each group:

| J2 | � |Z/4Z| � 4;
| J3 | � |(Z/2Z) × (Z/8Z) × (Z/24Z)| � 384;
| J4 | � 22

· 8 · 243
· 96 � 42, 467, 328;

| J5 | � 25
· 6 · 244

· 48 · 1923
· 960 � 20, 776, 019, 874, 734, 407, 680;

| J6 | � 210
· 62
· 124

· 24 · 964
· 1924

· 9606
�

1, 657, 509, 127, 047, 778, 993, 870, 601, 546, 036, 901, 052, 416, 000, 000;
| J7 | � 221

· 67
· 12 · 488

· 965
· 480 · 96014

· 19205
· 13440 �

153, 850, 844, 349, 814, 660, 487, 100, 539, 994, 381, 178, 281, 567, 942, 393, 055,
761, 257, 560, 677, 644, 718, 869, 248, 475, 136, 000, 000, 000, 000, 000, 000, 000;

| J8 | � 243
· 613
· 122

· 4813
· 2403

· 48012
· 96028

· 19205
· 134407

· 107520 �

17, 404, 759, 458, 462, 474, 728, 830, 233, 927, 402, 010, 830, 990, 825, 809, 132,
498, 874, 513, 212, 082, 249, 039, 756, 858, 999, 576, 329, 081, 673, 343, 128, 923,
696, 522, 065, 077, 911, 775, 269, 987, 383, 478, 545, 223, 764, 454, 192, 971, 651,
307, 006, 223, 974, 400, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000,

000, 000, 000, 000, 000, 000;
| J9 | � 286

· 634
· 129

· 60 · 24016
· 48026

· 96047
· 6720 · 1344026

· 53760 · 2150407
·

645120;
| J10 | � 2171

· 669
· 1218

· 6018
· 12026

· 48016
· 96073

· 672075
· 26880 · 10752026

·

2150408
· 64512010;

| J11 | � 2341
· 6155

· 1254
· 6012

· 12032
· 24099

· 1680 · 6720164
· 13440 · 53760100

·

2150409
· 64512054

· 7096320.

This sequence matches the number of spanning trees of an n-cube (Sloane
and Knuth (1995)), which is encouraging since this is exactly what we expect
from the order of the Jacobian. While this is already a well known sequence,
the Jacobians are not, and there seems to be very little discernible pattern in

20 Jacobians of Adinkras

the ones we have found. The general form of the Jacobian of an adinkra is
an open problem.

Chapter 4

Generalizing the Jacobian

4.1 Directed Topologies

We now generalize the notion of the Jacobian group of a graph to be sensitive
to graph properties other than topology. The first property we address is the
adinkra height assignment. Assigning heights to an adinkra is equivalent
to removing height considerations and assigning each edge to be directed
upward. That is, we can draw the same graph in the following two ways:

v0

v1 v2 v3

v4 v5 v6

v7

Level 0

Level 1

Level 2

Level 3

�

v0

v1 v2 v3

v4 v5 v6

v7

Figure 4.1 An n � 3 adinkra topology. Assigning heights is equivalent to
directing all edges upward.

Since edge direction ismore general and has been investigated to a greater
degree than level assignment, we begin our investigations by defining a
directed Jacobian. While doing so, it will be helpful to continue to visualize

22 Generalizing the Jacobian

the graph with levels. We can continue to think of a vertex as being in level
n if a path to them from the root consists of n edges.

Back in Definition 2.7, we defined the Jacobian of an undirected graph
to be the group of zero divisors under equivalence defined by chip firing
sequences. We define the directed Jacobian in the same way as we did
the undirected Jacobian, but we alter the chip firing scheme so that chips
are taken and fired only along outgoing edges. This convention comes
from Gaslowitz (2013) and appears to be standard. For example, we have
equivalent divisors of the directed 2-topology:

-4

0 3

1

v0 takes
−−−−−−→

-2

-1 2

1

v3 takes
−−−−−−→

-2

-1 2

1

Figure 4.2 An n � 2 directed adinkra topology undergoing twomoves of this
new chip firing scheme.

We should verify that this newly defined object is still a group under the
same addition as before. We can appeal to the same arguments as with the
undirected Jacobian because divisors do not depend on edge directions. The
following arguments are the same as before, but the equivalence classes are
different.

• Closure: Let A � [∑v∈V(G) av v] and B � [∑v∈V(G) bv v] be equivalence
classes of divisors of G. We see that the sum

A + B �

∑
v∈V(G)

(av + bv)v

∈ Jac(G)

because integers are closed under addition and we get the equivalence
class of another divisor.

• Associativity: Given divisor classes A � [∑ av v], B � [∑ bv v], and
C � [∑ cv v], we see that the sums A + (B + C) and (A + B) + C are

Directed Topologies 23

equal by associativity of integer addition:

∑
v∈V(G)

[av + (bv + cv)] v

�

∑
v∈V(G)

[(av + bv) + cv] v

.

• Identity: We have an identity element 0 � [∑ 0v] since

A + 0 �

∑
v∈V(G)

(av + 0)v

�

∑
v∈V(G)

(0 + av)v

�

∑
v∈V(G)

av v

� A.

• Inverses: For a divisor A � [∑ av v], we have an inverse divisor
−A � [∑−av v]:

A + (−A) �

∑
v∈V(G)

(av − av)v

� 0.

With group structure verified, we now ask what directed Jacobians look
like if defined this way and whether they seem reasonable. We begin by
considering the n � 2 directed adinkra topology through some examples:

0

0 0

0

v0 fires
−−−−−→

-2

1 1

0

v1 fires
−−−−−→

-2

0 1

1

-2

0 0

2

v1 takes
−−−−−−→

-2

1 0

1

v1 takes
−−−−−−→

-2

2 0

0

Figure 4.3 An n � 2 directed adinkra topology with an even number of chips
at its root undergoing chip-firing moves along outgoing (upward) edges only.

24 Generalizing the Jacobian

1

-1 0

0

v0 fires
−−−−−→

-1

0 1

0

v2 fires
−−−−−→

-1

0 0

1

-1

0 1

0

v0 takes
−−−−−−→

1

-1 0

0

v0 takes
−−−−−−→

3

-2 -1

0

3

-3 -1

1

v2 takes
−−−−−−→

3

-3 0

0

Figure 4.4 An n � 2 directed adinkra topology with an odd number of chips
at its root undergoing chip-firing moves along outgoing (upward) edges only.

Conjecture 4.1. All zero divisors with the same parity at the root are equivalent
for the n � 2 directed adinkra topology.

Proof. To prove our conjecture for the n � 2 directed adinkra topology, we
first wish to show that on the directed 2-topology, we can get from divisor
D � 0 to any divisor D′ � 2av0 + bv1 + cv2 + (−2a − b − c)v3, for a , b , c ∈ Z.
Notice that we must have d � −2a − b − c because the degree of the divisor
must be 0. We begin by having the root vertex, v0, take chips a times:

0

0 0

0

v0 takes
−−−−−−→

2a

-a -a

0

We now have vertex 1 take a + b chips and vertex 3 take a + c chips:

Arborescences 25

2a

-a -a

0

v1 takes
−−−−−−→

2a

b -a

-a-b

v2 takes
−−−−−−→

2a

b c

-2a-b-c

We have now constructed any arbitrary zero divisor with an even degree
root. Repeating this argument with an odd degree root gives us any zero
divisor with an odd degree root. Thus, all zero divisors with the same parity
at the root are equivalent. �

Now that we know the unique zero divisors for the directed 2-topology,
we can talk about the group structure. If we let 0 � [0v0+0v1+0v2+0v3] and
1 � [1v0 + 0v1 + 0v2 − 1v3], we see that the Jacobian under componentwise
addition of graph divisors is isomorphic to Z/2Z.

4.2 Arborescences

We would like to conduct a similar analysis for a general graph, but this is a
nontrivial task. In order to learn more about this directed Jacobian, we recall
what is known about the regular Jacobian: the order of the Jacobian group of
a graph is equal to the number of spanning trees of the graph. We continue,
then, by considering the relationship between the directed Jacobian and the
number of directed spanning trees.

Definition 4.2. An arborescence of a directed graph G is a subgraph, H, of G
such that for some root vertex u ∈ V(H) and any vertex v ∈ V(H), there is
exactly one directed path uv.

Definition 4.3. A spanning arborescence of a graph G is an arborescence of G
that includes every vertex of G.

As the order of the Jacobian is equal to the number of spanning trees of
a graph, so too, we hope, is the order of the directed Jacobian equal to the
number of spanning arborescences. We can check this for the n � 2 case we
just considered. Given that an adinkra always begins from a single lowest
level vertex, our arborescences are limited to trees that begin there, and we
have two:

26 Generalizing the Jacobian

v0

v1 v2

v3

v0

v1 v2

v3

Figure 4.5 The two arborescences of the directed 2-topology.

For completeness, and because the insight will be of use to us later,
we may find the number of spanning arborescences in a general directed
n-topology. The proof for this formula will fall out of the following example
of the 3-adinkra. Since there is only one edge from the root to any of the
level 1 vertices and all edges are directed upward, we see that any spanning
arborescence must include all three of the lowest edges:

v0

v1 v2 v3

v4 v5 v6

v7

Level 0

Level 1

Level 2

Level 3

Figure 4.6 The lowest three edges of the directed 3-topology are required for
any arborescence.

Now, a spanning arborescence can get to each of the three vertices in
level 2 in two ways, giving us 23 � 8 ways to fill in the next set of edges:

Arborescences 27

v0

v1 v2 v3

v4 v5 v6

v7

v0

v1 v2 v3

v4 v5 v6

v7

v0

v1 v2 v3

v4 v5 v6

v7

v0

v1 v2 v3

v4 v5 v6

v7

v0

v1 v2 v3

v4 v5 v6

v7

v0

v1 v2 v3

v4 v5 v6

v7

v0

v1 v2 v3

v4 v5 v6

v7

v0

v1 v2 v3

v4 v5 v6

v7

Figure 4.7 There are eight di�erent ways to have an arborescence reach ver-
tices 4, 5, and 6.

Of course, there are three vertices in level 2 fromwhich to go to the single
vertex in the last level, giving us 3 options. This is a total of 1 · 8 · 3 � 24
arborescences for n � 3. Similarly, for n � 4, there are 1,4,6,4,1 vertices in
levels 0,1,2,3,4, respectively. There is 1 configuration of edges from level 0
to level 1. From level 1 to level 2, there are 26 � 64 configurations since we
have to get to 6 vertices and each can be achieved in two ways (see figure
1.3). From level 2 to level 3, there are another 34 � 81 configurations because
there are four vertices in level 4 and each can come from three places. Of
course, we then have 4 possibilities for the last level. This gives us a total of
1 · 64 · 81 · 4 � 20 736 arborescences for n � 4. From this reasoning, we arrive
at a result.

28 Generalizing the Jacobian

Theorem 4.4. The number, N , of spanning arborescences of a directed n-topology
is given by

N �

n∏
i�1

i(n
i).

Proof. Consider some directed n-cube adinkra topology, A. To count the
number of arborescences, we first note that there are no edges directed
downward. So, a path from the root (the only vertex of height 0) can go
directly from a vertex of height k only to a vertex of height k + 1 and can
only get to a vertex of height k + 1 directly from a vertex of height k.

Now, consider some height i ≤ n. Our graph A contains
�n

i

�
vertices at

height i, each of which has i distinct incoming edges. So, since our paths
can only ascend in the way described above, there are i ways to connect each
vertex at height i to a path below. This gives us i(n

i) ways to extend paths
from level i − 1 to level i. We need to do this path extension process from
levels 1 through n, and each level is independent of the previous one. This
gives us the desired formula,

N �

n∏
i�1

i(n
i).

�

This expressiongivesus a sequence 2, 24, 20 736, 309 586 821 120, 11 501 279
977 342 425 366 528 000 000, . . . for the number of spanning arborescences,
and so, the order of the directed Jacobian of the n-adinkra. This sequence
appears in the Online Encyclopedia of Integer Sequences as the product of
sizes of all the nonempty subsets of an n-element set.

Before we continue with our main result, it will be helpful to consider
Tutte’s directed matrix tree theorem, an analog to Kirchhoff’s matrix tree
theorem for directed graphs.

Theorem 4.5 (Tutte, 1948). If G is a directed graph with edge set E(G) and vertex
set V(G) � {v1 , . . . , vn} and L is an n × n matrix whose entries are given by

Li j �

degin(v j) If i � j
−1 If i , j and (vi , v j) ∈ E(G)
0 Otherwise

Arborescences 29

then the number N j of spanning arborescences with root at v j is

N j � det
�
L̂ j

�

where L̂ j is the matrix produced by deleting the j-th row and column from L.

We can consider a couple examples as they relate to adinkras. Note
that directed adinkra topologies are particularly well behaved because they
have only one option for a root vertex. So, the total number of spanning
arborescences is just the number of spanning arborescences with root v0.
For n � 2, we have

v0

v1 v2

v3

L �

0 −1 −1 0
0 1 0 −1
0 0 1 −1
0 0 0 2

N0 � det
�
L̂0

�
� det *.

,

1 0 −1
0 1 −1
0 0 2

+/
-
� 2.

As a comforting check, we see that this is consistent with the number of
arborescences we get from our earlier formula. For n � 3, we have

v0

v1 v2 v3

v4 v5 v6

v7

L �

0 −1 −1 −1 0 0 0 0
0 1 0 0 −1 0 0 −1
0 0 1 0 −1 0 −1 0
0 0 0 1 0 −1 −1 0
0 0 0 0 2 0 0 −1
0 0 0 0 0 2 0 −1
0 0 0 0 0 0 2 −1
0 0 0 0 0 0 0 3

30 Generalizing the Jacobian

N1 � det
�
L̂0

�
� det

*...........
,

1 0 0 −1 0 0 −1
0 1 0 −1 0 −1 0
0 0 1 0 −1 −1 0
0 0 0 2 0 0 −1
0 0 0 0 2 0 −1
0 0 0 0 0 2 −1
0 0 0 0 0 0 3

+///////////
-

� 24.

This is again consistent with the number of arborescences we get from our
earlier formula. In fact, this will always be consistent because the matrix
will always be upper triangular, and the determinant will be the product
of the entries on the diagonal. Since the diagonal is the in-degree of each
vertex, we get exactly the product expression in Theorem 4.5.

4.3 Finding a General Directed Jacobian

Recall our useful Theorem 2.11, which allows us to more easily find iso-
morphic groups to desired graph Jacobians. Our work with spanning
arborescences motivates us to propose the following analog.

Conjecture 4.6. For a directed adinkra topology G on n vertices, we have

Jac(G) � Zn−1/im
�
L̂0

�
.

To begin to prove this conjecture, we consider a group homomorphism

ϕ : Zn−1
→ Jac(G)

d 7→ [d0v0 + d1v1 + · · · dn−2vn−2],
where the di are the n − 1 integers of d. Note that we have assigned n − 1
vertices, which leaves the last vertex, vn−1 to be the sum of the negatives of
the integers in d. Let us determine the kernel of ϕ.

In the case of the directed 2-topology, we have n � 4 vertices, andwewant
to find d � (a , b , c) ∈ Z3 such that ϕ(d) � [0v0 + 0v1 + 0v2 + 0v3] ∈ Jac(G).
Recall that for the directed 2-topology, a divisor is equivalent to this 0Jac(G)
if it has an even degree v0 and any degree v1 , v2. Of course, v3 is then
determined by these values. So, the kernel of ϕ for the directed 2-topology
is {(2a , b , c) | a , b , c ∈ Z}, which is exactly im(L̂ j), and the theorem holds by
the first isomorphism theorem.

Finding a General Directed Jacobian 31

This seems to offer some support for our conjecture, but it remains to be
proven in general.

Note that the original Theorem 2.11 comes as a corollary to our new
Conjecture 4.6. Given an undirected graph, we may treat each undirected
edge as a directed edge in both directions. If we do this, our matrix L̂ j
becomes the reduced Laplacian, ∆̂ from before, and we are left with the
earlier result.

With this new conjecture, we may find directed adinkra Jacobians as we
found undirected cube Jacobians earlier. Our Sage algorithm in Appendix
A gives us the Smith-normal forms of L̂0. As before, we find the first few
Smith-normal form diagonals:

D2 � [1, 1, 2],
D3 � [1, 1, 1, 1, 2, 2, 6],
D4 � [(1, 8), (2, 3), (6, 3), (12, 1)],
D5 � [(1, 16), (2, 5), (6, 5), (12, 4), (60, 1)],
D6 � [(1, 32), (2, 10), (6, 6), (12, 9), (60, 6)],
D7 � [(1, 64), (2, 21), (6, 7), (12, 14), (60, 20), (420, 1)],

where each tuple gives a diagonal entry followed by the number of times it
appears. These diagonals give us Jacobians of

J2 � Z3/ (Z ×Z × 2Z) � Z/2Z,
J3 � Z7/

�
Z4
× 2Z × 2Z × 6Z

�
� (Z/2Z)2 × (Z/6Z),

...

and orders of

| J2 | � |Z/2Z| � 2,
| J3 | � |(Z/2Z) × (Z/2Z) × (Z/6Z)| � 24,
| J4 | � 23

· 63
· 12 � 20 736,

| J5 | � 25
· 65
· 124

· 60 � 309 586 821 120,
| J6 | � 210

· 66
· 129

· 606
� 11 501 279 977 342 425 366 528 000 000,

| J7 | � 221
· 67
· 1214

· 6020
· 420 � 115 744 510 977 565 557 983 391 999 957 434

605 749 927 936 000 000 000 000 000 000 000.

These directed Jacobian orders match the number of spanning arborescences
we found earlier, as desired. As we have defined it then, the order of the

32 Generalizing the Jacobian

directed Jacobian of the directed n-topology is the product of sizes of all
the nonempty subsets of an n-element set, a sequence published as Krizek
(2013). As before, it is unclear what patterns the groups themselves follow.

Chapter 5

Further Work

There are many branches that we have considered briefly, but that we have
not yet explored. Further work could be done in these directions.

5.1 Patterns among Jacobians

It would be ideal to give a form for the Jacobian group (not just the order) of
a given adinkra without having to compute the Laplacian and Smith-normal
form. Unfortunately, there does not seem to be any easily noticeable pattern
among the Jacobians we have found. The most significant patterns we have
found are listed below:

• The number of 1’s in the diagonal of the Smith Normal Form of the
reduced Laplacian of an n-cube is 2n−1.

• The number of 2’s does not match any sequences on the online ency-
clopedia of integer sequences, but it is very close to some. Sequences
A000975 (Bernstein et al. (1996)) and A215410 (Lagneau (2012)) are
examples. In both of these, all the terms are off by either 0 or 1.

A000975 : a(2n) � 2 ∗ a(2n − 1), a(2n + 1) � 2 ∗ a(2n) + 1
(also n-th number without consecutive equal binary digits),

A215410 : a(0) � 0; a(n + 1) � 2 ∗ a(n) + k ,
where k � 0 if prime(n + 2)/prime(n + 1) < prime(n + 1)/prime(n),

otherwise k � 1.

• The number 4 appears only in the n � 2 case.

34 Further Work

• The number of 6’s briefly follows the number of character table entries
of the symmetric group Sn which are < 0, sequence A051748.

• The number 8 does not seem to appear often enough for pattern
matching.

• The number 12 (and possibly all following numbers) does not match
anything.

The directed Jacobians seem to be very slightly better behaved than the
undirected ones, in that some sequences appear in the Online Encyclopedia
of Integer Sequences. For example, the appearances of the number 2 give
us a sequence 1, 2, 3, 5, 10, 21, . . ., which matches several sequences. More
terms could narrow down possibilities.

5.2 A Different Way to Find Jacobians

As we have done it in this thesis, the Jacobian group is not very easy to
find. Finding the Smith-normal form of a 2n

× 2n matrix quickly becomes
computationally expensive. Our investigations seem to indicate that this
is the most efficient way to find Jacobians. Even if a more efficient way
cannot be found, any variation may give us more insight into the form of the
Jacobian.

5.3 Adinkras from Sub-Adinkras

Something we could investigate is sub-adinkras of adinkras. Notice that as
we go up an adinkra, we encounter smaller adinkras. For example, each
vertex in the second level on a 4-adinkra is the root of a 3-adinkra. This
could be potentially helpful for analyzing adinkras recursively. This is not
entirely trivial, however, because the separate subadinkras share vertices.
If we wished to, say, count the number, An , of spanning arborescences of a
directed n-adinkra, we would have nAn−1 plus the number of arborescences
that go through multiple sub-adinkras.

We should check to see if Zhang (2013) shows that adinkras are composed
of sub-adinkras and show it if it does not. We could do this by removing the
root and considering the codes that represent the vertices. Vertices share
an edge iff their codes differ in exactly one digit. Since all vertices in a path
from the root have 1s in the same place, we can remove that place, and the

Codes and n , k-Adinkras 35

topological structure would be the same in the smaller graph. need to check
colouring, dashing.

5.4 Codes and n , k-Adinkras

We have done some investigation of the Jacobian groups and the number
of spanning trees of adinkras whose topologies are n-cubes. Adinkras are
also possible as quotients of cubes. A general n , k-adinkra is defined in
Zhang (2013) in terms of doubly even error-correcting codes. We could also
investigate the Jacobian groups and numbers of spanning trees of general
n , k-adinkras.

5.5 General Directed Jacobian

Our Conjecture 4.6 still needs to be proven. One approach we have not
investigated yet is treating each firing of chips as multiplication by the
matrix of some linear transformation. Once that conjecture is proven, we
can generalize the result to any directed graph, not just the directed adinkra
topology. In our graphs, there was only one candidate for the root of an
arborescence. In general, there may be many. Recall that Theorem 4.5 tells
us the number of arborescences given a root vertex. The sum of this number
over all root vertices gives us the total number of spanning arborescences. A
generalized Conjecture 4.6 would need to account for this.

5.6 Other Jacobian Generalizations

In this thesis, we have investigated a notion of Jacobian that is sensitive to
edge direction and have produced a new theorem to generalize our previous
helpful theorem. But adinkras have properties that we have not addressed
yet. A good property to consider next might be colouring. We could alter
the chip firing scheme on a graph to consider edge colouring in its moves
as well as direction. This could be generally useful as coloured graphs are
widely interesting in mathematics and computer science.

36 Further Work

5.7 Physical Significance of Adinkra Jacobians

Recall that our journey was originally suggested by theoretical particle
physics. Adinkras represent supersymmetry algebras. While our work has
been motivated by mathematical interest, it would be useful and interesting
to investigate the physical meaning of the Jacobian of an adinkra.

Appendix A

Code for Adinkra Jacobian
Computation

The following is our code for computing the Smith-normal forms of the
reduced Laplacians of adinkras. It takes a boolean argument that determines
whether it computes directed or undirected Jacobians. It was written in
SageMathCloud, Stein et al. (YYYY).

import sys
import itertools

def Adjacency(n, directed):
’’’ create the same n-cube adjacency matrices we have been exploring by hand

input: n, the dimension of the cube
directed, a boolean indicating whether we want the adjacency

matrix of a directed graph
output: the adjacency matrix of the n-cube

’’’

Set the number of vertices to be 2^n for an n-adinkra.
V = 2**n;

We begin by creating an array of all binary strings of length n to
represent the vertices and sort them by the number of 1’s. This gives us
an array of vertices with array index i corresponding to v_i.
allCoords = ["".join(seq) for seq in itertools.product("01", repeat=n)];
allCoords.sort(key=lambda s: s.count(’1’));

Create a new array with pairs of coordinates and their indeces. Since we
know there are n choose i vertices in level i, we can just go forward the
correct amount in this array to find the vertices in the level we are
working with.
verts = [(i,allCoords[i]) for i in range(V)];

Create an empty 2^n x 2^n matrix to be populated.

38 Code for Adinkra Jacobian Computation

A = Matrix(V,V);

We know v_0 will always be adjacent to the n vertices in level 1.
for i in range(1,n+1):

A[0,i] = 1;

Now we will populate the rest of the matrix A. We loop through each level
of the n-cube (up to n-1) and determine where we need edges by looking at
the next level.
for i in range(1,n):

There are n choose i vertices in level i, so to find the vertices we
want, we add up n choose i for every level up to the one we are
currently working with.
nCksAll = [binomial(n,k) for k in range(i)];
nCk = sum(nCksAll); # n choose k, k < i
So that we know where to stop, we need to know where the vertices in
the next level begin.
nCi = nCk+binomial(n,i) # n choose k, k <= i
Now, we take the list of vertices in the i-th level only.
iVerts = verts[nCk:nCi]; # i-th level vertices
We need to compare the i-th level vertices with the i+1-th level
vertices, so we need to know where the i+1-th level vertices end.
nCi1 = nCi + binomial(n,i+1)
We can now make a list of the i+1-th level vertices since we know the
indeces at which they begin and end.
i1Verts = verts[nCi:nCi1] # i+1-th level vertices
For each i-th level vertex, we need to figure out where it has edges.
for j in iVerts:

We need to compare each i-th level vertex to every i+1-th level
vertex to see whether an edge should exist between them.
for k in i1Verts:

edge = True; # a bool representing the existence of an edge
We loop through the binary strings of j, the i-th level
vertex, and k, each i+1-th level vertex, to see if j has 1’s
only where k has 1’s. If so, add an edge. If there are any
positions in which j has an edge and k does not, we do not
have an edge.
for l in range(n):

if (j[1][l] == ’1’ and k[1][l] != ’1’):
edge = False;

A[j[0],k[0]] = int(edge);

We have only populated the upper triangle of A. For an undirected graph,
we now copy all of these values to the lower triangle to make A symmetric.
If we consider edge directions, then the upper triangle matrix is the
correct adjacency matrix, and we do not need these lines.
if (directed == False):

for i in range(1,V):
for j in range(i):

A[i,j] = A[j][i];

return A;

def nDiag(n, directed):

39

’’’ create D, the diagonal matrix of vertex degrees
input: n, the dimension of the cube

directed, a boolean indicating whether we want the D matrix of a
directed graph

output: the matrix with vertex degrees of the n-cube on the diagonal
’’’

Set the number of vertices to be 2^n for an n-adinkra.
V = 2**n;

An undirected n-cube is n-regular, so we know all the vertex degrees are n
if (directed == False):

return Matrix(V,V,n);

For a directed n-topology, the in-degrees of the vertices increase as we
go up the graph. Each graph has levels 0 through n, and level i contains
n choose i vertices. Each of these n choose i vertices has in-degree i.
This gives us a D matrix with a diagonal that begins with 0 and increases
by 1 every n choose i entries. For example, the diagonal for the directed
3-topology is [0, 1, 1, 1, 2, 2, 2, 3]. That is, the entry 0 appears 3
choose 0 times, the entry 1 appears 3 choose 1 times, the entry 2 appears
3 choose 2 times, and the entry 3 appears 3 choose 3 times.

We first create an empty matrix to populate.
M = Matrix(V,V);

We now need a coordinate counter to keep track of where we are along the
diagonal of the matrix.
coord = 0;

We loop through levels 0 to n of the height-assigned cube.
for i in range(n+1):

Level i of the n-topology has n choose i vertices.
for j in range(binomial(n,i)):

Each vertex in level i has in-degree i.
M[coord,coord] = i;
We increment the coordinate so that we continue to move down the
diagonal.
coord += 1;

return M;

def Laplacian(n, directed):
’’’ create the Laplacian matrix for an n-cube

input: n, the dimension of the cube
directed, a boolean indicating whether we want the Laplacian

matrix of a directed graph
output: the Laplacian matrix of the n-cube

’’’

D = nDiag(n, directed); # construct diagonal matrix with n’s
A = Adjacency(n, directed); # construct adjacency matrix

Sage has a cube graph function that we can use to construct the

40 Code for Adinkra Jacobian Computation

adjacency matrix for the n-cube. This creates a rearranged matrix that
does not number vertices the way we have, but still gives the same
Smith-normal form. This also does not give us the directed adjacency
matrix we want.
A = graphs.CubeGraph(n).adjacency_matrix()

return D - A; # subtract A from D to construct Laplacian

def reducedLaplacian(n, directed):
’’’ create the reduced Laplacian matrix for an n-cube

input: n, the dimension of the cube
directed, a boolean indicating whether we want the reduced

Laplacian matrix of a directed graph
output: the reduced Laplacian matrix produced by taking the (0,0)-minor

of the Laplacian matrix of the n-cube
’’’

L = Laplacian(n, directed);

For the directed n-topology, we must remove the 0-th row and column since
v_0 is the root from which spanning arborescences can be produced. For
the undirected graph, it does not matter which row and column we remove,
so we just remove the same ones.
L = L.delete_columns([0]);
L = L.delete_rows([0]);

return L;

def cube(n, directed):
’’’ compute the Smith-normal form of the reduced Laplacian matrix for an

n-cube
input: n, the dimension of the cube

directed, a boolean indicating whether we want the Smith-normal
form of the reduced Laplacian matrix of a directed graph

output: the Smith-normal form of the reduced Laplacian matrix of the
n-cube. This is returned as an array representing the
diagonal of the Smith-normal form matrix. The elements of
this array are pairs giving the diagonal entry followed by
the number of times it appears. For example, the directed
3-cube gives an output of [(1, 4), (2, 2), (6, 1)], which
should be interpreted as the diagonal
[1, 1, 1, 1, 2, 2, 6].

’’’

RL = reducedLaplacian(n, directed);
diagRL = RL.elementary_divisors();

We realized very late that Sage’s elementary_divisors() function gives the
diagonal of the Smith-normal form and is far faster than the Smith-form
function. We have included the original method below as well.

The first element of the smith_form() function output is the matrix.
RL = RL.smith_form()[0];

41

We create an array of the diagonal entries of the Smith-normal form of the
reduced Laplacian. This is done for us by the elementary_divisors
function.
diag = [];
for i in range(RL.nrows()):
diag += [RL[i,i]];

The list we actually want is a shorter one that includes the entries of
the Smith-normal form and the number of times each appears.
printList = [];
We convert the diagonal to a set to remove duplicates.
diagSet = set(diagRL);
For each unique entry in the diagonal, we add a pair containing the entry
and the number of times it appears in the diagonal.
for i in diagSet:

printList += [(i,diagRL.count(i))];
Sets are not ordered, so we re-sort the diagonal entries to be in
ascending order.
printList.sort();

return printList;

Appendix B

Code for Smith-Normal Form
Computation

The following is our code for computing the Smith-normal form of a
given matrix. It utilizes a brute force approach and has been replaced by
Sage’s more efficient elementary_divisors(). It was written in Python,
Rossum (1995). Note that it depends on Python’s default arbitrary-precision
integers since the matrix entries get quite large through the calculation.
def swapRow(M,m,n):

’’’ swaps row m with row n of matrix M
input: M, the matrix to be modified

m, the index of the first row to be swapped
n, the index of the second row to be swapped

output: M, with rows m and n swapped
’’’

temp = M[m];
M[m] = M[n];
M[n] = temp;

return M;

def swapCol(M,m,n):
’’’ swaps column m with column n of matrix M

input: M, the matrix to be modified
m, the index of the first column to be swapped
n, the index of the second column to be swapped

output: M, with columns m and n swapped
’’’

temp = []
for i in range(len(M)):

temp += [M[i][m]];

44 Code for Smith-Normal Form Computation

for i in range(len(M)):
M[i][m] = M[i][n];
M[i][n] = temp[i];

return M;

def negateRow(M,n):
’’’ negates row n of matrix M

input: M, the matrix to be modified
n, the index of the row to be swapped

output: M, with row n negated
’’’

for i in range(len(M)):
M[n][i] = -M[n][i];

return M;

def negateCol(M,n):
’’’ negates column n of matrix M

input: M, the matrix to be modified
n, the index of the column to be swapped

output: M, with column n negated
’’’

for i in range(len(M)):
M[i][n] = -M[i][n];

return M;

def addRow(M,m,n,add):
’’’ adds row m add times to row n of matrix M

input: M, the matrix to be modified
m, the index of the row to add to another
n, the index of the row to be added to
add, the number of times to add m to n

output: M, with row n modified
’’’

for i in range(len(M)):
M[n][i] = add*M[m][i] + M[n][i];

return M;

def addCol(M,m,n,add):
’’’ adds column m add times to column n of matrix M

input: M, the matrix to be modified
m, the index of the column to add to another
n, the index of the column to be added to
add, the number of times to add m to n

45

output: M, with column n modified
’’’

for i in range(len(M)):
M[i][n] = add*M[i][m] + M[i][n];

return M;

def sameSign(x,y):
’’’ compares the signs of two numbers, x and y

input: x, first number
y, second number

output: True if x and y have the same sign. False otherwise.
’’’

return ((x<0) == (y<0));

We call the (0,0) entry of the matrix the head of the matrix. Our
Smith-normal form computation will involve iterating over smaller and smaller
minors that we treat as smaller Smith-normal form problems. Each such step
places the new head of the matrix one diagonal entry farther down. Within
each of these large steps, we will need to use the head of the matrix to
reduce all the entries in the row and column of the head to 0. By the time
the head is at the last diagonal entry, the matrix will be in Smith-normal
form.
def SNF(M):

’’’ computes the Smith-normal form of a matrix M
input: M, the matrix we want the Smith-normal form of
output: the matrix M in Smith-normal form

’’’

We will be using j to keep track of how far we have recursed. Within each
iteration of j, we use row and column operations to get all 0’s in the
outermost (j-th) row and column. We advance j once we have gotten all
entries in the j-th row and j-th column except the diagonal entry, (j,j),
to be 0. Advancing j repeats this process on the (0,0)-minor of the
matrix we were working with before so that we have smaller and smaller
"outermost" rows and columns until we have gotten through the entire
matrix and made every entry except the diagonal 0.
for j in range(len(M)):

In order to use the head to reduce the other entries in the head’s row
and column, we must search for the smallest nonzero entry absolute
value in the matrix and move it to the head by swapping rows and
columns.
We first assume by default that the smallest entry we are looking for
is already the head. We can then compare other entries to it to see
if any are smaller.
minIndex = (j,j);
minValue = abs(M[j][j]);

If the head is zero, we will not be able to reduce anything through
our row operations, and we will end up with a zero in our
Smith-normal form. We also cannot easily find another element to

46 Code for Smith-Normal Form Computation

replace it since it is smaller than all the other absolute values.
So, if we see a 0 at the head, we replace it with maxint so that it is
sure to be replaced by something better.
if minValue == 0:

minValue = sys.maxint;

We now loop through the entire matrix after row and column j to see if
we can find anything smaller than the current head. Of course, we do
not need to search if the head is already 1 since there is nothing
smaller in the matrix. In these cases, we just break.
for k in range(j,len(M)):

if minValue != 1:
for l in range(j,len(M)):

if minValue != 1:
If we find something a nonzero entry that is smaller
than the head, we record it as the most recent
smallest value and keep looping.
if (abs(M[k][l]) < minValue) and (abs(M[k][l]) > 0):

minIndex = (k,l);
minValue = abs(M[k][l]);

else:
break;

else:
break;

If we found a smaller entry fitting our above description, we use row
and column operations to move it to the head before proceeding. If
not, we proceed knowing the head is already the smallest entry.
if minIndex != (j,j):

M = swapRow(M, j, minIndex[0]);
M = swapCol(M, j, minIndex[1]);

We create the variable i to loop through the j-th row and column. At
this point, j represents the the index along the diagonal where the
current head is. If the matrix is n x n, we are effectively trying to
find the Smith-normal form of an n-j x n-j matrix because we have
already done the first j rows. At each step of j, we define i and
loop from j+1 to n. At each step of i, we look at matrix entries
(j,i) and (i,j) and subtract a multiple of the head entry to get them
as close to 0 as possible. At each step of this process, we check to
see if we have produced any matrix entries smaller than the head
anywhere in the matrix. If so, we swap rows and cloumns to make it
the new head and restart the whole process for the current j. At the
end of this while loop, the j-th row and column should be all 0,
except for the diagonal entry (j,j).
i = j + 1
while i < len(M):

A restart boolean keeps track of whether we have moved another
matrix entry to the head so we know if we need to restart the
process for this j. Every time we restart, we have a smaller
head. Eventually, we should end up with a head that divides all
entries of the j-th row and column and makes them all 0.
restart = False;
label the head
head = M[j][j];

47

We move to the i-th entry of the j-th row. Integer division of
this entry by the head gives us add, the number of times we can
subtract the head from this entry (j,i) to minimize it (or get
close. it shouldn’t matter that we could possibly get smaller
absolute value by subtracting one more because at each step, we
look for smaller entries to become the head). We then subtract
the j-th column from the i-th column add times.
add = M[j][i]/head;
M = addCol(M,j,i,add*-1);

This is our minimum entry finding algorithm again. This should
perhaps be its own function so that we can just call it within
this function, but the SNF function did not work properly when
that was tried, so it currently exists in this repetitive form.
minIndex = (j,j);
ixminValue = abs(M[j][j]);
if minValue == 0:

minValue = sys.maxint;
for k in range(j,len(M)):

if minValue != 1:
for l in range(j,len(M)):

if minValue != 1:
if (abs(M[k][l]) < minValue) and (abs(M[k][l]) > 0):

minIndex = (k,l);
minValue = abs(M[k][l]);

else:
break;

else:
break;

If we do move things around in the matrix, we set restart to True
so that we start i at j+1 again.
if minIndex != (j,j):

M = swapRow(M, j, minIndex[0]);
M = swapCol(M, j, minIndex[1]);
restart = True;

We repeat everythnig for the i-th entry of the j-th column.
Together with the last piece of code, each iteration of the while
loop with respect to i reduces one additional entry along the j-th
row and j-th column.
add = M[i][j]/head;
M = addRow(M,j,i,add*-1);

Again, check for smaller matrix entries.
minIndex = (j,j);
minValue = abs(M[j][j]);
if minValue == 0:

minValue = sys.maxint;
for k in range(j,len(M)):

if minValue != 1:
for l in range(j,len(M)):

if minValue != 1:
if (abs(M[k][l]) < minValue) and (abs(M[k][l]) > 0):

minIndex = (k,l);
minValue = abs(M[k][l]);

48 Code for Smith-Normal Form Computation

else:
break;

else:
break;

Again, update the head if a smaller entry was found and set
restart to True.
if minIndex != (j,j):

M = swapRow(M, j, minIndex[0]);
M = swapCol(M, j, minIndex[1]);
restart = True;

If either of our reductions made it so that our matrix had an
entry smaller than the head, we will have moved it to the head.
In this case, we want to set i = j+1 so that we can start reducing
the j-th row and column again. If not, we just increment i and
continue down the j-th row and column.
if restart:

i = j+1;
else:

i += 1;

At the end of our giant for loop, we will have gone through every level of
the matrix and we should have reduced all but the diagonal to 0. At this
point, we may have negatives along the diagonal. We negate the rows
that are negative by taking the absolute value of every diagonal entry.
for i in range(len(M)):

M[i][i] = abs(M[i][i]);

return M;

Bibliography

Adinkramat. 2012. Visual adinkra creation software. https://github.com/
chelleorc/adinkramat.

Baker, Matthew, and Serguei Norine. 2006. Riemann-Roch and Abel-Jacobi
theory on a finite graph. arXiv:math/0608360 URL http://arxiv.org/abs/math/
0608360. ArXiv: math/0608360.

Bernstein, Mira, N. J. A. Sloane, and Robert G. Wilson. 1996. A000975 -
OEIS. URL https://oeis.org/A000975.

Faux, Michael, and S. J. Gates. 2005. Adinkras: A graphical technology
for supersymmetric representation theory. Phys Rev D 71:065,002. doi:
10.1103/PhysRevD.71.065002.

Gaslowitz, Joshua. 2013. Chip Firing Games and Riemann-Roch Properties
for Directed Graphs. HMC Senior Theses URL http://scholarship.claremont.
edu/hmc_theses/42.

Hoppenfeld, Tessa. 2014. The structure of the jacobian group of a graph.
Http://people.reed.edu/ davidp/homepage/students/hoppenfeld.pdf.

Krizek, Jaroslav. 2013. A229333 - OEIS. URL http://oeis.org/search?q=2%
2C+24%2C+20736%2C+309586821120%2C+11501279977342425366528000000&
sort=&language=english&go=Search.

Lagneau, Michel. 2012. A215410 - OEIS. URL https://oeis.org/A215410.

Rossum, Guido. 1995. Python reference manual. Tech. rep., Amsterdam,
The Netherlands, The Netherlands.

Sloane, N. J. A., and Don Knuth. 1995. A006237 - OEIS. URL https:
//oeis.org/A006237.

https://github.com/chelleorc/adinkramat
https://github.com/chelleorc/adinkramat
http://arxiv.org/abs/math/0608360
http://arxiv.org/abs/math/0608360
https://oeis.org/A000975
http://scholarship.claremont.edu/hmc_theses/42
http://scholarship.claremont.edu/hmc_theses/42
http://oeis.org/search?q=2%2C+24%2C+20736%2C+309586821120%2C+11501279977342425366528000000&sort=&language=english&go=Search
http://oeis.org/search?q=2%2C+24%2C+20736%2C+309586821120%2C+11501279977342425366528000000&sort=&language=english&go=Search
http://oeis.org/search?q=2%2C+24%2C+20736%2C+309586821120%2C+11501279977342425366528000000&sort=&language=english&go=Search
https://oeis.org/A215410
https://oeis.org/A006237
https://oeis.org/A006237

50 Bibliography

Stein, W.A., et al. YYYY. Sage Mathematics Software (Version x.y.z). The Sage
Development Team. http://www.sagemath.org.

Weisstein, Eric W. ????a. Cover Relation. From MathWorld—A Wolfram
Web Resource. URL http://mathworld.wolfram.com/CoverRelation.html.

———. ????b. Hasse Diagram. From MathWorld—A Wolfram Web Re-
source. URL http://mathworld.wolfram.com/HasseDiagram.html.

Zhang, Yan X. 2013. Adinkras for Mathematicians. In 25th International
Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2013),
eds. Alain Goupil andGilles Schaeffer, DMTCS Proceedings, vol. AS, 457–468.
Paris, France: Discrete Mathematics and Theoretical Computer Science.
URL https://hal.inria.fr/hal-01229733.

http://mathworld.wolfram.com/CoverRelation.html
http://mathworld.wolfram.com/HasseDiagram.html
https://hal.inria.fr/hal-01229733

	Claremont Colleges
	Scholarship @ Claremont
	2017

	Classifying the Jacobian Groups of Adinkras
	Aaron R. Bagheri
	Recommended Citation

	Abstract
	Acknowledgments
	Adinkras
	The Jacobian Group of a Graph
	Defining the Jacobian
	Finding a Graph Jacobian
	An Easier Approach to Jacobians

	Jacobians of Adinkras
	Generalizing the Jacobian
	Directed Topologies
	Arborescences
	Finding a General Directed Jacobian

	Further Work
	Patterns among Jacobians
	A Different Way to Find Jacobians
	Adinkras from Sub-Adinkras
	Codes and n,k-Adinkras
	General Directed Jacobian
	Other Jacobian Generalizations
	Physical Significance of Adinkra Jacobians

	Code for Adinkra Jacobian Computation
	Code for Smith-Normal Form Computation
	Bibliography

