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Abstract

In this paper, we consider the capture dynamics of a particle undergoing
a random walk above a sheet of absorbing traps. In particular, we seek to
characterize the distribution in time from when the particle is released to
when it is absorbed. This problem is motivated by the study of lymphocytes
in the human blood stream; for a particle near the surface of a lymphocyte,
how long will it take for the particle to be captured? We model this problem
as a diffusive process with a mixture of reflecting and absorbing boundary
conditions. The model is analyzed from two approaches. The first is a
numerical simulation using a Kinetic Monte Carlo (KMC) method that
exploits exact solutions to accelerate a particle-based simulation of the
capture time. A notable advantage of KMC is that run time is independent
of how far from the traps one begins. We compare our results to the second
approach, which is asymptotic approximations of the FPT distribution for
particles that start far from the traps. Our goal is to validate the efficacy
of homogenizing the surface boundary conditions, replacing the reflecting
(Neumann) and absorbing (Dirichlet) boundary conditions with a mixed
(Robin) boundary condition.
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Chapter 1

Introduction

Imagine a molecule floating in the bloodstream. This molecule diffuses
around until it happens to bump into a cell; if this the particle bumps into a
small receptor on the cell, it may bind to the receptor. An example of such
a situation is an antigen floating in the blood stream that may bind to a
T-lymphocyte (Robert et al. (2012)). At this microscopic scale, the motion of a
particle in a fluid is best modeled by a randomwalk, also known as Brownian
motion (Durrett (2010)). This is called a diffusive capture problem, diffusion
being the mechanism of motion and capture being the particle colliding
with the receptor. Diffusive capture problems model any situation where an
agent randomly wanders until it collides with something of interest; other
biological examples include an anteater wandering around the forest until
she finds an anthill full of tasty snacks, or a grain of pollen floating on the
breeze until it latches on to another flower. Why does diffusion work as a
reliable and predictable means of transit for these cases? All three problems
describe biological functions critical to the life processes that rely on them:
cells need to sense concentration levels in the fluid around them, anteaters
need to find food, and plants need to reproduce. So why rely on what is
essentially a random process?

This question was first tackled in earnest by Howard Berg and Edward
Purcell in a 1977 paper Physics of Chemoreception (Berg and Purcell (1977)).
They usedmathematical tools from physics to consider probability of particle
capture, time to capture, the effective capture rate of many small traps, and
other diffusion to capture related questions. Although Berg and Purcell’s
results were ground breaking at the time, they are rough approximations
when the geometry of the problem becomes complicated. In particular, the
case of multiple small pores on a reflecting surface has been an object of
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research since (see Lindsay et al. (2016), Muratov and Shvartsman (2008),
Berezhkovskii et al. (2014)).

The specific random-walk capture problem considered here is a planar
pore problem, an approximation of the spherical cell model. To model
this situation mathematically, one can use the fact that in a continuous
medium, the probability distribution in time and space for the location of a
particle undergoing a random walk can be found by solving the diffusion
equation, a partial differential equation (PDE). In a few simplified cases, such
as when a plane is completely absorbing, traditional PDE methods can be
used to solve for the distribution exactly. In more complicated models, the
interesting distributions come from heterogeneous geometries of receptors
and reflecting surfaces. The model most often used for the chemoreception
problem is a sphere in three dimension, with N small circular receptors on
it’s surface distributed around the surface of the sphere (Berg and Purcell
(1977), Lindsay et al. (2016)). The small circular receptors are absorbing, and
the surface of the sphere reflects oncoming particles. An image of this model
is given in Figure 2.1. Here I consider a simplified model that describes a
particle relatively close to a large sphere, as shown in Figure 3.1. This model
is a circular receptor tiled on an infinite plane, where the spaces between
the receptors are reflecting. The end goal of this analysis is approximating
the time distribution to capture in the case of the infinite plane covered in
periodic arrangements of receptors.



Chapter 2

Background

2.1 RandomWalks and Capture Problems

2.1.1 An Overview of RandomWalks

A random walk is most easily visualized on a lattice. In one dimension, you
stand on a line and flip a coin to decide whether you will step forward or
step backward. In two dimensions, you are on an infinite checker board, and
you choose one of the four neighboring squares to step to by flipping two
coins. In three dimensions, you choose between stepping up, down, forward,
back, left, or right at random. An interesting note here is that dimension is
important for general properties of random walks. By Polya’s recurrence
theorem, random walks in one dimension and two dimensions will always
eventually reach every point in the domain (Durrett (2010)). However, in
three dimensions recurrence only occurs with some probability less than
one. Stated loosely, this means that if you are lost and want to find your way
home, randomly walking around will eventually get you there. But if you
are lost in space and decide to move around randomly, you may never find
your way back to Earth.

In capture problems, this fact about random walks and dimension plays
a fundamental role in investigating time to capture. For example, on a
compact domain, a randomly walking particle will eventually traverse the
entire domain. Capture problems on a bounded domain, such as an ion
inside of a cell that bounces around until it finds a way out, are called narrow
escape problems. See Schuss et al. (2007) for more details on these problems.
While these problems share many similarities, the difficulties addressed
with the methods in this paper arise from the unbounded domain we are
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considering.
To model physical situations such as particles being randomly bumped

by other particles in a liquid or a grain of pollen being bumped around by
turbulence, we want to consider a continuous model rather than an arbitrary
lattice. As the lattice size goes to zero and the particle is allowed to take
more and more steps, the problem of stepping on a lattice turns into the heat
equation. The heat equation is a partial differential equation that says the
speed at which a particle moves is proportional to the Laplacian, i.e.

ut � D∇2u

where u is the probability distribution of the particles location as a function
of time, and D is the diffusion coefficient which has units of area per time.
The free space solution to the heat equation for a particle that begins at
location ®x0 in dimension d is a Gaussian distribution,

u(®x , t) � 1
(4πDt)d/2

e
−|x−x0 |2

4Dt

This solution will be useful in solving for the time distribution under various
geometries. It also gives an intuition about random walks. We see that the
most likely location for the particle grows as

√
Dt, the standard deviation.

We also see that the difficulty in solving for time distributions from the
heat equation all comes from the geometry of the boundary conditions.
Symmetric boundary conditions are more likely to yield tractable solutions
than heterogeneous geometries.

2.1.2 TimeDependence: Laplace’sEquationorTheHeatEquation

The heat equation captures the full joint distribution of the particle’s position
in both time and space. However, it is often useful to ignore the details of
time dependence in order to simplify the problem. One situation is when
a time-dependent solution reaches a steady-state equilibrium. In this case,
ut � 0, so the heat equation becomes Laplace’s equation,

∇2u � 0 (2.1)
u(x , y , 0, t)|∂Ωa � 0 (2.2)

u(x , y , 0, t)z |∂Ωr � 0 (2.3)

where ∂Ωa is the absorbing portion of the boundary and ∂Ωr is the reflecting
portion. In the case of a particle in a capture problem, the steady state
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Figure 2.1 Amodel for a cell with small circular absorbing traps.

of limt→∞ ut gives the capture probability. Another case where Laplace’s
equation becomes useful is considering the source problem, where particles
are continuously sourced from somewhere in space. Under appropriate
circumstances, the flux of particles into absorbers can be considered steady,
and so a steady-state solution in this instance can be transitioned back to say
something about model parameters. We will see later how this approach
can be used to find simplifying approximations under various geometries.

Another note on using steady-state methods for capture problems is
that there is an analogy with physics, specifically electrostatics. Laplace’s
equation yields harmonic functions, and there is a large literature of methods
for solving problems of this type due to their physical importance. It is
perhaps this connection thatmotivated the original study of diffusion capture
problems by biophysicists.

2.2 Biophysics: Berg and Purcell

Howard Berg’s book Random Walks In Biology Berg (1993) treats the chemore-
ception problem by considering a hierarchy of simplified problems that
build up to more complex models. These simplified models estimate the
steady-state particle current into the absorbing areas. The idea is to first find
current into a perfectly absorbing sphere, then into a single absorbing disk,
then to estimate the current of multiple receptors by finding an expression
for multiple receptors that matches both limits of a completely covered
sphere and a sphere with a single receptor. These time-independent results
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are useful as a starting point for thinking about the point of my research,
which is investigating the time-dependent problem.

To solve the time independent problem we solve Laplace’s Equation

∇2u � 0 (2.4)

with various boundary conditions. For an absorbing sphere of radius R, the
boundary conditions are spherical, with u(∞) � u0 and u(R) � 0. Laplace’s
equation in spherical coordinates with only radial dependence is

1
r2

d
dr

(
r2 du

dr

)
� 0. (2.5)

Berg gives the solution as

u(r) � u0

(
1 − R

r

)
(2.6)

The flux into the sphere, which is really the quantity of interest for capture
problems, is

J(r) � −Dur(r) � −Du0
R
r2 (2.7)

where D is the diffusion constant of units length squared per time. If we
multiply by the surface area of the sphere, 4πR2 and set r � R, we get the
absorption rate

I � 4πDRu0 (2.8)

which is in units of particles per second. Note here that, perhaps contrary to
intuition, the absorption rate increases linearly with the radius, not with the
surface area.

It is worth thinking about the consequences of equation 2.8 depending
on the radius of the traps instead of the surface area. What is the physical
intuition for why this is the case? Well, suppose a particle diffuses until
it collides with the reflecting surface. Once near the surface, it is likely to
stay near the surface. It is possible that it randomly walks away, but it is
highly likely that it continues to bounce along until it hits a receptor. Once a
particle is on the surface then, the time to capture depends on the distance
to the nearest receptor, which is a function of the perimeter, not the area.
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Another non-intuitive consequence of this result is that for any given fraction
of the surface covered by receptors, the flux can be made arbitrarily large by
considering smaller and smaller individual receptors. Later we will derive
problem parameters based on the fraction of surface covered by receptors:
from these considerations, we see that those parameter results only make
sense once the geometry has been fixed so that determining the fraction
covered determines the perimeter of individual receptors.

Another interesting case to consider is a circular absorber of radius s,
considered on a reflecting plane. If the concentration at infinity is u0, then
the diffusion current into the disk is

I � 4Dsu0 (2.9)

(a derivation can be found in Crank (1980)). This represents the case of
a particle near the surface of a sphere that only has one receptor. This
planar pore solution has been the basis for much of the recent work in
approximating capture distributions, Lindsay et al. (2016). By summing
up the contributions of individual pores and correcting for the pore-pore
interactions, one can approximate the flux through a finite set of pores.

2.2.1 Matching the Asymptotics for the Spherical Cell

The expressions for the rate of absorption for a receptor on the plane and
the sphere are somewhat similar, so Berg assumes that a non-absorbing
sphere with small receptors on the surface would have a similar rate of
absorption to that of the plane. The idea to estimate this rate is that for N
small receptors on a sphere the rate should be something like 4DNsu0, the
sum of the rate for an individual pore ignoring pore-pore interactions. As
the sphere gets more and more covered, the rate should approach a perfectly
sphere rate 4πDRu0. Berg appeals to an electrical analogue and matches
these asymptotic limits to argue that the absorption rate would be

I �
4πDRu0

1 +
πR
Ns

(2.10)

The insight from this equation is that N does not have to be very big for the
absorption rate to be almost the same as the completely absorbing sphere.
The biological perspective is that a cell can carry a few small receptors for
many different antigens and still be nearly as efficient at capturing antigens
as if the cell was dedicated to just one type of antigen.
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2.3 Refining Berg and Purcell: Homogenization and
Pore-Pore Interactions

The difficulty in studying the problem of small circular receptors is that the
boundary conditions for the differential equation are heterogeneous, and
are thus difficult to analyze analytically. One way to get around this is to
imagine a particle far from the surface relative to the pore radius. Since
the time to capture in this case mostly depends on getting to the surface,
the exact geometry of how the receptors are arranged would seem to be
negligible in determining the capture time distribution. This intuition leads
one to consider homogenization, replacing the heterogeneous problem with
a homogeneous problem. Berg and Purcell essentially had this approach,
although recent work has been more explicitly focused on homogenization.

Figure 2.2 We seek to replace the heterogeneous boundary conditions with a
homogeneous, semi-absorbing boundary condition.

Zwanzig (1990) applied a homogenization process to derive a modified
form of Berg and Purcell’s estimate for absorption rate with multiple small
receptors on the surface of the sphere. Homogenization depends on making
the plane semi-absorbing, with some “stickiness” parameter κ. Zwanzig’s
reasoning was that the effective κ would be a weighted average of the purely
absorbing and purely reflecting case. This gives

κ(σ) � 4Dσ
πa(1 − σ)

Although this expression was for finitely many pores on a sphere instead
of the planar problem, it is noteworthy in that the limiting behavior of κ is
correct: as σ→ 0, κ→ 0, and as σ→ 1, κ→∞.

For the planar problem with finite pores, estimates for κ can be derived
by summing the solution for a single pore, and then correcting for pore
interactions to higher orders until the desired accuracy is achieved. Examples
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of this approach are . However, with an infinite number of pores, the sum
used with the finite pores does not work because the sum diverges. Perhaps
for this reason, previous research on the infinitely tiled plane has relied
on heuristically guessed formulations. In Berezhkovskii et al. (2006), a
homogenization formula for κ is given as

κ(σ) � 4D
πa

(
σ(1 + A

√
σ − Bσ2)

(1 − σ)2

)
where A and B are fit for different tiling geometries. This formula was
guessed by numerically estimating κ and then guessing the scaling as σ→ 0
and σ→ 1.

Muratov and Shvartsman (2008) reconsider homogenization of a periodic
array of receptors, the problem I first evaluate in this thesis. An interesting
result from this paper is the exact solution byMoizhes for the homogenization
parameter for the case of a plane tiledwith infinite stripes. The exact solution
came from a complex variables method, and is given by

κ(σ) � − πσ
ln sin πσ

2

This formula is useful for evaluating the accuracy of the numerical
results against an exact solution. It also contains a logarithmic term in the
denominator, which hints at a dependence on the Green’s function because
of the two dimensional nature of the stripes problem.

More recent questions consider various modifications of the problem.
Berezhkovskii et al. (2014) continues a homogenization approach to treating
the geometry of receptor layout, in the case of clusters of pores. The approach
with small clusters is to replace a cluster of small pores with one equivalent
pore. For well-localized traps, this strategy may be more effective than an
overall surface homogenization.

2.4 Kinetic Monte Carlo

One way statistics can be computed for capture times is through a Monte
Carlo simulation. Random walks are simulated by taking random steps
on a lattice, and the geometry of the problem is coded in to terminate the
walk when the particle has been captured. The number of steps is recorded,
and the algorithm is repeated many times to capture the distribution. An
example of such an approach is Northrup (1988). In Northrup’s simulation,
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this standard Monte Carlo technique is used to evaluate Berg and Purcell’s
estimation with regards to the number of receptor sites. The paper finds
that the Berg and Purcell approximation matches the numerics in the limits
of small numbers of receptors and nearly completely absorbing spheres,
but deviates in the middle region. One trick the paper uses to evaluate
different geometrics is saving the random walk trajectories away from the
surface for the simulated particles. Then the computation of capture time is
done separately, so that the computationally intensive step of generating the
trajectory can be used multiple times over different geometries. This trick is
an attempt to help reduce the inherent difficulty with lattice based methods
on an unbounded domain, which is that some walks can take a very large
number of steps before they are captured, especially if the particle starts far
away or the pores are very small. We seek to solve this computational issue.

Simulating random walks step-by-step is one way to go about this
problem, but a more powerful way that is employed here is called Kinetic
Monte Carlo (KMC). In KMC, the diffusion process is broken into steps,
where each step corresponds to a diffusion problem on a simpler geometry
that can be solved analytically. For example, in the case of a reflecting plane
with periodic absorbing receptors, the distribution of time and location to
the plane can be solved exactly and then sampled to hop the particle down.
This way, long trajectories where the particle may float around for many
many time steps before eventually returning to the plane can be modeled
precisely and efficiently. This methodwas laid out by Opplestrup et al. (2006)
in the context of simulating large N-body problems. The application is
different, but the underlying idea of sampling known distributions to speed
up convergence time is very useful in simulating these capture problems.
Another paper using this method for Brownian motion simulations is in Wu
and Lu (2006). This paper uses statistics of passage time to the sphere to
speed up simulation of diffusion in the context of sphere-receptor problems
in chemical reactions.



Chapter 3

The Half-Plane Problem

Consider the capture problem of a particle that starts above an infinite plane
periodically tiled with circular receptors. The geometry can be seen in Figure
3.1

Figure 3.1 The half-plane capture problem geometry.

The partial differential equation that describes the probability density
function for the position of the particle over time is

ut � ∇2u , z > 0 (3.1)
u(x , y , z , 0) � δ(x − x0)δ(y − y0)δ(z − z0) (3.2)

u(x , y , 0, t)|∂Ωa � 0 (3.3)
∂u(x , y , 0, t)

∂z
|∂Ωr � 0 (3.4)

where ∂Ωa is the (Dirichlet) absorbing receptors and ∂Ωr is the (Neumann)
reflecting boundary. Due to the heterogeneous boundary conditions, this
problem is not easily solved by conventional methods. We seek to replace
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this problem with a homogenized problem of

ut � ∇2u (3.5)
u(x , y , z , 0) � δ(x − x0)δ(y − y0)δ(z − z0) (3.6)
∂u(x , y , 0, t)

∂z
� κu(x , y , 0, t) (3.7)

This PDE represents a semi-absorbing problem, where the flux through
the plane is proportional to the concentration near the plane . The “stickiness”
parameter κ determines how absorbing the plane is, and is the main
parameter to estimate in homogenizing the problem. The goal is to derive κ
in terms of the parameters of the problem, i.e. the proportion of the plane
covered by receptors and the initial height above.

3.1 Semi-Absorbing Plane

The semi-absorbing plane problem can be written in one dimension with
homogeneous boundary conditions as

ut � uxx (3.8)
u(x , 0) � δ(x − x0) (3.9)
∂u(0, t)
∂x

� κu(0, t) (3.10)

To solve this, we will solve a transformed problem where the transformation
is a trick from Carslaw and Jaeger (1959). Consider the linear operator
L[v] � ∂v

∂x − κv. Let φ(x , t) � L[u]. Then φ must satisfy

φt � φxx (3.11)
φ(x , 0) � δ′(x − x0) − κδ(x − x0) (3.12)
φ(0, t) � 0 (3.13)

We can solve for φ by the method of images using the Green’s function for
the heat equation. If we denote the Green’s function G(x , t), then

φ(x , t) � Gx(x + x0 , t) + Gx(x − x0 , t) − κ[G(x − x0 , t) − G(x + x0 , t)]

To solve for u(x , t), we solve the equation

ux − κu � φ
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Using an integrating factor,

(e−κx u)x � e−κxφ(x , t)

u � eκx
∫ ∞

x
e−κx′φ(x′, t)dx′

Now the function we are interested in is given by the flux at the origin,
ux(0, t). We have by differentiating

−ux(x , t) � φ(x , t) + κeκx
∫ ∞

x
e−κx′φ(x′, t)dx′

Because φ(0, t) � 0,

ux(0, t) � −κ
∫ ∞

0
e−κx′φ(x′, t)dx′

Plugging in the Green’s function solution for φ(x , t) and integrating gives
us the distribution of time to absorbtion as

F(t) � κ
√
πt

e−
x2
0

4t − κ2eκ(κt+x0)erfc
(
2κt + x0

2
√

t

)
(3.14)

Figure 3.2 The semi-absorbing probability density function, shown on a log
scale in time.

This function, shown in Figure 3.2 gives us the relationship between time,
height above the plane, and the constant κ that will be used to estimate a
function for κ given simulations.





Chapter 4

The Kinetic Monte Carlo
Method

To estimate the time distribution to absorption, I wrote a diffusion simulator
that uses the Kinetic Monte Carlo method. The historical method to sim-
ulate particle diffusion is by moving a particle in random spatial steps, a
random walk on a lattice. This can be a powerful method, but it fails in our
circumstance for a simple reason: for geometries where a small fraction of
the surface is absorbing, the particle can take a very long time to be absorbed,
and may spend a lot of time wandering aimlessly around. This slows down
runtime, and limits the number of particles one can realistically simulate.
Instead, we take advantage of the fact that the diffusion equation may be
solved exactly for certain geometries, namely diffusion to the plane and
diffusion to a surrounding sphere.

There are two repeated steps in the periodic plane algorithm. The first
is to jump the particle from its starting location above the plane to the
plane by sampling from an exact joint distribution. The complete joint
distribution for this can be found by solving the three dimensional heat
equation and computing the flux through the plane. Then time and location
can be integrated out, and inverse sampling can be used to generate random
samples of this distribution. Once on the plane, a check is performed to see
if the particle has been captured. If it has, the algorithm terminates. If it has
not, the next step is executed, which is to bounce off the plane. Bouncing off
the plane is equivalent to diffusing to a hemisphere around the particle. In
order to optimize runtime, the radius of this hemisphere is chosen to be the
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distance from where the particle is on the plane to the nearest absorber. The
jump to the plane step is then repeated, and the process continues until the
particle is eventually absorbed. In order to implement this method, we must
first solve the two PDE problems, the joint distribution to the plane and the
joint distribution to the sphere.

a. The particle is projected onto the
plane by sampling an exact spatial
probability distribution ofwhere it will
land.

b. The particle is jumped to a random lo-
cation on a small hemisphere above
the plane.

Figure 4.1 The two steps in hopping a particle with the Kinetic Monte Carlo
method.

4.1 Joint Distribution to the Plane

Transit time to the plane is given by the solution to the one-dimensional PDE

ut � uxx (4.1)
u(x , 0) � δ(x − x0) (4.2)
u(0, t) � 0 (4.3)

This can be solved with a Green’s function as

u(x , t) � 1
2
√
πt

(
e−
(x−x0)2

4t − e−
(x+x0)2

4t

)
(4.4)

The flux through the boundary describes the transfer time, so differentiating
at x � 0 we get

ux(0, t) �
x0

2
√
πt3/2

e−
x2
0

4t (4.5)
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This is the probability distribution of transit time to the plane. The
cumulative distribution function is given by

F(t) �
∫ t

0

x0

2
√
πτ3/2

e−
x2
0

4τ dτ � erfc
(

x0

2
√

t

)
(4.6)

Deriving this equation has two main uses for analyzing the problem of
measuring time to absorption. The first is that it describes the case where
the surface is completely absorbing, and so any expression for the mixed
boundary condition case should tend to this distribution in the limit of larger
absorbing area. The second is that we can use this distribution in the Kinetic
Monte Carlo simulation to “jump” the particle forward to the plane.

4.2 Time Distribution to the Sphere

Choosing a random location on a sphere is a well-known problem, but the
time dimension requires a bit more thought. A formula from Litwin (1980)
gives the cumulative time distribution as

F(t) � 1 + 2
∞∑

n�1
(−1)n e−( nπ

r )t (4.7)

This may be derived by solving the PDE problem

ut � ∇2u (4.8)
u(ρ, θ, φ, 0) � δ(ρ) (4.9)
u(1, θ, φ, t) � 1 (4.10)

This problem can be solved by separation of variables, and then a Fourier
transform in the radial direction. Expression 4.7 is u(1, t).

The sum in 4.7 converges quickly for large t, but for not for small t.
However, a theta function identity can be used to invert the dependence on
t. The Fourier identity

∞∑
n�−∞

e−πt(n+a)2
�

∞∑
n�−∞

t−1/2e−πn2/t e2πina (4.11)

from Chapter 4 of Stein and Shakarchi (2003) can be applied to this function.
Substituting a �

1
2 and rewriting the sums as sums from 1 to∞, we get

F(t) � 2
√
πt

1
2

∞∑
n�1

e−(n+
1
2 )2 π

2
t (4.12)
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Figure 4.2 The transit time to the sphere. For large times, the expression 4.11
is used. For small times, 4.12 is computed instead.

This function is shown in Figure 4.2. These approximations are used for
appropriate time scales, and the function is numerically inverted to sample
the time distribution to the hemisphere.

4.3 Fitting κ

With these distributions in hand, we can simulate a large number of particles
and have a model that should fit this distribution. That leaves us with
the optimization problem of fitting κ. Here I consider two optimization
objectives. The first is to compute both the theoretical cumulative distribution
function and the empirical cumulative distribution function, and then
minimize the average squared error difference between the two curves. If
CDF(κ, t) denotes the theoretical CDF, and CDF(κ, t) denotes the estimated
CDF, then the error function is

N∑
i�1
(CDF(κ, ti) − CDF(κ, ti))2

The second objective function is a maximum likelihood approach, where
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the probability of observing a set of times t given a particular κ is given by

P(t|κ) �
N∏

i�1
P(ti |κ)

We can then maximize the expression

N∑
i�1

log P(ti |κ)

Comparing the two objective functions gives a check on consistency in
computing κ. To get an estimate of the error in fitting κ by either method, a
bootstrap is performedwhere the set of times is resampled with replacement,
and then κ is refit. A set of κ estimates is computed; the standard deviation
of the κ estimates is an estimate of the uncertainty in κ. This bootstrap
estimation of the uncertainty is repeated 20 times, where each sample is a
resample of as many entries in the time to capture set, typically 105 or 106

data points.

4.3.1 Downside of the Method: Large σ

An underlying assumption of the κ estimation method as described so far is
that the time distribution to the sphere is sensitive to κ. This assumption
is accurate for a surface that has a small fraction of its surface covered, but
for surfaces that are mostly absorbing, this assumption breaks down. The
reason is that in the almost completely absorbing case, the time distribution
to the plane is dominated by particles that never hit the reflecting surface.
We get a sampling problem, where few of the particles give meaningful
information that could distinguish between different κ parameters. This
issue could be fixed by starting particles randomly on the reflecting regions,
but the theory would have to be adapted to fit a modified time distribution.





Chapter 5

Asymptotics

Wehave seen that κmay be determined numerically for a particular geometry
using the Kinetic Monte Carlo method. Here we investigate the problem
of finding an asymptotic expression for κ derived by approximating the
problem in limits of small receptors.

5.1 TheAsymptoticApproach: LinearSteadyStateAp-
proximation

The idea to finding an expression for κ asymptotically is to take advantage
of the fact that the size of the absorbing traps is small in comparison to the
diffusion length of the particle. This implies that if the length scale of the
trap is ε, then we want to consider heights z above the plane where

ε � z � 1

In this region, we expect that the concentration u is roughly linear, and thus
follows the steady-state PDE

∇2C � 0
lim
z→∞

C ≈ a + bz

C(x , y , 0) � 1 on ∂Ωa

Cz(x , y , 0) � 0 on ∂Ωr

Where C is linear, the far-field solution assuming homogeneous boundary
conditions Cz(x , y , 0) � κC(x , y , 0) is approximately

C ≈ z +
1
κ
.
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Now we obtain a new problem,

C(x , y , z) � z +
1
κ
− φ(x , y , z)

so that
∇2φ � 0

lim
z→∞

φ(x , y , z) � 0

φ(x , y , 0) � 1
κ
on ∂Ωa

φz(x , y , 0) � 1 on ∂Ωr

This new problem lends itself to various asymptotic approximation meth-
ods, such as complex variables methods and Green’s function asymptotic
methods.

5.2 The Stripes Problem: Complex VariablesMethods

If the problem is two dimensional, complex variables methods may be used
to solve Laplace’s equation. If an analytic complex function can be written
down that satisfies the boundary conditions properly, the real component
will necessarily satisfy the PDE. In our case, if the geometry of the traps
on the plane is a set of alternating absorbing and reflecting stripes, then
the problem becomes a two dimensional problem. The complex variables
solution to the stripes problem given by Muratov and Shvartsman (2008) is

u(x , y) � Re{w(x + i y)}

where
w(z) � iz +

2i
πσ

arccos
( sin(πσz

2 )
sin(πσ2 )

)
.

If we want κ as a function of σ, we get the expression

κ(σ) � − πσ
2 ln sin(πσ2 )

(5.1)

This exact formula is both useful for evaluating the kinetic Monte Carlo
method, as well as for providing some insight into how absorption time
changes with varying σ.
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5.3 Green’s Function Approach

A Green’s function approach to this problem is given in Bernoff and Lindsay
(2017). The method presented there solves for the flux in the case of finitely
many pores on the plane. Their final expression for the flux for circular traps
of radius a is

J � 4aDN
1 − 2a

Nπ

∑
j,k

1
|x j − xk |

+
4a2

Nπ2

∑
j,k

∑
i, j

1
|x j − xk | |xi − x j |

+ O(a3)
 .

(5.2)
This formula is derived by asymptotically expanding the solution near each
pore, solving near each pore by a superposition of Green’s functions, and
then matching the expressions in the far-field. The importance of equation
5.2 is to show the relationship between the spatial configuration of finitely
many pores and the flux. For our purposes here, the Green’s function
approach is a way to approximate the heterogeneous steady-state problem
proposed in Section 5.1. Variations on the method used to derive this result
may be used for the case of infinite periodic pores. This approach will be
shown in the forthcoming Bernoff et al. (2017), where the result for κ as a
function of σ is the asymptotic expression

κ(σ) ≈ 4
√
σ
π

[
1 − 4R00

√
σ

√
π

]−1

(5.3)

where R00 ≈ 0.5654.





Chapter 6

Results

The research process shows early success in fitting the homogenization
parameter κ after simulating a particle capture. Simulating 100, 000 particles
with about 5% of surface absorbing takes under a minute on my Lenovo
X1 laptop. The current code takes advantage of MATLAB’s fast vectorized
implementation of matrix computations using a batch resizing algorithm.

6.1 Quality of the κ Fit

The currentmethod that has beenmost successful in fitting κ to the simulated
data is to minimize the mean square error between the empirical cumulative
distribution of times to capture and the homogenized cumulative distribution
function. The fit qualitatively matches the observed data, with absolute
error less than 10−3.
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Figure 6.1 The fit distribution compared to the observed times. The CDF
qualitatively fits, the histogrammatches the distribution, and the absolute error
is less than 10−3 for all times. This simulation was done with 105 particles,
σ � 0.2.

Of note in looking at the distribution in Figure 6.1 is that the tail on the
time distribution is long. Thismeans that quantitative analysis of first capture
time based on the mean of this distribution will significantly overestimate
the typical time to capture, and experimental data on this quantity will be
easily skewed by a few results. Rather, the mode of the data seems to capture
more information about a typical time to capture, with the caveat that some
particles may take a very long time to be captured.

Figure 6.1 also shows for what times homogenization is a good ap-
proximation. For large times, both cumulative density functions approach
one. In the intermediate region, the error looks like a random walk, which
should be due to the step function form of the empirical CDF. For very
small times, the distribution seems to not fit quite as well, but this fits the
assumptions of the problem. Particles that never bounce along the surface
break the homogenization assumption, so we would expect that these small
times are where the approximation is least accurate. But most importantly,
the large mode of the distribution appears well-fit by the homogenization
approximation.

6.2 Stripe Absorbers

Here we compare the exact formula for κ(σ) given in equation 5.1 to κ
estimated via Kinetic Monte Carlo.
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Figure 6.2 Comparison of derived dependence of κ on σ and estimated κ.
The simulation method appears to be more accurate for smaller σ.

Figure 6.3 More simulated points showing the accuracy for small σ.

In the case of stripe absorbers, Figure 6.2 shows the agreement between
the numerically estimated κ and the theoretically predicted formula for a
plane covered periodically with stripes. Each estimation of κ is done for 106

particles, and the error bars are estimated with a bootstrap method.

6.3 Periodic Pores

We do not have an exact formula for κ(σ) in the periodic pore geometry.
Here the asymptotic result from equation 5.3 is compared to KMC estimates
for κ(σ).
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Figure6.4 Estimatedκ for smallσ compared to theasymptotic approximation
given in Berno� et al. (2017). Each point is a simulation of 106 particles.

For pores periodically arranged on a square lattice, κ as a function of
σ is shown in 6.4. Here we note a few important results. One is that the
asymptotic approximation captures the limiting behavior as σ → 0 of the
decay as

√
σ. The second is that there is an intermediate near-linear region,

and the asymptotic approximation seems to do well there as well. In Figure
6.5, we see the breakdown of the accuracy in estimating κ for σ→ 1. From
the numerical approach, the difficulty is in getting enough samples that
reflect off of the surface. We also see the divergence of the asymptotic
estimate from the numerical estimate.

Figure 6.5 κ(σ) for the entire range of possible σ under this geometry. The
asymptotic approximation breaks down in estimating κ around σ ≈ 0.5.



Chapter 7

Conclusions and Future Work

Kinetic Monte Carlo methods are an accurate and efficient way to simulate
particle diffusion for problemswhere exact solutions to thediffusion equation
can be computed. This simulation method has been used to compute κ in
the striped and square lattice of pores absorbing geometries on the infinite
reflecting plane. Comparison to approximations for κ shows the accuracy of
the method and provides an evaluation of new asymptotic results.

Future work on this problemwould be to extend the Kinetic Monte Carlo
method to the sphere problem. The challenge with the sphere problem is
in the second hop step that would hop off of the surface. Hopping to a
hemisphere is not possible due to the sphere geometry: the exact diffusion
problem of two intersecting spheres with reflection on the surface and
absorbing on the outer sphere is not easy. There are a few possibilities. One
is to use more traditional lattice-based random walk simulation for this step.
Another could be to map the spherical geometry to planar, sample to the
hemisphere, and then map back. In any case, the sphere problem can be
simulated with the KMC method, it is just more challenging to solve the
exact distributions.

Another direction for future work would be to investigate a variety of
different pore geometries, whether on the plane or on the sphere. These
issues have been investigated to some extent in Berezhkovskii et al. (2014),
but with new results for the infinitely tiled plane and with the Kinetic Monte
Carlo method, the results presented there could be refined and made more
precise.

Finally, the Kinetic Monte Carlo method as described here applies to
static problems, where the geometry is fixed. In real world applications,
traps are often moving or changing in time: cells do not sit still and wait for
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particles to float to them. It is potentially possible to generalize the Kinetic
Monte Carlo method to time-dependent problems, it becomes a matter of
solving potentially more complicated time dependent diffusion problems.

I have very much enjoyed working on this problem. Random walk
problems are fascinating to me, both due to the breadth of their applications
and to the mix of mathematics involved in studying them.
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