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Abstract

Bayesian networks are a means to study data. A Bayesian network gives struc-

ture to data by creating a graphical system to model the data. It then develops

probability distributions over these variables. It explores variables in the prob-

lem space and examines the probability distributions related to those variables. It

conducts statistical inference over those probability distributions to draw meaning

from them. They are good means to explore a large set of data efficiently to make

inferences. There are a number of real world applications that already exist and

are being actively researched. This paper discusses the theory and applications of

Bayesian networks.
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1 Introduction

Imagine conducting a study where some of the data is incomplete. Or imagine a

situation where you decide to add a new dimension to your data but cannot go

back and fill in these blanks in the past data because these new variables were not

recorded in earlier data collection. In such a case, how do you reason about the

old, incomplete data? Do you scrap it saying it is useless? Or do you try to reason

about it to draw inferences from it? Even if those inferences aren’t guaranteed

to be perfect, what if you can draw meaning with a certain degree of confidence?

This seems promising. Here, Bayesian networks can be helpful.

Bayesian networks is a subfield within artificial intelligence that is rapidly

gaining popularity. It is an active area of research both in academic and industrial

settings because its power in leveraging data is being recognized. A number of

practical applications of Bayesian networks are being discovered in an industrial

capacity. This is leading to a number of companies and researchers implementing

Bayesian networks to address various questions they face.

Bayesian networks make use of graph theory to model the structure of a prob-

lem. The nodes along with the topology of the network encode the variables in

the problem along with the relationships that hold among those variables in the

problem space. It uses probability theory, more specifically Bayesian statistics and

inferential statistics, to discover and encode the degrees to which those relation-

ships hold in the problem space.

Bayesian networks are particularly helpful in “encoding uncertain expert knowl-

edge in expert systems" (Heckerman, 2008). Data modelers and Bayesian network

designers can create models to represent expert systems and allow the network

to learn from the available data. It makes use of as much data as is available to

provide its best estimates on a problem.

In this paper we explore the theory of Bayesian networks and discuss real world

applications of this theory. In Section 2 we explore the theoretical concepts neces-
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sary for understanding Bayesian networks; more specifically, we study the theory

of Bayes’ theorem and Bayesian inference followed by concepts of graph theory.

Section 3 discusses what exactly a Bayesian network is, how it is generally used,

and what situations it is especially useful in. Followed by this, Section 4 discusses

some real world applications specifically in classification and learning problems.

We look at some of the research that has been done and some applications of

Bayesian networks developed by researchers in both these types of problems.

2 Theory

Bayesian networks make use of probability theory and graph theory to search

through a state space and make decisions in uncertainty. It uses probability theory

to guide it’s search to find the goal states faster. Therefore, the main theoretical

concepts that we need to understand to implement a Bayesian network fall under

probability theory (specifically Bayes’ theorem) and graph theory.

2.1 Bayes’ Theorem and Bayesian Inference

2.1.1 Bayes’ Theorem

Bayes’ theorem was developed my Rev. Thomas Bayes, an 18th century math-

ematician and theologian. It is a means of calculating conditional probability

distributions given a set of interacting variables. Bayes’ theorem is expressed as

P (H|E, c) =
P (H|c)× P (E|H, c)

P (E|c)
(1)

where H is the hypothesis, E is the known evidence, and c is the background

context. In general, P (A|B) is read as "the probability of A given B", where

A is the dependent variable and B is the independent variable. Bayes’ theorem

allows us to calculate the probability of our hypothesis H given our evidence
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and background. That is, given the context c and evidence E, we can know the

probability of hypothesis H by using the conditional probability of H given c,

conditional probability of E given H and c, and the probability of E given c using

Equation (2). Here, the term P (H|E, c) is the probability of H after considering

the probability of E on c and is called the posterior probability. The term P (H|c)

refers to the probability of the hypothesis given the background context ignoring

the evidence we have, and is called the prior probability. The term P (E|H, c) is

the probability of the evidence assuming the hypothesis and background context

are true. This term is called the likelihood. The term P (E|c) is the probability

of the evidence given the context. It is a scaling factor to get the probability of

the hypothesis from the conditions of the evidence E and background context.

(Niedermayer, 2008)

The formula is often simplified to the form

P (H|E) =
P (E|H)× P (H)

P (E)
(2)

This is an acceptable substitution since the background context often doesn’t

change and thus we can assume it to be constant throughout our analysis. (Wang

and Vassileva, 2005)

Bayes’ theorem is then further simplified using the inequality (Koch, 2006)

P (x|y) = P (x, y)

P (y)
(3)

to be rewritten as

P (H|E) =
P (H,E)

P (E)
(4)

3



A great benefit of Bayes’ theorem is that you can calculate the probability of

event A given event B when you can more easily calculate the probability of event

B given event A. That is, we can derive P (A|B) from P (B|A) using Equation (2)

above.

To see the benefit of such an application of the rule, let’s consider the following

situation. When diagnosing whether a person has a cavity in his/her tooth, we

consider a number of symptoms including whether the person has a tooth ache

or not. Given a population of patients with tooth cavities, it might be easy to

calculate the probability P (tooth ache|cavity). However, the more useful and

interesting question is what is P (cavity|tooth ache)? This can be done using

Equation (2) above.

Often, we may know the values to a number of variables. That is, we have

have more than one variable that is known. In such a case, we can use the chain

rule. The chain rule is an important application of Bayes’ theorem. It is expressed

in Equation (5) below. (Niedermayer, 2008)

P (X1, ...Xn|c) =
n∏

i=1

P (Xi|X1, ...Xi−1, c) (5)

In a set of a number of variables, it is possible that some of the variables

are disjoint or independent of each other if we control for the effects of another

variable. Variables A and B are said to be conditionally independent if P (A,B) =

P (A)P (B). In general, it is said that variables A and B are independent given

variable C if

P (A,B|C) = P (A|C)P (B|C) (6)

Alternatively, A and B are independent if P (A|B,C) = P (A|C). (Fenton).
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The topic of conditional independence is extremely important when talking about

variables that affect a hypothesis variable. Reasoning about conditional indepen-

dence relationships tends to simplify many computations in the usage of a Bayesian

network.

2.2 Graphical Models

A graph is made of a set of nodes, and edges connecting pairs of those nodes.

Each edge shows a relationship between two nodes. The edges may be directed or

undirected, where a directed edge goes from a parent node Np to a child node Nc.

An undirected edge can simply be thought of as a special case of directed edges

going in both directions between the two nodes.

Each edge also encodes some information about the transformation from the

parent node to the child node and that information is often useful in the process of

traversing the graph. In the case where such information is missing, it is assumed

that the weights of all edges are the same or of a unit weight. (Stephenson, 2000)

Take the example of a simple undirected and unweighted graph in Figure 1.

Here we show connections among three nodes A, B, & C such that nodes A and

C are indirectly connected through node B. They are independent of each other

given node B.

Figure 1: Undirected Unweighted Graph

Figure 1 above can be generalized to show the directions and weights as shown

in Figure 2. The undirected graph can be replaced with edges going in both

directions having a unit weight.

Properties of Graphs
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Figure 2: Directed Weighted Graph

In a graph, nodes u and v are said to be connected if there is a path from one

to the other. In the examples above, the nodes A and C are connected because

there was a path from one to the other even if not directly. In Figure 3 nodes A

and B are disconnected because there is no possible path from one to the other.

In the context of Bayesian Networks, paths help understand relationships between

nodes.

Figure 3: Disconnected Nodes

Graphs start to get interesting when we look at directed graphs with varying

weights. Figure 4 gives an example of a graph with various directed edges each

with a weight associated to it. For example, going from node A to node B costs 4

units.

A graph is said to have a cycle if there is a way to get from one node back to

itself through at least one edge. Figure 4 has a cycle since the nodes C, E, & F

form a cycle.

Nodes in a graph each have in-degrees and out-degrees which means the number

of nodes coming in to the node and going out of the node respectively. For example,

node B in Figure 4 has an in-degree of 1 and an out-degree of 2. In the context

of Bayesian networks, the in-degree of a node indicates how many variables affect

the node and the out-degree indicates how many variables this node affects.
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Figure 4: Directed Graph with Varying Edge Weights

3 Bayesian Networks

3.1 Introduction

Conditional probability is an extremely useful concept. A number of real world

applications can easily be examined using conditional probability. In fact, people

mentally analyze situations based on it all the time. For example, a medical doctor

would listen to a person’s symptoms and look at the most probable diseases based

on the symptoms. A policy maker would analyze the most likely results of a policy

he/she is considering.

A graphical model is extremely useful in connecting many such variables (for

example, body temperature, redness of throat, medical history, and family medical

history, etc.) with possible outcomes (for example, allergies, tuberculosis, diabetes,

etc).

However, when looking at graphs with large branching factors, it might be

impossible to explore all possible outcomes. A monitoring system for patients

has 37 different components. In a simplified system where we assume that each

system either gives an alert or not, we can have 237 possible outcomes. Traversing

all of these would be exponentially complex given standard traversal techniques
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that don’t make use of search heuristics. However, we can approximate solutions

using search heuristics for traversing through our graph to prioritize more likely

outcomes earlier (Example adapted from Niedermayer (2008)). Further, we can

determine the probabilities of various events using the observed events and their

probable effects. This is where a Bayesian network can be extremely useful.

3.2 Definition

A Bayesian network is a directed acyclic graph where each node has quantitative

probabilistic information associated with it. Each node is associated to a random

variable and arcs (edges) between itself and other nodes. The variables may be

discrete or continuous (though continuous variables are often discretized). An

edge going from node X to node Y means X is the parent of Y and it signifies a

conditional relationship between them. Each node Ai has an associated conditional

probability distribution represented by Equation (7).

P (Ai|parents(Ai)) (7)

(Russell et al., 2009)

The set of nodes and edges - the topology of the network - shows the conditional

(in)dependence relationships that hold in the domain. Each edge going from node

X to node Y shows that variable X affects variable Y . That is, the value that

variableX takes on affects the probability distribution of variable Y . Once a graph

of such dependencies is established, we specify joint probability distributions for

sets of dependent nodes to use the Bayesian network. Bayes’ theorem is used here

to calculate the probabilities of various different events.

If a node in the graph has an in-degree of 0, or it has no parents (no arcs or

edges coming in to it), it only has a probability distribution for itself. If a node

X has n parents, it has a conditional probability distribution for each parent Yi.
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That is, for each parent Yi, we have a probability distribution table represented

by P (X|Yi). (Uusitalo, 2007)

A Bayesian network is the combination of the topology (graph) and the con-

ditional probabilities of the variables (nodes). These are together used to explore

the effects of various variables on each other.

Determining the probabilities can be as simple as assigning them through joint

probability distribution tables in some situations. However, for comprehensive

Bayesian networks, these probabilities are adapted (through learning) as more

data is collected. The learning provides improved knowledge by combining prior

knowledge with data. (Heckerman, 2008) More on this will be discussed in Section

4.2.

3.3 Inference in a Bayesian Network

Inference is the task of computing the probabilities of unknown events in a Bayesian

network given the data on known events. Inference is fundamental in determining

the most probable values of the variables and then drawing conclusions from the

values. (Stephenson, 2000)

When certain events are known, we know more about the other possible events

than if nothing was known. Thus, we can use this information to revise our

knowledge on how probable other events are given the knowledge we have. The

process of inference seeks to achieve exactly this goal of refining knowledge based

on known information.

Consider the example Bayesian network in Figure 5. Our nodes represent

variables for whether the transaction was fraudulent (F), whether there was a gas

(G) purchase in the last 24 hours, whether there was a jewelery (J) purchase in

the last 24 hours, the person’s sex (S), and the person’s Age (A). Here, we see

a number of conditional dependencies in our graph. Consequently, we also see

conditional independencies. For example. F and A are independent given J, G
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Figure 5: Example Bayesian Network adapted from Heckerman (2008)

and J are independent given F, etc.

The interesting question in this situation is what’s the probability of fraud

given the other information? That is, it’s easier to observe the other 4 variables

then it is to observe whether there is going to be a fraudulent transaction or

not. Additionally, we can use past data on fraudulent transactions where these

variables were recorded to give estimates as to whether a transaction is fraudulent

or not. We use the general formula adapted from Equation (3) in the form

P (f |j, g, s, a) = P (j, g, s, a, f )

P (j, g, s, a)
(8)

to get a more realistic look at the probability of event f when we know the

outcomes g, s, a, and j. (Stephenson, 2000)

Given this knowledge, we can simplify Equation (8) using the knowledge of

these independencies and plugging them in to Equation (6) and then using the

chain rule in Equation (5) to get the equation
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P (f |j, g, s, a) = P (j|s, a, f )× P (g|f )× P (f )∑
fi
P (j|s, a, fi)× P (g|fi)× P (fi)

(9)
(Stephenson, 2000)

These individual values are much easier to compute than Equation (8). Thus,

we can more easily compute a more accurate probability of fraud given the ob-

servable knowledge.

3.4 Usefulness of Bayesian Networks

So now that we know what Bayesian networks are, let’s look at why they are useful.

The rest of this section concentrates on the advantages of Bayesian networks over

other state space search solutions. While there is the overhead of computing

additional information, the benefit from the speed up is worth the additional

computation.

3.4.1 Suitable for Small and Incomplete Datasets

In Bayesian networks, there’s no such thing as "too little data". While more

data is better, Bayesian networks work with as much data as is available to give

pretty accurate results. Moreover, with each iteration it learns more and refines

its model to give better results the next time. Bayesian networks are essentially

mathematical models that are represented using graph concepts to make it easier

to analyze, implement, and understand. (Uusitalo, 2007)

The conditional probabilities are estimated using various techniques and are

used to give fairly accurate probabilities to various events. All it requires is for the

model to be known. Since the model can be built to be flexible with the volume

of data and weightage of old vs new data, it can be made as flexible as needed.
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For example, we could have a very flexible model that weighs recent data more

than past data. In that case, we might be trying to account for the changing

background context for the experiments. On the other hand, we could weigh past

data more than new data. This aims to establish an estimate in the beginning

and then refine it with more data. However, in either case, they both can work

with small and incomplete datasets to produce accurate results. (Uusitalo, 2007)

Uusitalo (2007) talks about how Bayesian networks are extremely useful in

modelling environmental changes. Environmental data is often sparse and incom-

plete. For example, the incomplete data might miss special events or certain spans

of time. Bayesian networks can then be used to work with this incomplete data

to still produce meaningful results with mathematical reasoning and precision.

3.4.2 Structural Learning Possible

An extremely interesting use of Bayesian networks comes when discussing how to

learn the structure of the model apart from just the probabilities they encode.

Simple versions of Bayesian networks have experts in the field help establish the

structure and that structure stays constant. While these may refine the conditional

probability distributions, they do not create new dependencies or independencies

from the data.

However, Bayesian networks can be made flexible enough to allow them to alter

the graph structure as they learn from the data. This problem is a very tough one

and usually algorithms aim to approximate such structures rather than compute

the optimal version as computing the optimal version is very tough to implement

on large networks. (Uusitalo, 2007)

Uusitalo (2007) claims there are two main approaches to this kind of struc-

tured learning - the Bayesian approach and the constraint-satisfaction based ap-

proach. the Bayesian approach requires the user/expert to first input a model

with his/her knowledge along with the user’s confidence in the model. The al-

gorithm then uses the data to find the best fitting model. On the other hand,
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the constraint-satisfaction approach does not need any expert knowledge or user

input. It searches for conditional dependencies and independencies between pairs

of variables and builds the structure using this knowledge that it establishes.

3.4.3 Combining Different Sources of Knowledge

A great advantage of Bayesian networks is that it allows us to combine prior

knowledge with new data. That is, we can update our prior knowledge with new

information. A benefit of this is that it allows us to combine data from different

sources together. The prior knowledge obtained from one source can be combined

with data from the new source to create new inferences that might have been lost

or left out in the earlier source. This makes the learning process more scientific

by accounting for the biases that different data sources may contain but which

are not accounted for. This also aims to free the data from assumptions that are

made by different data sources. (Uusitalo, 2007)

Since the models in Bayesian networks are weighing the data from different

sources equally, they combine data while preserving the different degrees of accu-

racy that exist in various data sources. In addition, they make computation easier

by combining expert qualitative knowledge with quantitative data to produce a

mathematically accurate result. (Uusitalo, 2007)

In artificial intelligence, Bayesian networks are used in a variety of diverse ways

in conjunction with other techniques. For example, it can be used with Markov

chain decision problems, Monte-Carlo methods, and other techniques to gather

information and test experiments without the necessity of vast comprehensive

data. (Uusitalo, 2007)

3.4.4 Explicit treatment of uncertainty and support for decision anal-

ysis

It is extremely easy to encode uncertainty and freedom for action into a Bayesian

network. For example, let’s say a model for predicting industrial decisions is
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established. However, we know that humans aren’t always rational. The decision

maker might have short/long term goals in mind while making decisions and these

decisions might not align with the ‘most rational’ decision to make according to

our model. Here, we can add a variable for a degree of randomness in decision

making such that we can better understand how the person might actually interact.

In the process, we can account for the outcomes from the actions that actually

do take place as opposed to only accounting for those that the model considers

most rational. Expected value outcomes can be analyzed to understand how the

industry might actually turn out and get a more realistic picture as to the world

the model is describing. (Uusitalo, 2007)

Another way to look at this is that when we don’t know the certainty of

outcomes, we can encode a degree of randomness that we cannot predict. For

example, unforeseen circumstances and unexpected variables can be accounted for

by accepting that there might be some deviation from our model that we have

not accounted for. This is particularly useful for studying macro systems like

environments, climate, economies, etc.

3.4.5 Fast Responses

Once a model is compiled, we can get very quick results by using the already

established conditional probability distribution tables. The results requested can

be provided by using the values in the tables along with various formulas like

the chain rule and the conditional independence relationships. Thus, we do not

need to get large clusters of computers or run highly specialized scripts to get

results. This is extremely useful in understanding the results of a simulation and

in communicating the results with others. Essentially, it is akin to running a

guided depth first search as opposed to running a breadth first search where it

benefits from the space advantages of depth first search. (Uusitalo, 2007)
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4 Applications

We have seen how Bayesian networks are useful in general situations. They help

answer questions with limited data quickly and efficiently. Now, we will look at

how Bayesian networks are specifically helpful in problems relating to classification

and learning, and in the process we’ll explore some past academic work done in

these fields.

4.1 Classification

Classification refers to the job of assigning class labels to various instances of

a problem. The various class labels are distinct categories that the instances

can be grouped under. The label is assigned using various attributes which help

distinguish among different classes. In general, a Bayesian classifier works by

learning from training data. It learns the conditional probability of each at-

tribute Ai for each class C. During classification/testing, the classifier then applies

Bayes’ theorem to compute the probabilities of each class Cj given the attributes

A1, A2, . . . , An. It then predicts the class CMAX with the highest posterior prob-

ability. (Friedman et al., 1997)

The simplest form of a Bayesian classifier is a Naive Bayesian classifier. A

Naive Bayesian classifier assumes that all attributes are independent of each other

given the classification variable. Naive Bayesian classifiers are extremely efficient

when this assumption is applied. In other words, Ai is independent of Aj for

all i 6= j given the class C in question. This reduces the branching factor of

our search tree from being exponential to being linear. An example of a Naive

Bayesian network is shown in Figure 6. (Friedman et al., 1997)

While this assumption is not strictly accurate, it is true for most Bayesian

networks. Designers of the network choose variables that do not affect each other

so that they cover as many different variables that affect the class labels with-

out having repeated information. This is done to remove the redundancy in the
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variables.

A more rigorous explanation goes as follows - since a Bayesian network is a

directed acyclic graph, each vertex represents a variable, and each edge represents

a dependence relationship, the network ensures the following statement - "each

variable is independent of its nondescendents in the graph given its parents." This

statement and conditional independence above both hold true when we represent

the Bayesian network as shown in Figure 6. (Friedman et al., 1997)

Figure 6: Naive Bayesian Graph adapted from Friedman et al. (1997)

Now that we have seen how in general Bayesian networks work on classification,

let’s see specific examples of how they work on some real world problems.

4.1.1 Medical Diagnosis

In medical diagnosis, a Bayesian network can be used to suggest possible diseases

based on the observed symptoms. That is, a doctor can enter the observed symp-

toms into the program and the program then takes the inputs and computes the

probabilities of a variety of diseases given the symptoms. Doctors simulate ap-

proximate conditional probabilities mentally and follow this process in their day to

day work so here we can make this work automated through the use of Bayesian

networks. Here, we have an example of a system where the initial probability

distributions for the nodes do not need any kind of learning. It can be done using

a medical professional’s quantitative estimates or using available statistics on the
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relationships among the symptoms and the diseases (Stephenson, 2000).

The challenge arises when these quantitative estimates and statistics are in-

complete or not completely accurate. Bayesian networks can also help in this case

to provide estimates while dealing with the incomplete and inaccurate data.

The challenge comes down to constructing conditional probability tables from

partial statistical data for the nodes and edges in the network. Further, the

problem is often that the data we need is not in the form most helpful for our

model. For example, if we have two diseases D1 and D2, that both may cause

symptom S, we might get statistical information on P (S|D1) and on P (S|D2) but

these aren’t as useful as P (S|D1, D2), P (D1|S), and P (D2|S). Generalizing this

to some number of n diseases makes the problem a lot tougher. If we consider

each disease variable Di as a binary variable, we would have 2n entries in our

conditional probability table but filling this out can be extremely tedious and

computationally difficult. To overcome this, it might help to plug the problem

into a Bayesian network and introduce additional constraints in the form of biases

in favor or against some diseases. These biases are dependent on the degree to

which the individual diseases affect or don’t affect the symptom or set of symptoms

in question. (Nikovski, 2000)

These biases are also called sensitivities and they encode the probability of

P (S|D) and P (S ′|D′) in each disease node. Thus, we have reduced the problem

from a factor of 2n to 2n. Now, we can use Bayesian network evaluation to deter-

mine exactly how probable a disease is given the sensitivities and relationships.

(Nikovski, 2000)

An added benefit to using the sensitivity information is that each disease is

independent of other diseases in the model. Rather than obtaining the most

probable disease by exploring 2n possibilities, we are able to look at the probability

of each disease irrespective of others. In essence, we are looking at a system

of ORs such that when we look at P (S|Di), we are essentially looking at the

P (S|D′
1, D

′
2, . . . , Di, . . . , D

′
n) for each value of i = 1 . . . n. (Nikovski, 2000)
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Going back to the example above of diseases D1 and D2 both causing symptom

S, we can look at the interesting question we thought of as, what is the probability

of each disease given the observed symptoms. Given the probability distributions

of P (S|D1) and P (S|D2), we can use Bayes’ Rule to compute the values of P (D1|S)

and P (D2|S). This is more useful to the doctor as now the doctor can identify

the disease with a degree of confidence and treat for the disease.

A point to consider is that since this is a human made model and is limited by

the knowledge of those creating the model, it is possible that there are diseases

not accounted for which could cause those symptoms. Additionally, since this

is a probabilistic approach, it is possible that there are certain false positives

and false negatives. Further, some results can be too ambiguous to understand.

For example, a result of a 50% probability of a given disease can be difficult to

interpret. In such a case it might be necessary to get more information through

additional tests.

All diseases aren’t as binary as we just described. Further, each disease can

cause multiple symptoms and some symptoms can change the likelihood of other

symptoms. Even modeling such relationships is an easy task for a Bayesian net-

work. Consider the following situation - two of the symptoms of the disease Car-

diac Tamponade are breathlessness and rapid breathing. While both the symp-

toms have their own probabilities given the presence of the disease, the presence

of rapid breathing becomes more likely if there is breathlessness. In such a case,

the two symptoms are not conditionally independent of each other. One increases

the probability of the other and so our network can account for this by adding

an edge to the network from the causal symptom to the caused one. (Example

adopted from Nikovski (2000))

In the case of unmodeled diseases, we overcome the problem by including a

leak variable that accounts for all possible unaccounted diseases or unaccounted

variables in general. (Nikovski, 2000). Further, all the diseases should be verified

using more conclusive tests since the effects of wrong treatment can be detrimental.
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However, at least using this model we can narrow down on some of the possibilities

and know where to focus our attention.

4.1.2 Junk Email Classification

In our modern world we deal with email every day. Junk email (often called spam)

annoys us daily as well. However, most email clients spend a lot of time and energy

trying to find automated ways to minimize the amount of spam we receive. To do

this, they check the emails we receive to predict what is spam and what is not.

While there is a degree of error in their predictions, the classifiers can save humans

a lot of time if they can achieve a fair degree of accuracy in their predictions.

In the process of detecting spam vs. not spam email, we want to look at

certain properties of the individual email and also the person’s interactions with

the sender and with similar emails. Additionally, we want to see how the email

matches up with other emails people receive. That is, we look at the content of the

email, the formatting style, details about the sender, and some other properties

as listed in the work of Sahami et al. and further discussed in this section.

Sahami et al. believed that in the context of email filtering, it is extremely

important to represent emails using feature vectors so that Bayesian classifiers can

be used directly. Each feature represents different information about emails and

has a separate probability distribution describing the likelihood of an email being

junk. In such a distribution, it is possible to allow each word ever seen in emails

to be its own feature. While no one feature is a clear determinant of whether an

email is junk or not, we can develop probabilities for each of those hypotheses and

make decisions based on those.

For example, the presence of certain words can change the probability of an

email being spam. The occurrence of certain words like FREE and MONEY

seem to indicate an email might be spam. Phrases like CLICK HERE would

indicate a phishing scam specially when the link in it is not verifiable to be safe.

However, some features that make emails less likely to be spam are words like the
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person’s name. If the recipient’s name is clearly written, there is a slightly lower

probability of the email being spam.

If the person received the email directly as opposed to from a mailing list, it

is more likely to be safe. Most spam is sent out through mailing lists. This trend

is slowly changing given how marketing folk understand this trend in spam filters

and try to send emails individually by automating the process.

Another feature worth noting is the domain of the sender. Almost never is

spam sent from a .edu email. Similarly spam email is more likely to come from

a domain with a number of garbled characters. Spam is less likely to come from

an email which is in the person’s address book and if the person has sent emails

to it in the past. Junk email usually does not come from known email addresses

and does not come from email addresses the user has interacted with in the past.

The presence of attached documents is an indicator that an email is not spam.

Most spam does not come with attached documents because it makes it tougher

for the marketers to blast the user with advertisement information. However,

phishing scams might try to get you to download a virus through attachments

or by directing you to a website that makes you download malware onto your

computer so this is a downside that email clients try to overcome by scanning the

attachments you receive.

The presence of a number of non-alphanumeric characters is also a sign towards

the email being spam. For example, if there are a number of $ signs in an email,

it might be an indication of spam. Additionally, if there are a lot of ! marks, it

might be more likely to be spam.

Apart from the ones mentioned above, Sahami et al. devised a number of other

domain specific features to help them classify emails as junk or not junk. Their

classifier would examine all the encoded features in an incoming email and mark

it as spam or not and then forward it to the appropriate folder in the person’s

inbox. Then they conducted some tests. These tests were conducted in phases

adding a little more information each time to make the Bayesian classifier a little
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more complex.

In their tests, they captured the features that had the highest impact on the

problem and used them in the test model. This came from them entering a lot

of training examples before testing on other examples. The first phase of testing

involved only using the word features. Then they tried it again with words and

phrases. At the end they added non-textual features to the model.

Tests revealed a great deal of accuracy in the way the features predicted

whether an email is spam or not. The Bayesian classifier learnt from a num-

ber of training examples and it was able to apply its learning to the test data with

a high degree of accuracy when using all the features they devised. With each

added set of features the precision and recall rate improved. The precision refers

to the percent of emails classified as junk (or legitimate) actually being junk (or

legitimate). The recall rate refers to the percent of junk (or legitimate) messages

in the test set that are actually classified as junk (or legitimate). In fact, when

using the words, phrases, and non-textual features, all the emails classified as junk

were in fact junk.

The Bayesian classifier is an ongoing classifier. It is continuously learning from

data in the way that when a user classifies an email as junk or not, it updates its

beliefs. That is, when a user notices a mistake in the classifier’s label of an email

and corrects the label, the classifier learns new information that it can work with.

Further, new interactions of the user with the email client gives the classifier more

data to base its decisions on.

Thus, the work of Sahami et al. showed that it is possible to automatically

filter emails to eliminate a large proportion of junk email. This saves people hours

of time every year that they would have otherwise wasted going through such junk.

Further, when we consider the effects of junk email in the form of pornographic

material, we could also prevent the adverse effects that such emails could bring

with it.
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4.1.3 Peer-to-Peer Networks

Peer-to-peer (P2P) networks are based on a trust model. P2P networks work be-

cause of the mutual trust of all those in the network. However, often malicious

peers join in and disrupt this trust model. Since there is no central authority

dictating terms in a P2P network, there is no accountability for the nodes in

the network and therefore malicious nodes have no deterrent from behaving ma-

liciously. In fact, the benefits from malicious activity could bring more of an

incentive to behave maliciously. Thus, computers tend to communicate among

each other to develop opinions of trust among others in the network. The work of

Wang and Vassileva (2005) proposes an interesting Bayesian network-based trust

model for P2P communication.

Each node in the network plays two roles, one as a file user (receiving files

from others) and another as a file provider. As a file user, it has trust value

distributions on how much it trusts every other node to supply it with a file and

also on how much it trusts each other node on giving suggestions on other nodes as

file providers. As a file provider, other nodes have trust values on how much they

trust it to provide files and provide recommendations on other file providers. The

trust models rely on two different aspects - how much a node can trust another

node to give honest data and how much a node can trust another node to give

useful recommendations on other nodes it is unfamiliar with.

Trusting a file provider to give legitimate and high quality files is an interesting

idea since it is trying to quantify trust in a peer in a digital setting. Even in humans

it is difficult to quantify trust but the concept is made possible by the idea that

the numbers aren’t as important as the relative difference between them. That is,

a trust value of 0.78 means nothing till it is compared to another with a value of

0.43.

Different nodes in a network may have different preferences. A node’s trust

in file providers might be affected by a number of variables based on the priority
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of the node receiving and using the file. For example, maybe a node in question

finds the quality of the file more important than the speed at which it is shared.

Thus, it will prefer a peer that consistently shares high quality files more than

one that has faster sharing speed but less of a guarantee of quality of the files.

Similarly, Wang and Vassileva (2005) describe three main features in such a P2P

network - file quality, file type, and download speed. That is, Wang and Vassileva

(2005) construct a Bayesian network with 4 variables for each node in the network

- trust, file quality, file type, and download speed. It has edges going from trust to

the other three to make it easy to model the relationship and use Bayes’ theorem

to calculate the probability of trust given values for the probability of the desired

file quality, file type, and download speed. This model gives us a flexible model

to solve the problem by use of Bayesian statistics.

Here we have an example of a Naive Bayesian network consisting of a single

root node and several leaf nodes. The leaf nodes are the variables that we measure

and we are able to assume safely that all the variables are independent of each

other. We have seen this in earlier examples but in many of those cases it was a

simplification we assumed knowing that it might not be completely true. However,

in this case we can see how this assumption is valid since none of these three

variables would have a significant impact on the others and can thus be modeled

to be independent of one another.

The leaf nodes help an agent in the P2P network derive conditional probability

distributions for other file providers in the network based on the kind of files they

provide, at what speed they provide them, and at what quality they provide them.

The data for the trust model is stored with the type of interactions it has had with

the other nodes.

As an example, let’s assume that an agent a only cares about the file type and

how satisfying the interaction was. Let’s also assume that there are 3 types of files

- music, movies, and software - that are shared in the P2P network. For example,

agent a might build a conditional probability table for file provider b as shown in
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Table 1: The CPT of node b (adapted from Wang and Vassileva (2005))
T=1 T=0

Music p = (FT = "Music"|T = 1) p = (FT = "Music"|T = 0)
Movies p = (FT = "Movies"|T = 1) p = (FT = "Movies"|T = 0)
Software p = (FT = "Software"|T = 1) p = (FT = "Software"|T = 0)

Table 1. Here, the value T = 0 refers to an unsatisfying transaction while T = 1

refers to a satisfying transaction with node b. Therefore, given the type of file node

a is trying to receive, it can compute the probability of a satisfying transaction

with node b given the file type using Bayes’ Rule. It can then compute the similar

values for other potential file providers and then make a decision on which file

provider is the most trustworthy to go with. At the same time, it will look at

other file providers that it has not interacted with in the past (and thus does not

have trust value distributions on) to see how its peers recommend this new file

provider and use that as a comparable to decide if it wants to interact with this

new file provider or not. More on this is discussed later on in this section.

After the agent concludes an interaction, it needs to update its trust model. To

do this, it rates the transaction as satisfying or not. It decides how to classify the

download speed, how to classify the file quality, and then evaluates whether the

interaction was satisfying or not. Based on the chosen learning rate, it updates

its probability distributions such that a part of the probability is from the old

knowledge and a part is from the newly acquired information. The learning rate

determines whether this favors the new data more than the old data or vice-versa.

As discussed earlier, a file provider can give other agents recommendations on

the trustworthiness of another file provider. That is, if a file user is not sure about

the trustworthiness of a file provider (maybe due to lack of a previous interaction),

it can ask other trusted file providers for recommendations on the new file provider.

For example, if an agent a has the ability to acquire a movie from file provider

b but has never interacted with this provider before, it can ask its other trusted

providers for recommendations. These trusted providers give recommendations
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based on P (T = 1|FT = “Movie”, FQ = “High”, DS = “Fast”). Based on how

much agent a trusts these individual providers to give suggestions, it will weight

their suggestions and aggregate them. The value is finally normalized based on

the sum of the weights so that we can get a fair estimate to be able to compare it

to other file providers that we already have trust models on. (Wang and Vassileva,

2005)

Using Bayesian networks, we can now create a flexible representation of trust

using three variables. While trust is a subjective emotion, they were able to find a

way to identify certain easily identifiable variables and encode a decision making

process based on comparisons using Bayesian networks.

4.2 Learning

Bayesian networks allow us to learn about causal relationships. Learning using

Bayesian networks is particularly useful when exploring and acquiring new data.

It allows us to test hypotheses using data. One major benefit of Bayesian networks

in this context is that we can test to see if the effect of a new feature is desirable

or not. For example, a company can test to see if a new advertisement campaign

has had a significant impact on the sales by making use of Bayesian statistics to

compare past and new data. Learning through the features of such models can

help the company understand what aspects of an advertisement campaign have

the most positive impact per Dollar spent. (Heckerman, 2008)

Bayesian networks are also extremely helpful in combining prior domain knowl-

edge with data. That is, it can either use data to verify the validity of the prior

knowledge or it can correct prior knowledge by learning from the data and refining

its own beliefs about the model. (Heckerman, 2008)

It is also possible to learn the topology and the probability distributions of a

Bayesian network. This allows us to learn the relationships and the degrees of

these relationships.
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When studying how learning takes place, we can divide all situations into four

categories based on whether there is a known structure or not and whether there

is full observability or not.

When the structure of the network is known and the data is fully observable,

we have an easy way to determine the probability distributions. We can calculate

P (X = xi|Y = yi) =
count of (xi, yi)

count of yi
(10)

(Stephenson, 2000)

An alternative is to use Bayesian statistics to compute P (X = xi|Y = yi) using

Equation 3.

On the other hand, if the data is only partially observable (only a subset of the

real data is available for the network to develop a probability distribution from)

we cannot get exact probability values. However, we can estimate the values in

ways similar to when we have full observability. (Stephenson, 2000)

These get more interesting when the network updates its probabilities when it

sees more data during testing or after deployment. For example, if a network has

seen five examples of Y = 1 and only one of those five had X = 0, it would set

the P (X = 0|Y = 1) = 1/5. However, if it sees a new sample of X = 0 & Y = 1,

it would update that value to now be P (X = 0|Y = 1) = 2/6. When converging

to infinity, this value tends to reflect the true probability of the values.

Let’s now look at a general situation of a network with unknown structure and

full observability of data. Essentially this means that the network does not know

the relationships among the variables but has all the possible data on it. Here, we

can take two approaches. We could create a metric to compare potential struc-

tures to each other to decide which one is a better fit to the data. On the other

hand, we can devise a search algorithm to find the best structure. While both
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are valid solutions and are used in industry, searching for a structure might be

more practical when the number of variables increase since the evaluation method

might run into the issue of an exponentially growing set of structures to evaluate,

specially when the evaluation method needs to evaluate all possible topologies.

However, this could be overcome by an expert suggesting a set of probable struc-

tures and then evaluating only those ones. Even though the search problem is

NP-hard, there are polynomial time algorithms to estimate the structures fairly

close to optimally. (Stephenson, 2000)

The greatest challenge comes when the structure is unknown and when the

data is only partially observable. While we can follow a process of searching for

a structure and evaluating different structures, this might not be robust enough

when we are unfamiliar with the different variables in the network. Therefore, we

can combine this structure defining process with the following system. We add

a variable representing a hidden variable. Then, we find the best structure for

the given set of nodes and continue adding such nodes till the addition of a node

makes the network get worse. (Stephenson, 2000)

Very often, learning and forecasting go hand in hand where we predict an

outcome and learn from the real outcome when it takes place. In the next few

subsections, we will see some real world applications of Bayesian networks in

learning and how it applies learning through forecasting.

4.2.1 Environment Modeling

Marcot (2012) shows us a few different ways that Bayesian networks can be used to

model animal population trends. He describes how he can predict the populations

of polar bears. Here we have examples of known topology (or at least a topology

being set) and partial observability of data.

Let us consider the case of studying polar bear populations. To begin, let’s look

at the network that he used. There were a total of 36 nodes and 44 edges among

them. 17 of the 36 were inputs on the various environmental stressors (factors that
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affect their habitat, prey and predator populations, etc.) affecting the polar bear

population. They assumed that the 17 inputs were normally distributed variables

and discovered from their data that 6 of them accounted for 92% of the sensitivity

in the model.

They also ran these analyses by changing how the input variables were ini-

tialized. Initially, they were normal distributions but then they changed it such

that various sets of them were set to best or worst case scenarios. By combining

the analyses from these different scenarios, they were able to isolate the effects of

the different variables on the polar bear population. They were able to determine

that controllable features like sea traffic adversely affect polar bear populations

but far less than larger scale stressors like climate change. While these are both

man-made causes of adverse effects on polar bears, it is far tougher to control

climate change than something like sea traffic.

An approach he could have taken is by not setting the topology (or setting a

default one that is open to flexibility) so he can learn the impacts and the effects of

each variable on each other as well as on polar bears. By allowing the topology to

be flexible, he could have discovered relationships among variables he did not know

previously existed. A slight modification to this method could be that he could

try out a few different network structures and learn the probability distributions

in each of them. Then, he can compare how well they all fit the data and conclude

on the most appropriate relationships among variables.

An application of such an analysis is that such a network can be the part of

a larger network where polar bear population is a variable along with a number

of other variables. For example, consider modeling the future of an ecosystem

where polar bear population is one of the many things that researchers are trying

to study. This can serve as one component of the larger network that is the

ecosystem. A number of smaller networks can be part of this larger one and each

affecting each other and the network as a whole. For example, one of the variables

in the polar bear population network was the availability of prey. What if that
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variable was replaced with a Bayesian network predicting the population of prey?

In fact, it will be able to account for the variation in the population of its prey

given environmental factors that affect it.

In the process of forecasting the polar bear population, we can also update

these beliefs as time passes as we gather more data to update our beliefs on what

affects their population and how.

There are a number of models simulating environmental variables to predict

outcomes based on current and expected trends. Uusitalo (2007) talks of a model

built to look at ecosystem responses to different Baltic cod management practices.

Based on their Bayesian network model, they were able to run multiple Monte

Carlo simulations to look at the effects of various management practices. They

modeled it after a fishery near the Great Barrier Reef and were able to learn

a great amount about the effects of the various options they had on Baltic cod

management.

4.2.2 Traffic Flow Forecasting

A number of commercial and government applications consider traffic prediction

as an important issue to deal with. Here we consider the model created by Sun

et al. (2006) as an example of how we can use Bayesian networks to forecast traffic

and learn from it.

Here, each node is a road link and each edge shows the direction of traffic flow.

Thus, we have a cause node and an effect node such that each road that leads to

another is the cause node to the one it leads to. Further, each node also takes

other inputs like the time of day, special events in the area, etc.

We follow the same general process as described above where we first train

the model on some data such that it can learn the general process. Then, we

let it run for some time on test data to allow it to learn the true probability

distributions over time. When it is set into the real world, it constantly learns

from its predictions and the real data.
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For example, consider the case as follows - let’s say we classify all traffic as

either light, moderate, or heavy. Let’s say at time t we forecast the traffic to be

moderate. However, in reality it ends up being light. In such a situation, we will

update the probability distribution table to reflect this correction given the input

variables it received.

After a period of time, we would have collected a large volume of data and

updated a lot of our estimates from our initial training set. While this will improve

our forecasts, it will also help us understand the determinants of traffic along with

the degree of each one’s impact.

5 Conclusion

In this paper, we have seen the key concepts necessary in understanding Bayesian

network theory. We have understood what a Bayesian network is and explored

the situations where it is useful. This was followed by us examining how some

important problems in research and industry, namely classification problems and

learning problems, can be effectively tackled by Bayesian networks because of

Bayesian statistics.

This paper has been a broad overview of the field; however, a lot more is

available to be explored. We can extensively study the algorithms used in Bayesian

network inference and traversal. Further, a lot of research is being done on fast

algorithms to traverse these networks and conduct fast inference on the variables.

We have seen how Bayesian networks are useful to so many different kinds of

people - environmental scientists, policy makers, medical professionals and scien-

tists, network modellers, and general researchers among others. It’s an extremely

versatile tool in the toolbox of any industry and has great potential of being use-

ful in a variety of scenarios; people just need to be willing to take the time to

implement the network and give it the data to work off of. Further, a number of

industries that are still unaware of the potential can gain immensely from Bayesian
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networks.

However, we need to acknowledge that Bayesian networks are extremely com-

plex and a lot of work goes behind implementing them. There are some downsides

to Bayesian networks. Firstly, they force discretization of continuous variables.

Secondly, it is difficult to model the expert knowledge in a field that is necessary

to construct the model. Additionally, the computing power necessary to store and

process the data in a continuous basis might be immense given the challenges it

is trying to face. (Uusitalo, 2007)

However, it seems as though if someone has the resources to support the con-

struction of a Bayesian network, they have the resources to find the expert knowl-

edge and implementers to ensure we can get over all these challenges. This does

create a kind of a barrier for entry but that might be an area for further study.

Like a number of other technologies out in the market, it might only be time till

researchers are able to provide this implementation power to the average person.

In summary, Bayesian networks are extremely useful in a number of contexts.

We studied how it is useful in classification and learning problems. However, a

number of other applications also exist and are being constantly discovered for this

technique of reasoning about data. The potential of using data is being discovered

and Bayesian networks are a good way to unleash this power and make what was

otherwise useless data useful.

Appendix

List of Equations

1. P (H|E, c) = P (H|c)×P (E|H,c)
P (E|c)

2. P (H|E) = P (E|H)×P (H)
P (E)

3. P (x|y) = P (x,y)
P (y)
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4. P (H|E) = P (H,E)
P (E)

5. P (X1, ...Xn|c) =
n∏

i=1

P (Xi|X1, ...Xi−1, c)

6. P (A,B|C) = P (A|C)P (B|C)

7. P (Ai|parents(Ai))

8. P (f |j, g, s, a) = P (j,g,s,a,f)
P (j,g,s,a)

9. P (f |j, g, s, a) = P (j|s,a,f)×P (g|f)×P (f)∑
fi
P (j|s,a,fi)×P (g|fi)×P (fi)

10. P (X = xi|Y = yi) =
count of (xi,yi)
count of yi
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