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A NEW APPROXIMATION SCHEME FOR MONTE CARLO
APPLICATIONS

BO JONES

ABSTRACT. Approximation algorithms employing Monte Carlo methods, across application
domains, often require as a subroutine the estimation of the mean of a random variable with
support on [0, 1]. One wishes to estimate this mean to within a user-specified error, using
as few samples from the simulated distribution as possible. In the case that the mean being
estimated is small, one is then interested in controlling the relative error of the estimate. We
introduce a new (e, 0) relative error approximation scheme for [0,1] random variables and
provide a comparison of this algorithm’s performance to that of an existing approximation
scheme, both establishing theoretical bounds on the expected number of samples required
by the two algorithms and empirically comparing the samples used when the algorithms are
employed for a particular application.
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1. INTRODUCTION

It is common across a wide range of problem areas to encounter Monte Carlo approximation
algorithms that require as a subroutine the estimation of a mean of a simulated random
variable with support on [0,1]. In fact we will motivate the work presented in this paper
with such an approximation algorithm coming from the domain of network science.

For these problems one is interested in employing an approximation scheme for estimating
the mean that achieves a user-specified bound on the probability of exceeding a user-specified
error, that is an (¢, 0) approximation of the mean. In the case that the mean to be estimated
is small, a meaningful measure of error is the relative error. In a Monte Carlo setting one is
able to determine the number of samples on which to base an estimate, simply generating
that many samples by simulation, but sampling from the distribution in question has an
inherent computational cost. It is beneficial then, in designing approximation schemes, to
minimize the number of samples needed.

We first introduce the problem of (e,d) approximation, and the question of how many
samples are needed to achieve it. In Section 3 we present an existing (e, ) approximation
scheme introduced in [3]. In Section 5 we present a new approximation scheme that makes
use of a new estimator, introduced by [1] and described in Section 4, for the mean of [0, 1]
random variables. Section 6 explores potential areas of improvement for a particular step of
the new approximation scheme.

We compare the performance of the new approximation scheme to that of the existing
approximation scheme. In Section 7 we establish a lower bound on the expectation of the
number of samples required to generate an estimate with the desired error for the existing
algorithm, and prove an upper bound on the expectation of the number of samples required
by the new algorithm.

In Section 8 we present an empirical comparison of the number of samples required when
the algorithms are used on both test data and data arising from an approximation algorithm
introduced in [7].

2. PROBLEM: MEAN APPROXIMATION TO SPECIFIED ERROR

Consider random variables Z7, Z,, . .. % Z for some distribution Z with support on [0, 1].
We wish to estimate the mean of Z, denoted iz, using as few samples 2, Zs, . .. as possible.
Having designed an estimator jiz for uz we can ask the question of how close our estimator is
to the true mean value. We may want to capture this information in the difference py — iz,
called the absolute error of our estimate.

However as pyz becomes very small, absolute error has less and less meaning. It then
becomes useful to examine the relative error, defined as

€rel = ILZ — L
Ktz
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Now consider the case where the Z; are not given, but rather the random variable Z arises
in a Monte Carlo application in which the variates Z; are simulated draws from Z. Then
the question becomes not how confident can I be about my estimator given the samples that
I have seen, but rather, if I can devise a random process that estimates py using samples
drawn from Z, how many samples must I generate in order to be so confident that the
error of my estimator will fall below a certain value. We can formulate this question as the
question of how many samples are needed to generate an estimate jiz such that iz is an
(€,9) relative error approximation of uz, that is an approximation such that

]P’<MZ >6>§5.

= -1
A natural candidate for the estimator jiz is the sample mean, given by

Hz
D+ et + 2
Kz = .

n
In [3] Dagum, Karp, Luby and Ross prove the following theorem regarding the sample
mean estimator.

Theorem 1 (The Generalized Zero-One Estimator Theorem [3]). Let Zy, Zs, ..., Z, denote
random variables that are independent and identically distributed according to Z. Let py =
max{o%, €fiz}.
If e <1 and

n = d(e — 2) (267" pz/ (epiz)?,
Zn

=L < (T4 e)pz| >1-06.
n

then
Pl(1—e€puyz <

In fact, by an argument similar to that given by Huber in [5] for Bernoulli random variables,
the Central Limit Theorem tells us that the minimum number of samples required ought
to be approximately 21n(25*1)e*2,u21. This is the number of samples we would need if we
could assume that the data was normally distributed.

However, both the number of samples given by the Generalized Zero-One Estimator The-
orem and the Central Limit Theorem heuristic are dependent upon the unknown value pz
that we are trying to estimate. We now present an existing algorithm designed to overcome
this problem of dependence on actual value by employing a initial estimates of both uz and
the variance of Z, denoted o%.

3. AN EXISTING ALGORITHM

In [3] Dagum et al. introduce an algorithm which uses an initial (min{1/2,+/€},d/3)
approximation of uz, obtained using their Stopping Rule Algorithm, and an initial estimate
of 0% in order to determine the number of samples needed in order for the sample mean to
be an (e,0) approximation of piz.
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Algorithm 1. (AA algorithm in [3]).
Inputs: €, error parameter.

0, error parameter.
Output: [, an estimate for py.

Let {Z;}, {Z!}, and {Z!} denote three sets of random variables independently and iden-
tically distributed according to Z.

Step 1: Use the Stopping Rule Algorithm of [3], drawing random variables Z;, Z5 . . . to obtain
a (min{1/2, /€},d/3) approximation fi; of uz.
Step 2: Set Ny = 8(e — 2)(1 + v/€)(1 + 24/¢€) log(3/0)(1/(eft1))
and initialize S <+ 0.
Fori=1,...,Nydo: S« S+ (Z_, — Z},)?/2.
pAZ — maX{S/NQ, 6/?61}.
Step 3: Set N3 = 8(e — 2)(1 + /€)(1 + 2v/€) log(3/8)(pz/(efin)?).
and initialize S < 0.
Fori=1,...,N3do: S« S+ Z/.
ﬂz < S/Ng

We will call Algorithm 1 DKLR. Dagum et al. establish that DKLR provides an (¢, )
approximation. Using the Sequential Probability Ratio Test of Wald [], they also prove the
following result.

Theorem 2. (Lower Bound Theorem Part 3 in [3]).
Let pz = max{c%,euz}. For any randomized approzimation scheme that yields an (e, )
approzimation of pz, let T' be the number of samples required by the approrimation scheme.
There is a universal constant ¢ such that
Pz
E[T] > cd(e — 2)In(2/6 )
(1) 2 (e -~ 2)n(2/o) L2
Dagum et al. show that DKLR requires an expected number of samples that is less than
some constant multiple of this universal lower bound. Thus improving upon the number of

samples needed is a question of reducing the constant coefficients that are present in the
number of samples needed for DKLR.

4. A NEw ESTIMATOR FOR (€,0) APPROXIMATION

We develop an alternative (¢, ) approximation scheme for the mean of random variables
with support on [0, 1], using as our estimator, not the sample mean, but the M-estimator
introduced by Catoni in [1].

Catoni’s M-estimator is an estimate for py which is given by the parameter value fiy
that, instead of minimizing the mean square error, minimizes an implicit error function that
accounts for deviations. The influence function v that Catoni constructs to capture this
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implicit error is given by

~In(1 + =z +22/2), x>0,
w(w){—ln(l—x—i-xz/Q), z <0.

The estimator iz is then the solution of the equation
> Yla(Z; — iz)] =0,
i=1

for some number of samples n and parameter « to be specified.
The M-estimator so constructed can be used to obtain an (e, §) randomized approximation
scheme for estimating pz. The key is the following lemma.

Lemma 1 (Lemma 2.3 in [1]). Suppose a?c? +21n(2/6)/n < 1. Then the M-estimator of
Catoni 1 satisfies

P (ll[:L - /’l’| > n(avo—Qan)) < 67

n(a, 0%, n) = (a;2 + ln(oiid)) (% + %\/1 — 0202 — 21“5?/@) )

Note that the n function is increasing in 0. So if we replace it with an upper bound on
the variance: o2 < by, then the function becomes larger, giving the following corollary.

where

Corollary 1. Suppose 0® < by, and o?b,+21n(2/58)/n < 1. Then the M -estimator of Catoni
i1 satisfies

P(|la - :u| > 77(04751,”)) < 57
where 1 1s defined as before.

This gives rise to the following procedure for implementing Catoni’s M-estimator and an
(€,9)-ras.

Lemma 2. Suppose 0% < by, u > by, and (eby)? < 1/2. Then let
by _ 2

€b2
a=——.
b1 -+ (€b2)2
With this (n, ), the Catoni M -estimator [i satisfies

and

P(|f = ul > en) <6
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Proof. Let eby = bs. Then n and « can be written

by + b2 2 bs
=2 In(= =
" ( 0 )(5) Tt

Therefore 21n(2/§)/n = bsa and

bi+b) (1 1 -

77(04, bl?”) S (al——i_i"») (_ + —\/1 — a2b1 — bgO{)
2 2 2

Since (b + b3) = bz, multiplying top and bottom by 2(b; + b3) gives

bsby + b3(by + b3))

n(a, bi,n) =
(@ b1,m) by + b2 + /(by + 62)2 — b2b; — bs(bs) (by + 2
_ b1+bl+b§
b+ 02 + /B2 + 2b,53 + b3 — b2by — b2b; — b

= b3 = Ebg < EL.
Finally, note that

2 1H<2/5) b1(6b2)2 + bl (€b2>2 + (662)4
2 - < 2(eby)?.

Therefore, when (eby)* < 1/2, we have o?b; +21n(2/§)/n < 1, and the proof is complete. [

Thus if we can obtain the bounds, b; and by, on the variance and mean of Z, we can
estimate uz to (e, ) relative error using 2(b;/(eby)? + 1) In(2/§) samples.

5 A NEW APPROXIMATION SCHEME

We now introduce a new approximation scheme that has three steps. In step 1 we produce
an initial estimate of pyz that will be used to determine the lower bound on pz needed to
employ the M-estimator introduced in the previous section. In step 2 we estimate a value
that will be used to determine the upper bound on ¢% needed to employ the M-estimator.
In step 3 we use the M-estimator to obtain an (¢, ) approximation.

Algorithm 2. (New Approximation Scheme).
Inputs: ¢,  error parameter (must satisfy ¢ < 2732 ~ .35).
0,  error parameter.
v, error parameter for variance estimate (must
satisfy v > 1 — 1/v/2 =~ .3).
w, as demonstrated in Section 7, this parameter
can be used to weight the contributions of step 2 vs step 3
in the runtime.
Output: fiz, an estimate for uz.
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Let {Z;}, {Z!}, and {Z!} denote three sets of random variables independently and identi-
cally distributed according to Z. Let the random variables W; be Bernoulli random variables
drawn from distribution given by, for U ~ Unif([0,1]), W = 1(U < X). By a well known

result, stated as Lemma 8 in [5], W ~ Bern(ux).
Step 1: Use the biased GBAS algorithm of [1], drawing W, Ws, ... ~ Bern(uz) using Z1, Zs . . .
with
2¢l/3
CcC1 =

(1 — ) In(1 + 213/ (1 — €73))

2
ki = {max{?ln <\/26_7r§) e 23, <e—1/3+§) H +1

to obtain an approximation fi; of pz.

Step 2: Let a = 0% + wejl;.
Use the biased GBAS algorithm of [1], drawing W], W3, ... ~ Bern(o? + wefi;) using
(Zy — Z5)? )2, (Z5 — Z})?/2. .. with

2(1—9)
(27 =93 In(1 +2(1 —7)/7)

ky = {max{an(\/s_ﬂ(S) (1—7)72 ((1—7)14%)2” +1

to obtain an approximation a of a.
Step 3: Use the Catoni M-estimator, drawing Z, Z) ... Z!" with
variance upper bound b; = a/vy — wefiy,
mean lower bound by = ji;/(1 + €'/3),
to obtain an (€,0/3) approximation fiz of pz.

and

Cy —

and

Theorem 3. The estimator iz generated by Algorithm 2 is an (€,6) approximation of .

Proof. Say that step 1 is successful if fi;/(1 4+ €'/?) < pz. Say that step 2 is successful if
a/v > a. Say that step 3 is successful if iy € [(1 — €)uz, (1 + €)uz].

Let S; denote the event that the ith step is a success. We are interested in the probability
that all three steps succeed, i.e. P(Sy, S, S3). This can be rewritten

P(Sy, Sa, S3) = P(S5|Sa, S1)B(Sa|S1)E(S)).

In order to establish the values of these conditional probabilities we will make use of the
following result of Huber.
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Lemma 3. (Lemma 6 in [1]).
Let [i. denote the estimate for p obtained using the biased GBAS algorithm with bias
parameter c. If
2€

(1—€?)In(1+2¢/(1—¢))’

C =

then, letting f(t) = te'™,

P(%‘l‘”)g 27r<1k—1>'1—c<11—e>(f(cul—e)))k1‘

The following corollary serves to simplify this bound.

Corollary 2. [If

1
(k—1) 1—-c(l—¢)

e 2 k-1
P(M——l‘>e)§—<e_€2/2> .

1 Ver
Proof. The condition of the corollary immediately yields the coefficient 2/4/27w. The e /2
term is obtained by taking the Taylor series expansion of f(1/(c(1 — €))) and observing

<1

then

1 1 2

¢ Ty h 0
=1-— <
=0 2—|—x (where z < 0)
S 6762/2.
U

We can then establish a second corollary concerning k.

Corollary 3. For a given error parameter §. If

2
k > max {21n(2/(\/27r5))62, (1 + g) } +1,
€
then R
He _ 1’ > €) < 0.
0

Proof. Consider the condition for Corollary 2,

P(

1 _ 1
(k—1) 1—c(l—¢)

< 1.
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This is equivalent to

Taking the Taylor series expansion of 1/(1 — ¢(1 — ¢€)) yields

1 1 2
1_0(1_6):g+§+x (where z < 0)
1 2

Thus k > (1/e+2/3)*+1 ensures that this condition is satisfied. Then, applying Corollary 2

for k > 2In(2/(v/276))e? + 1 yields the desired bound .
U

Our choice of ¢; and k; then, in step 1, allows us to conclude, by Corollary 3, that fi; is an
(¢'/3,8/3) approximation of uz, meaning that fi; /(1 + €'/3) < uy with probability at least
1—1(0/3), and thus P(S;) > 1 — (6/3).

Now conditioned on step 1 being a success, our choice of ¢y and ks for step 2 ensure,
by Corollary 3, that a is a (1 — 7,d/3) approximation of a, meaning that a/vy > a with
probability at least 1 — (6/3), and thus P(S53]S1) > 1 — (§/3).

Conditioned on the success of both step 1 and step 2, the bounds b; and by are in fact the
bounds on pz and % required for the Catoni M-estimator. Therefore by Lemma 2, jiz is
an (€,0/3) approximation of pz, and thus P(S5]Ss,57) > 1 — (§/3).

Combining the above yields

]P(Sl, 52, 53) = P<53|SQ, Sl)P(SQ|Sl)P(Sl> > (1 — (6/3))3
Then § < 1 allows us to conclude

P(Sl,SQ, Sg) >1-—0.

6. ALTERNATIVES FOR OBTAINING AN UPPER BOUND ON VARIANCE

In step 2 of the new approximation scheme, Algorithm 2, we obtain an upper bound on
the variance of our random variable Z by estimating the value a = 0% + weji;. We obtain
this estimate by drawing {0, 1} random variables which have mean a and using the GBAS
algorithm of [1] to estimate their mean.

It is conceivable that we could have used random variables drawn from a different distribu-
tion, having mean a, and in fact the constant €fi; term in a presents us with an opportunity
to add some determinism to the way in which we make draws from our distribution, thereby
reducing the variance of our draws, and allowing us to construct a mean estimator that will
require fewer samples in order to realize our (1 — ~y,d/3) error bound.
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We explore two potential ways of doing this. The first is to design a distribution with
lower variance than a Bern(a) to which we could then apply Catoni’s M estimator. The
second is to adapt the Stopping Rule Algorithm of [3], considered as an estimator based on
the hitting time of a Markov chain, including in our Markov chain a deterministic drift given
by wefiy.

6.1. Using Catoni. We wish to estimate a = 0% + wefiz by introducing a random variable
H with mean a and distribution given by

1—0%, forh=0
P(H =h) =1 3, for h = 2wejfiy
02, for h = 1.
1
Bern(20?)
1
2
1 — 202
0
1
2
2wefly

FIGURE 1. Drawing from Distribution H. E[H| = 02 + weji;.

The reduction in variance inherent in constructing H this way becomes apparent when
we consider drawing from H as a process in which we flip a fair coin, the result of which
then determines whether we return the constant value 2weji; or draw a random variable
distributed Bern(20%). This process is pictured in Figure 1.

The mean of H can be estimated using Catoni’s M-estimator. We are able to bound the
ratio appearing in the number, n in Lemma 2, of samples needed to apply this estimator as
follows.
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Lemma 4. Letting H be the random variable defined above,
V(H) < 1
E[H]? ~ 4wejiy
Proof. Let 0% be denoted v and let weji; be denoted m.

V(H) _ v(l—2v)+ (v —m)?
E[H]? (v+m)?
v+ (v —m)?
= (v+m)?
v+ (v—m)?
Sm?x( (v+m)? )

Let
2
o) = ()
=In(v + (v —m)?) — 2In(v + m).
Differentiating with respect to the variance of Z yields
dg 1+2(v—m) 2
o v+ @w—m)? v+m
(1 —4m)(m —v)
T v —mP) (vt m)

For v = m, dg/0v = 0. In addition v,m > 0 ensure that the denominator (v + (v —
m)?)(v + m) is positive. Thus, if m < .25, we have

dg/0v >0, for 0 <v <m
dg/0v < 0, for 0 <m < v.
Thus
v+ (v—m) m+ (m —m) 1
max | ————— | = ———= .
v (v+m)? (m+m)? 4m

U

Thus were this upper bound on the ratio to be realized for established bounds b; and by on

the variance and mean of H, we could achieve a (1/2,d/3) approximation of a using Catoni’s
M-estimator using at most

i ((4w1ﬂz> @)2 ! 1) n(3) =2 (o 1) m ()
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draws of of H. Because, on each draw of H, we have a 1/2 chance of drawing a Bernoulli
that requires 2 draws from Z. This then implies that using this estimate of H, step 2 in the
new algorithm would require only at most an expected 2((1/wefiz) 4+ 1)In(6/9) draws from
Z.

However, while Catoni’s number of samples is concerned with the maximization of this
ratio, Catoni also requires b; and by which directly bound both the variance and mean of
the random variable in order to construct the M-estimator. In this case we are unable to
establish bounds b; and by that produce this bound on the ratio, or more generally that would
produce a number of samples lower than that needed by GBAS in step 2 of our algorithm.

As a matter of future work we are interested in designing an estimator for which knowledge
of the V(X)/E[X]? bound established here would be sufficient to bound the number of
samples needed to the same degree that Catoni is able to bound the number of samples
needed given by and bs.

6.2. Using Discrete Markov Chains: Two Alternatives. For the sake of simplifying
notation, for this section we restate the problem of estimating a = 0% + weji; as estimating
p + 6 where p and  are nonnegative constants.

We will consider two estimators for p + . We construct these estimators by constructing
two simple processes. In order to construct the processes, we assume that p+46 < 1 and that
J is of the form 1/n for some positive integer n. Note that these are reasonable assumptions
for our motivating problem as we are concerned with relative error approximation for random
variables with small mean, and we can always approximate small wefi; by 1/n for some n.

For some constant M, the first process, the Markov chain X, is given by letting Xy = 0
and constructing transitions as follows.

If X; 1 < M then

P(Xt:Xt,I—Fl):p—i‘é
]P)(Xt = Xt—l) =1- (p+ 5)

If X,y = M then
P(Xt - Xt—l) - 1

We specify the constant M that is the value of the state at which the chain remains in place.
The second process, the Markov chain Y}, is given by letting Y, = 0 and constructing

transitions as follows.

If Y,y < M then

P(Y, =Yi +1+06) =p
P(Y, =Y 1+6)=1—p.
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Chain Xt
1—(p+9)
+9
1 b 1+ 1
Chain Y,

FIGURE 2. Alternative Processes for Estimation of p + ¢

If Y,y > M then
P(Y; = Y 1) = 1.

The key characteristic of these constructions is that, though the chain Y, uses the § pa-
rameter as a deterministic drift term, for both of the chains we have the expected size of one
step is given by

E[Xy — X ] = E[Y; - Y] =p+0.

Let

Ty =inf{t:Y, > M}.
We will call Tx and Ty the hitting times of the chains.

Let ax = M/Tx, and ay = M /Ty be estimates for a = p+ . We consider the variance of
each of these estimators. When p+ 0 =1, § > 0, X; becomes a deterministic walk forward
to M, and hence V(ax) = 0, but ay still has positive variance. However, for § > 0, as p goes

to 0, X; becomes a deterministic walk and thus V(ay) = 0 while the variance of ax remains
positive.
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In order to ensure that we capture variance reduction in employing the Markov chain
approach to estimating a it is necessary to determine the parameter values p and ¢ for which
we should employ the first versus the second process.

We wish to determine the parameter values p and § for which one of the estimators given
above has lower variance than the other. As a first step in determining these parameter
values we must have a way of calculating the variance of the hitting time used to build our
estimator for our two random walk alternatives.

We will see that in the case of the process X7 we have access to a closed-form expression
of the variance of T'x in terms of our parameter values. In the case of Y7, the addition of the
deterministic drift to our random walk makes the variance of the hitting time less accessible.
In the following subsections we present multiple methods that we devised to calculate this
variance.

6.2.1. Simulation. A straightforward method of estimating the variance of the hitting times
of the two processes is to simply simulate the chains. We use the distribution of the hitting
time across simulations to test the correct design and implementation of the more efficient
methods for calculating the variance described below.

Note that for the fully random walk described above as X;, the possibility of remaining in
the current state means that the hitting time T'x is an unbounded random variable. Thus, in
generating distributions by simulation it is necessary to specify an upper bound time at which
to stop running in such a way that we know how much of the hitting time distribution we are
losing by stopping the process. For this we employ the Chernoff Bound (see Appendix A).

6.2.2. Transition Matriz. Both of the processes considered, as Markov chains, can be de-
scribed by a transition matrix. For a chain with number of states n the transition matrix P
is an n x n matrix with entries P, ; the probability of transitioning from state 7 to state j in
one step. Powers of the transition matrix have the property that Pfj gives the probability
that the chain ends in state j having began in state ¢ and taken ¢ steps.

For the fully random walk described above as X;, the the set of possible states is given by
{0,1,...,M}. Pisthen an (M +1) x (M + 1) matrix. In order to compute the distribution
of Tx = inf{t : X; > M} we consider the transition matrix entry P (p41y- The first row of
P corresponds to our start state 0, the (M + 1)st column corresponds to M. Thus we have

Recall that having reached M the chain remains in the state M. Thus the probability that
the first time at which the chain reaches M is T', is given by

P(Tx =t) = P{ (ara1) = Pl sy

We construct the transition matrix and compute its powers, employing an upper bound
(see Appendix A) on the values t for which to compute a probability.
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For the walk with a deterministic drift, described above as Y7, the set of possible states is
given by {0,1/0,2/6,...,(M +1)/6}. Let P be the (M +1)/6 x (M +1)/6 transition matrix
for this chain. Then the probability that Y; > M is given by

IMJrl 41
t
P(Y; > M) Z P
=M 41
Once again for chain states greater than or equal to M, having reached a state, the chain

remains there. Thus we can calculate the distribution of the hitting time Ty = inf{t : Y, >
M} by

M+1+1 I\/I(;l»1+1

t t—1

BTy =1)= > Pij— 2 A
=¥+ =441

We construct the transition matrix and compute powers P for 0 <t < %.

6.2.3. Direct Calculation. Though the transition matrix method provides us with an accurate
distribution (up to the error introduced by choosing a bound on ¢ in the fully random case),
this method, while not as much so as simulation, is computationally expensive, particularly
for the chain with drift when M/ is large. We devise more direct methods for calculating
the variance without the need to calculate the probabilities of each hitting time.

In the case of the fully random chain, X, this task is simple, as the distribution of Tx is
known.

Lemma 5.

V[Tx] = M(1—(p+9)/(p+9)".

Proof. We need only note that the value of the state X; is given by the sum of ¢ Bernoulli
random variables with success probability (p + d). The hitting time T’y is then the number
of Bernoulli’s drawn in the process before reaching the Mth success.

Thus we see that T'x has a negative binomial distribution with parameters M and (p+ ).

The variance of this negative binomially distributed random variable is then simply
1—(p+9)
V[Tx] = M———=+

o (p+0)?

O

For the process with the deterministic drift, Y;, we calculate the variance by establishing
a recurrence relation using the conditional variance formula. For a given M, let Ty, = inf{¢ :
Y; > MY, = 0}. Considering the first step in our chain, we see that a recursive formula for
TM is
Ty =14 pE[Ty—1-5) + (1 — p)E[Th—s),
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for M >0 and Ty =0 for M < 0.
The conditional variance formula can be used to find a recursive formula for V[T),].

Lemma 6.
V[Tu] = pE[Ty-q40)” + (1 = p)E[Ths—s)”
— (PE[Ta—a+5)] + (1 = p)E[Th—4])”
+ PV[Th—4o)] + (1 = p)V[Thr—s].
Proof. The conditional variance formula tells us that
V[Ty] = VIE[Tu|Yi]] + E[V[Tu]Yi]]

Here Y7, the variable that we condition on, is the state reached after the first step in our
chain. Y; = 1+ § with probability p and Y; = ¢ with probability (1 — p).

We first consider the E[V[Ty/|Y3]] term. If Y7 = 1+ 0, then V[T |Y1] = V[Ty_44)]-
Likewise if Y7 = ¢, then V[T|Y1] = V[Ta—s]. Thus the expectation of the conditional
variance is given recursively by

EV[TuYi]] = E[L(Y: = 1+ 8)V[Thy—a1e)] + 1Y = 6)V[Th—]]
= pV[Tn—vs)] + (1 = p)V[Tar—s].

Now consider E[Ty|Y1]. If Y1 = 1+ 6, then E[Ty|Y1] = E[Ty—(144)]. Likewise if Y} = 0,
then E[T)/|Y1] = E[T)—s]. Thus the conditional expectation is given recursively by

E[Ty|Y1] = 1(Ys =14 0)E[Ty—1s)] + L(Yr = 0)E[Ta—s).
We determine the first and second moments of E[T)|Y]] expressed in this way as follows.
EE[Ty|Y1]] = E[L(Y: = 1+ O)E[Ta_q1s)] + 1(Y: = 6)E[Tar—s]]
= PE[Ty-(19)] + (1 = p)E[Th ]

To compute the second moment we make use of two observations about indicator functions.
The square of any indicator function is equivalent to the indicator function, and the product
1(Yy = a)1(Yy = b) =0 for any a # b. Thus we have

E[E[Ty|Y1)?] = E[L(Y1 = 1+ 0)E[Tar_ (145 + 1(Y2 = 6)E[Ths_s)?]
=E[L(Y1 =1+ 0)E[Ty—a15)* + L(Y1 = 0)E[Ths—s]°]
= pE[Tv—q+0))* + (1 — p)E[Tar—s)*.
Combining the above yields the result. ([l

Letting E[T)/] = V[Ty] = 0 for M < 0, and knowing E[T),] = 0 for M = 0, E[T)] =1 for
M =4, and V[T),| = 0 for both M = 0 and M = §, we use dynamic programming and this
recurrence relation to find V[7Ty,] for our desired M, thereby calculating V[Ty]).



A NEW APPROXIMATION SCHEME FOR MONTE CARLO APPLICATIONS 17

6.2.4. Examining Hitting Time Variance Across Parameter Values. In order to get an initial
visual intuition for the parameter values for which one chain has lower variance than the other
we plot the ratio V(Ty)/V(Tx). Figure 3 shows this ratio as it varies across ¢ values for given
p values. Figure 4 captures the behavior of this ratio at different parameter configurations
such that p = 9.

p = 0.0050
— 15 T T
£
S o 0 O o
= [elelNe)
& ©00080 OOOOOOOOOOOOOOOOOOOOOOO
= 05 ! ! ! ! ! ! ! ! !
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FI1GURE 3. Ratio of Variances of Hitting Times for Chains Y; and Xj,.
Values are plotted over a range of p and ¢ with M = 10.
Calculated using methods provided in 6.2.3.

Without a means of establishing a closed form expression for V[7y], and with these numer-
ical results not yielding any readily discernible transition points, we were unable to determine
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FIGURE 4. Ratio of Variances of Hitting Times for Chains Y; and X;.
Plotted for parameter configuration p = 9
over range of M values.
Calculated using methods provided in 6.2.3.

parameter ranges for which we can ensure a given process reduces the variance of the hitting
time.

Due to the trend in Figure 4, we conjecture that as p = & approaches 0, the value of
V(Ty)/V(Tx) approaches 1/2, which would suggest that for small and nearly equal 0% and
wefly using Y; rather than X; would halve the number of samples needed to produce a (v, /3)
approximation in step 2. As a matter of future work, we hope that a proof of this conjecture
will provide insight into the parameter ranges, allowing us to incorporate these estimators
into the new approximation scheme.
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7. BounDs ON EXPECTED NUMBER OF SAMPLES NEEDED

In order to compare the number of samples used by DKLR to the number of samples used
by the new algorithm, we establish a lower bound on the expected number of samples needed

for DKLR.

Theorem 4. The DKLR algorithm uses a number of Z; draws T, where

E[T] > 16(c — 2)(1 + va)(1 + 2v/) In(3/6) (i)

elz

+8(e — 2)(1 4+ v/€)(1 + 2v/€) In(3/6) max {i i} .

etz (€pz)?
Proof. We will make use of the following lemma.

Lemma 7. (Part 2 of Stopping Rule Theorem in [3]).
For an estimate jiz of uy obtained using the Stopping Rule Algorithm,

1 1
— <

Bz  Hz

In Step 1 of DKLR, an initial estimate fiz is obtained for uz using the Stopping Rule
Algorithm. For the purposes of determining a lower bound on the expected number of sam-
ples, we disregard the samples needed for Step 1, by far the fastest step of the approximation
scheme.

In Step 2 a number of samples, 75, given in terms of the initial estimate for pz obtained
in Step 1 is used to compute an estimate 6% of 0% using an unbiased estimator for %. Using
Part 2 of the stopping rule theorem, we obtain

1
E[lz) =E |:16(6 —2)(1 4+ Ve)(1 + 2v/€) In(3/6)— ]
€Lz
1
> 16(e — 2)(1 + v/e)(1 + 2v/€) In(3/5) —.
etz
Step 3 employs the basic sample mean estimator for py using a number of samples T3
given in terms of the initial estimates iz and 67%.

E[Tg]—E[8(6—2)(1+\/E)(l"‘Q\/E)ln(g/é)maX{Ai’ g H

efiz (efiz)?
1 o2
=8(e—2)(1++ve)(1+2v€e)In(3/0) max<E | —| ,E A—Z]}
(e~ D0+ VAL + 2 /o) max {E | | B | 22
Once again by Part 2 of the Stopping Rule Theorem we have
E {i] >
elz ez
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Consider E[6%/(efiz)?]. The initial estimates 6% and jiz are computed using independent
draws from Z. Thus

= e =2 ]

172
> o’E [ - } (by Jensen’s inequality)
elz
1
o? (g (by Stopping Rule Theorem)
elz

We can therefore bound the expectation of T5 by
2

E[T3] > 8(e — 2)(1 + V/€)(1 + 2V/€) In(3/6) max {WLZ @} .

O

We now establish upper bounds on the samples needed for Algorithm 2. In order to do so

we will make use of the following bound on the parameter ¢ that we employ for the biased
GBAS algorithm.

Lemma 8. [fe < 1/\/5, and

2e
(1—e)In(1+42¢/(1 —¢))’

CcC =
then

4
<1+ =€
C 36

Proof. We take the Taylor series expansion of ¢ to find that
C:1+§62+>\164+/\2€6+"' (where \; < 2/3 for all 7)
< 1+§€2(1+€2+€4+€6“')
< 1—|—§€2(2). (by € < 1/v/2)

O

Note that the errors €'/? and 1 — v, used for step 1 and step 2 respectively, satisfy the
condition of this lemma by input restrictions on € and 7.
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Theorem 5. Let

& =1+ (4/3)¥?
=1+ (4/3)(1—7)"

The new approzimation scheme introduced as Algorithm 2 uses a number of Z; draws T,
where

E[T] < {max{zln(\/s_M)e—?/?’, <e—1/3+§)2H (Miz) (1)
i (o e )

2w(Eaka/ (ko — 1) — )Erky (1 + €/3)? By
202¢5k1 (k1 + 1)ko(1 + €'/3)2 o2
W= et —1) ) (wr) o
+L+ Gh 1 +21n(6/6). (5)

pz  wlki—1) eug

Proof. We consider the expected number of samples used in each step of the algorithm.
The expected number of samples needed to obtain an estimate using GBAS is given by &
times the inverse of the mean being estimated.
Thus, letting T be the number of samples drawn in step 1, we have

E[Ti] = | | max< 2In < 0 ) 23, (61/3 + 2)2 +1 (i) :
V2mé 3 Kz
Likewise, letting 75 be the number of samples drawn in step 2 we have
E[T%)] _ 21 ( 0 >(1 )72 ((1 )—1+2)2 _+1 IE[ ! ]
= max n — , — - _
? V276 7 7 3 0% + wefly
[ 6 2\?] | 1 [1
<[ | max<2In 1—)2((1- —1+—) +1| —E|—= }
< ( x{ (a5 = (a=m43 LE|
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The estimator fi; generated by the biased GBAS algorithm is given by (k; — 1)/(¢1R)
where R ~ Gamma(ky, puz). Thus

E [i] __ahk L

€fi1 (k1 —1) euz
1k 1
c—_ by Lemma &

Let T3 be the number of samples drawn in step 3. By Lemma 2

87— weiy
T3 =2 5€ 1] In(6/6
((/11/(1+61/3)) i ) (6/9)

_2((1+61/3)2_ a

Y (ein)

2

1
—w(l+ €2 — 4 1) In(6/4).
€f1
Taking the expectation,

E[T3] = 2 ((1 +;1/3)2]E {(65‘1)21 —w(l+€?)E {i} + 1) In(6/5).

Having obtained an upper bound on E[1/¢fi;] above, we now bound E[a/(efi;)?] as follows.

First note that
& Q
E|l——| =E |E |——| )
[(6#1)2] { {(eul)z Ml”

The estimate a generated by the biased GBAS algorithm is given by (ks —1)/(c2R) where
R ~ Gamma(ky, 0% — wefiy). Thus

A

- [ & P } _ coko(0F + wefnn)
7~ N 1] — N )
(ef11)? (k2 — 1)(efin)?

and we have

R :|:| _E |:Cgk2(0'% +w€/l1>:|
(k2 = 1)(efin)?

_ CngO’%E |: Al 2:| 4 CQkaE |: % :| ‘
kg —1 (eul) kg —1 F95]

Once again we note that because we know the distribution of 1//i;, we know

E{il _ _aks L
€1 ki—1 euz

The expectation of the square is then given by
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1 1 17?
] =¥ | 2]
(€efin) efla efin
. C%kl 1 i ( Clkl L)2
(k1 —1)% (euz)? ky —1 euz

c 1
BN e e

Then, combining the above yields

E |: & :| _ C%Cgkl(kﬁl + 1)/62 ) O'% 61C2w]€1]€2 ) 1
(ef)?]  (kr—1)(k2—=1) (epz)* (ki —1)(ka—1) epnz
5%52]61(]{51 + ].)kg O'% 615211]]{71]{32 1

T (k= 1)%(ky— 1) ' (epiz)? ' (ky — 1)(ky — 1) : iy (by Lemma 8)

O

We can compare this upper bound to the lower bound given for the number of samples
for DKLR. We first examine, line 1 of the bound given in Theorem 5. Line 1 corresponds to
the number of samples needed for step 1 of the algorithm. If

5 < 6 6762/3(671/3+2/3)2/2’

V2
then this number of samples is a multiple of 1/(¢*/°uy), which is of lower order than 1/(epz).
Lines 2 and 3 are readily comparable to the (1/euz) term in the lower bound for DKLR.
If we let v = (1/2) and w = 2, and reasonably assume that

2/3

6 et
0 < me .98,
then lines 2 and 3 yield a coefficient for (1/euz) of about 81n(6/0), compared to DKLR’s
16(e —2)In(3/96).
We can compare line 4 to the max {1/euz,0%/(eiuz)?} term in the number of samples
needed for DKLR. Using v = (1/2) yields a coefficient of about 41n(6/J), compared to
DKLR’s 8(e — 2) log(3/9).

8. EMPIRICAL COMPARISON

We provide a comparison of the number of samples required for DKLR and the number
of samples required by the new algorithm. We use the two algorithms to approximate
the mean of test data in the form of beta-distributed random variables with representative
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characteristics. We are particularly concerned with the behavior of the algorithms with
respect to the relative size of 02 and €.

We then compare the performance of the algorithms for a distribution arising from a
network science application, an approximation algorithm used to estimate the reliability
of highly unstable networks. As presented, this algorithm relies on DKLR to generate its
estimate.

8.1. Test Data. We compare the number of samples needed for DKLR to the number of

samples needed for the new algorithm. We are interested in three cases.

1) 02 ~ euy
Table 1 provides a comparison of the number of samples required by DKLR and Algo-
rithm 2, using parameters v = (1/2) and w = 2, to obtain a an ¢, approximation of the
mean 4 for Beta random variables with 0% = €.

2) 03> €py
Table 2 provides a comparison of the number of samples required by DKLR and Algo-
rithm 2, using parameters v = (1/2) and w = 2, to obtain a an ¢, approximation of the
mean p for Beta random variables with 0% & pz(1 — uz).

3) 0% < €uy
Table 3 provides a comparison of the number of samples required by DKLR and Algo-
rithm 2, using parameters v = (1/2) and w = 2, to obtain a an ¢, approximation of the
mean 4 for Beta random variables with 02 = euz - 1074,

(€,6) Lz  o% DKLR New New/DKLR

0.1000,0.0100) 0.01 0.001 4.5159-10°> 9.3649 - 10* 2.0738-107!
0.1000,0.0100) 0.05 0.005 8.9702-10* 2.6444-10* 2.9479-107!
0.1000,0.0010) 0.01 0.001 6.3353-10°> 1.273-10° 2.0094-107!
0.1000,0.0010) 0.05 0.005 1.2739-10° 3.1703-10* 2.4887- 107"

NN AN N

TABLE 1. Samples Needed Comparison: Beta Random Variables 0% = €.
Values for the new algorithm obtained using Algorithm 2 with v = 1/2,
w = 2. Number of samples averaged over 5 runs.

For these beta random variables we observe that the new algorithm required fewer than half
the number of samples required by DKLR in the high-variance case, and as little as fewer than
a fifth of the samples required by DKLR in the low-variance case, for e = .1,6 € {.01,.001}.
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(€,9) Lz o2 DKLR New New/DKLR

(0.1000,0.0100) 0.01 9.899-107 1.6685-10° 5.712-10° 3.4235-10*
(0.1000,0.0100) 0.05 4.7495-1072 3.3022-10° 9.2411-10* 2.7985-10"
( )
( )

0.1000,0.0010) 0.01 9.899-1073 2.423-10° 8.4063-10° 3.4694-10"!
0.1000,0.0010) 0.05 4.7495-1072 4.4943-10° 1.9384-10° 4.313-107!

TABLE 2. Samples Needed Comparison: Beta Random Variables 0% >> €.
Values for the new algorithm obtained using Algorithm 2 with v = 1/2,
w = 2. Number of samples averaged over 5 runs.

(€,0) Uz o2 DKLR New New/DKLR

(0.1000,0.0100) 0.01 1-10" 3.7881-10° 6.8047-10* 1.7963-107'
(0.1000,0.0100) 0.05 5-10"7 7.5765-10* 1.4342-10* 1.8929 10!
( )
( )

0.1000,0.0010) 0.01 1-10~" 5.3687-10° 8.9777-10* 1.6722-1071
0.1000,0.0010) 0.05 5-10~7 1.0738-10° 1.7513-10* 1.631-107!

[ e e

TABLE 3. Samples Needed Comparison: Beta Random Variables 0% < €.
Values for the new algorithm obtained using Algorithm 2 with v = 1/2,
w = 2. Number of samples averaged over 5 runs.

8.2. Application: Network Reliability. We test the two approximation schemes’ perfor-
mance for the critical estimation step of the algorithm, introduced by Zenklusen and Lau-
manns in [7], for approximating the st-reliability of a network. The problem of st-reliability
is as follows.

We have a directed, acyclic, network. Each arc in the network, considered independently,
will be operational with some small probability p. We will refer to an instantiation of the
network with a certain set of operating arcs as an operating state of the network. For given
nodes s and ¢ in the network, we define the st-reliability of the network to be the probability
that there exists a path from s to t in the network such that every arc on the path is
operational.

We can intuitively see that this notion would be useful for thinking about networks such
as telecommunications networks, which one would design to be highly reliable. One might
then want to know the likelihood that, in the rare event of arc failures, two nodes s and ¢
remain connected.

This algorithm is primarily concerned however, with the case in which the network is
highly unreliable, that is the probability p assigned to each edge is very small and hence
the likelihood of an operating path is also small. As is noted in [7], this case is applicable
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F1GURE 5. The st-reliability of a network is the probability of there being
an operating path from node s to node t given that arcs will only be
operational with a certain probability. In this operating state of the network
pictured above, we see one operating st-path.

to questions of network dynamics such as disease spreading, where one is interested in the
unlikely event that a disease can spread from one node to another node in the network given
a low likelihood of disease transmission occurring along any particular arc.

The computational complexity of determining exact st-reliabilities requires that they be
estimated, and naturally, in this small probability case, the algorithm is concerned with
obtaining an (¢, ) relative error approximation for the reliability.

Zenklusen and Laumanns devise a method for drawing [0, 1] random variables with mean
proportional to the st-reliability and then uses DKLR to obtain an (¢, ) approximation of
this mean. We compare the number of samples needed to perform this estimation using
DKLR to the number needed using Algorithm 2, when the algorithm is applied to random
networks.

The random networks to which we apply the algorithm are Delaunay networks. Delaunay
networks are formed by first taking a Delaunay triangulation of n points dropped uniformly
at random in a unit square to determine the nodes. The nodes s and ¢ are then chosen to
be the two points with the largest pairwise Euclidean distance. To determine the arcs, all
of the edges of the triangulation are then oriented so as to have nonnegative scalar product
with the vector from s to ¢. This random construction is convenient for this problem as it
ensures that we have constructed a network consisting of only arcs that lie on paths from s
to t and hence arcs that are relevant to the reliability approximation.

The results of the algorithm comparison are given in Table 4. We see improvement us-
ing the new approximation scheme. For the network parameters used and for e = .1,0 €
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(€,6) nodes parcsop  DKLR New New/DKLR
(0.1000,0.0100) 100 0.01 3.7928 - 103 7.264-10*> 1.9152-1071
(0.1000, 0.0010) 100 0.01 5.3736 - 10> 1.0338 -10° 1.9238-10°1!
(0.0100,0.0100) 100 0.01 1.6682-10° 4.6878-10° 2.8102-102
(0.0100,0.0010) 100 0.01 2.3892-10° 7.0216-10% 2.939-102
(0.1000,0.0100) 100 0.05 3.8408 -10° 7.522-10> 1.9584-1071
(0.1000,0.0010) 100 0.05 5.4512-10° 1.056-10° 1.9372-1071
(0.0100,0.0100) 100 0.05 1.7089 - 105 5.6818-10° 3.3249-102
(0.0100,0.0010) 100 0.05 2.448 - 10° 8.4346 - 10 3.4456 - 102
(0.1000,0.0100) 100 0.1 4.0558 - 10> 9.43-10* 2.3251-107!
(0.1000,0.0010) 100 0.1  5745-10° 1.1194-10° 1.9485-10°!
(0.0100,0.0100) 100 0.1 2.0455 - 10° 1.2898 - 10* 6.3054 - 102
(0.0100,0.0010) 100 0.1 2.9209 - 10° 1.7337-10* 5.9353 - 102

TABLE 4. Number of Samples Needed Comparison
st-Reliability Estimation on 100 Node Delaunay Networks.
Values for the new algorithm obtained using Algorithm 2 with v = 1/2,
w = 2. Number of samples averaged over 5 runs.

{.01,.001}, Algorithm 2 required approximately a fifth of the number of samples required
by DKLR. For the smaller € of .01 the ratio of the number of samples required by the new
approximation scheme to the number required by DKLR improved further, to order 1072,

9. CONCLUSIONS

Adapting a new estimator for the mean of [0, 1] random variables, we have introduced
an (e,0) relative error approximation scheme to be employed in Monte Carlo approximation
algorithms for which it is necessary to estimate the mean of a simulated distribution to user-
specified error and this mean is known to be small. Having established an upper bound on the
expected number of samples required by this new algorithm, we see improvement over a lower
bound on the expected number of samples required by an existing approximation scheme.
Corroborating this theoretical result, the computational comparison performed showed that
the new algorithm required significantly fewer samples both when used on test data and on
data arising from an algorithm for approximating network reliabilities.
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APPENDIX A. CHERNOFF BOUND ON TAILS OF THE BINOMIAL DISTRIBUTION

Because of the possibility of remaining in the same state in the fully random chain, there
is no upper bound on the chain’s hitting time. For this reason, in order to simulate the chain
and make calculations based on powers of the chain’s transition matrix, we are interested in
determining an upper bound which will capture the density of the hitting time distribution
to within a specified error.

In the random chain, the chain state at time ¢, X}, is binomially distributed with param-
eters (p+6) and t. We wish to establish an upper bound time at which the probability that
the state is still lower than M is less than our desired error. We employ the Chernoff Bound
introduced in [2]. For the binomial distribution the Chernoff Bound gives

1— 1—e\ —t(p+9) ,
PX; <(1—e)t(p+9)) < (&) < o= €tp+0)/2

e ¢ -

Letting our desired error be denoted v, we wish to turn this into a bound of the form

P(X, < M) <#.
We let
L M
(1-e)p+0)

and determine the value of € that yields the desired bound.

_ ) 2 2In(y)  2In()
y=e€ € i €+ i

(ln]\(]))Q— 211;;7)]5.

APPENDIX B. CoDE FOR DKLR AND NEwW APPROXIMATION SCHEME

=0

# Script for comparing DKLR runtime to runtime of mew approximation scheme

# DKLR
DKIR <— function (one_sample_fun, epsilon, delta) {
# Provides an epsilon, delta approzimation for the mean of the wariable from which input one_sample\\

\\-fun generates

# independent draws using the AA algorithm of Dagum, Karp, Luby and Ross 2000

# Outputs:

# A list with keys

# estimate = an estimate of the mean

# num_samples = the number of samples drawn

# Inputs:

# one_sample_fun = function taking mo parameters that generates one sample
# epsilon = desired error factor
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# delta = desired probability that estimate is not within factor I+epsilon of \\
\\reliability

Ups <— 4 % (exp(l) — 2) = log(2/delta) x epsilon”(—2)

STEP 1

Ups-one <— 1 + (1 + epsilon) % Ups
i<—0
S<—0
samples _one <— vector ()
repeat {
i<—1i+4+1
sample <— one_sample_fun ()
S <— S + sample
samples _one <— append(samples_one, sample)
if (S >= Ups_one) {
break
}
}

mu_hat <— Ups_one/i

STEP 2
Ups_two <— Ups * 2 % (1 + sqrt(epsilon)) * (1 + 2xsqrt(epsilon)) * (1 + log(3/2) / log(2/delta))
N_two <— ceiling (Ups_two * epsilon / mu-hat)

S<-0

samples _two <— replicate (2«N_two, one_sample_fun())

S <— sum(mapply (function (sample_a, sample_b) (sample_a — sample_b) 2, samples_two[1:N_two], samples\\
\\-two [ (N_two+1):(2N_two)]))
rho <— max(S / N_two, epsilon % mu_hat)

STEP 3
N_three = ceiling (Ups_two * rho / mu_hat"2)

samples_three <— replicate (N_three, one_sample_fun())
S <— sum(samples_three)
estimate <— S/N_three

num._samples <— length (samples_one) + length (samples_two) + length (samples_three)

DKLR-output <— list (”estimate” = estimate, "num_samples” = num_samples)
return (DKLR-_output)

}

# GBAS

determine _k_for _GBAS <— function (epsilon, delta) {
# Determines value of k which ensures desired error bound using GBAS algorithm
k<—1
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while (pgamma(l+epsilon/2,k,k—1) — pgamma((1+epsilon/2)"(—-1),k,k—1) < 1—delta)
k <— k+1
return (k)

}

GBAS <— function (one_sample_fun, epsilon = NULL, delta = NULL, k = NULL, biased = FALSE, ¢ = NULL) {
# Provides an epsilon, delta approzimation for the mean of the wvariable from which input one_sample\\
\\-fun generates
# independent draws wusing a the Gamma Bernoulli Approximation Scheme of Huber
# Outputs:
# A list with keys

# estimate = an estimate of the mean

# num_samples = the number of samples drawn

# Inputs:

# one_sample_fun = function taking mno parameters that generates one sample from a Bernoulli

# distributed random wvariable

# EITHER

# epsilon = desired error

# delta = desired probability that estimate is not within factor I+epsilon of true \\
\\mean

# OR

# k = parameter of GBAS determined by error parameters, can be

# specified in place of epsilon and delta

# biased = indicator to wuse biased k—1/cR estimator

# c = bias parameter for biased estimator

if (is.null(k)) {
k <— determine _k_for _GBAS(epsilon, delta)
}
S<-0
R<-0
num_samples = 0
repeat {
S <— S + one_sample_fun ()
num_samples = num_samples + 1
R <— R + rexp (1)
if (S=k) {
break
}
}

if (biased) {
estimate = (k—1)/(c*R)

} else {

estimate = (k—1)/R

}

GBAS_output <— list (”estimate” = estimate, "num_samples” = num_samples)

return (GBAS_output)
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# Catoni \\
A\
root _by_bisection_zero_one = function(fun, interval _bound_one, interval_bound_two) {
# returns a root of function fun
# Inputs:
# fun = a function taking a single parameter defined on on [0,1]
# interval _bound_one bound on interval, for which sign of function wvalue at this bound is
# opposite of that at interval_bound_two
# interval_bound_two = bound on interval, for which sign of function wvalue at this bound is
# opposite of that at interval_bound_one
fun_val_one = fun(interval _bound_-one)
fun_val_two = fun(interval _bound_two)
repeat {
root = (interval _bound_one + interval _bound_two)/2
fun_val_root = fun(root)
if (abs(fun-val_root) < 10°(—9)){
break
} else if (sign(fun_val_root) = sign(fun_-val_one)) {
interval _bound _one = root
fun_val_one = fun_val_root
} else {
interval _bound _two = root
fun_val_two = fun_val_root

}
}

return (root)

}

Catoni <— function (one_sample_fun, epsilon, delta, mean_lower_bound, var_upper_bound) {

num_samples <— ceiling (2 % (var_upper_bound / (epsilon * mean_lower _bound) 2 + 1) x log(2/delta))
alpha <— epsilon % mean_lower _bound / (var_upper_bound + (epsilon * mean_lower _bound) "2)

# samples <— replicate (num_samples, one_sample_fun())

#

# psi <— function(z) ifelse(z >= 0, log(l + z + z°2/2), —log(1 — = + 2°2/2))

# influence_function <— function (estimate) sum(sapply (samples, function (sample) psi(alpha * (sample\\
\\ — estimate))))

#

# estimate = root_by_bisection_zero_one(influence_function , min(samples), maz(samples))

estimate <— 0

Catoni_output = list (”estimate” = estimate, "num_samples” = num_samples)

return ( Catoni_output)
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# New Approzimation Scheme \\

\

new _RAS <— function (one_sample_fun, epsilon, delta, c, gamma, step_two-alg = c(’GBAS’, ’Catoni’)) {

# Provides an epsilon, delta approzimation for the mean of the wvariable from which input one_sample\\
\\-fun generates

# independent draws using a the Gamma Bernoulli Approzimation Scheme of Huber and the M estimator \\
\\of Catoni 2012

# Outputs:

# A list with keys

# estimate = an estimate of the mean

# num_samples = the number of samples drawn

# Inputs:

# one_sample_fun = function taking mo parameters that generates one sample

# epsilon = desired error factor

# delta = desired probability that estimate is not within factor I+epsilon of \\
\\reliability

# c = parameter weighting number of samples in terms of wvariance wversus number \\
\\of samples

# in terms of inverse of mean

# gamma = desired error factor for lower bound on wvariance in step 2

# step_two_alg = specifies algorithm to wuse for wvariance bound step

# Options: ’'GBAS’ and ’Catoni’

STEP 1
epsilon _one = epsilon"(1/3)
B_one = function() as.integer (runif(l) < one_sample_fun())

c_one = 2 x epsilon"(1/3) / ((1—epsilon"(2/3)) * log(l + 2 % epsilon"(1/3)/(1—epsilon"(1/3))))
k_one = ceiling (max(2 * log(6/(sqrt(2xpi)*delta)) % epsilon"(—2/3), (epsilon”(-1/3) + 2/3)"2)) + 1

GBAS_one _output = GBAS(B_one, k = k_one, biased = TRUE, ¢ = c_one)
mu_one = GBAS_one_output$estimate
num_samples _one = GBAS_one_output$num_samples

STEP 2
switch (step _two_alg ,

GBAS = {B_two = function() as.integer(runif(1l) < ((one_sample_fun() — omne_sample_fun()) "2)\\
\\/2 + cxepsilon*mu_one)
c_two = 2x(l—gamma) / ((2#*gamma—gamma 2) x log (1l + 2%(l—gamma) / gamma))
k_two = ceiling (max(2 * log(6/(sqrt(2+pi)=*delta)) * (l—gamma) (—2), ((1—gamma)\\
W(=1) +2/3)72)) + 1

GBAS_two_output = GBAS(B_two, k = k_two, biased = TRUE, ¢ = c_two)
a_hat = GBAS_two_output$estimate
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num_samples _two = GBAS_two_output$num_samples})

STEP 3

mean_lower _bound = mu_one / (1 + epsilon _one)

var —upper_bound = (a-hat / (1 — gamma)) — ¢ * epsilon * mu_one

Catoni_output = Catoni(one_sample_fun, epsilon, delta, mean_lower _bound, var_upper_bound)
Catoni_estimate = Catoni_output$estimate

num_samples _three = Catoni_output$num_samples

estimate = Catoni_estimate

num_samples <— num_samples_one + num_samples_two + num_samples_three
new RAS_output <— list (”estimate” = estimate, "num_samples” = num_samples)

return (new _RAS_output)

# Testing Estimators
test _estimator <— function(estimator = ¢(”DKLR”, ”"new_RAS_GBAS”, ”"new_RAS_Catoni”)) {

# Generates data on how often estimator is coming out within desired error bounds

# Outputs:

# error_data = data_frame giving error rate by parameter values

# Inputs:

# estimator = specifies estimator to test

# DKLR = Approzimation Algorithm of Dagum Karp Luby Ross 2000
# new_RAS_GBAS = New approzimation algorithm wusing GBAS for step 2
# new_RAS_ Catoni = New approxzimation algorithm wusing Catoni for step 2
num-estimates <— 100

mu_list <— c(.1)

epsilon_list <— c¢(.1)

delta_list <— c(.1)

switch (estimator ,

DKLR = {estimate_fun <— function (one_sample_fun, epsilon, delta) DKLR(one_\\
\\sample_fun, epsilon, delta)},

new -RAS_GBAS = {estimate _fun <— function (one_sample_fun, epsilon, delta) new_RAS(one_\\
\\sample_fun, epsilon, delta, 2, 1/2, 'GBAS’) },

new _RAS_Catoni = {estimate_fun <— function (one_sample_fun, epsilon, delta) mnew_RAS(one_\\

\\sample _fun, epsilon, delta, 2, 1/2, *Catoni’)})

error _data <— data.frame(matrix(nrow = prod(sapply(list (epsilon_list , delta_list, mu_list), length)\\
\\), ncol = 3))

names(error _data) <— list (”(eps,_del)”, "mu”, ”error_rate”)

run <— 1

for (epsilon in epsilon_list) {
for (delta in delta_list) {
for (mu in mu_list) {
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one_sample_fun <— function() ifelse (runif(l) < mu, 1, 0)

error _data[run, ”(eps,.del)”] <— sprintf(”(%.4f,.%.4f)”, epsilon, delta)

error _data[run, "mu’]| <— mu
is_in_bound <— function (estimate) abs(estimate/mu — 1) < epsilon
error _data[run, "error_rate”] <— mean(replicate (num_estimates, !is_in_bound(estimate_fun(one_\\

\\sample _fun, epsilon, delta)$estimate)))

run <— run + 1
}
}
}

return(error _data)

# Algorithm Comparison

generate _num_samples_table <— function (mu-list , epsilon_list , delta_list, regime = c(’eq’, ’var-\\

\\greater’, ’eps_mu_greater’), num_runs) {

# Generates table with number of samples needed to approzimate the mean of beta random wvariables \\

\\ having

# propeerty specified by regime using the different algorithm alternatives

# Inputs:

# mu_-list = list of mean wvalues to consider

# epsilon_list = list of epsilon wvalues to consider

# delta_list = list of delta values to consider

# regime = specifies property of random beta wvariable

# eq = wvariance \approzr epsilon mu

# var_greater = wvariance >> epsilon mu

# eps_mu-greater = variance << epsilon mu

# num_runs = number of runs over which to average the number of samples used

# Outputs: a data frame

data <— data.frame(matrix (nrow

\\ncol = 6))
names (data) <— list (” (eps,-del)”, "mu”, ”var”, "DKLR”, "New” , ”New/DKLR”)

prod (sapply (list (epsilon_list , delta_list, mu-list), length)), \\

row = 1
for (epsilon in epsilon_list) {
for (delta in delta_list) {
for (mu in mu_list) {

switch (regime ,

eq = {alpha <— mu * (1-mu) / (epsilon) — mu
beta <— alphax*(1/mu — 1)},
var_greater = {alpha <— .0001 % mu

beta <— alphax*(1/mu — 1)},

eps_mu_greater = {alpha <— mu % (1-mu) / (.0001 % epsilon) — mu
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beta <— alphax(1/mu — 1)})
one_sample_fun <— function () rbeta(l, alpha, beta)

data[row, ”(eps,.del)”] <— sprintf(”(%.4f,.%.4f)”, epsilon, delta)
data[row, "mu’] <— mu

variance <— alpha x beta / ((alpha + beta)”2 % (alpha + beta + 1))
data [row, "var”] <— variance

DKLR_num_samples <— mean(replicate (num_runs, DKLR(one_sample_fun, epsilon, delta)$num_samples\\

\\))
data [row, "DKLR”| <— DKLR_num_samples

new -Ras_num_samples <— mean(replicate (num_runs, new_RAS(one_sample_fun, epsilon, delta, 2, 1/\\
\\2, ’'GBAS’)$num_samples))
data [row, ”"New”] <— new_Ras_num_samples

data [row, ”"New/DKLR’] <— new_Ras_num_samples / DKLR_num_samples

row <— row -+ 1
}
}
}

return (data)

}

## Generates three data frames storing tables giving comparison of number of samples needed for each \\
\\algorithm
## for different parameter values. Writes these data frames to excel file ”comparison_by_regime. xzlsz”

## data_eq = number of samples required under regime wvariance \approx epsilon mu
## data_var_greater = number of samples required under regime variance >> epsilon mu
## data_eps_mu_greater = number of samples required under regime wvariance << epsilon mu

require (*xlsx’)

mu_list <— c(.01, .05)

epsilon_list <— c(.01)

delta _list <— c(.01, .001)

num-_runs <- 5

data _eq <— generate _num_samples_table (mu_list , epsilon_list , delta_list, ’eq’, num_runs)
data_var_greater <— generate _num_samples_table (mu-list , epsilon_list , delta_list , ’var_greater’, \\

\\num_runs)
data_eps_mu_greater <— generate _num_samples_table (mu_list , epsilon_list , delta_list , ’eps_mu_greater '\\
\\, num_runs)

write.xlsx (data_eq, file = ”comparison_by_regime.xlsx”, sheetName = ”approx.equal”)
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write.xlsx (data_var_greater , file = ”"comparison_by_regime.xlsx”, sheetName = ”variance_greater”, \\
\\append = TRUE)
write.xlsx (data_eps_mu_greater , file = ”comparison_by_regime.xlsx”, sheetName = ”epsmu.greater”, \\

\\append = TRUE)
print (” finished ~algorithm _comparison ,_wrote_result _to_comparison_by_regime.xlsx”)

APPENDIX C. CODE FOR st-RELIABILITY APPLICATION

# This script implements the s—t reliability approzimation algorithm
# for highly unreliable directed acyclic networks introduced in (Zenklusen and Laumanns 2010)

require (network)
require (geometry)

script _dir <— dirname (sys.frame(1l)$ofile)
if (lexists ("DKLR” , mode=" function”)) source(sprintf(”%s/thesis_comparison_script.R”, script_dir))

# ADDITIONAL FUNCTIONS FOR WORKING WITH NETWORK OBJECTS

get _nodes_from_arc <— function (network, arc_edgelD) {
# Returns nodes that compose arc with edgelD input edgelD in input network
# Outputs:
# A list with keys

# out_of = the mode from which the arc comes

# into = the mode to which the arc is incident

# Inputs:

# network = a network object

# arc_edgelD = the edgelD of the desired arc

# Note:

# This is just a gemneral function to get from edgelDs to their nodes which was
# not implemented in mnetworks package. It is used in functions add_prob_operational_tc
# and sample_path.

out -node <— network$mel[arc_edgeID][[1]] $outl

in_node <— network$mel[arc_edgeID|[[1]]$inl

output_list <— list (”out_of” = out_node, ”into” = in_node)

# RANDOM NETWORK GENERATORS

max_pair_over_antipodal <— function(points) {
# Uses rotating calipers algorithm of (Preparata and Shamos 1985) to find all antipodal pairs
# in set of d—dimensional points input points and returns the pair with the largest distance
# Returns the antipodal pair with the greatest distance between them

# Outputs:

# mazr_distance _pair a list, the pair of wectors giving the mazx distance points

# Inputs:

# points = a number of points by d matriz, with rows representing points
# in counterclockwise order, mnone collinear (e.g. output of

# convhulln (points, options = "Fz”))
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num_points <— nrow(points)

move_one <— function(x) ifelse(x != num_points, x+1, 1)
area <— function(x,y,z) abs(.5 * det(cbind(rbind(x,y,z),c(1,1,1))))
distance <— function(x,y) sqrt ((y—=x)[1]"2 + (y—=x)[2]"2)

p-o <— 1
p-n <— num-points

p <— p-n
q <— move_one(p)

max_pair <— vector(”list”, length = 2)
max_distance <— 0

repeat {
q <— move_one(q)
if (area(points[p,], points[move_one(p),], points|[move_one(q) ,]) <= area(points[p,], points[move_\\
\\one(p) ], points[a,])) {
break

}
}
q-o <— q
repeat {
p <— move_one(p)
dist -pair <— distance(points[p,], points[q,])
if (dist_-pair > max_distance) {
max_distance <— dist_pair
max-pair <— list (points[p,], points[q,])
}
repeat {
q <— move_one(q)
if (!(p=gq-0& q=p-0)) {
dist _pair <— distance (points|[p,], points|[q,])
if (dist_-pair > max_distance) {
max_distance <— dist_pair
max_pair <— list (points[p,], points|q,])
}
}

if (area(points|[p,], points[move_one(p),], points[move_one(q),]) <= area(points[p,], points[\\
\\move_one(p) ,], points[q,])) {
break

}
}

if (area(points[p,], points[move_one(p),], points|[move_one(q) ,]) = area(points|[p,], points[move_\\
\\one (p) ,], points(a,])) {
if (!(p==gq-0&& q=p-n)) {
dist _pair <— distance(points[p,], points[move_one(q) ,])
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if (dist_pair > max_distance) {
max_distance <— dist_pair

max_pair <— list (points[p,], points[move_one(q) ,])

if (¢ = p-o) {
break
}
}

return (max-pair)

}

generate _delaunay <— function (num_nodes) {

# Generates a random directed acyclic delaunay graph as described in section 8.1.1
# Inputs:

# num_nodes = the number of nodes desired

# Outputs:

# a list with keys

# network = a network object having the property that all edges
# in the network lie on a path from s to t

# s = the source of the network

# 1 = the terminal of the network

uniforms <— runif(2+num_nodes)

points <— matrix (uniforms, ncol= 2)

conv_hull _boundary <— chull(points[,1], points[,2])

conv_hull _boundary <— points[conv_hull_boundary,]

max_distance _pair <— max_pair_over_antipodal(conv_hull_boundary)
s <— max-distance_pair [[1]]

t <— max._distance_pair [[2]]

delaunay _triangulation <— delaunayn(points)
del_sides <— vector(”list”)
for (triangle in 1l:nrow(delaunay_triangulation)) {
del_sides <— append(del_sides, lapply(list(c(1,2),c(1,3),c(2,3)), function(side) sort(c(delaunay_\\
\\triangulation [triangle ,][side[1]], delaunay_triangulation [triangle ,][side[2]]))))
}

del_sides <— unique(del_sides)
edges <— matrix(ncol = 2, nrow length (del _sides))
for (i in 1l:length(del_sides))
if (dot(points[del_sides[[i]]
edges[i,] = del_sides [[i]]

} else {
edges[i,] = rev(del_sides [[i]])

{
[2] ,] — points[del_sides[[i]][1],], (t—s)) > 0) {

}
}

network <— network(edges)
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s <— which (apply (points, 1, function(row) identical (row, s)))
t <— which(apply(points, 1, function(row) identical (row, t)))

output_list <— list (”network” = network, ”s” =s, "t” = t)

return (output_list)

add _prob_operational _del <— function (network, uniform_prob_operational) {
# Adds edge attribute prob_operational to input network, assigning value

# input uniform_prob_operational to each edge

# Outputs:

# network = the network input network with attribute prob_operational

# Inputs:

# network = a network object, output of generate_delaunay

# uniform_prob_operational = probability of being operational to be assigned to each edge

set .edge.attribute (network, ”"prob_operational”, uniform_prob_operational , e = seq-along(network$mel\\

W)

return (network)

generate _topological _construction <— function (num_nodes, arc_density) {

# Generates a random directed acyclic graph using the topological construction described in section\\

\\ 8.1.2
# Inputs:
# num_nodes = the number of nodes desired
# arc_density = probability with which to add edges beyond initial path from s to t
# Outputs:
# network = a network object having the property that all edges
# in the network lie on a path from s to t
# Note:

# The source s will have wvertexr index 1 in the mnetwork

# The terminal t will have vertex index given by num_nodes in the network
adj_mat <— matrix (0, nrow = num_nodes, ncol = num_nodes)

network <— network (adj_mat)

for (i in 1:(num-nodes—1)) {
add.edge (network, i, i+1)
}
for (i in 1:(num-nodes—2)) {
for (j in (i+2):num-_nodes) {
if (runif(1) < arc_density) {
add.edge (network, i, j)
}
}
}

return (network)

add _prob_operational _tc <— function (network, prob_operational _param) {
# Adds edge attribute prob_operational to input network, assigning value
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# determined by input prob_operational_param to each edge

# Outputs:

# network = the network input network with attribute prob_operational

# Inputs:

# network = a network object, output of generate_topological_construction

# prob_operational_param = typically in [0,1], smaller values result in less reliable networks
get _prob_operational <— function(i,j) (j—i) (prob_operational_parameter — 1) % runif(1)

for (arc in unlist (network$iel)) {
nodes <— get_nodes_from_arc(network, arc)
prob_operational <— get_prob_operational(nodes$out_of, nodes$into)
set.edge.attribute (network, ”prob_operational”, prob_operational, arc)

}

return (network)

# ALGORITHMS IN SECTION 5

get _topological _ordering <— function (network, s, t) {

# Determines a topological ordering of mnodes not s and t in the graph input network using Kahn’s \\

\\algorithm

# Outputs:

# ordering = a length n—2 vector of node ids for the network, a topological ordering of nodes \\
\\ezcluding s and t

# Inputs:

# network = a metwork object representing a directed acyclic graph

# s = wvertex ID of source for which we are estimating reliability

# 1 vertex ID of terminal for which we are estimating reliability
num_nodes <— network.size (network)
node_vertexID _list <— 1l:num_nodes

ordering <— vector(length = num_nodes)
order _idx <— 1
current _sources <— Filter (function(node) length(get.edgelDs(network, node, neighborhood = "in”)) =\\

\\ 0, node_vertexID_list)

while (length(current_sources) != 0) {
chosen_source_node <— current_sources [1]
current _sources <— current_sources|—1]

ordering [order_idx] <— chosen_source _node
order _idx <— order_idx + 1

chosen _node_neighborhood <— get.neighborhood (network, chosen_source_node, ”out”)
for (edge in get.edgelDs(network, chosen_source_node, neighborhood = "out”)) {
delete .edges(network ,edge)

}

for (neighbor_of_chosen_node in chosen_node_neighborhood) {
if (length(get.neighborhood(network, neighbor_of_chosen_node, ”in”)) = 0) {
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current _sources <— append(current_sources, neighbor_of_chosen_node)

}
}
}

s_index <— seq-along(ordering)[ordering = s
ordering <— ordering|[—s_index]
t_index <— seq-along(ordering)[ordering =—
ordering <— ordering[—t_index]

return (ordering)

assign _arc_weights <— function (network, s, t, topological _ordering) {

# Implements Algorithm 2 to assign weights to each arc in directed graph input network

# which allow for sampling of paths with proabibility proportional to the the probability

# that all arcs on the path are operational

# Outputs:

# network = a copy of input network with added edge attribute weight

# Inputs:

# network = a network object representing a directed acyclic graph with edge attribute

# prob_operational assigned to each edge, preprocessed so that every

# arc lies on a path from node input s to node input t

# s = vertex ID of source for which we are estimating reliability

#t = wvertex ID of terminal for which we are estimating reliability

# topological_ordering = a vector of wertex IDs giving a topological ordering of vertices

# not s and t, output of get_topological_ordering

num_nodes <— network.size (network)

list _of _arcs_into_t <— mapply(function (edge, edgelD) list (”edge” = list (edge), ”edgelD” = edgelD),
get .edges(network, t, neighborhood = 7in”), get.edgelDs(network, t, \\

\\neighborhood = ”in”))

for (i in 1:length(list_of_arcs_into_t[”edge” ,])) {
arc_into_t <— list_of_arcs_into_t[,i]
arc_into_-t_prob_operational <— get.edge.attribute (arc_-into_t$edge, ”prob_operational”)
arc_into_t_weight <— arc_into_t_prob_operational
set .edge.attribute (network, ”weight”, arc_into_t_weight, arc_into_t$edgelD)

for (node in rev(topological _ordering)) {
weight _leaving _node <— sum(unlist (lapply (get.edges(network, node, neighborhood = ”out”), function\\
\\(edge) get.edge.attribute(list (edge),” weight”))))

list _of _arcs_into_node <— mapply(function (edge, edgeID) list (”edge” = list (edge), ”edgelD” = \\
\\edgeID) ,
get .edges (network, node, neighborhood = ”in”), get.edgelDs(\\
\\network , node, neighborhood = ”in”))

for (i in 1:length(list_of_arcs_into_node[”edge” ,])) {
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arc_into_node <— list _of_arcs_into_node[,1i]

arc_into_node_prob_operational <— get.edge.attribute (arc_into_node$edge, ”prob_operational”)
arc_into_node_weight <— arc_into_node_prob_operational % weight_leaving _node
set.edge.attribute (network, ”weight”, arc_into_node_weight, arc_into_node$edgelD)

return (network)

calc _sample_space_weight <— function (network,s) {
# Calculates the weight of the sample space (line 16 of algorithm 1)

# Outputs:

# sample_space_weight = weight of the sample space, equivalent to mean number of paths from s to\\
W\t

# Inputs:

# network = network object representing mnetwork for which we are estimating reliability ,

# with edge attribute "weight” assigned by function assign_arc-weights

# s = wertex ID of source for which we are estimating reliability

sample _space _weight <— sum(get.edge.attribute (get.edges(network,s),”weight”))
return (sample_space _weight)

determine _num_paths <— function (network, s, t, topological_ordering) {
# Determines the number of paths from s to t on the network

# Used to determine number of operating paths on network realizations (line 12 of algorithm 1)
# Output:

# num_paths_from_s_to_t = the number of paths from mnode input s to mode input t on network input \\
\\network
# Input:
# network = a metwork object
# s = wvertex ID of source for which we are estimating reliability
# 1 = vertex ID of terminal for which we are estimating reliability
# topological_ordering = a vector of wertex IDs giving a topological ordering of vertices
# not s and t, output of get_topological_ordering
for (arc_into_t in get.edgelDs(network, t, neighborhood = "in”)) {
set.edge.attribute (network, ”"num_paths_to_t”, 1, arc_into_t)

for (node in rev(topological _ordering)) {
num_paths_to_t_leaving _node <— sum(unlist (lapply (get.edges(network, node, neighborhood = 7out”), \\
\\function (edge) get.edge.attribute(list (edge), "num_paths_to_t”))))

for (arc-into_node in get.edgelDs(network, node, neighborhood = ”7in”)) {
num_paths_to_t <— num_paths_to_t_leaving _node
set.edge.attribute (network, ”"num_paths_to_t”, num_paths_to_t, arc_into_node)
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num_paths_from_-s_to_t <— sum(get.edge.attribute(get.edges(network, s, neighborhood = "out”), ”num-_\\
\\paths_to_t"))
return (num_paths _from_s_to_t)

sample _path <— function (network, s, t) {
# Samples a random path with propability a path is selected proportional to the probability
# that all arcs on the path are operating (line 4 of algorithm 1)

# Outputs:

# path = a list of edge IDs for arcs in sampled path

# Inputs:

# network = a network object with edge attributes prob_operational and weight
# s = wvertex ID of source for which we are estimating reliability

# 1 = vertex ID of terminal for which we are estimating reliability

path <— vector ()
current _node <— s

while (current_node != t) {
arcs —edgelDs_out_of _node <— get.edgelDs(network, current_node, neighborhood = ”out”)
if (length(arcs_edgelDs_out_of_node) = 1) {

chosen_arc_edgelD <— arcs_edgelDs_out_of_node[1]

} else {
arcs _edgeLists _out_of _node <— get.edges(network, current_node, neighborhood = ”out”)
arc_weights <— get.edge.attribute(arcs_edgeLists_out_of_node, ”weight”)
chosen_arc_edgelD <— sample(arcs_edgelDs_out_of_node, 1, prob = arc_weights)

path <— append(path, chosen_arc_edgelD)
chosen _neighbor <— get_nodes_from_arc (network, chosen_arc_edgeID)$into
current _node <— chosen_neighbor

}

return (path)

# GENERATING ESTIMATORS

estimate _ratio _low_prob <— function (network, s, t, topological_ordering, num_samples) {

# FEstimates the ratio of the s—t reliability to the expected number of operating paths

# (algorithm 1 modified to return psi)

# Outputs:

# estimate = an estimate of the s—t reliability

# Inputs:

# mnetwork = a metwork object representing a directed acyclic graph composed of

# paths from s to t (i.e. generated using one of the random mnetwork \\
\\generator functions),

# with edge attributes prob_operational and weight (weight assigned wusing

# function assign_arc_weights)

# s = wertex ID of source for which we are estimating reliability

# t = wvertex ID of terminal for which we are estimating reliability

# num_samples = number of samples (samples from which to determine estimate)
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# topological_ordering = a vector of wertex IDs giving a topological ordering of wvertices
# not s and t, output of get_topological_ordering
z <— 0

for (sample in l:num_samples) {
path <— sample_path(network, s, t)
network_realization <— network

failed _edges <— Filter (function (edgeID) ! (edgelD %in% path) && (runif(1l) > get.edge.attribute (\\
\\network$mel [edgeID], ”prob_operational”)), unlist(network_realization$iel))
delete.edges(network_realization , failed _edges)

num_paths_operational <— determine_num_paths(network_realization, s, t, topological_ordering)
z <— z + num_paths_operational "(—1)

}

ratio_estimate <— z/num_samples

return(ratio_estimate)

estimate_reliability _basic <— function(network, s, t, topological_ordering, num_samples) {

# Uses basic acceptance—rejection to provide an estimate of the reliability

# Outputs:

# reliability _estimate = an estimate of the probability of an operating path from input s to \\
\\input t

# in input network

# Inputs:

# network = a network object representing a directed acyclic graph composed of

# paths from s to t (i.e. generated using one of the random mnetwork \\
\\generator functions),

# with edge attributes prob_operational and weight (weight assigned using

# function assign_arc_-weights)

# s = wvertex ID of source for which we are estimating reliability

#t = wvertex ID of terminal for which we are estimating reliability

# topological_ordering = a vector of wvertex IDs giving a topological ordering of wvertices

# not s and t, output of get_topological_ordering

# num_samples = number of samples (samples from which to determine estimate)

num-_realizations _with_operating _path <— 0
for (sample in l:num_samples) {
network _realization <— network

failed _edges <— Filter (function (edgeID) (runif(l) > get.edge.attribute (network$mel[edgeID], ”prob\\
\\-operational”)), unlist (network_realization$iel))
delete.edges(network_realization , failed -edges)

num_paths_operational <— determine_num_paths(network_realization, s, t, topological _ordering)
indicator _path_operational <— (num_paths_operational > 0)
num_realizations _with_operating _path <— num_realizations_with_operating_path + indicator _path_\\
\\operational
}
reliability _estimate <— num_realizations_with_operating_path / num_samples
return(reliability _estimate)
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# ESTIMATING RELIABILITY

estimate _reliability <— function (network, s, t, topological _ordering, epsilon, delta, estimator = c(”\\
\\low _prob”, ”basic”), algorithm = c¢(”DKLR”, ”"new_RAS_GBAS”, ”"new_RAS_Catoni”)) {
# Provides an epsilon, delta approxzimation for the s—t reliability of a metwork
# using the estimator specified by input estimator and the algorithm specified by
# input algorithm

# Outputs:

# A list with keys

# estimate = an estimate of the s—t reliability

# num_samples = the number of network instances sampled

Inputs:
network = a network object representing a directed acyclic graph composed of
paths from s to t (i.e. generated using one of the random mnetwork \\
\\generator functions),
with edge attributes prob_operational and weight (weight assigned using
function assign_arc_weights)

s = wvertex ID of source for which we are estimating reliability
t = vertex ID of terminal for which we are estimating reliability
topological_ordering = a vector of wertex IDs giving a topological ordering of vertices
not s and t, output of get_topological_ordering
epsilon = desired error factor
delta = desired probability that estimate is not within factor I+epsilon of \\
\\reliability
estimator = specifies estimator

low_prob = the estimate of the ratio of the s—t reliability of the
network to the expected number of operating paths, output
of estimate_ratio_low_prob
basic = estimate of the reliability given by the mean of
the Bernoulli random wvariable that is the indicator
that a randomly sampled network realization contains
an operating path, output of estimate_reliability_basic
algorithm = specifies algorithm
DKLR
new_-RAS_GBAS
new_RAS_ Catoni = New approzimation algorithm wusing Catoni for step 2

Approzimation Algorithm of Dagum Karp Luby Ross 2000

New approxzimation algorithm wusing GBAS for step 2

RN R N N N N N N R R N TR TR R I NI N N N NN

switch (estimator ,

low _prob = {one_sample_fun <— function () estimate_ratio_low_prob(network, s, t, topological _\\
\\ordering , num_samples = 1)},
basic = {one_sample_fun <— function () estimate_reliability _basic(network, s, t, \\

\\topological _ordering , num_samples = 1)})

switch (algorithm ,

DKLR = {estimate _fun <— function (one_sample_fun, epsilon, delta) DKLR(one_\\
\\sample_fun, epsilon, delta)},
new _RAS_GBAS = {estimate_fun <— function (one_sample_fun, epsilon, delta) new_RAS(one_\\

\\sample _fun, epsilon, delta, 1, 1/2, 'GBAS’) },
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new _RAS_Catoni = {estimate_fun <— function (one_sample_fun, epsilon, delta) new_RAS(one_\\
\\sample_fun, epsilon, delta, 1, 1/2, ’Catoni’)})

estimate _output <— estimate_fun(one_sample_fun, epsilon, delta)
estimate <— estimate _output$estimate
num_samples <— estimate_output$num_samples

switch (estimator ,
low_prob = {ratio_estimate <— estimate
sample_space_weight <— calc_sample_space_weight (network, s)
reliability _estimate <— ratio_estimate * sample_space_weight},

basic = {reliability _estimate <— estimate})

reliability _output <— list (”estimate” = reliability _estimate, "num_samples” = num_samples)
return(reliability _output)

# RUNNING THROUGH PARAMETERS

epsilon_list <— c(.1, .01)
delta_list <— c(.001, .0001)
num._runs <— 20

num_nodes_list <— c(100)
del _uniform _prob_operational _list <— .05 *x 1:5

data <— data.frame(matrix (nrow = prod(sapply(list (epsilon_list , delta_list , num_nodes_list , del_\\
\\uniform _prob_operational_list), length)), ncol = 6))
names (data) <— list (" (eps,-del)”, ”size”, "P(operational)”, "DKLR”, ”"New” , ”New/DKLR”)

row <— 1
for (num_nodes in num_nodes_list) {
del _generator _output <— generate_delaunay (num_nodes)
network <— del_generator_output$network
s <— del _generator _output$s
t <— del_generator _output$t
topological _ordering <— get_topological _ordering(network, s, t)

for (uniform _prob_operational in del_uniform_prob_operational _list) {
network <— add_prob_operational_del(network, uniform_prob_operational)
network <— assign_arc_weights(network, s, t, topological_ordering)
total _weight <— calc _sample_space_weight (network, s)

for (epsilon in epsilon_list) {
for (delta in delta_list) {

data[row, ”(eps,.del)”] <— sprintf(”(%.4f,_%.4f)”, epsilon, delta)
data[row, ”size”] <— num_nodes
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data [row, ”"P(operational)”] <— uniform_prob_operational

DKLR_reliability _output <— estimate_reliability (network, s, t, topological _ordering, epsilon ,\\
\\ delta, ”low_prob”, "DKLR”)

DKLR_num_samples <— mean(replicate (num_runs, estimate_reliability (network, s, t, topological _\\
\\ordering , epsilon, delta, "low_prob”, "DKLR”)$num_samples))

data [row, "DKLR”] <— DKLR_num_samples

new _GBAS_num_samples <— mean(replicate (num_runs, estimate_reliability (network, s, t, \\
\\topological _ordering, epsilon, delta, ”low_prob”, "new_RAS_GBAS”)$num_samples))

data [row, ”"New”] <— new_GBAS_num_samples
data [row, "New/DKLR”] <— new _GBAS_num_samples / DKLR_num_samples

# new_Catoni_reliability _output <— estimate_reliability (network, s, t, topological_ordering, \\
\\epsilon, delta, 7low_prob”, "new_Catoni”)

# new_Catoni_num_samples <— new_Catoni_reliability -output$Snum_samples

# data[row, "new-Catoni”] <— new_ Catoni_num_samples

row <— row + 1
}
}
}

print (sprintf(” Completed.Size %i._.Networks” , num_nodes))

write.csv(data, ”"delaunay_reliability _alg_comparision.csv”)
print (” Finished -algorithm _comparison._for_Delaunay_networks , _wrote_results_to_delaunay_reliability —alg\\

\\-comparision.csv”)

APPENDIX D. CODE FOR MARKOV CHAIN APPROACH TO VARIANCE ESTIMATION

function upperBound = calcUpperBound(p, alpha, M, desiredError)
% Uses the Chernoff Bound on a Binomial Distribution to calculate the upper

% bound on the hitting times to be considered for the random chain given by
% At any state i less than M

% With probablity p+1/alpha we transition to state i+1

% With probability p+1/alpha we stay at state 1

% At any state i greater than or equal to M

% With probability 1 we remain in state 1

% With probability I—desiredError the hitting time is less than or equal to
% upperBound

% Outputs:

% upperBound = an upper bound on the hitting times that mneed be considered
% given the error specified by desiredError

% Inputs :

% p = chain parameter

% alpha = chain parameter (must be a positive integer)
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% M = the wvalue for which we are interested in the time it takes
% for the chain state to exceed this wvalue

% desiredError = specify probability that the hitting time is a time

% greater than upperBound

chainTerm = 2 x log(desiredError) / M;

epsilon = (chainTerm + (chainTerm"2 — 4 % chainTerm) " (.5)) / 2;

upperBound = ceil (M/((1—epsilon) % (p + (1/alpha))));

function hittingTimeDistribution = getSimHittingTimeDistribution (p, alpha, M, chain, numSamples, \\

\\varargin)

% Returns a vector giving the sample distribution of the first time

% at which the chain state exceeds M, sampling numSamples

% simulations of the markov chain

% given by input chain

% Owuputs:

% hittingTimeDistribution = For a given index i, this vector

% gives the probability that the chain first
% reaches a state greater than M on the ith
% step

% Inputs :

% p = chain parameter (see chains)

% alpha = chain parameter (see chains) (must be a positive integer)
% M = the wvalue for which we are interested in the time it takes
% for the chain state to exceed this wvalue

% chain = a string specifying which chain to wuse

% 'r’ = random

% At any state i less than M

% With probablity p+1/alpha we transition to state i+1
% With probability p+1/alpha we stay at state 1

% At any state i greater than or equal to M

% With probability 1 we remain in state 1

% NOTE: when wusing random chain p + 1/alpha must be <= 1

% ’s’ = semideterministic

% At any state i less than M

% With probablity p we transition to state i+(1+1/alpha)
% With probability I—p we transition to state i+1/alpha
% At any state i greater than or equal to M

% With probability 1 we remain in state i

% numSamples = number of samples to draw

% Additional Arguments:

% If wusing random chain must specify name value pair

% ’upperBound’ = upper bound on hitting times to be considered, output
% of calcUpperBound

switch chain

case ’'r’



A NEW APPROXIMATION SCHEME FOR MONTE CARLO APPLICATIONS 50

parser = inputParser;

addParameter (parser , ’upperBound’, —1);
parse (parser ,varargin{:})

upperBound = parser.Results.upperBound;

simHittingTimeCounts = zeros (1,upperBound);
for sample = 1:numSamples
time = 0;
state = 0;
while (state < M)
time = time + 1;
if rand(1) < (p + (1/alpha))
state = state 4+ 1;
end
end
if time <= upperBound
simHittingTimeCounts (time) = simHittingTimeCounts (time) + 1;
end
end

[

case S

simHittingTimeCounts = zeros (1, (M * alpha));

for sample 1:numSamples

time = 0;

state = 0;
while (state < (M—(10"(—=9))))
time = time 4+ 1;

if rand(1) < p
state = state + 1 4+ (1/alpha);
else
state = state + (1/alpha);
end
end
simHittingTimeCounts (time) = simHittingTimeCounts (time) + 1;
end

end

hittingTimeDistribution = simHittingTimeCounts / numSamples;

function hittingTimeDistribution = getTransMatHittingTimeDistribution(p, alpha, M, chain, varargin)

Calculates the distribution of the time mneeded to progress from state 1
to the set of states greater than or equal to M in the markov chain
given by input chain

Outputs :

hittingTimeDistribution = For a given index i, this vector

gives the probability that the chain first
reaches a state greater than M on the ith
step

N N X X X XX N X

Inputs:
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% p = chain parameter (see chains)

% alpha = chain parameter (see chains) (must be a positive integer)
% M = the wvalue for which we are interested in the time it takes
% for the chain state to exceed this wvalue

% chain = a string specifying which chain to wuse

‘r’ = random

At any state i less than M
With probablity p+1/alpha we transition to state i+1
With probability p+1/alpha we stay at state 3

At any state i greater than or equal to M
With probability 1 we remain in state i

NOTE: when wusing random chain p + 1/alpha must be <= 1

’s’ = semideterministic

At any state i less than M
With probablity p we transition to state i+(1+1/alpha)
With probability I—p we transition to state i+1/alpha

At any state i greater than or equal to M
With probability 1 we remain in state 1

Additional Arguments:

)

If wusing random chain must specify name value pair

S

‘upperBound’ = upper bound on hitting times to be considered, output

NN SRS R

of calcUpperBound

switch chain

LR ]

case r
parser = inputParser;
addParameter (parser , ’upperBound’, —1);

parse (parser ,varargin{:})
upperBound = parser. Results.upperBound;

transitionMatrix = vertcat (horzcat (diag((1—(p+(1/alpha))) * ones(1,M)),
zeros (M,1)) +
horzcat (zeros (M,1) ,
diag ((p+(1/alpha)) * ones(1,M))),
horzcat (zeros (1,M), 1));

hittingTimeDistribution = zeros (1, upperBound);

lastStepMatrix = diag(ones(M+1,1));

lastStepProbability = 0;

for hittingTime = 1l:length (hittingTimeDistribution)
thisStepMatrix = lastStepMatrix * transitionMatrix;
thisStepProbability = thisStepMatrix (1 ,M+1);
hittingTimeDistribution (hittingTime) = thisStepProbability — lastStepProbability;
lastStepMatrix = thisStepMatrix;
lastStepProbability = thisStepProbability;

end

case ’'s’
transitionMatrix = vertcat (horzcat (zeros(M * alpha, 1),
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diag((1—p)*ones(M % alpha, 1)),
zeros (M = alpha, alpha)) +
horzcat (zeros (M * alpha,alpha + 1),
diag(pxones(M * alpha, 1))),
horzcat (zeros (1 + alpha, M % alpha), diag(ones(l + alpha,

hittingTimeDistribution = zeros(1, M % alpha);

lastStepMatrix = diag(ones ((M+1)xalpha+1, 1));

lastStepProbability = 0;

for hittingTime = 1:length (hittingTimeDistribution)
thisStepMatrix = lastStepMatrix * transitionMatrix;
thisStepProbability = sum(thisStepMatrix (1, Mxalpha + (1:alpha+1)));
hittingTimeDistribution (hittingTime) = thisStepProbability — lastStepProbability;
lastStepMatrix = thisStepMatrix;
lastStepProbability = thisStepProbability;

end

end

function semiDetDPTable = generateSemiDetDPTable(p, alpha, maxM)
% Uses dynamic programming to generate a table of wvectors

% that give parameter values associated with the hitting time, i.e.
% the time at which the chain reaches state M less than input maz-M
% for the following markov chain:

% At any state i less than M

% With probablity p we transition to state i + (1 + 1/alpha)

% With probability I—p we transition to state % + 1/alpha

% At any state i greater than or equal to M

% With probability 1 we remain in state 1

% Outputs:

% symbolicSemiDetParameterTable = a structure with 4 fields

% M_vals = a vector of wvalues of M, indices correspond to those of
% parameter values in other fields

% exrp = a vector with values the expected hitting time for M given
% by the wvalue at the corresponding index in the M_list
% varCondEzp = a vector with values the wariance of the ezpectation,
% conditioned on the initial transition, of hitting time
% for M given by the wvalue at the corresponding indezx in
% the M_list

% var = a vector with values the variance of the hitting time for M
% given by the value at the corresponding index in the

% M_list

% inputs:

% p = chain parameter

% alpha = chain parameter, must be a positive integer

% max_M =M wvalue up to which to generate table

semiDetDPTable. M_vals ((1/alpha) % (0:(max-M =* alpha))) ’;
semiDetDPTable. exp zeros (size (semiDetDPTable. M_vals));
semiDetDPTable.varCondExp = zeros(size (semiDetDPTable. M_vals));

1))
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semiDetDPTable. var = zeros (size (semiDetDPTable. M_vals));

semiDetDPTable.exp (1) = 0;
semiDetDPTable.exp (2) = 1;

semiDetDPTable.varCondExp (1:2) = 0;

semiDetDPTable.var (1:2) = 0;

for MIdx = 3:(alpha+1)

semiDetDPTable.exp (MIdx) = 1 4+ (1—p) = semiDetDPTable.exp(MIdx — 1);

end

for MIdx = (alpha+2):length (semiDetDPTable.M_vals)

semiDetDPTable.exp(MIdx) = 1 + p * semiDetDPTable.exp(MIdx — (alpha+1)) + (1—p) * semiDetDPTable.\\
\\exp (MIdx — 1);

end

for MIdx = 3:(alpha+1)

semiDetDPTable.varCondExp (MIdx) = (1-p) * semiDetDPTable.exp(MIdx — 1)°2 — ((1—-p) * \\
\\semiDetDPTable.exp (MIdx — 1)) "2;

end

for MIdx = (alpha+2):length (semiDetDPTable.M_vals)

semiDetDPTable.varCondExp (MIdx) = p % semiDetDPTable.exp (MIdx — (alpha+1))"2 + (1—p) = \\
\\semiDetDPTable.exp (Mldx — 1)°2 — (p * semiDetDPTable.exp(Mldx — (alpha+1)) + (1-p) * \\
\\semiDetDPTable.exp (MIdx — 1)) "2;

end

for MIdx = 3:(alpha+1)

semiDetDPTable. var (MIdx) = (1—p) * semiDetDPTable.var(MIdx — 1) + semiDetDPTable.varCondExp (MIdx)\\
\W\;

end

for MIdx = (alpha+2):length (semiDetDPTable.M_vals)

semiDetDPTable. var (MIdx) = p % semiDetDPTable.var(MIdx — (alpha+1)) + (1—p) * semiDetDPTable.var\\
\\(MIdx — 1) + semiDetDPTable.varCondExp (MIdx) ;

end

function hittingTimeVar = calcHittingTimeVar (p, alpha, M, chain)

% Calculates the wvariance of the time needed to progress from state 1

% to the set of states greater than or equal to M in the markov chain

% given by input chain

% Outputs :

% hittingTimeVar = The wvariance of the hitting time

% Inputs:

% p = chain parameter (see chains)

% alpha = chain parameter (see chains) (must be a positive integer)
% M = the wvalue for which we are interested in the time it takes
% for the chain state to exceed this wvalue



A NEW APPROXIMATION SCHEME FOR MONTE CARLO APPLICATIONS

chain = a string specifying which chain to wuse

‘r’ = random

At any state i less than M
With probablity p+1/alpha we transition to state i+1
With probability p+1/alpha we stay at state 1

At any state i greater than or equal to M
With probability 1 we remain in state 1

NOTE: when wusing random chain p + 1/alpha must be <= 1

s’ = semideterministic

At any state i less than M
With probablity p we transition to state i+(1+1/alpha)
With probability I—p we transition to state i+1/alpha

At any state i greater than or equal to M

N N X X XX RN K

With probability 1 we remain in state i
switch chain

case ’'r’

hittingTimeVar =M *x (1—(p + (1/alpha)))/((p + (1/alpha))"2);

case ’'s’

semiDetDPTable = generateSemiDetDPTable(p, alpha, M);
DPTableMIdx = Mxalpha + 1;
hittingTimeVar = semiDetDPTable.var (DPTableMIdx) ;

end
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