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ABSTRACT 

Because of the important role wind is alleged to have in dispersal of fruits and seeds in desert plants, 
diaspores were collected for experimental study of 14 species from two Sonoran Desert localities of 
Imperial Co., California. Field observations on natural dispersal of these species also were made. 
Although all 14 species were not judged to be primarily adapted to anemochory, tests on air transport 
capability were made using a calibrated and modified seed-blowing machine. Diaspores were tested 
individually and results for 20 trials averaged for each experimental condition. In one series of tests, 
lofting ability was determined. In other tests, a Plexiglas wind tunnel was used; the bottom of the 
tunnel was lined with Plexiglas, wood, and sand for three types of trials respectively. Mean surface 
area and mean mass were determined for the seeds and fruits ofthe 14 species. These figures and the 
ratio between surface area and mass were compared to results from the lofting and horizontal movement 
tests. A high presentation surface area/mass ratio was positively correlated with ease of horizontal 
movement (tumbling chiefly) and ease of lofting. Excellence at transport in air appears variously 
countered in the anemochorous species by diaspore characteristics which seem to insure lodging in 
crevices or depressions. More than one kind of transport in air (e.g., tumbling, floating, skidding) can 
be identified and particular species may exhibit these in varying proportions. Seeds with high mass 
have nil wind-dispersal ability and thereby may be adapted to reaching (and staying in) depressions, 
washes, etc. High static friction is another mechanism which maximizes lodging ability. As Asteraceae 
show, anemochorous ability does not always run counter to lodging ability: capability of a diaspore 
to attach to hairs or skin of animals runs parallel to ability to lodge in soil crevices. In the study areas 
and in other desert localities, ants may play some role in movement of many kinds of seeds and fruits 
over short distances, but destruction by ants often is excessive. 

Key words: anemochory, desert ecology, dispersal, seed dispersal, wind dispersal. 

INTRODUCTION 

Van der Pijl ( 1969) regards anemochory as a derived type of dispersal, one not 
characteristic of primitive flowering plants. He regards this dispersal mode as 
highly developed in situations of biotic poverty. However, one could more easily 
stress not phylogenetic position or biotic poverty, but the influence of other 
ecological factors. Wind is abundant in most desert areas and is minimally mod
ified by vegetation acting as windbreaks. Fleshy fruits characterize forest and 
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scrub areas more than desert areas. Relatively high degrees of anemochory have 
been reported for high latitudes (Sa vile 1972) and altitudes, where seed-dispersing 
birds are not common but wind velocities are higher than in other areas. Where 
seed-eating birds are not common, one expects fewer fleshy fruits adapted to bird 
dispersal and therefore a higher proportion of other methods of dispersal. Other 
potential vectors besides wind in deserts include small mammals and ants (Tevis 
1958; Gordon 1980). 

If anemochory ought to play an important role in deserts, studies are needed 
to demonstrate whether or not this is true. Both observational and experimental 
approaches are attempted here. As a premise for the present study, plants of two 
Sonoran Desert localities in Imperial Co., California, were selected. These areas 
had the advantage of containing trees, shrubs, herbaceous perennials, and annuals, 
and neither area represented a transition to any nondesert vegetation type. 

When examining capability of diaspores for wind dispersal, a complex of factors 
must be examined. One must not rule out other means for dispersal. One must 
take into account various types of wind dispersal. One must consider the rela
tionship of wind dispersal mechanisms to lodging, or "planting" of seeds and 
fruits. Each species has a syndrome of adaptations, and none represents any one 
theoretical concept in unadulterated form. Therefore the present study must be 
somewhat exploratory in nature. 

Sheldon and Burrows (1972) studied the efficiency of pappus in Asteraceae as 
a mechanism for wind dispersal. They took into account effect of pappus size and 
shape, the effect of height at which fruits are presented for dispersal, and the 
influence on dispersal of environmental factors (e.g., openness of the stand). Bur
rows (1975) sought to group different sizes and shapes of seeds in aerodynamic 
terms. These two papers contain equations explaining seed dispersal in terms of 
such forces as drag and lift. However, these authors do not examine fully the effect 
of environmental factors, nor do they consider adaptations for lodging of seeds 
in a substrate, or subsidiary means of dispersal. Further, Burrows limits himself 
to primary trajectories (the trajectory from plant to ground), a factor of importance 
where a seed or fruit is released high above the ground surface, but of much less 
importance in desert areas where plants are characteristically of low stature. In 
desert areas not only are strong winds available for secondary transportation of 
seeds and fruits, vortexlike thermal currents ("dust devils") are of frequent oc
currence and are capable of lofting seeds well above the desert surface. Some 
diaspores in deserts can roll in response to winds. 

Peart (1979, 1981, 1984) discusses the adaptive significance of diaspore lodging 
in grasses in relation to germination and nature of substrate. He finds that awns 
and hairs position grass fruits with radicle pointed toward the soil. Hygroscopic 
movement of awns may aid in lodging of the grass fruit according to Peart's 
studies. The relationship between seed morphology and seedling behavior is stressed 
by Sheldon (1974). Lacey (1982) shows that Daucus diaspores travel better over 
snow in winter than over the surface of soil litter in autumn. Casper and Wiens 
(1981) consider the possibility that a rather standard rate of seed abortion in 
Cryptantha may confer lightness, and hence better dispersibility, to the quartet 
of calyx-enclosed nutlets in this genus, which they presume to be wind-dispersed. 

Relatively little experimental work has been done, however, on wind transport 
of seeds and fruits. Small (1918) used a "wind tunnel" to measure dispersal 
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effectiveness for a few species of Asteraceae. He dropped a fruit through a hole 
in the top of a horizontal tube and recorded the amount of air movement needed 
to move a fruit the length of the tube. Small did note the effect of the environment 
with relation to humidity changes. The present study attempts to build on Small's 
methods and to expand both systematic coverage and experimental methods. 

MATERIALS AND METHODS 

The study localities were: (1), near Travertine Point on Highway 86 just south 
of the Imperial Co.-Riverside border, southwest of the Santa Rosa Mountains; 
and (2), near Highway S-22 in Imperial Co. west of Salton City one mile east of 
the Anza-Borrego Desert State Park border. Although 24 species were originally 
selected at these sites, the number was reduced to 14 in order to have sufficient 
number of fruits or seeds for each species. Seeds in the minute category were 
omitted because they provide great difficulties in handling during experimental 
procedures. 

Mass and surface area were determined for the fruits and seeds of the 14 species 
studied, and a ratio between these two figures was also developed (Table 1). In 
order to determine surface area, the seed or fruit was reduced to a conic section 
or a series of conic sections. Trichomes were not included in these calculations, 
because the excessively large number (see Fig. 2, 3, 6, 10, 13) made any reasonably 
accurate estimate of their surface area impossible. Note is made of discrepancies 
between wind-transport ability and surface area based on such an undercalcula
tion. 

For measurement of wind speeds in the vertical tube of the seed-blowing ma
chine (lofting ability) and in the wind tunnel (horizontal movement), a hot-wire 
anemometer was used because of its accuracy and ease of incorporation into the 
apparatus. The anemometer was constructed with the assistance of the Pomona 
College Physics Department. A "basket" wrapped with unvarnished 44-gauge 
wire (at 10 ohms) was attached through a Wheatstone Bridge to a microampere 
galvanometer and a DC power source (2 amperes; variable 6-7 volts). Measure
ments of wind speeds are given in em/sec (to convert em/sec to km/hr one mul
tiplies by 0.036). The seed-blowing machine, property of the Rancho Santa Ana 
Botanic Garden, is a standard device used by those who prepare seed samples by 
taking advantage of the difference in lofting ability between diaspores and the 
chaff which accompanies them. 

For lofting trials the vertical Plexiglas column of the seed-blowing machine was 
used without modification. Each seed was placed on the screen at the base of the 
Plexiglas column. Wind velocity was increased until the seed was supported on 
a cushion of air just above the screen. Microamperes were recorded with the 
anemometer located approximately 30 em above the screen. Twenty diaspores 
per species were tested individually. 

For horizontal movement trials a wind tunnel was constructed and attached to 
the seed-blowing machine in place of its usual vertical Plexiglas vertical tube. The 
wind tunnel consisted of a rectangular box (76 x 17.5 x 15 em) made of wood 
but with a hinged Plexiglas top. A Plexiglas wall was attached 2 em from one wall 
side to permit attachment of the anemometer. One end of the tunnel was open, 
the other was attached to an aluminum duct with tubing connecting to the seed-
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Fig. 1-7. Disseminules of Sonoran Desert plants.-!. Fruit of Ambrosia dumosa (some spines 
folded onto surface).-2. Enceliafrutescens fruit; margin is densely hairy.-3 . Machaeranthera orcuttii 
fruit (pappus bristles not reflexed in this cypsela).- 4. Chaenactis fremontii fruit (typically fruits would 
bear four paleae reflexed at right angles to fruit body.-5. Hymenoclea sa/sola var. sa/sola fruiting 
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blowing machine. Three surfaces were prepared for use as a flooring in the wind 
tunnel for three series of tests: a single sheet of Plexiglas; an unfinished wooden 
surface; and a sand surface made by glueing sand grains onto a Plexiglas plate so 
that the sand would be a single grain thick. Twenty seeds of each species were 
tested individually on each of the three flooring surfaces. Each seed was dropped, 
in still air, from a height of 10 em onto the surface of the tunnel. The top of the 
tunnel was left open: closing it produced turbulence and erratic readings on the 
anemometer. Thus the apparatus was really more in the nature of a trough than 
a tunnel. The wind speed was raised for each trial until a given seed was transported 
the length ofthe tunnel. A run with a given seed was judged successful only when 
the seed was expelled from the tunnel and did not stick or lodge. The wind speed 
needed to expel the seed was measured with the anemometer. Observations were 
made on the nature of seed orientation and movement within the tunnel. 

Field studies, collection of seeds, assemblage of apparatus, and experimental 
work represent the work of the first author, who presented a preliminary version 
as a Senior Thesis at Pomona College. The second author has provided photo
graphs of seeds and fruits (Fig. 1-14), conceptual interpretations, and text con
struction. 

DESCRIPTION OF SEEDS AND FRUITS 

The information below is organized alphabetically in terms of families, then 
alphabetically by genera and by species within families. The scale above Fig. 1 
applies to all species. 

AMBROSIA DUMOSA (Gray) Payne (Asteraceae), Fig. 1. The fruit consists of a 
female involucre which contains a single seed. The surface of the involucre is 
raised into prickles which radiate equally in all directions. The prickles are sharp
tipped and tend to penetrate and cling to skin very easily. 

CHAENACTIS FREMONTII Gray (Asteraceae), Fig. 4. The fruit is a cypsela (more 
commonly known as an achene in Asteraceae) containing a single seed, the usual 
condition for the family. The base of the cypsela bears a tuft oftrichomes. At the 
apex of the cypsela four pappus paleae are attached. Two are shown clearly in the 
photograph, but in most fruits four are present and these radiate from the top of 
the cypsela (rather than extending vertically, as shown in the photograph). 

ENCELIA FRUTESCENS Gray (Asteraceae), Fig. 2. The cypsela of this species is 
platelike rather than cylindrical. A pair of hairy awns tip the fruit. The margin of 
the cypsela bears a dense fringe of trichomes. 

HYMENOCLEA SALSOLA T. & G. var. SALSOLA (Asteraceae), Fig. 5. As in Ambrosia, 
the fruit of this species is a female involucre which contains a single seed. Radiating 
from the involucre in all directions are platelike appendages. 

MACHAERANTHERA ORCUTTII (Vasey & Rose) Cronquist & Keck (Asteraceae), 
Fig. 3. The cypsela of this species is cylindrical, densely covered by trichomes. 
The apex ofthe cypsela bears numerous bristles. The bristles may reflex outward 

-head; some wings are folded onto surface of this fruit (normally they radiate in all directions).-6. 
Psathyrotes ramosissima fruit; corolla enclosed by pappus bristles.-7. Cryptantha angustifolia, fruiting 
calyx showing sharp stiff hairs; portion of inflorescence axis is attached. (Magnification scale for all 
figures is above Fig. 1 [divisions= 1 mm].) 
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Fig. 8-14. Disseminules of Sonoran Desert plants.-8 . Cryptantha nevadensis, var. nevadensis, 
fruiting calyx, showing sharp stiffhairs.-9 . Cercidiumfloridum seed, broader surface shown.-10. 
Dalea mo//issima, fruiting calyx (legume enclosed within the calyx). -11. Eremalche rotundifolia, 
achene, showing disldike shape.- 12. Chorizanthe brevicornu subsp. brevicornu, involucre with hooked 
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when humidity is low; when humidity is higher, the bristles tend to be more nearly 
upright as shown in the photograph. Fruits tested all had bristles well reflexed 
outwardly. 

PSATHYROTES RAMOSISSIMA (Torr.) Gray (Asteraceae), Fig. 6. The body of the 
cypsela is conical, densely covered by trichomes. The apex of the cypsela bears 
a tube of bristles which do not tend to reflex very much. The dried corolla is often 
retained on the fruit, as shown in Fig. 6. 

CRYPTANTHA ANGUSTIFOLIA (Torr.) Greene (Boraginaceae), Fig. 7. As is true of 
many Boraginaceae, C. angustifolia has four nutlets which tend to be retained 
within the fruiting calyx although they may fall out during the maturation or 
dispersal process. The nutlets are about 1 mm long. The portion shown in the 
photograph is one fruiting calyx plus portions of another sepal and of the inflo
rescence axis. The sepals and dried infloresence axis are very brittle and tend to 
break irregularly. The sharp, tangled trichomes tend to group fruiting calyces 
together somewhat, so that the disseminule can sometimes be more than a single 
fruiting calyx. The sharp stifftrichomes tend to penetrate skin and remain embed
ded. 

CRYPTANTHA NEVADENSIS Nels. & Kenn. var. NEVADENSIS (Boraginaceae), Fig. 
8. The fruiting calyx in this species tends to separate from the inflorescence axis 
singly more frequently than that of C. angustifolia. The fruiting calyx of C. ne
vadensis is larger than that of C. angustifolia, as are the nutlets, each of which is 
about 2.5 mm long. The nutlets tend to fall out of the calyx during maturation 
and dispersal, although they may be retained indefinitely. The trichomes on the 
sepals are like those of C. angustifolia in being stiff, intricately displayed, and 
capable of penetrating and lodging in skin. 

CERCIDIUM FLORIDUM Benth. (Fabaceae), Fig. 9. The diaspore ofthis species is 
a somewhat flattened oval seed, although the legume may tend to remain unopened 
and thus disperse as a several-seeded unit occasionally. The seed does not float 
in water, and its surface is smooth and hard. 

DALEA MOLLISSIMA (Rydb.) Munz (Fabaceae), Fig. 10. The disseminule of this 
species is the fruiting calyx in which the small unopened legume is enclosed. The 
one- (sometimes two-) seeded legume remains within the fruiting calyx indefi
nitely. The fruiting calyx is tipped by five calyx teeth which are densely clothed 
with trichomes, as is the calyx tube. 

EREMALCHE ROTUNDIFOLIA (Gray) Greene (Malvaceae), Fig. 11. The fruit of E. 
rotundifolia is an indehiscent one-seeded carpel (therefore an achene) which is 
disklike in shape, about 0.2 mm thick. The surface contains small pits or con
cavities. 

CHORIZANTHE BREVICORNU Torr. subsp. BREVICORNU (Polygonaceae), Fig. 12. 
The five- or six-hooked bracts (Fig. 12, upper right) of this plant enclose an achene 
1-2 mm long; the achene remains within the calyx and is not readily loosened. 
In addition to the involucre, portions of the inflorescence axis and bractlets may 
be shed together, as shown in Fig. 12. The recurved and sharply pointed nature 

....__ 

bracts, a pair of bracts, and attached pedicle (below).-13. Larrea tridentata, one carpel (adaxial face 
shown) of the five carpels which usually remain attached. -14. Hesperocallis undulata seed, illustrating 
disklike shape. (Magnification scale for all figures is above Fig. 1.) 
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of the bracts permits them to hook firmly into skin. The bractlets are sharply 
tipped enough to have a similar action even if they are not recurved at their tips. 

LARREA TRIDENTATA (Sesse & Moe. ex DC.) Cov. (Zygophyllaceae), Fig. 13. 
The fruit of Larrea consists of five united one-seeded carpels. After maturation 
these may break apart, so that units ranging from one to all five carpels may 
disperse together. Each carpel is densely covered by long trichomes which are not 
stiff enough to penetrate into skin. When the five carpels are shed as a unit, the 
fruit has a spherical shape, uniformly covered by trichomes. Such intact fruits 
were studied in the present paper; the photograph (Fig. 13) represents one of the 
carpels, showing an adaxial face of the carpel where it was united with others. 

HESPEROCALLIS UNDULATA Gray (Liliaceae), Fig. 14. The only monocotyledon 
in the present study, and therefore last in this listing, Hesperocallis has notably 
large disk-shaped seeds about 5 mm in diameter and approximately 0.5 mm thick. 
The seed is not winged in any way, and is only moderately rough. 

RESULTS AND DISCUSSION 

An obvious feature which emerges from Table 1 is that surface area and mass 
are independent variables, although they do tend to parallel each other (with some 
notable deviations, as in Hesperocallis). The reader should take note of the fact 
that trichomes have been omitted from the surface-area calculations, and thus 
hairier fruits are notably undercalculated with respect to surface area. 

Table 2 gives the results oflofting and horizontal movement tests. One feature 
which is obvious from this table is that the rank order of the species in lofting 
ability is quite different from the rank order of the species in terms of horizontal 
movement. The reason for this is that two types of motion in air are involved. 
The lofting test reveals ability of a fruit or seed to float in air. The wind-tunnel 
tests demonstrate the ability of a fruit or seed to undergo a tumbling motion or 
a skidding motion. The three surfaces utilized in the wind-tunnel tests reveal 
different degrees of static friction. The least friction is exhibited by the Plexiglas 
floor of the wind tunnel. For some species, the wood provides the maximum 
friction; for others, the sand surface does. 

Seeds and fruits in the wind-tunnel tests showed a characteristic shift in their 
positioning at speeds below those needed to blow them out of the tunnel. Seeds 
and fruits assume positions of minimal wind resistance by becoming oriented 
with bristles, spines, or pappus (if asymmetrically present on the seed or fruit) 
downwind. Although diaspores were dropped from a height of 10 em and allowed 
to position themselves randomly, all seeds or fruits of a particular species attained 
the same orientation once the wind current was turned on. 

On the Plexiglas surface, Cryptantha angustifolia required the least air velocity 
to achieve diaspore movement. Table 2 shows standard deviation in wind-tunnel 
tests; values range from a high of 21.2% for Encelia frutescens to a low of 7.2% 
for Cercidiumfloridum. The explanation for these figures seems to be that behavior 
of any flattish object in a wind current is inconsistent. A flat seed is more subject 
to various minute aerodynamic forces. The point at which "lift" is a significant 
enough force to overcome the seed-surface interface "vacuum" is highly variable. 

The unpainted wood surface of the wind tunnel showed that particular mor
phological characteristics of the diaspore were important in offering various de
grees of contact with the microscopic irregularities of the surface. The fruits of 
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Table l. Surface area to mass ratios, mass values, and surface areas for fruits or seeds of 14 desert 
species, ranked by surfuce to mass ratio (rankings according to mass and to surface area specified 
numerically; trichomes omitted from surface-area figures). 

Surface area Surface 
Species to mass ratio Mass, g Rank area, mm1 Rank 

Cryptantha nevadensis 83,000 3.1 X lQ-3 9 253.3 4 
Machaeranthera orcuttii 59,600 7.0 X lQ-3 5 417.5 1 
Cryptantha angustifo!ia 41,200 1.5 X lQ-3 12 61.9 8 
Psathyrotes ramosissima 31,500 6.0 X w-• 13 18.9 13 
Chaenactis fremontii 30,300 5.5 X lQ-4 14 16.7 14 
Ambrosia dumosa 20,400 6.4 X lQ-3 7 129.7 5 
Dalea mollissima 20,400 2.4 X lQ-3 10 48.3 9 
Hymenoclea sa/sola 15,700 7.3 X lQ-3 3 113.9 6 
Eremalche rotundifolia 12,700 1.6 X lQ-3 11 30.1 12 
Larrea tridentata 11,200 2.4 X lQ-2 2 262.2 3 
Chorizanthe brevicornu 9570 3.1 X lQ-3 8 29.2 11 
Hesperocallis undulata 6600 7.0 X lQ-3 4 46.5 10 
E ncelia frutescens 1310 6.7 X lQ-3 6 86.9 7 
Cercidium jloridum 961 2.8 X lQ-l 268.9 2 

Machaeranthera orcuttii required the least wind velocity for movement, perhaps 
because the high surface to mass ratio (see Table 1) overcame any friction provided 
by the wood grain. This species also had the lowest standard deviation (8.1 o/o) in 
this test. The greatest wind velocity needed for movement in this test was exhibited 
by seeds of Cercidium jloridum. The highest deviation (23.9%) was shown by 
Chaenactisfremontii, perhaps because position of the four pappus paleae and the 
way they intersect the wood surface may vary considerably. 

On the sand surface, the species requiring the least velocity for movement was 
Cryptantha nevadensis. In all species except for Enceliafrutescens and Eremalche 
rotundifolia lower wind velocies were required for movement on the Plexiglas 
surface than on the sand surface. Percent deviations for the sand surface were 
generally higher than for the two other surfaces, indicating that minute irregular
ities underneath a seed or fruit tend to make some diaspores of a species cling 
more, others less, than with a more uniform surface. Cercidium jloridum showed 
the least deviation on the sand surface, as it did on the Plexiglas surface. Chaenactis 
fremontii showed the highest deviation on the sand surface, as it did on the wood 
surface. 

In the lofting tests, difficulties were experienced in obtaining data for Encelia 
frutescens and Chaenactisfremontii because few fruits of these species conformed 
to the criterion of this test, that of riding on a cushion of air just above the bottom 
screen of the seed-blower tube without falling. For these two species, therefore, 
data presented are based on fewer than 20 trials. The order in which species are 
listed in Table 2 is the order of lofting capability. The broad surfaces of the fiat 
achene of Encelia frutescens, the pappus paleae of Chaenactis fremontii, and the 
trichomes of Dalea mollissima, coupled with the low mass offruits of these species 
may explain high lofting ability in these species. Low lofting ability seems cor
related with condensed form coupled with greater mass. The low deviation of 
Ambrosia dumosa may relate to uniformity in these spherical but moderately 
heavy fruits. The high deviation in lofting of Hesperocallis undulata may be 



Table 2. Velocities required for movement of seeds and fruits of 14 desert species, together with standard deviation (expressed as a percentage of the velocity) 
and rank of species (rank for lofting is the order of species at left); in the wind-tunnel tests, three kinds of flooring have been used. 

Lofting Wind tunnel: Plexiglas floor Wind tunnel: Wood floor Wind tunnel: Sand floor 

Species em/sec SD% em/sec SD% Rank em/sec SD% Rank em/sec SD% Rank --
Encelia frutescens 47.2 - 171.9 21.2 11 157.0 13.1 9 145.7 21.1 10 
Chaenactis fremontii 49.0 - 97.7 9.8 8 110.3 23.9 8 107.2 23.5 7 
Cryptantha nevadensis 50.7 6.6 56.6 12.0 1 84.4 21.7 2 67.6 11.4 1 
Dalea mollissima 50.7 6.9 74.1 11.1 3 95.4 18.5 5 87.1 15.8 4 
Machaeranthera orcuttii 52.6 8.1 62.8 8.3 2 52.6 8.1 1 84.8 12.8 2 
Psathyrotes ramosissima 54.6 9.4 96.8 12.9 7 175.4 11.5 11 122.9 12.5 9 
Cryptantha angustifolia 60.3 9.0 79.0 9.4 5 93.0 15.1 4 102.9 12.4 6 
Hymenoclea sa/sola 61.2 12.5 81.5 9.0 6 107.4 10.9 7 92.9 11.3 5 
Eremalche rotundifolia 62.3 8.3 225.3 18.1 13 196.5 13.0 13 185.7 15.2 11 
Hesperocallis undulata 64.9 20.4 184.7 14.8 12 175.4 11.5 12 218.8 19.2 13 
Chorizanthe brevicornu 73.4 7.8 135.5 17.9 10 167.8 12.8 10 189.0 19.9 12 
Ambrosia dumosa 87.9 4.9 102.6 10.2 9 102.3 10.9 6 117.6 11.7 8 
Larrea tridentata 89.9 5.8 76.3 9.5 4 88.4 8.3 3 86.8 8.1 3 
Cercidium floridum 101.6 7.5 278.1 7.2 14 544.8 - 14 467.7 6.9 14 
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explained by the fact that these seeds, although disklike in shape, may vary 
considerably in outline, ranging from circular to oval or polygonal. These kinds 
of variations may result in large standard deviations because the effect of shape 
is great where the seed acts as an airfoil. As noted earlier, diaspores with airfoillike 
characteristic tended to show much higher standard deviation than those in which 
movement by wind did not tend to involve sailing or kitelike motions. 

The velocities required to loft seeds and fruits (Table 2) range from 4 7.2 em/ 
sec, which equals 1.7 km/hr (1.06 mi/hr) to 544.8 em/sec, which equals 19.6 km/ 
hr (12.3 mi/hr). These velocities may seem unexpectedly slow for seed movement 
when one compares them to known windspeeds in deserts, not to mention hur
ricane velocities. However, one must remember that the lofting experiment utilizes 
a condition quite unlikely to occur in nature: a vertical stream of air. Most air 
currents in desert areas tend toward the predominantly horizontal planes of the 
landscape, and thus lofting of seeds would require far greater velocities (together 
with kinds of gusting that would lift seeds from the substrate) than the experimental 
condition. The experimental velocities which induced horizontal transport in the 
wind tunnel are somewhat greater than those which induced lofting in the vertical 
tube. However, the horizontal movement velocities are also much less than one 
might expect on the basis of winds in nature. Horizontal transport in nature 
requires traversing of much more irregular terrain than the relatively smooth 
flooring of the wind tunnel (even sand or wood) offers. With these considerations, 
one can understand discrepancies between experimental velocities and the nature 
of winds in desert areas available for transport of anemochorous diaspores. 

The reader is reminded that surface area of trichomes was not included in 
surface-area figures, so that hairier seeds and fruits ought to have greater lofting 
and horizontal transport capability than the figures of Table 1 might suggest; in 
fact, hairy seeds and fruits do have enhanced dispersibility (Table 2). 

ANALYSIS OF SPECIES 

Based upon field observations, morphology, and experimental data, an attempt 
is made here to present an image of where each species falls with respect to 
adaptations to anemochory and to other dispersal adaptations. The species are 
listed in the same order as in the morphology descriptions earlier. 

AMBROSIA DUMOSA. The fruit of this species ranks in an intermediate position 
with respect to surface area and mass, but its lofting ability is low and its tumbling 
ability medium. There is little doubt that because prickles easily enter and remain 
in skin, fruits of this species disperse by catching on skin and fur of small mammals. 
However, the tumbling characteristics are good enough to widen dispersal range 
from the parent plant prior to attachment to mammals. This can be observed in 
the wild. Shreve (1951, p. 159) noted the prickles "improve the chance that the 
fruit will lodge in a spot favorable for germination." Ambrosia dumosa is a good 
example of how adaptations for travel on animals may simultaneously be adap
tations for lodging. The morphology of the fruit does not, however, secure lodging 
of the fruit of Ambrosia dumosa with radicle pointed downward as is true in 
grasses (Peart 1979, 1981, 1984), and the value of lodging mechanisms may be 
more in the nature of adherence to substrate so that germination can occur, as 
opposed to continuous travel of the fruit. Small quantities of Ambrosia dumosa 
fruits are collected by harvester ants (Gordon 1980); the ants seek these fruits, 
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she claims, because of the high protein content of embryos. Ants may have the 
net effect of destroying some of the fruits rather than providing any appreciable 
degree of transportation of them to favorable germination sites. 

CHAENACTIS FREMONTII. Fruits are excellent at lofting, very likely because of 
the broad but light surfaces of the four pappus paleae. The fruits are much less 
good at tumbling; tips of the pappus paleae become lodged in crevices, but more 
importantly rest on the achene base and the tips of two of the four pappus paleae 
in the fashion of a tripod, and the stability ofthis configuration requires moderate 
wind velocity to initiate tumbling. Thus, an ideal dispersal event for Chaenactis 
fremontii would involve lofting of the fruits directly from the mature head (where 
they tend to spread apart and where their pappus paleae are displayed and face 
potential wind currents). Once the fruit has fallen to the ground, further travel 
via tumbling or becoming airborne again is likely to be much less. The pointed 
tips of the pappus paleae and of the achene base may tend to lodge the fruit in 
sand and gravel crevices. During the field observations, the first author noted ants 
carrying fruits of Chaenactis fremontii; fruits were grasped by the hairy achene 
base, and carried upright with the pappus paleae above the ant. Collection of 
Chaenactis fremontii fruits by ants has been recorded by Tevis (1958). Although 
ants very likely destroy many of the fruits, some fruits may be carried to suitable 
germination sites by ants and eventually may germinate. Note should be taken 
that the pappus paleae move hygroscopically, and thus are likely to act in lodging 
of the fruit in the same fashion that hygroscopic awns in grasses act (Peart 1979, 
1981, 1984). The configuration of the Chaenactis fruit results in lodging of the 
fruits with radicle downward, conferring a germination advantage like that re
ported by Peart (1979, 1981, 1984) for grass fruits. 

ENCELIA FRUTESCENS. Fruits of this species are excellent at lofting, but relatively 
poor at horizontal movement on a surface (Table 2), providing an interesting 
irony. Enceliafrutescens characteristically occurs on stony slopes, hills, and mesas 
(Munz 1974; Shreve 1951). Perhaps in such localities updrafts catch fruits when 
the heads of this plant mature and shatter, and thereby fruits are carried mostly 
to nearby rocky slopes and occasionally to more distant slopes. Once the fruit has 
fallen to the ground, it is not likely to skid or become lofted again, although the 
high standard deviation (Table 2) suggests events oflofting will vary considerably. 
The shape of this fruit and its tendency not to be moved horizontally would tend 
to result in its lodging in crevices readily, although not necessarily with radicle 
oriented toward the ground. 

HYMENOCLEA sALSOLA. The fruit of Hymenoclea sa/sola is similar to that of 
Ambrosia dumosa except that it bears wings rather than prickles. Wings provide 
better lofting and better horizontal transport capability as compared to the fruit 
of Ambrosia dumosa (Table 2). Hymenoclea fruits seem well adapted to wind 
transport, especially by tumbling. Dispersal of these fruits by animals is undoubt
edly negligible. Some Hymenoclea fruits were found in formicaries of Vermessor 
pergandei (Mayr) (Wheeler and Wheeler 1973). 

MACHAERANTHERA ORCUTTII. Fruits are excellent at horizontal movement (Ta
ble 2); the lofting ability is only slightly less striking (note that despite the rank 
order, the air speed necessary to loft fruits of this species is only 5.4 em/sec faster 
than for the best-lofting species). The large number of bristles and trichomes raise 
the fruit of Machaeranthera orcuttii above a surface, and with this large presen-
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tation of surface area, it tends to be carried horizontally better than those species 
in which a diaspore rests close to a surface. Other species of Machaeranthera, 
such as the desert species M. canescens (Pursh) Gray, have much lighter fruits 
equally well equipped with trichomes and bristles, and one suspects that M. orcuttii 
would be inferior toM. canescens in dispersal ability, perhaps an example ofloss 
of dispersibility (e.g., Carlquist 1966). The range of M. orcuttii is very small 
(Imperial Co., California, and adjacent Baja California) compared to that of M. 
canescens, and one would expect a moderate degree of loss of dispersibility with 
respect to this restricted range. In a series of other genera, comparison of lofting 
ability of seeds revealed that species adapted to restricted areas had lower lofting 
ability than did congeners with wider ranges (Carlquist, unpublished). The lofting 
ability of M. orcuttii is doubtless enough for it to reach cliffs and slopes within 
its range; it does tend to occur on rocky canyons (Shreve 19 51). The trichomes 
on the achene would aid the fruit of M. orcuttii to lodge in crevices, and it may 
be an example of a fruit morphology in which wind dispersal is high while lodging 
ability is still present to a marked degree. The comments above for Chaenactis 
fremontii apply here. 

PSATHYROTES RAMOSISSIMA. Virtually the same at lofting ability (perhaps be
cause of dense covering of fruits with trichomes) as Machaeranthera orcuttii, P. 
ramosissima is appreciably less good at horizontal movement. The pappus of P. 
ramosissima is somewhat less well developed and often less well reflexed than 
that of M. orcuttii, and only this minor difference makes it slightly less dispersible. 
Fruits of P. ramosissima have been reported to have been collected by ants, but 
this doubtless accounts for little dispersal. 

CRYPTANTHA ANGUSTIFOLIA. The fruiting calyces of this species release nutlets 
at various times during the dispersal process, so it must be considered to have a 
two-phase dispersal system. The lofting and horizontal movement values (Table 
2) are high enough so that one must consider that this species has a definite 
anemochorous capability even though that may not be its primary adaptation. 
The tendency of the sharp, stiffhairs to stick in skin assures epizoochorous trans
port. Although the fruiting calyces of C. angustifolia are smaller than those of C. 
nevadensis, they are less good at wind transport. This could be attributed to some 
tendency of calyces to cling to each other or to a tendency of calyces to break 
from the plant together with pieces of the inflorescence axis. High protein content 
of seeds makes the nutlets attractive to ants, which forage for S. angustifolia 
nutlets in large quantities (Gordon 1980; Tevis 1958). 

CRYPTANTHA NEVADENSIS. The fruiting calyces are like those of C. angustifolia 
but are more easily detached from each other and from the axis. The handling of 
fruiting calyces illustrates quite convincingly their ability to become attached to 
fur and fabric, but if not attached, they have excellent wind-dispersal character
istics (Table 2). The fruiting calyces of C. nevadensis show that epizoochorous 
dispersal capability does not always run counter to anemochorous dispersal ca
pability. The low mass of fruiting calyces of C. nevadensis and the tendency for 
hairs to hold the calyces above a surface (thereby giving greater effective presen
tation area) help to account for excellent air-movement abilities of this species. 
One should note such features as the high standard deviation on the wood surface, 
which illustrates the tendency for hairs to catch on the wood grain. When nutlets 
leave the fruiting calyces, they would tend to lodge in sand because they are so 
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similar to sand grains in size and shape. Lodging ability is maximized by separation 
of nutlets from the calyx, just as epizoochorous and anemochorous dispersal 
modes are maximized during retention of nutlets within the calyx. 

CERCIDIUM FLORIDUM. The large, smooth seeds of this species rank at the bottom 
of the listings for either lofting or for horizontal movement by air (Table 2). One 
should not infer from this that the morphology of the seed of Cercidium is not 
related to air dispersal: it may be related to anemochory, but in a negative way. 
Cercidiumjloridum tends to grow in or near streambeds and washes (Shreve 1951; 
Munz 1974). The seeds, when tested, do not float and even if seeds remained in 
unopened pods, the pods would not likely float very far. However, the high mass 
and (for that mass) low surface area render the seed of Cercidium jloridum unlikely 
to be picked up by wind, but to the extent it is moved at all, it is likely to tumble 
downward, either by gusts of wind or flash floods, into washes and streambeds 
much as gravel is preferentially carried into such depressions. Thereby, negative 
ability at wind dispersal has the effect of planting Cercidium jloridum seeds in 
their preferred habitat, with minimal chance that they will be carried out of that 
habitat. During the process of down washing into streambeds and washes, abrasion 
probably gradually reduces the dormancy typical of legumes with very thick seed 
coats, so that the closer a seed is to the bottom of a wash, the more likely it will 
germinate. Cercidium jloridum is a good example of a probable adaptation for 
lodging and for gradual downward movement within a terrain by its shape, weight, 
and bulk, and for staying planted in a favorable site. All too often such probable 
adaptations are dismissed in the literature as examples of "no known" or "no 
obvious" dispersal mechanism. Ellner and Shmida (1981) depart from that pattern 
in their use of the term antitelechory for seeds such as those of Cercidium. Seeds 
of C. jloridum have been reported in ant formicaries (Wheeler and Wheeler 197 3), 
but this is not likely to result in much transport of seeds, perhaps at best only 
occasional burying of seeds beneath the soil surface. One may well ask how seeds 
adapted to down washing ever get upstream. Very likely occasional events of seed 
carriage and ingestion by granivorous birds account for upslope establishments. 

DALEA MOLLISSIMA. This species demonstrates how a legume species can be 
quite positively adapted for anemochory. The numerous trichomes on the fruiting 
calyces (Fig. 1 0) are not stiff enough or otherwise adapted to penetrating and 
staying in skin or fur, although one cannot rule out occasional attachment. The 
excellence of D. mollissima at lofting is equalled by its excellence at horizontal 
movement (Table 2). Had trichomes been included in the surface-area calculations, 
D. mollissima would very likely have ranked higher on the list of species in Table 
1, perhaps even first. The fruiting calyces ought to be very good at tumbling until 
lofted by a gust of wind, a two-phase air-dispersal event doubtless visible in other 
species, although in some desert plants tumbling will predominate (e.g., Larrea), 
whereas in others, lofting will. The tendency for fruiting calyces of D. mollissima 
to be conical in shape with trichomes pointing toward the calyx-lobe tips makes 
it resemble the hairy fruits of many Asteraceae. As in those Asteraceae, this 
configuration tends to maximize lodging ability (when injected into a crevice by 
the pointed end of the cone, the orientation of the hairs will tend to prevent it 
from escaping the crevice) with wind-dispersal ability. 

EREMALCHE ROTUNDIFOLIA. One can cite packing considerations as reasons for 
production of disk-shaped seeds. However, one can entertain possible adaptive 
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value for such a seed shape in Eremalche. Tevis (1958) has claimed that harvester 
ants "were unable to break into the circular fruit, which stayed tightly compressed 
until dry-at which time it burst open, like a flower, exposing a ring of ripe seeds 
which many ants could assault together." However, the ultimate taking of the 
achenes by ants may thereby be delayed until the achene wall is hard enough to 
resist predation; occasional fruits may be carried by ants to favorable sites without 
consumption, although ants cannot be considered a good source of dispersal for 
this species. Like all other diaspores in the present study, the achenes of Eremalche 
rotundifolia lack elaiosomes. A diaspore with an elaiosome has an effective mech
anism for yielding nutrition to an ant while minimizing the chance of embryo 
destruction. Eremalche rotundifolia may often be found in washes (Munz 1974) 
and local colonies. The shape of fruits of Eremalche, although unlike the shape 
of seeds in Cercidium, may have a similar effect: minimizing the chance of pickup 
by wind, maximizing down wash by wind and water and maximizing lodging. This 
may tend to promote precinctiveness, a concept cited in loss of dispersibility of 
seeds (Carlquist 1966). However, Ellner and Shmida (1981) claim that antitele
chory does not serve to recapture a habitat for the species, but has other expla
nations. Further studies are needed in this interesting field. 

CHORIZANTHE BREVICORNU. The curved, sharp teeth of the involucra! bracts 
attach very easily and persistently to skin, fur, or other surfaces. The nut contained 
within the bracts is thereby effectively carried by animal vectors. One can hardly 
doubt that Chorizanthe brevicornu is designed for epizoochory. Part of this ad
aptation is presentation of minimal surfaces to the wind, so that lofting and 
horizontal movement are less likely to happen (note the relatively low surface 
area to mass ratio, Table 1), and when they do happen, movement is likely to be 
arrested by hooking of the involucre tips or bractlet tips onto irregularities ofthe 
substrate. Chorizanthe brevicornu grows very close to the ground, so that small 
mammals are likely to come into contact with disseminules as they pass the plant, 
and thus wind dispersal from a plant to the ground surface, as in Ambrosia dumas a, 
is not an integral part of the dispersal adaptation for C. brevicornu. The marked 
adaptation for hooking onto an animal surface runs parallel to the adaptation for 
lodging of the disseminule, not counter to it (although one should note that 
epizoochorous mechanisms, if very efficient, account for adherence to an animal 
but not for ultimate fall from that animal surface to the ground). 

LARREA TRIDENTATA. Shreve (1951) in discussing the fruits ofthis species says 
that, "owing to the lightness ofthe fruits and their hairy coverings, they are blown 
about to a slight extent and washed away by rain to a much greater extent." He 
does not give his reasons for claiming predominance ofhydrochory. Certainly in 
the wind-tunnel tests, the fruits of Larrea tridentata (entire fruits, not separate 
carpels) ranked third or fourth. Such high ranking in tumbling ability cannot be 
dismissed as a byproduct of some other kind of dispersal, it can only represent a 
primary adaptation to tumbling. The ability at lofting is much less good, and 
Larrea represents a species in which one type of adaptation to travel in air is not 
correlated with another. This is doubtless due to the relatively great mass of the 
Larrea fruits (Table 1), which rank 13, the same rank as in the list of lofting 
abilities. However, given the excellent tumbling abilities of Larrea fruits and the 
longevity of shrubs in this species, over a few generations fruits could be blown 
across the entirety of desert areas (at least the intercontiguous ones) of North 
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America. The good tumbling ability of Larrea fruits may be attributed to the fact 
that stifftrichomes radiate equally in all directions from the surface of this spher
ical fruit. Thus the body of the fruit is propped above the surface of the ground 
and not only does wind reach all surfaces on the windward side of a fruit, little 
force is required because the tumbling motion is more like the rolling of a ball as 
compared to the end-over-end motion necessary to move fruits of, say, Chae
nactis, or the skidding motion one can see in Eremalche. The trichomes on Larrea 
fruits are not stiff and do not penetrate skin or fabrics well. One cannot rule out 
occasional events of epizoochorous travel, and this may explain the occurrence 
of the genus in both North and South America, but such events are doubtless 
quite infrequent. 

HESPEROCALLIS UNDULATA. The seeds ofthis species are in shape much like the 
achenes of Eremalche rotundifolia, and many of the same comments might apply 
to both species. In fact, despite some difference in mass, the lofting abilities of 
the two species are very close, and so are the results from wind-tunnel tests. 
H esperocallis undulata tends to form local colonies (Munz 197 4), so low capability 
for wind dispersal tends to maintain a heavy concentration of seeds in the areas 
ecologically best suited for their survival. This is an excellent strategy for survival 
of a species with relatively specialized ecological requirements provided that 
occasional events of longer-distance transport can occur. When one notes that 
the wind velocity needed to move seeds of Hesperocallis horizontally is only 
about 6.8 km/hr (4.2 mi/hr), occasional transport of seeds across distances of 
relatively great length can easily be postulated. Transport of seeds of Hesperocallis 
by water or by animals can be hypothesized to be minimal and can be ruled out 
for all practical purposes. 

CONCLUSIONS ABOUT DISPERSAL CONCEPTS 

The 14 desert species represent several different modalities ofanemochory, and 
some species are primarily epizoochorous rather than anemochorous. The ex
perimental data permit some new conclusions, since distinctions of a quantifiable 
nature are revealed: for example, the differences between lofting and tumbling 
modes. 

Chorizanthe brevicornu represents maximal adaptation among the species stud
ied for epizoochory. The efficient hooklike structures are few and provide minimal 
surface for reaction to wind currents. Epizoochorous design does not need to 
exclude anemochory, as shown by Cryptantha nevadensis (and, to a lesser extent, 
C. angustifolia), which excels at both lofting and tumbling. One may hypothesize 
that a fruiting calyx of C. nevadensis may sometimes be caught on a small animal 
surface; if not, it may disperse by lofting or tumbling. The tendency of stiff 
trichomes or hooks in Cryptantha and Chorizanthe, respectively, to catch on skin 
or fur can have a positive value in lodging of the diaspores in sites suitable for 
germination. In Cryptantha, the series of dispersal options is enhanced by the 
tendency of nutlets to fall from the fruiting calyx at various times after maturation. 
The nutlets are the size of sand grains and may travel much like sand granules 
when winds blow. The presence of nutlets within sand leads to their remaining 
in place to a much greater degree than their traveling, and the fall of nutlets from 
a calyx can therefore be considered essentially a lodging or planting mechanism, 
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ending efficient travel by wind or on an animal surface. Ambrosia dumosa seems 
to show features balanced between epizoochory and anemochory. 

In the remaining species, adaptations appear to represent some version ofanem
ochory, coupled with some mechanisms for lodging of disseminules in a favorable 
site. The tests show that there is more than one category of wind dispersal, and 
any given species may represent a balance between two (or more) types. The 
vertical column of air provided by the unmodified seed-blowing machine mea
sured lofting ability clearly. The wind tunnel measured tumbling, a quite different 
type of action, as well as skidding. 

Tumbling may represent a rolling motion in the case of diaspores which are 
roughly spherical (Ambrosia dumosa, Hymenoclea sa/sola, Larrea tridentata). In 
other cases, an end-over-end motion is achieved if there is a tripodlike configu
ration, as in Chaenactis fremontii. The tendency of a diaspore to be supported 
on trichomes and thereby better exposed to the air current improves its ability 
to tumble, as shown by Larrea tridentata. Larrea tridentata fruits are just a little 
too heavy to be good also at lofting. Similarly constructed but lighter disseminules 
are also excellent at lofting (Cryptantha angustifolia, C. nevadensis, Dalea mol
lissima, and the hairier fruits of Asteraceae: Machaeranthera orcuttii and Psa
thyrotes ramosissima). Casper and Wiens (1981) hypothesize wind transport in 
Cryptantha jlava Payson because a constant rate of ovule abortion lightens the 
disseminule and aids wind transport. 

Diaspores which lie quite flat on a surface show far less wind-transport capability 
unless they are very light. The flat surfaces of the Enceliafrutescens fruit and the 
pappus paleae of Chaenactisfremontii fruits as well as the low mass of these fruits 
account for excellence of these species at lofting. The tripodlike configuration of 
the Chaenactis fremontii fruit and the marginal hairs of Encelia frutescens fruits 
tend to catch wind currents, accounting for the ability of fruits in these species 
to become lofted rather than cling to a surface. Broad surfaces in these species, 
which may be likened to the surfaces of a kite, can be said to constitute a distinctive 
lofting mechanism. Hymenoclea sa/sola fruits have winglike appendages which 
catch the wind; fruits in this species are less good at tumbling or lofting than those 
ofChaenactisfremontii or Enceliafrutescens merely because of their greater mass. 

In lofting, high surface area to mass ratio plus a low mass are essential features. 
Trichomes (not included in the calculations) doubtless increase surface area con
siderably and account, for example, for why fruiting calyces of Dalea mollissima 
rank higher in lofting or horizontal transport (Table 2) than they do in the listing 
of species by surface to mass ratio (Table 1 ). The area which is presented to the 
wind surface (termed presentation area elsewhere in this paper) is more important 
than the total area in this regard; a diaspore raised above a substrate by being 
supported on trichomes is more effective at horizontal motion than a flat diaspore 
which lies on a substrate. Increase in mass, even if surface area is great, results 
in lowered success in lofting, but tumbling ability may be retained if other features 
are still optimal, as shown by Larrea trident at a and, to a lesser extent, Hymenoclea 
sa/sola. Species in which lofting ability outweighs tumbling ability may charac
terize rocky slopes and cliffs, sites reached by lofting well but very poorly by 
tumbling motions. In the present study, E ncelia frutescens and M achaeranthera 
orcuttii, both excellent at lofting, occupy such sites. 

A concept which may be called "negative anemochory" ("antitelechory" of Ellner 
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and Shmida 1981) is hypothesized to explain mass and surface characteristics of 
seeds or fruits that are somewhat flattened ( Cercidium floridum) or disklike (Er
emalche rotundifolia, Hesperocallis undulata). These species have smooth and 
relatively heavy seeds or fruits which can be said to avoid both lofting and 
horizontal movement by wind currents. The advantage of this configuration is 
potentially twofold: to permit down wash of fruits or seeds into washes (habitats 
to which Cercidium jloridum and Eremalche rotundifolia are, in fact, adapted); 
and to permit most disseminules to stay near the parent plant. Ellner and Shmida 
(1981), working with diaspores of Old World desert areas, discount the latter idea, 
which they term recapturing of the habitat. Instead, they suggest that what they 
term antitelechory is a byproduct of selection for other factors, such as widening 
of the season during which germination occurs, strategies with respect to flooding, 
or prevention of excessive foraging. Ellner and Shmida (1981) show that antite
lechory is virtually absent in scrub of the Mediterranean area, but occurs in about 
22% of the Old World desert species they studied. Further study is needed, but 
negative anemochory appeals to us as a genuine phenomenon related to reaching 
suitable habitats. Fruits and seeds which show negative anemochory may tend to 
travel much as gravel might, gradually settling to lower elevations and lodging 
there. Negative anemochory may have a significance not merely in downwash 
where suitable habitats are topographically lower, but in prevention of continued 
transport, insuring that a diaspore stays in a suitable habitat long enough to become 
covered and to germinate. High winds could provide for occasional events of 
longer-than-normal transport for species in this category, accounting for why 
species with poor transport reach some distant localities. The idea that species 
with poor dispersal tend to recapture a habitat of small extent or with specialized 
conditions should be tested on a case-to-case basis, for it may operate in some 
species but not in others. In lofting trials of diaspores of genera in which two or 
more species, differ with respect to geographical range and narrowness of ecological. 
requirements, species poorer at dispersal were found to have more restricted range 
or requirements (Carlquist, unpublished). 

The requisites of optimal anemochory might seem at first glance to run entirely 
counter to those optimal for lodging but in fact they do not. Lofting ability 
compatible with lodging ability is shown well in fruits of certain Asteraceae in 
the present study (Chaenactisfremontii, Machaeranthera orcuttii, and Psathyrotes 
ramosissima) and in Dalea mollissima; Peart (1979, 1981, 1984) has shown dis
tinctive lodging mechanisms in certain grass fruits. These species show a distinc
tive morphology: a conical configuration with trichomes and bristles pointing 
away from the tip of the cone. The pointed end of the cone tends to enter a crevice 
(it turns out to be the heavier end, since more light bristles predominate at the 
broad end of the cone). Once such a fruit has entered a crevice, the orientation 
of the hairs would tend to lock the fruit in the crevice. In the Asteraceae, the 
radicle end of the embryo is at the pointed end of the cone, also favoring ger
mination of fruits lodged with the pointed end into the substrate; Peart stressed 
this for grasses. During the lofting phase of transport, fruits of Asteraceae like 
those mentioned above act in a parachutelike fashion, a behavior somewhat 
different from the kitelike configuration of Enceliafrutescens fruits. 

One ofthe features of this study which deserves special mention is the fact that 
air speeds required to loft or horizontally move a diaspore were rather low: 1. 7 
km/hr to a maximum of 19.6 km/hr, with most species falling in the lower half 
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of this range. One can object that vertical air currents and transport across flat 
and relatively smooth surfaces, the conditions provided by the seed-blowing ma
chine and the wind tunnel, respectively, are infrequent in the wild. However, even 
if transportation in nature is not so unimpeded as in the experimental conditions, 
the low velocities needed to move seeds and fruits in this study are striking when 
one notes that winds in the desert regions studied exceed 1 00 km/hr several times 
per year. Diaspores are available for transport on such occasions because seed
banking is considerable and high winds tend to occur in late summer and autumn. 
Such exceptional winds can account for longer-than-normal transport events, and 
also show why lodging mechanisms-a much-neglected adaptation in seeds and 
fruits-are a very real necessity in the dispersal economy of a plant. Lodging 
mechanisms may themselves be a complex of factors: ways to induce cessation 
of movement, ways to insure entrance into the substrate, and, as stressed by Peart, 
ways of orienting a diaspore so as to point the radicle downward into a crevice. 

Although the concepts discussed above are based on studies of desert species, 
they offer interesting possibilities for interpretation of anemochory in other areas. 
We need to explore modes of anemochory, the degree to which they are alike or 
mutually exclusive, and the degree to which they coexist in any given species with 
other dispersal modes, such as epizoochory, and with adaptations for lodging. 
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