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AN ESSAY: GEOEDAPHICS AND ISLAND BIOGEOGRAPHY 
FOR VASCULAR PLANTS1 

A. R. KRUCKEBERG 

Department of Botany, KB-15 
University of Washington 

Seattle, Washington 98195 

ABSTRAcr 

"Islands" of discontinuity in the distribution of plants are common in mainland (continental) regions. 
Such discontinuities should be amenable to testing the tenets of MacArthur and Wilson's island 
biogeography theory. Mainland gaps are often the result of discontinuities in various geological 
attributes-the geoedaphic syndrome of topography, lithology and soils. To discover ifgeoedaphically 
caused patterns of isolation are congruent with island biogeography theory, the effects of topographic 
discontinuity on plant distributions are examined first. Then a similar inspection is made of discon­
tinuities in parent materials and soils. Parallels as well as differences are detected, indicating that 
island biogeography theory may be applied to mainland discontinuities, but with certain reservations. 

Key words: acid (sterile) soils, edaphic islands, endemism, geoedaphics, granite outcrops, island bio-
geography, mainland islands, serpentine, speciation, topographic islands, ultramafic, vas­
cular plants, vernal pools. 

INTRODUCTION 

"Insularity is ... a universal feature of biogeography"-MacArthur and Wilson ( 196 7) 

Do topographic and edaphic islands in a "sea" of mainland normal environ­
ments fit the model for oceanic islands? There is good reason to think so, both 
from classic and recent biogeographic studies. Island biogeography theory stretch­
es back beyond MacArthur and Wilson to at least the early 19th century. Wallace, 
Darwin, von Humboldt, and other early naturalists saw that insularity manifested 
itself on both oceanic and offshore (continental) as well as on mainland islands. 
Much more attention has been given to the oceanic island paradigm. Yet Mac­
Arthur (1972) in his last major book, Geographical Ecology, devotes a section of 
a chapter on Island Patterns, to "Habitat Islands on the Mainland." Most of the 
examples of mainland "island" biogeography come from zoology; case-histories 
for birds and mammals on montane islands in a sea oflowland terrain have been 
put to the test of island biogeography theory (Brown 1971, 1978; Vuilleumier 
1970). But little of a similar vein has been done with vascular plants, though the 
prospect for testing the theory with plants on mainland islands is promising, given 
mainland discontinuities of habitat. 

I propose here to examine the island-on-mainland problem for plants from two 
standpoints, both in the context of the geological influence on mainland plant 
distribution. This context I call the geoedaphic syndrome of factors (Kruckeberg 
1986a): it comprises topography, geomorphology (landscape), lithology, and soils; 
any of these arrayed discontinuously in space. This is the stage upon which 
biological consequences of drift, adaptive specialization, isolation, and speciation 
all can be enacted. I first review the few cases where isolated mountains (the 
"lnselberge" phenomenon) create insularity on continents. Then I examine the 
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potential of discontinuity in substrate, especially parent material (lithology or rock 
types) which can engender insularity on mainlands. In both contexts-isolation 
by montane islands and isolation by edaphic islands- I explore how well island 
biogeography theory, as developed for oceanic islands, fits the biology of insularity 
on mainlands. 

ISLAND BIOGEOGRAPHY THEORY 

Island biogeography theory derives from the notion that the numbers of species 
on islands cannot be accounted for by evolution alone (Pielou 1979). From this 
premise, it follows that species number on islands could result from an equilibrium 
between immigration and extinction. We should assume also that subsequent to 
arrival, a founder may evolve (e.g., speciate); extinction may also be the fate of 
the founder, before or after evolutionary divergence. A further consideration is 
that species number at equilibrium is determined by the number of species in the 
source pool (mainland taxa), by the size of the island, and by its distance from 
the mainland. Testing of the MacArthur-Wilson theory followed soon after its 
publication (MacArthur and Wilson 1967); refinements, criticisms, and even re­
jection have been its fate. Its very survival-and even application to the conser­
vation of rare biota-speaks well for its heuristic value. 

It is not my intent to expand on the present status of the theory. Rather, I will 
tum it to another use. It should be profitable to see how it can be applied to 
topographic and edaphic insularity on mainlands. Do habitable mainland "is­
lands" within an unfavorable landscape have physical and biologic features not 
found in the oceanic island context? I perceive the following conditions peculiar 
to the mainland insularity: 

1. Potential source biota surround the "island." A lowland sagebrush flora laps 
at the base of a mountain peak, potentially providing recruits. A biota on sandstone 
is recruitable for occupancy of a serpentine or dolomite outcrop. This proximity 
of contrasting floras makes for easy dispersal between them; the colonizing of 
mainland islands by wind or animals will be commoner than for oceanic islands 
(Omduff, pers. comm.). 

2. As a consequence of (1), mainland "island" biota are likely to be taxonom­
ically related to the surrounding biota. Taxa in such contrasting habitats could 
be vicariants; similar species of a genus. Unless! The "island" may harbor relic­
tuals. Examples of vicariants: Sandstone vs. dolomite Erigeron species in the 
White Mountains of California (Mooney 1966); serpentine and nonserpentine 
Streptanthus (S. glandulosus Hook. subspecies, S. insignis Jeps. vs. S. callistus 
Morrison and S. hispidus Gray; S. amplexicaulis Jeps. and S. amplexicaulis var. 
barbarae J. T. Howell in Kruckeberg [1984]). Relictual examples are less common 
on edaphic islands (e.g., Cupressus species on serpentine, according to Raven and 
Axelrod [1978]), but are frequently encountered in the alpine zone of isolated 
peaks. 

3. Mainland "islands" will have a mix of species-some common to the sur­
rounding "sea" oflowlands (or normal substrates), as well as some endemics on 
one or more ofthe "islands." Western North American examples of ubiquitous 
taxa (often called "ubiquists" or "indifferent" species) include herbaceous peren­
nials like Achillea millefolium L., Agropyron spicatum (Pursh.) Scribn. & Sm., 
and Antennaria racemosa Hook.; as well as woody taxa like Artemisia tridentata 
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Nutt., Ame/anchier alnifo/ia Nutt., and Prunus emarginata (Doug}.) Walp. Their 
occurrence both on and off "island" habitats usually merits no taxonomic rec­
ognition, though they may be differentiated into physiologic races or ecotypes for 
the respective habitats. Endemics restricted to the topographic or edaphic islands 
are many, and well known; examples will be given below. 

4. The presence of common, edaphically indifferent taxa (in 3) fuels a com­
petition between them and local endemics that may not occur on oceanic islands. 
Absence of competition on oceanic islands is thought to be a potent ingredient 
for speciation from the initial founders (Hubbell 1968). Only when the mainland 
island is an isolated, stressful edaphic habitat like serpentine, may the competition 
factor be diminished. 

5. It follows from (4) that mainland islands may be climatically or edaphically 
challenging habitats, not simply colonizable habitats like oceanic islands, isolated 
from a mainland by distance (Carlquist 1974). 

6. Should extinction of a rare entity occur on an oceanic island, its replacement 
by recolonization will be unlikely, given the distance from the nearest source. But 
on mainland islands, the extinction of a species can be followed by recolonization, 
especially if the taxon (or its nearest relative) is on surrounding terrain (Ornduff, 
pers. comm.). 

Most of the case histories for biota on mainland islands are for animals (es­
pecially birds and small mammals) on isolated mountains. Vuilleumier (1970) 
confirms the equilibrium theory, in part, for the bird fauna of the northern Andean 
paramos. But he finds differences too. Bird colonists en route to oceanic islands 
may drown in the attempt, but they may survive overland migration to new 
paramo sites with brief stopovers in nonparamo habitats. Further, the dispersal 
to oceanic islands will be continuous, but only intermittent (e.g., during the Pleis­
tocene) for paramo islands. Brown (1971, 1978) found that boreal mammals on 
Great Basin mountain "islands" (western U.S.A.) were not in equilibrium. They 
reached the boreal islands in the Pleistocene, then colonization ceased. Only 
extinctions have subsequently occurred. These boreal mammals are thus relictual, 
much like the mountain-top plants of the southern Appalachians, discussed below 
(White, Miller, and Ramseur 1984). A more striking example of this relictual 
insularity occurs above timberline in the northern Appalachians in arctic-alpine 
plant taxa (Bliss 1963; Billings 1988). 

TOPOGRAPHIC DISCONTINUITIES AS FLORISTIC ISLANDS 

Some botanists have begun to look at the island-on-continent syndrome for 
vascular plants. Thus far the focus has been on the floristics of the "lnselberge" 
phenomenon-isolated mountains in a "sea" of lowland landscape. Three case 
histories will illustrate this topographic insularity. 

Olov Hedberg's extended study (Hedberg 1970) of the high alpine enclaves of 
East African mountains is now a classic. Though poor in species, the rigorous, 
diurnally stressful habitat of the Afroalpine has generated a truly remarkable 
••Jnselberge" flora: Local endemics are on one or more of the isolated peaks. In 
western North America, alpine islands in a ••sea" of prairie or desert abound (Fig. 
1). Billings (1978) has discussed these insular floras for the Great Basin ofNevada, 
particularly in terms of island biogeography. Floras ofhigh Andean paramo hab­
itats have been shown to conform well to the MacArthur-Wilson model; equilib-
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Fig. 1. The summits of mountains in the Great Basin (western North America) display an un­

mistakeable insular distribution (Billings 1978). 

rium was reached during glacial periods (Simpson 197 4 ). Awaiting similar scrutiny 
is the rich array of isolated mountain ranges and single peaks in Montana, east 
of the continental divide. A hint of what is in store for the biogeographer in this 
mainland archipelago of "lnselberge" can be found in "Islands on the Prairie" 

(Meloy 1986). 
The last example of topographic islands and their floras comes from the south-
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eastern United States-the southern Appalachian high mountain flora (White et 
al. 1984 ). They test the hypothesis that on these montane islands "vascular plant 
richness is related to island size and find that the species/area relationship of these 
mountain tops has the steep slope (of the MacArthur-Wilson model)." White et 
al. found species richness to be positively correlated with size of area, number of 
peaks, maximum elevation, and number of community types present. There is a 
significant difference between these montane island patterns and that predicted 
from island biogeography theory. The two smallest montane islands have higher 
richness than that expected from size alone. Past history of the regional flora can 
account for this discrepancy. White et al. conclude that "extirpation has been 
more important than immigration in shaping the recent floristic richness of the 
high peaks." 

It would seem then that island biogeography theory as applied to plants on 
mainland topographic islands is just beginning. It can serve as a set of working 
hypotheses to test biogeographic data derived from mainland island biota. More 
case histories of this sort are needed to see if the vascular plant floras of mainland 
islands and oceanic islands share common biogeographic attributes. Parentheti­
cally, it should be pointed out that we need analyses of the floras of oceanic 
islands. While there are many published floras of oceanic islands, their conformity 
to island biogeography theory awaits further testing (Carlquist 1974). 

EDAPHIC DISCONTINUITIES AS FLORISTIC ISLANDS 

Mineral substrates derived from a variety of parent materials often display a 
discontinuous distribution in space. One such parent material is the family of 
ultramafic rocks, especially serpentinite, found world-wide (Brooks 1987). These 
ferromagnesian rocks typically surface discontinuously over wide areas in the 
Pacific States (Kruckeberg 1984), and similarly throughout the Atlantic seaboard, 
from Quebec to Georgia (Reed 1986; Dann 1988). One only has to look at a 
geologic map (Fig. 2) where ultramafics are present to see the remarkable insularity 
of the outcrops. Floras of serpentine areas are reasonably well known and often 
display a number of insular attributes. The distinctive floras and communities 
are usually markedly set apart from those on adjacent normal substrates; they 
may have local, narrow endemics and can show racial differentiation of indifferent 
taxa. Other features include isolation spatially from similar outcrops and eco­
physiologically from adjacent nonserpentine floras. Species richness may be cor­
related with size of outcrop, and varying distances separate outcrops (from ar­
chipelagos to Inselberge). Such a biogeographic "Eldorado" has scarcely been 
mined, neither for serpentine floras nor for any other geoedaphically discontinuous 
substrates. 

So the best we can do is to propose a protocol for its study and to hypothesize 
some strategies and outcomes. The serpentine case is a good one to explore. In a 
given locality, as in the Coast Ranges of California, outcrops of all sizes and 
proximities to each other can be found (Kruckeberg 1984). Species richness can 
be gotten for such sites, much like the data for montane islands. My travels on 
serpentine islands of all sizes leads me to predict that richness will be correlated 
with size of area and the spatial configuration of outcrops. One attribute of ser­
pentine and similar edaphically stressful habitats is not of prime significance to 
montane or oceanic insularity. That is, the ecophysiologic challenge encountered 
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Fig. 2. The distribution of serpentine outcrops is clearly insular as shown from the Ukiah Sheet 
of the Geologic Map of California (Kruckeberg 1984). 

by the presumptive colonists. Plants that may eventually occupy serpentine (or 
limestone, gypsum, or leadmine tailings) must acquire tolerance to the serpentine 
(or other stringent edaphic) factor. 

All is not left to future research for finding attributes of edaphic islands that 
illustrate island biogeography. There are data on size of area and distance to 
neighboring edaphic habitat that can be correlated with species diversity. 

Serpentine Examples 

Three ferns are commonly found on Pacific Coast ultramafics (Aspidotis densa 
(Brackenr.) Lellinger, Polystichum lemmonii Underw., and Adiantum pedatum 
L. subsp. calderi W. J. Cody). Of the three, Aspidotis densa tells a good biogeo­
graphic story (Kruckeberg 1964). It is found on all major serpentine areas from 
southern California to British Columbia. It has found its way to the more isolated 
outcrops in central Oregon and is a tell-tale indicator on serpentine outcrops of 
moderate to large size, especially where the outcrops form island clusters (archi­
pelagos). Only on very small, isolated outcrops is it absent, e.g., at the northern 
perimeter of the Klamath-Siskiyou massif in southwestern Oregon, in Whatcom 
and mainland Skagit counties in Washington, and very local outcrops in southern 
British Columbia. Since A. densa is not strictly confined to serpentine, there are 
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intervening nonserpentine sources for even these more remote, small outcrops. 
Presumably Aspidotis spores are widely dispersed and fall out on a variety of 
substrates. The sporelings become established mainly on serpentine, despite the 
availability of open habitats on granite, basalt, and other lithologies. Further, a 
single sporeling can be the start of a colony, for Aspidotis like most homosporous 
ferns, is partially autogamous, producing some maternal progeny (Smith 1975). 
So, given its ease of dissemination and partial uniparental reproduction, it is not 
surprising that it is found widely on serpentines. What is open to conjecture is 
why it is missing on smaller, isolated outcrops. My guess is that purely by chance, 
spores have not yet found a given lone outcrop. 

The other two ferns are widespread on more mesic, midmontane serpentines 
throughout much the same range. Again, they fail to appear on the smaller, more 
isolated outcrops. 

These fern case histories suggest other facets of emigration to serpentine. The 
near universal presence of fern spores in the "rain" of airborne dissemules onto 
substrates will include spores ofnonserpentine ferns landing on serpentine. Com­
mon Pacific Coast ferns like Athyriumfilix-femina (L.) Roth, Polystichum muni­
tum (Kauf.) Presl., Polypodium glycyrhiza D. C. Eat., and Cryptogramma crispa 
R. Br. must reach serpentine outcrops repeatedly- but to no avail. In this instance 
immigration is aborted by substrate inhibition. Serpentine islands are prevented 
from being colonized by nonserpentine airborne taxa because of the stringent 
selective nature of the habitat. Failures of colonization of this sort must be the 
fate of other airborne migrants (e.g., terrestrial orchids, certain ericads, etc.). 
Successful colonization of an edaphic island thus requires more than fortuitous 
arrival of a migrule. Some degree of preadaptedness to the substrate will be 
required. This requirement may be nonexistent or at least less stringent for mi­
grules reaching oceanic islands. 

The fate of migrules reaching serpentine has been tested. For years, I have 
attempted to establish seed-plant populations on serpentine, mostly to determine 
the physiological tolerance ofboth serpentine and nonserpentine "inocula." Most 
of the tested taxa have failed to gain even a modest toehold on serpentine. The 
one exception has been Silene paradoxa, a serpentine indicator from southern 
Europe. Initial transplants of this species onto serpentine in Washington State not 
only became established but have locally expanded their population by sexual 
reproduction (Kruckeberg 1986b). Similar emigration onto serpentine can be in­
ferred for introduced species in California (Kruckeberg 1984). Mediterranean 
annuals (e.g., grasses like Avena spp., Bromus spp. and Festuca spp.) have become 
established on serpentine, especially where disturbed (roadcuts, borrow pits, mine 
areas, etc.). While the Silene paradoxa L. example involves established, built-in 
genetic tolerance to serpentine (the species is common on serpentine in Europe), 
the invasion of Mediterranean annuals onto serpentine suggests a recent acqui­
sition of serpentine tolerance. These grasses have made it onto serpentine islands, 
possibly because of genetically fixed tolerance in the preadapted colonists. 

Once established on an edaphic island, like a serpentine outcrop, what is the 
fate of the venturesome genotype? One way to answer this question is to determine 
if the founder gene pool differs from its source gene pool. Some kind of genetic 
change should be detectable. Genes affecting physiological tolerance, reproductive 
isolation, or other adaptive traits may have accumulated, as will have gene dif-
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ferences simply resulting from drift. One can further postulate that the edaphic 
founder may be more or less variable than its source gene pool. Despite the rapid 
and facile approach via electrophoresis of isozymes, I would prefer to get genetic 
data based on breeding tests. Analysis of F 1 and F2 progeny of crosses between 
serpentine and nonserpentine genotypes would tell us much about the genetic 
change following initial colonization onto edaphic islands. Examples of such ge­
netic tests are limited, and come mostly from the heavy-metal-tolerance literature 
(reviewed by Antonovics 1975). Metal tolerance is polygenic (or oligogenic in 
Mimulus, MacNair and Cumbes 1989) and its expression often is dominant; the 
tolerance mechanism is unique to a given metal element. Yet to be done is testing 
the effects of selection for increased genetic tolerance as well as finding evidence 
for reproductive isolation (incipient speciation). 

Isozyme fingerprinting may also detect genetic differences between island iso­
lates and source populations. Such has been done for Jeffrey pine (Pinus jeffreyi 
Grev. & Balf. in A. Murr.) in California. Its populations are restricted to serpentine 
in northwestern California and southwestern Oregon; populations in the Sierra 
Nevada are on normal substrates (especially granodiorites) and are widely dis­
tributed more or less continuously from south to north. Isozyme variation for the 
two contrasting edaphic populations differs significantly (Fumier and Adams 1986). 
The more isolated and discontinuous serpentine populations are less heterozygous 
than the Sierran populations on normal soils. The only serpentine population 
from the Sierras was more like the Klamath serpentine populations in allele 
frequency than its nearby Sierran populations widespread on granodiorite. 

Other Edaphic Islands 

Most variations in land forms and lithologies are discontinuously arrayed in 
space. Islands of habitability result. This is particularly true of the display of rock 
types and other discrete substrates, as we have just seen for serpentines. Other 
rock types, those that produce nutritionally normal soils, as well as those with 
unique chemical properties, often yield insular patterns. We now examine a few 
other case histories where unique substrates are isolated in space, as islands. 

1. Limestone and dolomite outcrops. Pick a continent and you can be sure of 
finding examples of calcicole floras restricted to carbonate rocks. Two North 
American examples illustrate the syndrome. Erickson's (1943, 1945) study of 
populations of Clematis fremontii Wats. var. reihlii Erickson, in the Ozarks of 
Missouri, is a classic; it gives a graphic display of field observations to show the 
close tracking of a plant to substrate. The plant is confined to rocky, barren 
openings (glades) on outcrops of thin-bedded dolomite. The character of the 
edaphically defined distribution is strikingly portrayed by Erickson's sequence of 
range maps, from region to local aggregate (Fig. 3). The ultimate local habitat is 
the single aggregate, a colony of Clematis at a given glade. The insular character 
of the distribution includes a hint of island size and species diversity. Erickson 
compiled records of the plant's absence as well as its presence. At least the number 
of Clematis plants is lower for small glades, or the taxon is absent altogether from 
some smaller glades. 

Limestone and dolomite substrates elsewhere are a rich source of phytogeo­
graphic patterning. In western North America, local marble outcrops in the Sierra 
Nevada have significant Rocky Mountain disjunctions (Major and Bamberg 1963). 
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Fig. 3. Sequence of maps with increasing resolution dramatizes the insular pattern of distribution 
for Clematis fremontii var. reihlii on isolated limestone outcrops in the Ozarks (Erickson 1945). 

In the nearby White Mountains, the contrasts between dolomite with bristlecone 
pine (Pinus longaeva D. K. Bailey) and siliceous sandstone with sagebrush has 
been well documented (Wright and Mooney 1965; Mooney 1966; Lloyd and 
Mitchell 1973). Old World case histories abound; thus, the chalklands of Great 
Britain (Lousley 1950; Sankey 1966) are well known for their distinctive floras; 
and in Japan, Shimizu (1962, 1963) has found similar floristic diversity on lime­
stones. 
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2. Granite outcrops. The granite .. flat rocks" of southeastern United States are 
exposed, floristic islands surrounded by mesic forest. Even a single granite outcrop 
can take the form of an archipelago of microisland communities. Burbanck and 
Platt (1964) focus on these intra-outcrop islands of vegetation, calling them .. island 
communities." They are in depressions with soil, scattered across the face of the 
bare rock. Depending on the depth of soils, they support four distinct community 
types. The prospect for testing island biogeography theory on these island chains 
is promising. Burbanck and Platt did look at size of island community, but chose 
to relate it to soil depth rather than to species diversity. Murdy (1968) sees the 
disjunction of granite outcrops as a propitious condition for both speciation and 
extinction. Endemic taxa may be on one outcrop, but missing on a nearby outcrop. 
If extinction is really involved, then this suggests the Lewis ( 1960) model of 
catastrophic selection leading to saltational speciation for the survivors. 

Wyatt and Fowler ( 1977) subjected their floristic data on North Carolina granite 
outcrops to the MacArthur-Wilson model for islands. They found a positive, 
linear relationship between area and species number. To the west, granitic outcrops 
in the central mineral region of Texas were found to have fewer endemics than 
on the southeastern U.S.A. outcrops (Walters and Wyatt 1982). They ascribed 
this difference to the greater geographic isolation and the sharper discontinuity 
with surrounding vegetation for the southeastern granite outcrop floras. Though 
the outcrops of the two areas harbor different floras, they were nearly identical in 
life-form spectra (a predominance of annuals). 

Granite outcrops occur on other continents. Some examples are the .. kopjes" 
of South Africa and the granitic domes of Australia. Ornduff (1987) gives an 
extensive and fascinating account of the latter edaphic islands in southern Western 
Australia. The flora of these granite domes is not simply .. a random subset of the 
Western Australian flora." Some families are underrepresented, while others are 
overrepresented on granitic outcrops. Further, there is a bias in life-form: nearly 
two thirds of the native vascular flora on granite outcrops are annuals, while 
annuals are only one twelfth of the Western Australian floras as a whole. Geophytes 
and .. resurrection" plants are conspicuous elements of the outcrop floras. Ornduff, 
using island/area analysis, found that the species number/area prediction did not 
hold for these granitic outcrops. Even the smallest outcrop (Nettleton Rock) 
supported the largest number of species. 

It is well to point out here, as does Ornduff (1987: 19), that MacArthur and 
Wilson (1967) exempted mainland islands from some of their conclusions for 
oceanic islands. They argued, as I have in this paper, that mainland .. habitat 
islands" are surrounded by land areas with potential immigrants and competitors, 
unlike oceanic islands. 

3. Locally acid soils as islands. At numerous sites in western North America, 
there occur local habitats with soils markedly more acid than their surrounding 
substrates. The causes of the local acidity are various: unusual parent materials 
or exceptional topographies. Whatever the cause, the vegetation of the acid sites 
can differ markedly from the surrounding vegetation. These islands of acid soils 
can support both endemics as well as species widely disjunct from their usual 
ranges. Hydrothermally altered volcanics in the Great Basin foster unique vege­
tations, primarily disjunct conifer stands with subalpine herbaceous taxa in sage­
brush country (Billings 1950; Salisbury 1964). The lateritic lone formation ofthe 
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Sierra Nevada foothills in central California adds a different twist to the acid soil­
vegetation story. Here the typical blue oak-Digger pine, or chaparral types on 
normal soils are replaced by an acid heath scrub on soils of pH 2.9-3.9 (Gankin 
and Major 1964). These floristically depauperate outcrops can be dominated by 
one species of ericad, the endemic lone manzanita (Arctostaphylos myrtifolia 
Parry). The only other endemic is Eriogonum apricum J. T. Howell; a scattering 
of annual herbs and cryptogams (mosses and lichens) makes only a modest show­
ing on barrens, especially in open places not occupied by the heath. 

Another Californian acid-heath vegetation is the remarkable pygmy conifer­
heath flora in Mendocino County. Here the decisive edaphic control of acid, 
sterile, and poorly drained soils is induced by a unique topography (Westman 
1979). Five terraces underlain by sandstone were elevated during the Pleistocene 
and then stayed in place. The slopes bordering the terraces are clothed with mesic, 
mixed coast redwood forest: the windward edges of the terraces, aeolian in origin, 
are of Bishop pine (P. muricata D. Don.) and Rhododendron heath. The terraces 
proper, though, are the startling feature: pygmy conifers and ericaceous heath on 
acid (highly podzolized) soils underlain with an impervious hardpan. The pygmy 
conifers, Pinus contorta Dougl. var. bolanderi (Parl.) Vasey and Cupressus goveni­
ana Gord. var. pygmaea Lemmon, both endemics, coexist with a heath vegetation, 
including the endemic Arctostaphylos nummularia Gray. 

A remarkable case of edaphic endemism on discontinuous "islands" of substrate 
has recently been described for the unique Lake Wales sand ridges of Florida 
(Huck, Judd, Whitten, Skean, Wunderlin, and Delaney 1989). Xeric, residual sand 
hills, beach ridges, and dune fields occur discontinuously along the low ridge 
system, interrupted with numerous sinkhole lakes and basins. The vegetation of 
sand pine and sclerophyllous oak scrub is rich in endemics. Besides the newly 
described endemic Dicerandra christmanii Huck & Judd, there are 27 other en­
demics, herbaceous as well as woody taxa. The authors propose that the isolated 
xeric sand "islands" came about in one of two ways: either fragmentation of once 
widespread taxa, or short-distance dispersal may have occurred, possibly by water. 
The initial dispersal event to one or more of the "ecological islands" could have 
been followed by further genetic divergence of the isolates. 

These disparate variants of islands (with acid or sterile substrates) have a com­
mon theme-isolated and unique habitats. In common with other stringent, chem­
ically demanding habitats, their relevance to oceanic island biota must be tem­
pered with reservation. Most telling is the difference in the founding biota. Far 
more on the edaphic island than on the oceanic island, the founder must run the 
physiological gauntlet of acquiring tolerance, instantly and preadaptively available 
in order for establishment to occur. 

4. The vernal pools of California are mainland edaphic islands, harboring dis­
tinctive floras (Holland and Jain 1981). The pools are usually arrayed in archi­
pelagolike groupings, separated by large areas unsuitable edaphically for pool 
formation. Analysis of species composition within and between pools (and ar­
chipelagos) reveals some intriguing biogeographic notions. Despite the high en­
demism of vernal pools, species diversity in individual pools is low. Size of pool 
had only a small but significant effect on species richness. 

The catalog of other kinds of mainland edaphic sites as islands could be much 
amplified. Other special topographic features include dunes, lakes, wetlands, cliff-
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faces, alluvial fans, catenas, etc. And to the list of chemically or physically distinct 
substrates can be added gypsum, alkaline-saline sites, metalliferous soils with 
zinc, copper, lead, cobalt, etc., hot springs (solfataras, fumaroles, etc.), volcanic 
substrates (pumice, tephra), silicate-rich materials, alumina soils, phosphate-de­
ficient soils, and so forth. Still other discontinuities in the geoedaphic fabric of 
the mainlands come from sites locally altered by man. So the inventory that 
piques phytogeographic speculation is enriched. It remains to be seen if common 
biogeographic threads can be detected among the diverse kinds of isolation on 
mainlands. 

CONCLUSIONS 

It seems reasonable to expect that island biogeography theory fashioned by 
MacArthur and Wilson (1967) should apply to mainland islands. The parallels 
between oceanic islands and islands of altitude, topography or substrate on con­
tinents are indeed provocative. Features of spacing between islands, size of islands, 
and distance from source biota apply to both oceanic and mainland islands. In 
fact, the major part of this essay addresses the prospectus of these parallels. And 
yet the outcome of the comparisons seems less than wholly satisfying. The com­
parison leans heavily on the analogy between real islands and islandlike spaces 
on continents. The analogy serves mostly to urge upon us a testing of island 
biogeography theory. But there are dangers in stretching analogy too far. I see two 
attributes of mainland islands that distinguish them from oceanic islands. 

First, mainland islands are not at sea in a void of vascular plant recruits. Rather, 
they are surrounded by potential founders, a point developed earlier in this essay. 
Often, then, a mainland island will have a mix of species, some unique to the 
"island" and some taxonomically identical to the surrounding biota. A second 
caveat has also been stressed earlier: Mainland island habitats, whether topo­
graphic or edaphic, demand a genetic accommodation to their environments by 
the founder colonists. This may-or may not-be true for their reception on 
oceanic islands. 

Island biogeography theory also concerns itself with the speciation and adaptive 
radiation phases of island stocking (Ch. 7 in MacArthur and Wilson 1967). For 
oceanic islands-and indeed for mainland islands-the intriguing questions deal­
ing with events beyond colonization have to do with genetic accommodation to 
insular, often unique, habitats. Evolutionary theory offers strategies for this ac­
commodation, at every stage from ecotypic adjustment of a wide-ranging species 
to the genesis of species and beyond. To paraphrase MacArthur and Wilson 
(1967, preface), I am unable to see any real distinction between biogeography and 
evolution. 
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