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GENETIC VARIATION IN ENDEMIC AND WIDESPREAD 
PLANT SPECIES: EXAMPLES FROM SAXIFRAGACEAE AND 

POLYSTICHUM (DRYOPTERIDACEAE) 1 

PAMELA S. SOLTIS AND DOUGLAS E. SOLTIS 

Department of Botany 
Washington State University 
Pullman, Washington 99164 

ABSTRACT 

Population genetic theory and methodology were applied to the study of endemic plant species. 
Levels of genetic variability were compared between endemic species and their more widespread 
relatives. Six of seven narrowly distributed taxa of Saxifragaceae had significantly reduced genetic 
diversity relative to species of Saxifragaceae with broader distributions. Two endemic species of the 
fern Polystichum maintained significantly lower levels of genetic variation than did their more wide­
spread congeners. The implications of these data and those reported for other endemic plant species 
for designing management strategies are also discussed. 

Key words: endemic plant species, allozymic variation, Saxifragaceae, Polystichum. 

INTRODUCfiON 

A recent resurgence of interest among biologists of many disciplines in the 
conservation and preservation of endangered species has led to the incorporation 
of population genetic theory and methodology into the study of endemic species 
of both plants and animals. Population genetic theory predicts that endemic 
species will maintain low levels of genetic variation, and this prediction is borne 
out in many endemics, particularly island endemics (e.g., Lowrey and Crawford 
1985; Crawford, Stuessy, and Silva 1987; Witter and Carr 1988). These low levels 
of genetic variation are probably due to the small numbers of individuals present 
within each population and also the small number of individuals in the species 
as a whole. Small population sizes typically result in the loss of genetic variation 
through genetic drift. Furthermore, small populations result in an increased prob­
ability of mating between relatives, causing inbreeding even in cross-pollinated 
plants. Highly inbred populations are also susceptible to loss of genetic variation. 
Endemic plant species may also have reduced genetic variation for other reasons. 
1) The species may have experienced a severe genetic bottleneck, through which 
only a small proportion of the genetic variation passed. Bottlenecks of this sort 
may occur when most populations of a species are eliminated, either gradually 
or catastrophically. 2) The endemic species may represent a recently derived 
species. In many cases, recent derivatives have only a fraction of the genetic 
variation of their more widespread progenitors (Gottlieb 1974; Crawford and 
Smith 1982). 

Despite this theoretical interest in levels of genetic variation in endemic plant 
species, actual measurements of genetic variation in endemics have only been 
made in recent years. The value of assessing genetic variability in endemic plant 
species is at least three-fold: 

1) The amount of genetic variation in a population or species is a key to 
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unraveling the evolutionary history ofthat population or species. Although "low" 
levels of genetic variation are predicted for all endemic plant species, the actual 
genetic diversity may be useful in evaluating alternative evolutionary hypotheses. 

2) Levels of genetic variation are often equated with evolutionary potential. If 
a species is totally lacking in genetic variability, it may have difficulty adapting 
to changing environmental conditions. 

3) Genetic variability in endemic species ofboth plants and animals has become 
increasingly important to managers of rare and endangered species. The levels 
and distribution of genetic variation within and among populations of an endemic 
species may suggest to conservationists how many populations to preserve and 
which ones contain different genotypes. 

Electrophoretic techniques provide the best estimate of genetic variation in 
natural populations, and allozymic analyses of endemic species have become much 
more frequent in the last few years. Several statistics can be used to quantify levels 
of genetic variation within a population: P, the percentage of loci that are poly­
morphic within a population; H, heterozygosity expected at Hardy-Weinberg 
equilibrium; Habs, the observed heterozygosity; A, the mean number of alleles per 
locus; and AP, the mean number of alleles per polymorphic locus. These 
values are computed for each population sample of a species; then a mean value 
for each statistic can be determined for the species. 

Levels of genetic variation in a population or species can be affected by several 
factors, such as the geographic distribution of the species, the generation time, 
pollination syndrome, fecundity, and successional stage of the habitat (Hamrick, 
Linhart, and Mitton 1979). Generally, a species from a late successional stage, 
with a regional distribution, a long generation time, wind pollination, and high 
fecundity can be expected to maintain high levels of genetic variation within its 
populations. 

Hamrick (1983) summarized levels of genetic variation in populations of species 
having different geographical distributions: his categories were endemic, narrow, 
regional, and widespread. The statistics of genetic variation used were H and AP. 
These data showed that high levels of genetic variation are maintained in many 
populations of endemic plant species. In fact, in direct contrast to all predictions, 
endemic species are nearly as variable as widespread species. It therefore appears 
that although some endemics, particularly those from islands, have the low levels 
of genetic variation predicted, others maintain quite high levels of genetic vari­
ation. 

A comparison such as Hamrick's (1983) survey is rather coarse grained: the 
geographic categories are somewhat arbitrary and unrelated species with totally 
different life histories are compared. To resolve these problems, Karron (1987) 
compared levels of genetic variation in species with restricted distributions with 
genetic variability in their more widespread congeners. He defined a restricted 
species as an "extremely localized endemic that occurs in 20 or fewer populations; 
in many cases, taxa have fewer than 20,000 individuals." Karron examined species 
in 11 genera and compared them for P and AP. A statistical analysis indicated 
that both P and AP are significantly lower in the restricted species than in their 
widespread congeners. That is, when congeneric species are compared, populations 
of the endemics maintain lower levels of genetic variation than do populations 
of their more widespread relatives, exactly as population genetic theory predicts. 
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The discrepancy between these results and those of Hamrick ( 1983) is probably 
due to the comparison of unrelated taxa in the earlier study. 

These broad surveys of genetic variation in endemic plants suggest that although 
genetic variation is lower in restricted species than in their widespread congeners, 
many endemic plant species maintain relatively high levels of genetic variation. 
In fact, Hamrick concluded his 1983 study with this statement: 

... although the results indicated that more populations of narrow and regionally dis­
tributed species will be needed to maintain a given proportion of the species' variation, 
recommendations based on geographic range alone will not be dependable. 

GENETIC VARIATION IN ENDEMIC SPECIES: EXAMPLES 

Saxifragaceae 

Levels of genetic variation in the endemic species Conimitella williamsii, Ben­
soniella oregona, Efmera racemosa, Sullivantia hapemanii, S. oregana, and S. 
sullivantii were compared with genetic variability in more widespread members 
of Saxifragaceae, including six species of Heuchera and the monotypic Tellima 
and Tofmiea. Conimitella, Bensoniella, and Efmera are monotypic and belong to 
a group of nine closely related genera in tribe Saxifrageae (Soltis 1988). Sullivantia 
is part of a second group of Saxifrageae consisting of four genera (Soltis 1988). 
All are herbaceous perennials, all are diploid with a chromosome number of n = 
7, and most occur in western North America. 

Conimitella williamsii has a broad geographic distribution (Hitchcock, Cron­
quist, Ownbey, and Thompson 1961) but it occupies a narrow ecological niche. 
The species occurs in the Rocky Mountains from southwestern Montana through 
eastern Idaho into western Wyoming, in the Bighorn Mountains of eastern Wy­
oming, and in Colorado. Despite this relatively large distribution, it occurs only 
rarely on wooded slopes. Chloroplast DNA data indicate that C. williamsii is the 
sister species of Mite/fa stauropetafa Piper (Soltis, Soltis, and Bothel 1990). We 
analyzed genetic variation at 18 loci in two populations of C. williamsii from 
western Wyoming and one from Colorado. No variation was detected in the 
smaller sample from Wyoming or in the sample from Colorado; only one locus 
was polymorphic in the large population from Wyoming. Very little genetic vari­
ation is maintained within populations of C. williamsii. PandA are 0.037 and 
1.1, respectively (Table 1 ). The mean value of P for the widespread Saxifragaceae 
is much higher (0.216), although A is similar (1.2; Table 1). Despite this lack of 
variation within populations, variation was detected among populations. Popu­
lations from Wyoming and Colorado are fixed for different alleles at Pgi-2 and 
Skdh, the genes encoding cytosolic phosphoglucoisomerase and shikimate de­
hydrogenase, respectively. Although the species has not been sampled from other 
parts of its range, such as Montana or northeastern Wyoming, the data currently 
available suggest that there may be considerable variation among populations of 
this species. 

The levels and distribution of genetic variation in C. williamsii may be related 
to several factors. 1) A phylogenetic analysis of Mite/fa and its relatives using 
cpDNA data indicates that C. williamsii must be relatively recent in origin because 
it occupies a terminal position on the evolutionary tree (D. Soltis et al. 1990). 
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However, its wide distribution indicates that it cannot be too recent in origin. 2) 
Populations are physically isolated and probably do not experience much inter­
populational gene flow. Both seed and pollen flow appear limited (Savile 1975), 
and the allozymic data support this contention. 3) Plants are predominantly selfing; 
all individuals set seed in the greenhouse in the absence of pollinators. All of these 
factors may contribute to the low levels of genetic variation within populations 
and the differentiation among populations of C. williamsii. 

Bensoniel/a oregona has a very restricted distribution, occurring only in mesic 
drainages in the Siskiyou Mountains of southwestern Oregon and northwestern 
California. Chloroplast DNA data indicate that B. oregona is closely related to 
Mitella and is probably a relictuallineage that diverged from Mitella early in the 
radiation of Mitella (D. Soltis et al. 1990). We analyzed genetic variation at 21 
loci in samples from four sites in southwestern Oregon. No genetic variation was 
detected, either within or among populations. 

The low genetic variability of B. oregona may reflect the relictual nature of this 
species. The cpDNA data clearly suggest that B. oregona is a very old lineage. Its 
distribution also suggests that it may be a relict; the Siskiyou area is known to 
harbor many relictual species (Smith and Sawyer 1988). If B. oregona is indeed 
a relict, it has apparently experienced a severe genetic bottleneck that has culled 
additional genetic variation. In addition to its narrow distribution, several life­
history characteristics of B. oregona might also lead to reduced genetic variability: 
small population sizes, isolated populations, clonal reproduction (each "site" may 
actually be a single genetic individual), and a high degree of self-pollination. 

Elmera racemosa occurs on talus slopes at high elevations in the Pacific North­
west. Variety racemosa is found in the OJympic Mts. and in the Cascades from 
Mt. Rainier to Mt. Adams; var. puberulenta Hitchc. occurs in the Cascades from 
northern Washington to the vicinity ofMt. Stuart in central Washington and also 
disjunctly in northwestern Klamath County, Oregon. The phylogenetic affinities 
of E. racemosa are uncertain although it is morphologically intermediate between 
Tellima and species of Heuchera. Karyotypic analysis of the three genera indicated 
that all were distinct; however, the karyotype of E. racemosa is more similar to 
that of Heuchera than to that of Tellima. A single population of E. racemosa var. 
puberulenta from just south ofMt. Stuart has been examined allozymically at 12 
loci. This population was highly variable genetically (Table 1). Both PandA for 
this population (0.333 and 1.3, respectively) were higher than the means of these 
statistics for the widespread species of Saxifragaceae. This genetic variability was 
unexpected because E. racemosa shares many features with C. williamsii and B. 
oregona which may contribute to the low levels of genetic variation in these other 
two species, including a limited distribution and small, isolated populations. The 
age and phylogenetic position of the Elmera lineage are unknown; these may 
provide a clue to the high levels of genetic variation in E. racemosa. 

All three species of Sullivantia (sensu Soltis 1980) were also examined. Species 
of Sullivantia occur on wet cliffs, often associated with waterfalls. Sullivantia 
sullivantii is relatively widespread in eastern North America, occurring in three 
major regions: the Ohio River Valley oflndiana and Ohio; the Mississippi River 
Valley of Iowa, Wisconsin, and Illinois; and the Ozarks. Sullivantia hapemanii 
var. hapemanii occurs in the Bighorn Mountains of northeastern Wyoming, and 
var. purpusii occurs in western Colorado. Sullivantia oregana occurs in the Co-

1 
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Table I. Mean values of P and A for species of Saxifragaceae with restricted and widespread 
distributions. The number of populations of each species examined is given in parentheses. 

Species p A Reference 

Restricted species 

Conimitella williamsii (Eaton) Rydb. (3) 0.037 1.1 unpubl. data* 
Bensoniella oregona (Abrams & Bacig.) Morton (4) 0.000 1.0 unpubl. data* 
Elmera racemosa (Wats.) Rydb. (1) 0.333 1.3 unpubl. data* 
Sullivantia hapemanii (Coulter & Fisher) Coulter 

var. hapemanii (5) 0.033 1.0 Soltis ( 1982) 
var. purpusii (Brand.) Soltis (3) 0.000 1.0 Soltis (1982) 

S. oregana Wats. (3) 0.000 1.0 Soltis (1982) 
S. sullivantii (T. & G.) Britton (18) 0.000 1.0 Soltis (1982) 
Mean 0.058 1.1 

Widespread species 

Heuchera americana L. (12) 0.21 1.1 Soltis (1985) 
H. parviflora Barthing (4) 0.29 1.2 Soltis (1985) 
H. pubescens Pursh (4) 0.14 1.1 Soltis (1985) 
H. villosa Michx. (4) 0.29 1.3 Soltis (1985) 
H. grossulariifolia Rydb.t (14) 0.238 1.4 Wolf, Soltis, and Soltis ( 1990) 
H. micrantha DougJ.t (9) 0.241 1.4 Ness, Soltis, and Soltis (1989) 
Tellima grandiflora (Pursh) Doug!. (9) 0.080 1.1 Rieseberg and Soltis (1987) 
Tolmiea menziesii (Pursh) T. & G.t (15) 0.240 1.3 Soltis and Soltis (1989) 
Mean 0.216 1.2 

* Collection data and loci examined for populations of these species are summarized in Appendix 
I. A table of allele frequencies for populations of species for which data have not been previously 
published is available upon request from the authors. 

t Data presented are for the diploid (2n = 14) cytotype only. 

lumbia River Gorge ofWashington and Oregon. Statistics of genetic variation for 
the four taxa of Sullivantia are shown in Table 1. Despite its relatively broad 
distribution, populations of S. sullivantii have no genetic variation. However, 
populations are fixed for different alleles at Acp, the gene encoding acid phos­
phatase (Soltis 1982). The three more restricted taxa also have little or no genetic 
variation, either within or among populations. The only taxon with any intra­
populational variation isS. hapemanii var. hapemanii, which has two populations 
polymorphic for two alleles at Acp. Founder events, genetic bottlenecks, and 
genetic drift have probably all been important in reducing genetic variation in 
both restricted and more widespread species of Sullivantia (Soltis 1982). 

Several endemic species of Saxifragaceae maintain low levels of genetic vari­
ability, and a single population of another species possesses an unexpected amount 
of genetic variation. How do these levels of genetic variation compare with levels 
for more widespread members of Saxifragaceae? All of the eight species with 
broader distributions have higher levels of genetic variation than do C. williamsii, 
B. oregona, and all species of Sullivantia; however, the mean values for all eight 
widespread species are lower than those for the single population of E. racemosa 
from Mt. Stuart. Mean values of P and A for both the endemic and widespread 
species of Saxifragaceae arc: given in Table 1. Using the Wilcoxon two-sample 
test, both measures of gc:netic variation are statistically significantly lower (P < 
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0.05) in the endemics than in the widespread species. This agrees with Karron's 
(1987) results for restricted and widespread congeners in 11 genera. 

Polystichum 

Genetic variation in two endemic species of North American Polystichum, P. 
dudleyi and P. lemmonii, was analyzed relative to that maintained by their more 
widespread congeners. An analysis ofallozymic variation in diploid North Amer­
ican polystichums indicates that the strictly North American species form a group 
distinct from the circumboreal P. lonchitis (L.) Roth (Soltis, Soltis, and Wolf 
1990). Within this group of five species, the western North American P. dudleyi 
and P. lemmonii, along with the eastern North American P. acrostichoides, form 
one group, and P. munitum and P. imbricans from western North America form 
a second group. 

Polystichum dudleyi is restricted to canyons of redwood forest in the Coast 
Ranges of central California, from southern Mendocino County to Monterey 
County, where it typically occupies steep slopes above streams. We analyzed 
genetic variation at 12 loci in 11 populations of P. dudleyi, and the data are 
summarized in Table 2. Mean levels of genetic variation for all the populations 
are low; most of the populations had only a single polymorphic locus. The values 
for P. dudleyi are much lower than the means for the more widespread species of 
Polystichum (Table 2). 

Polystichum dudleyi has a narrow distribution. Its habitat is certainly restricted, 
and it probably occupies relictual sites. Populations of P. dudleyi maintain very 
low levels of genetic variation, possibly due to a genetic bottleneck. Furthermore, 
populations are physically isolated from each other in canyons. Despite high 
outcrossing rates and high levels of interpopulational gene flow (Soltis and Soltis 
1990), P. dudleyi is genetically depauperate. 

Polystichum lemmonii is a serpentine endemic, occurring in central Washington, 
central and southwestern Oregon, and northern California. We analyzed genetic 
variation at 12 loci in six populations of P. lemmonii, two populations from 
Washington, one from southwestern Oregon, and three from California. The 
genetic variability of P. lemmonii is summarized in Table 2. Populations of P. 
lemmonii maintain higher levels of genetic variation than do populations of P. 
dudleyi, but lower levels than those typically seen in more widespread polysti­
chums. 

The three main geographic areas occupied by P. lemmonii are well separated 
spatially. Populations are isolated on serpentine soils at high elevations; this 
isolation may contribute to their relatively low levels of genetic variation. Fur­
thermore, the adaptation of P. lemmonii to serpentine soils may be reflected in 
a highly specialized genotype, with limited variability. 

When compared with their closest relative, P. acrostichoides, both P. dudleyi 
and P. lemmonii have low levels of genetic variation (Table 2). The other two 
strictly North American species also have high levels of genetic variation (Table 
2). Values of PandA for the endemics are lower (P < 0.10) than those for the 
widespread species. However, using the Wilcoxon two-sample test, the values for 
the endemics are not statistically significantly lower presumably because this 
nonparametric test is conservative, especially when sample sizes are small. 
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Table 2. Mean values of P and A for species of Polystichum with restricted and widespread dis­
tributions. The number of populations of each species examined is given in parentheses. 

Species p A Reference 

Restricted Species 

Polystichum dudleyi Maxon ( 11) 0.083 1.1 P. Soltis et a!. (1990) 
P. lemmonii L. Underwood. (6) 0.250 l.3 P. Soltis et al. (1990) 
Mean 0.166 1.2 

Widespread Species 

P. acrostichoides (Michaux) Schott (7) 0.444 1.6 P. Soltis et a!. (1990) 
P. imbricans (D. Eaton) D. Wagner (12) 0.500 1.8 P. Soltis et a!. ( 1990) 
P. munitum (Kaulf.) K. Pres! (25) 0.394 1.6 P. Soltis et a!. (1990) 
Mean 0.446 1.7 

DISCUSSION 

In general, endemic plant species maintain lower levels of genetic variation 
than do their widespread relatives. However, exceptional endemics, such as E. 
racemosa and others, actually maintain high levels of genetic variation. These 
data reinforce the observation that geographic distribution alone is not a reliable 
indicator of genetic variability. What implications do these data have for the 
conservation and management of rare and endangered plant species? The first 
general principle followed by conservation geneticists is to maintain or preserve 
as much genetic variation as possible. Hamrick (1983) determined that 99% of a 
species' genetic diversity is maintained within a single population of an outcrossing 
species. He therefore recommends that at least four populations of an endangered 
outcrossing species be preserved. Because inbreeders typically distribute relatively 
more of their genetic variation among rather than within populations, Hamrick 
recommends that at least six populations of an endangered inbreeding species be 
preserved. Furthermore, to preserve genetic diversity via seed stocks for potential 
reintroduction, A. H. D. Brown (pers. comm.) recommends preserving seed from 
10-50 individuals per population and at least five populations per species. The 
second general principle is to consider factors other than allozymic variability 
when designing a management strategy. Genetic data should never be the sole 
criterion for management decisions. For example, parameters such as the mating 
system, morphological diversity, life history, and local adaptation should also be 
considered. 

The importance of preserving several populations of an endangered species 
cannot be overemphasized, even in cases where no genetic variation was detected 
via allozymic analyses. Genetic variation for other biochemical characters or 
morphological characters may exist. Saving several populations increases the 
probability that additional genetic variation will be preserved. Furthermore, if 
only one or two populations are preserved, the species is in danger of extinction 
due to catastrophic events such as floods or fires. The preservation of additional 
populations reduces this risk. Finally, each endemic species is distinct in its genetic 
attributes. There are no unfailing generalizations; therefore each endemic species 
of interest should be examined for its genetic properties and the factors that affect 
them before management decisions are made. 



222 ALISO 

ACKNOWLEDGMENTS 

Thanks to Frank Lang of Southern Oregon State College for taking us Benson­
tel/a-hunting and for contributing to the electrophoretic analysis of Bensoniella 
oregona. We also thank Bryan Ness and Paul Wolf for technical assistance. The 
manuscript was improved by the helpful comments of Jeffrey Karron and an 
anonymous reviewer. 

LITERATURE CITED 

Crawford, D. J., and E. B. Smith. 1982. Allozyme variation in Coreopsis nuecensoides and C. 
nuecensis (Compositae), a progenitor-derivative species pair. Evolution 36:379-386. 

---, T. F. Stuessy, and M. Silva 0. 1987. Allozyme divergence and the evolution of Dendroseris 
(Compositae: Lactuceae) on the Juan Fernandez Islands. Syst. Bot. 12:435-443. 

Gottlieb, L. D. 197 4. Genetic confirmation of the origin of Clarkia Ungulata. Evolution 28:244-
250. 

Hamrick, J. L. 1983. The distribution of genetic variation within and among natural plant popu­
lations. In C. M. Schonewald-Cox, S. M. Chambers, B. MacBryde, and L. Thomas [eds.], 
Genetics and conservation. Benjamin/Cummings, Menlo Park, Calif. 

---, Y. B. Linhart, and J. B. Mitton. 1979. Relationships between life history characteristics and 
electrophoretically detectable genetic variation in plants. Ann. Rev. Ecol. Syst. 10:173-200. 

Hitchcock, C. L., A. Cronquist, M. Ownbey, and J. W. Thompson. 1961. Vascular plants of the 
Pacific Northwest, part 3. Univ. of Washington, Seattle. 

Karron, J. D. 1987. A comparison of levels of genetic polymorphism and self-compatibility in 
geographically restricted and widespread congeners. Evol. Ecol. 1:47-58. 

Lowrey, T. K., and D. J. Crawford. 1985. Allozyme divergence and evolution in Tetramolopium 
(Compositae: Astereae) on the Hawaiian Islands. Syst. Bot. 10:64-72. 

Ness, B. D., D. E. Soltis, and P. S. Soltis. 1989. Autopolyploidy in Heuchera micrantha (Saxifra­
gaceae). Amer. J. Bot. 76:614-626. 

Rieseberg, L. H., and D. E. Soltis. 1987. Allozymic differentiation between Tolmiea menziesii and 
Tellima grandiflora (Saxifragaceae). Syst. Bot. 12:154-161. 

Sa vile, D. B. 0. 197 5. Evolution and biogeography of Saxifragaceae with guidance from their rust 
parasites. Ann. Missouri Bot. Gard. 62:354-361. 

Smith, J.P., Jr., and J. 0. Sawyer, Jr. 1988. Endemic vascular plants of northwestern California 
and southwestern Oregon. Madroiio 35:54-69. 

Soltis, D. E. 1980. A biosystematic study of Sullivantia and related studies in the Saxifragaceae. 
Ph.D. Thesis, Indiana University, Bloomington. 

--. 1982. Allozymic variability in Sullivantia (Saxifragaceae). Syst. Bot. 7:26-34. 
---. 1985. Allozymic differentiation among Heuchera americana, H. parviflora, H. pubescens, 

and H. villosa (Saxifragaceae). Syst. Bot. 10:193-198. 
---. 1988. Karyotypes of Bensoniella, Conimitella, Lithophragma, and Mitella, and relationships 

in Saxifrageae (Saxifragaceae). Syst. Bot. 13:64-72. 
---,C. H. Haufler, D. C. Darrow, and G. J. Gastony. 1983. Starch gel electrophoresis of ferns: 

a compilation of grinding buffers, gel and electrode buffers, and staining schedules. Amer. Fern 
J.73:9-27. 

---, and P. S. Soltis. 1989. Genetic consequences of autopolyploidy in Tolmiea menziesii (Sax­
ifragaceae). Evolution 43:586-594. 

---,---,and K. D. Bothel. 1990. Chloroplast DNA evidence for the origins of the monotypic 
Bensoniella and Conimitella (Saxifragaceae). Syst. Bot.: In press. 

Soltis, P. S., and D. E. Soltis. 1990. Genetic variation within and among fern populations. Amer. 
Fern J.: In press. 

--,--,and P. G. Wolf. 1990. Allozymic divergence in North American Polystichum (Dryop­
teridaceae). Syst. Bot. 15:205-215. 

Witter, M. S., and G. D. Carr. 1988. Adaptive radiation and genetic differentiation in the Hawaiian 
silversword alliance (Compositae: Madiinae). Evolution 42:1278-1287. 

Wolf, P. G., D. E. Soltis, and P. S. Soltis. 1990. Electrophoretic and chloroplast-DNA variation in 
diploid and autopolyploid Heuchera grossulariifolia (Saxifragaceae). Amer. J. Bot. 77:232-244. 

s~ 
G 

Cc 

I 

I 

Be• 
c 

E 

Eln­

C 

Lc 



ALISO 

Is Benson­
tensoniella 
lance. The 
)nand an 
I 

~ides and C. 
186. 
r Dendroseris 

tion 28:244-

plant popu­
iomas [eds.], 

I 

lteristics and 
j:I73-200. 
?!ants of the 
r 

lPatibility in 

VOLUME 13, NUMBER I 223 

FOOTNOTE 

1 Based on a lecture presented by Pamela S. Soltis at the Fifth Annual Southwestern Botanical 
Systematics and Evolution Symposium, Endemism, 19-20 May 1989, Rancho Santa Ana Botanic 
Garden, Claremont, California 91 711. 

Appendix I. Collection data, enzymes examined, and loci interpreted for populations of Conimitella 
williamsii, Bensoniella oregona, and Elmera racemosa. Electrophoretic procedures followed Soltis, 
Haufler, Darrow, and Gastony (1983). 

Conimitella williamsii 
Collection data: 

Colorado. Summit Co.: 
Ute Pass, along stream flowing into Blue River, Soltis 1508. 

Wyoming. Sublette Co.: 
Hoback River, 5.4 mi N of Bondurant, Soltis 1500. 
Hoback River, 5.9 miN of Bondurant, Soltis 1496. 

Enzymes examined: 
Aldolase (ALD), Catalase (CAT), Fluorescent Esterase (FE), Leucine Aminopeptidase (LAP), 

Malate Dehydrogenase (MD H), Phosphoglucoisomerase (PGI), Phosphoglucomutase (PGM), 
Shikimate Dehydrogenase (SkDH), Triosephosphate Isomerase (TPI) 

Loci interpreted: 
Aid, Cat, Fe-1, Fe-2, Fe-3, Lap-1, Lap-2, Mdh-1, Mdh-2, Mdh-3, Mdh-4, Pgi-1, Pgi-2, Pgm-1, 

Pgm-2, Skdh, Tpi-1, Tpi-2 

Bensoniella oregona 

Collection data: 
Oregon. Josephine Co.: 

Bear Camp Pasture, Lang, Soltis, & Soltis s.n. 
USFS Rd. 2309, I mi from USFS Rd. 23, Lang, Soltis, & Soltis s.n. 
USFS Rd. 2309, 0.25 mi from USFS Rd. 23, Lang, Soltis, & Soltis s.n. 
Meadow off of USFS Rd. 2308, Lang, Soltis, & Soltis s. n. 

Enzymes examined: 
Catalase (CAT), Fluorescent Esterase (FE), Glyceraldehyde 3-phosphate Dehydrogenase 

([NAD]G3PDH), Isocitrate Dehydrogenase (IDH), Leucine Aminopeptidase (LAP), Malate 
Dehydrogenase (MDH), Phosphoglucoisomerase (PGI), Phosphoglucomutase (PGM), Shi­
kimate Dehydrogenase (SkDH), Superoxide Dismutase (SOD), Triosephosphate Isomerase 
(TPI) 

Loci interpreted: 
Cat, Fe-1, Fe-2, Fe-3, G3pdh, Idh, Lap, Mdh-1, Mdh-2, Mdh-3, Mdh-4, Pgi-1, Pgi-2, Pgm-1, 

Pgm-2, Skdh-1, Skdh-2, Sod-1, Sod-2, Tpi-1, Tpi-2 

Elmera racemosa 
Collection data: 

Washington. Kittitas Co.: 
Headwaters of Beverly Creek, Soltis & Soltis 2179. 

Enzymes exmained: 
Glyceraldehyde 3-phosphate Dehydrogenase ([NAD]G3PDH), Isocitrate Dehydrogenase (IDH), 

Leucine Aminopeptidase (LAP), Malate Dehydrogenase (MDH), Phosphoglucoisomerase 
(PGI), Phosphoglucomutase (PGM), Shikimate Dehydrogenase (SkDH), Triosephosphate 
Isomerase (TPI) 

Loci interpreted: 
G3pdh, Idh, Lap, Mdh-1, Mdh-2, Mdh-3, Pgi-1, Pgi-2, Pgm-1, Pgm-2, Skdh, Tpi 
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