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Bringing van Hiele and Piaget Together:

A Case for Topology in Early Mathematics Learning

Whitney George

Department of Mathematics, University of Wisconsin-La Crosse, La Crosse, WI, USA
wgeorge@uwlax.edu

Abstract

Topological concepts arise naturally in young children’s spatial reasoning yet
topology is not part of our current K-12 education. In this paper, we extend the
van Hiele model of spatial reasoning using Piaget’s theory of representational
space. By merging these two existing theories, we are able to place topological
concepts in a context that is age appropriate.

1. Introduction

For a few months in 2012, a problem was circulating social media sites popu-
lar among bloggers. Given a platform for sharing ideas, many people posted
solutions and comments. While many of the solutions are interesting to
read, the comments proved to be more interesting. Here is one wording of
this problem followed by a variety of comments from different blogs [17].

Example. This problem can be solved by preschool children in 5-10 minutes,
by a programmer in 1 hour, and by people with higher education...well check
it out for yourself ! If

8809 = 6, 3333 = 0, 7111 = 0, 5555 = 0,

2172 = 0, 8193 = 3, 6666 = 4, 8096 = 5,

1111 = 0, 7777 = 0, 3213 = 0, 9999 = 4,

7662 = 2, 7756 = 1, 9313 = 1, 6855 = 3,

0000 = 4, 9881 = 5, 2222 = 0, 5531 = 0,

then 2581 =?

Journal of Humanistic Mathematics Vol 7, No 1, January 2017

http://scholarship.claremont.edu/jhm/
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Comments:

1. Alix: My preschooler got it in 3 seconds. I tried to have him explain
how he got it. So confused. But I’m thinking that the question mark
looks like a 2 so it must be 2 [8].

2. Micah: Did the preschooler have complete information about the prob-
lem? It’s obviously meant to be confusing [8].

3. El Guapo: Nope. didn’t even come close. Brain too highly developed, I
s’pose... [12].

4. Midas: This problem is bollocks. I didn’t solve it, and yet I have no
trouble solving Mensa problems. I don’t think they mean anything either
to be fair [12].

5. (Response to Midas) I am a member of Mensa. The problem is valid
and has an answer and very logical reasoning. You just have to move
out of an adult frame of mind and into a child’s frame of mind. They
think more visually at a young age. Preschoolers cannot add, and count-
ing is limited. But what can they do? See consistent shapes because
that’s what they’ve been doing. . . squares, triangles, CIRCLES. . . [12].

Here is a spolier: The solution to the problem is obtained by counting the
number of holes in each set of numbers. For instance, 8 has two holes, 4
has one hole, and 2 has zero holes. Therefore, 842 is 3.1 The problem
wording implies that the more mature and more educated you are, the less
likely you are to figure out this relationship. The comments also support this
idea. Yet, counting holes is fundamental in topology, which is a non-trivial
subfield of mathematics. Why are more sophisticated thinkers less likely to
access topological intuition? Compare the task of counting holes needed to
solve the problem to counting angles in a regular polygon. Many adults
differentiate a triangle from a rectangle by counting the number of angles. If
topological ideas were taught in K-12 mathematics education, would counting
holes of shapes be as natural as counting angles of a regular polygon?

Topology forms a general foundation for mathematics and promotes its unity
[4]. It is fundamental to many areas of mathematics. In many cases, however,
the first topology course students can take is an upper-division college course.
Yet many researchers, such as Piaget, Inhelder, Laurendeau and Pinard,
believe that topological knowledge precedes geometric knowledge [7, 11].

1We will not comment on the abuse of notation involving the “=” sign.
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So, what exactly is the difference between topological knowledge and geo-
metric knowledge? One difference is that geometry is an area that uses a lot
of measuring while topology does not involve measuring in the traditional
sense. In topology, a rope of length 5 ft is equivalent to a rope of length 6
inches. But, ropes of two different lengths would be considered geometrically
different. In topology, it is helpful to imagine objects made out of clay. As
long as you do not rip, tear, or puncture the clay, you can turn one object
into another. For topologists, a donut is the same as a coffee cup!2

Many topological concepts are observable and could be explored by curious
young minds. While it would be incorrect to assume that all material in
an upper-division topology course is appropriate material for our schools,
we are missing out on a lot of opportunities to teach a fundamental area
of mathematics if we stay away from topology altogether. Here is a sample
of missed opportunities for emphasizing topological concepts within basic
activities. When a student bends a pipe cleaner from a shape of a triangle
to a circle, they could be told this is a mathematical (topological) operation
that allows us to think of a circle as a triangle. When a child cuts a strip
of paper into two pieces, they could explore the connectedness properties
of the paper: the paper was at first connected and after the cut it became
disconnected. Lastly, consider when children play with clay. They often make
shapes (balls, cylinders, cubes, etc) and then “smash” the clay objects. This
is a great opportunity to explore the similarities and differences between balls,
cylinders, and disks (flattened balls). It turns out that a ball is topologically
equivalent to a disk but not to a cylinder because a cylinder has a “hole”
that goes through it while balls and disks do not have holes. (Figure 1).

Figure 1: From left to right: A ball, disk, and cylinder.

2For a visual proof of this fact, see https://www.youtube.com/watch?v=4iHjt2Ovqag
or https://en.wikipedia.org/wiki/File:Mug_and_Torus_morph.gif, both accessed
on January 24, 2017.

https://www.youtube.com/watch?v=4iHjt2Ovqag
https://en.wikipedia.org/wiki/File:Mug_and_Torus_morph.gif
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The goal of this paper is threefold. The first goal is to show that introduc-
ing topological terms and teaching topological concepts in our schools could
be beneficial. We could thus offer our students a framework for ideas and
concepts that we observe in everyday life. The second goal is to extend the
van Hiele model of geometric thinking using the topological framework given
by Piaget and Inhelder in The Child’s Conception of Space [11]. Lastly, I
would like to convince the reader that there is a need to do research to see
the effects of teaching topological concepts to young children. While re-
searchers such as Piaget and Inhelder have done studies that suggest that
children understand topological concepts, I have not heard of a complete early
education curriculum which explicitly teaches topological concepts, though
also see [5] for the case study of a seven-year-old girl who participated in
an eighteen-week teaching experiment aiming to model the development of
her intuitive and informal topological ideas. Educators who work with young
children often observe misunderstandings of certain concepts. Perhaps by in-
troducing topological concepts and giving both educators and students new
tools and techniques for working with shapes, these misconceptions could be
addressed using a topological viewpoint. This, in turn, could lead to new
teaching methods.

2. Spatial thinking in early development

In this section, we review two preexisting theories for spatial thinking: The
van Hiele model of geometric thinking and Piaget’s model for the develop-
ment of children’s representational thinking about the nature of space. One
of the inherent differences between these two theories is that progression
using the van Hiele model is instruction-based while progression through Pi-
aget’s stages is developmental. Nevertheless, there are similarities between
the theories in terms of how they describe these stages. In the next section,
we will use Piaget’s theory to extend the van Hiele model. This will allow us
to place topological concepts within an early stage of a spatial framework.

2.1. The van Hiele model

The van Hiele model of geometric thinking was developed in 1957 by two
Dutch mathematics educators, P.M. van Hiele and Dina van Hiele-Geldof, see
a relatively recent exposition of the model by van Hiele in [15]. The model
became well-known in the US after Izaak Wirszup presented the model to
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the National Council of Teachers of Mathematics in 1974; for an overview of
this history see [16]. The original van Hiele model consists of five levels of
learning and each level has five sequential stages of instruction. The levels
can be described as naturally inductive [6, page 206]. The advancement
from one level to the next is more dependent on instruction than biology
[2]. So, while age is not a factor for determining at which level a student
is performing, it is nonetheless used to some degree to align the van Hiele
model to K-12 teaching.

There are five ordered levels in the van Hiele Model of Geometric Thinking:
(1) visualization, (2) analysis, (3) informal deduction, (4) formal deduction,
and (5) rigor. At Level 1, children can name and recognize shapes, but spe-
cific properties may not be identified. They might recognize characteristics,
but these characteristics are not used for recognizing the shapes. At Level 2,
children start to use vocabulary relating to properties. Size and orientation
become irrelevant as they begin to focus on specific properties of a shape. At
Level 3, children recognize relationships between shapes and are able to rea-
son about relationships. At Level 4, children begin to understand deduction,
postulates, theorems, and proofs. At Level 5, children begin to understand
how to work with axiomatic systems.

Since the Van Hiele progression in geometric thinking is not age-based, de-
veloping a geometric grade-based curriculum using the van Hiele model can
be challenging, but some attempts have been made. For example, students
in primary grades are assumed to be at Level 2 and many preschoolers are
at Level 1, which is described below:

Level 13: Children learn to recognize geometric figures such as
squares and circles by their holistic physical appearance. For
example, a given figure is a circle because it looks like a clock.
Children at this level do not think about the attributes or prop-
erties of shapes [1].

According to the Pennsylvania State Team of the Mid-Atlantic Eisenhower
Consortium for Mathematics and Science Education at Research for Better
Schools, a typical high school geometry class is appropriate for students at

3The original van Hiele model has Levels 0–4. Today these are often relabeled as Levels
1–5. Copley uses the 0–4 scaling which I have adjusted to match the 1–5 scaling.
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the van Hiele Level 4 and a typical college class is appropriate for students
at Level 5 [18]. But, this might be a misalignment of levels with age groups.
A study by Usiskin showed that 70% of high school graduates were at the
first, second, or third level of van Hiele thinking, with about 50% of these
high school graduates performing at the first level of thinking [13].

One of the characteristics of the van Hiele model is that instruction at a
higher level than the level of the student can inhibit learning and can lead
to frustration [16, 14]. Therefore, if a high school geometry class is aimed
at Level 4 students but the students taking the class are at Levels 1–3, then
their learning may be inhibited. It is important that students are taught at
their level. Memorization of definitions and algorithms does not progress a
student through the van Hiele levels of thinking [14].

2.2. Piaget’s Theory of Spatial Development

We now turn our attention to Jean Piaget and Bärbel Inhelder. Piaget and
Inhelder conducted a study aimed at understanding how representational
space develops from perception in children publishing their findings in The
Child’s Conception of Space [11]. Here, perception is the knowledge of objects
from direct contact (sensorimotor engagement) while representation is the
knowledge of objects in their absence (mental representations) [11].

For the Piaget-Inhelder experiments, children ranging from 2-7 years of age
performed three tasks. The first task had younger children hold familiar
objects under a table to see if they could recognize the given object. In
the second task, children were given cardboard cut-outs with their hands
hidden and various ways of identifying the object (by name, by picture, etc).
The cutouts increased in complexity in each section, starting with simple
and symmetric objects, followed by more complicated symmetric objects,
then asymmetric objects with straight lines, and lastly “purely topological”
objects (irregular surfaces pierced by one or two holes, open or closed rings,
two intertwined rings, etc.; see Figure 2).4 The third task had children touch
hidden objects and draw what they touched.

4It should be noted that all objects are topological. Therefore, when Piaget and In-
helder describe an object as purely topological, they are describing shapes that are distin-
guished by holes and linkages.
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Figure 2: Upper left: Shapes used in Task 2 Section 1 (simple and symmetric). Upper
right: Shapes used in Task 2 Section 2 (more complicated and symmetric). Lower Left:
Shapes used in Task 2 Section 3 (asymmetric). Lower right: Shapes used in Task 2 Section
4 (topological).

From this experiment, Piaget and Inhelder developed a theory about the
development of spatial sense.5 They theorized that the representational space
that develops first is topological in nature as opposed to Euclidean. Here,
topological properties for Piaget and Inhelder are characterized as proximity,
separation, order, and continuity [10].

The Piaget-Inhelder theory consists of four stages. Stage 0 (age 0–2) is when
children develop perceptual space; this is how one perceives an object in its
presence. In Stages 1-3 (age 2.5–12 years), children develop representational
space; that is, the capacity to hold on to a mental representation of an object
in its absence. At the beginning of Stage 1 (1A), children can identify fa-
miliar objects such as clocks or houses, but not idealized or abstract shapes
such as circles or triangles. Children later progress to Stage 1B where they
begin to identify shapes that are topological in nature, as opposed to Eu-
clidean in nature. In other words, children begin to view a cardboard ring as
different from a cardboard solid circle. During Stage 2, children start to have
a crude capacity to differentiate rectilinear and curvilinear (2A) which later
progresses to complete differentiation of the classes of rectilinear and curvi-
linear objects (2B). Lastly in Stage 3 (age 7–12), children can distinguish
complex forms and can construct mental images by operational activities.

5We must point out that Piaget and Inhelder’s theory is not merely about spatial sense
but describes cognitive development in a broader sense. In the following we are exclusively
interested in the parts of their work that involve spatial reasoning.
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It should be noted that the Piaget-Inhelder experiments were conducted by
other researchers such as Lovell [9] and Martin [10] resulting in different
conclusions. While these researchers observed some understanding of topo-
logical notions in the children, these children also demonstrated some compe-
tence with geometric concepts, casting doubt on Piaget and Inhelder’s claim
that topological concepts precede geometric concepts. Nevertheless, what
is important for this article is that in these follow-up studies, too, children
displayed some understanding of topological concepts at an early age.

3. An Extension of Van Hiele’s Model of Geometric Thinking

In this section, I extend the van Hiele model using Piaget’s theory of spatial
development. While Piaget’s theory is age-based and the van Hiele model
is instruction-based, there is a way to merge the two theories into a larger
and more comprehensive theory of spatial thinking. I use Hoffer’s 1993 de-
scription of the van Hiele levels [6]. In particular, at level n, the objects
studied are now the statements that were explicitly made at level n − 1 as
well as explicit statements that were only implicit at level n − 1. In effect,
the objects at level n consist of extensions at level n− 1 [6, page 208].

The van Hiele model of geometric thinking is a commonly used method to
describe how children develop geometric and spatial sense [1]. At the first
level of the van Hiele model, children can differentiate between a rectangle
and a square [16], but this is not how spatial thinking begins. To advance
into the van Hiele Level 1, a child needs to have successfully transitioned
through the van Hiele phases of earlier levels. So, what comes before Level
1? For instance, a four-year-old cannot differentiate a rectangle and a square
[11, page 21], and therefore is not yet at Level 1. We use Copley’s description
of Level 16, where children recognize a circle because it looks like a clock [1,
page 107], and we note that this agrees with the abilities of the children
labeled at Stage 2A by Piaget. Three examples of children at Piaget’s Stage
2A are; Eri (age 4 years, 4 months) who is given a circle and describes it as
a wheel [11, page 32], Char (5 years, 2 months) who describes a rhombus as
two roofs [11, page 32], and Ast (3 years, 2 months) who describes a notched
circle as a rake [11, page 31]. From these descriptions, we can conclude that
it is reasonable to associate van Hiele’s Level 1 with Piaget’s Stage 2A.

6Recall once again that Copley uses the scaling the parallel scaling 0–4 for the levels.
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We can verify this association by examining van Hiele’s Level 2 and Piaget’s
Stage 3. At this level, children begin to learn isolated characteristics or
attributes of the forms, such as “a square has four equal sides” [1]. During
Piaget’s Stage 3, children are able to draw stars with the correct number of
points, shapes with right angles, and they have a sense of orientation [11,
page 36]. They also can differentiate objects by side lengths [11, page 37].
In particular, a square would be differentiated from a rectangle and a child
in this stage would be able to recognize that a square has four equal sides.

After verifying that the van Hiele Level 1 and Level 2 align with Piaget’s
Stage 2 and Stage 3, respectively, it is natural to define a preceding Level
0 for the van Hiele’s model using Piaget’s Stage 1. We do so by defining
Level 0 as the stage where children can differentiate between topologically
distinct objects such as a ring (not filled in) and a circle (filled in), but cannot
differentiate geometrically distinct objects such as a circle from a square. It
is here that we are able to place topological notions into an early level of a
geometric/spatial framework. Here are three examples from Piaget’s study
that would be placed into this Level 0:

1. Ani (age 3 years 5 months) is sure that a square is the same as a circle
but can differentiate a ring (not filled in) from a circle (filled in);

2. Don (age 3 years, 6 months) can distinguish a ring, a two holed surface,
and a half-opened ring, but cannot distinguish a circle and an ellipse;

3. Sim (4 years) cannot distinguish a triangle from a circle or square, but
correctly identifies an open ring, two intertwined rings, and an irregular
surface with one hole [11, page 26].

In each one of these examples, the children distinguish between topologically
distinct objects and associate topologically equivalent objects. Therefore,
part of the transition from our Level 0 to Level 1 in the van Hiele model is
where children develop a sense of basic geometric properties such as straight
or curved.

4. Concluding Remarks

Outside of the math community, topology is mostly an unfamiliar subject.
But it does not have to be. From a very early age, children have a topological
understanding that our K-12 curriculum currently does not nourish. By
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finding a place for topological notions within the van Hiele model, we can
begin a conversation about engaging students with topological ideas alongside
Euclidean ideas at an early age. In particular, given the discussion above,
we can justifyably argue that certain topological concepts are appropriate
topics for preschoolers.

The extension of the van Hiele model described here offers a coherent and
comprehensive framework to describe the development of geometric and topo-
logical intuition and understanding in young learners. My hope is that it may
help educators encourage and nurture the development of spatial reasoning
and understanding in students. We can, for instance, use the van Hiele
phases of learning at Level 0 to help students transition successfully to Level
1. Furthermore, by building a strong Level 0 basis, students will be prepared
for Level 1 since the objects at Level 1 are extensions from Level 0.

I believe the next step is to investigate further how topological concepts are
understood by children in early education and how they relate to geometric
concepts. We should also research how nurturing a preexisting topological
intuition might support and advance the geometric knowledge of students.
If the K-12 mathematics curriculum begins to incorporate some topological
ideas, we might possibly observe many beneficial consequences. For one, stu-
dents’ geometric intuition could be strengthened if we routinely encourage
them to compare and contrast topological and geometrical ideas. Also, if in-
troduced to topology at an earlier stage, students might develop familiarity
with an area of mathematics that has in modern times penetrated almost all
other branches of mathematics [4]. This might help students make mathe-
matical connections earlier in their education between areas of mathematics
that might not otherwise be made, using topology as the common thread.
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