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ON LATTICES GENERATED BY FINITE ABELIAN GROUPS∗

ALBRECHT BÖTTCHER† , LENNY FUKSHANSKY‡ , STEPHAN RAMON GARCIA§ , AND

HIREN MAHARAJ‡

Abstract. This paper is devoted to the study of lattices generated by finite Abelian groups.
Special species of such lattices arise in the exploration of elliptic curves over finite fields. In the case
where the generating group is cyclic, they are also known as the Barnes lattices. It is shown that for
every finite Abelian group with the exception of the cyclic group of order four these lattices have a
basis of minimal vectors. Another result provides an improvement of a recent upper bound by M.
Sha for the covering radius in the case of the Barnes lattices. Also discussed are properties of the
automorphism groups of these lattices.

Key words. well-rounded lattice, finite Abelian group, minimal vector, covering radius, auto-
morphism group, Toeplitz determinant
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1. Introduction. The lattice generated by a finite Abelian (additive) group
G = {0, g1, . . . , gn} of order |G| = n+ 1 is defined as

L(G) := {X = (x1, . . . , xn,−x1 − · · · − xn) ∈ Zn+1 : x1g1 + · · ·+ xngn = 0}.

We think of this lattice as a sublattice of full rank n of the root lattice

An := {(x1, . . . , xn,−x1 − · · · − xn) ∈ Zn+1}.

We denote by d(G) the minimum distance in L(G), that is, with ‖ · ‖ denoting the
Euclidean norm,

d(G) := min{‖X‖ : X ∈ L(G) \ {0}},

and we let S(G) stand for the set of nonzero lattice vectors of minimal length, that
is, for the set of all X ∈ L(G) with ‖X‖ = d(G). The lattice L(G) is said

• to be well-rounded if S(G) contains n linearly independent vectors,
• to be generated by minimal vectors if spanZ S(G) = L(G), that is, if each

vector in L(G) is a linear combination with integer coefficients of vectors in
S(G),

• to have a basis of minimal vectors if S(G) contains n vectors such that each
lattice vector is a linear combination with integer coefficients of these n vec-
tors.
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Clearly, each of these properties implies its predecessor. Lattices in Euclidean spaces
satisfying any of the above properties are of importance in extremal lattice theory,
discrete geometry, and combinatorics. Such lattices usually have a high degree of
symmetry, which allows for some classical discrete optimization problems to be re-
duced to them (see [17] for detailed information). It is especially interesting when
lattices with these properties come from algebraic constructions, hence inheriting ad-
ditional algebraic structure. For instance, there are well-known lattice constructions
from ideals in number fields [2], [3], ideals in polynomial rings [16], and curves over
finite fields [22, pp. 578–583]. In addition to their intrinsic theoretical value, such
lattices also have many applications, for instance in coding theory and cryptography,
as described in [22] and [16], respectively.

Our present construction of lattices from Abelian groups generalizes the special
case of a family of lattices coming from elliptic curves over finite fields as in [22], which
has recently been investigated in [10] and [20]. It is our goal to show that these lattices
have some remarkable geometric properties, including those listed above. Here is our
first observation. We abbreviate Z/nZ to Zn.

Theorem 1.1. Except for the lattice L(Z4), which is not well-rounded, the lattice
L(G) is well-rounded for every finite Abelian group G. The minimum distance is

√
8

for G = Z2, is
√
6 for G = Z3, and is equal to

√
4 = 2 for all other finite Abelian

groups G.
Our first main result is as follows.
Theorem 1.2. For every finite Abelian group G �= Z4, the lattice L(G) has a

basis of minimal vectors.
Theorem 1.1 implies that L(Z4) does not possess a basis of minimal vectors. Of

course, Theorem 1.2 is stronger than Theorem 1.1. We nevertheless give an indepen-
dent proof for Theorem 1.1, because well-roundedness may be proved by arguments
that are much simpler than those we have to invoke to establish Theorem 1.2.

One of the subtleties of lattices, discovered by Conway and Sloane [8], is that a
lattice generated by minimal vectors need not have a basis of minimal vectors. More
recently, it has been shown [18] that this phenomenon takes place for some lattices
in dimensions ≥ 10, but not in lower dimensions. Theorem 1.2 implies that this does
not happen for the class of lattices explored in this paper.

The lattices we study here include the lattices which come from elliptic curves
over finite fields, namely, L(G), where G is the group of rational points on an elliptic
curve over a finite field. These groups were completely described by Rück [19], and
they are always of the form G = Zm1 × Zm2 , the direct product of two cyclic groups
(with further restrictions on the possible values of (m1,m2)). For lattices coming from
elliptic curves over finite fields, paper [10] contains Theorem 1.1 and the weaker version
of Theorem 1.2 which states that for |G| ≥ 5 the lattice L(G) is generated by minimal
vectors, while Sha [20] proved Theorem 1.2 for those lattices. The contribution of the
present paper is that we extend these results to general finite Abelian groups G.

Well-rounded lattices play a crucial role in the theory of sphere packing (see [9],
[17]), where maximal nonoverlapping balls of equal radius (equal to half of the minimal
distance of the lattice) are centered at the lattice points with the goal of covering the
largest possible proportion of the ambient space. This proportion, called the packing
density of the lattice, is equal to the volume of one such ball divided by the volume
of a fundamental domain of the lattice (equal to the determinant of the lattice). The
lattice packing problem consists in finding a lattice of prescribed dimension whose
packing density is maximal. This emphasizes the importance of knowing the minimal
distance and the determinant of the lattice.
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Our second topic of investigation is related to another classical optimization prob-
lem on lattices, the sphere covering problem (again, see [9], [17]). The goal is to cover
the ambient space completely by balls of equal radius (called the covering radius of
the lattice) centered at the lattice points, minimizing the proportion of overlap of
these balls. A variety of classical general bounds for covering radii of lattices (also
referred to as inhomogeneous minima) can be found in [13, Chap. 2, section 13]. Here
we present estimates for the covering radius μ(G) of L(G). By definition, μ(G) is the
smallest number μ such that

spanRAn := {(ξ1, . . . , ξn,−ξ1 − · · · − ξn) ∈ Rn+1 : ξ1, . . . , ξn ∈ R}
is covered by n-dimensional closed Euclidean balls in spanRAn of radius μ centered
at the points of L(G). The covering radii for the small groups are

μ(Z2) =
√
2 ≈ 1.4142,

μ(Z3) =
√
2 ≈ 1.4142,

μ(Z4) =
3

2
= 1.5000, μ(Z2 × Z2) =

√
3 ≈ 1.7321,

μ(Z5) =
√
2 ≈ 1.4142,

μ(Z6) =

√
17

8
≈ 1.4577.

For general finite Abelian groups G, we obviously have μ(G) ≥ μ(An), where μ(An)
is the covering radius of An, which is known to be

μ(An) =

{
1
2

√
n+ 1 if n is odd,

1
2

√
n+ 1− 1/(n+ 1) if n is even;

see [9, Chap. 4, section 6.1]. In [20], it is shown that μ(G) ≤ μ(An) +
√
2. This

is a significant improvement of the estimate μ(G) ≤ n, which, for n ≥ 5, follows
from Jarnik’s classical bound via successive minima [15] along with the fact that G is
well-rounded for n ≥ 5 due to Theorem 1.1.

If G = Zn+1 is the cyclic group of the numbers 0, 1, . . . , n with addition modulo
n+ 1, then L(G) is the sublattice of An formed by the points satisfying

x1 + 2x2 + · · ·+ nxn = 0 modulo n+ 1.

These lattices probably first appeared in [1] and are therefore frequently referred to
as the Barnes lattices. Here is another main result of this paper. It provides us with
an improvement of the upper bound μ(An) +

√
2 for cyclic groups, that is, for the

Barnes lattices.
Theorem 1.3. For every n ≥ 2,

μ(Zn+1) <
1

2

√
n+ 4 log(n− 1) + 7− 4 log 2 + 10/n.

The data (chopped after the fourth digit after the decimal point) for several values
of n are shown in Table 1. We remark that, for n ≥ 4, Theorem 1.3 even holds with
4 log(n− 1)− 4 log 2 replaced by the slightly smaller number 4

∑n−1
k=3 (1/k).

Third, we investigate a certain property of the automorphism groups of our lat-
tices L(G), which is intrinsically related to their algebraic construction. The auto-
morphism group Aut(L) of a full rank sublattice L of some lattice A is defined as the
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Table 1

n µ(An) Theorem 1.3 µ(An) +
√
2

3 1.0000 1.8257 2.4142
4 1.0954 1.9443 2.5097
5 1.2247 2.0477 2.6390
6 1.3093 2.1408 2.7235

20 2.2887 3.0210 3.7029
50 3.5700 4.1831 4.9842

100 5.0247 5.5387 6.4389
1 000 15.8193 16.0613 17.2335

10 000 50.0025 50.1026 51.4167
100 000 158.1147 158.1536 159.5289

1 000 000 500.0002 500.0149 501.4145

group of all maps of L onto itself which extend to linear isometries of spanRA. It is
easily seen that in our setting, L(G) ⊂ An, a map τ ∈ Aut(L(G)) is necessarily of the
form

τ(X) = τ

(
x1, . . . , xn,−

n∑
i=1

xi

)
=

(
Ux,−

n∑
i=1

(Ux)i

)

with some matrix U ∈ GLn(Z). Here x = (x1, . . . , xn)
�. We therefore identify

Aut(L(G)) with a subgroup of GLn(Z). It is a well-known fact that any finite subgroup
of GLn(Z) is the automorphism group of some lattice. In all dimensions except for
n = 2, 4, 6, 7, 8, 9, 10 (dimensions with exceptionally symmetric lattices) the largest
such group is (Z/2Z)n�Sn, the automorphism group of the integer lattice Zn; here Sn

is the symmetric group on n letters viewed as the subgroup of GLn(Z) consisting of the
permutation matrices (see [9], [17], and [21] for more information on automorphism
groups of lattices). Lattices with large automorphism groups usually have a large
degree of geometric symmetry, which often correlates with having many minimal
vectors and well-roundedness. In particular, the relation between certain properties of
Aut(L)∩Sn and the probability of L being well-rounded has recently been investigated
in [11], [12]. Here we prove the following.

Theorem 1.4. For every finite Abelian group G,

Aut(L(G)) ∩ Sn
∼= Aut(G),

where Aut(G) is the group of automorphisms of G.
This result, along with a characterization of the automorphism groups of finite

Abelian groups, for which see, e.g., [14], helps to understand the symmetries of our
family of lattices L(G).

The paper is organized as follows. Section 2 is devoted to the determinant of L(G).
There we first present a short derivation based on a general fact from lattice theory
and then give a second proof, which uses only elementary facts for determinants,
mainly the Cauchy–Binet formula. The proofs of Theorems 1.1 and 1.2 we give here
occupy sections 3 to 6 and use tools from linear algebra only. Again the Cauchy–
Binet formula is always the key. Theorem 1.3 is proved in section 7. The proof
is anew pure linear algebra and makes use of explicit formulas for certain Toeplitz
determinants. Finally, in section 8 we prove Theorem 1.4 and comment on a certain
geometric interpretation of this result.

2. The determinant. A set of n vectors X1, . . . , Xn ∈ L(G) is called a basis if
each vector in L(G) is a linear combination with integer coefficients of these vectors.
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In that case the parallelotope spanned by X1, . . . , Xn is referred to as a fundamental
parallelotope. All fundamental parallelotopes have the same volume. This volume is
denoted by detL(G) and referred to as the determinant of the lattice L(G). Even more
can be said: the parallelotope spanned by n vectorsX1, . . . , Xn ∈ L(G) has the volume
detL(G) if and only if these vectors form a basis of L(G). If X1, . . . , Xn ∈ L(G)
form a basis, then the (n+ 1)× n matrix B whose jth column is constituted by the
n+ 1 coordinates of Xj is called a basis matrix. If B is an arbitrary basis matrix of

L(G), then detL(G) =
√
detB�B, where the determinant on the right is the usual

determinant of an n × n matrix. All these results are standard in lattice theory and
can be found in [9], [13], or [17], for example.

It turns out that detL(G) = |G|3/2 = (n + 1)3/2. The following proof of this
formula is from [20, Proposition 5.1], where it is given for the case when G is a
subgroup of the group of rational points on an elliptic curve over a finite field; it also
holds verbatim for general Abelian groups G. Let L be a sublattice of full rank of
some lattice A ⊂ RN . Think of A as an (Abelian) additive group and consider L as
a subgroup of A. A basic result of lattice theory says that if the quotient group A/L
has finite order |A/L|, then detL/ detA = |A/L|. Now take A = An and L = L(G).
It is known that detAn =

√
n+ 1. The group homomorphism

ϕ : An → G, (x1, . . . , xn,−x1 − · · · − xn) 
→ x1g1 + · · ·xngn

is surjective and its kernel is just L(G). Consequently, An/L(G) is isomorphic to G,
which implies that |An/L(G)| = |G| = n+ 1. It follows that

detL(G)√
n+ 1

=
detL(G)

detAn
= |An/L(G)| = n+ 1,

as asserted.
Here is a purely linear algebra proof of the same determinant formula. We first

exemplify the idea by considering G = Z2 × Z4. The lattice L(G) consists of the
points

(x1, x2, y02, y03, y11, y12, y13,−x1 − x2 − y02 − y03 − y11 − y12 − y13) ∈ Z8

satisfying

x1(1, 0) + x2(0, 1) + y02(0, 2) + y03(0, 3) + y11(1, 1) + y12(1, 2) + y13(1, 3) = (02, 04),

where 02 and 04 are the zeros in Z2 and Z4. We may choose the five numbers yjk ar-
bitrarily, after which x1 and x2 are determined uniquely modulo 2 and 4, respectively.
Taking yjk = 1 and yα,β = 0 for (α, β) �= (j, k), we get x1 + j = 02 and x2 + k = 04,
that is, x1 = −j modulo 2 and x2 = −k modulo 4. Thus, a basis in L(G) is formed
by the five rows

(−j,−k, 0, . . . , 0, 1, 0, . . . , 0, j + k − 1),

the number 1 being at the (j, k)th position in lexicographic order, and by the two
rows

(2, 0, 0, 0, 0, 0, 0,−2), (0, 4, 0, 0, 0, 0, 0,−4),
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which allow us to move x1 and x2 within 2Z and 4Z. It follows that the matrix B�

formed by these seven rows,

B� =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 0 −2
0 4 −4
0 −2 1 1
0 −3 1 2

−1 −1 1 1
−1 −2 1 2
−1 −3 1 3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

is the transpose of a basis matrix B of the lattice L(G). Thus, detL(G) =
√
detB�B.

The Cauchy–Binet formula gives

detB�B = (detB1)
2 + (detB2)

2 +
∑
j,k

(detBjk)
2 + (detB7)

2,

where B1, B2, B7 result from B� by deleting the columns 1, 2, 7, respectively, and Bjk

is the matrix obtained by deleting the column with 1 in the position (j, k). Expanding
the determinants of B1, B2, B7 along the five columns with a single 1, we see that the
squares of these determinants are∣∣∣∣ 0 −2

4 −4

∣∣∣∣2 = 82,

∣∣∣∣ 2 −2
0 −4

∣∣∣∣2 = 82,

∣∣∣∣ 2 0
0 4

∣∣∣∣2 = 82,

and expanding the five determinants detBjk along their four columns with a single 1
we get

(detBjk)
2 =

∣∣∣∣∣∣
2 0 −2
0 4 −4

−j −k j + k − 1

∣∣∣∣∣∣
2

=

∣∣∣∣∣∣
2 0 0
0 4 0

−j −k −1

∣∣∣∣∣∣
2

= 82.

Thus, detB�B = 8 · 82 = 83 = |G|3, as desired.
It is clear how to proceed in the general case G = Zm1 × · · · × Zmk

. Put m =
m1 · · ·mk. Then B� has m−1 rows and m columns and we may employ the Cauchy–
Binet formula to express detB�B as the sum of m squares of determinants as above.
The first k and the last squared determinants are readily seen to be (m1 · · ·mk)

2 = m2.
The m − k − 1 squared determinants corresponding to indices (j1, . . . , jk) are, with
σ := j1 + · · ·+ jk,∣∣∣∣∣∣∣∣∣∣∣

m1 −m1

m2 −m2

. . .
...

mk −mk

−j1 −j2 . . . −jk σ − 1

∣∣∣∣∣∣∣∣∣∣∣

2

=

∣∣∣∣∣∣∣∣∣∣∣

m1 0
m2 0

. . .
...

mk 0
−j1 −j2 . . . −jk −1

∣∣∣∣∣∣∣∣∣∣∣

2

,

which equals (m1 · · ·mk)
2 = m2. Consequently, detB�B = m ·m2 = m3 = |G|3.

3. The small groups. We now turn to the proof of Theorems 1.1 and 1.2. In
this section we introduce some notation and consider a few examples. The examples
will also be used in the proofs in the forthcoming sections.
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We arrange the nonzero elements of G in a column g = (g1, . . . , gn)
� of size n.

Obviously, there are n! possibilities to do this. Then each point

X = (x1, . . . , xn,−(x1 + · · ·+ xn)) ∈ L(G)

may be represented by a column x = (x1, . . . , xn)
� of the same height n. Given

n points X1, . . . , Xn in L(G), we denote by M the n × n matrix composed of the
columns x1, . . . ,xn, and we collect the data in an array g||M . The arrays that may

be obtained in this way will be called admissible for G. We let M̃ stand for the
(n + 1) × n matrix which results from adding the row consisting of the negatives of
the column sums of the matrix M . Thus, n vectors X1, . . . , Xn form a basis in L(G)

if and only if M̃ is a basis matrix, which, because |G|3 = (detL(G))2, is equivalent to

the equality det M̃�M̃ = |G|3.
Clearly, n vectors X1, . . . , Xn are linearly independent if and only if so are the n

columns x1, . . . ,xn. Therefore, in order to prove that L(G) is well-rounded, we have
to find an admissible array g||M in which the matrix M is nonsingular and comes
from points of minimum distance. To prove the stronger property that L(G) has a
basis of minimal vectors, we have to find an admissible array g||M associated with

points of minimum distance such that M̃ is a basis matrix.
The minimum distance is always at least

√
12+12+12+12 = 2 and this distance is

attained exactly at the points X containing two times 1, two times −1, and otherwise
only zeros. If the lattice does not contain such points, the minimum distance must
be at least

√
12 + 12 + 22 =

√
6.

Example 3.1. Let G be Z3 = {0, 1, 2} and let g = (1, 2)�. (The other possibility
would be to put g = (2, 1)�.) Then L(Z3) consists of the integer points (x, y,−x− y)
satisfying x + 2y = 0 modulo 3. By inspection it is easily seen that d(Z3) is

√
6 and

that exactly six points of L(Z3) have minimal distance. Two of them are the points
X1 = (−2, 1, 1) and X2 = (1,−2, 1). The array g||M corresponding to these two
points is

1 −2 1
2 1 −2

.

The matrix M =
(−2 1
1 −2

)
is nonsingular, and hence L(Z3) is well-rounded with the

minimum distance
√
6. We have

M̃ =

⎛⎝ −2 1
1 −2
1 1

⎞⎠ .

Since det M̃�M̃ = 33, we see that M̃ is a basis matrix and thus that L(Z3) has a
basis of minimal vectors.

Example 3.2. Things are trivial for G = Z2, in which case n = 1. We have
L(Z2) = {(2x,−2x) : x ∈ Z}, the minimum distance is d(Z2) =

√
22 + 22 =

√
8, and

it is attained for X = (−2, 2) (and also for X = (2,−2)).
Example 3.3. Let G = Z4 and g = (1, 2, 3)�. An integer point (x, y, z,−x−y−z)

is in L(Z4) if and only if x+ 2y+3z = 0 modulo 4. The points of minimum distance
are

X1 = (1, 1,−1,−1), X2 = (−1, 1, 1,−1), X3 = (−1,−1, 1, 1), X4 = (1,−1,−1, 1),
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but any three of them are linearly dependent. Thus, L(Z4) is not well-rounded.
Clearly, d(Z4) = 2.

Example 3.4. For G = Z2 × Z2, the array

g||M =
(0, 1) 1 −1 1
(1, 0) 1 1 −1
(1, 1) −1 1 1

is admissible, and since detM = 4 �= 0, it follows that L(Z2 × Z2) is well-rounded
with d(Z2 × Z2) = 2. The matrix

M̃ =

⎛⎜⎜⎝
1 −1 1
1 1 −1

−1 1 1
−1 −1 −1

⎞⎟⎟⎠
satisfies det M̃�M̃ = 43, and hence L(Z2 × Z2) has a basis of minimal vectors.

4. The cyclic groups. Let G be any of the groups Zm with m ≥ 5 and put
gm = (1, 2, . . . ,m− 1)�. We denote by Tm the (m− 1)× (m− 1) tridiagonal Toeplitz
matrix with −2 on the main diagonal and 1 on the two neighboring diagonals. For
example,

T7 =

⎛⎜⎜⎜⎜⎜⎜⎝
−2 1 0 0 0 0
1 −2 1 0 0 0
0 1 −2 1 0 0
0 0 1 −2 1 0
0 0 0 1 −2 1
0 0 0 0 1 −2

⎞⎟⎟⎟⎟⎟⎟⎠ , T̃7 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

−2 1 0 0 0 0
1 −2 1 0 0 0
0 1 −2 1 0 0
0 0 1 −2 1 0
0 0 0 1 −2 1
0 0 0 0 1 −2
1 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Let Um be the (m − 1) × (m − 1) matrix which results from the (m − 1) × (m − 1)
bidiagonal Toeplitz matrix with 1 on the main diagonal and on the subdiagonal after
replacing the last column with (0, . . . , 0,−1,−1,−1, 0)�. For instance,

U5 =

⎛⎜⎜⎝
1 0 0 −1
1 1 0 −1
0 1 1 −1
0 0 1 0

⎞⎟⎟⎠ , U7 =

⎛⎜⎜⎜⎜⎜⎜⎝
1 0 0 0 0 0
1 1 0 0 0 0
0 1 1 0 0 −1
0 0 1 1 0 −1
0 0 0 1 1 −1
0 0 0 0 1 0

⎞⎟⎟⎟⎟⎟⎟⎠ .

Lemma 4.1. Let Mm = TmUm. Then M̃m = T̃mUm and the matrix Mm re-
sults from the (m − 1) × (m − 1) tetradiagonal Toeplitz matrix with first column
(−1,−1, 1, 0, . . . , 0)� and first row (−1, 1, 0, . . . , 0) by replacing the last column with
(1, 0, 1,−1)� for m = 5 and with the column (0, . . . , 0,−1, 1, 0, 1,−1)� for m ≥ 6.

Proof. This can be verified by direct computation.
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It can be checked straightforwardly that gm||Mm is an admissible array for Zm.
For example, the arrays g5||M5 and g7||M7 are

g5||M5 =

1 −1 1 0 1
2 −1 −1 1 0
3 1 −1 −1 1
4 0 1 −1 −1

, g7||M7 =

1 −1 1 0 0 0 0
2 −1 −1 1 0 0 −1
3 1 −1 −1 1 0 1
4 0 1 −1 −1 1 0
5 0 0 1 −1 −1 1
6 0 0 0 1 −1 −1

.

It is well known that det Tm = (−1)m−1m. We have detU5 = 1, which implies that
detUm = 1 for all m ≥ 5. Consequently, by Lemma 4.1,

detMm = detTm detUm = (−1)m−1m �= 0.

This proves that L(Zm) is well-rounded with d(Zm) = 2. The fact that L(Zm) has a
basis of minimal vectors lies a little deeper. It requires the following result from [4].
We include a proof (based on the Cauchy–Binet formula) for the reader’s convenience.

Lemma 4.2. We have det T̃�
m T̃m = m3.

Proof. Applying the Cauchy–Binet formula, we may write

det T̃�
m T̃m = (detC1)

2 + (detC2)
2 + · · ·+ (detCm)2,

where Cj results from T̃m by deleting the jth row. Clearly, (detCm)2 = (det Tm)2 =
m2. For j ≤ m − 1, we expand detCj along the last row and obtain two block-
triangular determinants:

detCj = (−1)m detTm−j+detTj = (−1)m(−1)m−j−1(m−j)+(−1)j−1j = (−1)j−1m.

It follows that (detCj)
2 = m2. Consequently, det T̃�

m T̃m = m ·m2 = m3.

Combining Lemma 4.2 with the factorization M̃m = T̃mUm delivered by Lem-
ma 4.1, we get det M̃�

mM̃m = m3, which shows that L(Zm) is generated by vectors of
minimum distance.

5. Direct products: Well-roundedness. In this section we complete the
proof of Theorem 1.1. Much of the following, especially the choice of the matrices
in the arrays, resembles the constructions in [20]. However, our reasoning is consis-
tently based on the computation of determinants and thus completely differs from the
arguments used in [20].

Lemma 5.1. If G and H are finite Abelian groups such that L(G) and L(H) are
well-rounded with d(G) = d(H) = 2, then L(G×H) is well-rounded and d(G×H) = 2.

Proof. Let G = {0, g1, . . . , gn} and H = {0, h1, . . . , hm}. We write

g = (g1, . . . , gn)
�, h = (h1, . . . , hm)�.

By assumption, there exist nonsingular integer matrices MG = (aij) and MH = (bij)
such that g||MG and h||MH are admissible arrays and such that the columns after
deleting all zeros reduce to columns with 3 or 4 entries containing only ±1 and having
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their column sum in {−1, 0, 1}. The array

(g1, 0) a11 . . . a1n −1 −1
...

...
...

(gn, 0) an1 . . . ann
...

(0, h1) b11 . . . b1m −1
(0, h2) b21 . . . b2m −1
...

...
...

(0, hm) bm1 . . . bmm

...
(g1, h1) 1
(g1, h2) 1
...

...

consists of n+m+ nm = (n+ 1)(m+ 1)− 1 columns. The last nm columns may be
labeled by (gi, hj), and the column with this label has 1 at position (gi, hj) and −1
at the positions (gi, 0) and (0, hj). This array is clearly admissible for G × H , and
since its matrix is upper block triangular with determinant detMG detMH �= 0, we
conclude that L(G × H) is well-rounded. This array also reveals that the minimal
distance of L(G×H) is 2, that is, d(G×H) = 2.

Lemma 5.1 in conjunction with the result of the previous section proves Theo-
rem 1.1 for all groups which do not contain the factors Z2,Z3,Z4.

Lemma 5.2. If m ∈ {2, 3, 4} and G is a finite Abelian group such that L(G) is
well-rounded with d(G) = 2, then L(Zm ×G) is well-rounded and d(Zm ×G) = 2.

Proof. Let G = {0, g1, . . . , gn} and g = (g1, . . . , gn)
�. By the examples in sec-

tion 3, we may assume that n ≥ 3. Take an admissible array g||M with a nonsingular
integer matrix M = (aij). The columns of M may be assumed to be as described in
the preceding proof. The array

(0, g1) a11 . . . a1n −1 −1
(0, g2) a21 a2n −1
(0, g3) a31 a3n −1
...

...
...

(0, gn) an1 . . . ann
...

(1, 0) 1 −1 −1 −1
(1, g1) 1 1
(1, g2) 1
(1, g3) 1
...

...

is admissible for Z2 × G. The matrix is upper block triangular with determinant
detM · 2 �= 0, and we have d(Z2 ×G) = 2. We turn to Z3 ×G. Suppose g1 + g2 = 0
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and g1 + g1 = g3. Then the array

(0, g1) a11 . . . a1n −1
(0, g2) a21 a2n −1 −1

(0, g3) a31 a3n −1
...

...
...

... −1

(0, gn) an1 . . . ann −1
...

(1, 0) 1 0 −1 −1 −1

(1, g1) 1 1 1
...

(2, g1) −1 1 0 −1 −1
(1, g2) 1
...

...

(1, gn) 1
...

(2, 0) 1
(2, g2) 1
...

...

is admissible. The matrix of this array is upper block triangular. The determinant of
the n× n block is nonzero, and the determinant of the 3× 3 block equals −3. Thus,
L(Z3 × G) is well-rounded with d(Z3 × G) = 2. We finally consider Z4 × G. Let
g1 + gn = 0. Now the array

(0, g1) a11 . . . a1n −1 −1 −1 −1
(0, g2) a21 a2n −1
...

...

(0, gn) an1 . . . ann −1
...

(1, 0) 1 −1 1 −1 −1
(2, 0) 1 1 0 −1
(3, 0) −1 1 1 −1
(1, g1) 1
(2, g1) 1
(3, g1) 1
(1, g2) 1
...

...

is admissible. The determinant of the 3 × 3 block is 4 and thus nonzero. It follows
that L(Z4 ×G) is well-rounded with d(Z4 ×G) = 2.

Lemma 5.3. The lattices L(Z2×Z4), L(Z3×Z3), and L(Z4×Z4) are well-rounded
with minimum distance 2.
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Proof. The array

(1, 0) 1 1 −1
(1, 3) 1 1 −1
(0, 3) −1 1 1 −1 −1
(1, 2) −1 1 1 −1 −1
(1, 1) −1 1 1
(0, 1) 1 0
(0, 2) 1 1

is admissible for Z2×Z4, the determinants of the diagonal blocks being 8 and 1, which
proves the assertion for Z2 × Z4. The array

(0, 1) 1 −1 1
(1, 0) 1 1 −1
(1, 1) −1 1 1
(2, 1) −1 1 1
(0, 2) −1 1 1
(2, 0) −1 1 1
(2, 2) −1 1 1
(1, 2) −1 1 1

is admissible for Z3×Z3, and since the determinant of the entire 8× 8 matrix is −45,
we get the assertion in this case. Finally, the array

(0, 1) 1 −1 1
(1, 0) 1 1 −1
(1, 1) −1 1 1
(2, 1) −1 1 1
(3, 2) −1 1 1
(1, 3) −1 1 1
(1, 2) 1 −1 1
(3, 1) 1 1 −1
(0, 3) −1 1 1
(3, 0) −1 1 1
(3, 3) −1 1 1
(2, 3) −1 1 1
(2, 0) 1 −1 1
(0, 2) 1 1 −1
(2, 2) −1 1 1

is admissible for Z4 × Z4. The determinants of the diagonal blocks are −16, −16, 4.
Consequently, L(Z4 × Z4) is well-rounded with minimum distance 2.

Now we can finish the game. Let

G = Z2 × · · · × Z2︸ ︷︷ ︸
i

×Z3 × · · · × Z3︸ ︷︷ ︸
j

×Z4 × · · · × Z4︸ ︷︷ ︸
k

×H,

where H contains only cyclic groups of order at least 5 or where H is absent. In
the former case repeated application of Lemmas 5.1 and 5.2 shows that L(G) is well-
rounded with d(G) = 2. We are left with the latter case. Since Z2 × Z3 = Z6,
Z3 ×Z4 = Z12, Z2 ×Z4 are well-rounded with minimum distance 2 (section 4 for the
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first two and Lemma 5.3 for the last group), Lemmas 5.1 and 5.2 give the assertion if
two of the numbers i, j, k are at least 1. It remains to consider the cases where G is
one of the groups

G2 = Z2 × · · · × Z2︸ ︷︷ ︸
i

, G3 = Z3 × · · · × Z3︸ ︷︷ ︸
j

, G4 = Z4 × · · · × Z4︸ ︷︷ ︸
k

.

For i = 1 we are in Example 3.2, and for i ≥ 2 we obtain from Example 3.4 and
Lemma 5.2 that G2 is as asserted. The case of G3 is settled by Example 3.1 for j = 1
and by Lemmas 5.2 and 5.3 for j ≥ 2. Example 3.3 (k = 1) and Lemmas 5.2 and 5.3
(k ≥ 2) finally yield the assertion for G4.

6. Direct products: Bases of minimal vectors. This section is devoted to
the proof of Theorem 1.2. We want to emphasize once more that Theorem 1.2 was
previously proved by Sha [20] for subgroups G of the direct product of two cyclic
groups. In particular, Lemma 6.3 and results resembling Lemmas 6.1 and 6.2 in
the cases of cyclic groups G and H were already established in [20] using arguments
different from ours.

Lemma 6.1. Let G and H be finite Abelian groups such that L(G) and L(H) have
bases of minimal vectors and such that d(G) = d(H) = 2. Also suppose that there
are admissible arrays g||MG and h||MH coming from minimal basis vectors such that
detMG = ±|G| and detMH = ±|H |. Put K = G × H. Then L(K) has a basis of
minimal vectors, d(K) = 2, and there exists an admissible array k||MK resulting from
minimal basis vectors such that detMK = ±|K|.

Proof. Let G,H,g,h be as in the proof of Lemma 5.1. Our present assumptions
guarantee that the two matrices MG and MH in the proof of Lemma 5.1 may be
taken so that M̃G and M̃H are basis matrices and so that detMG = ±(n + 1) and
detMH = ±(m+ 1).

Denote the matrix in the array in the proof of Lemma 5.1 by MK . It is clear that
detMK = ±|K|. The extended matrices M̃G, M̃H , M̃K are

M̃G =

(
MG

s

)
, M̃H =

(
MH

t

)
, M̃K =

⎛⎜⎜⎝
MG 0 X
0 MH Y
0 0 I
s t e

⎞⎟⎟⎠ ,

where s = (s1, . . . , sn) and t = (t1, . . . , tm) have entries from the set {−1, 0, 1},
e = (1, . . . , 1), I is the nm × nm identity matrix, and X,Y are the two blocks we

also see in the array in the proof of Lemma 5.1. We have to show that M̃K is a basis
matrix for L(K), and since |K| = (n + 1)(m + 1), this is equivalent to the equality

det M̃�
KM̃K = (n+ 1)3(m+ 1)3.

We expand det M̃�
KM̃K by the Cauchy–Binet formula. In what follows we also

write |A| for the determinant of a matrix A. We then have

|M̃�
KM̃K | = |M�|2 +

n,m∑
j,k=1

|Mjk|2 +
∑
k

|M0,k|2 +
∑
j

|Mj,0|2,

the matrices on the right resulting from M̃K after deleting the last row, the row labeled
by (gj , hk), the row labeled by (0, hk), and the row labeled by (gj , 0), respectively. The
matrix M� is upper block triangular and hence |M�|2 = |MG|2|MH |2. For j, k ≥ 1, we
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may expand the determinant |Mjk| along the rows intersecting the identity matrix I,
giving

|Mjk|2 =

∣∣∣∣∣∣
MG 0 Xj

0 MH Yk

s t 1

∣∣∣∣∣∣
2

,

where Xj and Yk are columns with a single −1 and zeros otherwise. Adding the first
n+m rows to the last row, we get

|Mjk|2 =

∣∣∣∣∣∣
MG 0 Xj

0 MH Yk

0 0 −1

∣∣∣∣∣∣
2

= |MG|2|MH |2.

Expanding the determinant |M0,k| along the rows which intersect the identity matrix
I we obtain

|M0,k|2 =

∣∣∣∣ MG 0
p BH,k

∣∣∣∣2 , p =

(
0
s

)
, BH,k =

(
MH,k

t

)
,

where MH,k arises from MH by deleting the kth row. The matrix BH,k is square and
hence

|M0,k|2 = |MG|2|BH,k|2.
Analogously, |Mj,0|2 = |BG,j|2|MH |2. In summary,

|M̃�
KM̃K | = |MG|2|MH |2 + nm|MG|2|MH |2 + |MG|2

∑
k

|BH,k|2 +
∑
j

|MH |2|BG,j |2.

Again due to Cauchy–Binet,

|MH |2 +
∑
k

|BH,k|2 = |M̃�
HM̃H | = (m+ 1)3,

|MG|2 +
∑
j

|BG,j |2 = |M̃�
G M̃G| = (n+ 1)3,

and taking into account that |MG|2 = (n + 1)2 and |MH |2 = (m + 1)2, we arrive at

the conclusion that |M̃�
KM̃K | is equal to

(n+1)2(m+1)2(1+nm)+(n+1)2
(
(m+1)3−(m+1)2

)
+(m+1)2

(
(n+1)3−(n+1)2

)
,

which equals (n+ 1)3(m+ 1)3, as desired.
In section 4 we showed that the hypothesis of Lemma 6.1 is satisfied if G and H

are cyclic groups of order at least five. Successive application of Lemma 6.1 therefore
gives Theorem 1.2 for all groups Zm1 × · · · × Zmk

with m1, . . . ,mk ≥ 5.
Lemma 6.2. Let m ∈ {2, 3, 4} and let G be a finite Abelian group such that L(G)

has a basis of minimal vectors and such that d(G) = 2. Also suppose that there is an
admissible array g||MG coming from minimal basis vectors such that detMG = ±|G|.
Put K = Zm × G. Then L(K) has a basis of minimal vectors, d(K) = 2, and
there exists an admissible array k||MK resulting from minimal basis vectors such that
detMK = ±|K|.
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Proof. We proceed as in the proof of the preceding lemma. Let G, g, and the
admissible arrays k||MK be as in the proof of Lemma 5.2. These arrays are associated

with vectors of minimum length 2 and the extended matrices M̃K are of the form

M̃K =

⎛⎜⎜⎝
MG ∗ ∗
0 Mm ∗
0 0 I
s t e

⎞⎟⎟⎠ .

We already know that detMG = ±|G| = ±(n+ 1) and detMm = ±m. It remains to

prove that det M̃�
KM̃K = m3(n+ 1)3.

We consider the case m = 3. The cases m = 2 and m = 4 may be disposed of in a
completely analogous fashion. Expanding det M̃�

KM̃K by the Cauchy–Binet formula
we get

det M̃�
KM̃K = |M�|2 +

2n−1∑
k=1

|MI,k|2 +
3∑

j=1

|M3,j |2 +
n∑

i=1

|M0,i|2,

where M� results from deleting the last row, MI,k comes from deleting the row which
contains the kth entry 1 of the (2n− 1)× (2n− 1) identity matrix I, M3,j arises from
deleting the row containing the jth row of M3, and M0,i emerges from deleting the
ith row of MG. Clearly, |M�|2 = |MG|2|M3|2 = 9(n + 1)2. Expanding |MI,k| along
the rows intersecting the identity matrix and adding after that the first n+3 rows to
the last row, we obtain

|MI,k|2 =

∣∣∣∣∣∣
MG ∗ ∗
0 M3 ∗
s t 1

∣∣∣∣∣∣
2

=

∣∣∣∣∣∣
MG ∗ ∗
0 M3 ∗
0 0 −1

∣∣∣∣∣∣
2

= |MG|2|M3|2 = 9(n+ 1)2.

We expand M3,j again along the rows intersecting the identity matrix and then add
the first n+ 2 rows to the last. It results that

|M3,j|2 =

∣∣∣∣∣∣
MG ∗
0 Q3,j

s t

∣∣∣∣∣∣
2

=

∣∣∣∣∣∣
MG ∗
0 Q3,j

0 tj

∣∣∣∣∣∣
2

= |MG|2
∣∣∣∣ Q3,j

tj

∣∣∣∣2 = (n+ 1)2
∣∣∣∣ Q3,j

tj

∣∣∣∣2
with

3∑
j=1

∣∣∣∣ Q3,j

tj

∣∣∣∣2 =

∣∣∣∣∣∣
1 1 1

−1 1 0
−1 0 1

∣∣∣∣∣∣
2

+

∣∣∣∣∣∣
1 0 −1

−1 1 0
−1 −1 −1

∣∣∣∣∣∣
2

+

∣∣∣∣∣∣
1 0 −1
1 1 1
1 −1 0

∣∣∣∣∣∣
2

.

Each determinant on the right equals 3 and hence the sum of their squares is 27.
Finally, again after expansion along the rows intersecting I and a row change,we get

|M0,i|2 =

∣∣∣∣ BG,i ∗
0 M3

∣∣∣∣2 = |BG,i|2|M3|2 = 9|BG,i|2,

where BG,i is the square matrix obtained from MG by deleting the ith row. By the
Cauchy–Binet formula,

n∑
j=1

|BG,i|2 = |M̃�
G M̃G| − |MG|2 = (n+ 1)3 − (n+ 1)2 = (n+ 1)2n.
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Putting things together we see that

det M̃�
KM̃K = 9(n+ 1)2(1 + 2n− 1) + 27(n+ 1)2 + 9(n+ 1)2n = 33(n+ 1)3,

which is what we wanted.
Lemma 6.3. Let G be one of the groups Z2 ×Z4, Z3 ×Z3, Z4 ×Z4. Then L(G)

has a basis of minimal vectors, d(G) = 2, and there exists an admissible array g||MG

coming from minimal basis vectors such that detM = ±|G| and det M̃�
G M̃G = |G|3.

Proof. The admissible array g||M7 we have shown for G = Z2 × Z4 in the proof

of Lemma 5.3 satisfies detM7 = 8 and det M̃�
7 M̃7 = 83. The array

g||M8 =

(0, 1) 1 −1 −1
(0, 2) 1 1 −1
(1, 0) 1 1 1 1
(1, 1) −1 1
(1, 2) 1 −1
(2, 0) 1 −1 1
(2, 1) 1 −1 1
(2, 2) −1 1 1 1

is admissible for Z3 × Z3, and we have detM8 = 9 and det M̃�
8 M̃8 = 93. The array

g||M15 given by

(0, 1) 1 1 1 1
(0, 2) 1
(0, 3) 1 1 1
(1, 0) −1 1 −1
(1, 1) 1
(1, 2) 1 −1 −1 −1
(1, 3) −1 1 1 1 1 −1
(2, 0) −1 1 1
(2, 1) 1 1
(2, 2) 1 1
(2, 3) −1 1 1 −1
(3, 0) −1 −1
(3, 1) 1 −1 −1 1 1
(3, 2) 1 −1 1 1
(3, 3) 1

is admissible for Z4 × Z4 with detM15 = −16 and det M̃�
15M̃15 = 163.

The proof of Theorem 1.2 may now be completed as at the end of section 5.

7. Bounds for the covering radius. In this section we study the lattices
Ln := L(Zm) (m = n + 1) with the goal of proving Theorem 1.3. For n ≥ 2, let
Bn+1,n be the (n+ 1)× n version of the matrices

B3,2 =

⎛⎝ −2 1
1 −2
1 1

⎞⎠ , B4,3 =

⎛⎜⎜⎝
−2 1 0
1 −2 1
0 1 −2
1 0 1

⎞⎟⎟⎠ , B5,4 =

⎛⎜⎜⎜⎜⎝
−2 1 0 0
1 −2 1 0
0 1 −2 1
0 0 1 −2
1 0 0 1

⎞⎟⎟⎟⎟⎠ .
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Note that in section 4 we denoted these matrices by T̃n+1. In other words, we now

denote T̃m by Bm,m−1. The (n+1)×k matrix formed by the first k columns of Bn+1,n

is denoted by Bn+1,k.
Example 7.1. Let us begin with an example. Consider G = Z4. We know from

section 4 that

B4,3 (= T̃4) =

⎛⎜⎜⎝
−2 1 0
1 −2 1
0 1 −2
1 0 1

⎞⎟⎟⎠
is a basis matrix for the lattice L3 := L(G). This follows from the fact that

V3 :=
√
detB�

4,3B4,3 = 8 = 43/2.

Let b1,b2,b3 be the columns of B4,3. Then

B4,2 = (b1 b2) =

⎛⎜⎜⎝
−2 1
1 −2
0 1
1 0

⎞⎟⎟⎠ , B4,1 = (b1) =

⎛⎜⎜⎝
−2
1
0
1

⎞⎟⎟⎠ .

Let further L2 and L1 be the sublattices of L3 spanned by the columns of B4,2 and
B4,1. The determinants of L2 and L1 are

V2 =
√
detB�

4,2B4,2 =

∣∣∣∣ 6 −4
−4 6

∣∣∣∣1/2 =
√
20, V1 =

√
detB�

4,1B4,1 =
√
6.

The lattice L1 is spanned by a vector of length
√
6 and can therefore be covered by

1-dimensional balls of radius r1 =
√
6/2 centered at the lattice points. Now consider

an arbitrary point x in spanRL2. We may assume that this point lies between the
two lines spanRL1 and b2+spanRL1. Let h1 be the distance between these two lines.
The distance between x and one of the two lines is at most h1/2. This implies that x
is contained in a 2-dimensional ball of radius r2 ≤√r21 + (h1/2)2 centered at a lattice
point of L1 or b2 +L1. Since the area of a parallelogram is the product of the length
of the baseline and the height, we have V2 = V1h1. Thus, spanRL2 may be covered
by 2-dimensional balls of radius r2 centered at the points of L2, where

r22 ≤ r21 +

(
V2

2V1

)2

=
6

4
+

20

4 · 6 =
7

3
.

Now take a point y in spanRL3, without loss of generality, between the two planes
spanRL2 and b3+spanRL2. Letting h2 denote the distance between these two planes,
there is a point in L2 or b3+L2 whose distance to y is at most

√
r22 + (h2/2)2. Since

V3 = V2h2, we conclude that spanRL3 may be covered by 3-dimensional balls of radius
r3 with the centers at the points of L3, where

r23 ≤ r22 +

(
V3

2V2

)2

≤ 7

3
+

64

4 · 20 =
47

15
.

Consequently, μ(Z4) ≤
√
47/15 ≈ 1.7701.

Proposition 7.2. Let b1, . . . ,bn be points in the root lattice An such that

spanR{b1, . . . ,bn} = spanRAn.
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For k = 1, . . . , n, denote by Lk the lattice spanned by b1, . . . ,bk, let Cn+1,k stand for
the (n+ 1)× k matrix whose columns are the coordinates of b1, . . . ,bk, and put

Vk =
√
detC�

n+1,kCn+1,k.

If spanRLk (1 ≤ k ≤ n−1) can be covered by k-dimensional balls of radius rk centered
at the points of Lk, then spanRLk+1 can be covered by balls of dimension k+1 centered
at the points of Lk+1 whose radius rk+1 satisfies

r2k+1 ≤ r2k +

(
Vk+1

2Vk

)2

,

and consequently,

r2n ≤ r21 +

(
V2

2V1

)2

+ · · ·+
(

Vn

2Vn−1

)2

.

Proof. This can be shown by the argument employed in Example 7.1.
The only problem in general is the computation of the determinants Vk. Fortu-

nately, this is easy for Ln = L(Zm) (m = n + 1), in which case the matrices Cn+1,k

are just the matrices Bn+1,k we introduced above. We also need the n × n versions
Qn of the matrices

Q2 =

(
6 −3

−3 6

)
, Q3 =

⎛⎝ 6 −4 2
−4 6 −4
2 −4 6

⎞⎠ , Q4 =

⎛⎜⎜⎝
6 −4 1 1

−4 6 −4 1
1 −4 6 −4
1 1 −4 6

⎞⎟⎟⎠ ,

Q5 =

⎛⎜⎜⎜⎜⎝
6 −4 1 0 1

−4 6 −4 1 0
1 −4 6 −4 1
0 1 −4 6 −4
1 0 1 −4 6

⎞⎟⎟⎟⎟⎠ , Q6 =

⎛⎜⎜⎜⎜⎜⎜⎝
6 −4 1 0 0 1

−4 6 −4 1 0 0
1 −4 6 −4 1 0
0 1 −4 6 −4 1
0 0 1 −4 6 −4
1 0 0 1 −4 6

⎞⎟⎟⎟⎟⎟⎟⎠ .

Finally, for k ≥ 1, we denote by Rk the k × k version of the matrices R1 = (6),

R2 =

(
6 −4

−4 6

)
, R3 =

⎛⎝ 6 −4 1
−4 6 −4
1 −4 6

⎞⎠ , R4 =

⎛⎜⎜⎝
6 −4 1 0

−4 6 −4 1
1 −4 6 −4
0 1 −4 6

⎞⎟⎟⎠ ,

R5 =

⎛⎜⎜⎜⎜⎝
6 −4 1 0 0

−4 6 −4 1 0
1 −4 6 −4 1
0 1 −4 6 −4
0 0 1 −4 6

⎞⎟⎟⎟⎟⎠ , R6 =

⎛⎜⎜⎜⎜⎜⎜⎝
6 −4 1 0 0 0

−4 6 −4 1 0 0
1 −4 6 −4 1 0
0 1 −4 6 −4 1
0 0 1 −4 6 −4
0 0 0 1 −4 6

⎞⎟⎟⎟⎟⎟⎟⎠ .

Lemma 7.3. For n ≥ 2 and 1 ≤ k ≤ n− 1,

B�
n+1,nBn+1,n = Qn, detQn = (n+ 1)3,

B�
n+1,kBn+1,k = Rk, detRk =

(k + 1)(k + 2)2(k + 3)

12
.
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Proof. The formulas for the products of the matrices can be verified by straight-
forward computation. The formula for detQn is nothing but Lemma 4.2. The formula
for detRk was first established in [5]. Proofs of that formula can also be found in [6,
Theorem 10.59] and [7].

Proof of Theorem 1.3. We know from section 4 that Bn+1,n = (b1, . . . ,bn) is a
basis matrix for Ln := L(Zn+1). Let Lk be the sublattices as in Proposition 7.2. The
1-dimensional lattice L1 is spanned by a vector of length

√
6. We may therefore use

Proposition 7.2 with r1 =
√
6/2 to obtain that

μ(Ln)
2 ≤ 6

4
+

(
V2

2V1

)2

+ · · ·+
(

Vn

2Vn−1

)2

=
6

4
+

1

4

n−2∑
k=1

V 2
k+1

V 2
k

+
1

4

V 2
n

V 2
n−1

.

From Lemma 7.3 we see that if 1 ≤ k ≤ n− 2, then

V 2
k+1

V 2
k

=
detB�

n+1,k+1Bn+1,k+1

detB�
n+1,kBn+1,k

=
(k + 2)(k + 3)2(k + 4)

(k + 1)(k + 2)2(k + 3)

=
(k + 3)(k + 4)

(k + 1)(k + 2)
= 1 +

2(2k + 5)

(k + 1)(k + 2)
= 1 + 2

(
3

k + 1
− 1

k + 2

)
.

Consequently,

n−2∑
k=1

V 2
k+1

V 2
k

= n− 2 + 2

n−2∑
k=1

(
3

k + 1
− 1

k + 2

)
= n− 2 + 2

(
3

2
+ 2

n−1∑
k=3

1

k
− 1

n

)

= n+ 1− 2

n
+ 4

n−1∑
k=3

1

k
< n+ 1− 2

n
+ 4

∫ n−1

2

dx

x

= n+ 1− 2

n
+ 4 log(n− 1)− 4 log 2.

Lemma 7.3 also implies that

V 2
n

V 2
n−1

=
detB�

n+1,nBn+1,n

detB�
n+1,n−1Bn+1,n−1

=
12(n+ 1)3

n(n+ 1)2(n+ 2)
=

12(n+ 1)

n(n+ 2)
.

In summary,

μ(Ln)
2 <

1

4

(
6 + n+ 1− 2

n
+ 4 log(n− 1)− 4 log 2 +

12(n+ 1)

n(n+ 2)

)
=

1

4

(
n+ 4 log(n− 1) + 7− 4 log 2 +

10n+ 8

n(n+ 2)

)
,

and since (10n+ 8)/(n(n+ 2)) < 10/n, we arrive at the asserted bound.
We remark that Example 7.1 gives μ(Z4) < 1.7701 whereas the table presented in

section 1 shows the slightly worse bound μ(Z4) < 1.8257. This discrepancy is caused
by the circumstance that in Example 7.1 we didn’t estimate a sum by an integral.

As already mentioned in the introduction, Sha [20] showed that μ(G) ≤ μ(An) +√
2 if G is a group coming from elliptic curves over finite fields. Actually, his

proof works for arbitrary finite Abelian groups G. It goes as follows. Let ξ =
(ξ1, . . . , ξn, ξ0) ∈ spanRAn, where ξ0 := −ξ1−· · ·− ξn, and pick v = (v1, . . . , vn, v0) ∈
An as a point for which ‖ξ − v‖ ≤ μ(An). Then one may proceed as in [10, proof of
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Theorem 3.4]. Namely, let v1g1 + · · ·+ vngn = gj. If gj is not the zero of the group,
put

x = (x1, . . . , xn, x0) = (v1, . . . , vj−1, vj − 1, vj+1, . . . , vn, v0 + 1).

Then x ∈ L(G) and ‖v − x‖ =
√
2. In the case gj is the zero of the group, let x = v,

so that x ∈ L(G) and ‖v − x‖ = 0. In either case, ‖ξ − x‖ ≤ μ(An) +
√
2.

The only difference between the arguments in [10] and [20] is that in [10] the
point v = (v1, . . . , vn, v0) ∈ An was chosen so that vi is the nearest integer to ξi for
i = 1, . . . , n. To ensure that v is in An, one had to take v0 = −v1 − · · · − vn, and
as the difference between ξ0 and v0 may be large, the bound for the covering radius
obtained in [10] was too coarse. Sha’s clever choice of v = (v1, . . . , vn, v0) ∈ An as a
point for which ‖ξ − v‖ ≤ μ(An) remedied this defect.

8. The automorphism group. In this section we start out with the proof of
Theorem 1.4.

Proof of Theorem 1.4. Let G = {0, g1, . . . , gn} be a finite Abelian group and recall
that

L(G) =

{
X =

(
x1, . . . , xn,−

n∑
i=1

xi

)
∈ Zn+1 :

n∑
i=1

xigi = 0

}
.

Every automorphism of G fixes 0 and permutes the elements g1, . . . , gn. Hence Aut(G)
can be identified (via a canonical isomorphism) with a subgroup of the symmetric
group Sn. We denote this subgroup by H . Our objective is to construct a group
isomorphism Φ : H → Aut(L(G)) ∩ Sn, where Aut(L(G)) on the right is identified
with a subgroup of GLn(Z) as described in section 1 and Sn on the right is viewed in
the natural fashion as the subgroup of the permutation matrices in GLn(Z).

Let σ ∈ H . Then, for every gi ∈ G, σ(gi) = gσ(i) and σ(0) = 0. If

X =

(
x1, . . . , xn,−

n∑
i=1

xi

)
∈ L(G),

then
∑n

i=1 xigi = 0. Notice that σ−1 is also in H , and so

0 = σ−1(0) =

n∑
i=1

xigσ−1(i) =

n∑
i=1

xσ(i)gi.

Now define τ = Φ(σ) on L(G) by

τ

(
x1, . . . , xn,−

n∑
i=1

xi

)
:=

(
xσ(1), . . . , xσ(n),−

n∑
i=1

xσ(i)

)
.

It is clear that τ maps L(G) onto itself. The matrix U ∈ GLn(Z) corresponding to
τ as described in section 1 is obviously a permutation matrix. Consequently, τ is in
Aut(L(G))∩Sn. Finally, it is readily seen that Φ is an injective group homomorphism.
Hence Φ(H) ≤ Aut(L(G)) ∩ Sn.

It remains to show that Φ(H) = Aut(L(G))∩Sn . So suppose τ ∈ Aut(L(G))∩Sn .
If

X =

(
x1, . . . , xn,−

n∑
i=1

xi

)
∈ L(G),
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then τ(X) = (xσ(1), . . . , xσ(n),−
∑n

i=1 xσ(i)) with some σ ∈ Sn, and since both X and
τ(X) belong to L(G), it follows that

0 =

n∑
i=1

xigi =

n∑
i=1

xσ(i)gi.

We have τ = Φ(σ) with σ : G → G defined by σ(gi) := gσ(i) and σ(0) := 0. To
complete the proof, we only need to show that σ is a group homomorphism, i.e., that

σ(gi + gj) = gσ(i) + gσ(j).

Since gi + gj ∈ G, there must be some gk ∈ G such that gi + gj = gk. In other words

gi + gj − gk = 0.

Therefore the vector X with ith and jth coordinates equal to 1, kth coordinate equal
to −1, (n+1)st coordinate equal to −(1+1−1) = −1, and the rest of the coordinates
equal to 0, must be in L(G). Hence the vector τ(X) also lies in L(G). This vector
has σ(i)th and σ(j)th coordinates equal to 1, σ(k)th coordinate equal to −1, (n+1)st
coordinate equal to −1, and the rest of the coordinates equal to 0. This means that
the equality

gσ(i) + gσ(j) − gσ(k) = 0

must be satisfied in G and, hence,

σ(gi + gj) = σ(gk) = gσ(k) = gσ(i) + gσ(j).

In summary, σ ∈ H , and so Aut(L(G)) ∩ Sn = Φ(H), as desired.
Theorem 1.4 has an interesting geometric interpretation in terms of the theory of

quadratic forms (see, for instance, [21] for a detailed account of this subject and its
connections to lattice theory). A real quadratic form in n variables X = (x1, . . . , xn)

�

can always be written in a unique way as

q(X) = X�AX,

where A is an n× n real symmetric matrix. Hence the space of real quadratic forms
in n variables can be identified with the space of their coefficient matrices, which is
the

(
n+1
2

)
-dimensional real vector space Sn of n×n real symmetric matrices. The set

of positive definite forms Sn
>0 is an open convex cone in Sn given by n polynomial

inequalities (the Sylvester criterion).
Let B be an m× n real matrix of rank n, 1 ≤ n ≤ m, then L = BZn is a lattice

of rank n in R
m. The so-called norm form of L, corresponding to the choice of the

basis matrix B, is defined as the positive definite quadratic form in n variables, given
by

qB(X) = X�(B�B)X.

The function B 
→ B�B induces a bijection between the space of lattices (up to
isometry) and the cone Sn

>0 of positive definite quadratic forms (up to arithmetic
equivalence).
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Given a form q ∈ Sn, its automorphism group is defined by

Aut(q) := {τ ∈ GLn(Z) : q(τ(X)) = q(X) for all X ∈ R
n} .

This is a finite group: it is contained in the intersection of the discrete group GLn(Z)
with the compact group On(R) of real orthogonal matrices. If q ∈ Sn

>0 and L is
the corresponding lattice, then Aut(q) = Aut(L), the automorphism group of L.
Furthermore, given any finite subgroup H of GLn(Z), there exists a q ∈ Sn

>0 (and
hence a lattice) with H ≤ Aut(q). Indeed, if H ≤ GLn(Z) is a finite group and
f ∈ Sn

>0, then the form defined by

q(X) :=
∑
τ∈H

f(τ(X))

is in Sn
>0 and H ≤ Aut(q). Finally, for a fixed finite subgroup H of GLn(Z), define

B(H) = {q ∈ Sn : H ≤ Aut(q)} .

The set B(H) is not empty by the above remark, and hence it is easily seen to be a
real vector space. It is called the Bravais manifold of H . Define also the open convex
polyhedral cone B>0(H) = B(H) ∩ Sn

>0, which can be identified with the set of all
lattices whose automorphism groups contain H .

Investigation of properties of Bravais manifolds corresponding to different finite
subgroups of GLn(Z) is of interest in lattice theory. Our Theorem 1.4 implies that
the lattice L(G) coming from an Abelian group G of order n+1 via our construction
is contained in the Bravais cone B>0(Aut(G)).

Acknowledgments. We thank Min Sha for kindly informing us of his results
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