
Claremont Colleges
Scholarship @ Claremont

CMC Faculty Publications and Research CMC Faculty Scholarship

11-4-2016

A Sampling Kaczmarz-Motzkin Algorithm for
Linear Feasibility
Jesus A. De Loera
University of California - Davis

Jamie Haddock
University of California, Davis

Deanna Needell
Claremont McKenna College

This Article is brought to you for free and open access by the CMC Faculty Scholarship at Scholarship @ Claremont. It has been accepted for inclusion
in CMC Faculty Publications and Research by an authorized administrator of Scholarship @ Claremont. For more information, please contact
scholarship@cuc.claremont.edu.

Recommended Citation
J. A. De Loera, J. Haddock, D. Needell. “A Sampling Kaczmarz-Motzkin Algorithm for Linear Feasibility.” SIAM Journal on Scientific
Computing, 2016.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Scholarship@Claremont

https://core.ac.uk/display/84113604?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://scholarship.claremont.edu
http://scholarship.claremont.edu/cmc_fac_pub
http://scholarship.claremont.edu/cmc_faculty
mailto:scholarship@cuc.claremont.edu

A Sampling Kaczmarz-Motzkin Algorithm for Linear Feasibility

Jesús A. De Loera, Jamie Haddock, Deanna Needell

Abstract

We combine two iterative algorithms for solving large-scale systems of linear inequalities, the relax-
ation method of Agmon, Motzkin et al. and the randomized Kaczmarz method. We obtain a family of
algorithms that generalize and extend both projection-based techniques. We prove several convergence
results, and our computational experiments show our algorithms often outperform the original methods.

1 Introduction

We are interested solving large-scale systems of linear inequalities Ax ≤ b. Here b ∈ Rm and A an
m× n matrix; the regime m� n is our setting of interest, where iterative methods are typically employed.
We denote the rows of A by the vectors a1, a2, . . . , am. It is an elementary fact that the set of all x ∈
Rn that satisfy the above constraints is a convex polyhedral region, which we will denote by P . This
paper merges two iterated-projection methods, the relaxation method of Agmon, Motzkin et al. and the
randomized Kaczmarz method. For the most part, these two methods have not met each other and have
not been analyzed in a unified framework. The combination of these two algorithmic branches of thought
results in an interesting new family of algorithms which generalizes and outperforms its predecessors. We
begin with a short description of these two classical methods.

Motzkin’s method. The first branch of research in linear feasibility is the so-called relaxation method
or Motzkin’s method. It is clear from the literature that this is not well-known, say among researchers in
machine learning, and some results have been re-discovered several times. E.g., the famous 1958 perceptron
algorithm [Ros58] can be thought of a member of this family of methods; but the very first relaxation-type
algorithm analysis appeared a few years earlier in 1954, within the work of Agmon [Agm54], and Motzkin
and Schoenberg [MS54]. Additionally, the relaxation method has been referred to as the Kaczmarz method
with the “most violated constraint control” or the “maximal-residual control” [Cen81,NSV+16,PP15]. This
method can be described as follows: Starting from any initial point x0, a sequence of points is generated. If
the current point xi is feasible we stop, else there must be a constraint aTx ≤ b that is most violated. The
constraint defines a hyperplane H . If wH is the orthogonal projection of xi onto the hyperplane H , choose a
number λ (normally chosen between 0 and 2), and the new point xi+1 is given by xi+1 = xi + λ(wH − xi).
Figure 1 displays the iteration visually.

Many modifications and analyses of this technique have been published since the 1950s, creating an
extensive bibliography. For example, versions of the relaxation method have suggested various choices
of step-length multiplier, λ (throughout this paper we consider λ ∈ (0, 2]), and various choices for the
violated hyperplane. The rate of convergence of Motzkin’s method depends not only on λ, but also on the
Hoffman constants investigated first by Agmon [Agm54] and then later by Hoffmann [Hof52]. If the system
of inequalities Ax ≤ b is feasible, i.e. P 6= ∅, then there exists Hoffman constants L∞ and L2 so that
d(x, P) ≤ L∞‖(Ax − b)+‖∞ and d(x, P) ≤ L2‖(Ax − b)+‖2 for all x (here and throughout, z+ denotes
the positive entries of the vector z with zeros elsewhere and d(x, P) the usual distance between a point x

1

ar
X

iv
:1

60
5.

01
41

8v
4

 [
m

at
h.

O
C

]
 4

 N
ov

 2
01

6

Figure 1: three projections with λ = 1, λ < 1 and λ > 1 and a visualization of several steps of the algorithm.

and the polytope P). The constants satisfy L∞ ≤
√
mL2. When the system of inequalities Ax ≤ b defines

a consistent system of equations Ãx = b̃ with full column-rank matrix Ã, then the Hoffman constant is
simply the norm of the left inverse, ‖Ã−1‖2. With these constants, one can prove convergence rate results
like the following (a spin-off of Theorem 3 of [Agm54] which is easily proven in the style of [LL10]):

Proposition 1. Consider a normalized system with ‖ai‖ = 1 for all i = 1, ...,m. If the feasible region P is
nonempty then the relaxation method converges linearly:

d(xk, P)2 ≤
(

1− 2λ− λ2

L2
∞

)k
d(x0, P)2 ≤

(
1− 2λ− λ2

mL2
2

)k
d(x0, P)2.

A bad feature of the standard version of the relaxation method using real-valued data is that when the
system Ax ≤ b is infeasible it cannot terminate, as there will always be a violated inequality. In the
1980’s the relaxation method was revisited with interest because of its similarities to the ellipsoid method
(see [AH05, Bet04, Gof80, Tel82] and references therein). One can show that the relaxation method is finite
in all cases when using rational data, in that it can be modified to detect infeasible systems. In some special
cases the method gives a polynomial time algorithm (e.g. for totally unimodular matrices [MTA81]), but
there are also examples of exponential running times (see [Gof82,Tel82]). In late 2010, Chubanov [Chu12],
announced a modification of the traditional relaxation style method, which gives a strongly polynomial-time
algorithm in some situations [BDJ14, VZ14]. Unlike [Agm54, MS54], who only projected onto the original
hyperplanes that describe the polyhedron P , Chubanov [Chu12] projects onto new, auxiliary inequalities
which are linear combinations of the input. See Figure 2 for an example of this process.

Figure 2: Left: Projecting onto original hyperplanes. Right: Projecting onto an induced hyperplane (like
those in Chubanov’s method).

Kaczmarz method. The second research branch is that of the Kaczmarz method [Kac37, GBH70]
which is one of the most popular solvers of overdetermined systems of linear equations due to its speed and
simplicity. Just like Motzkin’s, it is an iterative method which consists of a series of alternating orthogonal

2

projections onto the hyperplanes defined by the system of equations. The original Kaczmarz method simply
cycles through the equations sequentially, so its convergence rate depends on the order of the rows. One way
to overcome this is to use the equations in a random order, rather than sequentially [HS78, HM93, Nat01].
More precisely, we begin with Ax ≤ b, a linear system of inequalities where A is an m × n matrix with
rows ai and x0 an initial guess. For k = 0, 1, 2, ... one defines

xk+1 = xk −
(〈ai, xk〉 − bi)+

‖ai‖22
ai

where i is chosen from {1, 2, ...,m} at random, say with probability proportional to ‖ai‖22. Thus, xk is the
projection of xk−1 onto the hyperplane {x|aTi x = bi}. Strohmer and Vershynin [SV09] provided an elegant
convergence analysis of the randomized Kaczmarz method for consistent equations. Later, Leventhal and
Lewis [LL10] extended the probabilistic analysis from systems of equations to systems of linear inequalities.
They focused on giving bounds on the convergence rate that take into account the numerical conditions
captured by the Hoffman constants L∞ and L2. If one additionally makes use of a projection parameter,
λ 6= 1, you can easily extend the convergence rate in [LL10] to account for this:

Proposition 2. If the feasible region, P , is nonempty then the Randomized Kaczmarz method with projec-
tion parameter λ converges linearly in expectation:

E[d(xk, P)2] ≤
(

1− 2λ− λ2

‖A‖2FL2
2

)k
d(x0, P)2.

Note the similarities between Propositions 1 and 2: the convergence rate constants are identical for
normalized systems (‖A‖2F = m).

The work of Strohmer and Vershynin sparked a new interest in the Kaczmarz approach and there have
been many recent developments in the method and its analysis. Needell [Nee10] extended this work to the
case of inconsistent systems of equations, showing exponential convergence down to some fixed conver-
gence horizon, see also [WAL15]. In order to break this convergence horizon, one needs to modify the
Kaczmarz method since by design it projects exactly onto a given hyperplane. Zouzias and Freris [ZF12]
analyzed an extended randomized Kaczmarz method which incorporates an additional projection step to
reduce the size of the residual. This was extended to the block case in [NZZ15]. The relation of these
approaches to coordinate descent and gradient descent methods has also been recently studied, see e.g.
[GO12, Dum14, NSW14a, OZ15a, MNR15, HNR15, OZ15a, GR15].

Other variations to the Kaczmarz method include block methods [Elf80, EHL81, NW13, NT13, BN,
XZ02] which have been shown to offer acceleration for certain systems of equations with fast-multipliers.
Other acceleration and convergence schemes focus on sampling selections [AWL14,EN11,NSW14b,OZ15b],
projection parameters [WM67,CEG83,Tan71,HN90], adding row directions [PPKR12], parallelized imple-
mentations [LWS14, ADG14], structure exploiting approaches [LW15, LMY15], and the use of precondi-
tioning [GPS16]. Some other references on recent work include [CP12, RM12]

For the most part, it seems that these two branches of research which address the same problems have
been developing disjointly from each other. For example, the idea of taking linear combinations of the
constraints was first exploited in [Chu12], but was recently re-discovered and reproduced for linear equa-
tions in [GR15], but the authors seem unaware of the optimizers work in the more general setting of linear
inequalities in [Chu12, BDJ14, VZ14]. Another example is the manipulation of the projection parameter
λ [WM67, CEG83, Tan71, HN90]. It is a goal of this paper to bridge the separation between these two
branches of research that essentially study the same iterative projection procedure. In this paper we explore
a family of hybrid algorithms that use elements from both groups of research.

3

1.1 Our contribution: the Sampling Kaczmarz-Motzkin method

Despite the similarity between the Kaczmarz and Motzkin methods (the difference only being in the se-
lection criterion), work on these approaches has remained for the most disjoint. Our proposed family of
methods, which we refer to as the Sampling Kaczmarz-Motzkin (SKM) methods, are intended to balance
the pros and cons of these related methods. Namely, the relaxation method forms iterates whose distance to
the polyhedral solution space are monotonically decreasing; however, the time required to choose the most
violated hyperplane in each iteration is costly. Conversely, the Randomized Kaczmarz method has a very
inexpensive cost per iteration; however, the method has slow convergence when many of the constraints are
satisfied. Our methods will still have a probabilistic choice, like in randomized Kaczmarz, but make strong
use of the maximum violation criterion within this random sample of the constraints. Our method is easily
seen to interpolate between what was proposed in [LL10] and in [MS54].

Method (SKM method). Suppose A ∈ Rm×n, b ∈ Rm. Let x0 ∈ Rn be given. Fix 0 < λ ≤ 2. We
iteratively construct approximations to a solution lying in P in the following way:

1. Choose a sample of β constraints, τk, uniformly at random from among the rows of A.
2. From among these β constraints, choose tk := argmax

i∈τk
aTi xk−1 − bi.

3. Define xk := xk−1 − λ
(aTtk

xk−1−btk)
+

‖atk‖2
atk .

4. Repeat.

Remark: the SKM method with β = m recovers the Motzkin relaxation methods, while the SKM method
with β = 1 gives a variant of the randomized Kaczmarz method. We now state our first main result.

Theorem 1. Let A be normalized so ‖ai‖2 = 1 for all rows i. If the feasible region P is nonempty then
the SKM method with samples of size β converges at least linearly in expectation and the bound on the
rate depends on the number of satisfied constraints in the system Ax ≤ b. More precisely, let sk−1 be the
number of satisfied constraints after iteration k − 1 and Vk−1 = max{m − sk−1,m − β + 1}; then, in the
kth iteration,

E[d(xk, P)2] ≤
(

1− 2λ− λ2

Vk−1L
2
2

)
d(xk−1, P)2 ≤

(
1− 2λ− λ2

mL2
2

)k
d(x0, P)2.

Our second main theoretical result notes that, for rational data, one can provide a certificate of feasibility
after finitely many iterations of SKM. This is an extension of the results by Telgen [Tel82] who also noted
the connection between relaxation techniques and the ellipsoid method. To explain what we mean by a
certificate of feasibility we recall the length of the binary encoding of a linear feasibility problem with
rational data is

σ =
∑
i

∑
j

log(|aij |+ 1) +
∑
i

log(|bi|+ 1) + log nm+ 2.

Denote the maximum violation of a point x ∈ Rn as θ(x) = max{0,max
i
{aTi x− bi}}.

Telgen’s proof of the finiteness of the relaxation method makes use of the following lemma (which is
key in demonstrating that Khachian’s ellipsoidal algorithm is finite and polynomial-time [Hač79]):

Lemma 1. If the rational system Ax ≤ b is infeasible, then for all x ∈ Rn, the maximum violation satisfies
θ(x) ≥ 2 ∗ 2−σ.

4

Thus, to detect feasibility of the rational system Ax ≤ b, we need only find a point, xk with θ(xk) <
2 ∗ 2−σ; such a point will be called a certificate of feasibility.

In the following theorem, we demonstrate that we expect to find a certificate of feasibility, when the
system is feasible, and that if we do not find a certificate after finitely many iterations, we can put a lower
bound on the probability that the system is infeasible. Furthermore, if the system is feasible, we can bound
the probability of finding a certificate of feasibility.

Theorem 2. Suppose A, b are rational matrices with binary encoding length, σ, and that we run an SKM
method on the normalized system Ãx ≤ b̃

(
where ãi = 1

||ai||ai and b̃i = 1
||ai||bi

)
with x0 = 0. Suppose the

number of iterations k satisfies

k >

4σ − 4− log n+ 2 log

(
max
j∈[m]
||aj ||

)
log

(
mL2

2

mL2
2−2λ+λ2

) .

If the system Ax ≤ b is feasible, the probability that the iterate xk is not a certificate of feasibility is at most

max ||aj || 22σ−2

n1/2

(
1− 2λ− λ2

mL2
2

)k/2
,

which decreases with k.

The final contribution of our paper is a small computational study presented in Section 3. The main
purpose of our experiments is not to compare the running times versus established methods. Rather, we
wanted to determine how our new algorithms compare with the classical algorithms of Agmon, Motzkin
and Schoenberg, and Kaczmarz. We examine how the sampling and projection parameters affects the per-
formance of SKM. We try different types of data, but we assume in most of the data that the number of rows
m is large, much larger than n. The reason is that this is the regime in which the SKM methods are most rel-
evant and often the only alternative. Iterated-project methods are truly interesting in cases where the number
of constraints is very large (possibly so large it is unreadable in memory) or when the constraints can only be
sampled due to uncertainty or partial information. Such regimes arise naturally in applications of machine
learning [CE14] and in online linear programming (see [AWY14] and its references). Finally, it has already
been shown in prior experiments that, for typical small values ofm,n where the system can be read entirely,
iterated-projection methods are not able to compete with the simplex method (see [BDJ14, HMSW53]).
Here we compare our SKM code with MATLAB’s interior-point methods and active set methods code. We
also compare SKM with another iterated projection method, the block Kaczmarz method [NT13].

2 Proof of Theorem 1

We show that the SKM methods enjoy a linear rate of convergence. We begin with a simple useful observa-
tion.

Lemma 2. Suppose {ai}ni=1, {bi}ni=1 are real sequences so that ai+1 > ai > 0 and bi+1 ≥ bi ≥ 0. Then

n∑
i=1

aibi ≥
n∑
i=1

ābi, where ā is the average ā =
1

n

n∑
i=1

ai.

5

Proof. Note that
n∑
i=1
aibi =

n∑
i=1
ābi +

n∑
i=1

(ai − ā)bi, so we need only show that
n∑
i=1

(ai − ā)bi ≥ 0, which is

equivalent to
n∑
i=1

(nai −
n∑
j=1

aj)bi ≥ 0, so we define the coefficients ci := nai −
n∑
j=1

aj . Now, since {ai}ni=1

is strictly increasing, there is some 1 < k < n so that ck ≤ 0 and ck+1 > 0 and the ci are strictly increasing.
Since {bi}ni=1 is non-negative and non-decreasing we have

n∑
i=1

cibi =

k∑
i=1

cibi +

n∑
i=k+1

cibi ≥
k∑
i=1

cibk +

n∑
i=k+1

cibk = bk

n∑
i=1

ci = 0.

Thus, we have
n∑
i=1
aibi =

n∑
i=1
ābi +

n∑
i=1

(ai − ā)bi ≥
n∑
i=1
ābi.

Proof. (of Theorem 1) Denote by P the projection operator onto the feasible region P , and write sj for
the number of zero entries in the residual (Axj − b)+, which correspond to satisfied constraints. Define
Vj := max{m−sj ,m−β+ 1}. Recalling that the method defines xj+1 = xj−λ(Aτjxj− bτj)+i∗ai∗ where
i∗ = argmax

i∈τj
{aTi xj − bi, 0} = argmax

i∈τj
(Aτjxj − bτj)+i , we have

d(xj+1, P)2 = ‖xj+1 − P(xj+1)‖2 ≤ ‖xj+1 − P(xj)‖2 = ‖xj − λ(Aτjxj − bτj)+i∗ai∗ − P(xj)‖2

= ‖xj − P(xj)‖2 + λ2((Aτjxj − bτj)+i∗)
2‖ai∗‖2 − 2λ(Aτjxj − bτj)+i∗a

T
i∗(xj − P(xj)).

Since aTi∗(xj − P(xj)) ≥ aTi∗xj − bi∗ , we have that

d(xj+1, P)2 ≤ d(xj , P)2 + λ2((Aτjxj − bτj)+i∗)
2‖ai∗‖2 − 2λ(Aτjxj − bτj)+i∗(a

T
i∗xj − bi∗)

= d(xj , P)2 − (2λ− λ2)((Aτjxj − bτj)+i∗)
2

= d(xj , P)2 − (2λ− λ2)‖(Aτjxj − bτj)+‖2∞. (1)

Now, we take advantage of the fact that, if we consider the size of the entries of (Axj−b)+, we can determine
the precise probability that a particular entry of the residual vector is selected. Let (Axj − b)+ik denote the
(k + β)th smallest entry of the residual vector (i.e., if we order the entries of (Axj − b)+ from smallest to
largest, we denote by (Axj − b)+ik the entry in the (k + β)th position). Each sample has equal probability

of being selected,
(
m
β

)−1. However, the frequency that each entry of the residual vector will be expected to
be selected (in Step 3 of SKM) depends on its size. The βth smallest entry will be selected from only one
sample, while the m-th smallest entry (i.e., the largest entry) will be selected from all samples in which it
appears. Each entry is selected according to the number of samples in which it appears and is largest. Thus,
if we take expectation of both sides (with respect to the probabilistic choice of sample, τj , of size β), then

E[‖(Aτjxj − bτj)+‖2∞] =
1(
m
β

)m−β∑
k=0

(
β − 1 + k

β − 1

)
((Axj − b)+ik)2 (2)

≥ 1(
m
β

)m−β∑
k=0

m−β∑̀
=0

(
β−1+`
β−1

)
m− β + 1

((Axj − b)+ik)2 (3)

=

m−β∑
k=0

1

m− β + 1
((Axj − b)+ik)2 (4)

≥ 1

m− β + 1
min

{
m− β + 1

m− sj
, 1

}
‖(Axj − b)+‖22, (5)

6

where (3) follows from Lemma 2, because {
(
β−1+k
β−1

)
}m−βk=0 is strictly increasing and {(Axj − b)+ik}

m−β
k=0 is

non-decreasing. Equality (4) follows from (3) due to the fact that
m−β∑̀
=0

(
β−1+`
β−1

)
=
(
m
β

)
which is known as

the column-sum property of Pascal’s triangle, among other names. Inequality (5) follows from the fact that
the ordered summation in (4) is at least m−β+1

m−sj of the norm of the residual vector (since sj of the entries are
zero) or is the entire residual vector provided sj ≥ β − 1.

Thus, we have

E[d(xj+1, P)2] ≤ d(xj , P)2 − (2λ− λ2)E[‖(Aτjxj − bτj)+‖2∞]

≤ d(xj , P)2 − 2λ− λ2

Vj
‖(Axj − b)+‖22 ≤

(
1− 2λ− λ2

VjL2
2

)
d(xj , P)2.

Since Vj ≤ m in each iteration,

E[d(xj+1, P)2] ≤
(

1− 2λ− λ2

mL2
2

)
d(xj , P)2.

Thus, inductively, we get that

E[d(xk, P)2] ≤
(

1− 2λ− λ2

mL2
2

)k
d(x0, P)2.

Now, we have that the SKM methods will perform at least as well as the Randomized Kaczmarz method
in expectation; however, if we know that after a certain point the iterates satisfy some of the constraints,
we can improve our expected convergence rate guarantee. Clearly, after the first iteration, if λ ≥ 1, in
every iteration at least one of the constraints will be satisfied so we can guarantee a very slightly increased
expected convergence rate. However, we can say more based on the geometry of the problem.

Lemma 3. The sequence of iterates, {xk} generated by an SKM method are pointwise closer to the feasible
polyhedron P . That is, for all a ∈ P , ‖xk − a‖ ≤ ‖xk−1 − a‖ for all iterations k.

Proof. For a ∈ P , ‖xk − a‖ ≤ ‖xk−1 − a‖ for all k since a ∈ P ⊂ Htk := {x : aTtkx ≤ btk} and xk is the
projection of xk−1 towards or into the half-space Htk (provided xk−1 6∈ Htk , in which case the inequality is
true with equality).

Lemma 4. If P is n-dimensional (full-dimensional) then the sequence of iterates {xk} generated by an
SKM method converge to a point l ∈ P .

Proof. Let a ∈ P . Note that the limit, limk→∞ ‖xk − a‖ =: ra exists since {‖xk − a‖} is bounded and
decreasing (with probability 1). Define

S(a) := {x : ‖x− a‖ = ra} and X := ∩
a∈P

S(a).

Note thatX is not empty since the bounded sequence {xk}must have a limit point, l, achieving ‖l−a‖ = ra.
Moreover, suppose there were two such points, l, l′ ∈ X . Define π := {x : ‖l − x‖ = ‖l′ − x‖} to be the

7

P

a l ∈ X
ra

a′

ra′

S(a)

S(a′)

a ∈ P

l ∈ X
l′

ra
ra

π

Figure 3: Left: image of a ∈ P , ra and S(a) and l ∈ ∩
a∈P

S(a) as defined in Lemma 4. Right: image of

l, l′ ∈ X contradicting the full-dimensionality of P .

hyperplane of points equidistance between l, l′. Then for a ∈ P , we have l, l′ ∈ S(a). Hence, a ∈ π and
we have that P ⊂ π, which contradicts the full dimensionality of P . Thus X contains only one point, l, and
it must be a limit point of {xk}. Now, since {xk} is converging to P (with probability one), we must have
that l ∈ P .

Now, suppose that xk 6→ l (i.e. only a subsequence of {xk} converges to l). Thus, there exists an ε > 0
so that for all K there exists k ≥ K with ‖xk − l‖ > ε. However, there exists a subsequence of {xk} which
is converging to l, so there must exist some K1 with ‖xK1 − l‖ < ε. Thus, at some point the sequence
‖xk − l‖ must increase, which contradicts Lemma 3. Hence, xk → l.

Lemma 5. Let l be the limit point of the {xk}. There exists an index K so that if aTj l < bj then aTj xk ≤ bj
for all k ≥ K.

Proof. This is obvious from xk → l.

We would like to conclude with a small “qualitative” proposition that indicates there are two stages of
behavior of the SKM algorithms. After the K-th iteration the point is converging to a particular face of
the polyhedron. At that moment one has essentially reduced the calculation to an equality system problem,
because the inequalities that define the face of convergence need to be met with equality in order to reach
the polyhedron.

Proposition 3. If the feasible region P is generic and nonempty (i.e., full-dimensional and every vertex
satisfies exactly n constraints with equality), then an SKM method with samples of size β ≤ m − n will
converge to a single face F of P and all but the constraints defining F will eventually be satisfied. Thus, the
method is guaranteed an increased convergence rate after some index K; for k ≥ K

E[d(xk, P)2] ≤
(

1− 2λ− λ2

mL2
2

)K(
1− 2λ− λ2

(m− β + 1)L2
2

)k−K
d(x0, P)2.

8

Proof. (of Proposition 3)) Since a generic polyhedron is full-dimensional, by Lemma 4, we have that the
SKM method iterates converge to a point on the boundary of P , l. Now, since this l lies on a face of P and
P is generic, this face is defined by at most n constraints. By Lemma 5, there exists K so that for k ≥ K at
least m− n of the constraints have been satisfied. Thus, our proposition follows from Theorem 1.

2.1 Proof of Theorem 2

Now, we show that the general SKM method (when λ 6= 2) on rational data is finite in expectation.
We will additionally make use of the following lemma (which is key in demonstrating that Khachian’s

ellipsoidal algorithm is finite and polynomial-time [Hač79]) in our proof:

Lemma 6. If the rational system Ax ≤ b is feasible, then there is a feasible solution x̂ whose coordinates
satisfy |x̂j | ≤ 2σ

2n for j = 1, ..., n.

Using the bound on the expected distance to the solution polyhedron, P , we can show a bound on
the expected number of iterations needed to detect feasibility (which does not depend on the size of block
selected).

Proof. (of Theorem 2) First, note that if P̃ := {x|Ãx ≤ b̃}, then P = P̃ . Then, by Lemma 6, if Ãx ≤ b̃ is
feasible (so Ax ≤ b is feasible) then there is a feasible solution x̂ with |x̂j | < 2σ

2n for all j = 1, 2, ..., n (here
σ is the binary encoding length for the unnormalized A, b). Thus, since x0 = 0,

d(x0, P) = d(x0, P̃) ≤ ||x̂|| ≤ 2σ−1

n1/2
.

Now, define θ̃(x) to be the maximum violation for the new, normalized system Ãx ≤ b̃,

θ̃(x) := max{0,max
i∈[m]

ãTi x− b̃i} = max

{
0,max
i∈[m]

aTi x− bi
||ai||

}
.

By Lemma 1, if the system Ãx ≤ b̃ is infeasible (so Ax ≤ b is infeasible), then

θ̃(x) = max{0,max
i∈[m]

aTi x− bi
||ai||

} ≥
max{0,max

i∈[m]
aTi x− bi}

max
j∈[m]
||aj ||

=
θ(x)

max
j∈[m]
||aj ||

≥ 21−σ

max
j∈[m]
||aj ||

.

When running SKM on Ãx ≤ b̃, we can conclude that the system is feasible when θ̃(x) < 21−σ

max
j∈[m]

||aj || .

Now, since every point of P is inside the half-space defined by {x|ãTi x ≤ b̃i} for all i = 1, · · · ,m, we have
θ̃(x) = max{0,max

i∈[m]
ãTi x− b̃i} ≤ d(x, P). Therefore, if Ax ≤ b is feasible, then

E(θ̃(xk)) ≤ E(d(xk, P)) ≤
(

1− 2λ− λ2

mL2
2

)k/2
d(x0, P) ≤

(
1− 2λ− λ2

mL2
2

)k/2 2σ−1

n1/2
,

where the second inequality follows from Theorem 1 and the third inequality follows from Lemma 6 and
the discussion above.

9

Now, we anticipate to have detected feasibility when E(θ̃(xk)) <
21−σ

max
j∈[m]

||aj || , which is true for

k >

4σ − 4− log n+ 2 log

(
max
j∈[m]
||aj ||

)
log

(
mL2

2

mL2
2−2λ+λ2

) .

Furthermore, by Markov’s inequality (see e.g., [She02, Section 8.2]), if the system Ax ≤ b is feasible, then
the probability of not having a certificate of feasibility is bounded:

P
(
θ̃(xk) ≥

21−σ

max
j∈[m]

||aj ||

)
≤ E(θ̃(xk))

21−σ

max
j∈[m]

||aj ||
<

(
1− 2λ−λ2

mL2
2

)k/2
2σ−1

n1/2

21−σ

max
j∈[m]

||aj ||
=

22σ−2 max ||aj ||
n1/2

(
1− 2λ− λ2

mL2
2

)k/2
.

This completes the proof.

3 Experiments

We implemented the SKM methods in MATLAB [MAT16] on a 32GB RAM 8-node cluster (although we
did not exploit any parallelization), each with 12 cores of Intel Xeon E5-2640 v2 CPUs running at 2 GHz,
and ran them on systems while varying the projection parameter, λ, and the sample size, β. We divided our
tests into three broad categories: random data, non-random data, and comparisons to other methods. Our
experiments focus on the regime m � n, since as mentioned earlier, this is the setting in which iterative
methods are usually applied; however, we see similar behavior in the underdetermined setting as well.

3.1 Experiments on random data

First we considered systems Ax ≤ b where A has entries consisting of standard normal random variables
and b is chosen to force the system to have a solution set with non-empty interior (we generated a consistent
system of equations and then perturbed the right hand side with the absolute value of a standard normal error
vector). We additionally considered systems where the rows of A are highly correlated (each row consists
only of entries chosen uniformly at random from [.9, 1] or only of entries chosen uniformly at random from
[−1,−.9]) and b is chosen as above. We vary the size of A ∈ Rm×n, which we note in each example
presented below.

In Figure 3.1, we provide experimental evidence that for each problem there is an optimal choice for the
sample size, β, in terms of computation. We measure the average computational time necessary for SKM
with several choices of sample size β to reach halting (positive) residual error 2−14 (i.e. ||(Axk − b)+||2 ≤
2−14). Regardless of choice of projection parameter, λ, we see a minimum for performance occurs for β
between 1 and m.

For the experiments in Figures 3.1, 3.1, and 3.1, we fixed the projection parameter at λ = 1.6 (for
reasons discussed below). On the left of Figure 3.1, we see the residual error decreases more quickly per
iteration as the sample size, β increases. However, on the right, when measuring the computational time,
SKM with β ≈ 5000 performs best.

In Figure 3.1, we ran experiments varying the halting error and see that the sample size selection, β,
depends additionally on the desired final distance to the feasible region, P . On the right, we attempted to
pinpoint the optimal choice of β by reducing the sample sizes we were considering.

10

Figure 4: Left: Average comp. time for SKM on 40000× 100 Gaussian system to reach residual error 2−14.
Right: Average comp. time for SKM on 10000× 100 correlated random system to reach residual error.

Figure 5: Left: Iterations vs. residual error for SKM with various sample sizes on 50000 × 100 Gaussian
system. Right: Time vs. residual error.

Like [SV09], we observe that ‘overshooting’ (λ > 1) outperforms other projection parameters, λ ≤ 1.
In Figure 3.1, we see that the optimal projection parameter, λ is system dependent. For the experiments in
Figure 3.1, we ran SKM on the same system until the iterates had residual error less than 2−14 and averaged
the computational time taken over ten runs. The best choice of λ differed greatly between the Gaussian
random systems and the correlated random systems; for Gaussian systems it was 1.4 < λ < 1.6 while for
correlated systems it was λ = 2.

Our bound on the distance remaining to the feasible region decreases as the number of satisfied con-
straints increases. In Figure 3.1, we see that the fraction of satisfied constraints initially increased most
quickly for SKM with sample size, 1 < β < m and projection parameter, λ > 1. On the left, we show that
SKM with β = m is faster in terms of number of iterations. However, on the right, we show that SKM with
1 < β < m outperforms β = m in terms of time because of its computational cost in each iteration.

11

Figure 6: Left: Iterations vs. residual error for SKM with sample sizes from 50 to m on 50000 × 100
Gaussian system. Right: Time vs. residual error.

Figure 7: Left: Average comp. time for SKM on 50000 × 100 Gaussian system to reach various residual
errors for β between 1 and m. Right: Average comp. time for β between 1 and m/5.

Figure 8: Left: Iterations vs. fraction of contraints satisfied for SKM methods on 50000 × 100 Gaussian
system. Right: Time vs. fraction of contraints satisfied.

12

3.2 Experiments on non-random data

We consider next some non-random, non-fabricated test problems: support vector machine (SVM) linear
classification instances and feasibility problems equivalent to linear programs arising in well-known bench-
mark libraries.

We first consider instances that fit the classical SVM problem (see [CE14]). We used the SKM methods
to solve the SVM problem (find a linear classifier) for several data sets from the UCI Machine Learning
Repository [Lic13]. The first data set is the well-known Wisconsin (Diagnostic) Breast Cancer data set,
which includes data points (vectors) whose features (components) are computed from a digitized image of
a fine needle aspirate (FNA) of a breast mass. They describe characteristics of the cell nuclei present in the
image. Each data point is classified as malignant or benign. The resulting solution to the homogenous system
of inequalities, Ax ≤ 0 would ideally define a hyperplane which separates given malignant and benign data
points. However, this data set is not separable. The system of inequalities has m = 569 constraints (569
data points) and n = 30 variables (29 data features). Here, SKM is minimizing the residual norm, ||Axk||2
and is run until ||Axk||2 ≤ 0.5. See Figure 9 for results of SKM runtime on this data set.

Figure 9: Left: Breast Cancer Data SVM. Right: Credit Card Data SVM.

The second data set is a credit card data set, whose data points include features describing the payment
profile of a credit card user and the binary classification is for on-time payment or default payment in a
billing cycle [YL09]. The resulting solution to the homogenous system of inequalities would ideally define
a hyperplane which separates given on-time and default data points. However, this data set is not separable.
The system of inequalities hasm = 30000 (30000 credit card user profiles) and n = 23 (22 profile features).
Here, SKM is run until ||Axk||2/||Ax0||2 ≤ 0.01. See Figure 9 for results of SKM runtime on this data set.

In the experiments, we again see that for each problem there is an optimal choice for the sample size,
β, in terms of smallest computation time. We measure the average computation time necessary for SKM
with several choices of sample size β to reach the halting (positive) residual error. Regardless of choice of
projection parameter, λ, we see again that best performance occurs for β between 1 and m. Note that the
curves are not as smooth as before, which we attribute to the wider irregularity of coefficients, which in turn
forces the residual error more to be more dependent on the actual constraints.

We next implemented SKM on several Netlib linear programming (LP) problems [Net]. Each of these
problems was originally formulated as the LP min cTx subject to Ax = b, l ≤ x ≤ u with optimum value
p∗. We reformulated these problems as the equivalent linear feasibility problem Ãx ≤ b̃ where

13

Ã =

A
−A
I
−I
cT

 and b̃ =

b
−b
u
−l
p∗

 .
See Figures 10, 11, 12, 13, and 14 for results of SKM runtime on these problems as we vary β and λ. Once
more, regardless of choice of projection parameter, λ, we see optimal performance occurs for β between 1
and m.

It would be possible to handle these equalities without employing our splitting technique to generate
inequalities. This splitting technique only increases m (||A||2F) and does not affect the Hoffman constant,
which is ||Ã−1||2 in this case. It may be useful to explore such an extension.

Figure 10: Left: SKM behavior for Netlib LP adlittle. Right: SKM behavior for Netlib LP agg

Figure 11: Left: SKM behavior for Netlib LP blend. Right: SKM behavior for Netlib LP bandm.

14

Figure 12: Left: SKM behavior for Netlib LP brandy. Right: SKM behavior for Netlib LP degen2.

Figure 13: Left: SKM behavior for Netlib LP finnis. Right: SKM behavior for Netlib LP recipe.

Figure 14: Left: SKM behavior for Netlib LP scorpion. Right: SKM behavior for Netlib LP stocfor1.

15

3.3 Comparison to existing methods

In Table 1, we investigate the performance behavior of SKM versus interior-point and active-set methods
on several Netlib LPs. For fairness of comparison, we gauge our code written in MATLAB versus the
MATLAB Optimization Toolbox function fmincon. The function fmincon allows a user to select either an
‘interior-point’ algorithm or an ‘active-set’ algorithm.

We first used fmincon to solve the feasibility problem as described in Section 3.2 by applying this func-
tion to min 0 such that Ãx ≤ b̃. However, the interior-point method and active-set method were mostly
unable to solve these feasibility form problems. The interior-point algorithm was never able to solve fea-
sibility, due to the fact that the system of equations defined by the KKT conditions in each iteration was
numerically singular. Similarly, in most cases, the active-set method was halted in the initial step of finding
a feasible point. For fairness of comparison, we do not list these results.

In Table 1, we list CPU timings for the MATLAB interior-point and active-set fmincon algorithms
to solve the original optimization LPs (min cTx such that Ax = b, l ≤ x ≤ u), and SKM to solve the
equivalent feasibility problem, Ãx ≤ b̃, as described in Section 3.2. Note that this is not an obvious
comparion as SKM is designed for feasibility problems, and in principle, the stopping criterion may force
SKM to stop near a feasible point, but not necessarily near an optimum. On the other hand, interior point
methods and active set methods decrease the value of the objective and simultaneously solve feasibility. The
halting criterion for SKM remains that max(Ãxk−b̃)

max(Ãx0−b̃)
≤ εerr where εerr is the halting error bound listed for each

problem in the table. The halting criterion for the fmincon algorithms is that max(Axk−b,l−xk,xk−u)
max(Ax0−b,l−x0,x0−u) ≤ εerr

and cT xk
cT x0

≤ εerr where εerr is the halting error bound listed for each problem in the table. Each of the
methods were started with the same initial point far from the feasible region. The experiments show our
SKM method compares favorably with the other codes.

Problem Title Dimensions Interior-Point SKM Active-Set εerr SKM λ SKM β
LP adlittle 389× 138 2.08 0.29 1.85 10−2 1.2 30

LP agg 2207× 615 109.54* 20.55 554.52* 10−2 1 100
LP bandm 1555× 472 27.21 756.71 518.44* 10−2 1.2 100
LP blend 337× 114 1.87 367.33 2.20 10−3 1.6 250

LP brandy 1047× 303 21.26 240.83 90.46 0.05 1 20
LP degen2 2403× 757 6.70 22.41 25725.23 10−2 1.4 100
LP finnis 3123× 1064 115.47* 13.76 431380.82* 0.05 1 50
LP recipe 591× 204 2.81 2.62 5.56 0.002 1.2 30

LP scorpion 1709× 466 11.80 22.22 10.38 0.005 1.6 200
LP stocfor1 565× 165 0.53 0.34 3.29 0.1 1.4 50

Table 1: CPU time comparisons for MATLAB methods solving LP and SKM solving feasibility.
∗ indicates that the solver did not solve the problem to the desired accuracy due to reaching an upper limit on function evaluations of 100000

For the experiments in Table 1, the interior-point method was not able to solve for LP agg and LP
finnis before hitting the upper bound on function evaluations due to slow progression towards feasibility.
The active-set method was not able to solve for LP agg, LP bandm and LP finnis before hitting the upper
bound on function evaluations due to a very slow (or incomplete) initial step in finding a feasible point. As
mentioned before, the methods were initialized with a point far from the feasible region which may have
contributed to the interior-point and active-set methods poor performances.

In Figures 15 and 16, we compare the SKM method to the block Kaczmarz (BK) method (with ran-
domly selected blocks). Here we solve only systems of linear equations, not inequalities, and we consider

16

only random data as our implemented block Kaczmarz method selects blocks at random. We see that the
performance of the block Kaczmarz method is closely linked to the conditioning of the selected blocks, as
the BK method must solve a system of equations in each iteration, rather than one equation as for SKM.

For the Gaussian random data, the selected blocks are well-conditioned and with high probability, the
block division has formed a row-paving of the matrix. Here we see that BK outperforms SKM. However,
when we consider correlated data instead, the behavior of BK reflects the poor conditioning of the blocks.
In the three included figures, we test with correlated matrices with increasingly poorly conditioned blocks.
If the blocks are numerically ill-conditioned, SKM is able to outperform BK. For systems of equations in
which blocks are well conditioned and easy to identify, BK has advantages over SKM. However, if you
are unable or unwilling to find a good paving, SKM can be used and is able to outperform BK. When BK
is used with inequalities, a paving with more strict geometric properties must be found, and this can be
computationally challenging, see [BN] for details. SKM avoids this issue.

Figure 15: Comparison of SKM method runtimes with various choices of sample size, β and block Kacz-
marz method runtimes with various choices of block size on different types of random systems. Left: Gaus-
sian random system. Right: Correlated random system with entries chosen uniformly from [0.9, 0.9+10−5].

Figure 16: Left: Correlated random system with entries chosen uniformly from [0.9, 0.9 + 10−16]. Right:
Correlated random system with entries chosen uniformly from [0.9, 0.9 + 10−20].

17

4 Remarks about optimal selection of parameters

4.1 Choice of β

As observed by Theorem 1, the sample size β used in each iteration of SKM plays a role in the convergence
rate of the method. By the definition of Vk−1 in Theorem 1 and by the bound in Proposition 3 the choice
β = m yields the fastest convergence rate. Indeed, this coincides with the classical method of Motzkin; one
selects the most violated constraint out of all the constraints in each iteration. However, it is also clear that
this choice of β is extremely costly in terms of computation, and so the more relevant question is about the
choice of β that optimizes the convergence rate in terms of total computation.

To gain an understanding of the tradeoff between convergence rate and computation time in terms of
the parameter β, we consider a fixed iteration j and for simplicity choose λ = 1. Denote the residual by
r := (Axj − b)+, and suppose s inequalities are satisfied in this iteration; that is, r has s zero entries.
Write rτj for the portion of the residual selected in Step 3 of SKM (so |τj | = β). Then as seen from
Equation (1) in the proof of Theorem 1, the expected improvement (i.e. d(xj , P) − d(xj+1, P)) made in
this iteration is given by E‖rτj‖2∞. Expressing this quantity as in (2) along with Lemma 2, one sees that
the worst case improvement will be made when the m − s non-zero components of the residual vector are
all the same magnitude (i.e. E‖rτj‖∞ ≥ 1

m−s‖r‖1). We thus focus on this scenario in tuning β to obtain a
minimax heuristic for the optimal selection. We model the computation count in a fixed iteration as some
constant computation time for overhead C plus a factor that scales like nβ, since checking the feasibility of
β constraints takes time O(nβ). We therefore seek a value for β that maximizes the ratio of improvement
made and computation cost:

gain(β) :=
E‖rτj‖2∞
C + cnβ

, (6)

when the residual r consists of m − s non-zeros of the same magnitude. Call the support of the residual
T := supp(r) = {i : ri 6= 0}. Without loss of generality, we may assume that the magnitude of these entries
is just 1. In that case, one easily computes that

E‖rτj‖2∞ = P(T ∩ τj 6= ∅) =

1−

(
s

β

)
(
m

β

) ≈ 1−
(
s
m

)β if β ≤ s,

1 if β > s,

where we have used Stirling’s approximation in the first case.
We may now plot the quantity

gain(β) ≈
1−

(
s
m

)β
C + cnβ

(7)

as a function of β, for various choices of s. Figure 17 shows an example of this function for some specific
parameter settings. We see that, as in the experiments of Section 3, optimal β selection need not necessarily
be at either of the endpoints β = 1 or β = m (corresponding to classical randomized Kaczmarz and
Motzkin’s method, respectively). In particular, one observes that as the number of satisfied constraints s
increases, the optimal size of β also increases. This of course is not surprising, since with many satisfied
constraints if we use a small value of β we are likely to see mostly satisfied constraints in our selection
and thus make little to no progress in that iteration. Again, this plot is for the worst case scenario when the
residual has constant non-zero entries, but serves as a heuristic for how one might tune the choice of β. In
particular, it might be worthwhile to increase β throughout the iterations.

18

Figure 17: The quantity gain(β) as in (7) as a function of β for various numbers of satisfied constraints s.
Here we set m = 200, n = 10, c = 1 and C = 100. Optimal values of β maximize the gain function.

4.2 Choice of λ

Additionally, the optimal choice of projection parameter λ is system dependent (e.g., for certain systems, one
should choose λ = 1 while for certain full-dimensional systems, one should choose λ > 1). Theoretically,
the convergence rate we provided in Theorem 1 depends upon λ in a weak way; one would always choose
λ = 1. However, we see experimentally that overshooting outperforms other choices of λ. Additionally,
one can easily imagine that for systems whose polyhedral feasible region is full-dimensional, choosing
λ > 1 will outperform λ ≤ 1, as eventually, the iterates could ‘hop’ into the the feasible region. The
proof of Proposition 3 suggests a possible reason why we see this in our experiments. This proposition is a
consequence of the fact that if the method does not terminate then it will converge to a unique face of P . If
λ > 1, then this face cannot be a facet of P , as if the method converged to such a face, it would eventually
terminate, ‘hopping’ over the facet into P . Thus, for λ > 1, the number of possible faces of P that the
sequence of iterates can converge to is decreased. Further work is needed before defining the optimal choice
of λ or β for any class of systems.

4.3 Concluding remarks

We have shown SKM is a natural generalization of the methods of Kaczmarz and Motzkin with a theoretical
analysis that combines earlier arguments. Moreover, compared to these two older methods, the SKM ap-
proach leads to significant acceleration with the right choices of parameters. We wish to note that, by easy
polarization-homogenization of the information (where the hyperplane normals ai are thought of as points
and the solution vector x is a separating plane), one can reinterpret SKM as a type of stochastic gradient de-
scent (SGD). Indeed, in SGD one allows the direction to be a random vector whose expected value is the gra-
dient direction; here we generate a random direction that stems from a sampling of the possible increments.
More on this will be discussed in a forthcoming article. In future work we intend to identify the optimal
choices for β and λ for classes of systems and to connect SKM to Chubanov’s style generation of additional

19

linear inequalities that have been successfully used to speed computation [Chu12, BDJ14, VZ14]. All code
discussed in this paper is freely available at https://www.math.ucdavis.edu/˜jhaddock.

5 Acknowledgements

The authors are truly grateful to the anonymous referees and the editor for their many comments and sugges-
tions which have greatly improved this paper. The first and second author were partially supported by grant
H98230-15-1-0226 from the NSA. The second author was partially supported by a GAANN fellowship.
The third author was supported by NSF CAREER #1348721 and the Alfred P. Sloan foundation.

References

[ADG14] H. Avron, A. Druinsky, and A. Gupta. Revisiting asynchronous linear solvers: Provable con-
vergence rate through randomization. In IEEE 28th Int. Parallel and Distributed Processing
Symposium, pages 198–207. IEEE, 2014.

[Agm54] S. Agmon. The relaxation method for linear inequalities. Canadian J. Math., 6:382–392, 1954.
[AH05] E. Amaldi and R. Hauser. Boundedness theorems for the relaxation method. Math. Oper. Res.,

30(4):939–955, 2005.
[AWL14] A. Agaskar, C. Wang, and Y. M. Lu. Randomized Kaczmarz algorithms: Exact MSE anal-

ysis and optimal sampling probabilities. In IEEE Global Conf. on Signal and Information
Processing (GlobalSIP), pages 389–393. IEEE, 2014.

[AWY14] S. Agrawal, Z. Wang, and Y. Ye. A dynamic near-optimal algorithm for online linear program-
ming. Operations Research, 62(4):876–890, 2014.

[BDJ14] A. Basu, J. A. De Loera, and M. Junod. On Chubanov’s method for linear programming.
INFORMS Journal on Computing, 26(2):336–350, 2014.

[Bet04] U. Betke. Relaxation, new combinatorial and polynomial algorithms for the linear feasibility
problem. Discrete Comput. Geom., 32(3):317–338, 2004.

[BN] J. Briskman and D. Needell. Block Kaczmarz method with inequalities. J. Math. Imaging Vis.,
52(3):385–396.

[CE14] G. Calafiore and L. El Ghaoui. Optimization Models. Control systems and optimization series.
Cambridge University Press, October 2014.

[CEG83] Y. Censor, P. P. Eggermont, and D. Gordon. Strong underrelaxation in Kaczmarz’s method for
inconsistent systems. Numer. Math., 41(1):83–92, 1983.

[Cen81] Y. Censor. Row-action methods for huge and sparse systems and their applications. SIAM Rev.,
23(4):444–466, 1981.

[Chu12] S. Chubanov. A strongly polynomial algorithm for linear systems having a binary solution.
Math. Programming, 134(2):533–570, 2012.

[CP12] X. Chen and A. Powell. Almost sure convergence of the Kaczmarz algorithm with random
measurements. J. Fourier Anal. Appl., pages 1–20, 2012. 10.1007/s00041-012-9237-2.

[Dum14] B. Dumitrescu. On the relation between the randomized extended Kaczmarz algorithm and
coordinate descent. BIT Numerical Mathematics, pages 1–11, 2014.

[EHL81] P. P. B. Eggermont, G. T. Herman, and A. Lent. Iterative algorithms for large partitioned linear
systems, with applications to image reconstruction. Linear Algebra Appl., 40:37–67, 1981.

[Elf80] T. Elfving. Block-iterative methods for consistent and inconsistent linear equations. Numer.
Math., 35(1):1–12, 1980.

20

https://www.math.ucdavis.edu/~jhaddock

[EN11] Y. C. Eldar and D. Needell. Acceleration of randomized Kaczmarz method via the Johnson-
Lindenstrauss lemma. Numer. Algorithms, 58(2):163–177, 2011. 65F20 (65F10); 2835851;
Alexander N. Malyshev.

[GBH70] R. Gordon, R. Bender, and G. T. Herman. Algebraic reconstruction techniques (ART) for
three-dimensional electron microscopy and x-ray photography. J. Theoret. Biol., 29:471–481,
1970.

[GO12] M. Griebel and P. Oswald. Greedy and randomized versions of the multiplicative Schwarz
method. Linear Algebra Appl., 437(7):1596–1610, 2012.

[Gof80] J.-L. Goffin. The relaxation method for solving systems of linear inequalities. Math. Oper.
Res., 5(3):388–414, 1980.

[Gof82] J.-L. Goffin. On the nonpolynomiality of the relaxation method for systems of linear inequali-
ties. Math. Programming, 22(1):93–103, 1982.

[GPS16] E. Gallopoulos, B. Philippe, and A. H. Sameh. Preconditioners. In Parallelism in Matrix
Computations, pages 311–341. Springer, 2016.

[GR15] R. M. Gower and P. Richtárik. Randomized iterative methods for linear systems. SIAM J.
Matrix Anal. A., 36(4):1660–1690, 2015.

[Hač79] L. G. Hačijan. A polynomial algorithm in linear programming. Dokl. Akad. Nauk SSSR,
244(5):1093–1096, 1979.

[HM93] G. T. Herman and L. B. Meyer. Algebraic reconstruction techniques can be made computa-
tionally efficient. IEEE Trans. Medical Imaging, 12(3):600–609, 1993.

[HMSW53] A. Hoffman, M. Mannos, D. Sokolowsky, and N. Wiegmann. Computational experience
in solving linear programs. Journal of the Society for Industrial and Applied Mathematics,
1(1):pp. 17–33, 1953.

[HN90] M. Hanke and W. Niethammer. On the acceleration of Kaczmarz’s method for inconsistent
linear systems. Linear Algebra Appl., 130:83–98, 1990.

[HNR15] A. Hefny, D. Needell, and A. Ramdas. Rows vs. columns: Randomized Kaczmarz or Gauss-
Seidel for ridge regression. 2015. Submitted.

[Hof52] A. J. Hoffman. On approximate solutions of systems of linear inequalities. J. Research Nat.
Bur. Standards, 49:263–265, 1952.

[HS78] C. Hamaker and D. C. Solmon. The angles between the null spaces of x-rays. J. Math. Anal.
Appl., 62(1):1–23, 1978.

[Kac37] S. Kaczmarz. Angenäherte auflösung von systemen linearer gleichungen.
Bull.Internat.Acad.Polon.Sci.Lettres A, pages 335–357, 1937.

[Lic13] M. Lichman. UCI machine learning repository, 2013.
[LL10] D. Leventhal and A. S. Lewis. Randomized methods for linear constraints: convergence rates

and conditioning. Math. Oper. Res., 35(3):641–654, 2010.
[LMY15] Y. Li, K. Mo, and H. Ye. Accelerating random Kaczmarz algorithm based on clustering infor-

mation. arXiv preprint arXiv:1511.05362, 2015.
[LW15] J. Liu and S. Wright. An accelerated randomized Kaczmarz algorithm. Mathematics of Com-

putation, 2015.
[LWS14] J. Liu, S. J. Wright, and S. Sridhar. An asynchronous parallel randomized Kaczmarz algorithm.

arXiv preprint arXiv:1401.4780, 2014.
[MAT16] MATLAB. version 9.0.0 (R2016a). The MathWorks Inc., Natick, Massachusetts, 2016.
[MNR15] A. Ma, D. Needell, and A. Ramdas. Convergence properties of the randomized extended gauss-

seidel and Kaczmarz methods. SIAM J. Matrix Anal. A., 2015. To appear.

21

[MS54] T. S. Motzkin and I. J. Schoenberg. The relaxation method for linear inequalities. Canadian J.
Math., 6:393–404, 1954.

[MTA81] J.-F. Maurras, K. Truemper, and M. Akgül. Polynomial algorithms for a class of linear pro-
grams. Math. Programming, 21(2):121–136, 1981.

[Nat01] F. Natterer. The mathematics of computerized tomography, volume 32. Society for Industrial
and Applied Mathematics, Philadelphia, PA; SIAM, 2001.

[Nee10] D. Needell. Randomized Kaczmarz solver for noisy linear systems. BIT, 50(2):395–403, 2010.
[Net] Netlib. The Netlib Linear Programming Library. www.netlib.org/lp.
[NSV+16] J. Nutini, B. Sepehry, A. Virani, I. Laradji, M. Schmidt, and H. Koepke. Convergence Rates

for Greedy Kaczmarz Algorithms. UAI, 2016.
[NSW14a] D. Needell, N. Srebro, and R. Ward. Stochastic gradient descent and the randomized Kaczmarz

algorithm. Math. Programming Series A, 2014. To appear.
[NSW14b] D. Needell, N. Srebro, and R. Ward. Stochastic gradient descent, weighted sampling, and the

randomized Kaczmarz algorithm. In Proc. Neural Info. Proc. Systems (NIPS), 2014.
[NT13] D. Needell and J. A. Tropp. Paved with good intentions: Analysis of a randomized block

Kaczmarz method. Linear Algebra Appl., 2013.
[NW13] D. Needell and R. Ward. Two-subspace projection method for coherent overdetermined linear

systems. J. Fourier Anal. Appl., 19(2):256–269, 2013.
[NZZ15] D. Needell, R. Zhao, and A. Zouzias. Randomized block Kaczmarz method with projection

for solving least squares. Linear Algebra Appl., 484:322–343, 2015.
[OZ15a] P. Oswald and W. Zhou. Convergence analysis for Kaczmarz-type methods in a Hilbert space

framework. Linear Algebra Appl., 478:131–161, 2015.
[OZ15b] P. Oswald and W. Zhou. Random reordering in SOR-type methods. arXiv preprint

arXiv:1510.04727, 2015.
[PP15] S. Petra and C. Popa. Single projection Kaczmarz extended algorithms. Numerical Algorithms,

pages 1–16, 2015.
[PPKR12] C. Popa, T. Preclik, H. Köstler, and U. Rüde. On Kaczmarz’s projection iteration as a direct

solver for linear least squares problems. Linear Algebra Appl., 436(2):389–404, 2012.
[RM12] P. Richtárik and T. M. Iteration complexity of randomized block-coordinate descent methods

for minimizing a composite function. Math. Programming, pages 1–38, 2012.
[Ros58] F. Rosenblatt. The perceptron: A probabilistic model for information storage and organization

in the brain. Cornell Aeronautical Laboratory, Psychological Review, 65(6):386–408, 1958.
[She02] R. Sheldon. A first course in probability. Pearson Education India, 2002.
[SV09] T. Strohmer and R. Vershynin. A randomized Kaczmarz algorithm with exponential conver-

gence. J. Fourier Anal. Appl., 15:262–278, 2009.
[Tan71] K. Tanabe. Projection method for solving a singular system of linear equations and its appli-

cations. Numer. Math., 17(3):203–214, 1971.
[Tel82] J. Telgen. On relaxation methods for systems of linear inequalities. European J. Oper. Res.,

9(2):184–189, 1982.
[VZ14] L. A. Végh and G. Zambelli. A polynomial projection-type algorithm for linear programming.

Oper. Res. Lett., 42(1):91–96, 2014.
[WAL15] C. Wang, A. Agaskar, and Y. M. Lu. Randomized Kaczmarz algorithm for inconsistent linear

systems: An exact MSE analysis. arXiv preprint arXiv:1502.00190, 2015.
[WM67] T. M. Whitney and R. K. Meany. Two algorithms related to the method of steepest descent.

SIAM J. Numer. Anal., 4(1):109–118, 1967.

22

www.netlib.org/lp

[XZ02] J. Xu and L. Zikatanov. The method of alternating projections and the method of subspace
corrections in Hilbert space. J. Amer. Math. Soc., 15(3):573–597, 2002.

[YL09] I. C. Yeh and C. H. Lien. The comparison of data mining techniques for the predictive ac-
curacy of probability of default of credit card clients. Expert Systems with Applications,
36(2):24732480, 2009.

[ZF12] A. Zouzias and N. M. Freris. Randomized extended Kaczmarz for solving least-squares. SIAM
J. Matrix Anal. A., 34(2):773–793, 2012.

23

	Claremont Colleges
	Scholarship @ Claremont
	11-4-2016

	A Sampling Kaczmarz-Motzkin Algorithm for Linear Feasibility
	Jesus A. De Loera
	Jamie Haddock
	Deanna Needell
	Recommended Citation

	1 Introduction
	1.1 Our contribution: the Sampling Kaczmarz-Motzkin method

	2 Proof of Theorem ??
	2.1 Proof of Theorem ??

	3 Experiments
	3.1 Experiments on random data
	3.2 Experiments on non-random data
	3.3 Comparison to existing methods

	4 Remarks about optimal selection of parameters
	4.1 Choice of
	4.2 Choice of
	4.3 Concluding remarks

	5 Acknowledgements

