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A note on practical approximate projection schemes in signal
space methods

Xiaoyi Gu, Deanna Needell and Shenyinying Tu ∗

November 13, 2015

Abstract

Compressive sensing (CS) is a new technology which allows the acquisition of signals directly in
compressed form, using far fewer measurements than traditional theory dictates. Recently, many so-
called signal space methods have been developed to extend this body of work to signals sparse in ar-
bitrary dictionaries rather than orthonormal bases. In doing so, CS can be utilized in a much broader
array of practical settings. Often, such approaches often rely on the ability to optimally project a sig-
nal onto a small number of dictionary atoms. Such optimal, or even approximate, projections have
been difficult to derive theoretically. Nonetheless, it has been observed experimentally that conven-
tional CS approaches can be used for such projections, and still provide accurate signal recovery.
In this letter, we summarize the empirical evidence and clearly demonstrate for what signal types
certain CS methods may be used as approximate projections. In addition, we provide theoretical
guarantees for such methods for certain sparse signal structures. Our theoretical results match those
observed in experimental studies, and we thus establish both experimentally and theoretically that
these CS methods can be used in this context.

1 Introduction

Compressive sensing (CS) addresses some drawbacks of traditional signal acquisition by suggesting that
a signal may be acquired directly in compressed form, and often with far less samples than previously
thought. The key assumption behind this methodology is that signals of interest are sparse or nearly
sparse. Typically, this notion can be quantified by assuming that the signal x ∈Cn can be represented as
x = Dα where α is sparse (‖α‖0 := |supp(α)| = s ¿ n) and D is an orthonormal basis called the sparsi-
fying basis. For example, if D is a wavelet basis, most natural images are considered sparse in that basis.
However, in many practical applications, the sparsifying basis is not orthonormal but instead a redun-
dant, highly overcomplete frame. In this setting, most classical CS approaches break down, and new
technologies are needed to address this practical issue. Recently, both optimization based and greedy
methods have begun to be developed; however, many of these approaches rely on the existence of ap-
proximately optimal projections to project signals onto sparse subspaces of the frame. Empirical evi-
dence has suggested that classical CS methods can be used for such projections, but these results have
lacked theoretical support.

The mathematical formulation of the CS problem can be described as follows. Denote the signal
of interest by x ∈ Cn . The measurement vector y ∈ Cm is obtained using the measurement matrix A ∈
Cm×n (where m ¿ n) and written y = Ax + e, where e ∈ Cm is additive noise. The sparsity condition on
the signal x is that x = Dα, for some coefficient vector α ∈ Cd with ‖α‖0 ≤ k ¿ n, yielding a k-sparse
representation of the signal x with respect to the dictionary D ∈Cn×d (n ≤ d).

∗This work was supported by NSF grant DMS-1045536, NSF CAREER grant #1348721, and the Alfred P. Sloan Fellowship.
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In the simplest classical CS setting, the sparsifying basis D is just the identity matrix. In this setting,
it is clear that as long as the meausurement matrix A is one-to-one on k-sparse vectors, then one can
recover a k-sparse vector x from its noiseless measurements y = Ax by searching for the sparsest vector
among all those that match the measurements y . This `0-minimization problem of course is NP-hard
in general [Mut05], but motivates the seminal work of Candès, Romberg and Tao [CT05, CRT06] which
shows that a sparse vector x can also be recovered using the relaxed `1-minimization method, under a
slightly stricter assumption on the matrix A. Candès and Tao [CT05] introduce the Restricted Isometry
Property (RIP) which asks that A satisfy the following for a constant δk ∈ (0,1):

(1−δk )‖x‖2
2 ≤ ‖Ax‖2

2 ≤ (1+δk )‖x‖2
2 for all x with ‖x‖0 ≤ k. (1.0.1)

Fortunately, it is now well-known that many classes of randomly constructed measurement matrices
satisfy this condition. For example, if the entries of A are drawn from a subgaussian distribution and
m ≥C k/log(n), then A satisfies the RIP with high probability [CRVT05, RV08]. Analogous results hold for
subsampled Discrete Fourier Transform (DFT) matrices and others with a fast-multiply [RV08, RRT12].
Under the assumption of the RIP, the `1-minimization problem is guaranteed to robustly reconstruct a
k-sparse signal x from its noisy measurements y = Ax +e. Greedy methods such as OMP [TG07, Zha11],
ROMP [NV07], CoSaMP [NT09], and IHT [BD09], which aim to identify the signal support iteratively, also
provide robust reconstruction guarantees in this setting. We refer the reader to the above references for
details about each of the algorithmic guarantees.

2 Signal Space Methods

The above mentioned CS methods provide rigorous reconstruction guarantees when the signal of inter-
est x is sparse in an orthonormal basis. Indeed, if we write x = Dα for some sparse coefficient vector
α, these approaches aim at recovering the representation α. When D is orthonormal, this of course
translates robustly to the recovery of the actual signal x . However, a vast array of signals in practice are
compressible not in an orthonormal basis but in some highly overcomplete dictionary such as an over-
sampled DFT, Gabor frame, or many of the redundant dictionaries used in signal and image processing.
Due to the effect of redundancy, these classical approaches fail both theoretically and empirically when
D is no longer orthonormal.

To address this issue, a recent surge of work has been focused on so-called signal space methods. Two
models to capture sparsity in an overcomplete frame have been studied; the synthesis sparsity model as-
serts that x = Dα for some sparse representation α, as discussed above. The analysis sparsity or cospar-
sity model instead captures the sparsity in the analysis coefficients D∗x [NDEG13, GNE+14, Fou]. We
utilize the synthesis sparsity model in this work, and refer the reader to aforementioned references for a
description of some alternatives.

In [DW12, DNW12], Davenport et. al. introduce and analyze a greedy method called Signal Space
CoSaMP (SSCoSaMP). SSCoSaMP is an adaptation of the CoSaMP method designed to recover the signal
x when D is an overcomplete frame. Rather than assuming the classical RIP, they instead utilize a gener-
alization of this property called the D-RIP, introduced in [CENR10]. In contrast to other CS algorithms,
SSCoSaMP employs a “signal-focused" approach, aimed at determining the signal x directly rather than
its (non-unique) coefficient vector α. The method is described by the pseudo-code given in Algorithm
1. Here and throughout, we denote the range of a matrix D by R(D).

The identification step in SSCoSaMP requires finding the best k-sparse representation of a vector z
in the dictionary D :

Ωopt := argmin
Λ:|Λ|=k

‖z −PΛz‖2, (2.0.2)
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where here and throughout PΛ denotes the projection onto the span of the columns of D indexed by
Λ. This problem is itself reminiscent of the classical CS problem; one wishes to recover a sparse rep-
resentation from an underdetermined linear system. Thus, such an endeavor in general is itself an
NP-hard problem. Therefore, we relax this problem and instead ask for a near-optimal approxima-
tion [DNW12, GN15], writing SD (w ,k) to denote the k-sparse approximation to w in D . Because of
its similarity to the classical CS problem, one might think to use a classical CS approach to solve this
sub-problem. Of course, for typical redundant frames, the RIP will not be in force, and classical results
would not suggest accurate recovery. Nonetheless, SSCoSaMP is surprisingly able to accurately recover
signals even when D is highly overcomplete, when using a classical CS algorithm like OMP, CoSaMP or
`1-minimization for the near-optimal projection SD .

Even more interesting is that the behavior of SSCoSaMP varies significantly depending on both the
approximate projection used, and the structure of the sparse signal x . This was originally noted in the ex-
periments of [DNW12], which we demonstrate again here in Figure 1 as in [GGK+14]. Here and through-
out this paper, the algorithm in parentheses following “SSCoSaMP" is the algorithm used for the approx-
imate projection SD in the identify and prune steps. As is shown, when the support of the signal x is
clustered together, the CoSaMP method as an approximate projection yields accurate recovery whereas
`1-minimization and OMP do not perform well at all. On the other hand, when the signal support has
adequate separation, the exact opposite behavior is seen. This observation led to a recent work which
empirically investigated this behavior, cataloging how various approximate projection methods behave
for various signal types [GGK+14].

Algorithm 1 Signal-Space CoSaMP (SSCoSaMP)

Input: A, D , y , k, stopping criterion
Initialize: r = y , x0 = 0, `= 0, Γ=∅
while not converged do

Proxy: ṽ = A∗r
Identify: Ω=SD (ṽ ,2k)
Merge: T =Ω∪Γ
Update: w̃ = argminz ‖y − Az‖2 s.t. z ∈R(DT )
Prune: Γ=SD (w̃ ,k)

x`+1 =PΓw̃
r = y − Ax`+1

`= `+1
end while
Output: x̂ = x`

2.1 Contribution

As observed in Figure 1 and in more detail in [GGK+14], the accuracy of SSCoSaMP depends on both the
approximate projection and the structure of the signal. In addition, none of the approximate projections
simultaneously work well for both signal types (however, see [GE13, GGK+14] for hybrid algorithms that
are accurate for wider variety of signal structures). The discrepancy between the theoretical guarantees
for classical CS approaches and the empirical behavior of such methods as approximate projections
motivates the work of this note. Here, we provide an analysis of two of the classical approaches which
provably show that for certain signal structures, these methods can be used as accurate approximate
projections and thus can be utilized in SSCoSaMP for efficient signal recovery. We believe our analysis
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(a) (b)

Figure 1: From [GGK+14]. Percent of perfect recovery (we define perfect recovery as signal to noise ratio 20log(‖x‖2/‖x − x̂‖2)
greater than 100db) out of 100 trials for different SSCoSaMP variants when the nonzero entries inα are clustered together (left)
and when the nonzero entries in α are well-separated (right). Here, k = 8, n = 256, d = 1024, the dictionary D ∈ Cn×d is a 4×
overcomplete DFT and A ∈Rm×n is a Gaussian matrix.

furthers the understanding of the behavior of such methods, which is interesting in its own right as well
as in the context of signal space methods.

3 Analytical Justification

Recall that (2.0.2) is NP-hard because it requires examining all k combinations of the columns of D . A
concession one makes is to instead look for a near-optimal projection, as used in Algorithm 1. It has
been shown [GN15] that as long as the near optimal projection is good enough, i.e.,

‖PSD (x,k)x −x‖2 ≤C‖PΛx −x‖2 and ‖PSD (x,k)x‖2 ≥ c‖PΛx‖2 (3.0.1)

for all x and suitable constants c and C (and where PΛ denotes the optimal projection), then SSCoSaMP
provides accurate recovery of the signal. Although there do exist such projections for well behaved dic-
tionaries D , for truly redundant dictionaries such projections are not known to exist. Nonetheless, em-
pirical studies [DNW12] using traditional compressed sensing algorithms for these projections showed
that in certain cases SSCoSaMP using these projections still yields accurate recovery. In this section we
build on state of the art results in compressed sensing to provide theoretical justification for this behav-
ior; motivated by Fig. 1, we examine the case when SSCoSaMP(`1) and SSCoSaMP(OMP) are applied to
well-separated signals. We assume here that the dictionary D is an overcomplete discrete Fourier matrix
(DFT); results for similar dictionaries follow analogously.

3.1 SSCoSaMP(OMP)

Numerical experiments conducted on SSCoSaMP(OMP) suggest that when the sparse vectorα in x = Dα
is well-separated, SSCoSaMP(OMP) gives accurate recovery of the signal x . We thus seek theoretical
backing for the use of OMP as an approximate projection within SSCoSaMP in this scenario. First, sup-
pose the signal x has a k-sparse representation in the n ×d matrixΦ,

x = ∑
i∈Ωopt

αiϕi (3.1.1)

4



whereΩopt is an index set of size k, andϕi andαi denote the i th column ofΦ and element ofα, respec-
tively. Then we can extract the matrixΦΩopt from the dictionaryΦwhose columns are listed inΩopt,

ΦΩopt = [ϕi1
ϕi2

· · ·ϕik
]i1,...,ik∈Ωopt . (3.1.2)

Then the signal can be expressed as

x =ΦΩoptαΩopt . (3.1.3)

We will utilize the following established result of Cai and Wang [CW11] that improves upon the sem-
inal work of Gilbert and Tropp [TG07]. They prove a sufficient condition to accurately recover the signal
from contaminated samples when Φ is sufficiently incoherent. Also see these works for a detailed de-
scription of OMP.

Proposition 3.1. [CW11, Prop. 1] Let Ωopt denote the support set of the signalα, set M := maxi∈Ωc
opt

‖Φ†
Ωopt

φi‖1,

let r i be the residual vector of OMP in the i th iteration, and let λmin denote the minimal eigenvalue of
the matrix Φ∗

Ωopt
ΦΩopt . Suppose ‖e‖2 ≤ ε and M < 1. Then the OMP algorithm (with the stopping rule

‖r i‖2 ≤ ε) recoversΩopt exactly if all the nonzero coefficientsαi satisfy

|αi | ≥ 2ε

(1−M)λmin
(3.1.4)

In our setting, D = Φ is not incoherent, but we want to show that when the support of α is well-
separated, then maxi∈Ωc

opt
‖Φ†

Ωopt
φi‖1 ≤ 1. From now on, we take D to be an n ×d (n ≤ d) overcomplete

DFT matrix (having unit-norm columns), but the technique can be extended to other overcomplete dic-
tionaries. Recall that if D is an n ×d overcomplete DFT dictionary, then the entries of D obey (with our
normalization):

D j k = ω j k

p
n j=0,1,...n−1,k=0,1,...d−1

, where ω= e− 2πi
d . (3.1.5)

We will first define a separation condition that will be needed to guarantee accurate recovery.

Definition 3.2 (Well-separated). We say that Ωopt is well-separated when D∗
Ωopt

DΩopt is strictly diagonally

dominant. Recall that we may define for a k ×k matrix J ,

∆i (J ) := J i i −
∑
j 6=i

|J i j |, (3.1.6)

and then say J is strictly diagonally dominant if ∆i (J ) > 0 for 1 ≤ i ≤ k. We refer to a signal α as well-
separated when its support setΩopt satisfies this property.

Note that once the minimum separation1 between any two non-zero elements of α, denoted hmin,
is large enough, Ωopt is well-separated. Indeed, this is easily due to the fact that the gram matrix of the
dictionary D has quickly decaying off-diagonal terms (see Fig. 2). We can quantify this notion by the
following definition.

1Note that we measure distance in the DFT dictionary cyclically, so that column d and column 1 are 1 column apart.
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Figure 2: Left: Magnitudes at center of gram matrix D∗D . Right: Magnitudes in center row.

Definition 3.3 (Dominance factor). For an n×d DFT dictionary D , let Sk,hmin denote the set of all support
setsΩ of size k that have a minimum separation of at least hmin:

Sk,hmin =
{
Ω : |Ω| = k, max

p,q∈Ω,p>q
min(p −q,d −p +q) ≥ hmin

}
.

We define the dominance factor ηhmin,k as the worst possible sum of off diagonals
∑

q 6=p |G pq | for G =
D∗
ΩDΩ whenΩ has k entries and minimum separation hmin. That is,

ηhmin,k := max
Ω∈Sk,hmin

max
p∈Ω

∑
q∈Ω,q 6=p

∣∣(D∗D)pq
∣∣ . (3.1.7)

We can also use this quantity to bound the correlations between atoms in a support set and an outside
atom. We may define

η′hmin,k := max
Ω∈Sk,hmin

max
p∉Ω

∑
q∈Ω

∣∣(D∗D)pq
∣∣ . (3.1.8)

With this notation, one observes that for a fixed sparsity level k, if ηhmin,k < (D∗D)qq (where with
our normalization (D∗D)qq = 1) then any support set Ωopt of size k and minimum separation hmin is
guaranteed to satisfy the well-separated condition. In this sense, utilizing these quantities will yield
“worst-case” bounds, where we fix hmin and provide bounds for the worst possible support set. Our
bounds will thus be highly pessimistic but can be presented in a more simple form, depending only on
hmin. We also remark that ηhmin,k ≤ η′hmin,k but that ηhmin,k ≈ η′hmin,k as the redundancy in the dictionary
grows large. Nonetheless, we treat these two quantities separately since for some dictionaries they may
be significantly different.

Figure 3 shows numerically how separated the support of the signal needs to be to satisfy the well-
separated condition2. This again confirms that as long as the minimum separation hmin is large enough,
the well-separated property holds. Of course note that this computation verifies the minimum separa-
tion required for the worst case support with that separation, whereas there may be many other support
sets with smaller minimum separation which still guarantee the well-separated property. Nonetheless,
we will continue to utilize this quantity to bound the performance of OMP so that we may state the re-
sults only in terms of the separation hmin.

We also plot a (crude) upper bound3 on η′hmin,k in Figure 3. We will see later that we also want this
quantity to be smaller than one.

Finally, we will utilize the following lemma, which bounds the restricted isometry constant when the
signal has a well-separated supportΩopt.

2To obtain a crude upper bound on ηhmin,k we simply assume that Ωopt contains equally separated non-zero elements, a
distance hmin apart and sum the coherence between those atoms and the worst off-support column. For that reason, when
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Figure 3: Dictionary D is 256× 1024 overcomplete DFT. Left: upper bound on the dominance factor ηhmin,k for support size
k and minimum separation hmin. Horizontal line shows value of diagonal entry. When curve falls below horizontal line the
well-separated property is guaranteed to hold. Right: upper bound on η′hmin,k as a function of hmin.

Lemma 3.4. D satisfies the following variant of the Restricted Isometry Property (1.0.1) with parameters
(k,δk ):

(1−δk )‖α‖2
2 ≤ ‖Dα‖2

2 ≤ (1+δk )‖α‖2
2 (3.1.9)

for any well-separated k-sparse vector α. In particular, if the minimum separation distance between the
nonzeros ofα is denoted by hmin, then

δk ≤ ηhmin,k , (3.1.10)

where ηhmin,k is defined in (3.1.7).

Proof. Fix a signal α with well-separated support Ω=Ωopt, set G := D∗
ΩDΩ and let gpq be the entries of

G . According to the Gershgorin circle theorem [Ger31], for every singular value λi of G , we have

1−Rp ≤λi ≤ 1+Rp (3.1.11)

for some p ∈Ω, where Rp =∑
q 6=p |gpq | is the radius of the Gershgorin disc. By definition,

‖G − I d‖2 = max
i

(λi −1) ≤ max
p∈Ω

Rp = max
p∈Ω

∑
q∈Ω,q 6=p

|gpq |. (3.1.12)

Since we know the minimum distance (with respect to the full dictionary D) between any two columns
in DΩopt is hmin, then we have by the definition (3.1.7) that

‖G − I d‖2 = max
p∈Ω

∑
q∈Ω,q 6=p

|gpq | ≤ ηhmin,k . (3.1.13)

Lastly, the following observation proves the claim:

‖G − I d‖2 = sup
‖α‖2=1

|〈(D∗
Ωopt

DΩopt − I d)α,α〉| = sup
‖α‖2=1

∣∣‖Dα‖2
2 −‖α‖2

2

∣∣ . (3.1.14)

this bound is less than one, we guarantee that any support set with separation hmin is well-separated.
3To bound η′hmin,k , we first upper bound the coherence between two columns separated by a distance h by f (h) := 1/n ·

csc|hπ/d |. Then one observes that because f (h) is convex, the maximum in (3.1.8) is attained when column p is a neighbor of
an element in Ωopt. Hence η′hmin,k is bounded by the sum of the coherence between columns in Ωopt with respect to such a

column p. The bound can then be written formally as f (1)+∑r
j=1 f ( j h +1)+ f ( j h −1) where r = b(k +1)/2c.
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3.1.1 Guarantees for SSCoSaMP(OMP)

We consider here the case when the measurements are corrupted with noise, allowing the noiseless case
to follow as a special instance when the noise has norm zero. If our signal is contaminated by noise, then
(3.1.1) becomes

x = ∑
i∈Ωopt

αiϕi +e, ‖e‖2 ≤ ε. (3.1.15)

We are now prepared to state our main result, which guarantees accurate recovery of well-separated
signals under modest amounts of noise.

Theorem 3.5. Suppose that ‖e‖2 < ε, and

B(hmin) :=
η′hmin,k

1−ηhmin,k
< 1, (3.1.16)

where both terms are defined in (3.1.7) and (3.1.8). Then OMP (with the stopping rule ‖r i‖2 ≤ ε) will
exactly recoverΩopt if the minimum magnitude of the nonzero elements of the signalα satisfies

min
i∈Ωopt

|αi | ≥ 2ε

1−ηhmin,k −η′hmin,k

. (3.1.17)

Proof. The proof of this result follows in the same fashion as the proof of [CW11, Prop. 1]. Denote the
set of all selected indices in the first t iterations by Ωt , and by Ω?t :=Ωopt\Ωt the remaining coefficients
of the support yet to be identified. We maintain the notation that the dictionary D has columns φi for
i = 1,2, . . .d .

We proceed by induction on t , and suppose that DΩt ⊂ DΩopt after t iterations. Define P t := DΩt D†
Ωt

.
Then the residual after t steps is

r t = (I −P t )y = (I −P t )Dα+ (I −P t )e =: s t +nt (3.1.18)

where s t := (I −P t )Dα and nt := (I −P t )e. Let

Mt = max
i∈Ω?

t

∣∣φ∗
i s t

∣∣ , M ′
t = max

i∈Ωc
opt

∣∣φ∗
i s t

∣∣ , Nt = max
i

∣∣φ∗
i nt

∣∣ . (3.1.19)

In order for OMP to select a correct index at the next iteration, we need maxi∈Ω?
t

∣∣φ∗
i r t

∣∣> maxi∈Ωc
opt

∣∣φ∗
i r t

∣∣.
It suffices to require that Mt −M ′

t > 2Nt since that would imply

max
i∈Ω?

t

∣∣φ∗
i r t

∣∣≥ Mt −Nt > M ′
t +Nt ≥ max

i∈Ωc
opt

∣∣φ∗
i r t

∣∣ . (3.1.20)

We utilize the following lemma.

Lemma 3.6. [Tro04, Proof of Theorem 4.2] In our notation, B(hmin)Mt > M ′
t for all t .

By this lemma, Mt −M ′
t > (1−B(hmin))Mt . Hence it suffices to require Mt > 2

1−B(hmin) Nt for OMP to
select a correct index. Then we have by definition ofΩ?t ,

Mt = ‖D∗
Ω?

t
s t‖∞ = ‖D∗

Ω?
t

(I −P t )Dα‖∞ = ‖D∗
Ω?

t
(I −P t )DΩ?

t
αΩ?

t
‖∞. (3.1.21)

The following lemma allows us to relate the above expression to D∗
Ωopt

DΩopt .

Lemma 3.7. [CW11, Lemma 5] In our notation, λmin

(
D∗
Ωopt

DΩopt

)
≤λmin

(
D∗
Ω?

t
(I −P t )DΩ?

t

)
.

8



Thus we can bound,

‖D∗
Ω?

t
(I −P t )DΩ?

t
αΩ?

t
‖2 ≥λmin(D∗

Ωopt
DΩopt )‖αΩ?

t
‖2. (3.1.22)

Combining this with the fact that |Ω?t | = k − t , we have

Mt ≥ 1p
k − t

‖D∗
Ω?

t
s t‖2 = 1p

k − t
‖D∗

Ω?
t

(I −P t )DΩ?
t
αΩ?

t
‖2 ≥

λmin(D∗
Ωopt

DΩopt )p
k − t

‖αΩ?
t
‖2. (3.1.23)

Therefore, for the sufficient condition Mt −M ′
t > 2Nt to hold, it is enough that

‖αΩ?
t
‖2 > 2

p
k − t Nt

(1−B(hmin))λmin(D∗
Ωopt

DΩopt )
. (3.1.24)

Since ‖e‖2 ≤ ε,

‖nt‖2 = ‖(I −P t )e‖2 ≤ ‖e‖2 ≤ ε. (3.1.25)

Thus for any columnφi of D ,

|φ∗
i nt | ≤ ‖φi‖2‖nt‖2 ≤ ε, (3.1.26)

which implies that Nt ≤ ε. Since λmin(D∗
Ωopt

DΩopt ) ≥ 1−ηhmin,k by Lemma 3.4, we have that

‖αΩ?
t
‖2 ≥ 2

p
k − tε

(1−B(hmi n))(1−ηhmin,k )
= 2

p
k − tε

(1−ηhmin,k −η′hmin,k )
(3.1.27)

suffices to ensure that a correct index will be selected at this step. Observing that |Ω?t | = k − t yields the
desired condition (3.1.17).

It remains to argue that the stopping criterion is sufficient for termination. It suffices to show that at
each step OMP doesn’t stop early – that with this stopping criterion it runs the full k iterations. Equiva-
lently, we want to show that for t < k, ‖r t‖2 > ε. We observe that

‖r t‖2 = ‖(I −P t )Dα+ (I −P t )e‖2

≥ ‖(I −P t )Dα‖2 −‖(I −P t )e‖2

≥ ‖(I −P t )DΩ?
t
αΩ?

t
‖2 −ε.

(3.1.28)

Again using Lemma 3.7 along with (3.1.27), we have for t ≤ k,

‖(I −P t )DΩ?
t
αΩ?

t
‖2 ≥λmin(D∗

Ωopt
DΩopt )‖αΩ?

t
‖2

≥λmin(D∗
Ωopt

DΩopt )
2
p

k − tε

(1−B(hmin))λmin(D∗
Ωopt

DΩopt )

= 2
p

k − tε

(1−B(hmin))
> 2ε.

Thus, until |Ω?t | = k − t = 0 (i.e. until we have identified all of the support), as desired we have

‖r t‖2 > 2ε−ε= ε. (3.1.29)
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We again numerically display the bounds required by Theorem 3.5. For dimensions n = 256, d =
1024, noise level ε= 10−3, and again using the same bounds on ηhmin,k and η′hmin,k as described above, we
empirically show several bounds with increasing sparsity levels in Figure 4.

Figure 4: Dictionary is 256×1024 DFT. Left: Plot of upper bound on B(hmin) vs minimum separation for various sparsity levels.
When the curve falls below 1 (dotted line), Theorem 3.5 guarantees that OMP provides accurate recovery. Right: Lower bound
on non-zeros in signalα as in Theorem 3.5 when noise is bounded by 10−3 as a function of minimum separation hmin.

3.2 SSCoSaMP(L1)

We conclude with a simple argument showing that the `1-minimization method can provide a set of
good near-optimal projection components SD (x ,k) even if D is an overcomplete dictionary (partial DFT
again for simplicity) under the condition that the signal is well-separated. We will utilize an immediate
corollary of [CFG14].

Corollary 3.8. [CFG14] Consider the program

argmin
x̃

‖x̃‖1 subject to F n x̃ = F n x , (3.2.1)

where F n is the partial Fourier matrix in a low-pass band [− flo , fl o]. Then if T ⊂ {0,1, ..., N − 1} is the
support of {x t }N−1

t=0 obeying

min
t ,t ′∈T :t 6=t ′

1

N
|t − t ′| ≥ 2/ flo , (3.2.2)

the solution to (3.2.1) is exact, x̃ = x .

In our context, the overcomplete dictionary D can only collect the lowest 2 flo +1 frequencies. When
the dictionary D has dimension n×d with n < d , D x only gives the spectrum of x in the frequency range
[−n

2 , n
2 ]. Here then, n

2 = fl o . Therefore D acts as a low-pass filter in our problem and we seek to recover
α by only knowing parts of the spectrum of α. We can thus translate the above result to the context of
SSCoSaMP projections.

Corollary 3.9. Let D be an n ×d (n ≤ d) overcomplete DFT dictionary that gives the Fourier transform of
a vector in the frequency domain [− flo , flo] := [−n/2,n/2]. Suppose x has a k-sparse expansion in D , i.e.
x = Dαwhereα has support T with |T | ≤ k. If the support obeys

min
t ,t ′∈T :t 6=t ′

1

d
|t − t ′| ≥ 2/ fl o (3.2.3)
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then the solution to

argmin
α̂

‖α̂‖1 subject to Dα̂= x (3.2.4)

is exact (α̂=α) and can thus be used as a projection within SSCoSaMP.

This result provides theoretical backing to the behavior observed by SSCoSaMP(`1) in Figure 1.

4 Conclusion

In this work we study the behavior of several classical CS methods as approximate projections within
a greedy signal space method. It has been observed that the accuracy of the methods in this setting
depends heavily on the signal structure, even though their classical recovery guarantees are independent
of signal structure. Here, we analyze the behavior of these approaches when the dictionary may be highly
overcomplete and thus does not satisfy typical properties like the RIP or incoherence. We prove that two
of the methods, under specific assumptions on the signal structure, can be used as accurate approximate
projections. Our analysis thus provides theoretical backing to explain the observed phenomena. It would
be useful future work to study additional methods, like the CoSaMP method which we conjecture can
serve as an approximate projection when the signal has a clustered support.
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