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Abstract

Binary measurements arise naturally in a variety of statistical and engineering applications.
They may be inherent to the problem—e.g., in determining the relationship between genetics
and the presence or absence of a disease—or they may be a result of extreme quantization. A
recent influx of literature has suggested that using prior signal information can greatly improve
the ability to reconstruct a signal from binary measurements. This is exemplified by one-
bit compressed sensing, which takes the compressed sensing model but assumes that only the
sign of each measurement is retained. It has recently been shown that the number of one-bit
measurements required for signal estimation mirrors that of unquantized compressed sensing.
Indeed, s-sparse signals in Rn can be estimated (up to normalization) from Ω(s log(n/s)) one-bit
measurements. Nevertheless, controlling the precise accuracy of the error estimate remains an
open challenge. In this paper, we focus on optimizing the decay of the error as a function of the
oversampling factor λ := m/(s log(n/s)), where m is the number of measurements. It is known
that the error in reconstructing sparse signals from standard one-bit measurements is bounded
below by Ω(λ−1). Without adjusting the measurement procedure, reducing this polynomial
error decay rate is impossible. However, we show that an adaptive choice of the thresholds
used for quantization may lower the error rate to e−Ω(λ). This improves upon guarantees for
other methods of adaptive thresholding as proposed in Sigma-Delta quantization. We develop
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a general recursive strategy to achieve this exponential decay and two specific polynomial-
time algorithms which fall into this framework, one based on convex programming and one on
hard thresholding. This work is inspired by the one-bit compressed sensing model, in which the
engineer controls the measurement procedure. Nevertheless, the principle is extendable to signal
reconstruction problems in a variety of binary statistical models as well as statistical estimation
problems like logistic regression.

Keywords. compressed sensing, quantization, one-bit compressed sensing, convex optimiza-
tion, iterative thresholding, binary regression

1 Introduction

Many practical acquisition devices in signal processing and algorithms in machine learning use a
small number of linear measurements to represent a high-dimensional signal. Compressed sensing
is a technology which takes advantage of the fact that, for some interesting classes of signals, one
can use far fewer measurements than dictated by traditional Nyquist sampling paradigm. In this
setting, one obtains m linear measurements of a signal x ∈ Rn of the form

yi = 〈ai,x〉 , i = 1, . . . ,m.

Written concisely, one obtains the measurement vector y = Ax, where A ∈ Rm×n is the matrix
with rows a1, . . . ,am. From these (or even from corrupted measurements y = Ax+e), one wishes
to recover the signal x. To make this problem well-posed, one must exploit a priori information on
the signal x, for example that it is s-sparse, i.e.,

‖x‖0
def
= |supp(x)| = s� n,

or is well-approximated by an s-sparse signal. After a great deal of research activity in the past
decade (see the website [DSP] or the references in the monographs [EK12, FR13]), it is now well
known that when A consists of, say, independent standard normal entries, one can, with high
probability, recover all s-sparse vectors x from the m ≈ s log(n/s) linear measurements yi = 〈ai,x〉,
i = 1, . . . ,m.

However, in practice, the compressive measurements 〈ai,x〉 must be quantized: one actually
observes y = Q(Ax), where the map Q : Rm → Am is a quantizer that acts entrywise by mapping
each real-valued measurement to a discrete quantization alphabet A. This type of quantization with
an alphabet A consisting of only two elements was introduced in the compressed sensing setting by
[BB08] and dubbed one-bit compressed sensing . In this work, we focus on this one-bit approach
and seek quantization schemes Q and reconstruction algorithms ∆ so that x̂ = ∆(Q(Ax)) is a
good approximation to x. In particular, we are interested in the trade-off between the error of the
approximation and the oversampling factor

λ
def
=

m

s log(n/s)
.

1.1 Motivation and previous work

The most natural quantization method is Memoryless Scalar Quantization (MSQ), where each
entry of y = Ax is rounded to the nearest element of some quantization alphabet A. If A = δZ for
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Figure 1: Geometric interpretation of one-bit compressed sensing. Each quantized measurement
reveals which side of a hyperplane (or great circle, when restricted to the sphere) the signal x
lies on. After several measurements, we know that x lies in one unique region. However, if the
measurements are non-adaptive, then as the region of interest becomes smaller, it becomes less and
less likely that the next measurement yields any new information about x.

some suitably small δ > 0, then this rounding error can be modeled as an additive measurement
error [DPM09], and the recovery algorithm can be fine-tuned to this particular situation [JHF11]. In
the one-bit case, however, the quantization alphabet is A = {±1} and the quantized measurements
take the form y = sign(Ax), meaning that sign1 acts entrywise as

yi = QMSQ(〈ai,x〉) = sign(〈ai,x〉), i = 1, . . . ,m.

One-bit compressed sensing was introduced in [BB08], and it has generated a considerable amount
of work since then, see [DSP] for a growing list of literature in this area. Several efficient recovery
algorithms have been proposed, based on linear programming [PV13a, PV13b, GNJN13] and on
modifications of iterative hard thresholding [JLBB13, JDDV13]. As shown in [JLBB13], with high
probability one can perform the reconstruction from one-bit measurements with error

‖x− x̂‖2 .
1

λ
for all x ∈ Σ′s := {v ∈ Rn : ‖v‖0 ≤ s, ‖v‖2 = 1}.

In other words, a uniform `2-reconstruction error of at most γ > 0 can be achieved with m �
γ−1s log(n/s) one-bit measurements.

Despite the dimension reduction from n to s log(n/s), MSQ presents substantial limita-
tions [JLBB13, GVT98]. Precisely, according to [GVT98], even if the support of x ∈ Σ′s is known,
the best recovery algorithm ∆opt must obey

‖x−∆opt(QMSQ(Ax))‖2 &
1

λ
(1)

up to a logarithmic factor. An intuition for the limited accuracy of MSQ is given in Figure 1.
Alternative quantization schemes have been developed to overcome this drawback. For a specific

signal model and reconstruction algorithm, [SG09] obtained the optimal quantization scheme, but
more general quantization schemes remain open.

Recently, Sigma-Delta quantization schemes have also been proposed as a more general quan-
tization model [GLP+10, KSY14]. These works show that, with high probability on measurement

1We define sign(0) = 1.
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matrices with independent subgaussian entries, r-th order Sigma-Delta quantization can be applied
to the standard compressed sensing problem to achieve, for any α ∈ (0, 1), the reconstruction error

‖x− x̂‖2 .r λ
−α(r−1/2) (2)

with a number of measurements
m ≈ s (log(n/s))1/(1−α) .

For suitable choices of α and r, the guarantee (2) overcomes the limitation (1), but it is still
polynomial in λ. This leads us to ask whether an exponential dependence can be achieved.

1.2 Our contributions

In this work, we focus on improving the trade-off between the error ‖x− x̂‖2 and the oversampling
factor λ. To the best of our knowledge, all quantized compressed sensing schemes obtain guarantees
of the form

‖x− x̂‖2 . λ−c for all x ∈ Σ′s (3)

with some constant c > 0. We develop one-bit quantizers Q : Rm → {±1}, coupled with two
efficient recovery algorithms ∆ : {±1} → Rm that yield the reconstruction guarantee

‖x−∆(Q(Ax))‖2 ≤ exp(−Ω(λ)) for all x ∈ Σ′s. (4)

It is not hard to see that the dependence on λ in (4) is optimal, since any method of quantiz-
ing measurements that provides the reconstruction guarantee ‖x− x̂‖2 ≤ γ must use at least
log2N (Σ′s, γ) ≥ s log2(1/γ) bits, where N (·) denotes the covering number.

1.2.1 Adaptive measurement model

A key element of our approach is that the quantizers are adaptive to previous measurements of the
signal in a manner similar to Sigma-Delta quantization [GLP+10]. In particular, the measurement
matrix A ∈ Rm×n is assumed to have independent standard normal entries and the quantized
measurements take the form of thresholded signs, i.e.,

yi = sign(〈ai,x〉 − τi) =

{
1 if 〈ai,x〉 ≥ τi,
−1 if 〈ai,x〉 < τi.

(5)

Such measurements are readily implementable in hardware, and they retain the simplicity and
storage benefits of the one-bit compressed sensing model. However, as we will show, this model
is much more powerful in the sense that it permits optimal guarantees of the form (4), which are
impossible with standard MSQ one-bit quantization. As in the Sigma-Delta quantization approach,
we allow the quantizer to be adaptive, meaning that the quantization threshold τi of the ith entry
may depend on the 1st, 2nd, . . ., (i − 1)st quantized measurements. In the context of (5), this
means that the thresholds τi will be chosen adaptively, resulting in a feedback loop as depicted in
Figure 2. The thresholds τi can also be interpreted as an additive dither, which is oft-used in the
theory and practice of analog-to-digital conversion.

In contrast to Sigma-Delta quantization, the feedback loop involves the calculation of the quan-
tization threshold. This is the concession made to arrive at exponentially decaying error rates. It is
an interesting open problem to determine low-memory quantization methods with such error rates
that do not require such a calculation.

4



A
⊕

quantizex ∈ Rn Ax ∈ Rm y ∈ Rm

τ ∈ Rm

Figure 2: Our closed-loop feedback system for binary measurements.

1.2.2 Overview of our main result

Our main result is that there is a recovery algorithm using measurements of the form (5) and
providing a guarantee of the form (4). For clarity of exposition, we overview a simplified version
of our main result below. The full result is stated in Section 3.

Theorem 1 (Main theorem, simplified version). Let Q and ∆ be the quantization and recovery
algorithms given below in Algorithms 1 and 2, respectively. Suppose that A ∈ Rm×n and τ ∈ Rm
have independent standard normal entries. Then, with probability at least Cλ exp(−cs log(n/s))
over the choice of A and τ , for all x ∈ Bn

2 with ‖x‖0 ≤ s,

‖x−∆(Q(Ax,A, τ))‖2 ≤ exp(−Ω(λ)), where λ =
m

s log(n/s)
.

The quantization algorithm works iteratively. First, a small batch of measurements are quan-
tized in a memoryless fashion. From this first batch, one gains a very rough estimate of x (called
x1). The next batch of measurements are quantized with a focus on encoding the difference be-
tween x and x1, and so on. Thus, the trap depicted in Figure 1 is avoided; each hyperplane is
translated with an appropriate dither, with the aim of cutting the size of the feasible region. The
recovery algorithm also works iteratively and its iterates are in fact intertwined with the iterates
of the quantization algorithm. We artificially separate the two algorithms below.

Note that we present Algorithms 1 and 2 at this point mainly because they are the simplest to
state. Below we will provide a more general framework for algorithms that satisfy the guarantees
of Theorem 1 and develop a second set of algorithms with computational advantages.

1.2.3 Robustness

Our algorithms are robust to two different kinds of measurement corruption. First, they allow for
perturbed linear measurements of the form 〈ai,x〉 + ei for an error vector e ∈ Rm with bounded
`∞-norm. Second they allow for post-quantization sign flips, recorded as a vector f ∈ {±1}m.

Formally, the measurements take the form

yi = fi sign(〈ai,x〉 − τi + ei), i = 1, . . . ,m. (6)

It is known that for inaccurate measurements with pre-quantization noise on the same order of mag-
nitude as the signal, even unquantized compressed sensing algorithms must obey a lower bound of
the form (1) [CD13]. Our algorithms respect this reality and exhibit exponentially fast convergence
until the estimate hits the “noise floor”—that is, until the error ‖x− x̂‖2 is on the order of ‖e‖∞.

Table 1 summarizes the various noise models, adaptive threshold calculations, and algorithms
we develop and study below.
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Algorithm 1: Adaptive quantization

Input: Linear measurements Ax ∈ Rm; measurement matrix A ∈ Rm×n; sparsity
parameter s; thresholds τ ∈ Rm; parameter q ≥ Cs log(n/s) for the size of batches.

Output: Quantized measurements y ∈ {±1}m.

T ←
⌊
m
q

⌋
Partition A and τ into T blocks A(1), . . . ,A(T ) ∈ Rq×n and τ (1), . . . .τ (T ) ∈ Rq.
x0 ← 0
for t = 1, . . . , T do

σ(t) ← A(t)xt−1

y(t) ← sign(A(t)x− 22−tτ (t) − σ(t))

zt ← argmin‖z‖1 subject to ‖z‖2 ≤ 22−t, y
(t)
i

(〈
a

(t)
i , z

〉
− 22−tτ

(t)
i

)
≥ 0 for all i

// zt is an approximation of x− xt−1

xt ← Hs(xt−1 + zt) // Hs keeps s largest (in magnitude) entries and zeroes

out the rest

return y(t) for t = 1, . . . , T// Notice that we discard σ(t)

Algorithm 2: Recovery

Input: Quantized measurements y ∈ {±1}m; measurement matrix A; sparsity parameter s;
thresholds τ ∈ Rm; size of batches q.

Output: Approximation x̂ ∈ Rn.

T ←
⌊
m
q

⌋
Partition A and τ into T blocks A(1), . . . ,A(T ) ∈ Rq×n and τ (1), . . . .τ (T ) ∈ Rq.
x0 ← 0
for t = 1, . . . , T do

zt ← argmin‖z‖1 subject to ‖z‖2 ≤ 22−t, y
(t)
i

(〈
a

(t)
i , z

〉
− 22−tτ

(t)
i

)
≥ 0 for all i

xt = Hs(xt−1 + zt)

return xT

1.2.4 Relationship to binary regression

Our one-bit adaptive quantization and reconstruction algorithms are more broadly applicable to a
certain kind of statistical classification problem related to sparse binary regression, and in particular
sparse logistic and probit regression. These techniques are often used to explain statistical data in
which the response variable is binary. In regression, it is common to assume that the data {zi}
is generated according to the generalized linear model, where zi ∈ {0, 1} is a Bernoulli random
variable satisfying

E [zi] = f(〈ai,x〉) (7)

for some function f : R → [0, 1]. The generalized linear model is equivalent to the noisy one-bit
compressed sensing model when the measurements yi = 2zi − 1 ∈ {±1} and

P (yi = 1) =: f(〈ai,x〉),

6



Table 1: Summary of the noise models, adaptive threshold calculations, and algorithms considered.
See Section 2 for further discussion of the trade-offs between the two algorithms.

Noise model Threshold algorithm Recovery algorithm

Additive error ei in (6)
Algorithm 7, instantiated by

Algorithm 3

Convex programming:
Algorithm 8, instantiated by

Algorithm 4

Additive error ei and sign
flips fi in (6)

Algorithm 7, instantiated by
Algorithm 5

Iterative hard thresholding:
Algorithm 8, instantiated by

Algorithm 6

or equivalently, when
yi = sign(〈ai,x〉+ ei)

with f(t) := P (ei ≥ −t). In summary, one-bit compressed sensing is equivalent to binary regression
as long as f is the cumulative distribution function (CDF) of the noise variable ei. The most
commonly used CDFs in binary regression are the inverse logistic link function f(t) = 1

1+et in

logistic regression and the inverse probit link function f(t) =
∫ t
−∞N (s)ds in probit regression.

These cases correspond to the noise variable ei being logistic and Gaussian distributed, respectively.
The new twist here is that the quantization thresholds are selected adaptively; see Section 6.1

for some examples. Specifically, our adaptive threshold measurement model is equivalent to the
adaptive binary regression model

yi = sign(〈ai,x〉+ ei − τi)

with
P (yi = 1) = P (ei − τi >= −t) = f(t− τi).

The effect of τi in this adaptive binary regression is equivalent to an offset term added to all
measurements yi. Standard binary regression corresponds to the special case with τi = 0.

1.3 Organization

In Section 2, we introduce two methods to recover not only the direction, but also the magnitude,
of a signal from one-bit compressed sensing measurements of the form (6). These methods may be
of independent interest (in one-bit compressed sensing, only the direction can be recovered), but
they do not exhibit the exponential decay in the error that we seek. In Section 3, we will show how
to use these schemes as building blocks to obtain (4). The proofs of all of our results are given in
Section 4. In Section 5, we present some numerical results for the new algorithms. We conclude in
Section 6 with a brief summary.

1.4 Notation

Throughout the paper, we use the standard notation ‖v‖2 =
√∑

i v
2
i for the `2-norm of a vector

v ∈ Rn, ‖v‖1 =
∑

i |vi| for its `1-norm, and ‖v‖0 for its number of nonzero entries. A vector v is
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called s-sparse if ‖v‖0 ≤ s and effectively s-sparse if ‖v‖1 ≤
√
s‖v‖2. We write Hs(v) to represent

the vector in Rn agreeing with v on the index set of largest s entries of v (in magnitude) and with
the zero vector elsewhere. We use a prime to indicate `2-normalization, so that H ′s(v) is defined as
H ′s(v) := Hs(v)/ ‖Hs(v)‖2. The set Σs := {v ∈ Rn : ‖v‖0 ≤ s} of s-sparse vectors is accompanied
by the set Σ′s := {v ∈ Rn : ‖v‖0 ≤ s, ‖v‖2 = 1} of `2-normalized s-sparse vectors. For R > 0, we
write RΣ′s to mean the set {v ∈ Rn : ‖v‖0 ≤ s, ‖v‖2 = R}. We also write Bn

2 = {v ∈ Rn : ‖v‖2 ≤ 1}
for the `2-ball in Rn and RBn

2 for the appropriately scaled version. We consider the task of
recovering x ∈ Σs from measurements of the form (5) or (6) for i = 1, . . . ,m. These measurements
are organized as a matrix A ∈ Rm×n with rows a1, . . . ,am and a vector τ ∈ Rm of thresholds.
Matching the Sigma-Delta quantization model, the ai ∈ Rn may be random but are non-adaptive,
while the τi ∈ R may be chosen adaptively, in either a random or deterministic fashion. The
Hamming distance between sign vectors y, ỹ ∈ {±1}m is defined as dH(y, ỹ) =

∑
i 1{yi 6=ỹi}.

2 Magnitude recovery

Given an s-sparse vector x ∈ Rn, several convex programs are provably able to extract an accurate
estimate of the direction of x from sign(Ax) or sign(Ax+e) [PV13b, PV13a]. However, recovery of
the magnitude of x is challenging in this setting [KSW14]. Indeed, all magnitude information about
x is lost in measurements of the form sign(Ax). Fortunately, if random (non-adaptive) dither is
added before quantization, then magnitude recovery becomes possible, i.e., noise can actually help
with signal reconstruction. This observation has also been made in the concurrently written paper
[KSW14] and also in the literature on binary regression in statistics [DPvdBW14].

Our main result will show that both the magnitude and direction of x can be estimated with
exponentially small error bounds. In this section, we first lay the groundwork for our main result
by developing two methods for one-bit signal acquisition and reconstruction that provide accurate
reconstruction of both the magnitude and direction of x with polynomially decaying error bounds.

We propose two different order-one recovery schemes. The first is based on second-order cone
programming and is simpler but more computationally intensive. The second is based on hard
thresholding, is faster, and is able to handle a more general noise model (in particular, random sign
flips of the measurements) but requires an adaptive dither. Recall Table 1.

2.1 Second-order cone programming

The size of the appropriate dither/threshold depends on the magnitude of x. Thus, let R > 0
satisfy ‖x‖2 ≤ R. We take measurements of the form

yi = sign(〈ai,x〉 − τi + ei), i = 1, . . . , q, (8)

where τ1, . . . , τq ∼ N(0, 4R2) are known independent normally distributed dithers that are also
independent of the rows a1, . . . ,aq of the matrix A and e1, . . . , eq are small deterministic errors
(possibly adversarial) satisfying |ei| ≤ cR for an absolute constant c. The following second-order
cone program

argmin ‖z‖1 subject to ‖z‖2 ≤ 2R, yi(〈ai, z〉 − τi) ≥ 0 for all i = 1, . . . , q (9)

provides a good estimate of x, as formally stated below.

8



Algorithm 3: T0: Threshold production for second-order cone programming

Input: Bound R on ‖x‖2
Output: Thresholds τ ∈ Rq
return τ ∼ N(0, R2Iq)

Algorithm 4: ∆0: Recovery procedure for second-order cone programming

Input: Quantized measurements y ∈ {±1}q; measurement matrix A ∈ Rq×n; bound R on
‖x‖2; thresholds τ ∈ Rq.

Output: Approximation x̂
return argmin ‖z‖1 subject to ‖z‖2 ≤ 2R, yi(〈ai, z〉 − τi) ≥ 0 for all i = 1, . . . , q.

Theorem 2. Let 1 ≥ δ > 0, let A ∈ Rq×n have independent standard normal entries, and let
τ1, . . . , τq ∈ R be independent normal variables with variance 4R2. Suppose that n ≥ 2q and

q ≥ C ′δ−4s log(n/s).

Then, with probability at least 1 − 3 exp(−c0δ
4q) over the choice of A and the dithers τ1, . . . , τq,

the following holds for all x ∈ RBn
2 ∩ Σs and e ∈ Rq satisfying ‖e‖∞ ≤ cδ3R: for y obeying the

measurement model (8), the solution x̂ to (9) satisfies

‖x− x̂‖2 ≤ δR.

The positive constants C ′, c and c0 above are absolute constants.

Remark 1. The choice of the constraint ‖z‖2 ≤ 2R and the variance 4R2 for the τi’s allows for
the above theoretical guarantees in the presence of pre-quantization error e 6= 0. However, in the
ideal case e = 0, the guarantees also hold if we impose ‖z‖2 ≤ R and take a variance of R2. This
more natural choice seems to give better results in practice, even in the presence of pre-quantization
error (as R was already an overestimation for ‖x‖2). This is the route followed in the numerical
experiments of Section 5. It only requires changing 22−t to 21−t in Algorithms 1 and 2.

To fit into our general framework for exponential error decay, it is helpful to think of the program
(9) as two separate algorithms: an algorithm T0 that produces thresholds and an algorithm ∆0 that
performs the recovery. These are formally described in Algorithms 3 and 4.

2.2 Hard thresholding

The convex programming approach is attractive in many respects; in particular, the thresh-
olds/dithers τi are non-adaptive, which makes them especially easy to apply in hardware. However,
the recovery algorithm ∆0 in Algorithm 4 can be costly. Further, while the convex programming
approach can handle additive pre-quantization error, it cannot necessarily handle post-quantization
error (sign flips). In this section, we present an alternative scheme for estimating magnitude, based
on iterative hard thresholding that addresses these challenges. The only downside is that the
thresholds/dithers τi become adaptive within the order-one recovery scheme.

Given an s-sparse vector x ∈ Rn, one can easily extract from sign(Ax) a good estimate for the
direction of x. For example, we will see that H ′s(A

∗sign(Ax)) is a good approximation of x/‖x‖2.

9



Algorithm 5: T0: Threshold production for hard thresholding

Input: Measurements Ax ∈ Rq; measurement matrix A ∈ Rq×n; sparsity parameter s;
bound R on ‖x‖2.

Output: Thresholds τ ∈ Rq
Partition Ax into A1x, A2x ∈ Rq/2.
u← H ′s(A

∗
1sign(A1x))

v ← V (u)
w ← 2R · (u + v)
return 0 ∈ Rq/2,A2w ∈ Rq/2

Algorithm 6: ∆0: Recovery procedure for hard thresholding

Input: Quantized measurements y ∈ {±1}q; measurement matrix A ∈ Rq×n; sparsity
parameter s; bound R on ‖x‖2.

Output: Approximation x̂
Partition y into y1, y2 ∈ Rq/2.
u← H ′s(A

∗
1y1)

v ← V (u)
t← −H ′s(A∗2y2)

return 2Rf(〈t,v〉) · u, where f(ξ) = 1−
√

1−ξ2
ξ

However, as mentioned earlier, there is no hope of recovering the magnitude ‖x‖2 of the signal
from sign(Ax). To get around this, we use a second estimator, this time for the direction of x− z
for a well-chosen vector z ∈ Rn obtained by computing H ′s(A

∗sign(A(x − z))). This allows us to
estimate both the direction and the magnitude of x.

As above, we break the measurement/recovery process into two separate algorithms. The first
is an algorithm T0 describing how to generate the thresholds τi. The second is a recovery algorithm
∆0 that describes how to recover an approximation x̂ to x based on measurements of the form (6),
using the τi as thresholds. These are formally described in Algorithms 5 and 6. In the algorithm
statements, V denotes any fixed rule associating to a vector u an `2-normalized vector V (u) that
is both orthogonal to u and has the same support.

The analysis for T0 and ∆0 relies on the following theorems.

Theorem 3. Let 1 ≥ δ > 0 and let A ∈ Rq×n have independent standard normal entries. Suppose
that n ≥ 2q and q ≥ c1δ

−7s log(n/s). Then, with probability at least 1 − c2 exp(−c3δ
2q) over the

choice of A, the following holds for all s-sparse x ∈ Rn, all e ∈ Rq with ‖e‖2 ≤ c6
√
q ‖x‖2, and all

y ∈ {±1}q: ∥∥∥∥ x

‖x‖2
−H ′s (A∗y)

∥∥∥∥
2

≤ δ + c4
‖e‖2√
q ‖x‖2

+ c5

√
dH(y, sign (Ax + e))

q
(10)

The positive constants c1, c2, c3, c4, c5, and c6 above are absolute constants.

The proof of Theorem 3 is given in Section 4. Once Theorem 3 is shown, we will be able to
establish the following results when the threshold production and recovery procedures T0 and ∆0

are given by Algorithms 5 and 6.

10



Theorem 4. Let 1 ≥ δ > 0, let A ∈ Rq×n have independent standard normal entries, and let T0

and ∆0 be as in Algorithms 5 and 6. Suppose that n ≥ 2q and

q ≥ c1δ
−7s log(n/s).

Further assume that whenever a signal z is measured, the corruption errors satisfy ‖e‖∞ ≤ cδ‖z‖2
and |{i : fi = −1}| ≤ c′δq. Then, with probablity at least 1 − c7 exp(−c8δ

2q) over the choice of
A, the following holds for all x ∈ RBn

2 ∩ Σs : for y obeying the measurement model (6) with
τ = T0(Ax,A, s, R), the vector x̂ = ∆0(y,A, s, R) satisfies

‖x− x̂‖2 ≤ δR.

The positive constants c1, c, c′, c7, and c8 above are absolute constants.

Having proposed two methods for recovering both the direction and magnitude of a sparse
vector from binary measurements, we now turn to our main result.

3 Exponential decay: General framework

In the previous section, we developed two methods for approximately recovering x from binary
measurements. Unfortunately, these methods exhibit polynomial error decay in the oversampling
factor, and our goal is to obtain an exponential decay. We can achieve this goal by applying the
rough estimation methods iteratively, in batches, with adaptive thresholds/dithers. As we show
below, this leads to an extremely accurate recovery scheme. To make this framework precise, we
first define an order-one recovery scheme (T0,∆0).

Definition 5 (Order-one recovery scheme). An order-one recovery scheme with sparsity parameter
s, measurement complexity q, and noise resilience (η, b) is a pair of algorithms (T0,∆0) such that:

• The thresholding algorithm T0 takes a parameter R and, optionally, a set of linear mea-
surements Ax ∈ Rq and the measurement matrix A ∈ Rq×n. It outputs a set of thresholds
τ ∈ Rq.

• The recovery algorithm ∆0 takes q corrupted quantized measurements of the form (6), i.e.,

yi = fi sign(〈ai,x〉 − τi + ei),

where e ∈ Rq is a pre-quantization error and f ∈ {±1}q is a post-quantization error. It also
takes as input the measurement matrix A ∈ Rq×n, a parameter R, and, optionally, a sparsity
parameter s and the thresholds τ returned by T0. It outputs a vector x̂ ∈ Rn.

• With probability at least 1 − C exp(−cq) over the choice of A ∈ Rq×n and the randomness
of T0, the following holds: for all x ∈ RBn

2 ∩ Σs, all e ∈ Rq with ‖e‖∞ ≤ η‖x‖2, and all
f ∈ {±1}q with at most b sign flips, the estimate x̂ = ∆0(y,A, R, s, τ) satisfies

‖x− x̂‖2 ≤
R

4
.
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Algorithm 7: Q: Quantization

Input: Linear measurements Ax ∈ Rm; measurement matrix A ∈ Rm×n; sparsity
parameter s; bound R on ‖x‖2; parameter q ≥ Cs log(n/s) for the size of batches.

Output: Quantized measurements y ∈ {±1}m and thresholds τ ∈ Rm

T ←
⌊
m
q

⌋
Partition A into T blocks A(1), . . . ,A(T ) ∈ Rq×m
x0 ← 0
for t = 1, . . . , T do

Rt = 2−t+1

τ (t) ← T0(A(t)(x− xt−1),A(t), Rt)
σ(t) ← A(t)xt−1

y(t) ← f (t) � sign(A(t)x− τ (t) − σ(t) + e(t))
xt ← Hs(xt−1 + ∆0(y(t),A(t), Rt, τ

(t)))

return y(t), τ (t) for t = 1, . . . , T

Algorithm 8: ∆: Recovery

Input: Quantized measurements y ∈ {±1}m; measurement matrix A ∈ Rm×n; sparsity
parameter s; bound R on ‖x‖2; thresholds τ ∈ Rm; size of batches q.

Output: Approximation x̂ ∈ Rn

T ←
⌊
m
q

⌋
Partition A into T blocks A(1), . . . ,A(T ) ∈ Rq×m
x0 ← 0
for t = 1, . . . , T do

xt ← Hs(xt−1 + ∆0(y(t),A(t), R2−t+1, τ (t))) (11)

return xT

We saw two examples of order-one recovery schemes in Section 2. The scheme based on second-
order cone programming is an order-one recovery scheme with sparsity parameter s, measurement
complexity q = C0s log(n/s), and noise resilience η = c0R and b = 0. The scheme based on
iterated hard thresholding is an order-one recovery scheme with sparsity parameter s, measurement
complexity q = C1s log(n/s), and noise resilience η = c1R and b = c2q. Above, c0, c1, c2, C0, C1 > 0
are absolute constants.

We use an order-one recovery scheme to build a pair of one-bit quantization and recovery algo-
rithms for sparse vectors that exhibits extremely fast convergence. Our quantization and recovery
algorithms Q and ∆ are given in Algorithms 7 and 8, respectively. They are in reality intertwined,
but again we separate them for expositional clarity.

The intuition motivating Step (11) is that ∆0(y(t),A(t), Rt, τ
(t), ) estimates x− xt−1; hence xt

approximates x better than xt−1 does. Note the similarity to the intuition motivating iterative
hard thresholding, with the key difference being that the quantization is also performed iteratively.

Remark 2 (Computational and storage considerations). Let us analyze the storage requirements
and computational complexity of Q and ∆, both during and after quantization.

12



We begin by considering the approach based on convex programming. In this case, the final
storage requirements of the quantizer Q are similar to those in standard one-bit compressed sensing.
The “algorithm” T0 is straightforward: it simply draws random thresholds/dithers. In particular,
we may treat these thresholds as predetermined independent normal random variables in the same
way as we treat A. If A and τ are generated by a short seed, then all that needs to be stored after
quantization are the binary measurements y ∈ {±1}q. During quantization, the algorithm Q needs
to store xt. However, this requires small memory since xt is s-sparse.

While the convex programming approach is designed to ease storage burdens, the order-one
recovery scheme based on hard thresholding is built for speed. In this case, the threshold algorithm
T0 (Algorithm 5) is more complicated, and the adaptive thresholds τ need to be stored. On the other
hand, the computation of xt is much faster, and both the quantization and recovery algorithms are
very efficient.

Given an order-one recovery scheme (T0,∆0), the quantizer Q given in Algorithm 7 and the
recovery algorithm ∆ given in Algorithm 8 have the desired exponential convergence rate. This is
formally stated in the theorem below and proved in Section 4.

Theorem 6. Let (T0,∆0) be an order-one recovery scheme with sparsity parameter 2s, measure-
ment complexity q, and noise resilience (η, b). Fix R > 0 and recall that T := bm/qc. With
probability at least 1 − CT exp(−cq) over the choice of A and the randomness of T0, the follow-
ing holds for all x ∈ RBn

2 ∩ Σs, all e ∈ Rm with ‖e‖∞ ≤ η2−T ‖x‖2, and all f ∈ {±1}m with
|{i : fi = −1}| ≤ b in the measurement model (6):

for y ∈ {±1}m and τ = Q(Ax,A, s, R, q) ∈ Rm, the output x̂ of ∆(y,A, s, R, τ, q) satisfies

‖x− x̂‖2 ≤ R 2−T . (12)

The positive constants η, b, c, and C above are absolute constants.

Our two order-one recovery schemes each have measurement complexity q = Cs log(n/s). This
implies the announced exponential decay in the error rate.

Corollary 7. Let Q,∆ be as in Algorithms 7 and 8 with one-bit recovery schemes (T0,∆0) given
either by Algorithms (3,4) or (5,6). Let A ∈ Rm×n have independent standard normal entries. Fix
R > 0 and recall that λ = m/(slog(n/s)). With probability at least 1− Cλ exp(−cs log(n/s)) over
the choice of A and the randomness of T0, the following holds for all x ∈ RBn

2 ∩ Σs, all e ∈ Rm
with ‖e‖∞ ≤ η2−T ‖x‖2, and all f ∈ {±1}m with |{i : fi = −1}| ≤ b in the measurement model
(6) (b = 0 if (T0,∆0) is based on convex programming or b = cs log(n/s) if (T0,∆0) is based on
hard thresholding):

for y ∈ {±1}m τ = Q(Ax,A, s, R, q) ∈ Rm, the output x̂ of ∆(y,A, s, R, τ, q) satisfies

‖x− x̂‖2 ≤ R 2−cλ. (13)

The positive constants η, c′, c, and C above are absolute constants.

4 Proofs

4.1 Exponentially decaying error rate from order-one recovery schemes

First, we prove Theorem 6 which states that, given an appropriate order-one recovery scheme, the
recovery algorithm ∆ in Algorithm 8 converges with exponentially small reconstruction error when
the measurements are obtained by the quantizer Q of Algorithm 7.
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Proof of Theorem 6. For x ∈ RBn
2 ∩ Σs, we verify by induction on t ∈ {0, 1, . . . , T} that

‖x− xt‖2 ≤ R2−t.

This induction hypothesis holds for t = 0. Now, suppose that it holds for t − 1, t ∈ {1, . . . , T}.
Consider ∆0(y(t),A(t), Rt, τ

(t)), the estimate returned by the order-one recovery scheme in (11).
By definition, the thresholds τ (t) were obtained in step t by running T0 on A(t)(x−xt−1). Similarly,
the quantized measurements y(t) are formed by quantizing (with noise) the affine measurements

A(t)x− σ(t) − τ (t) = A(t)(x− xt−1)− τ (t).

Thus, we have effectively run the order-one recovery scheme on the 2s-sparse vector x−xt. By the
guarantee of the order-one recovery algorithm, with probability at least 1− C exp(−cq),∥∥∥(x− xt−1)−∆0(y(t),A(t), Rt, τ

(t))
∥∥∥

2
≤ Rt/4 = R2−t+1/4.

Suppose that this occurs. Let

z = xt−1 + ∆0(y(t),A(t), Rt, τ
(t)),

so ‖x− z‖2 ≤ R2−t+1/4. Since xt = Hs(z) is the best s-term approximation to z, it follows that

‖x− xt‖2 = ‖x−Hs(z)‖2 ≤ ‖x− z‖2 + ‖Hs(z)− z‖2 ≤ 2 ‖x− z‖2 ≤ R2−t.

Thus, the induction hypothesis holds for t. A union bound over the T iterations completes the
proof, since the announced result is the inductive hypothesis in the case that t = T .

4.2 Hard-thresholding-based order-one recovery scheme

The proof of Theorem 3 relies on three properties of random matrices A ∈ Rq×n with independent
standard normal entries. In their descriptions below, the positive constants c, C, and d are absolute
constants.

• The restricted isometry property of order s ([FR13, Theorems 9.6 and 9.27]): for any δ > 0,
with failure probability at most 2 exp(−cδ2q), the estimates

(1− δ) ‖x‖22 ≤
1

q
‖Ax‖22 ≤ (1 + δ) ‖x‖22 (14)

hold for all s-sparse x ∈ Rn provided q ≥ Cδ−2s log(n/s).

• The sign product embedding property of order s ([JDDV13, PV13b]): for any δ > 0, with
failure probability at most 8 exp(−cδ2q), the estimates∣∣∣∣∣

√
π/2

q
〈Aw, sign (Ax)〉 − 〈w,x〉

∣∣∣∣∣ ≤ δ (15)

hold for all effectively s-sparse w,x ∈ Rn with ‖w‖2 = ‖x‖2 = 1 provided q ≥ Cδ−6s log(n/s).
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• The `1-quotient property ([Woj09] or [FR13, Theorem 11.19]): if n ≥ 2q, then with failure
probability at most exp(−cq), every e ∈ Rq can be written as

e = Au with ‖u‖1 ≤ d
√
s∗ ‖e‖2 /

√
q where s∗ :=

q

log(n/q)
. (16)

Combining the `1-quotient property and the restricted isometry property (of order 2s for a
fixed δ ∈ (0, 1/2), say) yields the simultaneous (`2, `1)-quotient property (use, for instance, [FR13,
Theorem 6.13 and Lemma 11.16]); that is, there are absolute constants d, d′ > 0 such that every
e ∈ Rq can be written as

e = Au with

{
‖u‖2 ≤ d ‖e‖2 /

√
q,

‖u‖1 ≤ d′
√
s∗ ‖e‖2 /

√
q.

(17)

Proof of Theorem 3. We target the inequalities∥∥∥∥∥ x

‖x‖2
−
√
π/2

q
Hs (A∗y)

∥∥∥∥∥
2

≤ δ + c4
‖e‖2√
q ‖x‖2

+ c5

√
dH(y, sign (Ax + e))

q
. (18)

The desired inequalities (10) then follows modulo a change of constants, because H ′s (A∗y) is the
best unit-norm approximation to

√
π/2 q−1Hs (A∗y), so that∥∥∥∥ x

‖x‖2
−H ′s (A∗y)

∥∥∥∥
2

≤

∥∥∥∥∥ x

‖x‖2
−
√
π/2

q
Hs (A∗y)

∥∥∥∥∥
2

+

∥∥∥∥∥H ′s (A∗y)−
√
π/2

q
Hs (A∗y)

∥∥∥∥∥
2

≤ 2

∥∥∥∥∥ x

‖x‖2
−
√
π/2

q
Hs (A∗y)

∥∥∥∥∥
2

.

With s∗ = q/ log(n/q) as in (16), we remark that it is enough to consider the case s = cs∗,
c := c−1

1 δ7. Indeed, the inequality q ≥ c1δ
−7s log(n/s) yields q ≥ c−1s log(n/q), i.e., s ≤ cs∗. Then

(18) for s follows from (18) for cs∗ modulo a change of constants because Hs(A
∗y) is the best

s-term approximation to Hcs∗(A
∗y), so that∥∥∥∥∥ x

‖x‖2
−
√
π/2

q
Hs (A∗y)

∥∥∥∥∥
2

≤

∥∥∥∥∥ x

‖x‖2
−
√
π/2

q
Hcs∗ (A∗y)

∥∥∥∥∥
2

+

∥∥∥∥∥
√
π/2

q
Hs (A∗y)−

√
π/2

q
Hcs∗ (A∗y)

∥∥∥∥∥
2

≤ 2

∥∥∥∥∥ x

‖x‖2
−
√
π/2

q
Hcs∗ (A∗y)

∥∥∥∥∥
2

.

We now assume that s = cs∗. This reads q = c1δ
−7s log(n/q) and arguments similar to [FR13,

Lemma C.6(c)] lead to q ≥ (c1δ
−7/ log(ec1δ

−7))s log(n/s). Thus, if c1 is chosen large enough at the
start, we have q ≥ Cδ−6s log(n/s). This ensures that the sign product embedding property (15) of
order 2s with constant δ/2 holds with high probability. Likewise, the restricted isometry property
(14) of order 2s with constant 9/16, say, holds with high probability. In turn, the simultaneous
(`2, `1)-quotient property (17) holds with high probability.
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We place ourselves in the situation where all three properties hold simultaneously, which occurs
with failure probability at most c2 exp(−c3δ

2q) for some absolute constants c2, c3 > 0. Then, writing
S = supp (x) and T = supp (Hs (A∗y)), we remark that Hs (A∗y) is the best s-term approximation
to A∗S∪Ty, so that∥∥∥∥∥ x

‖x‖2
−
√
π/2

q
Hs (A∗y)

∥∥∥∥∥
2

≤

∥∥∥∥∥ x

‖x‖2
−
√
π/2

q
A∗S∪Ty

∥∥∥∥∥
2

+

∥∥∥∥∥
√
π/2

q
Hs (A∗y)−

√
π/2

q
A∗S∪Ty

∥∥∥∥∥
2

≤ 2

∥∥∥∥∥ x

‖x‖2
−
√
π/2

q
A∗S∪Ty

∥∥∥∥∥
2

. (19)

We continue with the fact that∥∥∥∥∥ x

‖x‖2
−
√
π/2

q
A∗S∪Ty

∥∥∥∥∥
2

≤

∥∥∥∥∥ x

‖x‖2
−
√
π/2

q
A∗S∪T sign (Ax + e)

∥∥∥∥∥
2

+

√
π/2

q

∥∥∥∥∥A∗S∪T (y − sign (Ax + e))

∥∥∥∥∥
2

. (20)

The second term on the right-hand side of (20) can be bounded with the help of the restricted
isometry property (14) as

‖A∗S∪T (y − sign (Ax + e))‖22 = 〈AS∪TA∗S∪T (y − sign (Ax + e)) ,y − sign (Ax + e)〉
≤ ‖AS∪TA∗S∪T (y − sign (Ax + e))‖2 ‖y − sign (Ax + e)‖2

≤
√

1 +
9

16

√
q ‖A∗S∪T (y − sign (Ax + e))‖2 ‖y − sign (Ax + e)‖2 .

Simplifying by ‖A∗S∪T (y − sign (Ax + e))‖2, we obtain

‖A∗S∪T (y − sign (Ax + e))‖2 ≤
5

4

√
q ‖y − sign (Ax + e)‖2 =

5

2

√
q
√
dH (y, sign(Ax + e)). (21)

The first term on the right-hand side of (20) can be bounded with the help of the simultaneous
(`2, `1)-quotient property (17) and of the sign product embedding property (15). We start by
writing Ax + e as A (x + u) for some u ∈ Rn as in (17). We then notice that

‖x + u‖2 ≥ ‖x‖2 − ‖u‖2 ≥ ‖x‖2 − d ‖e‖2 /
√
q ≥ (1− dc6) ‖x‖2 ,

‖x + u‖1 ≤ ‖x‖1 + ‖u‖1 ≤
√
s ‖x‖2 + d′

√
s∗ ‖e‖2 /

√
q ≤

(
1√
2

+
d′c6√

2c

)√
2s ‖x‖2 .

Hence, if c6 is chosen small enough at the start, then we have ‖x + u‖1 ≤
√

2s ‖x + u‖2, i.e., x+u
is effectively (2s)-sparse. The sign product embedding property (15) of order 2s then implies that∣∣∣∣∣

〈
w,

x + u

‖x + u‖2
−
√
π/2

q
A∗S∪T sign (Ax + e)

〉∣∣∣∣∣
=

∣∣∣∣∣
〈
w,

x + u

‖x + u‖2

〉
−
√
π/2

q
〈Aw, sign (A (x + u))〉

∣∣∣∣∣ ≤ δ

2
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for all unit-normed w ∈ Rn supported on S ∪ T . This gives∥∥∥∥∥ x + u

‖x + u‖2
−
√
π/2

q
A∗S∪T sign (Ax + e)

∥∥∥∥∥
2

≤ δ

2
,

and in turn∥∥∥∥∥ x

‖x‖2
−
√
π/2

q
A∗S∪T sign (Ax + e)

∥∥∥∥∥
2

≤ δ

2
+

∥∥∥∥ x

‖x‖2
− x + u

‖x + u‖2

∥∥∥∥
2

≤ δ

2
+

∥∥∥∥( 1

‖x‖2
− 1

‖x + u‖2

)
x

∥∥∥∥
2

+

∥∥∥∥ u

‖x + u‖2

∥∥∥∥
2

≤ δ

2
+
| ‖x + u‖2 − ‖x‖2 |

‖x + u‖2
+

‖u‖2
‖x + u‖2

≤ δ

2
+

2 ‖u‖2
‖x + u‖2

.

From ‖u‖2 ≤ d ‖e‖2 /
√
q and ‖x + u‖2 ≥ (1−dc6) ‖x‖2 ≥ ‖x‖2 /2 for c6 is small enough, we derive

that ∥∥∥∥∥ x

‖x‖2
−
√
π/2

q
A∗S∪T (sign (Ax + e))

∥∥∥∥∥
2

≤ δ

2
+

4d ‖e‖2√
q ‖x‖2

. (22)

Substituting (21) and (22) into (20) enables us to derive the desired result (18) from (19).

The proof of Theorem 4 presented next follows from Theorem 3.

Proof of Theorem 4. For later purposes, we introduce the constant

C := max
ξ∈

[
1√
2
− 1

20
, 2√

5
+ 1

20

] ∣∣f ′(ξ)∣∣ ≥ 2, f(ξ) := 1−
√

1− ξ2

ξ
.

Given x ∈ RBn
2 ∩Σs, we acquire a corrupted version y1 ∈ {±1}q/2 of the quantized measurements

sign(A1x). Since the number of rows of the matrix A1 ∈ R(q/2)×n is large enough for Theorem 3
to hold with δ0 = δ/(4(1 + 2C)) instead of δ, we obtain∥∥∥∥ x

‖x‖2
− u

∥∥∥∥
2

≤ δ0 + c4cδ + c5c
′δ ≤ 2δ0, u := H ′s(A

∗
1y1),

provided that the constants c and c′ are small enough. With x] denoting the orthogonal projection
of x onto the line spanned by u, we have∥∥∥x− x]

∥∥∥
2
≤ ‖x− ‖x‖2 u‖2 ≤ 2δ0 ‖x‖2 .

We now consider a unit-norm vector v ∈ Rn supported on supp(u) and orthogonal to u. The
situation in the plane spanned by u and v is summarized in Figure 3.

We point out that ‖x]‖ ≤ ‖x‖ ≤ R gave ‖x]‖2 ≤ 2R, but that 2R was just an arbitrary
choice to ensure that cos(θ) stays away from 1—here, cos(θ) ∈ [1/

√
2, 2/
√

5]. Forming the s-sparse
vector w := 2R · (u + v), we now acquire a corrupted version y2 ∈ {±1}q/2 of the quantized
measurements sign(A2(x − w)) on the 2s-sparse vector x − w. Since the number of rows of the

17



x]

2Ru
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w
θ

Figure 3: The situation in the plane spanned by u and v.

matrix A2 ∈ R(q/2)×n is large enough for Theorem 3 to hold with δ0 = δ/(4(1 + 2C)) instead of δ
and 2s instead of s, we obtain∥∥∥∥ w − x

‖w − x‖2
− t

∥∥∥∥
2

≤ δ0 + c4cδ + c5c
′δ ≤ 2δ0, t = −H ′s(A∗2y2).

We deduce that t also approximates (w − x])/
∥∥w − x]

∥∥
2

with error∥∥∥∥∥ w − x]

‖w − x]‖
− t

∥∥∥∥∥
2

≤
∥∥∥∥ w − x]

‖w − x]‖2
− w − x

‖w − x]‖2

∥∥∥∥
2

+

∥∥∥∥( 1

‖w − x]‖2
− 1

‖w − x‖2

)
(w − x)

∥∥∥∥
2

+

∥∥∥∥ w − x

‖w − x‖2
− t

∥∥∥∥
2

≤
∥∥x− x]

∥∥
2

‖w − x]‖2
+

∣∣∥∥w − x
∥∥

2
−
∥∥w − x]

∥∥
2

∣∣
‖w − x]‖2

+ 2δ0 ≤ 2

∥∥x− x]
∥∥

2

‖w − x]‖2
+ 2δ0 ≤ 2

2δ0 ‖x‖2
2R

+ 2δ0

≤ 4δ0.

It follows that 〈t,v〉 approximates
〈
(w − x])/‖w − x]‖,v

〉
= cos(θ) with error

| cos(θ)− 〈t,v〉 | =
∣∣∣∣〈 w − x]

‖w − x]‖2
− t,v

〉∣∣∣∣ ≤ ∥∥∥∥ w − x]

‖w − x]‖2
− t

∥∥∥∥
2

‖v‖2 ≤ 4δ0.

We then notice that ∥∥∥x]∥∥∥
2

= 2R− 2R tan(θ) = 2Rf(cos(θ)),

so that 2Rf(〈t,v〉) approximates
∥∥x]∥∥

2
with error∣∣∣∥∥∥x]∥∥∥

2
− 2Rf(〈t,v〉)

∣∣∣ = 2R|f(cos(θ))− f(〈t,v〉)| ≤ 2RC | cos(θ)− 〈t,v〉 | ≤ 2RC 4δ0 = 8Cδ0R.

Here, we used the facts that cos(θ) ∈ [1/
√

2, 2/
√

5] and that 〈t,v〉 ∈ [1/
√

2 − 4δ0, 2/
√

5 + 4δ0] ⊆
[1/
√

2− 1/20, 2/
√

5 + 1/20]. We derive that∣∣∣∥∥∥x∥∥∥
2
− 2Rf(〈t,v〉)

∣∣∣ ≤ ∣∣∣∥∥∥x∥∥∥
2
−
∥∥∥x]∥∥∥

2

∣∣∣+
∣∣∣∥∥∥x]∥∥∥

2
− 2Rf(〈t,v〉)

∣∣∣
≤
∥∥∥x− x]

∥∥∥
2

+
∣∣∣∥∥∥x]∥∥∥

2
− 2Rf(〈t,v〉)

∣∣∣
≤ 2δ0 ‖x‖2 + 8C δ0R ≤ 2(1 + 4C)δ0R.
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Finally, with the estimate x̂ for x being defined as

x̂ := 2Rf(〈t,v〉)u,

the previous considerations lead to the error estimate

‖x− x̂‖2 ≤ ‖x− ‖x‖2 u‖2 + |‖x‖2 − 2Rf(〈t,v〉)| ‖u‖2 ≤ 2δ0 ‖x‖2 + 2(1 + 4C)δ0R

≤ 4(1 + 2C)δ0R.

Our initial choice of δ0 = δ/(4(1 + 2C)) enables us to conclude that ‖x− x̂‖2 ≤ δR.

4.3 Second-order-cone-programming-based order-one recovery scheme

Proof of Theorem 2. Without loss of generality, we assume that R = 1/2. The general argument
follows from a rescaling. We begin by considering the exact case in which e = 0. Observe that, by
the Cauchy–Schwarz inequality,

‖x‖1 ≤
√
‖x‖0 · ‖x‖2 ≤

√
s.

Since x is feasible for program (9), we also have ‖x̂‖1 ≤
√
s. The result will follow from the

following two observations:

• x, x̂ ∈
√
sBn

1 ∩Bn
2

• sign(〈ai,x〉 − τi) = sign(〈ai, x̂〉 − τi), i = 1, . . . , q.

Each equation 〈ai, z〉−τi = 0 defines a hyperplane perpendicular to ai and translated proportionally
to τi; further, x and x̂ are on the same side of the hyperplane. To visualize this, imagine

√
sBn

1 ∩Bn
2

as an oddly shaped apple that we are trying to dice. Each hyperplane randomly slices the apple,
eventually cutting it into small sections. The vectors x̂ and x belong to the same section. Thus, we
ask: how many random slices are needed for all sections to have small diameter? Similar questions
have been addressed in a broad context in [PV14]. We give a self-contained proof that O(s log(n/s))
slices suffice based on the following result [PV14, Theorem 3.1].

Theorem 8 (Random hyperplane tessellations of
√
sBn

1 ∩ Sn−1). Let a1,a2, . . . ,aq ∈ Rn be inde-
pendent standard normal vectors. If

q ≥ Cδ−4s log(n/s),

then, with probability at least 1− 2 exp(−cδ4q), all x,x′ ∈
√
sBn

1 ∩ Sn−1 with

sign〈ai,x〉 = sign〈ai,x′〉, i = 1, . . . , q,

satisfy ∥∥x− x′
∥∥

2
≤ δ

8
.

The positive constants c and C are absolute constants.

We translate the above result into a tessellation of
√
sBn

1 ∩Bn
2 in the following corollary.
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Corollary 9 (Random hyperplane tessellations of
√
sBn

1 ∩ Bn
2 ). Let a1,a2, . . . ,aq ∈ Rn be in-

dependent standard normal vectors and let τ1, τ2, . . . , τq be independent standard normal random
variables. If

q ≥ Cδ−4s log(n/s),

then, with probability at least 1− 2 exp(−cδ4q), all x,x′ ∈
√
sBn

1 ∩Bn
2 with

sign(〈ai,x〉 − τi) = sign(〈ai,x′〉 − τi), i = 1, . . . , q,

satisfy ∥∥x− x′
∥∥

2
≤ δ

4
.

The positive constants c and C are absolute constants.

Proof. For any z ∈
√
sBn

1 ∩Bn
2 , we notice that sign(〈ai, z〉−τi) = sign(〈[ai,−τi], [z, 1]〉), where the

augmented vectors [ai,−τi] ∈ Rn+1 and [z, 1] ∈ Rn+1 are the concatenations of ai with −τi and z
with 1, respectively. Thus, we have moved to the ditherless setup by only increasing the dimension
by one. Since

‖[z, 1]‖2 ≥ 1 and ‖[z, 1]‖1 = ‖z‖1 + 1 ≤
√
s+ 1 ≤

√
4s,

we may apply Theorem 8 after projecting on Sn to derive∥∥∥∥ [x, 1]

‖[x, 1]‖2
− [x′, 1]

‖[x′, 1]‖2

∥∥∥∥
2

≤ δ

8
. (23)

with probability at least 1 − 2 exp(cδ4q). We now show that the inequality (23) implies that
‖x− x′‖2 ≤ δ/4.

First note that ∥∥x− x′
∥∥

2
≤
√

2

∥∥∥∥ x

‖[x, 1]‖2
− x′

‖[x, 1]‖2

∥∥∥∥
2

since ‖x‖2 ≤ 1. Subtract and add x′/ ‖[x′, 1]‖2 inside the norm and apply triangle inequality to
obtain ∥∥x− x′

∥∥
2
≤
√

2

(∥∥∥∥ x

‖[x, 1]‖2
− x′

‖[x′, 1]‖2

∥∥∥∥
2

+
∥∥x′∥∥

2
·
∣∣∣∣ 1

‖[x, 1]‖2
− 1

‖[x′, 1]‖2

∣∣∣∣) .
Since ‖x′‖2 ≤ 1, we may remove ‖x′‖2 from in front of the second term in parenthesis. Next, use
the inequality a+ b ≤

√
2 ·
√
a2 + b2 on the two terms in parenthesis. This bounds the right-hand

side by precisely

2

∥∥∥∥ [x, 1]

‖[x, 1]‖2
− [x′, 1]

‖[x′, 1]‖2

∥∥∥∥
2

,

which is bounded by δ/4 according to (23).

This corollary immediately completes the proof of Theorem 2 in the case e = 0. We now
turn to the general problem where ‖e‖∞ ≤ cδ3 and thus ‖e‖2 ≤ cδ3√q. We reduce to the exact
problem using the simultaneous (`1, `2)-quotient property (17), which guarantees that the error can
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be represented by a signal with small `1-norm. In particular, (17) implies that, with probability at
least 1− exp(−cq), there exists a vector u satisfying

e = Au with

{
‖u‖2 ≤ δ/4,

‖u‖1 ≤ c1δ
3
√
q/ log(n/q)

(24)

where c1 is an absolute constant which we may choose as small as we need. We may now replace x
with x̃ = x + u and proceed as in the proof in the noiseless case. Reconstruction of x̃ to accuracy
δ/4 yields reconstruction of x to accuracy δ/2, as desired. By replacing x with x̃, we have (mildly)
increased the bound on the `1-norm and the `2-norm. Fortunately, ‖x̃‖2 ≤ ‖x‖2 + ‖u‖2 ≤ 1 and
thus x̃ remains feasible for the program (9). Further, x̃ is approximately sparse in the sense that
‖x̃‖1 ≤ ‖x‖1 + ‖u‖1 ≤

√
s + c1δ

3
√
q/ log(n/q) =:

√
s̃. To conclude the proof, we must show that

the requirement of Theorem 2, namely q ≥ C ′δ−4s log(n/s), implies that the required condition of
Corollary 9, namely q ≥ Cδ−4s̃ log(n/s̃), is still satisfied. The result follows from massaging the
equations, as sketched below.

If s ≥ c2
1δ

6q/ log(n/q), then
√
s̃ ≤ 2

√
s and the desired result follows quickly. Suppose then

that s < c21δ
6q/ log(n/q) and thus s̃ ≤ c2δ

6q/ log(n/q). To conclude, note that

Cδ−4s̃ log(n/s̃) ≤ q · C · c2
δ2

log(n/q)
· (log(n/q) + log(1/c2) + 6 log(1/δ) + log(log(n/q)) ≤ q,

where the first inequality follows since s log(n/s) is increasing in s and thus s̃ may be replaced
by its upper bound, c2δ

6q/ log(n/q). The last inequality follows by taking c2 small enough. This
concludes the proof.

5 Numerical Results

This brief section provides several experimental validations of the theory developed above. The
computations, performed in MATLAB, are reproducible and can be downloaded from the second
author’s webpage. The random measurements ai were always generated as vectors with independent
standard normal entries. As for the random sparse vectors x, after a random choice of their
supports, their nonzero entries also consisted of independent standard normal variables.

Our first experiment (results not displayed here) verified on a single sparse vector that both its
direction and magnitude can be accurately estimated via order-one recovery schemes, while only
its direction could be accurately estimated using convex programs [PV13a, PV13b], `1-regularized
logistic regression, or binary iterative hard thresholding [JLBB13]. We also noted the reduction
of the reconstruction error by several orders of magnitude from the same number m of quantized
measurements when Algorithms 7-8 are used instead of the above methods. We remark in passing
that this number m is significantly larger than the number of measurements in classical compressed
sensing with real-valued measurements, as intuitively expected.

Our second experiment corroborates the exponential decay of the error rate. The results are
summarized in Figure 4, whose logarithmic scale on the vertical axis confirms the behavior log(‖x−
x∗‖2/‖x‖2) ≤ −cλ for the relative reconstruction error as a function of the oversampling factor
λ = m/ log(n/s). The tests were conducted on four sparsity levels s at a fixed dimension n for
an oversampling ratio λ varying through the increase of the number m of measurements. The
number T of iterations in Algorithms 7 and 8 was fixed throughout the experiment based on hard
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thresholding and throughout the experiment based on second-order cone programming. The values
of all these parameters are reported directly in Figure 4. We point out that we could carry out
a more exhaustive experiment for the faster hard-thresholding-based version than for the slower
second-order-cone-programming-based version, both in terms of problem scale and of number of
tests.

(a) (b)

Figure 4: Averaged relative error for the reconstruction of sparse vectors (n = 100) by the outputs
of Algorithms 7-8 based on (a) hard thresholding and (b) second-order cone programming as a
function of the oversampling ratio.

Our third experiment examines the effect of measurement errors on the reconstruction via Algo-
rithms 7 and 8. Once again, the problem scale was much larger when relying on hard thresholding
than on second-order cone programming. The values of the size parameters are reported on Fig-
ure 5. This figure shows how the reconstruction error decreases as the iteration count t increases
in Algorithms 7 and 8. For the hard-thresholding-based version, see Figure 5(a), we observe an
error decreasing by a constant factor at each iteration when the measurements are totally accu-
rate. Introducing a pre-quantization noise e ∼ N(0, σ2I) in y = sign(Ax + e) does not affect
this behavior too much until the “noise floor” is reached. Flipping a small fraction of the bits
sign 〈ai,x〉 by multiplying them with fi = ±1, most of which being equal to +1, seems to have an
even smaller effect on the reconstruction. However, these bit flips prevent the use of the second-
order-cone-programming-based version, as the constraints of the optimization problems become
infeasible. But we still remark that the pre-quantization noise is not very damaging in this case
either, see Figure 5(b), where the results of an experiment using `1-regularized logistic regression
in Algorithms 7 and 8 are also displayed.

6 Discussion

6.1 Related work

The one-bit compressed sensing framework developed by Boufounos and Baraniuk [BB08] is a
relatively new line of work, with theoretical backing only recently being developed. Empirical ev-
idence and convergence analysis of algorithms for quantized measurements appear in the works
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(a) (b)

Figure 5: Averaged relative error for the reconstruction of sparse vectors (n = 100) by the outputs
of Algorithms 7-8 based on (a) hard thresholding (s = 15, m = 105) and second-order cone
programming and (b) `1-regularized logistic regression (s = 10, m = 2 · 104) as a function of the
iteration count when measurement error is present.

of Boufounos et al. and others [Bou09, BB08, LWYB11, ZBC10]. Theoretical bounds on recov-
ery error have only recently been studied, outside from results which model the one-bit setting as
classical compressed sensing with specialized additive measurement error [DPM09, JHF11, SG09].
Other settings analyze quantized measurements where the number of bits used depends on signal
parameters like sparsity level or the dynamic range [ACS09, GLP+10, GLP+13]. Boufounos devel-
ops hierarchical and scalar quantization with modified quantization regions which aim to balance
the rate-distortion trade-off [Bou11, Bou12]. These results motivate our work but do not directly
apply to the compressed sensing setting.

Theoretical guarantees more in line with the objectives of this paper began with Jacques
et al. [JLBB13] who proved robust recovery from approximately s log n one-bit measurements.
However, the program used has constraints which require sparsity estimation, making it NP-
Hard in general. Gupta et al. offers a computationally feasible method via a scheme which
either depends on the dynamic range of the signal or is adaptive [GNR10]. Plan and Ver-
shynin analyze a tractable non-adaptive convex program which provides accurate recovery with-
out these types of dependencies [PV13a, PV13b, ALPV14]. Other methods have also been
proposed, many of which are largely motivated by classical compressed sensing methods (see
e.g. [Bou09, MPD12, YYO12, MBN13, JDDV13]).

In order to break the bound (3) and obtain an exponential rather than polynomial dependence on
the oversampling factor, one cannot take traditional non-adaptive measurements. Several schemes
have employed adaptive samples including the work of Kamilov et. al. which utilizes a generalized
approximate message passing algorithm (GAMP) for recovery, and the adaptive thresholds are
selected in line with this recovery method. Adaptivity is also considered in [GNR10] which allows
for a constant factor improvement in the number of measurements required. However, to our best
knowledge our work is the first to break the bound given by (3).

Regarding the link between our methods and sparse binary regression, there is a number of
related theoretical results focusing on sparse logistic regression [NRWY12, Bun08, VDG08, Bac10,
RWL10, MVDGB08, KSST10], but these are necessarily constrained by the same limited accuracy
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of the one-bit compressed sensing model discussed in Section 1.
We also point to the closely related threshold group testing literature, see e.g., [Che13]. In

many cases, the statistician has some control over the threshold beyond which the measurement
maps to a one. For example, the wording of a binary survey may be adjusted to only ask for a
positive answer in an extreme case; a study of the relationship of heart attacks to various factors
may test whether certain subjects have heart attacks in a short window of time and other subjects
have heart attacks in a long window of time. The main message of this paper is that by carefully
choosing this threshold the accuracy of reconstruction of the parameter vector x can be greatly
increased.

6.2 Conclusions

We have proposed a recursive framework for adaptive thresholding quantization in the setting of
compressed sensing. We have developed both a second-order-cone-programming-based method and
a hard-thresholding-based method for signal recovery from these type of quantized measurements.
Both of our methods feature a bound on the recovery error of the form e−Ω(λ), an exponential
dependence on the oversampling factor λ. To our best knowledge, this is the first result of this
kind, and it improves upon the best possible dependence of Ω(1/λ) for non-adaptively quantized
measurements.
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