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From Newsletter #1 

Dear Colleague, 

This newsletter follows a three-day Conference to Examine Mathematics as a Humanistic Discipline in 
Claremont 1986 supported by the Exxon Education Foundation, and a special session at the AMS-MAA meet­
ing in San Antonio January 1987. A common response of the thirty-six mathematicians at the conference was, 
"I was startled to see so many who shared my feelings." 

Two related themes that emerged from the conference were 1) teaching mathematics humanjstically, and 2) 
teaching humanjstic mathematics. The first theme sought to place the student more centrally in the position 
of inquirer than is generally the case, while at the same time acknowledging the emotional climate of the 
activity of learning mathematics. What students could learn from each other and how they mjght come to 
better understand mathematics as a meaningful rather than arbitrary discipline were among the ideas of the 
first theme. 

The second theme focused less upon the nature of the teaching and learning environment and more upon the 
need to reconstruct the curriculum and the discipline of mathematics itself. The reconstruction would relate 
mathematical discoveries to personal courage, discovery to verification, mathematics to science, truth to util­
ity, and in general, mathematics to the culture within which it is embedded. 

Humanistic dimensions of mathematics discussed at the conference included: 

a) An appreciation of the role of intuition, not only in understanding, but in creating concepts that appear in 
their finished versions to be "merely technical." 

b) An appreciation for the human dimensions that motivate discovery: competition, cooperation, the urge for 
holistic pictures. 

c) An understanding of the value judgments implied in the growth of any discipline. Logic alone never com­
pletely accounts for what is investigated, how it is investigated, and why it is investigated. 

d) A need for new teaching/learning formats that will help discourage our students from a view of knowl­
edge as certain or to-be-received. 

e) The opportunity for students to think like mathematicians, including chances to work on tasks of low 
definition, generating new problems and participating in controversy over mathematical issues. 

f) Opportunities for faculty to do research on issues relating to teaching and be respected for that area of 
research. 

This newsletter, also supported by Exxon, is part of an effort to fulfill the hopes of the participants. Others 
who have heard about the conferences have enthusiastically joined the effort. The newsletter will help create 
a network of mathematicians and others who are interested in sharing their ideas and experiences related to 
the conference themes. The network will be a community of support extending over many campuses that 
will end the isolation that individuals may feel. There are lots of good ideas, lots of experimentation, and lots 
of frustration because of isolation and lack of support. In addition to informally sharing bibliographic refer­
ences, syllabi, accounts of successes and failures. . . the network might formally support writing, team­
teaching, exchanges, conferences . ... 

Alvin White 
August 3, 1987 



From the Editor 

Four years ago Linley E. Hall came to Harvey Mudd College as a freshman. A short time later Linley 
became the Production Manager of HMNJ. It is clear to all that the journal flourished under her wise 
and steady hand. Her skills and high standards have been a boon to the readers and to me. I am 
grateful that she chose to give her energy and skills to the journal while studying and doing research 
in chemistry. Linley will go to graduate school at the University of California, Santa Cruz, where her 
concentration will be Science Writing. As you can see from the inside front cover, the production staff 
has added four students. I am grateful to and encouraged by the talented students who joined the 
staff and by their conscientious work in addition to their studies. 

Of course, everyone is grateful to the ExxonMobil Foundation for their continuing support since 1987. 

*** 

A continuing source of anguish and frus tration is the prominence of high stakes testing in the 
UnitedStates; the NEA Resolution reprinted below expresses that frustration. 

NEA 2000-2001 Resolutions B-56. Standardized Testing of Students (http://www.nea.orglresolu­
tions/00/00b-56.html): 

The National Education Association believes that standardized tests should only be used to improve 
the quality of education and instruction for students. Standardized tests are most useful when se­
lected by educational professionals closest to the classroom and integrated with assessment informa­
tion specific to local programs. Affiliates should advocate the design and use of a variety of develop­
mentally appropriate assessment techniques that allow necessary accommodations, modifications, 
and exemptions and are bias-free, reliable, and valid. When a test is mandated at the state or the 
national level, it should only be used to evaluate programs toward meeting state or national stan­
dards and/ or goals. 

The Association opposes the use of standardized tests when-

a. Used as the criterion for the reduction or withholding of any educational funding 
b. Results are used to compare students, teachers, programs, schools, communities, and states 
c. Used as a single criterion for high-stakes decision making 
d . They do not match the developmental levels or language proficiency of the student 
e. Student scores are used to evaluate teachers or to determine compensation or employment status 
f. Programs are specifically designed to teach to the test 
g. Testing programs or tests limit or supplant instructional time. 

The administration of a standardized test includes the responsibility to educate the stakeholders in 
the purpose of the test, the meaning of test results, and the accurate interpretation of conclusions. 
(1978,2000) 
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One important tool in various chemical disciplines is
nuclear magnetic resonance spectroscopy, commonly
referred to as NMR. Because protons are positively
charged, their spinning motion creates a magnetic
field.  When exposed to an external magnetic field,
the proton can either align with (α )or against (β ) the
field. Exposing a proton to the right strength of mag-
netic field will cause it to flip from one orientation to
the other, a condition called resonance. By exposing a
molecule to a range of magnetic fields, the strength of
field needed to achieve resonance of each NMR-ac-
tive nucleus in the molecule can be seen as a peak on
a spectrum (Figure 1). Nuclei with even numbers of
both protons and neutrons are NMR-inactive; they do
not appear on spectra. Also, chemically equivalent nu-
clei, such as the four hydrogens in methane, CH4, will
resonate at the same field strength and thus  appear
as one peak. Chemists commonly look at the resonance
of hydrogen, 1H. Figure 1 shows the NMR spectrum
of 1,1-dichloroethane.

I was introduced to NMR in my sophomore organic
chemistry course. Professor Phil Myhre explained the

basics, in somewhat more detail than I have presented
them here, then went on to talk about how you can
use an NMR spectrum to figure out what an unknown
molecule looks like.

One important aspect of NMR spectrum interpreta-
tion is coupling. In an organic (carbon-based) mol-
ecule, hydrogen atoms that are one carbon-carbon
bond away can “see” one another. In the spectrum,
this corresponds to a single peak for one hydrogen
(or several chemically equivalent hydrogens) being
split into many peaks. How many? The number of
neighbors plus one, for the hydrogen could see its
neighbors in, for the case of three, α α α , α α β ,

α β β , β β β . What are the intensities of these peaks?

There’s only one way to get each α α α  and β β β ,
but three ways to get each α α β  (β α α , α β α ) and

α β β  (β β α , β α β ). Thus, in this case you get a
quartet with peak intensities of 1:3:3:1. This can be
seen in Figure 1; the hydrogen attached to the carbon
with the two Cl atoms sees three 1H neighbors and so
appears as a 1:3:3:1 quartet around 330 Hz. The three

hydrogens are chemically equivalent
and see one 1H neighbor, so they appear
as a 1:1 doublet around 120 Hz.

Think about other splitting possiblities.
To get a triplet a nucleus would see two
neighbors. These neighbors could be in
four different combinations: α α , α β ,

β α , and β β . Since α β  and β α  are
the same, this works out to splitting with
peak intensities of 1:2:1.

Seeing a pattern? Put everything to-
gether and you find Pascal’s Triangle
(Figure 2). The elegant pattern that gave
me the binomial coefficients in algebra
class also tells me ideal peak intensities
in chemical spectra.

Nuclear Magnetic Resonance and Humanistic Mathematics:
A Farewell

Linley Erin Hall
Production Manager, Humanistic Mathematics Network Journal

Figure 1
1H NMR spectrum of 1,1-dichloroethane
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And so it was, sitting in chemistry class, looking at
Pascal’s Triangle on the overhead, that I really under-
stood what humanistic mathematics is. It is finding
the mathematics that is everywhere.

I have been the production manager of the HMNJ
since March 1998 (Issue #17). I majored in chemistry
and am now off to University of California, Santa Cruz
to pursue a graduate degree in science writing. I leave
the HMNJ in wonderful hands. Expect to see issues
in your mailbox more frequently; Stephanie, Fess,
Mary and Kathe are a great team, and I wish them
well.

0     singlet (1)
1     doublet (2)
2     triplet (3)
3     quartet (4)
4     quintet (5)
5     sextet (6)
6     septet (7)

1
1 : 1

1 : 2 : 1
1 : 3 : 3 : 1

1 : 4 : 6 : 4 : 1
1 : 5 : 10 : 10 : 5 : 1

1 : 6 : 15 : 20 : 15 : 6 : 1

Figure 2
Pascal’s Triangle.

There’s a student who’s sure if she rolls two fair dice,
The most likely sum is seven.
On the seventh day she knows many stores will be

closed
‘Cause lots of folks call it the day of rest.

Ooh, ooh, she’s inquiring: “Where is there a
seven?”

Well there’s a seven on the wall, but she wants to be
sure

‘Cause you know uncrossed sevens can look like ones.
From seven notes in a scale, there’s a songbird who

sings—
It’s the first sour note in the harmonic series.

Ooh, it’s quite a number. Ooh, seven wonders.

There’s a feeling I get from the seven continents
And shuffles needed to mix the cards:
Snow White’s dwarves all could be a water polo

team—
It’s the limit of short-term mem’ry.

Ooh, it’s quite a number. Ooh, telephone number.

It’s the steps in ballet’s art, it’s the Big Dipper stars,
And it’s how many times you can fold paper.
First polygon to elude the classical tools

And it’s how many patterns for borders.

If a track meet takes a long time, don’t be alarmed
now—

It’s just what’s called a heptathlon.
Can you remember when the 7th month was Septem-

ber?
Then Caesar added August and July! And it makes

me wonder...

Seven verses make this song maybe too long,
The piper fights for airplay!
First whole number whose reciprocal does use
Its maximum block of digits.

As we wind on down the road, with 7 chakras I am
told,

And 7 colors of the rainbow make white light when
they all show.

If you listen to this rhyme of this odd Mersenne prime,
May it make you want to find each number’s special

shine...
And she’s buying a stairway to seventh heaven!

Lyrics copyright 2000, 2001 Lawrence Mark Lesser, re-
printed with permission.

“Stairway to Seven”
Lawrence Mark Lesser

Department of Mathematics
Armstrong Atlantic State University

Savannah, GA 31419
lesserla@mail.armstrong.edu

May be sung to the tune of the 7 verse song “Stairway to Heaven” by Jimmy Page and Robert Plant.
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SUMMARY
In this paper I discuss some results got in 1997/98
with Brazilian mathematics school teachers. The re-
search was done to investigate their mathematical lan-
guage as related to the concept of function. A di-
chotomy was detected between “formal” and “prac-
tical” language they used to express their own con-
ceptions of function, as well as to teach their students
this subject. Also, I found teachers’ conceptual images
“shrinking” as soon as they were far from their col-
leges or universities programs.

***

In the 17th issue of this Journal, Wenstrom, Martin &
King (1998) wrote about the necessity of re-examin-
ing programs for college and university mathematics
departments as concerns the preparation of mathemat-
ics school teachers.

Those authors emphasize that “high school mathemat-
ics teachers are the products of these programs. They
not only teach what they learned to their students but
also how they learned it” (Wenstrom, Martin & King
(1998), p. 12).

This paper is intended to resume the subject above,
reporting an investigation done in Brazil about the
mathematical language used by high school teachers.
Despite the differences one can observe in the educa-
tional policies in many countries, I have reasons to
believe that the problem of preparation of mathemat-
ics teachers is essentially the same everywhere, and it
is much more complex than one can suppose.

The results of my research show that these teachers
(at least in Brazil) seem to use “models” of mathemati-
cal language in their classes unlike those they learned
at their college or university. Instead, these “models”
are much closer to those ones they had in their own
experiences as students in high school.

Thus a new question takes place: what kind of influ-
ence do college or university programs have on the

preparation of high school teachers today? If these
programs seem not to interfere significantly in their
mathematical language, to teach or to express their
own conceptions about mathematical notions, what
are their effective contributions to the professional de-
velopment of these teachers?

As quoted in Wenstrom, Martin & King (1998, p. 12),
“unfortunately, few university mathematics depart-
ments maintain meaningful links with mathematics
in school or with the mathematical preparation of
school teachers... Only when college faculty begin to
recognize by deed as well as word that preparing
school teachers is of vital national importance can we
expect to see significant improvement in the continu-
ity of learning between school and college” (Moving
Beyond Myths, 1991, p. 28).

THE INVESTIGATION
In 1997/98 I conducted a qualitative study (Ande,
1995; Rockwell, 1985) of how secondary [or high]
school mathematics teachers used mathematical lan-
guage to treat ideas about the concept of function
(Zuffi, 1999). My purpose was to investigate the ways
these teachers—being mediators and ‘catalysts’ of the
developing processes of their students (Vygotsky,
1962, 1989)—deal with their own conceptions about
functions as well as how they explore them in their
classrooms. Also, I was interested in knowing how
conscious these teachers were about their use of math-
ematical language.

Seven high school math teachers were interviewed
and answered a collection of twenty written questions
related to the subject “function.” These questions were
proposed to give them the opportunity to express their
own conceptions about that notion through math-
ematical language, and were freely answered by the
teachers, in such a way that they could write every-
thing they knew about functions, beyond the facts they
teach in high school.

Even thus, it was very surprising to see, after the
analyses of data, that the investigated teachers ex-

On the Preparation of High School Mathematics Teachers
Edna Maura Zuffi

Department of Mathematics - ICMC
University of Sao Paulo
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pressed themselves through mathematical language
essentially in the same way they teach, and not in the
way they had learned in their college or university
courses. Even after telling them to go beyond the ideas
they teach, they kept pointing to exactly the same top-
ics and patterns they teach. None of those individu-
als went far from the language they used in the class-
rooms with their students.

However, the teachers’ formal mathematical expres-
sions tended to approach present day definitions for
function (as the ones by Bourbaki or Dirichlet), al-
though they had a very small formal repertoire to com-
municate it safely and correctly. Many mistakes were
made, especially when they insisted on using sym-
bolic notation.

I observe here that the preparation they received in
their undergraduate mathematics courses seems to be
insufficient to develop self-confidence and awareness
of the use of mathematical language, mainly with re-
spect to its formal aspects. On the other hand, my re-
sults reveal that there seems to exist a real dichotomy
between the teachers’ mathematical language deal-
ing with theoretical frameworks and the expression
of “practical” questions and situations.

For instance, while Dirichlet or Bourbaki are invoked
in formal definitions, in dealing with examples and
problem solving these teachers are restricted to clas-
sical conceptions for functions, such as Euler’s defi-
nition. That is, they pointed out only “patterns” given
by analytic formulas in very simple algebraic expres-
sions, similar to the ones they often teach in their class-
rooms (e.g. f(x)=3x+5, or f(x)=5x2-7x+3). In the “prac-
tical” situations, for the investigated teachers, the or-
dinary examples they present to their students seem
to be enough to “encapsulate” (Dubinsky & Harel,
1992) all the meanings involved in the concept of func-
tion. This may be contributing to building narrower
conceptual images (Vinner, 1991, 1992) in the high
school teachers’ expressions for the idea of function,
and I don’t believe they are really conscious of this
fact.

Their conceptual images tend to be limited to the ones
they use to teach in high school, and the images seem
to “shrink” as these teachers become more and more
distant from their undergraduate courses.

In a second part of my research, observing three high
school teachers in their classrooms, I got similar re-
sults to those obtained with the questionaire and in-
terviews. In their classrooms these teachers use for-
mal mathematical language in such a way that defi-
nitions seem to be of much less importance than the
“practice” for functions. What really should “count”
for the students is the way the teacher deals with al-
gorithms, examples, and techniques for solving math-
ematics problems. Definitions are in a second plane,
which it is not necessary for students to reach.

The mathematical language pointed out in the ob-
served classrooms was static, with purposes in itself,
and syntactic aspects were much more emphasized
than the meanings of the language. The concepts re-
lated to the notions of functions, as I saw in the high
school classrooms, do not emerge from a context
which has to do with the students’ lives. Nor have
they to do with the construction of a powerful way of
communication, such as the ideal of mathematics. On
the contrary, these notions are associated with abstract
symbols and algorithms, and these symbols, in turn,
become objects for themselves, in a fragmented and
truncated language.

All this can be supported by the following evidence:

i) The observed teachers used the term “depen-
dency” as a synonym of “function,” as if that word
had clearly encapsulated all the mathematical
subtleties the ultimate definition for function pre-
sents;

ii) The relation in a functional correspondence was
always given by an explicit and very simple “rule”
or “law” (algebraic expression);

iii) The symbolic notations “x,” “y,” “a,” “b,” “c” are
always in straight association with the ideas of “in-
dependent variable,” “dependent variable,” and
“constants,” respectively. This leads the students
(and very often, even teachers themselves) to think
about these notations always in a limited mean-
ing. (When the roles of “x” and “y” were inter-
changed, these teachers had difficulty identifying
independent variables and constants);

iv) During observed classes, two of the teachers
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refered to “x” sometimes as “the variable,” other
times as “the domain,” and finally, as one specific
element of the domain which should be deter-
mined by the students. Since these teachers did
not make clear the contexts in which they used
each of the terms, I concluded that their own com-
prehension about these notions were limited. Even
more, the sets of domain and image, in the teach-
ers’ expressions, seemed to be determined only
by the sequence in which they appeared—the first
one is the domain, and the second one is the set
where the image lies. Therefore, these teachers
seemed not to realize that both sets don’t have
symmetric roles (Sierpinska, 1992);

v) Although the observed teachers worked with real
functions of real variables, the variation of ele-
ments they proposed for the domain—to build
graphs, mainly—had “models” always in the set
of integer numbers. They rarely “picked up” ra-
tional numbers, and never selected the irrationals
to plot the graphs;

vi) The graphic forms were previously presented to
students by the teachers, so that these same stu-
dents only had to locate the graphs. To do that,
three or five coordinates seemed to be enough.
Hence, continuity was not discussed, and there
were many difficulties (with high school students
and teachers) dealing with discontinuous graphs
of functions.

vii) The interviewed teachers’ conceptual images
(Vinner, 1991, 1992) for functions are restricted to
the facts they teach in high school, even when I
asked for broader answers.

SOME REFLECTION
Of course most of the results of my research are not
really new. The important fact revealed was that many
of the problems we see with high school students are
still the difficulties of their teachers. The distance be-
tween high school mathematics teachers’ conceptions
about functions, and the knowledge they received in
college seems to be wider and wider as they become
more and more involved with their classrooms, and
as they move further away from their undergraduate
courses.

Here are some reasons I identify for this fact:

1. High school teachers depend almost exclusively
on mathematics textbooks to prepare their classes
and compose their mathematical language.

As Dancis (1999) reported:

“It is standard for math textbooks and K-8th
grade teachers to provide students with cook-
book type directions of what to do in math. It
is rare for students to be assigned problems
that they have not been programmed to do. It
is rare for textbooks and K-8th grade teachers
to provide the students with understanding-
based explanations which tell the whys and
the wherefores of mathematics” (Dancis, 1999,
p. 3).

I am sure the same is valid for high school textbooks
and teachers in Brazil. And, since these textbooks very
often propose a limited and static mathematical lan-
guage, so is the teachers’ language. “Providing stu-
dents with understanding-based explanations of
mathematics is not a common teaching technique”
(Dancis, 1999, p. 3). Therefore, syntactic aspects are
emphasized, while the construction of meanings of
mathematical language is still underestimated.

2. A social fact is involved in the question. There
exists a school mathematical culture, at least in
Brazil, where teachers must cover a great deal of
content, even when the students are not able to
reach comprehension for everything. In this case,
the mathematical language proposed by these
teachers becomes as reduced as possible, to pro-
mote very rapid memorization of technical pro-
cedures by students.

As Dancis (1999) asserted for middle school, and as
we can also read for high school:

“The natural result [of this situation] is that
while the students may develop some profi-
ciency in math skills, they do not gain any
understanding of the mathematics. This results
in students collecting all sort of misconcep-
tions about mathematics and making a wide
range of mistakes while doing calculations.
This, in turn, results in less success in high
school math classes. Remedying these miscon-
ceptions is difficult” (Dancis, 1999, p. 3).
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“The overemphasis on testing, skill develop-
ment and fact content, etc. [in schools] seems
to have inhibited [student] interest in learn-
ing, motivation, ability to work with and en-
joy ideas, use creativity, and attain satisfaction
from an educational experience” (Dancis, 1999,
p. 4).

3. There is a great gap between pedagogical disci-
plines and those related to advanced mathemati-
cal content in college and university programs.

These programs generally have the conception that
in the first terms the student must learn a lot of ad-
vanced math, to be able to apply this content to peda-
gogical situations. However, most of the program in
those courses has nothing to do with the real situa-
tions of teaching. Specific math disciplines are isolated
from high school programs, and the pedagogical ones
are frequently too general to be connected to second-
ary school or to advanced math.

In the case of functions, many advanced disciplines,
such as Algebra, Analysis, Topology, etc. deal with
them. And there seems to exist a strong belief that,
even isolated, those disciplines are enough to produce
a full conceptual image of function for the future high
school teachers. But our research revealed that they
are not sufficient to produce such a result. Even the
teachers who had a strong experience in those disci-
plines lost self-confidence in using symbolic notations
for functions and had a limited conceptual image for
them.

All this means that high school math teachers are not
being properly prepared at college. And we can see
that, even having been educated in the best of institu-
tions, high school math teachers retain a strong influ-
ence from social scholar facts that are not foreseen by
those undergraduate programs.

I believe that some questions, such as the choice and
use of textbooks, the interface between advanced math
disciplines and pedagogical ones, and continuity of
studies for experienced high school teachers, raising
them with future teachers, should concern everyone
who cares about the preparation of school teachers,
and those who are responsible for college and uni-
versity programs.
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Fivefolded Asymmetrical Hand: A Poetic Essay
S. Robert Wilson

1033 Whalley Ave. A104
New Haven, CT  06515

An outline of one possible solution is given through
an abstract characterization of the discipline as a
whole.

At the January 1992 joint meeting in Baltimore, I read
two rather obscure and cryptic poems, 2  and GOD-
137. I have and continue to write poetry, though rather
sporadically. The origin of these two poems was con-
structive in nature, each beginning with a simple con-
cept and then being somewhat lifted into poetical
form. The first of these, 2 , was constructed using
the symmetry of the 45° right triangle, two words of
ten letters and one of fourteen. GOD-137 began with
the idea that when considering infinite quantities to
represent sums and products we use the symbols Σ
and Π . In finite elementary arithmetic we know prod-
uct as “times” and sum becomes associated with
“some” through a language deformation. Then,
through a compound operation, the symbol  Σ Π  is
associated with the word “sometimes.” For this con-
struction the title is what needs explanation. After
constructing the first “some” as one, continuing to
construct the square and cube, the entire entity, the
poem, contains this “three.” The context of the “three”
as referred to here is line, plane and space and it is
through Cantor that these do become a one, in the
sense of continuity. The name GOD-137 becomes a
representation where “1” is the poem, “3” this funda-
mental set of three, and “7” the number of lines in
which the poem presents itself. The aspect “GOD”
comes from the superstitious idea in Christian my-
thology that one is three. What makes the title more
auspicious is that when I wrote it I had no knowledge
of the approximation to 137 in the fine structure con-
stant, which as I interpret, is a numerological equiva-
lent to the word “god” from a physicist’s point of view.

As my research in pure mathematics has been pro-
gressing I have often touched philosophical ground.
After consistent achievement, during a restructuring
and reckoning of research projects new concepts and
ideas began to overflow. Through numerous discus-
sions with a collaborator, a conception of ideal types

emerged.

Philosophically, the problem being addressed is one
of balance. The notion of transcendence takes on a re-
ligious flavor being framed in mythology for expres-
sion. However, ethically the call is for responsibility.
Collectively this composes a current, beginning with
balance, but incorporating the transcendental religious
nature, in a secular ethical morality, most accurately
described as spirituality.

Beginning with the most troublesome notion of reli-
gious differences, the opinion expressed is of religious
belief not properly contained in the known domain
of religious expressions, yet it is not devoid of any
expression. The approximation this produces is simul-
taneously of a theist and an atheist. Further, recog-
nizing this expression as not properly contained in its
own transcendence makes this and anything said
about it faulty.

Philosophically, a transcendental aspect is at work. The
three traditional philosophies, Platonism, intuition-
ism, and formalism, at some level form a whole, an
interdependent unity. In this light we may consider
the abstract “some one is three.” The question of bal-
ance enters at this point. The opinion is, that in light
of the notion of transcendence in religious expression,
this same transcendence property may be applied to
philosophy of mathematics.

It is now my moral obligation as a mathematician, and
my ethical responsibility as a member of the Ameri-
can Mathematical Society to make available results
when consequences are apparent. It is then appropri-
ate that I share these philosophical results of my pure
research, in view of the fact that the mathematical
community as a whole seems to be experiencing some
internal difficulties.

The issues of recognition and understanding of math-
ematics by society as reflected in problems of employ-
ment, education, technology, and the importance of
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pure research, came to surface after a brief but inspi-
rational conversation with a mathematics librarian.
Touching on ideas of transcendence and foundations,
I pointed out our current difficulties reasoning about
“god” or the continuum hypothesis, two concepts I
view with an amount of logical similarity. Through
the subsequent evening the elaboration of the ideas
based themselves in the two original “mathematical”
poems of 1992 and took form in a not perfect but more
aesthetically “natural” poem Fivefolded Asymmetrical
Hand:

Why is the hand fivefolded asymmetrical
Apart from functionality?

Could our being created in our Father’s
image

And our intuition have a connection?

Why of course

For before mathematicians formalize
We intuit
Intuition gives us the base
And the sight

All of mathematics, as the base of our
scientific study

Formed in initial intuition, something all men
possess

Defines a consequence that all men are at least
Minimally unconscious mathematicians

If being in the Image
Then He is Obvious, Eternal, and far from

minimal
That Master then is Self-Dual, Platonic in

Nature, by eternity

The blessed line
In Thales, Pythagoras, Archimedes...
Through Descartes, Newton, Euler, Gauss...
...Lobachevskii, Bolyai, Abel, Galois...
...Cantor, Brouwer, Hilbert, Ramanujan,

Gödel...

Defines a sequential web
Of institutions, legacies, branches, and

 fields...the Mathematical Realm
With equations worth 10,000 pictures

The pictures worth 1000 words
The words of the language
The symbols of the words
Compactify
To one symbol
The Word

He spoke it
We hear it

But what do we do with it?

Why is the hand fivefolded yet asymmetrical
apart from functionality?

Knowing all of our philosophies
Shows us a clue as to why we are out of

balance

The chairs are extremely finite
The potential is rapidly growing
We are recognized as unimportant
But we know that is extremely inaccurate
That is our problem, our accuracy
But that is our greatest treasure, rigor
We are born, all of us with this paradox

How is it a problem?
Accuracy and details are the driving force

But for few, the princess and future kings
To tame this chaotic land
We must understand
Each of our roles

Each, but we are all created equal?

Not exactly so
In this group I see four

Few on top
Several forced to relate and interact
Many forced out, with nowhere to go
And a minimal, on the rise, with new light in

their eyes

That is to say the first specialize and innovate
The second specialize and integrate
The third specialize and disintegrate
The fourth appreciate and generalize
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As it stands this core, the corps of modern life
Upon which the whole of Gaia depends
Which has brought so much good
So much prosperity
Is collapsing deep below the ground

Grasping for hope
We are sliding down a slope
We are caving in
And the Earth Herself is following

But on the surface it appears we have never
had a better time

Do not be fooled
Observation, Liberation, and Acceptance

Our number Three is hurting the most
If they will change we can rebuild, and

restructure
Reconstruct, and redefine

But how can we help them change?
We must change
Collectively, we must all change

If this is true
What must we do?

Rather than disintegrating, the Three must
reintegrate

Looking back we have seen this works
However, we would still be out of balance,

why?
Because they specialize
If they generalize, the more they will see
The easier it will be to reintegrate, rejuvenate
But that is not enough

Yet when they try it will happen that their
appreciation changes

A new angle of appreciation
Sparks the fire in the rejuvenation

This fire spreads like wildfire
This forest is parched
But this flame will not kill it
Beautiful parks need it from time to time
Lightning strikes, it is very natural
Especially in this, the most beautiful of parks

known to man

But why is the hand fivefolded yet
asymmetrical

apart from functionality?

Because the Four are nothing without one
more

The Custodian of the Knowledge
The Holder of the Flame
The Keeper of the Faith

It is he, the vital thumb of this hand
That is responsible for the reintegration
The rejuvenation
The rebuilding
The restructuring
The reconstructing
And the redefining

With an attitude of kindness, courteousness,
and helpfulness

He is the Pilot on this sea
He has the map
He has the control
He believes
He knows
Ultimately, he commands
But never demands

But what happens when the map is not
complete?

Where does he go on a sea of uncharted
waters?

The current
But when storms begin to swell, we are often

blown off course
But then again in uncharted territory, there is
No course

So there must exist yet another, a Sixth
Unseen servant to the entire hand
He can help by taking note
Together they both, the Fifth and the Sixth
Form an inseparable pair
So when the Pilot is at the helm
This Steward can draw the map
So that when
The storm
Has all but faded

The Pilot sails our ship
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In peaceful waters
To discover the undiscoverable

But it takes all of us
Though we all are just one
A one that is Five
A complete unifying Whole
Our Sixth, hidden and unseen
Virtually forgotten, is absolutely crucial for our

construction

For the undiscovered to be discovered
We as the Collective Institution
Are crying for hope

The extension of hope is faith
Since the Pilot and the Steward have faith
And together they can complete the

 incompletable
Delivering the message, they see the need for

change
Therefore we know that the Collective

Institution needs faith
This we already have

Building faith, the experience of the scientific
enterprise

Only comes after hard won discovery
So to build the faith stronger
Our need is justified in wanting
Rejuvenation
Rebuilding
Reconstructing
And redefining
To achieve this, our precursor is reintegration

If we so choose
We can and will discover the undiscoverable
And complete the incompletable
All, only if we decide

Knowing all philosophies
We have therefore
Stumbled upon a new ideal type
A type classification
A solution to our problems
A rectification of our differences
A healthier Institution

That type is the radically asymmetrical

pentagon
The radical, so discovered
Was an unfortunate occurrence for one
But a tree of infinite fruit for the multitude

He, floating on this ship
Expelled from school
And further sentenced to death at sea
Had a vision

He saw  2

I have claimed this poetic interpretation
Continuous
Associated
Transformation
                            +.014213562...

His school had as badge
The symbol of Health
To restore the Health that radical must be

reintegrated
Into that badge

Yes that is a divine plan
A radically asymmetrical pentagon

Now the members of our school must
recognize

As we do
The types of apprentices, the students that

 have enrolled
Being good teachers we recognize who is who
And steer them if we can
But only upon the acceptance of all types
Can they, those drowning at sea be helped

Therefore we define our type class:

Custodian of the Knowledge
The Laboring Weavers
The Laboring Administrators
The Inspirational Movers
The Inspirational Laborers

As respectively, the Fifth, Third, Second, First,
 and Fourth

Of the Four,

Individually, each is dependent on the other
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three
And stylistically they split into pairs
All owing the deepest of gratitude to the

Custodian

For this five folded asymmetrical hand
To those that know it as an image of the

Father
Has actually something very unique
A metasymmetry

For those with this knowledge
They have no doubt
There exists God
In fact there exists,

God-137:
sometimes one is some
unless some is none
for one to be none
just can’t be done
yet sometimes some is square
and sometimes some is cube
and someone is three

The paradox we are amidst is most easily expressed
by the acknowledgement that the mathematical dis-
cipline is making great internal strides in development
and it is facing serious difficulty structurally as an
entity. Thus, in the model of real world interpretation
with respect to society at large, these two aspects are
precisely opposite. So we understand this as M ≡ m∧ s
where s ≡ −m . Hence, this is a fundamental contradic-
tion. Metaphorically we may think of us as just stretch-
ing a muscle.

Our first reconciliation is to view the three philoso-
phies, Platonism, intuitionism, and formalism, as de-
fining a metaphilosphy, under balance. As mathema-
ticians at this point in history, we have accumulated
our Body of Mathematics. We see the beauty and ne-
cessity, but the unconscious mathematicians, be it stu-
dent or layman, may not see the beauty we do. Yet
they may be literary scholars, physicians, or musicians
having some sense of a Beauty. Is this Beauty the same?
Is it unique in origin but manifest in expression? For
mathematicians and physicists alike, it does exist, pla-
tonic and real. This is the core, a self-dual Nature, with
expression in number, in mathematics.

Our language is then nothing more than a sentence, a

word, a symbol, finite in representation. We have used
it to talk of the continuous and the discrete. Our physi-
cists with the gift of sight have been leading in one
direction and our mathematicians with the gift of sight
in another; they are our dedicated professors. Our
community interacts with society at large by admin-
istering, by repetition of ideas, application. The bril-
liant students following sound advice develop and
drive home existing results, speciality is the notion.
Our results become documented in literature that
quickly becomes obscure. The traditional types, pure
and applied, are failing to describe our deeper struc-
ture, and the students of today are faced with an in-
nate binary option of intra- or extra-applied math-
ematics.

The structure that we see developing is simply one of
pure academia, industrial application, or unemploy-
ment, the equivalent of nonmathematics. This is not a
new observation. We have been asking for a solution.

The conclusion that we may immediately draw is that
if we have more of our specialized mathematicians
that are nontraditional, by generalizing and collec-
tively working, an additional type is defined. From a
practical standpoint, this type needs its own internal
structure. Clearly, its definition is one of augmenta-
tion.

It is this rejuvenating type of mathematician that de-
fines itself as an integral part of a whole, a whole that
is under construction. Collectively, with an attitude
of redefinition but a negation of that stance, a sup-
port for our contradictory base is obtained. We pro-
ceed in this direction with the aim of communication.

Because of the inherent contradiction that is at the
center of the communication we are consequently
seeking to define new ways to effect the communica-
tion, that is we are seeking and defining new math-
ematics, and this is the conclusion so sought.
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ABSTRACT
Mathematicians and scientists have for a long time
tried to understand why mathematics, a subjective
creation of the human intellect, is so effective in the
sciences, which study the objective, physical world.
Satisfactory reasons have not been found because
there has not been a comprehensive understanding
of the relationship between the subjective and the
objective aspects of life. In this paper we will see that
Maharishi’s Vedic Science, by explaining the link be-
tween the subjective realm where mathematics is lo-
cated and the objective world that science examines,
can resolve this problem in a natural way.

INTRODUCTION
Mathematics is fundamental to all areas of science and
technology. The language of mathematics has been
used since antiquity to express our knowledge of the
physical world, to derive new knowledge from old,
and to predict the behavior of physical systems. For
example, Newton’s Second Law of Motion says that a
force exerted on an object is the product of its mass
times the resulting acceleration, F = ma. Newton used
this law, together with his newly developed calculus
and the law of gravitation, to derive the elliptical shape
of the planetary orbits. Today, mathematical analysis
similar to Newton’s has placed a man on the moon.

With such dramatic successes, it is not surprising that
many people, particularly those who have been at the
forefront of developing new applications of math-
ematics, have wondered why mathematics has proven
to be so practical and why the laws of nature are so
effectively expressed by mathematical formulas.
Mathematics is theoretical and completely abstract,
created in moments of inspiration and afterward veri-
fied by the intellect. Science, on the other hand, seeks
to accurately and objectively describe and predict how
the physical world around us behaves. Nevertheless,
these two approaches to knowledge have been inti-

mately linked since we began observing and think-
ing about the world. The basis for understanding the
role of mathematics in science must depend on an un-
derstanding of how the subjective world of the mind
and intellect, the source of mathematics, is connected
to the world of matter, forces, and energy studied by
science. This connection can be understood through
Maharishi’s Vedic Science, which gives a comprehen-
sive explanation of the nature of consciousness and
its manifestations in the physical world and how the
subjective world of consciousness and the mind is
connected to the objective physical world around us.
Because Maharishi’s Vedic Science is so comprehen-
sive, an analysis of the nature of mathematics accord-
ing to its principles can provide the link between the
subjective and the objective aspects of knowledge
necessary to properly explain the role mathematics
plays in the sciences.

According to Maharishi’s Vedic Science, the mind and
the physical world are not two separate entities, but
two different aspects of one reality. The mind is sub-
tler, more abstract, and more intimate than the physi-
cal world, but both exist simultaneously and insepa-
rably. As we will discuss in later sections, Maharishi
sees both the mind and the physical world as having
their source in the self-interacting dynamics of pure
consciousness, which he identifies as the total poten-
tial of natural law. Both mathematics and science are
studying those aspects of natural law which are quan-
tifiable and exact, although using different method-
ologies. Thus, the effectiveness of mathematics in the
sciences is no surprise but is, in fact, natural and ex-
pected.

Moreover, this understanding of Maharishi’s Vedic
Science shows us that to make mathematics even more
powerful, effective, and complete, mathematicians
must go even deeper into their subjective nature and
connect themselves to their source in consciousness.

The Natural Role of Mathematics in the Sciences:
How Maharishi’s Vedic Science Answers the Question of the
Unreasonable Effectiveness of Mathematics in the Sciences

Catherine A. Gorini
Department of Mathematics

Maharishi University of Management
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The same can be said for scientists, who can make sci-
ence more productive by linking the objective, natu-
ral world that they study to the same source in con-
sciousness.

In this paper, we will first look at mathematics and
the question of its effectiveness in the sciences as it
has been posed by the physicist Eugene Wigner and
the mathematician Richard Hamming. This will be
followed by a discussion of points from Maharishi’s
Vedic Science relevant to this question, a resolution of
the question based on these ideas, and a look at the
implications of this resolution.

THE QUESTION: THE ROLE OF MATHEMATICS IN THE
SCIENCES
Throughout time, mathematics has always been as-
sociated with its applications, and from these appli-
cations mathematicians have derived new impetus
and new directions. For example, the Sulba Sutras,
one of the earliest records of mathematics from the
Vedic civilization, includes geometric constructions
that were used to describe the procedure for the con-
struction of ceremonial platforms (see Henderson, to
appear, and Price, to appear). The Rhind Papyrus of
the Egyptians gives computational techniques along-
side sample problems for applying the techniques to
everyday situations such as computing the size of a
barn used to store grain. Babylonian clay tablets give
mathematical tables for astronomical predictions as
well as for business transactions (van der Waerden,
1971).

With the Greeks, however, the discipline of pure math-
ematics was separated from its applications. As seen
in Euclid’s Elements, mathematicians had become
concerned not with applied problems, but rather with
the logical foundations (or postulates) of geometry
and the rigorous, systematic derivation of new results
from the postulates and previously established results.
Mathematical proof became the central feature of the
research, communication, and exposition of math-
ematics.

As mathematics progressed from the classical study
of geometry and calculus to the more abstract areas
of group theory, non-Euclidean geometry, and topol-
ogy, its ancient connection to applications weakened
still further. In the nineteenth and twentieth centu-
ries, mathematics became replete with concepts that,

on the surface, appear to be unrelated to science and
the physical world. For example, in certain abstract
algebraic systems, the equation 2 + 4 = 1 can be cor-
rect. In hyperbolic geometry, one can draw many dif-
ferent lines through a point parallel to another line,
something strictly forbidden in Euclidean geometry.
Topologists and analysts regularly study infinite-di-
mensional spaces, even though the space around us
is only three-dimensional. As mathematicians pursued
these and other more abstract ideas for their own in-
trinsic interest and without regard for possible appli-
cations, a large body of seemingly “useless” math-
ematics was developed. This mathematics neverthe-
less proved to be beautiful and profound. It provided
new insights into applied mathematics and became
the core of mathematical research. Some purely theo-
retical mathematicians, notably G. H. Hardy, even
expressed disdain for concerns with applications and
were proud that their work could have no applica-
tions. For Hardy (1976), the value of mathematics is
purely subjective, purely in the realm of ideas:

A mathematician, like a painter or a poet, is a
maker of patterns. If his patterns are more per-
manent than theirs, it is because they are made
with ideas...A mathematician...has no material
to work with but ideas, and so his patterns are
likely to last longer, since ideas wear less with
time than words...The mathematician’s pat-
terns, like the painter’s or the poet’s, must be
beautiful; the ideas, like the colours or the
words, must fit together in a harmonious way.
Beauty is the first test: there is no permanent
place in the world for ugly mathematics (pp.
84-85).

Hardy sees mathematics as essentially disconnected
from the world of applications. In discussing the math-
ematical significance of the proofs of the infinitude of
the number of primes and the irrationality of 2 ,
Hardy (1976) says,

There is no doubt at all, then, of the ‘serious-
ness’ of either theorem. It is therefore the bet-
ter worth remarking that neither theorem has
the slightest ‘practical’ importance. In practi-
cal applications we are concerned only with
comparatively small numbers; only stellar as-
tronomy and atomic physics deal with ‘large’
numbers, and they have very little more prac-
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tical importance, as yet, than the most abstract
pure mathematics. I do not know what is the
highest degree of accuracy which is ever use-
ful to an engineer—we shall be very generous
if we say ten significant figures. Then
3.14159265 (the value of π to eight places of
decimals) is the ratio

314159265
1000000000

of two numbers of ten digits. The number of
primes less than 1,000,000,000 is 50,847,478:
that is enough for an engineer, and he can be
perfectly happy without the rest (pp. 101-102).

He goes on to claim that what he considers “real math-
ematics,” the purest, most abstract mathematics, is
without applications (Hardy, 1976):

There is one comforting conclusion which is
easy for a real mathematician. Real mathemat-
ics has no effects on war. No one has yet dis-
covered any warlike purpose to be served by
the theory of numbers or relativity, and it
seems very unlikely that anyone will do so for
many years (p. 140)... I have never done any-
thing ‘useful’. No discovery of mine has made,
or is likely to make, directly or indirectly, for
good or ill, the least difference to the amenity
of the world (p. 150).

These deep-seated ideas notwithstanding, history had
a surprising twist in store for mathematicians. At the
beginning of the twentieth century, developments in
quantum physics and relativity theory required the
most abstract theories of algebra, analysis, and geom-
etry. Furthermore, computer technology has required
precisely the mathematics that Hardy felt to be im-
practical. In fact, one multi-million dollar company,
RSA Cryptosystems, specializes in finding for its cus-
tomers prime numbers 100 to 200 digits long, primes
which far exceed the numbers considered by Hardy
to be “enough.” This mathematics has even proven to
be crucial to the military; for instance, extremely large
prime numbers are used daily in securing military
communications.

As the abstract mathematics that had seemed so irrel-
evant to the pragmatic world began to have exciting
and unexpected applications, it was inevitable that
scientists would search for an explanation. One such

individual was Eugene Wigner. Noted for his deep
insights into mathematical physics, he gave fresh in-
sight into the usefulness of mathematics in his now
classic paper, “The Unreasonable Effectiveness of
Mathematics in the Natural Sciences,” first published
in 1960 (Wigner, 1967).

Wigner begins his paper with the belief, common to
all those familiar with mathematics, that mathemati-
cal concepts have applicability far beyond the con-
text in which they were originally developed. Based
on his experience, he says “it is important to point
out that the mathematical formulation of the
physicist’s often crude experience leads in an uncanny
number of cases to an amazingly accurate description
of a large class of phenomena” (Wigner, 1967, p. 230).
He uses the law of gravitation, originally used to
model freely falling bodies on the surface of the earth,
as an example. This fundamental law was extended
on the basis of what Wigner terms “very scanty ob-
servations” (Wigner, 1967, p. 231) to describe the mo-
tion of the planets and “has proved accurate beyond
all reasonable expectations.” Another oft-cited ex-
ample is Maxwell’s equations, derived to model fa-
miliar electrical phenomena; additional roots of the
equations describe radio waves, which were later
found to exist. Wigner sums up his argument by say-
ing that “the enormous usefulness of mathematics in
the natural sciences is something bordering on the
mysterious and that there is no rational explanation
for it” (Wigner, 1967, p. 233). He concludes his paper
with the same question he began with:

The miracle of the appropriateness of the lan-
guage of mathematics for the formulation of
the laws of physics is a wonderful gift which
we neither understand nor deserve. We should
be grateful for it and hope that it will remain
valid in future research and that it will extend,
for better or for worse, to our pleasure, even
though perhaps also to our bafflement, to wide
branches of learning (p. 237).

Wigner has drawn many others into this discussion
on the applicability of mathematics. R. W. Hamming
repeats Wigner’s observation about its usefulness:
“constantly what we predict from the manipulation
of mathematical symbols is realized in the real
world...The enormous usefulness of the same pieces
of mathematics in widely different situations has no
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rational explanation (as yet)” (Hamming, 1980, p. 82).
Hamming carefully examines his own experiences of
using mathematics, his understanding of the origins
and history of mathematics, the nature of mathemat-
ics, mathematical discovery and proof, the founda-
tional crisis of mathematics, and the nature of science
and scientific laws, and then finally proposes some
explanations. Nevertheless, he is unsatisfied with his
reasoning and must, like Wigner, leave the question
of the role of mathematics unanswered:

From all this I am forced to conclude both that
mathematics is unreasonably effective and that
all of the explanations I have given when
added together simply are not enough to ex-
plain what I set out to account for. I think that
we—meaning you,
mainly—must con-
tinue to try to ex-
plain why the logi-
cal side of science—
meaning mathemat-
ics, mainly—is the
proper tool for ex-
ploring the universe as we perceive it at
present. I suspect that my explanations are
hardly as good as those of the early Greeks,
who said for the material side of the question
that the nature of the universe is earth, fire,
water, and air. The logical side of the nature of
the universe requires further exploration (p.
90).

Thus, we are left with the question of why mathemat-
ics, which is developed and verified by mathemati-
cians according to human logic and reasoning, is so
perfect a tool for investigating the physical world
around us.

MAHARISHI’S VEDIC SCIENCE
This question of the effectiveness of mathematics can
be answered by considering the Vedic knowledge
brought to light by Maharishi Mahesh Yogi in his Vedic
Science. Everywhere we look in nature, whether as a
scientist or not, we see orderliness and growth. Natu-
ral laws, still not yet understood by scientists, govern
the universe of billions and billions of stars moving
throughout space in perfect harmony. The delicate
balance of the environment on earth is the result of
thousands of species living together in an intricately

organized way. Maharishi points out that observations
such as these lead us to recognize that intelligence is
inseparable from life.

We see things around us exist. We also see that
things around us change and evolve. We also
see that there is order in evolution—an apple
seed will only grow into an apple tree, etc.
Thus it is obvious that existence is endowed
with the quality of intelligence—existence
breathes life by virtue of intelligence
(Maharishi Mahesh Yogi, 1994, pp. 57-58).

Maharishi (1994) goes on to locate consciousness at
the basis of life, as fundamental as existence and in-
telligence, “Consciousness is the existence of every-

thing, and consciousness is
the intelligence of every-
thing” (p. 58). Science and
mathematics are intimately
linked to questions of exist-
ence and intelligence, so
knowledge of the field of
consciousness is important

for the question of the role of mathematics in science.
To give experiential knowledge of the total range of
consciousness, Maharishi has made available the Tran-
scendental Meditation technique, a simple, natural,
effortless technique:

During this technique, the individual’s aware-
ness settles down and experiences a unique
state of restful alertness: as the body becomes
deeply relaxed, the mind transcends all men-
tal activity to experience the simplest form of
human awareness—Transcendental Con-
sciousness—where consciousness is open to
itself. This is the self-referral state of conscious-
ness (Maharishi Mahesh Yogi, 1994, p. 260).

In the pure self-referral state of transcendental con-
sciousness, consciousness is conscious of itself, and
the subject of knowledge is the same as the object of
knowledge. Since consciousness is the link between
itself as subject and as object, it is also the process of
knowing. Maharishi (1986) describes the importance
of this fundamental relationship, “This state of pure
knowledge, where knower, known, and knowledge
are in the self-referral state, is that all powerful, im-
mortal, infinite dynamism at the unmanifest basis of

❝Science and mathematics are intimately linked to
questions of existence and intelligence...
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creation” (p. 27). In particular, this dynamism of con-
sciousness is the source of subjective experience:
“When consciousness is flowing out into the field of
thoughts and activity, it identifies itself with many
things, and this is how experience takes place”
(Maharishi, 1986, p. 25). Furthermore, since knowl-
edge has organizing power, Maharishi concludes that
the field of pure consciousness is also a field of abso-
lute organizing power and from there the laws of na-
ture emerge (Maharishi Mahesh Yogi, 1980):

Knowledge has organizing power and there-
fore in the absolute structure of knowledge,
in the state of the absolute observer-observed
relationship, we have absolute organizing
power. Once we have the field of absolute or-
ganizing power in this state of pure transcen-
dental awareness, the seat of absolute knowl-
edge, we have the source of all the streams of
organizing power in nature. All the laws gov-
erning different fields of excitation in nature,
all the innumerable laws known to all the sci-
ences, have their common source in this field
of absolute organizing power (pp. 74-75).

In this way, we see that the self-interacting dynamics
of pure consciousness are at once the source of sub-
jective experience and of the laws of nature govern-
ing all aspects of the world around us. The principles
of intelligence and orderliness inherent within con-
sciousness therefore govern all the expressions of con-
sciousness—and, as Maharishi explains, that is all that
there is.

All speech, action, and behaviour are fluctua-
tions of consciousness. All life emerges from
and is sustained in consciousness. The whole
universe is the expression of consciousness.
The reality of the universe is one unbounded
ocean of consciousness in motion (Maharishi
Mahesh Yogi, 1994, pp. 67-68).

Since every part of life is sequentially unfolded from
its source in consciousness, the full range of life is from
the unbounded field of pure consciousness, the home
of all the laws of nature, to the subjective realm of the
mind where mathematics is located to the objective
physical world around us. As Maharishi (1980) puts
it:

All the relationships and activity in the differ-

ent parts and structures in the universe are
nothing other than expressions of natural laws,
and we have discussed that the natural laws
themselves are the expressions of conscious-
ness. The expressions of consciousness in their
turn are the expressions of the non-expressed,
non-changing value of pure consciousness (p.
78).

Furthermore, Maharishi goes on to explain that one
whose consciousness is fully developed is able to per-
ceive at an extremely refined level the sound of the
eternal process of the transformation of the singular-
ity of consciousness into the diversity of the physical
world and the transformation of the diversity of the
world into the singularity of consciousness. And it is
this sequence of sound and silence in consciousness
that is the Veda:

All the material and non-material expressions
of creation have specific frequencies (sounds).
These fundamental frequencies, non-material
values, are the sounds of the Vedic Literature:
the intellect, the hum of the intellect, and with
the hum, the flow and stop of it in sequence.
The expression of melody, forming the whole
Vedic Literature, gives us the entire process of
the basic mechanics of transformation within
the self-referral state of consciousness
(Maharishi, 1994, p. 66).

Since all the fundamental frequencies of creation are
lively in the Veda, Maharishi refers to the Veda as the
Constitution of the Universe, “The structure of this
level of self-referral pure intelligence is the structure
of Veda, which is the very well structured Constitu-
tion of the Universe” (Maharishi, 1994, pp. 208-209).
Thus, the laws that govern all manifest and
unmanifest aspects of creation are structured within
the consciousness of each individual.

With this explanation of the fundamental role of con-
sciousness and the intimate connection of conscious-
ness and the physical universe, we are ready to an-
swer the question about the connection of mathemat-
ics, a subjective creation of the human mind, with the
structure of the objective physical universe around us.

RESOLUTION OF THE QUESTION
We now consider how the description of conscious-
ness as the source of life in Maharishi’s Vedic Science
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resolves the question that Wigner and Hamming have
set before us. The question is, simply put: why is math-
ematics, which is developed as a subjective discipline,
so effective in its applied forms in the natural sciences,
which describe nature in a purely objective manner.
First, we clarify what is meant by mathematics so that
we can more easily put it into the framework of
Maharishi’s Vedic Science.

Mathematics is the search
for and study of abstract
and precise patterns of or-
derliness in number, shape,
and form. The objects stud-
ied by mathematics—num-
bers, shapes, sets, patterns,
relationships, and so on—
do not have any real physical existence. Rather, as
pointed out by Hardy, they exist as ideas in the aware-
ness of the mathematician, and they are therefore part
of the subjective realm of life. Accordingly, new math-
ematical ideas are discovered on the subjective level
by intuition, insight, and creativity, and mathematics
is considered to be an art by those who practice it.
The results of mathematics are expressed in very pre-
cise language as formulas and theorems and are veri-
fied and proved according to strict standards of logic,
so mathematics has the reliability and objectivity as-
sociated with science, but it is nevertheless a subjec-
tive study.

Mathematics investigates the structure of the laws
governing the subjective values and functioning of
intelligence and consciousness; it quantifies subjec-
tive and abstract patterns in a precise way, and it of-
fers an exact and systematic description of purely sub-
jective phenomena. Science, on the other hand, inves-
tigates the underlying structure of objective phenom-
ena. Wigner and Hamming made the seemingly ob-
vious assumption that mathematics and science were
therefore studying two completely separate worlds.
However, in Maharishi’s Vedic Science, we under-
stand that these two worlds are both the expressions
of the same underlying field of consciousness and are
both governed by the same natural laws.

Thus, mathematicians and scientists are both study-
ing the same laws of nature. Furthermore, they are
both looking for those properties of natural law that
are general enough to capture the underlying struc-

ture of many different situations, as for example in
the way the law of gravity applies to objects on earth,
planets orbiting the sun, and galaxies in the heavens
or in the way the quadratic formula can solve all pos-
sible quadratic equations. Mathematicians and scien-
tists are both looking for exact, concise, and system-
atic representations of their discoveries. Both demand

that knowledge be
nonvariable and verifiable.

There are differences be-
tween mathematics and sci-
ence, however, and these
differences have given rise
to the question of the effec-
tiveness of mathematics in
science. Mathematicians, by

going deep into the structure of their own intellect,
are studying how the laws of nature govern subjec-
tive aspects of creation, and they verify their discov-
eries by the intellect. Scientists, by looking out at the
world around them, are studying how the laws of
nature govern objective aspects of creation, and they
verify their discoveries by experimentation. The un-
derstanding given by Maharishi’s Vedic Science al-
lows us to reconcile these differences. Although from
two different vantage points, mathematicians and sci-
entists are both looking at the same phenomena, the
same “unbounded ocean of consciousness in motion,”
so the patterns and structures which the mathemati-
cian sees on an abstract level are exactly those that
the scientist studies on the physical level. There must
be not only parallels in what they find, there must be
perfect coincidence—and this is exactly what so
puzzled Wigner and Hamming. Maharishi (1996) ex-
plains this as follows:

This universality of applications can be traced
back to the fact that all aspects of Nature and
areas of life are governed by the same prin-
ciples of order and intelligence that have been
discovered subjectively by mathematicians by
referring back to the principles of intelligence
in their own consciousness. Great scientists
like Einstein have marveled in the past about
this profound relation between the subjective
and objective aspects in creation, a relation
which has its foundation in the identity of the
Unified Field of Natural Law and the field of
pure self-referral consciousness displaying the

❝...in Maharishi’s Vedic Science, we understand
that these two worlds are both the expressions of
the same underlying field of consciousness and
are both governed by the same natural laws.
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universal principles of intelligence and order
(pp. 304-305).

Working on the level of the intellect where under-
standing about natural law can be expressed in con-
cise and exact mathematical formulations, the math-
ematician is able to provide powerful and compre-
hensive tools for the scientist. Abstract mathematical
formulations are able to capture in a simple way the
understanding of the scientist, and scientific laws are
generally expressed as mathematical equations. Since
the principles of order and intelligence expressed in
the mathematical model of a physical system are the
same as the principles governing the behavior of the
system, we see that the computational consequences
of a mathematical model of a physical system can ex-
actly describe or predict the evolving conditions of
that system. The great speed and efficiency with which
the mind can derive predictions from a mathematical
model give science great power. For example, in a few
minutes, one can set up and solve the equations de-
scribing a trajectory that can take a comet months or
years to traverse.

Finally, then, in Maharishi’s Vedic Science, we are able
to find a resolution to the question of the role of math-
ematics in the sciences. The same laws of nature, with
their source in consciousness, are responsible for both
the subjective and objective aspects of creation. The
mathematician intellectually studies the subjective
side of creation; the intimacy of the intellect with the
subjective side of creation gives mathematics its pro-
fundity, elegance, and naturalness. The scientist in-
tellectually studies the objective side of creation. The
subjective language and tools of the mathematician
provide the precise and appropriate intellectual struc-
tures for the scientist to comprehend the physical
world.

CONCLUSION
This explanation of the role of mathematics based on
the principles of Maharishi’s Vedic Science allows us
to come to a number of conclusions and to suggest
some new directions. Firstly, because mathematicians
are studying the same principles of order and intelli-
gence that are studied by science, but in a subjective
and abstract way, mathematics is the natural language
for scientists to record their understanding of the
physical world, and the methodology of mathemat-
ics provides the natural means for predicting the be-

havior of the physical world. On the other hand, new
discoveries and problems arising in the sciences are
naturally a resource for the mathematician looking for
new ideas and directions.

Next, we see the value for mathematicians to pursue
pure mathematics without consideration of its appli-
cations. There has been concern in the discipline that
by following their individual aesthetics and judg-
ments, mathematicians might go off in directions that
are unproductive. But we see here that it is precisely
by following their own tastes and preferences that
mathematicians are able to uncover deeper and deeper
principles governing the structure of subtler and sub-
tler values of natural law. According to Maharishi
(1996), “These principles describe the dynamics of
Cosmic Intelligence—the Unified Field of Natural
Law—as it functions within itself, and are directly
cognized on the level of the consciousness of the math-
ematician” (p. 302). Since these principles are also re-
sponsible for the physical world, they must have some
reflection in the physical world, and whether they
have been located now or not, eventually they will
be. As Lobachevsky, a founder of non-Euclidean ge-
ometry, said, “There is no branch of mathematics,
however abstract, that will not eventually be applied
to the phenomena of the real world” (Lobachevsky,
1984).

Finally, this understanding of the role mathematics
plays in the sciences shows us that in order to have a
complete science, we must have complete mathemati-
cal knowledge, and in order to have complete math-
ematical knowledge, we must have complete knowl-
edge of all levels of life. This means that mathemati-
cians must have complete knowledge of the structure
of pure knowledge and complete knowledge of the
structure and functioning of consciousness. To be a
good mathematician, one must develop one’s con-
sciousness fully—from the finest level to the grossest
level. Maharishi Mahesh Yogi has provided theoreti-
cal knowledge and practical techniques, including the
Transcendental Meditation and TM-Sidhi program, for
this purpose. In his Vedic Mathematics, Maharishi has
gone on to show how this knowledge of conscious-
ness can be applied to fulfill the goals of modern math-
ematics. Maharishi’s Vedic Mathematics is the math-
ematics of consciousness itself.

Vedic Mathematics is the mathematics of the
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absolute, eternal, unbounded, which deals
with the absolute reality, self-referral singular-
ity—the total potential of infinite diversity at
the unmanifest basis of creation, the transcen-
dental level of consciousness (Maharishi
Mahesh Yogi, 1996, pp. 366-367).

With the comprehensive knowledge of Maharishi’s
Vedic Mathematics (see also Price, 1997), mathemat-
ics will be able to rise to its full potential and guide
life in a more holistic, mistake-free, and evolutionary
way.

REFERENCES
Hamming, R.W. (1980). The Unreasonable Effectiveness of Math-

ematics. American Mathematical Monthly, 87 81-90.
Hardy, G.H. (1976). A Mathematician’s Apology. Cambridge: Cam-

bridge University Press. (first published in 1940).
Henderson, D. (to appear). The Geometry of the Sulba Sutras. In

C.A. Gorini (Ed.), Geometry at Work.
Lobachevsky, N.I. (1984) Quoted in the American Mathematical

Monthly, 91 151.

To Myself
Abba Kovner
(1918-1987)

one of Israel's leading poets

Mathematicians take a huge area like a whole world
and divide it into smaller areas, identical,
smaller than the eye can see.
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the space surrounding me, I wanted to manage
something smaller
like a cell, dividing itself
without fission. Not looking for answers
to every question. Only to discover what is
nagging me. Still trying: forty years
and more. Why did I want to get rid
of that hidden fear?
After all, if I fall dead in the empty space
it's not the mathematicians who'll be surprised.
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INTRODUCTION
There is unanimous agreement among mathematics
educators (e.g., Davis 1986; Lambdin 1993; NCTM
1989) including teachers that a prime objective of
mathematics teaching is to promote understanding of
the subject.  According to the National Council of
Teachers of Mathematics [NCTM] , Teachers must help
every student develop conceptual and procedural
understandings... “in various aspects of mathematics
(1991, 21).  Unfortunately, however, there does not ex-
ist the same degree of unanimity with respect to what
is meant by ‘understanding mathematics.’”  Accord-
ing to Tom Romberg (Kieran 1994, 590), “There isn’t a
common definition of understanding.”  Perceptions
of mathematical understanding vary greatly and
could range from a simple recall of mathematical facts
to an evaluation of a mathematical masterpiece (for
example, an original proof).

DEFINITIONS
In an in-depth discussion of mathematical learning
and understanding, Kieran pointed out that percep-
tions of mathematical understanding have changed
over the years.  For example, in the ’70s understand-
ing was included in learning and was equated with
“knowing, applying, and analyzing” (1994, 593).  She
concluded that understanding is ongoing, not an “all
or nothing” phenomenon, but that “some level of un-
derstanding is involved in all of mathematical learn-
ing” (1994, 598).

Bruner says, “To understand something well is to
sense wherein it is simple, wherein it is an instance of
a simpler, general case...In the main, however, to un-
derstand something is to sense the simpler structure
that underlies a range of instances, and this is notably
true in mathematics” (1995, 333).  Skemp (1978) dis-
cusses “relational” and “instrumental” understand-
ing and their differences.  He describes the former as
“knowing what to do and why,” and the latter as

“rules without reasons.”

According to NCTM, understanding concepts “in-
volves more than mere recall of definitions and rec-
ognition of common examples...” (1989, 223).  It goes
on to say that evidence of students’ understanding of
a concept is their ability to apply that concept to novel
situations.  NCTM  agrees with Kieran (1994) that un-
derstanding is an ongoing process.  It says “The de-
velopment of conceptual understanding is a long-
term process; understanding is developed, elaborated,
deepened, and made more nearly complete over time”
(1989, 69).

Cangelosi differentiates between “literal” and “inter-
pretive” understanding.  Students demonstrate literal
understanding if “they can accurately translate” the
“implicit meaning” of a statement.  They demonstrate
interpretive understanding if “they can infer implicit
meaning” of a statement and can give illustrations to
elucidate what is contained in the statement (1992, 98).

Cramer and Karnowski define understanding in
mathematics as “the ability to represent a mathemati-
cal idea in multiple ways and to make connections
among different representations” (1995, 333).

INDICATORS OF UNDERSTANDING
In this paper I illustrate with examples some indica-
tors of mathematical understanding and then suggest
how teachers can facilitate understanding in math-
ematics among their students.

To understand mathematics means that the learner is
able to:

1. Recognize relationships among concepts and
within a concept (NCTM 1989); for example, the
relationship between addition and subtraction, or
between the logarithmic and exponential func-
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tions; so that if the learner is given a-c=b, he/she
must be able to conclude that a=b+c; and vice
versa.  Similarly, the learner should recognize that
logb a = c⇔a = bc ; and that log (ab)⇔log a+ log b.

2. Represent a concept in different ways, identify the
connections among these representations, and
transform and translate easily from one represen-
tation to another (NCTM 1989; Huinker 1993).  For
example, the learner
must be able to trans-
form 3x + 2y = 7 into y =

−
3
2

x +
7
2

.  The learner

must also be able to
translate from a con-
crete representation to a
symbolic or other repre-
sentation, and vice versa; and recognize that the
slope of a line, for example, can be represented
trigonometrically as the tangent of an angle, geo-
metrically as the ratio “rise over run,” and as a
rate of change, all of which are related.

3. Recognize the underlying structure of the math-
ematics embedded in a situation.  For example,
the learner must recognize that log y = log a + n
log x is of the same form as Y = A + nx;

2
1
h






+ 3

r

5





= 7  is the same form as 2x + 3y = 7.

Also, if m × n =1, then m is the multiplicative in-
verse of n, and n is the multiplicative inverse of
m.  More generally, the learner must recognize that

a⊗ b = e ⇔ a−1 = b  and b−1 = a  where e is the iden-
tity element with respect to the operation ⊗ .

4. Communicate mathematics orally and in writing;
for example, students must be able to explain their
solutions to problems to the class or to the teacher.
Talking about mathematics helps students to
clarify their thoughts and improve their under-
standing (Buschman 1995; Garofalo and Mtetwa
1990; Helton 1995; NCTM 1989; Owen 1995).

5. Apply mathematics to real-life and other situations
(NCTM 1989); it does not make much sense to be
able to enunciate the Pythagorean theorem, for
example, but not be able to use it to answer a ques-
tion in geometry.

6. Generate examples and nonexamples of concepts
(NCTM 1989); for example, the learner must be
able to recognize that a square is a rectangle but a
rectangle is not a square; a rectangle is a paral-
lelogram but a parallelogram is not a rectangle;
and so on.

7. Monitor and control his/her thought processes so
that he/she can recognize
when something is not cor-
rect and take the appropri-
ate steps.

8. Recognize that a result
is meaningful and makes
sense; for example, the
learner must realize that an
answer such as “eight and

five-sixths buses” borders on absurdity.  In other
words, the learner must interpret the answer to a
problem within its context.

RECOMMENDATIONS
1. Use multiple representations in teaching, includ-

ing physical models and manipulatives.  The
learner must be provided with experiences to rec-
ognize concepts in different situations and con-
texts and from different perspectives.  For ex-
ample, a triangle should be represented in differ-
ent sizes and orientations.

2. Teach relationships, for example rules, in both di-
rections; the learner must become aware of the
reversibilty of relationships; for example, given log
a + log b, the learner must be able to state that this
is equal to log (ab).

3. Provide opportunities for students to write and
talk about mathematics.  Some activities could be
journal writing (students may include what they
learned in a lesson), interviews, and peer tutor-
ing.

4. Provide opportunities for students to solve a wide
range of problems individually and in groups so
that they can apply their knowledge, skills, and
concepts to familiar and unfamiliar situations.

5. Emphasize relational understanding rather than

❝Recognize that a result is meaningful and makes
sense; the learner must realize that an answer
such as “eight and five-sixths buses” borders on
absurdity.
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instrumental understanding.

6. Provide students with experiences in self-assess-
ment to help them develop self-correcting and self-
monitoring abilities.
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The guided inquiry method of teaching promotes stu-
dents’ active participation in the learning process. It
increases students’ ability to analyze, synthesize,
evaluate, and relate the intended learning concepts
to multiple disciplines and everyday life, thereby
making the material more relevant to students. In this
paper, we introduce the guided inquiry method in
teaching mathematical concepts. This method is used
here to teach the golden ratio and the golden rectangle
concepts.

INTRODUCTION AND RATIONALE
In order to capture the students’ attention and inter-
est, a teacher must actively engage the students in
discovery activities that demonstrate the mathemati-
cal concept. After students have had opportunities to
explore real life phenomena surrounding the concept
and to understand the concept’s correlation with other
disciplines, the teacher provides students with a for-
mal presentation of the concept. Finally, discussion of
its application in multiple environments, including
professional and non-professional settings, reinforces
the understanding of the concept.

Although there are many proposed forms of inquiry
development (e.g. Dewey, 1910; Schwab, 1962), all
contain basic similarities that pertain to teachers and
students alike. In Suchnian’s method (1966), which
parallels other proposed methods, the steps in the
process of inquiry are to (1) present discrepant events
or specific problematic situations, (2) encourage ob-
servation for developing a statement of research ob-
jectives, (3) ask students for observations and expla-
nations, (4) encourage the testing of those hypotheses,
(5) develop tentative conclusions and generalizations,
and (6) debrief the process. In order for this process
to work, the teacher must create an appropriate class-
room climate where asking questions and hypothesiz-
ing about the given problem are encouraged. Teach-
ers must also create an environment where the stu-
dents do not just passively take notes and/or regur-

gitate factual information, but where they actively par-
ticipate in the learning process.

There are many mathematical concepts that lend
themselves to the guided inquiry method. First, we
will explain what we mean by “mathematics,” then
we will introduce the general technique for using the
guided inquiry method in the teaching of mathemat-
ics, and finally we will demonstrate the use of this
method in teaching one specific mathematics lesson.

WHAT IS MATHEMATICS?
There is a common belief that mathematics is the study
of numbers. In this oversimplified perspective, math-
ematics seems straightforward enough not to need an
approach to teaching like guided inquiry. Sometimes,
more comprehensively, it is believed that mathemat-
ics is the science of numbers. Still this perspective is
not quite accurate: it is both simpler and more com-
plicated than that. If we consider mathematics histori-
cally, we can trace an evolution of the understanding
of this subject, and begin to understand why a more
comprehensive approach to the subject is required.

Up to 500 B.C. (Egyptian-Babylonian understanding
of mathematics), mathematics was indeed the study
of numbers.

From 500 B.C. to 300 A.D. (in Greece), geometry be-
came the foundation for mathematics. The study at
this time involved forging a relationship between
shapes and numbers. Mathematics was now regarded
as an intellectual pursuit, having both aesthetic and
religious elements. It was at this time that axioms and
theorems were born. Because of this development, pre-
cisely stated assertions of mathematics could be logi-
cally proven by a formal argument.

There was no major change in this conception of math-
ematics until the middle of the 17th century, with the
conception of calculus. Newton (English) and Leibniz
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(German) studied the relationships among previously
disparate elements.

At the end of the 19th century, the study of numbers
became augmented by its more complex relationship
with motion, change, space, and, most importantly to
the issues raised in this essay, the utilization of spe-
cific mathematical tools.

Today, mathematics is not just the science of numbers,
but of patterns. These patterns can be real or imagi-
nary, visual or mental, static or dynamic, qualitative
or quantitative. They can arise from the world around
us, from the depths of space and time, or from the
inner workings of the human mind. They are, then,
both more complicated than the first historical under-
standings of mathematics, for they involve much more
than just numbers, and more simple, for they are the
foundations of much of what we already observe in
the world and in our own schema of thought and dis-
covery (Gialamas, 1997).

To introduce the mathematical concept of concern to
this study, then, let us initially consider a more elemen-
tary mathematical topic: proportion. A proportion is
a relationship between two ratios and is expressed as

a : b :: c : d , or as 
a

b
=

c

d
.  A ratio, in turn, is a compari-

son of two different sizes, quantities, qualities, or

ideas, and is expressed by the formula a : b or 
a

b
.

With this in mind, there is a unique geometric pro-
portion of terms that has been called the golden ratio.
It is this ratio which is the focus of this mathematical
investigation. To make it truly an investigation, stu-
dents must be able to discover, understand, and re-
late the learning concept to real life situations. Using
the guided inquiry method with the steps outlined
below, they learn to do so.

USING THE GUIDED INQUIRY TECHNIQUE TO TEACH
MATHEMATICAL CONCEPTS FOR CONCEPTUAL CHANGE
For this investigation seven main questions have been
modified from Cherif’s (1988) proposed guided in-
quiry method for teaching science, to be used as gen-
eral guided inquiry questions for the teaching of math-
ematical concepts (Appendix I ).

With these questions, the teacher engages the students
in discovery activities that will eventually demon-

strate the mathematical concept for the students.  The
questions have been grouped into “Before the Activ-
ity” and “After the Activity”:

BEFORE THE ACTIVITY

1) What do you think will happen, given an initial set of
conditions and a specific set of procedures to
follow?(Here, students should make conjectures for
what they believe will happen.)

2) Which conjectures seem the most mathematically vi-
able?

AFTER THE ACTIVITY

3) What is the result of completing the procedures?
4) Which initial conjectures were most reasonable?
5) To arrive at a conclusion, what steps were needed in

order to complete these procedures?
6) Where can you identify correlations between introduced

mathematical concepts and activities in daily lives?
7) Can you generalize the results by completing these pro-

cedures?

Using these steps drawn from the principles of guided
inquiry, mathematics may be taught in a manner that
engages students’ intellectual curiosity.

USING GUIDED INQUIRY QUESTIONS TO TEACH THE GOLDEN
RATIO
One might define that two quantities a and b satisfy

the golden ratio property if the ratio 
a

b  is approxi-

mately 1.618. The questions that follow are derived
from the general guided inquiry approach and suited
for use in a lesson on the golden ratio. These ques-
tions were used in a seventh grade classroom, and
those students’ conjectures and answers are given
below.

BEFORE THE ACTIVITY

1) What do you think will happen when you compare the
length of your hand and the length of your arm?

According to Cherif (1988), a question such as this
belongs to the Synthesis Level of Bloom’s educational
objectives. Its aim is to arouse interest, to stimulate
thinking, and to produce educated conjectures. It deals
with expectations. When we ask “What will happen
if...?” we set the stage for the students to recognize
that there is a problem, and therefore capture their
immediate interest. Furthermore, this question pro-
motes the ability to use mathematical tools in order
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to express a hypothesis, an assumption, or possible
conclusion clearly. Here are some examples of stu-
dents’ initial hypotheses:

1. The ratio of measurement among male students
will be twice as great as the ratio of measurement
among the female students.

2. The ratio of measurement among female students
will be 1 and 1/2 times greater than among the
male students.

3. The ratio of measurement among taller students
will be greater than the ratio of measurement
among the shorter students.

4. The ratio of measurement among taller girls and
shorter boys will be almost the same.

5. The ratio of measurement among male and female
students most of the time will be the same.

2) Which of the above conjectures seems like the best an-
swer?

To promote educated conjectures, learners must have
enough time to discuss their conjectures amongst
themselves. Moreover, they must be able to justify
their conjectures and also to change their conjectures
in the case that someone else has a better point of view.
In this situation, the student might discuss the idea
that two sets of numbers might be different but might
have the same ratio (e.g. 8/16 and 4/8). The educated
conjectures then go up on the blackboard for further
use.

At this point, students complete the activity and record
the results. Students are given the opportunity to test
their own conjectures by performing the measure-
ments and calculating the corresponding ratio of the
length of arms to hands among male and female stu-
dents in the classroom. Therefore it promotes the in-
tegration of students’ understanding and the mani-
festation of their understanding on the investigated
problem. In addition, the students must observe care-
fully, measure and calculate accurately, and describe
their findings in writing (the actual final result) in a
concise manner.

AFTER THE ACTIVITY

3) What is the result of completing the procedures?

This question offers students the opportunity to actu-
ally plan and carry out experiments on their own to

determine whether their conjecture is reasonasable.
As a result, they will have the opportunity to gain the
skills of designing experiments, testing hypotheses,
reasoning and debating results, etc.

4) After completing the measurements and finding the ra-
tios, what do you think about your initial assumption?
Which of the initial assumptions were the most reason-
able?

This is a descriptive-discovery question based on the
careful observation that characterizes any scientific
process. It is aimed toward building an awareness of
what actually happened and encouraging students to
willingly change their thinking (conjectures) based on
the results of the experiments (Cherif, 1988).

In this case, an example of an accepted answer is:
“There is no significant difference in the ratio of the
length of hands to arms on male and female students.”
When all the students have agreed about the actual
findings and the conclusions pertaining to the com-
pared ratio, they are asked to compare their own ini-
tial conjectures with the actual finding. Then, they are
asked to come forward and erase from the blackboard
any matched predictions.

This is an exciting stage of self-correcting where the
students, while engaged in the whole process inde-
pendently, are actually learning by thinking and do-
ing. Since students are devoted to conducting experi-
ments to test them, the analysis of experimental re-
sults will allow for some hypotheses to be rejected and
some to retained (Cherif, 1988).
At this stage, Cherif has warned teachers from failing
into the “right answer syndrome,” where many teach-
ers feel they must give the right answers to students’
questions. In the spirit of inquiry, the students should
be allowed to make discoveries for themselves. To use
Popp’s words (1981), teachers should help students
develop or enhance a frame of mind “which can al-
low familiar and perhaps pet beliefs to be released in
favor of alternative better supported ones.”

The following are examples of how seventh grade stu-
dents tested their hypotheses that were listed in ques-
tion number two:

1. They measured the ratios for their sisters and
brothers and used those results to justify their con-
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jectures pertaining to hypothesis (3).
2. They measured the ratios for their pets and drew

conclusions in terms of their conjectures in hypoth-
esis (5).

3. One student used charts from his father’s medi-
cal office in an attempt to determine patterns of
growth, as they relate to hypotheses (1) and (2).

4. A student used her footprints from the hospital
certificate created on her date of birth to compare
with the current ratio of segments of her foot
length, to test hypothesis (1).

The length of the foot

The length of the ankle to toe
:
The length of the ankle to toe

The length of the middle toe

5) What steps have you taken in order to conclude that
there is no significant difference in the ratio of the hands
to the arms of different students?

Students need to describe precisely and in detail all
the previous steps they and/or the teacher have taken
before reaching the final conclusion. In other words,
with this question, students need to be able to describe
the experimental pattern that led to the final results.
Cherif (1988, 1993) has stated that the objectives of
asking this question are:

(a) to keep students up-to-date with the inquiry pro-
cesses,

(b) to establish in their minds the cause and effect re-
lationship and that the final results could not have
been determined without all the previous steps,
and

(c) to encourage students to think of everything that
took place not as a separate or isolated event, but
as a total and integrated whole.

Most teachers go directly to the question “Why?” af-
ter they ask the question “What happened?” Teach-
ers should be cautioned not to pass over the process
too lightly, simply because the students have gained
some skills and information and have developed an
awareness of the problem. It is necessary for the stu-
dents to reflect on the experience of having discov-
ered the final result, in order to help them deepen their
understanding and appreciation of the gained knowl-
edge and processes (Cherif, 1988 and 1998).

In answering this question, a seventh grade student
wrote:

1. We measured the lengths of several parts of our
bodies. We calculated the ratios of two of the mea-
surements.

2. We compared all of the ratios.
3. We drew conclusions about the ratios and our con-

jectures.
4. We discovered that not all of our conjectures were

wrong.
5. After taking all the measurements, we compared

our findings with our conjectures.

6) Can you identify a correlation between the demon-
strated mathematical concept and real life?

Cherif (1988) calls this question an idea-application
or testing-understanding. He argues that its aim is to
help students generalize from the ideas at hand and
to encourage them to think of the investigated con-
cept as a part of their lives. This question is asked in
order to confirm the following:

(a) to make sure that students understand the idea or
the concept under investigation,

(b) to make sure that they master the inquiry pro-
cesses,

(c) to help them develop the ability to apply the rea-
soning pattern in other situations,

(d) to see mathematics as a part not only of society,
but also of themselves, and

(e) to accept mathematics as a way of knowing and
understanding. Once the students have undergone
the process of guided inquiry in order to under-
stand a specific mathematical concept, it is impor-
tant to reinforce their understanding with appli-
cations in other disciplines and in daily life.

7) Can you generalize the results of completing these pro-
cedures? How can you show mathematically that there
is no significant difference in the ratio of the length of
hands to arms on a variety of students?

Here, students must provide enough evidence in their
attempt to prove their conjectures in general. This is
the causal question or the reasoning explanation. The
point of this question is that students are asked to
generate a reasoned and testable hypothesis. At this
stage, it is the generation of a hypothesis and not the
testing of the hypothesis that is of concern. Teachers
must remember that it is “the theory and not the ex-
periment [that] opens up the way to new knowledge”
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(Karl Popper; cited in Hurd, 1969, p 17).

Furthermore, in this stage of the inquiry, Cherif has
argued, the tentative explanations (testable hypoth-
eses) offered by students should reflect their ideas,
experiences, and understanding, and thus present
teachers with the opportunity to find out how and
what their students think about the given instance.
Based on such findings, teachers should make the
decision to continue the session of inquiry without
further assistance, with more guided assistance, or to
give the students more time to look for related infor-
mation needed for generating testable hypotheses re-
lated to the investigated problem(s). Teachers should
have a set of follow-up questions ready for use to
stimulate the students should there still persist many
ill-founded and unsettled hypotheses.

The following are examples of students’ testable hy-
potheses in seventh grade:

1. Humans grow symmetrically.

2. Human body parts grow proportionally.

3. The growth pattern is the same for the human
body in males and females.

4. The growth pattern is the same within all living
organisms (plants and animals).

5. The growth pattern is constant within each spe-
cies in mammals.

As Cherif has argued, only those conjectures that have
provided enough evidence of how they might be
proven must be considered. The students who gener-
ate conjectures, but fail to provide enough evidence
of how they can prove them, should have their con-
jectures rejected by the teacher for consideration.

THE FORMAL INTRODUCTION OF THE MATHEMATICAL
CONCEPT
At this stage in the guided inquiry method, the teacher
formally introduces the mathematical concept that
was previously intuitively presented to the students.
The first mathematics concept under investigation is
the golden ratio.

THE GOLDEN RATIO

Given a line segment AB and a point C between A

and B:

the ratio 
AB

AC
=

AC

BC  is denoted by φ  and is called the

golden ratio. One can compute the value of φ  as fol-
lows. Let AB = x and AC = m. Then BC = x - m.

The ratio becomes

φ =
x

m
=

x

x − m

⇒ x(x − m) = m2

⇒ x2 − mx = m2

⇒ x2 − mx − m2 = 0

Let us consider x as the variable and m as the con-
stant. Then we have a quadratic equation with the
solution as follows:

x1 =
m + m2 + 4(1)(−m2 )

2(1)
=

m + 5m2

2

x2 =
m − m2 − 4(1)(−m2 )

2(1)
=

m − 5m2

2

Then x1 =
m +m 5

2
⇒ x1 = m

1+ 5

2

or x2 =
m − m 5

2
⇒ x2 = m

1− 5

2
 ,

a negative number.

Therefore, there is only one positive solution, and the
ratio that is accepted is

x

m
=

1+ 5

2
≅ 1.618033989...

or φ =
1+ 5

2
≅ 1.618033989...,

which is an irrational number.

For our computations, we will be using a 3-digit ap-
proximation for the value of φ , which will be 1.618.

THE GOLDEN RECTANGLE

A rectangle with length l and width w  is a golden
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rectangle if the ratio, 
l

w
=

w

l − w
= φ .

Alternatively, a rectangle with length l and width w is
a golden rectangle if, when we remove a square with
side w from the original rectangle, the remaining rect-
angle is similar to the original–that is to say, two rect-
angles ABCD and KLMN are similar if the following
condition is satisfied:

AB

KL
=

DC

NM
=

AD

KN
=

BC

LM

So that golden rectangle would look like this:

where
l

w
=

w

l − w

and the original rectangle with sides l and w is similar
to the remaining rectangle with sides l-w and w.

THE FIBONACCI SEQUENCE OF NUMBERS

The golden ratio is related to a special sequence of
numbers, discovered by Leonardo Fibonacci of Pisa,
an Italian mathematician in the 11th century. A se-
quence of numbers a0 ,a1,...,am−1,am ,am+1,...  is called
a Fibonacci sequence when the following relationship
between its tems is satisfied

an+1 = an + an−1,  for n ≥1,and a0 = 0,a1 =1

By replacing n with 1, 2, 3,..., 21, we obtain the first 21
terms of the sequence. Therefore

a0 = 0 , a1 =1,
a2 =1, a3 = 2 ,
a4 = 3, a5 = 5,
a6 = 8, a7 =13 ,
a8 = 21, a9 = 34 ,
a10 = 55 , a11 = 89 ,
a12 =144 , a13 = 233 ,

a14 = 377, a15 = 610 ,
a16 = 987, a17 =1597 ,
a18 = 2,584 , a19 = 4,181,
a20 = 6,765, a21 =10,946 .

SEQUENCE OF “ALMOST” GOLDEN RECTANGLES

Let us apply the principle of the golden rectangle us-
ing certain selected numbers as sides of a rectangle.

We create a sequence of “almost-golden” rectangles
as follows:

1.  Choose as the first rectangle the one which has
sides a = 10,946 and b = 6,765 which are consecu-
tive terms in the Fibonacci sequence). We see that
the ratio a/b is approximately 1.618.

2. Removing a square with side b (6,765) from the
first rectangle we create the second rectangle. The
length and width of the new rectangle are respec-
tively 6,765 and 4,181, and their ratio is approxi-
mately 1.618.

If we continue this process of removing squares with
a side length equal to the shorter sides’ length of the
rectangle, we obtain a sequence of rectangles with cor-
responding lengths and widths as indicated in the fol-
lowing table.

One realizes that there is a pattern involving the ra-
tios of the dimensions of the rectangle at each stage.
In particular when we compare these ratios with φ  at
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each stage we observe that these ratios alternating
from being less than φ  to being greater than φ . Fi-
nally it is clear that after Stage 12, the differences are
increasingly divergent from the golden ratio.

One might conclude that the Fibonacci number se-
quence, which appears in many cases in nature, is
closely related to the golden ratio. The visual presen-
tation of the first six stages of the table and the curve
associated with the sequence of the rectangles is pre-
sented in figure 1.

THE SPIRAL CURVE ASSOCIATED WITH THE SEQUENCE OF “ALMOST” GOLDEN

RECTANGLES

To begin, we take the first “removed” square (from
the golden rectangle), with its center as one of the
vertices of the square and radius the l of one side, and
draw an arc from one adjacent vertex to the other. We
continue the same process for each removed square
at each stage in the sequence of “almost” golden rect-
angles. The resulting continuous curve is called the
equiangular spiral curve. In looking at the chambered
nautilus seashell in relation to this curve, one can see
that the spiral curve appears on the boundary of the
shell.

Figure 1
A visual presentation of the first six golden rectangles from

the sequence of the rectangles represented by the table
and the spiral curve associated with them.

ACTIVITIES TO REINFORCE THE MATHEMATICAL CONCEPT
After a student has studied the mathematical concept
through the process of guided inquiry, there are sev-
eral ways in which that concept can be reinforced to

ensure a more complete understanding of the math-
ematics. First, as the guided inquiry approach is meant
to be a process-based form of learning, for both the
instructor and the student, it would make sense for
the instructor to embark on the teaching of related
concepts in subsequent lessons, so that the student
might build upon the information he or she has re-
cently learned through guided inquiry.

Also, in the ending stages of the guided inquiry ap-
proach, an instructor might also use other disciplines
to reinforce the mathematical concept. The students
might draw a representation of the process by which
the concept was learned, or the student might write a
creative piece demonstrating his/her understanding
of the concept in new terms altogether. Both methods
would meliorate the students’ initial interaction with
the mathematical concept. In addition, these forays
into other disciplines provide the instructor of the class
an opportunity to assess students’ understanding of
the concept in alternative ways. If a student excels,
for example, in the arts and has had a general disdain
for mathematics before this lesson, he can demonstrate
his understanding of the topic in his own terms, ac-
cording to his strengths, and his grade would be de-
cided based on a broader range of activities. Any sort
of project relating this mathematical concept to other
disciplines (science, art, history, etc.) is a fine way to
continue the active learning process initiated by the
guided inquiry approach.

CONCLUSION
The guided inquiry approach promotes active learn-
ing: not just hands-on learning, but minds-on learn-
ing. Activities in any discipline that capitalize on the
guided inquiry approach will help students and teach-
ers alike make academic material more meaningful,
for guided inquiry inspires intellectual curiosity rather
than defensiveness. For students who ask,”why do I
need mathematics, again?” and for insouciant stu-
dents who’d rather stare out the window than engage
in listening to a teacher lecture on fundamental math-
ematical principles, the guided inquiry approach of-
fers a reason to become participants in the learning
process.
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APPENDIX 1

No.

1.

2.

3.

4.

5.

6.

Guided Inquiy Question in Teaching
Science Concepts

What do you think will happen given this
set of conditions?  (If, for example, X is
added to Y?)

What actually happened?

How did it happen?

Why did this happen?

How can we find out which of these hy-
potheses is the most reasonable?

How can you relate the investigated ideas,
concept, or principle to your daily lives?

Nature of the Question

Predicted Question

Descriptive-Discovery
Question

Holistic-Descriptive
Question

Casual Question or
Reasoning Explanation

Experimental Question

Idea-Application or
Understanding-Testing
Question

Aim and Objective of the Question

To arouse interest, stimulate thinking, and
provide predictions.

To build an awareness of what actually
happened.

To estabilsh in students’ minds the cause
and effect relationship; to think of all the
processes that took place as a total inte-
grated whole; to provide general under-
standing of the process that took place
and resulted in what actually happened.

To develop and apply some kind of men-
tal analysis that enables students to gen-
erate a reasoned and testable hypothesis
(tentative explanations) using their ideas,
experiences, and understanding.

To provide the opportunity to actually
plan and carry out experiements of their
own; to gain skills of designing experi-
ments, testing hypotheses, reasoning, and
debating results.

To understand the idea or the concept
under investigation; to master the inquiry
processes; to apply reasoning patterns in
other situations; to accept science as a way
of knowing and understanding.
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One might ask why any professor of mathematics
education would return to the elementary school class-
room after earning a doctoral degree. The appropri-
ate question should really be why would she or he
not return to where the action in mathematics educa-
tion really is!

It has been almost twenty-five years since I have
taught elementary school children concepts and skills
in mathematics for any extended period of time. Dur-
ing my career as a mathematics educator, I have con-
ducted numerous workshops involving students of
all ages (grades K-11), but not at the intense level as a
classroom teacher. The NCTM Professional Standards
for Teaching Mathematics document advocates that
mathematics educators at the university and college
levels should spend time in schools working with
teachers and children (NCTM 1991). Not only should
these educators spend time in the schools, but they
should also cultivate and nurture partnerships be-
tween LEA's (local educational agencies) and univer-
sities (Curcio, Perez, and Stewart 1994). I chose to take
this proactive challenge to heart and applied for and
was awarded a sabbatical leave at a local elementary
school for the 1998 spring semester.

Prior to my sabbatical, I enjoyed a strong relationship
with the faculty and administration at a local elemen-
tary school (grades K-5). This relationship was pri-
marily due to establishing and conducting a math-
ematics teaching practicum at this school for my
preservice elementary school teachers. The relation-
ship evolved so well that I wanted to establish more
of a partnership with the school than just mentoring
my preservice teachers; hence, the sabbatical leave.

During the sabbatical, I decided (after consulting with
the teachers and principal of the school) to establish a
mathematics club for a select number of gifted-and-
talented students (sixteen students in grades K-2 and
sixteen students in grades 3-5, per semester), to act as
a mathematics consultant to the faculty, tutor students

(individually and in small groups), teach students in
a classroom setting, conduct some qualitative research,
and perform other school-related duties and functions.
The two most demanding, yet most rewarding, of
these activities were administering the mathematics
club and teaching mathematics concepts and skills to
the children.

The mathematics club met before school twice per
month, once for the K-2 group and once for the 3-5
group. Presenters consisted of teachers from the school
(including both the instrumental music and the physi-
cal education teachers), my preservice elementary
school teachers (from the practicum course), one of
my secondary mathematics education majors, and
mathematics and science education professors from
Towson University. According to research, the use of
cooperative groups (Thornton and Wilson 1993) and
the appropriate use of physical materials (Dougherty
and Scott 1993) can help students develop a stronger
foundation for acquiring mathematical concepts and
skills. Therefore, the focus of these sessions was the
effective use of cooperative groups and manipulative
materials to enhance the learning of interesting and
challenging mathematics and science concepts and
skills. The activities that were presented challenged
students to construct their own understanding of the
mathematics or science concepts and/or skills. In this
way, the children would acquire and "own" the knowl-
edge on their own terms and be more able to apply
the concepts and skills in different contexts.

As a consultant, teachers would approach me during
the school day and solicit my opinion about teaching
a particular mathematical concept or skill. However,
after about two weeks, the teachers not only wanted
my advice, they wanted me to model my teaching
style with their students. After agreeing to do this, I
was extremely busy for the remainder of my time at
the school! Teaching children mathematics on a daily
basis has been one of the most rewarding experiences
of my professional life as a mathematics educator.

A Sabbatical Experience: Nurturing a Partnership
R. Michael Krach

Department of Mathematics
Towson University
8000 York Road

Towson, MD  21252
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 Regardless of their level of mathematical sophistica-
tion or age, the students were almost always enthusi-
astic, attentive and willing to work hard at the activi-
ties that were presented. These students enjoyed work-
ing in cooperative groups, using physical materials
and technology, and applying their knowledge to
novel situations. Using activities which apply math-
ematics to other content areas is advocated by many
professional education organizations, such as the
National Council of Teachers of Mathematics and the
National Research Council (NCTM 1989, NRC 1996).
With the type of activities I used and still use with
children, I always try to empower them mathemati-
cally by acting as a "facilitator of active learning," not
just a "dispenser of knowledge," and by connecting
mathematics to other disciplines. For example, in a
graphing activity which analyzes the forces affecting
a falling parachute, I used plastic grocery bags, small
plastic soldier figures, a ladder, a graphing calculator
and a CBL (calculator-based laboratory) unit with a
regular class of fourth grade students. The students
were asked to explain the forces that might act upon
the parachute as it descends to the ground and to se-
lect which of three graphs might best illustrate the
relationship between height and time. After a lively
discussion of these issues (led by the students), the
students actually made the parachutes and conducted
the experiment. Most students were amazed that the
linear graph was the one that best reflected the data
from the experiment. After a few minutes of delibera-
tion (without any input from me), the students were
able to accurately describe why the graph of this data
should be linear in nature.

With respect to my preservice elementary school
teachers and other professional colleagues, the sab-
batical experience lends credibility to my career as a
professor of mathematics education. It provides evi-
dence to my peers and students that I am cognizant
of current issues in elementary school mathematics
education from a first-hand perspective and that I am
a believer in and a practitioner of learning as a life-
long pursuit.

Based on the research conducted during my sabbati-
cal, it is my opinion that a strong and long-lasting
partnership, with an LEA, can be established and fos-
tered by university-based mathematics educators by
performing a few, if not all, of the following activi-
ties:

• providing a cohort of preservice elementary school
teachers as mathematics teaching interns (estab-
lishing a field-based practicum),

• conducting mathematics content staff develop-
ment workshops for teachers,

• consulting with teachers and administrators con-
cerning mathematics content, pedagogy, and as-
sessment,

• establishing a mathematics club for gifted-and-tal-
ented children,

• providing tutoring sessions for all children (ses-
sions conducted by the professor and/or
preservice teachers),

• modeling effective mathematics teaching strate-
gies for classroom teachers (in front of actual chil-
dren!), and

• collaborating with classroom teachers and/or ad-
ministrators in writing staff development and/or
technology grants.

Most importantly, it is my opinion that a carefully
planned sabbatical experience can make an enormous
contribution to an increased level of a mutually ben-
eficial partnership between a local public elementary
school and a university department of mathematics,
which is a need shared by both school-based and uni-
versity-based educators.
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Considerable time is spent in high school geometry
building an axiomatic system that allows students to
understand and prove interesting theorems. In tradi-
tional geometry classrooms, the theorems were treated
in isolation with some of the more interesting and
powerful theorems posed as only postulates. NCTM’s
Curriculum and Evaluation Standards (1989) called for
a rethinking of the structure of geometry.

In particular, students should be given an opportu-
nity to discover the ideas of geometry through con-
crete experiences and direct measurement so that they
can build intuition for the central elements in the axi-
omatic structure. The more recent Principles and Stan-
dards 2000 (NCTM, 2000) calls for a return to reason-
ing and proof through the K-12 curriculum. The learn-
ing of geometry is an inductive/deductive process.
Students should experience specific instances that al-
low them to generalize the postulates, theorems and
definitions of geometry. Many of the ideas of geom-
etry can be easily introduced in a discovery setting in
which students explore the ideas of measure, congru-
ence, inequality, parallelism and similarity. Once stu-
dents have inductively acquired an understanding of
the ideas of the axiomatic system through these con-
crete experiences, they can then deductively explore
short sequences of interesting theorems that demon-
strate the elegance of the axiomatic system.

This article deals with the deductive process, high-
lighting some central theorems in geometry which are
too frequently bypassed as postulates in the standard
geometry texts. It is curious, for example, that the fa-
miliar similar-triangle proof of the Pythagorean theo-
rem is based on something called the Angle-Angle
Similarity Postulate. When one takes this circuitous
route to the Pythagorean Theorem the notion of area
never appears. Yet, Euclid’s proof depends largely on
the notion of area, as shown below. He simply shows
that the sum of the area of the two smaller squares is

equal to the area of the square on the hypotenuse.

Lightner (1991) speculates on the method of the
Pythagoreans when he describes an algebraic/geo-
metric approach that involves dissecting squares and
using the idea of combining areas. It seems that area
is an essential component in the various proofs of the
Pythagorean Theorem.

The following two sequences of theorems include
some of the standard “postulates” and culminates
with an interesting “area” proof of the Angle-Angle
Similarity Theorem which would then allow us to
prove the Pythagorean Theorem by the usual similar
triangle approach. The theorems are found in a vari-
ety of texts, but rarely are they found in high school
geometry texts. When the synthetic approach to ge-
ometry is emphasized, it is important that theorems
be arranged in meaningful sequences and that they
are connected so that students can understand and
connect the various elements of the axiomatic system
In much of what follows we use the important idea of
one-to-one correspondence given by the Ruler and
Protractor Postulates.

TRIANGLE CONGRUENCE
High school geometry texts typically pose SAS, SSS
and ASA as postulates. Here we postulate SAS and
develop proofs for the other two.

Postulate (SAS): If two sides and the included angle of
one triangle are congruent to the corresponding parts
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of a second triangle, then the triangles are congruent.

The Isosceles Triangle Theorem is an immediate con-
sequence of the SAS Postulate if we take the follow-
ing transformational perspective. The proof is elegant
and simple.

Theorem (Isosceles Triangle): The base angles of an isos-
celes triangle are congruent.

Proof: Consider isosceles ABC with AB=AC from two
perspectives.

From left to right, since AB=AC and AC=AB with
< A ≅< A , we have ∆ABC ≅∆ACB by SAS. The corre-
sponding angles B and C are then congruent by defi-
nition of congruent triangles.

We are almost ready to investigate the proofs of SSS
and ASA. It is important that students spend some
time with proof by contradiction. We digress momen-
tarily to develop a simple example using one of the
first postulates in the axiomatic system.

Postulate: Two distinct points determine exactly one
line.

Theorem: When two distinct lines intersect, they inter-
sect in exactly one point.

Proof:  Suppose not. Suppose, given distinct lines l and
m, they intersect in two points.

Since two points determine exactly one line, we con-
tradict the hypothesis that l and m are distinct. Con-
clude that two distinct lines can intersect in only one
point.

In proof by contradiction, we assume the hypothesis

(distinct lines) and the negation of the conclusion (not
one point) and reach a contradiction forcing us to ac-
cept the conclusion. We use this idea later in the ASA
Theorem.

Theorem (SSS): If three sides of one triangle are con-
gruent to the corresponding sides of a second triangle,
then the triangles are congruent

Proof: Here we will use the SAS Postulate twice. Con-
sider the two triangles shown with a = x, b = y and c =
z. The Protractor and Ruler Postulates allow us to con-
sider <CBD ≅<Y with BD = z as shown. Now with
a=x we have ∆XYZ ≅  ∆DBC by SAS.

Now we will show that ∆ABC ≅∆DBC. Consider seg-
ment AD. By the Isosceles Triangle Theorem we have
<1≅<2 and <3 ≅<4. Applying the Angle Addition Pos-
tulate, we have <BAC ≅<BDC and ∆ABC ≅∆DBC by
SAS.

Now ∆ABC ≅  ∆XYZ by transitivity as desired.

Theorem (ASA): If two angles and the included side of
one triangle are congruent to the corresponding parts
of a second triangle, then the triangles are congruent.
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Proof: Consider the two triangles shown with a = x,
<B = <Y and <C = <Z.

We proceed by supposing the two triangles are not
congruent. In particular, suppose AB≠YX. On ray BA
consider BD = YX and consider CD.

Now we have ∆DBC ≅ ∆XYZ  by SAS and correspond-
ing angles BCD and Z congruent. By hypothesis <C
≅  <Z. This contradicts the Protractor Postulate which
only allows one ray to determine an angle. Thus ∆ABC
= ∆XYZ.

GETTING TO THE PYTHAGOREAN THEOREM
The familiar Exterior Angle Equality Theorem, which
states that an exterior angle is equal icon measure to
the sum of its remote interior angles, is preceded by
what we will call the Greater Exterior Angle Theo-
rem, which is often rnisplaced in the high school texts.
In fact, this theorem is usually proved after the Exte-
rior Angle Equality theorem because of unnecessary
assumptions. Yet, the Greater Exterior Angle Theo-
rem allows us to establish the Equality Theorem and,
more importantly, sets the stage for the Pythagorean
Theorem proof by similar triangles as evidenced in
the following discussion.

Theorem (Greater Exterior Angle): An exterior angle of
a triangle is greater in measure than either of its re-
mote interior angles.

Proof: Consider triangle ABC with exterior angle 1.
Through the midpoint M of segment BC consider seg-

ment AD such that AD is twice AM. Considering the
two vertical congruent angles and the bisected seg-
ments AD and BC we have ∆ABM ≅∆DCM by SAS.

Corresponding angles DCM and B are congruent.
Now m<1-m<DCM = m<DCE and since m<DCE>0
we have m<1-m<DCM >0. Then m<1>m<DCM and
by substitution m<1 > m<B as desired. A similar con-
struction will show that m<1>m<A.

With the Greater Exterior Angle Theorem behind us,
we can now turn the Alternate Interior Angle Postu-
late into the Alternate Interior Angle Theorem. But,
first, we need a very important, controversial postu-
late.

Postulate (Parallel): In a plane, through a point outside
a line, there is exactly one parallel to the line.

Theorem: Alternate interior angles formed by two lines
and a transversal are congruent if and only if the lines
are parallel.

Proof: We begin by showing that congruent alternate
interior angles imply parallel lines. This part is usu-
ally posed as a postulate. Suppose alternate interior
angles 1 and 2 are congruent but the lines l and m are
not parallel. Suppose they intersect in some point P
as shown.

By the Exterior Angle Theorem, <1 must be larger than
<2, but by hypothesis we know that they are congru-
ent. Thus we have reached a contradiction and con-
clude that l and m are parallel.

Conversely, suppose we know that l and m are paral-



Humanistic Mathematics Network Journal #2536

lel. Suppose angles 1 and 2 are not congruent. At A
consider <BAD≅<2 as shown.

The previous result tells us that line AD must be par-
allel to m since the alternate interior angles BAD and
2 are congruent. Now we have two lines parallel to m
through A. This contradicts the Parallel Postulate, so
we conclude that <1 = <2. The following theorems
follow immediately from these results and will be of
use later.

Theorem: The sum of the measures of the angles of a
triangle is 180.

Theorem (Exterior Angle Equality): An exterior angle of
a triangle is equal in measure to the sum of its two
remote interior angles. (Ironically, in many texts, the
more powerful Greater Exterior Angle Theorem fol-
lows here.)

Theorem: Corresponding angles formed by two lines
and a transversal are congruent if and only if the lines
are parallel.

We state the above without proof, so that we can turn
our attention to proportionality and similarity, ideas
that allow us to connect these theorems and postu-
lates as the foundation for the Pythagorean Theorem.
We are almost ready to prove the AA Similarity Theo-
rem. We begin by proving the following important
theorem which is often proved after the AA Similarity
Postulate. It can, however, be proved first using the
notion of area and turns out to be a necessary condi-
tion for the AA Theorem. It is necessary to assume
area of a square and the resultant area of a triangle
theorem for the following.

Theorem (Proportional Segments): A line parallel to one
side of a triangle that intersects the other two sides in
distinct points divides those two sides into propor-
tional segments.

Proof: Consider triangle ABC with XY parallel to BC

as shown. We would like to show that a:b=c:d.  Con-
sider segments XC and the altitude from X to AY with
length h. Observe that this is the altitude for both tri-
angles AXY and XCY to bases with lengths c and d
respectively.

Now using α  to denote area,

α(AXY ) =
1
2

hc

α(CXY ) =
1
2

hd

and if we consider the ratio of the areas of the two
triangles we have

α(AXY )
α(CXY )

=
1
2 hc
1
2 hd

=
c

d .

Similarly by considering the segment from B to Y and
the altitude with length k from Y to AX we can show:

α(AXY )
α(BXY )

=
1
2 ka
1
2 kb

=
a

b .

Now, if we can show the areas of CXY and BXY equal,
we are done. Since parallel lines can easily be shown
to be equidistant, the altitude of both triangles to the
common base, segment XY, have the same length, m,
as shown below.

Thus both triangles have area 
1
2

m < XY .
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And then

a

b
=
α(AXY )
α(BXY )

=
α(AXY )
α(CXY )

=
c

d .

We are now ready to prove the Angle-Angle (AA)
similarity theorem. It is easy to show that if two angles
of one triangle are congruent to two angles of a sec-
ond triangle, then the third angles from each are like-
wise congruent. We will need this in the proof.

Theorem (AA Similarity): If two angles of one triangle
are congruent to two angles of a second triangle, then
the triangles are similar.

Proof: In order to establish similarity, we must show
that the sides are proportional. Consider triangles ABC
and DEF with <A = <D and <C = <F. On segments CA
and CB locate points X and Y such that CX=FD and
CY = FE.

Now ∆DEF = ∆XYC by SAS and <A = < CXY by tran-
sitivity imply that XY||AB. Applying the Propor-
tional Segments Theorem, we just proved we know
that

CX

XA
=

CY

YB

Using the definition of between and the fact that if a:b
=c:d then a:a+b = c:c+d, we have

CX

CA
=

CY

CB

and finally by substitution

FD

CA
=

FE

CB
.

By a similar method we can show the other sides pro-
portional.

It is important for students to see that the idea of area
can be used to prove the AA Similarity Theorem
which, in turn, allows for the similar triangle proof of
the Pythagorean Theorem. In fact, many of the so-
called “postulates” in the secondary texts can be
proved as theorems without much difficulty. When
AA similarity is postulated we lose sight of the im-
portance of our axiomatic system. Students can see
how the SAS postulate, the Greater Exterior Angle
Theorem and the Parallel Postulate combine forces to
lay the groundwork for perhaps the most important
theorem in Euclidean Geometry. One might be led to
believe that the Pythagorean Theorem cannot be
proved directly without area. Interestingly, Moise
(1990) provides an elegant proof of the AA Similarity
Theorem without area. While the proof may be be-
yond the scope of high school geometry, it is worth
noting that one can, in fact, arrive at the Pythagorean
Theorem without area.

Much of the richness of geometry is lost when theo-
rems are treated in isolation and when key theorems
are bypassed as postulates. Part of “problem posing”
in geometry should include an investigation of the
way the axiomatic system fits together. How do some
key theorems like the Greater Exterior Angle Theo-
rem allow us to generate important geometric ideas?
For what later theorems is the Parallel Postulate a
necessary condition? NCTM’s Principles and Standards
2000 challenges us to reevaluate both the content and
methodology of geometry instruction. When the syn-
thetic or analytic approach is taken, posing short se-
quences of interesting connected theorems encourages
problem solving that engenders deeper understand-
ing and appreciation of geometry.
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ABSTRACT
The same elements which make Ericksonian hypno-
sis a highly effective therapeutic tool are found to be
at work in an algebra support class called Math Suc-
cess Orientation. Interpersonal dynamics of Carl
Rogers’ person centered approach to counseling are
also part of the philosophy of the class which has a
four semester track record of improving both grades
and attitude in at risk, math avoidant community col-
lege students. The article relates the history of the
course with illustrations of how the elements of Per-
son Centered Mathematics operate in the classroom.
An appendix demonstrates the effect of the class on
student grades...

***

Four semesters ago, in the spring of 1996, I was asked
to supervise four tutors who would be working with
math avoidant college students as part of the Achiev-
ing a College Education Plus (ACE Plus) assistance
program for first generation college students. To en-
tice these math avoidant, math anxious, math hating—
though otherwise ordinary—college students to give
math another try, the experience was termed a col-
lege course with transferable credit, to be taught by a
counselor, not a math instructor. Grading for CPD 150
Math Success Orientation (MSO) would be based solely
on attendance.

Feeling a responsibility to provide a legitimate course
of instruction, I developed a curriculum which cut into
the available time for tutoring while providing study
skills, logic training and strategies for dealing with
math anxiety. Four semesters later, as I reflect on how
our students are outperforming the rest of the student
body, how MSO has been picked up by the math de-
partment, expanded from one to eight sections and

now includes a second course in tutoring methodol-
ogy, it is clear to me that what makes the course work
is not the curriculum or the amount of tutoring but
an underlying philosophy which combines the per-
son centered therapy of Carl Rogers with a framework
for hypnotherapy developed out of the work of Milton
Erickson. In this article, I will describe several
Ericksonian concepts and just a few Rogerian ways
of being with people which have combined to form
what I call Person Centered Mathematics (PCM).

So far, I’ve identified 14 distinct Ericksonian elements
at work in my teaching. They include utilization,
chunking down, priming, paradox, pacing, absorption,
reframing, response sets, shock, confusion, indirection,
metaphor, ordeal of choices, and linking.

I need to clarify that while my methods reflect the
practices of Ericksonian hypnotherapy, I do not hyp-
notize my students. What I’ve come to realize is that
the same use of communication and relationship
building which allows a hypnotic subject to relax, fo-
cus and enter an enhanced psychological state called
trance, can be employed to facilitate students to relax
in the face of math anxiety, focus on mathematical
concepts and enter an enhanced psychological state
called learning. Additionally, the same unconditional
positive regard which Carl Roger used so effectively
to promote personal growth in his clients is vital to
the educational growth of students who have estab-
lished a failure identity in mathematics.

Milton Erickson emphasized the importance of the
relationship between hypnotist and subject, between
teacher and student. He respected the leamer’s abil-
ity to make choices and made it the instructor’s job to
uncover more choices, not to decide for the learner.
Erickson saw each student as a distinct individual with
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a unique internal logic responding to one’s own posi-
tive intentions. He sought to develop rapport, create
an atmosphere in which students internal resources
could be utilized to move them toward their goals.
Significantly, he did not believe in resistance.

CLASS BEGINS
The first day of MSO was marked by student resis-
tance to trying anything new involving mathematics.
I’d taught non-math courses to students from ACE
Plus previously and always found them open to ex-
perimentation and risk taking. So it surprised me
when I could not find a volunteer to come to the chalk-
board to work a problem.

I decided to view their behavior as positively moti-
vated. Erickson believed that what we call resistance
is actually an individual’s own internally logical
method of meeting personal needs. I searched for a
way to utilize their reluctance to expose themselves
to chalkboard failure. On a hunch, I asked them all to
go to the chalkboard and work the problem in pairs.
Within moments they were all scribbling away; “re-
sistance” had disappeared.

In retrospect, it appears that their fear had been of
being singled out. My instruction reframed the situa-
tion to one in which the feared condition—exposure—
could only be avoided by doing what I asked. Mirror-
ing the mechanism of a hypnotic suggestion, my in-
struction could easily have been ignored had it been
inappropriate but was just as easily followed, having
become a comparatively attractive option to be singled
out back at one’s desk as the sole non-participant.

UTILIZATION
Erickson was uncanny in his ability to take what the
client was doing to sustain the problem and use the
same mechanism to resolve it. He called this utiliza-
tion. In the example above, I utilized students’ strong
motivation to avoid being singled out as impetus to
“join the crowd” at the chalkboard. Another example
involved an older woman, newly divorced, feeling out
of place in a class full of eighteen year olds; she was
hesitant to accept peer tutoring. Out of class she
proudly described raising her three children who are
now in successful careers. Utilizing the importance
she placed on her pride and mothering, I got her talk-
ing about how she developed her own kids confidence
by letting them gradually accept greater challenges

and increased responsibility. She then readily accepted
the idea that by allowing these youngsters to tutor
her, she was giving them similar nurturing, validat-
ing experiences—a nice trade off. She now proudly
refers to herself not as a helpless tutee but as “co-
trainer of tutors.”

CHUNKING DOWN, PRIMING AND PARADOX
I later discovered that a gradual building up of small
successes worked even better. First trips to the chalk-
board would always be in groups. The task would
move imperceptibly from simple to complex, from
drawing to writing, from silly to serious. A typical stu-
dent reaction was to remark later in the semester how
he or she had always hated going to the chalkboard
and could not remember when it had become so easy.
The Ericksonian concept at work here was that of
chunking down, breaking a seemingly impossible task
into its component parts, “the idea that Custer could
have won if the Indians had come over the hill one at
a time” (Lankton & Lankton).

Seeing how quickly the atmosphere in the room had
changed, I began to think in terms of priming, an
Ericksonian concept having to do with building a
foundation of ideas which encourage the client to start
thinking in a particular direction so that later ideas
will have a place to nest...

In MSO, priming involved not only keeping students
informed of what was to come, but guiding and shap-
ing their reactions. I seeded the idea that success in-
volved being open to new experience, that success
would sneak up on students, that success did not re-
quire perfection, that allowing math to be fun would
dissipate anxiety and allow comprehension to flour-
ish, that math was an interpersonal experience, that
tutoring a peer was the best way for the tutoring peer
to learn.

A paradoxical form of priming involves “predicting a
relapse.” After a new group of students begins to settle
into the course, I make the following statement,
“While many of you will experience failure early on,
as your attitude gradually changes, you’ll begin to see
impressive improvement.” This statement involves
several Ericksonian concepts which will be examined
in more detail.

The statement begins with a truism; these students
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have traditionally failed at math. By saying so, I am
only validating their current experience. The word-
ing is purposely vague. Who is and who isn’t part of
many of you? In what context will they experience fail-
ure? On a quiz? A test? When does early on begin and
end? Vague wording improves the chance they will
accept what I’m saying without challenge.

The second part of the statement links failure to im-
provement through the unspecified idea of attitude
change. Which attitude will change? How fast or slow
is gradual? After being validated by the first premise,
you will experience failure early on, it becomes easier to
accept the last part, you’ll begin to experience impressive
improvement. This imprecise wording allows each stu-
dent to imagine what would constitute impressive
improvement.

The result is that students are put in the unique posi-
tion of seeing failure as a harbinger of good things to
come. They are less likely to panic or become discour-
aged by a poor test result. When spoken congruently
and sincerely, these kinds of statements result in sus-
tained motivation which ultimately translates into
better grades.

NO SUCH THING AS RESISTANCE
The clients of Carl Rogers drew strength from his un-
wavering belief in them. My tutors and I were con-
tinually challenged to stay future focused, believing
in each student’s potential. In a meeting with the in-
structor, a tutor referred to a student as a slacker who
didn’t do his homework and didn’t care. After this
student was switched to a tutor who believed in the
student, he went from F’s to B’s. Whereas the first tu-
tor knew her math, was creative and energetic, her
replacement refused to view him as resistant or not
trying. Her belief in him translated into his own suc-
cess.

PCM joins Erickson in rejecting the idea of resistance
because if students can resist, so can instructors. It is
too easy for an instructor to think, “They obviously
don’t care, so why should I go the extra mile?” In-
structors who view their students as resistant can be-
come resentful or feel hopeless of reaching them. Stu-
dents pick up on their instructors’ attitudes, their
“vibes.” Whether or not these attitudes are verbalized,
students get the message. They feel blamed, alienated,
and unheard. They then view their instructors as “re-

sistant,” and the cycle continues with both sides put-
ting in less and less effort.

PACING AND ABSORPTION
Rather than think in terms of reducing resistance,
Erickson focused on pacing his clients. We want our
students to be “on the same page” with us. Erickson
recognized that before clients would turn to the thera-
peutic page, he first had to visit theirs. He sought to
get into their rhythms. In trance induction, this meant
speaking in rhythm to the subject’s breathing. Rather
than repeat some stock patter, Erickson absorbed at-
tention by talking on topics known to be of interest to
the individual. As rapport was being gained, he would
ease into therapy. In MSO, this means that in every
class period I present a meaningful transition to think-
ing and doing math.

A few students are ready from the get go. But for most,
social needs must be met and interest gained. Tutors
are encouraged to identify those students who have
greater social needs, requiring a few moments to chat
before getting down to business. Rather than see this
as a waste, i.e., “Yak on your own time; I’m here to
teach,” we view it as an opportunity to take the pulse
of the class, check out who needs what. Ideally, the
transition to instruction occurs unnoticed. I’ll present
a brainteaser or tell a math joke designed to illustrate
a way of breaking out of old patterns and discovering
some alternative mode of thinking about math.

As an example, in math notation, shortcuts tend to
confuse some students. Although they’ve been ex-
posed to the same notation for years, under pressure
they see the term 5t, and think “five t,” not “five times
t.” They read 3/y as “three over y,” not “three divided
by y.” They read 7(q) as “seven parenthesis q,” not
“seven times q.” I call these unwritten operations
ghosts. To create a memory trace which will always
remind them to see the ghosts, I ask them the follow-
ing riddle. As time permits, I dress up the story into a
real drama. But in brief,

A man and his wife are rushing back to town
when they crash. He’s thrown from the car but
she’s trapped inside. He rushes for help, but
when he returns, she’s dead and a stranger is
in the car. The doors and windows are still in-
tact and unopenable. Firemen have to break
in to get them out. How did she die, and who
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is the stranger? (The answer is at the end of this
article.)

Usually after a few minutes of wrong guesses and
clues, someone comes up with the right answer. I’ll
then remark on the resemblance of parenthesis to the
woman’s condition. We’ll generate a list of mathemati-
cal ghosts. In future tutoring situations, I need only
ask, “Do you see a ghost?”

In Ericksonian terms, the puzzle has playfully ab-
sorbed their attention. The answer is a surprise which
heightens their arousal, creating a psychological space
in which interest, attention
and motivation are in-
creased so that my next sug-
gestion is accepted and
comprehended without in-
terference, i.e., they forget
for a moment that math is
hard and instead simply
enjoy learning about mathematical ghosts—and
they’re now ready for an hour of algebra.

These kinds of lessons gradually change students’ at-
titudes towards math from disdain to enjoyment, from
terror to confidence. On the very first day of MSO, I
had the students describe their individual math his-
tories. While this gave us a lot of important informa-
tion and let them know they were all in the same boat,
the general impression was that ship was sinking; they
had neither oars nor life jackets. They hated math and
didn’t believe they could ever succeed. Our challenge
was to convince them that they could, without dis-
missing their feelings.

ATTITUDE AND VALIDATION
There is an art to validating a student’s experience
without getting mired in it. Elizabeth Ely, director of
the Field School where I cut my eye teeth on teaching,
was fond of quoting an aphorism of Pythagoras, “Help
a man to take up his burden, but never help him put
it down.” She cares deeply for her students’ struggles
but never lets them quit. Carl Rogers would listen with
complete absorption as his clients bared their deepest
pains. He didn’t insult them with quick fixes. Clients
felt his empathy but also his belief in them. Milton
Erickson kept the client focused on solutions, not prob-
lems; on future possibilities, not the injustices of the
past.

After twelve or more years of struggle, my students
were spoiling for a fight, tensed for the next blow. Our
objective was to make sure that blow never came from
our camp. Like a tennis player who leaps the net and
takes a doubles stance, we refused to see our students
as the opponent, no matter how many volleys they
sent our way.

In practice, this meant no blaming, no cajoling, no
threatening, no “I told you so’s.” From time to time, I
would remind a student of where he or she stood in
relation to the attendance/grading policy, then step
back and respect whatever choice the student made.

Occasionally a student
would pile up enough ab-
sences to assure a failing
grade. Typically that stu-
dent would return the next
semester both acknowledg-
ing that some personal is-
sues had taken precedence

over math, and thanking us for the space given.

A LEAP OF FAITH
In the third installment of the Indiana Jones saga, in
order to save his father’s life, our hero must step off a
ledge above a deep canyon and walk through the air
to a cave on the far side, hoping against hope that he
won’t fall into the chasm below. He makes the leap of
faith, drops onto a camouflaged bridge which he
crosses easily, and ultimately saves both his father and
the day.

Developing Person Centered Mathematics required a
similar leap of faith. We let go of the idea of grades.
Not only do we not grade on math proficiency, we
don’t worry about what grades students get on their
early math tests. Simply put, if we panic, they panic.
If we buy into the paradigm that they MUST PASS
MATH NOW!, we’ve lost before we’ve begun. In that
case we’d be giving them exactly what they’ve had
before, what they’re used to, what they’ve continu-
ally failed with. To that end, and to quote from Monty
Python, our motto has become, “And now for some-
thing completely different.”

Students must perceive that they’re not doing the same
old, same old. They know the end of that story. To
believe that a new result is possible, they must per-
ceive new ways of doing things. To that end, we make

❝If we buy into the paradigm that they MUST PASS
MATH NOW!, we’ve lost before we’ve begun.
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a conscious effort to do things that just don’t happen
in traditional classrooms, like solve murder myster-
ies, memorize to rap, hand out awards, eat donuts,
give back rubs, crumple paper and play catch.

REFRAMES AND RESPONSE SETS
I learned to toss paper from Bill Hammers, an amaz-
ing mathematician who has an outstanding rate of
students completing and passing his courses. After
everyone has caught and tossed our makeshift foot-
ball we ask, “How did you know at what velocity to
throw the ball? How did you detennine the angle of
arc which would correctly counterbalance the effect
of gravity, making a successful catch a greater statis-
tical probability?” As the students stare dumb-
founded, Bill just smiles reassuringly.

For Bill, the greatest mathematician of the modem age
was Joe Montana. “Imagine,” Bill explains, “the trigo-
nometry involved in hurling a football just past the
outstretched arms of an all-pro cornerback into the
hands of a moving receiver at a distance of sixty yards.
But that’s the same geometry and calculus involved
in tossing a crumpled sheet of scratch paper to a peer,
or judging whether you have enough room to pass
on a two lane highway.” Bill concludes, “You’re per-
forming operations of geometry, trigonometry and
calculus all the time. All we’re asking you to do in
this class is algebra!”

In Ericksonian terms, Bill is setting up a response set.
Each of his examples represents a verifiable truism.
Students can’t deny that to toss the paper, they had to
have an intuitive sense of velocity, gravity, angles,
mass and wind resistance. After agreeing with each
of those ideas, they’re ready to agree with the next
plausible idea Bill presents, namely that algebra is
relatively easy.

PARADOX, CONFUSION AND PSYCHOLOGICAL SHOCK
Erickson was fond of using paradox, confusion and psy-
chological shock to open students to new ideas, to shake
them free of rigid and limiting mind sets. I use para-
doxical instruction to change the way students look
at their math books. These texts are filled with useful
resources, yet students typically open them only to
copy down assigned problems. From a local used book
store I purchase a dozen assorted, out-of-print texts
for about $2 each. After putting students in small
groups, I give the following instruction: “Find a glos-

sary of terms and bring it to me. Do not bring up the
book.” After a few confused looks, the question is in-
evitably asked, “How can we bring it to you without
the book?” I give them a reassuring look and repeat
the instruction. Inevitably, yet tentatively, a tearing
sound is heard. Soon the room is buzzing with gasps,
giggles and finally a great collective sigh as tension
dissolves. Students eagerly litter my desk with every
resource the text has to offer. By the end of class, they
are left with little more than book covers.

As this example illustrates three Ericksonian concepts,
it deserves a closer look. First there was the paradoxi-
cal suggestion, roughly, bring it to me but don’t bring it to
me. This instruction acts to replace the students’ state
of complacency with one of confusion. Yet my de-
meanor remains reassuring, not mocking or competi-
tive. When one of them finally tears a page from the
text, the rest are thrown into a state of mild psycho-
logical shock. Sacrilege has been committed, yet the sky
does not fall. This creates a space of doubt in their
belief systems. The pleasure of tearing up old math
books fills that space with the new ideas like math can
be fun and exploring a text can be fun and informative.

Laughter in a mathematics classroom is not an event
to be taken lightly. For students whose ingrained emo-
tional response to math is anxiety, anger and embar-
rassment, it is a powerful experience to laugh and
think math in the same breath. On a visceral level,
Ericksonians recognize that such pairing can result in
a lessening of math anxiety. On a metaphoric level,
tearing up math books provided a release for anger
so closely associated with past math problems which,
not incidentally, came from similar math books. The
use of used texts is not completely a monetary deci-
sion. We are destroying the old ways, releasing our-
selves of the power of the past—not the new.

I could just as easily have directly assigned them to
look up a list of textbook resources and write down
the page number to verify they’d done so. Not only
would that be a dry, utilitarian exercise, but little or
no memory trace would have attached.

INDIRECTION AND METAPHOR
Obviously there are times when an instructor needs
to be direct and to the point. But when complacency,
frustration and math anxiety inhibit the learning pro-
cess, it’s time to employ indirection. Erickson is most
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fondly remembered for the stories he told, each one
indirectly illustrating a particular idea he wanted a
client to grasp. Some were motivational, others in-
structional, and others rapport building.

Metaphors provide a conveniently indirect way to
bring someone to an understanding without engag-
ing confrontation or inviting rejection. Struggling
math students have experienced so many failures that
many will reject any idea they recognize consciously
as a new intervention. But when a student deciphers
the metaphor on one’s own, there is a sense of owner-
ship which allows the student to accept the new idea
as a valid option.

Erickson liked to layer his metaphors one inside an-
other. My preference is to slip a metaphor into a logic
puzzle.

Billy and Maria were out playing when they
spotted a train coming towards them. Billy ran
one way and Maria ran another. Billy ran di-
rectly away from the train while Maria ran
towards the speeding locomotive. Billy got run
over. Maria escaped to play another day. How
might one explain this curious occurrence?
(The answer is at the end of this article.)

Before checking your answer, count how many ideas
the story illustrates. First, it describes the danger of
meeting a challenge head on. Second, it demonstrates
how it is worse to run away. Third, it suggests a new
direction to move. The beauty of the puzzle is that
when they hear the answer, students must admit that
it was better not to avoid the challenge. A fourth idea
is that being stronger, whiter, or maler is no advan-
tage.

Fifth, should we criticize Billy? No. Both kids acted to
prolong their lives—Billy by a few seconds, Maria by
70 years. Still, Billy’s intention was positive—and he
ran as fast as he could—faster than Maria. Struggling
math students try even harder. They just need to be
pointed in the right direction. Then their hard work
pays double.

Sixth, notice the phrase, curious occurrence at the end
of the puzzle. With two little words, a gory story is
reframed as an enticing enigma, i.e., what used to
cause math anxiety can alternatively lead to satisfac-

tion.

Seventh, beginning the question, How might one... pro-
vides an invitation rather than a command. Use of the
third person singular one further distances the student
from any threat that solving puzzles might present. It
can be an enlightening experience for an instructor to
tape one’s instructions to students and examine the
many meanings that struggling students might attach.
To misquote Thoreau, “The unexamined instruction
is not worth giving.”

ORDEAL OF CHOICE
Erickson would never suggest that teachers sugarcoat
their instructions. On the contrary, he often motivated
his clients by presenting a narrowed list of choices in
what became known as an ordeal of choices. In MSO,
this consists of determining a learning objective which
requires active student participation such as complet-
ing homework, practicing new skills or doing in class
presentations. In my experience, the majority of strug-
gling math students also loathe presenting for their
peers. These same students are usually too passive or
insecure to participate in their required math courses,
where they fear looking foolish if they risk asking
questions.

The ordeal of choices I present to them is to either
conduct an interview with one’s math instructor or
do a brief presentation for the class. The crucial factor
is how the options are presented. First I describe the
many benefits to be gained by doing an oral presen-
tation. Although the potential benefits are real and my
manner compassionate, the description taps into a
considerable amount of anxiety. By the end, students
are turning several shades of green. Only then do I let
them know there is an alternative, i.e., to interview
one’s instructor. Their collective sigh can be heard
three classrooms away. I then give them easy step-by-
step instructions on how to conduct the interviews
which most then opt for and complete on time. After
the interviews, they report back that they now ask
many more questions in class. Had I presented the
assignments in reverse order, many would have cho-
sen oral presentations in order to avoid the interviews.
Either way, motivated to avoid an ordeal, they are
more likely to complete one of the tasks.

RELATING TO STUDENTS
Person Centered Mathematics is about relating to stu-
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dents in ways that provide validation and motivation.
Students often view math instructors as possessing
knowledge far out of their reach. Traditional math
instruction reinforces this chasm between instructor
and student. At the other extreme, Carl Rogers re-
named his therapy from “Client Centered” to “Per-
son Centered” to eliminate all hierarchical distinctions.
While my students are confident that I know the sub-
ject matter, they don’t see me as that different from
themselves. When I arrive on Halloween as a math
magician, “The Wizard of Odds,” I am lampooning
my own position as hallowed font of all knowledge
mathematical. Each semester I register for some im-
possible math course at a nearby university so my stu-
dents can watch me struggle.

Back in MSO, I make it my goal to visit briefly with as
many students as possible each class. I also try to make
at least one mistake each class period. It’s hard for
students to get down on themselves for “stupid mis-
takes” when they see me making them. In the tutor-
ing portion of each class, every available board is in
use. I watch from the middle of the room although
my presence is intentionally peripheral. I pitch in as
needed, but whenever possible, I maneuver students
into peer tutoring situations. There comes a point mid-
semester when the class has passed into students’
hands. I can usually identify this as the day I arrive
ten minutes late and no one notices.

CONCLUSION
Most colleges offer some sort of math assessment test
to determine the appropriate level of study for new
students. These tests do not take into account human
factors that lead to math anxiety and lack of confi-
dence. PCM bridges that gap, dissolving anxiety and
increasing confidence so that students’ true math po-
tential can be realized.

PCM is not just a fun way to do algebra. All the strange
and different experiences have legitimate educational
objectives. They also serve to distract students from
their own worst fears. No hypnotic subject has ever
been able to identify the exact moment he or she en-
tered trance. It happens precisely because the subject
stops worrying whether it will. Distracted from de-
bilitating self-doubt, students are pleasantly surprised
to discover that they are actually doing and under-
standing mathematics. Once that attitude shift occurs,
they no longer need our course. In succeeding semes-

ters, they can create their own support systems and
learning networks to complement their improved
math self concepts.

ANSWERS TO RIDDLES
First Answer:  His wife had delivered a baby and died
of complications.

Second Answer: Billy and Maria were in a tunnel.  By
running away, Billy delayed by a few seconds being
run over.  Maria on the other hand, ran out the en-
trance of the tunnel, then jumped out of the way, just
before the train entereed and ran down her fleeing
friend.
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ADDENDUM: STATISTICAL COMPARISON OF PRE VS. POST
INTERVENTION AND INTERVENTION VS. CONTROL GROUP
The Math Success Orientation class (MSO) at Glen-
dale Community College (GCC) was designed to serve
students who performed at the college level in all ar-
eas but math. Because the course proved so success-
ful, MSO students were compared to a control group
who had graduated from the same high schools in
the same years and had comparable math assessment
test scores. While the control group could be matched
for age, gender, ethnic group, and prior math history,
the students who took Math Success began as a far
greater challenged math group. Whereas the control
group’s prior history included 52.7% already succeed-
ing with at least C’s in math courses, only 21.6% of
the pre-Math Success students could say the same. The
control group exceeded the pre-Math Success group
in percent of A’s, B’s and C’s.

The first chart compiles grades received by each group
in all required Algebra courses taken prior to the in-
troduction of Math Success to the campus. These
courses included Introductory, Intermediate and Col-
lege Algebra. The Algebra courses were taught by a
variety of instructors on campus who had no connec-
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PRE-INTERVENTION

Math Grades prior to
Semester of intervention A B C D F Y W
Control Group 2 10 7 3 2 3 9

5.6% 27.7% 19.4% 8.3% 5.6% 8.3% 25%
Math Success group 1 1 3 5 6 0 7

4.3% 4.3% 13% 21.7% 26.1% 0% 30.4%

(numbers in bold indicate highest percentage with grade)

The next chart compares the math grades received by
students during a semester in which they also took
Math Success, to the grades of the control group in

the same semester. Note that 58.9% of the Math Suc-
cess group passed with A’s, B’s and C’s compared to
only 36.3% of controls.

POST-INTERVENTION

Math Grades A B C D F Y W
Control Group 1 4 7 4 9 0 8

3% 12.1% 21.2% 12.1% 27.3% 0% 24.2%
Math Success 7 13 13 4 2 0 17

12.5% 23.2% 23.2% 7.1% 3.6% 0% 30.4%

(numbers in bold indicate highest percentage with grade)

The third chart demonstrates that when the percent-
age of change is calculated for both groups, the con-

trol group grades dip while MSO students’ grades rise
significantly.

PERCENTAGE OF CHANGE

Math Grades A  B   C     D      F       Y     W
Math Success Group +8.2% +18.9% +13.2%   -14.6%   -22.5%   0%      0%
Control Group -2.6% -15.6%  +1.8%    +3.8%    +21.7%  -8.3%  -.8%

(numbers in bold indicate highest percentage of increase)

Since the control group’s grades dipped in the post-
intervention semester we had to consider whether
they might represent some aberration and not be rep-

resentative of their typical grades. Therefore, the
fourth chart lumps together all math classes taken by
the control group before and after intervention, and

tion to the MSO course. MSO students chose their
Algebra courses independently and in most cases were
the only MSO student in that particular class. Grades
received in the one credit MSO class are not included in
these comparisons. The great majority of students in
both the control and Math Success group had been

full-time college students for no more than two se-
mesters prior to the intervention semester. Since the
total number of classes taken is not the same for
bothgroups, the percentages are the most important
statistics to note.
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PRE-INTERVENTION GRADES

A B C D F Y W
MSO (39 students) 4.3% 4.3% 13% 21.7% 26.1% 0% 30.4%
Pool (182 students) 10.4% 22.0% 18.1% 10.4% 15.4% 2.2% 21.4%

(numbers in bold indicate highest percentage with grade)

POST-INTERVENTION GRADES

A B C D F Y W
MSO 12.5% 23.2% 23.2% 7.1% 3.6% 0% 30.4%
Pool 9.8% 11.1% 16.5% 12.0% 17.3% 1.3% 32.3%

(numbers in bold indicate greatest improvement)

POST-INTERVENTION MSO VS. CONTROL GROUP IN ALL SEMESTERS

Math Grades A B C D F Y W
Control Through Spring 1997 5 16 6 8 13 3 25

6.6% 21.1% 7.9% 10.5% 17.1% 3.9% 32.9%
During Math Success 7 13 13 4 2 0 17

12.5% 23.2% 23.2% 7.1% 3.6% 0% 30.4%

(numbers in bold indicate highest percentage of increase)

Finally, we had to consider whether the entire control
group was somehow aberrant and not representative
of the pool from which it was taken. The final chart
lumps together all classes taken by all students in the
pool which consisted of the 182 non-ACE Plus, non-

Honor students who matriculated to GCC from the
same high schools in the same years, 1994 and 1995.
Honor students were excluded because ACE Plus does
not accept them into its programs, meaning that the
MSO group contained none.

SUMMARY OF RESULTS

1. MSO markedly improved grades in required al-
gebra courses.

2. Previously at-risk, low performing math students
improved to a level significantly higher than their
peer group.

3. Students in MSO classes improved their grades
from first to second semester while their peers
showed a marked drop in grades.

A FINAL NOTE
Ron Bell and colleague Dr. John Coles of Truckee
Meadows Community College presented Person Cen-

compares them to the Math Success group’s grades
received after the intervention. Yet again, the MSO stu-

dents fared significantly better.

tered Mathematics to the American Counseling As-
sociation at the 2000 national conference.

In the time since Bell wrote this article in 1997, he has
left the community college at which the program was
begun to become Counseling Faculty at Southwest-
ern Oregon Community College.  Even without Bell’s
constant guidance, the strong foundation of the course
has enabled it to have its availability expanded to ten
course sections under the name “MAT 108 Tutored
Math.” It is remarkable that the course has achieved
transfer level, considering that the courses it is de-
signed to support are not.



Mathematics and Cultural Diversity in the Curriculum 
Rick Gillman 

Department of Mathematics and Computer Science 
Valparaiso Universfty 

Author's Note: The following remarks were made to a uni­
versity-wide audience at the second workshop in a series of 
workshops on cultural diversity at the university and in 
the curriculum. The comments were made in May 1993, 
but they are as relevant today as they were four years ago. 

I would like to take a few minutes to talk about how I 
see mathematics fitting into the general discussion of 
multicultural and international diversity. When I at­
tended this workshop last year I was unsure of the 
role of mathematics in these efforts. So were many 
other people. But in the year since then I have come 
to a very clear understanding of its role. 

Mathematics has been and is part of every human 
culture. From the empirical geometries of the Egyp­
tians and Babylonians to the formal geometry of 
Greece and the dynamic geometries of the Navaho 
and Inuit Indians; from the stylized algebra of the 
Chinese to the manipulative algebra of the Arabs and 
the calculus of the Europeans, every culture has a 
mathematical heritage. Every culture does mathemat­
ics. 

Mathematics is a culturally based, human endeavor, 
but it has an importance that transcends its mere ex­
istence. In some sense mathematics forms a common­
ality across all cultures. Indeed, modern "western" 
mathematics is a truly international effort. It has a 
communication scheme transcending language bar­
riers. 

I currently am looking at the p roceedings of a confer­
ence held in Germany to honor a German mathema­
tician. There were 69 participants from 17 countries. 
The book, published in Germany with an introduc­
tion in German, is entirely in English. Viable and dy­
namic practitioners are found in every part of the 
world : China and Japan, the former SU, the Western 
Industrial Nations, Vietnam, Iran, Israel, Egypt, Bra­
zil and Pakistan, to name a few locations. 

Why should this be so? To quote Lynn Steen from On 
the Shoulders of Giants: 
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What humans do with the language of Math­
ematics is to describe patterns. Mathematics 
is an exploratory science that seeks to under­
stand every kind of pattern-patterns that oc­
cur in nature, patterns invented by the human 
mind, and even patterns created by other pat­
terns. 

Even more than being a language or being a science, 
mathematics is a way of thinking. People are think­
ing mathematicaUy whenever they do the following 
list of activities, taken from the document Everybody 
Counts by the National Research Council. 

Modeling: Representing worldly phenomena by men­
tal constructs, often visual or symbolic, that capture 
important and useful features. 

Optimization: Finding the best solution (least expen­
sive or most efficient) by asking "what if" and explor­
ing all possibilities. 

Symbolism: Extending natural language to symbolic 
representation of abstract concepts in an economical 
form that makes possible both communication and 
computation. 

Inference: Reasoning from data, from premises, from 
graphs, from incomplete and inconsistent sources. 

Logical Analysis: Seeking implications of premises 
and searching for first principles to explain observed 
phenomena. 

Abstraction: Singling out for special study of certain 
properties common to many different phenomena. 

So where does this get us? To quote the character of 
Mr. Escalante in the movie Stand and Deliver: "Math­
ematics is the great equalizer." 

The best indicator of salary ten years after high school 
graduation is the amount of mathematics studied. The 
ten best jobs in the United States-rated on salary, sta-
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bility, stress, and future-all need a mathematics back­
ground. 

To paraphrase Or. Marable, who spoke here on Mar­
tin Luther King Day: 

In the 1990s a new segregation characterizes 
American society: unequal access to education 
in mathematics, technologies, and sciences 
results in people being excluded from full sta­
tus as functioning, contributing members of 
society. This segregation is seen particularly 
among individuals outside the mainstream of 
American society-individuals from ethnic 
minorities, from rural areas, and among 
women. 

I would like to argue here that the issue is even greater 
than having individuals fit in the American society at 
large. I see mathematics as a great equalizer- a form 
of empowerment-even within the ethnic and racial 
cultures of the nation. In writing a paper for my Math­
ematical Ideas course, a student came to this same 
realization. He wrote: 
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.. .I was born in the inner-city called Gary, IN, 
the product of a broken marriage and a father 
that I never knew. I've seen all of the males on 
my fathers side go to jail, run away, or get 
killed ... In August I will become the first per­
son in the history of my family (on either side) 
to graduate from college. I will also become 
the first male on my father's side to do some­
thing legit (non-illegal), and no thanks to 
math ... By the time of my senior year in high 
school I was the top history student in my 
school. I soon went on to star in that category 
on our school's academic superbowl team. 
Subsequently, I was accepted into Valparaiso 
University, with no thanks to math. 

In high school I took algebra one, algebra two, 
and geometry ... For one thing the fact that I'm 
black basically excludes me from the "normal" 
American culture in the first place, so I don't 
need math to exclude me from a culture that I 
don't exist in. Secondly, math is not needed to 
be a part of the black community. And lastly, I 
don't need math to fulfill my obligation as an 
American citizen, because in my opinion 

blacks are not American citizens. 

Yet later in the paper he wrote: 

... When I first began writing this paper I was 
in a terrible funk, when concerning mathemat­
ics. But as I started writing my paper it be­
came increasingly difficult to think of new 
points against math, and this is when I real­
ized how immense my task was. In an attempt 
to gain further insight I asked one of my 
friends, Mr. Elliott Fourte, his opinion on this 
paper. Elliott told me that he couldn't give me 
any ideas on this paper for he thought that 
mathematics and life success were synony­
mous. He also told me that though I didn't feel 
that I've had a lot of math, that three years of 
math is a lot of math when looked at from a 
global and national standpoint. 

After thinking about his I've realized that I've 
failed to give math enough credit ... I've also 
come to realize that the statement "blacks don't 
need math" could be a cop out, and part of 
the reason that we as blacks are in our current 
situation could be attributed to a lack of sci­
ence and math skills. Blacks in America's eco­
nomic situation is very similar to that of third 
world coun tries, and the technology that 
comes from math and science seems to be the 
thing that separate the industrialized nations 
from the non-industrial. 

What then is the role of mathematics in a world of 
diversity? This role is obvious: it is to provide indi­
viduals with the tools needed to be empowered in 
their own culture, and to provide them with a com­
mon language that can, and does, transcend cultural 
barriers. 

How can mathematicians fulfill that demanded of 
them by their discipline? By the time an individual is 
old enough to attend college, he or she has acquired 
these tools, or it is frequently too late to provide them 
with the tools they need. It is therefore imperative that 
practicing mathematicians take a positive role inK-
12 mathematics education by participating in profes­
sional development and curriculum projects, as well 
as by working with young students themselves. 
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In Future Issues ... 

Michael E. Goldberg 
When Is a Math Problem Really "Real"? 

George W. Hart 
Loopy 

David Joyner 
Notes on Formal Constructivism 

Pat Kenschaft 
Pat's Prologues: Introductions to the First Nine Airings of Math Medley, A Radio Talk Show 

Lawrence Neff Stout 
Aesthetic Analysis of Proofs of the Binomial Theorem 

Humanistic Mathematics Network Journal E-mail List and Website 

The HMNJ has an email list which allows contact among the readers . To s ubscribe, send email to: 
listkeeper@hmc.edu with the message: "Subscribe HMNJ-L@hmc.edu" in the body of the email. After you 
have subscribed, to send mail to the list, write to HMNJ-L@hmc.edu and your email will be forwarded to 
everyone on the list. 

The HMNJ is also working on constructing a website. You can see what progress we are making at 
http:/ /www3.hmc.edu/ -jnelson. While it may be a while until the website is fully functional, we hope you 
will contribute your suggestions for improvements and ideas for functions to jnelson@hmc.edu. 
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