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Music and Mathematics

Roxanne Kitts
University of Wisconsin
Oshkosh, 54901 WI

INTRODUCTION

As a child, music played a big role in my life. My fa-
ther is a musician, and he tried to expose my brother,
sister, and me to as much music as possible. Each of
us was given the opportunity to play a musical in-
strument and encouraged to perform whenever given
the chance. Although my brother and sister excelled
with their instruments, I chose not to continue with
lessons after the seventh grade. I enjoyed music im-
mensely, but playing a musical instrument was really
not my forte. In high school, I found something else
that made me get excited: Mathematics. I enjoyed it
so much that I decided to major in it when I went to
college. Now I am here, and both music and math-
ematics continue to play a big role in my life. Instead
of playing a musical instrument, I listen to music while
doing my mathematics.

This semester I was given the opportunity to do an
independent study in the mathematics department
focusing on any topic that I desired. I now had a
chance to combine two driving forces in my life, and
to try to find some connection between them. I chose
to investigate the relation of music and mathematics.

The focus for this paper is to find the commonalities
between music and mathematics, with the hope that
beauty will abound within this connection.

NOISE VS. MUSIC

First, we must establish that noise and music are two
different entities. As defined in the tenth edition of
Merriam Webster’s Collegiate Dictionary, noise is a sound
that "lacks agreeable musical quality or is noticeably
unpleasant” [5]. The same dictionary defines music
as "the science or art of ordering tones or sounds in
succession, in combination, and in temporal relation-
ships to produce a composition having unity and con-
tinuity" [4].

Sound waves are produced by vibrating matter. The

sound waves produced by irregular vibrations in
matter are called noise, whereas the sound waves pro-
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duced by regular vibrations in matter are classified as
musical sounds. These regular vibrations are the
simple harmonic motion that can be represented
graphically by adding a sufficient number of sine
waves [1] (see Figure 1). Jean-Baptiste Fourier is the
man credited for this discovery. The frequency of the
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vibration determines the pitch of the musical sound,
represented on the graph by the number of waves per
unit time. The wave's amplitude, which indicates the
intensity of the sound, is represented by the height of
each crest.

A Fourier representation of a sound would consist of
a series of simple, regular sine waves that, when
added, represent the sound being analyzed. As the
number of individual sine wave graphs increases, so
does the complexity of the sound. Fourier analysis is
useful for describing long, regular sounds in a very
concise way [7].

Fourier, who studied mathematical vibration analy-
sis circa 1800, knew that there was a flaw in his repre-
sentation. He realized that a sound could not exist
unchanged unless that sound was infinite in its dura-
tion. Because musical sound has a beginning and an
end, the graphical representation of that sound must
also be discrete [8]. Fourier analysis fails to repro-
duce accurately the timing of a sound when focusing
on its pitch [7]. That is, there is a problem determin-
ing the time when a particular sound occurred.



It is now possible to represent both the pitch and the
timing of musical sounds, thanks to Ingrid
Daubechies. Daubechies uses a method that breaks
down complex signals into what are called wavelets.
The length of each wavelet represents the pitch of the
sound -- the higher the pitch, the briefer the wavelet.
Unlike Fourier representation, wavelets have no re-
dundancy. With redundancy comes unnecessary in-
formation needed for reconstructing a sound. When
using wavelets for analysis, "each wavelet is an es-
sential component of the complex signal it represents"”
[7]. Wavelets are not only useful for representing
sounds heard individually, but they are so precise that
they can be used to single-out sounds in a graph of
several simultaneous sounds.

Research in this area is very new. Because of this, the
information regarding waveless is limited. Keep your
eyes open; information on this topic is bound to ex-
plode!

HARMONY OF MUSIC

Its Frequency, Intensity, and Duration

As many of us may know, Pythagoras is the man cred-
ited with being the first to discover the relationship
between musical harmony and mathematics [2]. It
all happened one day, or so the story goes, when
Pythagoras was considering whether it was possible
to systematize musical sounds. He thought: sight is
made precise with tools like the compass and ruler,
as is touch by measures and balances. While think-
ing about this, he passed by a brazier's shop where he
heard hammers beating on a piece of iron. Some
sounds produced by hitting the same piece of iron
were harmonious; others were not [3].

Later, after considering what he heard, Pythagoras
went back to the brazier's shop to investigate how
hammers beating on the same piece of iron could pro-
duce harmonious sounds. He discovered something
astounding! When comparing the hammers, he found
that they were of different weights. There was a six,
eight, nine, and twelve pound hammer. When using
the six and twelve pound hammers together, where
the first hammer was half the weight of the second,
the sound was harmonious. Harmony resulted when
using the eight and twelve pound hammers together
as well. But the hammers that were eight and nine
pounds, when used together, produced a sound that
did not harmonize [3].
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The relationship between the weights of the hammers

and harmonious sounds can be represented by using

any musical instrument. For ease of explanation, I

will discuss the representation in reference to a

stringed instrument. The procedure is as follows:

1. A single stretched string vibrating as a whole pro-
duces a ground note. The frequency of the vibra-
tion determines the pitch of the musical sound.

2. Allow only half the string to vibrate, and the pitch
will rise an octave above the ground note.

3. Allow 2/3 of the string to vibrate, and the pitch
will rise a fifth above the one produced by the to-
tal length.

4.3/4 - tone is a fourth higher.

5.8/9 - tone is a whole step higher.

etc.

If the still point on the string, called the node, is not at
one of these exact divisions, the sound is discordant.
As we continue to divide the string, the fractions be-
come more complex, and the two notes represented
by the resulting intervals become more dissonant, or
unpleasant, when they are sounded together. The
smaller the whole numbers in the fractions, the more
consonant, or pleasing, the sound is [2]. This is the
reason Pythagoras felt that the six and twelve pound
hammers sounded harmonious together, but the eight
and nine pound hammers did not. Eventually, the
fractions of the vibrating portions of the string became
expressed as ratios. For example, the octave was ex-
pressed as a ration of 1:2.

The frequencies of intervals between the tones of a
musical scale can also be represented as a ratio. The
frequency of middle C is 261 cycles per second. The
ratio of | : 2 describes the interval of an octave, so by

doubling that frequency, we obtain a note defined by
522 cycles per second, or C one octave above middle

The chromatic scale, used in western music, consists
of twelve intervals. Because of this, each tone in the

scale has a frequency ratio of 13/2 ~ 1.0595 to the next
tone (where the two comes from the ratio of an oc-
tave). It is with this ratio (] . 2/2) that frequency in-

tervals are spread equally over the twelve tone inter-
vals of the octave. The break down of one octave is
shown in Table 1. Because all twelve tones are neces-
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sary to construct musical scales, we can now find the
frequency of any note in any octave [1]. The intensity
of a tone is determined by the rate at which sound
energy flows through a unit area. Intensity can sim-
ply be thought of as the loudness of a tone. The dura-
tion of a tone refers to how long a tone exists. With
these three properties specifically stated, a musical
sound can be duplicated.

ANALYSIS OF A COMPOSITION

When writing a piece of music, composers usually do
not write a mathematical function and then compose
the piece around the function. Instead, the composer
might hear music in her head and then record that
thought on paper. Whatever the process, I believe it
is safe to say that mathematics is generally not the
motivation for a composition. What is amazing is the
fact that music is very organized. We have seen how
harmony is made. We understand the idea of conso-
nance and dissonance. Now let us investigate the
mathematics of a composition.

First, let us look at a single, generic sound. Our sound
will be an event that is considered as a whole and will
be considered neither pleasant nor unpleasant. We
can consider the abstract relations within the event or

Nots Aggfgxﬁl?;n
middle C 261
cHDe 276.5199
D 292.9626
D¥/E? 310.3831
E 328.8394
F 348.3932
FHGe 369.1087
G 391.0581
Gf/A® 4143117
A 438.9479
Ax/B® 465.0491
B 492.7024
C 522

Table 1
Notes and Frequency Approximations of an Octave
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between several events, and the logical operations that
may be imposed on them. Our event will be denoted
as q.

Properties :

1. If the sound is emitted once, all we have is its single
existence that appears and then disappears. Here,
we only have q.

2. If the sound is emitted several times in succession
and compared, all that we can conclude is that they
are identical.

Now we can say that repetition implies the no-

tion of identity, or tautology:
avavav..va=a

where v/ is the logical operator "or", disregarding

time.

3. Modulation of time imposed on the sound.

When the element of time is considered, our sound
takes on new meaning. Instead of just a sound, we
now have potential for a code. For example, the Morse
Code is an emission of a single sound that varies in
duration. It is the duration of the sound, rather than
the sound itself, which gives meaning to the code. For
this reason, we will disregard the modulation of time
and consider the case of two or more generic sound.

Let g, p,and ¢ be distinct, easily recognizable sounds
(a#b+c)

Properties :

l.avb=bva
Since time is not considered, our events are com-
mutative.

2.(avb)ve=av(bvce)
If we combine two elements, the combination can
be considered as forming another element, or an
entity, in relation to the third. This combination
will allow our events to be associative.

When we exclude the time factor in composition, we
end up with the commutative and associative laws of
composition outside-time [9]. If we do consider the
element of time (denoted with the logical operator T),
then the sonic events, when played in

succession, have a new meaning.

aTh = bTc

The comutative law no longer holds. Because our
events are distinct and easily recognizable, it follows
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that g played before  sounds different from p played
before a.

With these properties of sound, we can now investi-
gate the concept of the interval. As defined in the
Norton/Grove Concise Encyclopedia of Music, an inter-
val is simply "the distance between two pitches" [6].
An interval is described according to the number of
steps between notes, inclusive. For example, from C
up to D, the interval is a major second. From G down
to C, the interval is a perfect fifth.

With this in mind, let us consider a set of pitch inter-

vals, P= ( j ), and the binary relation > mean-
ing greater than or equal to.

Then:

lL. p2p,VpeP
- reflexive

2. p, 2 p, # Py 2 P, €xceplt for p, = p,
- antisymmetric

3. PaZPy APy 2P > P, 2P,
- transitive

So, the set of pitch intervals, p, with the binary rela-
tion > ( p, >), forms a partially ordered set.

The ultimate goal of composers, let us assume, is likely
to be the ability to share their musical inclinations with
others. To do this, a composer must tell the musician
exactly what she is thinking or hearing in her head.
In order for a musical sound to be duplicated, all as-
pects of that sound must be considered. These as-
pects include frequency (pitch), intensity, and dura-
tion. With these three elements correctly combined,

any musical sound can be constructed and repeated.
In this case, the number 3 is irreducible.

Structure
When considering the set of pitch intervals, we are

forced to consider the structure within that set. If p,
is a pitch interval going from C up to D (a major sec-
ond), and p, is a pitch interval going from D up to F
(a minor third), then a third element, p_, can be made
to correspond when combining p, and p,. The ele-
ment p_would then be a pitch interval going from C
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up to F (a perfect fourth). Xenakis refers to this as the
"law of internal composition” (consecutive pitch in-

tervals, p,, p, € P, can be made to correspond to a
third pitch interval, p. € P, by the composite of p,

by p, and is denoted as p, + p, = p_) [9]. With this in
mind, and once again disregarding time, we can say:

1. The law of internal composition for conjuncted in-
tervals is addition.
2. The law is associative:

(Pa+Py)+ P =pu+(p, +P.)
3. Vp, € P, dp, € P, a neutral element, such that:

PotP, =P, tPy =P,
4. Vp, € P, 3p. € P, called the inverse of p,, such
that:

PP, =P, +P, =Dy
5. The law is commutative:

P, TP, =D+ P,

These five axioms hold for pitch outside-time. This
example of pitch intervals can be extended to inten-
sity intervals and durations, the other two fundamen-
tal factors of musical sound. It should be noted that
the sets form an Abelian additive group structure.

So far, it has been established that the idea of sound
possesses a structure outside-time. The element of
time forms a temporal structure. When we combine
these two structures, the result is a structure in-time,
or an actual composition.

Before considering a musical composition, let us first
consider the notes that a composer uses. The only
limitation imposed on what notes and in which oc-
taves are usable is with the instruments that the com-
poser chooses to use. If the piece is written for a bas-
soon, then only the notes in the available octaves can
be used. The composition would not be written in
the same octave as, say, the upper register of a pic-
colo.

APPLICATION
For a composition with one instrument
Let

R= {aH the notes of a particular instrument |

A= {a certain choice of notes of the instrument |

Humanistic Mathematics Network Journal #14



B= {anorher choice of notes of the fnstrumenr}
Where 4 and B are subsets of the universal set R.

If we firsthear 4, and then g, and then compare the
two sets, we can establish some relationships between
them.

1. If certain notes are common to both sets 4 and 3,
the sets intersect (see Figure 2a).

2.If no elements are common between the chosen sets,
they are disjoint (see Figure 2b).

3.1If all the elements of B are common to one part of
B, then our set B is included in 4 (see Figure
2¢).

4. If all the elements of 4 are found in B and all the
elements of B are found in 4, then the two sets
are indistinguishable, or equal (see Figure 2d).

Now that we understand the basic relationships be-
tween sets, we can investigate a method of creating
new sets given existing sets. When we choose 4 and
B so that they have some elements in common, we
can then establish those new sets.

1. If we hear the notes in common between 4 and 3,
we are using the operation of intersection (con-

common elements:
A-BorB-A4
2.If we hear the notes of both sets and interpret them
as a mixture of the elements of 4 and B, we have
a new set formed using the operation of union

(disjunction):

A+Bor B+ A4
This set consists of all the elements of set 4 and
set B.

3. If we are allowed to hear all the notes in our uni-
versal set R except those of 4, then we have a
new set defined by the negation 4 with respect
to R:

A
4. In music, there is another set which is represented

by silence. This set is equivalent to the empty set,
and is called a rest.

With a proper choice of notes for each set, and a proper
grouping of these sets, we can write a mathematical
function to represent a composition. When given three
sets, 4, B,and ( we can write a Boolean function in
the form called disjunctive cannonic:

8
Z ok,
i=1

junction) to form a new set consisting only of those  yhere,
A B A B
R R
a b
A A B
R R
C d
Figure 2

Relationships Between Sets
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o =01

i

and

k=A4-B-C,4-B-C,A-B-C,A-B-C,AB-C,4A-B-C,4-B-C,4-B.C

A Boolean function can always be written in a way
that brings a maximum of operations using (+), (.),

and (), equal to 3,.2"2 _1, where » is the number
of sets Dbeing wused. In this
3.3.2°2-1=9.2-1=17 9]

case,

v

Figure 3
Example Venn Diagram

For example, if we use the function:

F=A-B-C+A-B-C+A4-B-C+4-B-C
we will notice that 17 operations are being used. The
Venn diagram representing this function is shown in
Figure 3.

Of course, we can simplify the original function to
obtain a function that only requires 10 operations:

F=(4-B+4-B)-C+(4-B+4-B)-C
but by doing this, we will change the procedure in
the composition.

I must stress that this mathematical model deals only
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with which notes in a composition are played. It does
not deal with other variables such as intensity or du-
ration.

Figure 4
Challenge Venn Diagram

Finally, I leave you with the following.

Let
4={A,B,C" G|
B:{B,C**,D,E}
C= {B, E,F”,G}
and let
2% 4. B:C+2*%4.B-C+2*A-B-C+2*4. B C+
2*4.B-.C+2*A-B-C+2*A-B-C+2*A-B-C+
F_z*Z-B-C+2*Z-B-E+2*A-B-hzm-s-m
2% 4.B-C+2*A-B-C+2*A4-B-C+2*A-B-C+
2¥*A.B-.C+2*A-B-C+2*A4A-B-C+2*4-B-C+

2¥A-B-C+2*A-B-C+2*4-B-C+2*4-B-C

where 2 * means that a certain note is played twice,
sequentially, and + is the transition from one note to
another. The corresponding Venn diagram is shown
in Figure 4.

Here is the challenge: Interpret the function (deter-
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mine the sequence of notes), and give the interpreta-
tion to a musician. Ask her to play it, and try to name
that tune!
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The Humanistic Mathematics Network
has organized a panel at the San Diego
Joint Math Meetings.

Saturday, January 11, 1997, 2:30 - 3:50 PM.

"Art, Literature, Music and Math: Degrees
of Similarities."

Speakers will be Annalisa Crannell,
Leonard Gillman, JoAnne Growney:.

Moderated by Alvin White.
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