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Abstract

The purpose of this paper is to create an easily understandable version

of the Ho-Lee interest rate model. The first part analyzes the model in

detail, and the second part calibrates it to demonstrate how it can be

applied to real market data.
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1 Introduction

The goal of this paper is to present an exposition of the Ho-Lee [8] model. Many

financial models are written with some barrier to entry as a reader because

they are written with an expectation that the reader has a certain level of

understanding of math and finance. When I first read tHo-Lee I understood it

on the surface, but was confused about many facets and so I didn’t feel like I

really knew the model. In this paper I simplify and expand on the topics Ho and

Lee merely brush over so that almost any reader may thoroughly understand

the model. I do not actually add anything new to the model, I just rephrase and

explain things in deeper detail in order to fill the background in the places where

it is assumed the reader knows that background. Unfortunately the barrier to

entry to add to the field of derivative and interest rate models is extremely high.

Several of these more complex topics are developed fully in the appendices so the

interested reader may read them at his or her discretion. I begin in Section 2 by

discussing other financial models and how Ho-Lee is di↵erent from other interest

rate models. In Section 3 I give a foreground to binomial pricing models with

the original, the Cox-Ross-Rubinstein [5] model, and then give a background

into stochastic processes. In Section 4 I interpret the Ho-Lee model and then

in Section 5 I apply the model to real interest rates.

2 Option and Interest Rate Models

The first widely used mathematical model of derivatives was developed in 1973

through the publication of the Black-Scholes-Merton (Black-Scholes) [3] model,

which priced stock options. The model was quickly followed by many derivative

and interest rate models hoping to improve on the holes in the models that pre-

ceded them. One of the shortcomings of the Black-Scholes model is that they
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use a constant interest rate, something that is never seen in practice. In 1977

Vasicek [10] created a model specifically applicable to interest rate structures.

Like Black-Scholes, and every subsequent model attempting to price derivatives,

it is based on the assumption of no interest rate arbitrage. With no arbitrage

it must be shown that all of the assets are priced appropriately so there is no

opportunity for one to be able to lock in a risk-free profit. It follows then that

nobody should be able to play one instrument o↵ of another in order to lock

in a risk-free profit. This model was followed by the Cox-Ingersoll-Ross (here-

after CIR) (1985) [4], Ho-Lee (1986) [8], Heath-Jarrow-Morton (hereafter HJM)

(1987) [7], Hull-White(1990) [9], Black-Derman-Toy (hereafter BDT) (1990) [2],

and a few other models. With many models all trying to create a way to model

interest rate contingent claims, I propose to choose a model and analyze it

deeper to understand where it breaks down when applied to real markets. Here

I will focus on the Ho-Lee [8] model specifically so that it can be matched up

and compared to the other similar models. This will help us understand the

methods specific to Ho and Lee.

While Black-Scholes1 may have been the first to model put and call options,

only a few years later a model was written that was more useful for many real

work applications. Cox-Ross-Rubinstein (CRR) (1979) [5] is a binomial options

pricing model. This binomial lattice structure is the discrete time version of

the continuos time Black-Scholes model2 with a set number of periods. In

each period leading up to the expiration date, the spot price could go up some

predetermined amount or it could go down the predetermined amount. What

made this model more useful compared to Black-Scholes was that, because of

1A mathematical model theoretically estimating European options, one that can only be
exercised on the expiration date. The model assumes no arbitrage and depends on the volatil-
ity of the underlying asset, spot price, risk free rate, strike price, and time to maturity.

2While discrete time can only take certain values, continuous data can take any value within
a certain range. Thus the probability of getting a certain value in discrete time may have a
positive probability if it is in the probability space, yet in continuous time the probability of
attaining any specific value is always zero.
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its ability to model the underlying asset over a period of time, it did a much

better job of valuing American options. Unlike European options, which can

only be exercised at their maturity, American options can be exercised at any

time leading up to it. The European option is a lot simpler because one must

simply estimate the price on the expiration date; whereas, since the American

option can be exercised at any time leading up to the expiration date, one must

consider the value of exercising the option at all possible times. While the CRR

model is a discrete time model with distinct number of periods, it allows an

estimation of the value of an option by shrinking the size of the time period to

as small as one desires. This versatility gives the CRR model a comparative

advantage over Black-Scholes when valuing certain derivatives.

Ho-Lee [8] did a similar analysis to CRR and created a binomial pricing of

interest rate contingent claims. This was a stochastic, normally distributed,

single factor, short rate interest rate model theoretically applicable to all sorts

of interest rate derivatives. The binomial lattice structure is based on the simple

case that there is a chance that in the next period the price of the bond will

move to the upstate and a chance that it will go to the downstate. If there is

no risk in the economy then we can say for certain that the price of the bond

should be the same in both states. Of course in the economy we know this to

never be true. To account for the movement, some perturbation functions are

defined for each of the two states that allow one to calculate the forward rate.

We know the interest rate will deviate from our estimation; we just do not know

by how much. These perturbation functions are what keep this model arbitrage

free. In a no-risk environment with no arbitrage we can safely assume that the

interest earned on a bond with maturity T + 1, r
T+1, is the same as the interest

earned on a bond with maturity T, r
t

, plus the interest earned on the one-year
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bond, r1, or the risk free rate:

(1 + r

T

) ⇤ (1 + r1) = (1 + r

T+1)

From here we can work backward using the lattice to price a bond with maturity

T at any discrete time n. The important factor then is that there is an implied

binomial probability ⇡ of moving either to the upstate or to the downstate,

which is reflected in the price just as there is the implied volatility found in the

Black-Scholes model [3].

Before arbitrage-free models all of the interest rate models were known as

equilibrium models. The equilibrium model follows the idea of supply and de-

mand. In the basic model we are taught in economics courses we graph the

price vs. the quantity of a certain good. The result is an upward sloping supply

curve and a downward sloping demand curve that meet at a point we call the

equilibrium. With interest rates the equilibrium is the interest rate such that

at that rate the total amount of money banks and other groups are willing to

lend is equal to the total amount of money that people want to borrow. This

equilibrium can either be stable; i.e. following a shock the interest rate will

return to the equilibrium, or unstable; i.e. following a shock the interest rate

will move away from the equilibrium. The largest problem with this model,

and the reason that other tactics were used in subsequent models, is that it

requires some knowledge about the preferences of the market participants. To

figure out the supply and demand curves we would need to somehow get the

risk preferences of both sides of the market. Another issue is that these models

have a large number of parameters. The Ho-Lee model is much more flexible

and allows calibration with observed market prices.

While Ho-Lee was the first arbitrage-free interest rate model3, many more

3The Vasicek (1977), Cox, Ingersoll, and Ross (1985) and other previous equilibrium in-
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have been created since; some of these models are just variations and others are

quite di↵erent. In those models, Ho-Lee is mentioned as a starting point but

then each one tries to fix one of the flaws found with the Ho-Lee model. One

issue with Ho-Lee is that it is possible (i.e. there is a positive probability) that

the model could produce a negative interest rate. In the real world the interest

rate should never sink below zero because individuals always have the option to

withdraw money and hold it in cash with an interest rate of zero. This happens

because the short rate follows a normal distribution which, as time goes to 1

will eventually give a negative result. BDT [2], another one-factor stochastic

binomial model, corrects for this by using a lognormal distribution, instead

of the normal distribution4. This means that instead of the short rate being

normally distributed, the logarithm of the short rate is normally distributed.

Another correction that BDT makes is that while both still have a constant

interest rate, BDT allows for mean reversion. The idea is that while interest

rates can be quite high and quite low, over time the interest rate should approach

the mean. Hull-White is another example of a single factor, lattice model which

is better for pricing future interest rates, giving it the ability to value financial

instruments like interest rate swaptions, the option but not obligation to enter

into an interest rate swap.

Up until now all of the models mentioned have been single-factor models,

based on the short rate. An issue with that is that volatility is, by nature, not

fixed. Besides the general downward movement as the maturity approaches due

to the fact that there is less time for the price of a bond to fluctuate extremely,

there are event driven swings in interest rates that cannot be e↵ectively cal-

culated in the model with a constant rate. HJM[7] is a multi-factored model

terest rate models were the origin of arbitrage-free models, but fell short in that they require
the preferences of all participants in the market in order to model.

4Whereas in the normal distribution we say that our random variable, X, is distributed
normally, in the lognormal distribution the log of our random variable, log(X), is distributed
normally.
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using many di↵erent Brownian5 motions to model not just the short rate, but

also volatility and other factors. This much more complicated model actually

uses Ho-Lee as a starting point, but evolves their discrete time binomial process

into a continuous distribution. Unlike Ho-Lee though, HJM is not a Markov

chain. A Markov chain is a random process that is specifically characterized as

memoryless, meaning that the following state only depends on the current state

of the Markov chain and not any of the previous states:

P (X
n+1 = j|X0 = i0, X1 = i1, .....Xn

= i

n

) = P (X
n+1 = j|X

n

= i

n

)

Some assets are considered to be Markovian in that they take a random walk,

while others are thought to have momentum from past movement and are thus

non-Markovian. The problem with HJM being non-Markovian is that this means

it is path dependent [7]. This becomes extremely complicated when attempting

to model it because you have to keep track of all the previous data. Also,

because it is in continuous time the state space is enormous so as the model

grows over time as the previous data goes to infinity.

Research to improve upon these interest rate models is constantly being

done. Unfortunately, unlike with many other areas of research, academia is

not necessarily at the forefront. Instead, large financial firms like Goldman

Sachs, Morgan Stanley, etc. have their own arms for financial research and

development. It isn’t until many years later that these models reach the public.

For example, Black, Derman, and Toy all worked together at Goldman Sachs to

create their model beginning in the early 1980’s, but it was not published until

1990.

In 1993 Bjorn Flesaker tested a version of the Ho-Lee model, but in con-

5Brownian motion was originally discovered through the observation of the collisions be-
tween suspended particles in a liquid or gas. We can model Brownian motion via a Wiener
process, W, which is a continuous random walk. Many economists equate the movement in
stock prices to a type of Brownian motion.
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tinuous time rather than its creation in discrete time [6]. He tested the simple

case where there is just a single Brownian motion with a constant volatility.

He found that the constant volatility inhibited the Eurodollar futures options

he attempted to model. While the interest rate in the tested model follows a

stochastic process, there are other factors in the model, like LIBOR6 for exam-

ple, Fleskar believes might follow a stochastic process as well [6]. What he and

many economists have found is that while modeling one variable stochastically

is viable, it rapidly gets quite complicated for someone to actually test a model

with many such random variables. Even though Ho-Lee, HJM, BDT, and oth-

ers were successful in advancing the financial world through their innovation

in interest rate models, work is still being done to improve them and in this

paper I attempt to examine why this process has not stopped. In a competitive

industry where more accurate modeling means more profits it seems clear that

there is no visible end or even “right” answer in the future.

3 Background

3.1 Cox-Ross-Rubinstein

The Cox-Ross-Rubinstein (CRR) model of options was the first binomial options

pricing model. Originated in the late 1970’s, this model simplified the process

by assuming that the price of an option today could only be one of two values in

the next period. The idea was that the spot price of the underlying asset would

go up with probability p and down with probability 1 � p as seen in Figure 1

above.

This model also introduced no arbitrage pricing into options. The basic idea

is that a riskless portfolio must just earn the risk-free rate. If a portfolio man-

6LIBOR stands for the London Interbank O↵ered Rate. Each morning the largest banks
in London give the rate at which they would charge for another bank to borrow from them.
These numbers are averaged and then published by Thomson Reuters.
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Figure 1: Cox-Ross-Rubinstein Binomial Tree

SpotPrice

upstate

downstate

u ⇤ u

u ⇤ d

d ⇤ d

p

1-p

p

1-p

p

1-p

ager could guarantee a risk-free profit then there must have been an arbitrage

opportunity. We will see that this is also true in the Ho-Lee model, because of

this no-arbitrage condition, so the price of an underlying asset after going to a

downstate followed by an upstate must equal the price of that underlying asset

after going to an upstate followed by a downstate. The simplicity of this model

mathematically makes it easy to understand; yet it is actually quite accurate

and still used extensively today.

3.2 Stochastic Processes

A stochastic process is a collection of random variables which are observed over

time. In regular probability we might look at something like a coin flip which

can either be heads or tails. If we flip a fair coin only once and have Y be

the random variable equal to either heads or tails, then we say Y is distributed

Bernoulli with parameter p = .5, Y ⇠ Bernoulli(.5), because there is an equal

chance of getting heads or tails. Now let us say that we flip that coin 100

times and let X be the random variable equal to the number of heads then
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X ⇠ Binomial(100, .5) where n = 100 and p = .5. While we are now flipping

the coin many times, this is still not a stochastic process because it is not at all

time dependent. We would get the same expected value of X, 50, if we flipped

5 coins now and 95 coins tomorrow. Instead, we can have a binomial process

that we observe over time, called a Markov Chain.

A Markov Chain is a discrete time stochastic process such that the condi-

tional distribution of the future state Y
n+1 given all past states Y0, Y1, Y2, ...Yn�1, Yn

depends only on the current state Y
n

. As seen above, in the CRR binomial tree

we can arrive at on of a number of nodes. Ending up in that node only depends

on the state before it. For example, for us to end up at the node u ⇤ d (an

upstate followed by a downstate or a downstate followed by an upstate), it’s

not important what has happened in the periods before as long as in the pre-

vious period we are currently at the node “upstate” or the node “downstate”.

Markov chains are used quite frequently because of this nature of randomness.

The di↵erence between this stochastic process and the simple binomial case we

presented is clear. Unlike in the example above with coins, it is now important

when the coin is flipped and not just how many times.

4 Ho-Lee

4.1 Introducing the Model

The Ho-Lee model is an attempt to price interest rate contingent claims. Com-

mon ones include interest rate options, callable bonds (which is a bond that

allows the issuer to retain the right to redeem the bond at a point prior to the

maturity), floating rate notes (an instrument that is tied to a floating interest

rate like the LIBOR), etc. In this section we look at the model from simply a

mathematical point of view and see how it functions. To begin, we must account
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for the assumptions that are used in the model:

1. The theoretical market is frictionless. As a consequence we are assuming

that there are no taxes, no transaction costs, and all securities must be

perfectly divisible. This means that while our cash system can only be

precise to the penny, the amount and price of these securities can be any

real number.

2. The market clears. This means that the entire supply of the security is

sold, at discrete points in time separated by constant intervals. In this

case we focus on zero-coupon bonds with maturity T that pay the face

value of $1 at the end of the Tth period.

3. This theoretical bond market must be complete. This means that for every

maturity n (n = 0, 1, 2,...) there must be an available bond in the market.

4. At each of the maturity times n there are a finite number of states i, where

i ranges from 0 to n. The equilibrium price of a bond in state i, at time

n, with maturity T is represented here by P

(n)
i

(T ). This is also known as

the discount function.

We also know that since P (n)
i

(T ) is the value of an asset, P (n)
i

(T ) > 0 for all

values of T. Similarly, since the value of a bond that is purchased instantaneously

before the maturity date must be equal to the face value, we have P

n

i

(0) = 1

for all i and n. Lastly, as the maturity of a bond goes to infinity, the gain for

the buyer would be insignificant:

lim
T!+1

P

(n)
i

(T ) = 0 for all i,n

Like the Cox-Ross-Rubinstein model of options, the Ho-Lee model is a bino-

mial lattice. We begin here with the price of a bond at period n = 0 and state
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Figure 2: Ho-Lee Binomial Pricing Tree
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(2)
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P
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i = 0. One period from now, n = 1, we can either go to the upstate where i = 1,

or to the downstate where i = 0. As we will see later, there is some probability

p, 0 < p < 1, that the price of the bond will go to the upstate and a similar

probability 1 � p that it will go to the downstate. This follows into the future

until the bond matures in T periods. During that period we will have T + 1

states ranging from i = 0 to i = T . Figure 2 below is a representation of what

the binomial lattice would look through two full periods.

With this model we can see that the closer in time we are to maturity, the

more certain we will be about the bond price as the number of potential future

nodes shrinks. Conversely, the variation gets large quite quickly when we are

far from our maturity. A bond with maturity N will have 2N possible paths

and the bond could end up in
NP
i=1

i di↵erent nodes along the way.

4.2 Defining Ho-Lee as Arbitrage-Free

The specific bond structure used in the Ho-Lee model is what’s known as an

arbitrage-free model. As mentioned above this means that there must be no
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opportunities for an investor to lock in a risk-free profit. In this model this is

combated by assuring that the price of a bond that goes to the upstate followed

by the downstate will by the same price as a bond that goes to the downstate

followed by the upstate. In the tree above this is why the node n = 2, i = 1

can be accessed by both period one nodes. If they were di↵erent then one could

lock in a risk-free profit by borrowing money at one rate and lending money at

the other rate. Thus we can can say,

P

(n+1)
i

(T ) = P

(n+1)
i+1 (1) =

P

(n)
i

(T + 1)

P

(n)
i

(1)
(1)

The equation above is taken from theory in financial markets where there is

no risk in the short rate. For example, if we are given an interest rate for the

next nine years, r9 and a short rate r1, then we can theoretically equate that to

the ten-year interest rate from the equation (1 + r9)9 ⇤ (1 + r1) = (1 + r10)10.

For this case specifically we look at the price of a bond in one time period after

today. Remember that Ho-Lee is a short rate model; it attempts to describe the

price of bonds related only to our knowledge of the one period rate. Equation

(1) tells us that the price of any T period bond one period from now should be

the price of a T +1 period bond one period longer, yet valued today, divided by

a 1 period bond, valued today as well. This makes sense because theoretically, if

we knew the future of the short rate, we should be just as equally content given

a 1 period bond today and then given a T period bond tomorrow as just given

a T +1 period bond. If we bring the 1 period bond from today to the following

period, we see that it becomes a 0 period bond, or equal to 1 since P

(n)
i

(0) = 1

for all i and n. If we brought forward the T +1 period bond to the next period,

P

(n)
i

(T + 1), we would see that n ! n + 1 and T + 1 ! T , as seen in Figure

2, and we would just be left with P

(n+1)
i

(T ). In real markets, though, there

will be some sort of discrepancy between the predicted future price and the
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actual future price. To combat this, Ho-Lee define two perturbation functions,

unknown of course, that will account for this deviation, one for when the bond

goes to the upstate, h⇤(t), and one for when the bond goes to the downstate

h(t). Thus the equation above will actually be:

P

(n+1)
i+1 (T ) =

P

(n)
i

(T + 1)

P

(n)
i

(1)
h

⇤(T ) (2)

and

P

(n+1)
i

(T ) =
P

(n)
i

(T + 1)

P

(n)
i

(1)
h(T ) (3)

In the actual modeling of Ho-Lee one must calibrate, as done later, to determine

what these perturbation functions actually are. Earlier it is stated that for any

bond, P (n)
i

(0) = 1 for all n and all i since that is the moment the bond matures.

Substituting T = 0 into equations (2) and (3) above, we see that P (n)
i

(0) = h(0)

so

h(0) = h

⇤(0) = 1 (4)

4.3 Recursive Structure

In order to use this model we must be able to determine the price of a bond

at any node of a T period bond today. We can use equations (2) and (3) to

recursively go backward until we have an equation. We could pick any n,i but

let’s look at the case where n = 3 and i = 2. This means that we are in period

3 and in state 2. Remember that in order for the model to be arbitrage free,

it must be true that the results of the calculations along any of the paths on

the tree that we take back from a node to today must be equal. It turns out

that there are 3 di↵erent paths we could take going from today to period 3 state

2. We can either go to the upstate, followed by another upstate, followed by a

downstate or an upstate, followed by a downstate, followed by an upstate, or
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lastly a downstate, followed by an upstate, followed by an upstate. All three of

these paths are equivalent should this be a truly arbitrage-free market.

As we expand our tree to more and more periods, it becomes noticeable that

there is a pattern with the number of ways to reach a certain node. Taking any

node with period n and state i, starting from today we must go to the upstate

i times and to the downstate n � i times, but it is not important when due

to no-arbitrage. The number of unique ways from today to the node is thus n

choose i which is know in probability to be n!
i!(n�i)! . Another way to see this is

to rotate the tree up 90o and fill in Pascals triangle. In the case here of n = 3

and i = 2, we get 3!
2!(3�2)! = 3 unique paths. To achieve today’s price though

with the example of a 3 period tree, we simply work recursively:

P

(3)
2 (T ) =

P

(2)
2 (T + 1)

P

(2)
2 (1)

h

⇤(T )

P

(2)
2 (T + 1) =

P

(1)
1 (T + 2)

P

(1)
1 (1)

h(T + 1)

P

(1)
1 (T + 2) =

P

(0)
0 (T + 3)

P

(0)
0 (1)

h(T + 2)

putting this together we get,

P

(3)
2 (T ) =

P

(0)
0 (T + 3)

P

(2)
2 (1)P (1)

1 (1)P (0)
0 (1)

h(T + 2)h(T + 1)h⇤(T )

To simplify, we define P

(0)
0 (T ) as P (T ) and use the same equations (2) and (3)

to simplify the bottom of our equation,

P

(2)
2 (1) =

P

(1)
1 (2)

P

(1)
1 (1)

h(1)

P

(1)
1 (1) =

P

(0)
0 (3)

P

(0)
0 (1)

h(2)
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giving us a final result of,

P

(3)
2 (T ) =

P (T + 3)

P (3)
⇤ h(T + 2)h(T + 1)h⇤(T )

h(2)h(1)
(5)

Fortunately, with this result, we don’t have to compute the other two paths

recursively, we can just express them to be:

P

(3)
2 (T ) =

P (T + 3)

P (3)
⇤ h(T + 2)h⇤(T + 1)h(T )

h(2)h⇤(1)
(6)

P

(3)
2 (T ) =

P (T + 3)

P (3)
⇤ h

⇤(T + 2)h(T + 1)h(T )

h

⇤(2)h(1)
(7)

While which perturbation functions are for the upstate and which are for the

downstate di↵er across these three, we know that all three equations must yield

the same result. If we were to do this for nodes from other periods we would

notice a pattern develop that can be expressed by the one equation.

P

(n)
i

(T ) =
P (T + n)

P (n)
⇤h

⇤(T + n� 1)h⇤(T + n� 2)...h⇤(T + i)h(T + i� 1)...h(T )

h

⇤(n� 1)h⇤(n� 2)...h⇤(i)h(i� 1)...h(1)
(8)

Since a perturbation of a negative number does not exist and h(0) = 1, we only

include functions with h(T) where T > 0. This means that if n � 1 < i then

we include no h

⇤ functions and if n � 1 = i then we only include h

⇤(T )
h

⇤(1) . This

works in a similar fashion for the h functions; thus if i� 1  0 we include no h

functions and only h(T )
h(1) if i� 1 = 1.

4.4 The Binomial Structure

A binomial distribution is a discrete distribution with parameters n and p,

X ⇠ Binomial(n, p). In a binomial structure n must be an positive integer,

n = 1, 2, 3, ..., equal to the number of independent Binomial(n, p) trials. The
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Ho-Lee model uses n to determine the number of periods we have in the model.

At every instant n in our binomial model there is a two-pronged event such

that we have probability p of having one thing happen and probability 1� p of

another thing happening. In this case p would be the probability of our bond

going to the upstate while 1 � p is the probability of the bond going to the

downstate. By looking back at Figure 2 one can see that at each node there is a

subsequent event determined by the probability p. It is important to note that

each of these nodes, or events, are independent.

For simplicity, also due to our lack of knowledge about the market that

also later assumed in the calibration, let’s say that p = .5 so there is an equal

chance of the bond going up or down. The events in the binomial process

are independent because if at one node the bond price goes up, at the following

node the bond will still go up with probability p = .5 and down with probability

1 � p = .5. The binomial distribution is known as a counting process. That

is given n = N we can count the number of times, X, that a certain event,

goes up or down, happens. For the Ho-Lee model this number is very useful

because it tells us what state our bond is in. If, for example, we have n = 10

and at the end X = 4, we know that our bond is in period 10 and state 4, or

P

(10)
4 (T ). If we were to use something as simple as a coin flip we would know

the probability of it being either heads or tails, but when observing the market,

one can only guess whether our bond will jump to the upstate or stay in the

downstate. Thus, Ho-Lee introduce the implied probability, ⇡, which is derived

from a portfolio only including a one discount bond. The complete derivation

of the following equation is shown in Appendix A of the Ho-Lee paper [8]:

⇡h(T ) + (1� ⇡)h⇤(T ) = 1 for n, i > 0 (9)

The resulting equation relates the two perturbation functions by relating them
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to reward functions. This equation then makes sense intuitively because the

probability, ⇡, of getting the reward in the upstate times the reward plus the

probability, 1 � p, of getting the reward in the downstate times the reward is

equal to 1. This is true since the perturbation functions are both greater than

zero and then the equation holds when one function is greater than or equal to

one, h(T ) � 1, and the other is less than or equal to one, h⇤(T )  17. From the

case above with n = 3, i = 2 we saw,

h(T + 2)h⇤(T + 1)h(T )h⇤(2)h(1) = h

⇤(T + 2)h(T + 1)h(T )h(2)h⇤(1)

Here we can look at the simpler case of n = 2 and look at the the middle node

in the third column of the tree in Figure 2. We know that it must not matter

along which path we get to a single node so,

h(T + 1)h⇤(T )h⇤(1) = h

⇤(T + 1)h(T )h(1)

We can look back at equation (9) and solve for h⇤(T ) = 1�⇡h(T )
(1�⇡) and then plug

in for h

⇤(T ) to eliminate all downstate perturbation functions. This leaves us

with,

h(T + 1)(1� ⇡h(T ))(1� ⇡h(1)) = (1� ⇡(h(T + 1))h(T )h(1)(1� ⇡) (10)

The end goal is to solve for two equations for h(T ) and h

⇤(T ) in terms of only ⇡,

h(1), and T . This is done completely in my Appendix A, not the one previously

mentioned from Ho-Lee, in which the following expressions are derived:

h(T ) =
1

⇡ + �

T (1� ⇡)
(11)

7In the case of a recession though, when the yield curve is inverted, interest rates drop for
longer period bonds, h(T ) and h

⇤(T ) would actually be reversed here.
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h

⇤(T ) =
�

T

⇡ + �

T (1� ⇡)
(12)

Observe that equations (11) and (12) imply that h⇤(T ) = h(T ) ⇤ �T

With an expression for h⇤(T ) in terms of h(T ) we can go back and simplify

equation (8). Let’s return to the example with n = 3 and look specifically at

i = 1. Of course there are many di↵erent paths for us to take to this node, but

because of the no-arbitrage condition it shouldn’t matter which one we use. We

can either solve this recursively or just use equation (8) to get,

P

(3)
1 (T ) =

P (T + 3)

P (3)
⇤ h

⇤(T + 2)h(T + 1)h(T )

h

⇤(2)h(1)

and then use equation (12) to get rid of any h

⇤,

P

(3)
1 (T ) =

P (T + 3)

P (3)
⇤ h(T + 2) ⇤ �T+2

h(T + 1)h(T )

h(2) ⇤ �2h(1)

=
P (T + 3)

P (3)
⇤ h(T + 2)h(T + 1)h(T )

h(2)h(1)
⇤ �T (3�1)

If we try this again with one more example we begin to discern the pattern.

Now again let n = 3, but now have i = 2:

P

(3)
2 (T ) =

P (T + 3)

P (3)
⇤ h

⇤(T + 2)h⇤(T + 1)h(T )

h

⇤(2)h⇤(1)

=
P (T + 3)

P (3)
⇤ h(T + 2) ⇤ �T+2

h(T + 1) ⇤ �T+1
h(T )

h(2) ⇤ �2h(1) ⇤ �1

=
P (T + 3)

P (3)
⇤ h(T + 2)h(T + 1)h(T )

h(2)h(1)
⇤ �T (3�2)

What we end up with is a complete interpretation of any bond at any period,

only using the h perturbation function:

P

(n)
i

(T ) =
P (T + n)

P (n)
⇤h(T + n)h(T + n� 1)(h(T + n� 2)h(T + n� 3).....h(T )

h(n)h(n� 1)h(n� 2)h(n� 3).....h(1)
⇤�T (n�i)

(13)
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8This works just like equation (8) so we can’t have a perturbation of a maturity

less than T. Thus a perturbation function h(T � 1) or h(�1), and those similar,

cannot be part of the expression in equation (13)

The Ho-Lee model is a stochastic short rate model. So far we have looked

at using a binomial lattice to price di↵erent bonds, but we have yet to look at

the interest rate r for a single period, the short rate. A yield curve is a line

that plots interest rates of bonds, here we think of them all as U.S. treasury

bills, based on their time to maturity. This curve is quite important because it

typically ranges from the short 3-month bonds to the long 30-year bonds and

so it can tell us a lot about the state of the economy. Typically a normal yield

curve slopes upwards, meaning that short term interest rates are low and the

longer the term structure, the higher the interest rate. This should make sense

because if you are going to lend someone money, you might be more worried

they won’t pay you back the longer they borrow it, so you charge them a higher

rate. This is called normal because in a good economy this is the yield curve

one might expect. An inverted yield curve is one where the short term interest

rates are much higher than the longer term interest rates. An example of when

this happened was the beginning of most recent recession in 2008. This is why

the yield curve is known as a leading indicator for the state of the economy. The

yield of a bond is the return on investment which comes from interest payments

and dividends and is typically given as a percentage of the value of the bond

itself. So the yield of a bond with maturity T is the total interest rate payment

discounted to today.

The yield of a T period bond y with no coupon, like the U.S. treasury bills,

is defined as Y = ( F

PV

)1/T � 1 where F and PV are the face value and the

present value of the bond respectively. In this model F is always 1 and PV is

8There is a small typo here in the Journal of Finance’s version. It has �

T (n�1) instead of
�

T (n�i).
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then a percentage of F. Here we will assume that all interest rate payments are

continuously compounded so the present value is PV = Fe

�rT . The present

value, PV, is what someone would be willing to pay to receive the interest

payments so PV = P(T). If we again set F = 1 then we get P (T ) = e

�rT .

Taking the log of both sides and then dividing by -T we get a function for the

interest rate,

r(T ) =
�lnP (T )

T

(14)

The Ho-Lee stochastic short rate model attempts to price interest rate contin-

gent claims by estimating the interest rate, which we can derive if we know the

price of any bond. The short rate though is just the one period interest rate,

which is the most realistic to predict given its short future. Using equation (13)

we can plug in the price of a one period bond to solve for the short rate at any

period n or state i:

r

(n)
i

(1) = �ln

h
P (1 + n)h(n)�n�i

P (n)

i

= �ln

h
P (1 + n)

P (n)
⇤ �

n�i

⇡ + (1� ⇡)�n

i

= �ln

h
P (1 + n)

P (n)

i
+ ln[�n�i]� ln[⇡ + (1� ⇡)�n]

Earlier we defined ⇡, 0  ⇡  1, as the implied binomial probability. This was

what the market believes the chance of going to an upstate is versus the chance

of going to a downstate. There has yet to be defined a probability p for our

binomial distribution. Inherently di↵erent from the implied probability, p is the

actual probability of going to an upstate versus a downstate. Thus the state i

at which our model is distributed i ⇠ Binomial(n, p) and the expected value is

E(i) = np. Plugging this back into our short rate, r(T ) we are then given the
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expected value of our one period interest rate:

E[r(1)] = �ln

h
P (1 + n)

P (n)

i
+ ln[�n�np]� ln[⇡ + (1� ⇡)�n] (15)

In order to compute the variance it is easiest to look at the 1st and 2nd moments

of a simple case in which n = 1. Given that we start at any node there is some

probability p that we will go to the upstate and have payo↵ of � which is defined

by the uncertainty of how interest rates will move. If � = 1 then there is no

uncertainty since ln(1) = 0. There is also a chance, with probability 1 � p,

that we will go to the downstate and receive a payo↵ of ��. The present value

of these payo↵s, assuming continuous compounding, are ln(�) and �ln(�). In

order to find the variance we then compute var = E(X2) � E(X)2. We end

with the variance:

var = np(1� p) ⇤ ln(�)2 (16)

The full derivation of the variance, equation (16), is found in Appendix B. The

variance of a binomial distribution is defined as np(1 � p). The di↵erence in

our special case here compared to a normal binomial distribution is that there

is some payo↵ added to the equation. With this we now have a complete model

for the short rate. This short rate from any period can be applied to any sort of

interest rate contingent claim in the market or simply used to estimate where

rates might go on a floating rate loan.

5 Calibrating Ho-Lee

The problem with many models in economics and finance is that while theoret-

ically they work, many of them either fall short when applied or simply can’t

be applied. Ho-Lee is an exception because with just a few simplifications, we

can actually calibrate it to real interest rates. It won’t look exactly the same
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as the Ho-Lee model has been described so far, but it follows the binomial tree

quite closely. Appendix C is a complete Visual Basic for Applications (VBA)9

Excel code written out for potential use. In order to test this model we must

first decide on the period. The continuos time version, while possibly the most

realistic version, of this would have a period of 1
1 = 0, so it is an impossible

task. Here I have decided to make the short rate the interest rate for a 3-month

treasury bill, so the period is .25 years. In order to find the market rates for each

three month period we must bootstrap real bonds found on Bloomberg. When

taking information, it is important to obtain all of the data for all of the bonds

from a single day to realistically create the yield curve because the next day will

have it’s own respective yield curve. The 3-month, 6-month, 12-month, 2-year,

5-year, 10-year, and 30-year bonds are the U.S. Treasury Securities currently

traded in markets. We will use the bootstrapping method of taking the current

yields, prices, coupons, and maturities of these bonds, turning them into zero-

coupon bonds, and then creating a yield curve. By using the Financial Toolbox

package in Matlab this can be done with a function called zbtyield. Once we

have these zero rates for each of our 120 periods, we can calibrate Ho-Lee to

fit this curve. The yield curve pictured in Figure 3, is not perfectly smooth,

especially in the quite volatile first year when the spread between the bid-yield

and the ask-yield is quite large, but it does, with its slope, accurately depict

how the interest rate market looks today.

For my process I followed the lecture notes from a course by Backus and

Zin (1999) [1]. When the Ho-Lee model is applied, the perturbation functions

h(T ) and h

⇤(T ) need to be interpreted somehow for each period. This is where

the calibration comes in. The goal for this calibration is to have a complete

9VBA is a language that is specific to the program Microsoft Excel. It allows users to create
their own more complicated functions by using the many already available Excel functions.
In order for the code to run successfully though one must also be using the matching Excel
.xlsm file making it less advantageous for open source code.
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Figure 3: Yield Curve

understanding, for the next 30 years at least, of the expected value of what

a dollar n periods from now will be worth today. To find this, we will need

the short rate for every node (n, i). Unfortunately, the best method for this is

to simply guess and check, which explains the many looping functions I have

created below. Instead of working recursively, like it was did in the theoretical

model, for the calibration we start today, at the node n = 0, i = 0, and work

forward. To start, we can begin in the first node where n = 0 and i = 0.

Clearly a dollar today is worth a dollar today. For the next period we will have

an upstate n = 1, i = 1, and a downstate, n = 1, i = 0. The applicable formula

given from the lecture notes gives the next period’s zero-rates as functions of

the previous period’s zero-rate, the drift u
t+1, the standard deviation �, of the

change in interest rates, the length of the period, and lateral movement of the

bond [1]. It is written as:

r

t+1 = r

t

+ u

t+1 + L

.5
�⌫

t+1 (17)
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Where L is the length of the periods, and ⌫

t+1 is either -1 or 1 depending on

whether we are moving to a downstate or an upstate respectively. In our case

we have set L = .25. From bootstrapping we’ve already calculated the zero rate

for today. In my particular case I found the zero-rate for today to be about

.036%. To find �, I took 3-month treasury bill interest rates for the past month

and took the standard deviation and found it to be about .18%. With this we

have everything for equation (17) except for the drift parameter, u
t+1. The

drift works such that there is a single drift for each period, but there are not

necessarily any periods with the same drift. To calculate the drift for the first

period we guess, calculate the state prices, then compare our answer to the true

zero-rate.

The state prices are from where we will eventually derive the discount factor.

State prices are named such because they are particular to the state and period

the binomial tree is in. The state price is simply the dollar value today of a

dollar at that node. So we begin with a dollar at that node, (n, i), and then

compute the dollar values for the period before recursively until today. One

thing that we must determine here is the probability of going to the upstate vs.

the downstate, denoted as p above. Since we have no other information about

the market, we must assume the simplest case where p = 1�p = .5. Computing

the state prices is then done using another formula given to us by Backus and

Zin [1]:

S(n, i) = .5�(n+ 1, i+ 1) ⇤ S(n+ 1, i+ 1) + .5�(n+ 1, i) ⇤ S(n+ 1, i) (18)

Where S(n, i) is the state price of that specific node and �(n, i) is the discount

factor for that specific node. The same can be said for the nodes (n+ 1, i+ 1)

and (n+ 1, i), the upstate and the downstate in the following period, n+ 1, re-

spectively. The discount factor for a node is simply the continuous compounded
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Figure 4: Zero-Rates
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returns at the interest rate of that node by the equation:

� = e

�rL/100 (19)

Note that equation (19) is very similar to equation (14) which also took into

account continuous compounding. Now we can apply these equations and create

a tree of state prices. Given two periods, we can find the state price for the

node (2,1) by applying a 1 to that node and working backwards. Below I

have created an example case starting with zero-rates for each node. Then by

calculating equation (18) for S(2, 1) and using equation (19) to find the discount

rates � using the interest rates from figure 4 we get that S(1, 1) = .9826
2 ⇤(0+1).

Similarly S(1, 0) = .9900
2 (1 + 0). Finally, S(0, 0) = .9900

2 (.4913 + .4950) = .4883.

S(0, 0) is the state price for the node (2, 1) and we can do the exact same thing

for the other four nodes to fill out the tree. In Figure 5 I have filled out all the

nodes.

It is clearly noticeable that while the two nodes in the first period are equal,

the nodes in the second period vary heavily with the middle one being weighted
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Figure 5: State Prices

1

.4950

.4950

.2432

.4883

.2450

heavier. This happens because, while there is only one path to get to the nodes

(2, 2) and (2, 0), there are two paths to get to the node (2, 1) which get factored

in. With our state prices we can find the discount rate for each period simply

by summing all of the state prices in that period. Finally, to find the expected

zero-rate for each period we simply reverse equation (19) so that we are solving

for r,

r = �ln(�) ⇤ 100

L

(20)

For example this gives us a 3-month short rate of, r = �ln(.9765)⇤ 100
.5 = 4.756%

for period 2.

So far we have ignored the drift parameter, denoted as u, which is what

we are actually trying to find by calibrating. With this process though we can

begin our guess and check. We begin with the first period and estimate some u

and then calculate both interest rates for the period with equation (17). We use

these rates and equations (18) and (19) to find our discount rate and then zero-

rate. If that zero-rate is the same as the zero-rate we found by bootstrapping

bonds then we are finished and can do this with the next period and on until
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Figure 6: Results

Figure 7: Interest Rate Tree
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1.0522

.8694
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.5040

period 119.

In actual application, it is impossible to perfectly mimic the observed zero-

rates so we set some small " > 0 such that the absolute value of the di↵erence

between my calculated zero-rate and the observed zero-rate is less than ". One

can adjust the accuracy of this model by keeping " as small as possible and

by minimizing the di↵erence between each guess. Of course the smaller these

parameters are, the longer the program will take to run. Figure 6 is a chart with

the discount factors and zero-rates that were calculated for the first 5 periods

of the complete 119 that are calibrated. Figure 7 is the full accompanying short

rate interest rate tree for each period n and state i. This process now allows

one to take bond yield data from any single day and calibrate their own version.

6 Conclusion

From here I believe an exploration into how this model prices di↵erent deriva-

tives is the logical next step. Theoretically the model is made to price bond
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options, bond futures, swaptions, interest rate caps, and many other interest

rate contingent claims. Given the complete 119 period tree that can be created

with the bootstrapped bonds and the code in Appendix C below, one can apply

the discount factors to the market and test their accuracy. This model was

the foreground for arbitrage-free interest rate models, but due to some of its

shortcomings it has been criticized and attemped to be improved upon. Black-

Derman-Toy [2] for example, eliminated the possibility of a negative interest

rate, it added mean reversion, and it has a log normal distribution. For these

reasons the BDT model is used more frequently to model complex interest rate

contingent claims. In this paper just the Ho-Lee model was expositioned and

calibrated, but in order to really analyze interest rate models as a whole one

should calibrate each of them and compare the results to test their relative ac-

curacies. Each of these models are useful in order to understand interest rate

contingent claims and in the future I would enjoy exploring all of them.
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Appendix A Derivation of Equations (11) and

(12)

We begin where we left o↵ above with equation (10),

(T + 1)(1� ⇡h(T ))(1� ⇡h(1)) = (1� ⇡h(T + 1))h(T )h(1)(1� ⇡)

First we divide by h(T )h(T + 1) in order to isolate each on their own sides and

get,
h 1

h(T )
� ⇡

i
(1� ⇡h(1)) =

h 1

h(T + 1)
� ⇡

i
h(1)(1� ⇡)

We can then isolate 1
h(T+1) on the left side and have,

1

h(T + 1)
= ⇡ +

1� ⇡h(1)

h(1)(1� ⇡)

1

h(T )
� ⇡

1� ⇡h(1)

h(1)(1� ⇡)

Now we rearrange to get our equation in the form of a line such that 1
h(T ) is our

only non constant. This will give us,

1

h(T + 1)
=

1� ⇡h(1)

h(1)(1� ⇡)

1

h(T )
+ ⇡

h
1� 1� ⇡h(1)

h(1)(1� ⇡)

i

=
1� ⇡h(1)

h(1)(1� ⇡)

1

h(T )
+ ⇡

h
h(1)(1� ⇡)� (1� ⇡h(1))

h(1)(1� ⇡)

i

=
1� ⇡h(1)

h(1)(1� ⇡)

1

h(T )
+

⇡(h(1)� 1)

(h(1)(1� ⇡)

In order to follow the notation of Ho-Lee[8] we set,

� =
1� ⇡h(1)

h(1)(1� ⇡)
(A.1)

and

� =
⇡(h(1)� 1)

(h(1)(1� ⇡)
(A.2)
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If we plug back in equations (A.1) and (A.2) to our function of 1
h(T+1) we get,

1

h(T + 1)
=

�

h(T )
+ � (A.3)

Now let us look at how equation (A.3) looks over time and solve it as a first-

order linear di↵erence equation. First let f(T ) = 1
h(T ) to make it easier visually.

Next we create what is called a di↵erence equation. Essentially we look at the

first view values of T until we see a pattern and then create a function for f(T )

that works for any T. Equation (A.3) then becomes,

f(T + 1) = �f(T ) + �

The equation is then solved recursively as follows,

f(2) = f(1 + 1) = �f(1) + � (A.4)

f(3) = f(2 + 1) = �f(2) + � (A.5)

Putting equations (A.4) and (A.5) together we get,

f(3) = �

2
f(1) + �� + �

Similarly,

f(4) = �

2
f(1) + �

2
� + �� + �

Thus in general we see that for any T � 2,

f(T ) = �

T�1
f(1) + �

T�2P
k=0

�

k

f(T ) = �

T�1
f(1) + �

1� �

T�1

1� �

(A.6)
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as long as � 6= 1, which is the case when we are completely confident that

bond prices will not adjust in the next period, thus the interest rate will remain

constant. We can rearrange equation (A.6) to get,

f(T ) =
f(1)

�

�

T +
�

1� �

� �

�(1� �)
�

T

=
�

1� �

+
h
f(1)

�

� �

�(1� �)

i
�

T

Now let’s create some constant C and let it be,

C =
f(1)

�

� �

�(1� �)

then note that, by the definitions of � and �, given by equations (A.1) and (A.2),

we know that,

�

1� �

= ⇡

Therefore f(T ) = ⇡ + C�

T , but since we let f(T ) = 1
h(T ) , we get,

h(T ) =
1

⇡ + C�

T

(A.7)

Earlier in the paper, in equation (4) we defined h(0) = 1, so we can use this as

our initial condition in order to solve for C.

h(0) =
1

⇡ + C�

0

1 =
1

⇡ + C

C = 1� ⇡
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Plugging this back into equation (A.7) we get as our function of h(T ),

h(T ) =
1

⇡ + �

T (1� ⇡)
(A.8)

By plugging this into equation (10) we get the h

⇤(T ) version,

h

⇤(T ) =
�

T

⇡ + �

T (1� ⇡)
(A.9)

Equations (A.8) and (A.9) are what we have previously defined in the body of

the paper as equations (11) and (12).
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Appendix B Derivation of the Variance (16)

The variance is defined as the second moment, E(X2), minus the first moment,

E(X), squared. Let’s begin by solving for the expected value. In our simple case

with n = 1, this is the probability of going to the upstate, p, times the payo↵

added to the probability of going to the downstate, 1� p, times the payo↵. The

payo↵ in this case is determined by �, which is the di↵erence between the two

perturbation functions, h(T ) and h

⇤(T ). Instead of looking at the di↵erence

one period from now, in order to find the true expected value, we must discount

it to today. Using the formula for continuous compounding, � = e

�rT , where r

is the interest rate and T is the time. Since this is just a one period case, we

set T = 1. We can then solve for our interest rate r = �ln�. Since � is the

di↵erence between the perturbation functions we can then let our payo↵ in the

upstate be half the total, �1
2 ln� and the payo↵ in the downstate to be the other

half, 1
2 ln�. Note that 0 < �  1.

E(X) = p

1

2
(�ln(�)) + (1� p)(

1

2
ln(�))

= �1

2
pln(�) +

1

2
ln(�)� 1

2
pln(�)

=
1

2
ln(�)� pln(�)

For the second moment we can do the same thing but our payo↵ is now ( 12 ln(�))
2

E(X2) = p(�1

2
ln(�))2 + (1� p)(

1

2
ln(�))2

=
1

4
pln(�)2 +

1

4
ln(�)2 � 1

4
pln(�)2

=
1

4
ln(�)2
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Now for the variance we have,

E(X2)� E(X)2 =
1

4
ln(�)2 � (

1

2
ln(�)� pln(�))2

=
1

4
ln(�)2 � 1

4
ln(�)2 + pln(�)2 � p

2
ln(�)2

= pln(�)2 � p

2
ln(�)2

= p(1� p) ⇤ ln(�)2

This equation actually has an invisible n, which is the number of periods in our

case, since n = 1. This gives us a variance of,

var = np(1� p) ⇤ ln(�)2 (B.1)

Equation (B.1) is what we have previously defined in the body of the paper as

equation (16)
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Appendix C VBA Code

Unfortunately, the problem with VBA is that it works congruently with an

Excel document. This means that this code itself will not be entirely useful

without the document. If you are interested in the document itself I would be

happy to provide it to you. The accuracy, held in the variables j and epsilon,

can always be adjusted though to get a closer approximation of the true spot

rates, although it will just take even longer to run. It should be noted that

in some cases, in order to fit the full lines of code, in the cases of ”Sum” and

”Ln” I omitted ”WorksheetFunction” which is part of the correct syntax but

unnecessary in the understudying of the code. After finishing and running this

code, I do regret using VBA. The main shortcoming of Excel is that it is a very

weak processor. It is very slow running the large loops that other programs run

much faster. Regrettably I only recently started using Matlab10, in order to

bootstrap the yield curve, but given another chance I would have written all the

code in Matlab since it would have had no trouble calculating the entire tree.

Sub S ta t ePr i c e s (Time)

’ Takes the per iod number and c r ea t e s s t a t e p r i c e s

For Period = 0 To Time

For State = 0 To Period

Row = 495

Col = 2

For c = 254 To 373 ’ Se t s c e l l s to a func t i on o f the i n t e r e s t ra t e f o r each s t a t e / per iod

For d = 2 To 121

Ce l l s ( c , d ) = Exp(�Ce l l s ( c � 244 , d) ⇤ Ce l l s (2 , 2) / 100)

Next d

Next c

Range ( Ce l l s (376 , Col ) , C e l l s (Row, Col + 119)) = 0

’ Resets e v e r y t h in g then g i v e s t a r g e t per iod p r i c e o f 1

Ce l l s (Row � State , Col + Period ) = 1

10A programming language and computing environment excellent for working with large
amounts of data and very useful for applications in Economics and Finance
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Node = 0

I f Period > 0 Then ’ Ca l cu l a t e s s t a t e p r i c e s

i = 1

For b = Period To 0 Step �1

For a = b To 0 Step �1

I f Row � ( a � 1) > 495 Then Exit For

’ This i s equat ion 18 as de f ined above

Ce l l s (Row � ( a � 1) , Col + ( Period � i ) ) = ( ( Ce l l s (Row � a , Col + ( Period � i + 1) ) +

Ce l l s (Row � ( a � 1) , Col + ( Period � i + 1 ) ) )

⇤ Ce l l s (Row � ( a � 1) � 122 , Col + ( Period � i ) ) / 2)

Node = ( Ce l l s (Row � ( a � 1) , Col + ( Period � i ) ) )

Next a

i = i + 1

Next b

End I f

aRow = 251

I f Node <> 0 Then

Ce l l s (aRow � State , 2 + Period ) = Node

End I f

Next State

aRow = aRow + 1

Next Period

End Sub

Private Sub Dr i f tRa t e s C l i c k ( )

’ C l i c k bu t ton command which c a l i b r a t e s model

ep s i l o n = 0.0001 ’ Parameter to dec ide how accurate c a l i b r a t i o n needs to be

For h = 1 To 119 ’Runs from per iod 1 to 119. We a l r eady know fo r 0

For j = �0.004 To 0 .004 Step 0.00001 ’ Parameter f o r the accuracy

For Period = h To h

b = 3

Row = 129

For a = 0 To Period ’ Give a guess f o r each s t a t e in per iod

’ A l l s t a t e but 0 are up s t a t e from per iod n . (n+1 ,0) i s downstate o f (n , 0 )

I f b Mod 2 <> 0 Then

k = �1
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i = 0

Else :

k = 1

i = 1

End I f

’ Ca l l s upon the c e l l s t h a t g i v e prev ious s t a t e rate , per iod = .25 , and StDev

Guess = Ce l l s (Row + i , 1 + Period ) / 100 + j + ( Ce l l s (2 , 2) ˆ 0 . 5 ) ⇤ Ce l l s (7 , 3) ⇤ k

’ Se t s c e l l in t r e e to the guess

Ce l l s (129 � a , 2 + Period ) = Guess ⇤ 100

b = b ⇤ 2

Row = Row � 1

Next a

Next Period

S ta t ePr i c e s ( Period ) ’ Ca l l s f unc t i on to g i v e s s t a t e p r i c e s

’ Ca l cu l a t e s Discount Factor

Ce l l s (6 , Per iod + 1) = Sum(Range ( Ce l l s (132 , Per iod + 2) , Ce l l s (251 , Per iod + 2 ) ) )

DiscountFactor = Ce l l s (6 , Per iod + 1)

’ Ca l cu l a t e s Zero Rate

Ce l l s (5 , Per iod + 1) = �(100 / ( Ce l l s (1 , Per iod + 2) ⇤ Ce l l s (2 , 2 ) ) ⇤ Ln( DiscountFactor ) )

Cal ibratedRate = Ce l l s (5 , Per iod + 1)

BootstrappedRate = Ce l l s (3 , Per iod + 1)

I f Abs( Cal ibratedRate � BootstrappedRate ) <= ep s i l o n Then

’ Checks i f the Ca l i b ra t ed ra t e i s c l o s e enough to the r e a l ra t e

Exit For

End I f

Next j

Next h

End Sub
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