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Abstract
This communication provides a derivation of the often-used one-

parameter exponential family of distributions based on an infinite sine
series. The main results associated with this derivation are the finite
approximations of the probability density function (pdf) and the cumu-
lative distribution function (cdf) of the exact one-parameter exponential
family of distributions. The limit of these finite functions are the exact
pdf and cdf. Numerical examples are provided to compare and contrast
the finite approximations of distributions in terms of error using the
finite-based cdf and the exact standard exponential cdf. We would also
note that the finite approximations of the pdf and cdf vary in terms of
both shape and percentage points. In view of this, the finite pdf and
cdf offer a user the flexibility to potentially provide more accurate ap-
proximations in the context of fitting distributions to data rather than
approximations that are based solely on the exact exponential pdf or cdf
– most notably when distributions are heavy-(right)tailed.
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1 Introduction

The continuous one-parameter exponential distribution is one of the most often
used distributions to make inferential or probability statements with respect
to events that occur – and reoccur – at random over time e.g. life time events
and survival analysis. Specifically, Epstein and Sobel [5] discussed the use
of the one-parameter exponential distribution in terms of life testing, fatigue
testing, and in other contexts of destructive test situations such as the amount
of (i) current needed to blow out a fuse, (ii) voltage needed to break down a
condenser, or (iii) force to rupture some physical material.

Further, the exponential distribution is closely related to both the Pois-
son and geometric distributions. For example, the exponential distribution
has been demonstrated to be related to the Poisson distribution in terms of
the number of successive changes of discrete observations that occur during
a given continuous time interval e.g. the waiting times between successive
changes; which are also random variables. Furthermore, the exponential dis-
tribution can also be derived based on the Poisson or geometric distributions
see e.g. Johnson, Kotz, and Kemp [13]; Johnson, Kotz, and Balakrishnan [12];
Marsaglia [15]; Leemis and McQuestion [14].

The exponential or approximate exponential distributions have also been
demonstrated to be useful in many Monte Carlo studies in terms of comparing
and contrasting the Type I error rates and (or) power properties associated
with parametric and (or) nonparametric statistics. See, for example, Algina,
Oshima and Line [1]; Boneau [2]; Conover and Iman [3]; Donaldson [4]; Harwell
and Serlin [6]; Headrick and Sawilowsky [9,10]; Headrick [7]; Headrick ( [8], p.
106).

In view of the importance of the one-parameter exponential distribution,
the purpose of this communication is to derive this statistical distribution
through an infinite sine series; which is, as far as we are aware, wholly new.
It is demonstrated that the finite derivations of the pdf and cdf provided
below can yield good approximations to the exact pdf and cdf. Further, the
derivation provided herein of the (smaller values of the natural number index
set) finite approximations to the one-parameter exponential distribution may
vary considerably in terms of shape and percentage points. As such, this may
provide a user with more accurate approximations in the context of fitting
distributions to real-world data.
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2 Mathematical Development

The exact forms of the one-parameter exponential probability density func-
tion (pdf) and cumulative distribution function (cdf) considered herein are
respectively as follows (e.g. Hogg and Tanis, 2001, pp. 178-179):

f(x) =
1

θ
e−x/θ, (1)

F (x) = 1− e−x/θ (2)

where 0 ≤ x <∞ and the parameter θ > 0.

The derivation of equations (1) and (2) begins by making use of the fol-
lowing lemma. LEMMA: If n is the index set, such that n ∈ N, then the
following infinite sine series

∞∑
n=1

sinnx

n
=

1

2
(π − x), 0 < x < 2π. (3)

PROOF: The proof begins by first setting

z = cosx+ i sinx. (4)

As such, we will let
m∑
n=1

yn−1zn =
z{1− (yz)m}

1− yz
. (5)

It follows that for |y| < 1 yields

∞∑
n=1

yn−1(cosnx+ i sinnx) =
cosx+ i sinx

1− y cosx− yi sinx
=

(cosx− y) + i sinx

1− 2y cosx+ y2
. (6)

Consequently, we have

∞∑
n=1

yn−1(sinnx) =
sinx

1− 2y cosx+ y2
. (7)

The infinite series in equation (7) is uniformly convergent for all values of y and
for |y| ≤ p < 1. It follows that integrating with respect to y, where 0 < y < 1,
yields
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∞∑
n=1

yn
(
sinnx

n

)
= sinx

∫ y

0

du

1− 2u cosx+ u2

= sinx

∫ y

0

du

(u− cosx)2 + (sinx)2

=

[
tan−1

(
u− cosx

sinx

)]u=y
u=0

= tan−1
(
y − cosx

sinx

)
− tan−1(− cotx)

and thus we have

∞∑
n=1

yn
(
sinnx

n

)
=


tan−1

(
y − cosx

sinx

)
+
(π
2
− x
)
, 0 < x < π

tan−1
(
y − cosx

sinx

)
+

(
3π

2
− x
)
, π < x < 2π

. (8)

Let us suppose that x is neither zero nor a multiple of 2π. As such, it
necessarily follows that the infinite sine series is convergent – for 0 ≤ y ≤ 1
and yn – and is positive, monotonic, decreasing, and bounded.

Hence, if we let y → 1 in equation (8), and (again) if x is neither zero nor
a multiple of 2π, yields

∞∑
n=1

sinnx

n
=


tan−1

(
tan

1

2
x

)
+
(π
2
− x
)
, 0 < x < π

tan−1
(
tan

1

2
x

)
+

(
3π

2
− x
)
, π < x < 2π

. (9)

Whence, based on equation (9), we then have equation (3) as given above i.e.

∞∑
n=1

sinnx

n
=

1

2
(π − x), 0 < x < 2π.�

REMARK: We would note that the final step, to obtain equation (3), is
justified by the fact that if the series

∑
an(x) is uniformly convergent for

a ≤ x ≤ b to the sum a(x), and if, for each value of n, an(x) tends to the limit
(sn) as x→ x0, where x0 is some point in the range of (a, b), then, as x→ x0,
a(x) tends to the limit δ, where δ is the sum of the infinite series

∑∞

n=1
sn.
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3 Main Result

Exponentiation of equation (3) and using a general scaler of 1/θ (in lieu of 1/2
in equation 3) for values of θ > 0 and subsequently integrating with respect to
x yields: ∫ ∞

0

e(1/θ)(π−x)dx = θeπ/θ. (10)

Solving equation (10) for a constant to ensure that this equation integrates to
one yields a constant of (e−π/θ)/θ for θ > 0. As such, it necessarily follows that
the functions provided below in equations (11) and (12) are the finite approx-
imations of the exponential pdf and cdf in equations (1) and (2). Specifically,
for finite values of k we have

f(x) ∼=
1

θ

{
(e−π/θ)

(
1 +

π − x
kθ

)k}
, (11)

and

F (x) ∼=
1

θ(1 + k)

{
(e−π/θ)

(
π + kθ − x

kθ

)k
(−π − kθ + (π + kθ)1+k(π + kθ + x)−k) + x

}
,

(12)
where x > 0, 0 < k <∞, θ > 0, and π+kθ > x. Taking the limit as k →∞ in
equations (11) and (12) will result in these approximating functions to converge
to the exact one-parameter exponential pdf and cdf given in equations (1) and
(2), respectively.

4 Numerical Examples and Conclusion

Figure 1 below gives the graphs of the approximate pdfs associated with equa-
tion (11) for an exponential distribution with θ = 1, and k = 10, 102, 103, 105.
Further, presented below in Table 1 are approximate cumulative proportions,
based on equation (12), and are associated with the exact 90-th percentile
value for the standard exponential pdf (x = 2.302585 . . .), as well as the error
in these proportions. Inspection of Table 1 indicates that as the value of k in-
creases then the approximation becomes closer to the exact proportion (0.90)
of the standard exponential distribution. If we were to increase the value of k
to k = 106 (or k = 107) in Table 1, then the error would be less than 2.7×10−6

(or 2.3× 10−7).
In conclusion, it is worthy to point out that there is no real-world set of data

that will exactly follow a theoretical statistical distribution. In view of this, the
derivation presented in this paper offers a variety of approximate exponential
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distributions with varying shapes and percentage points. Thus, this allows
a user to alter the shape of an approximate exponential distribution in such
a manner that may create a more suitable approximation to a set of data
in terms of distribution fitting. Specifically, when empirical distributions are
contaminated with outliers in the right tail of the distribution.
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Value of k Cumulative Proportion Error
k = 10 0.697852 . . . 0.202148 . . .
k = 102 0.873523 . . . 0.026476 . . .
k = 103 0.897268 . . . 0.002732 . . .
k = 105 0.899973 . . . 0.000027 . . .

Table 1: Cumulative proportions using the exact value (x = 2.302585 . . .) asso-
ciated with the standard exponential distribution for the 90-th percentile. The
proportions are based on equation (12) and the values of k = 10, 102, 103, 105

that are provided in Figure 1.
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(a) k = 10 (b) k = 102

(c) k = 103 (d) k = 105

Figure 1: Approximations of the standard exponential distribution based on
equation (11)
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