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Abstract

This study investigates the vibration and dynamic response of a system

of coupled electromagnetic vibration energy harvesting devices that each

consist of a proof mass, elastic structure, electromagnetic generator, and

energy harvesting circuit with inductance, resistance, and capacitance. The

governing equations for the coupled electromechanical system are derived

using Newtonian mechanics and Kirchhoff circuit laws for an arbitrary num-

ber of these subsystems. The equations are cast in matrix operator form

to expose the device’s vibration properties. The device’s complex-valued

eigenvalues and eigenvectors are related to physical characteristics of its

vibration. Because the electrical circuit has dynamics, these devices have

more natural frequencies than typical electromagnetic vibration energy har-

vesters that have purely resistive circuits. Closed-form expressions for the

steady state dynamic response and average power harvested are derived for

devices with a single subsystem. Example numerical results for single and

double subsystem devices show that the natural frequencies and vibration

modes obtained from the eigenvalue problem agree with the resonance loca-

tions and response amplitudes obtained independently from forced response

calculations. This agreement demonstrates the usefulness of solving eigen-

value problems for these devices. The average power harvested by the device

differs substantially at each resonance. Devices with multiple subsystems

have multiple modes where large amounts of power are harvested.

1 Introduction

Vibration energy harvesting research is reviewed in Refs. [1–4].

Vibration energy harvesting from electromagnetic devices has been investi-

gated in Refs. [5–27]. Stephen [7] analyzed the dynamic response of and power

generated by devices with a single proof mass and purely resistive electrical load.
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When operated near resonance, these devices harvest maximum power when the

damping from the electrical circuit equals that in the mechanical system. Mann

and Sims [8] investigated the effect of coil inductance on the response and power

harvested by electromagnetic vibration energy harvesters. The power generated

from sinusoidal, periodic, and random excitation was determined. Mann and

Sims [9] studied the nonlinear dynamics of a magnetically levitating vibration en-

ergy harvester. Yang et al. [10] experimentally investigated the energy harvested

from the first three modes of a vibrating beam electromagnetic device. Mann and

Owens [11] investigated the response and energy harvested by a nonlinear electro-

magnetic device. Trimble et al. [12] developed and analyzed a vibration energy

harvester for spinning systems that experience rotational vibrations. Cammarano

et al. [13] studied vibration energy harvesting from electromagnetic devices that

can be actively tuned for improved performance. Elvin and Elvin [15] analytically

and experimentally investigated the power generated by an electromagnetic vi-

bration energy harvester. Their model accurately predicted the dynamic response

compared to experiments for a wide range of system parameters. Daqaq [16] inves-

tigated the power harvested by bistable nonlinear electromagnetic vibration energy

harvesters excited by random vibration. Tang and Zuo [17] investigated vibration

energy harvesting from a dual-mass device that consists of two proof masses cou-

pled by an electromagnetic generator or piezoelectric structure. The dual-mass

device was shown to outperform comparable devices with a single mass. Vibra-

tion energy harvesting from dual-mass devices subjected to random excitation was

investigated in Ref. [21]. The energy harvested from the vibration of rectangular

plates with an arbitrary number of electromagnetic vibration energy harvesters

was investigated by Harne [22]. He and Daqaq [23] studied vibration energy har-

vesting from nonlinear devices with asymmetric potential function asymmetries.

Gonzalez-Buelga et al. [24] analyzed a tunable electromagnetic vibration absorber

that converts the absorbed vibration into electrical power. Caruso [25] investi-
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gated the power harvested by electromagnetic vibration energy harvesters with

electrical circuits that have inductance, capacitance, and resistance. When adap-

tively tuned at each frequency, this device has broadband energy harvesting ability.

Tang et al. [28] investigated the energy harvesting and vibration damping abili-

ties of shunted tuned mass dampers. Many of these studies focus on maximizing

the power harvested by the devices. None of these works investigate the vibra-

tion properties of electromagnetic vibration energy harvesters, which is a focus of

this work. Most of the electromagnetic devices referenced above are designed to

power a single electrical load. This work analyzes electromagnetic devices that

can simultaneously power multiple electrical loads.

Piezoelectric stack vibration energy harvesting devices have been investigated

in Refs. [29–33]. Vibrating beam devices with piezoelectric material layers have

been investigated in Refs. [30, 34–40], for example. Many more can be found in

the review articles in Refs. [1–4]. Piezoelectric vibration energy harvesters with

multiple proof masses and degrees of freedom are investigated in Refs. [41–43].

This study investigates the vibration properties of electromagnetic vibration

energy harvesters. The governing equations are derived for devices with an ar-

bitrary number of energy harvesting subsystems, which each consist of a proof

mass, elastic structure, and an energy harvesting circuit with inductance, resis-

tance, and capacitance. The device’s eigenvalue problem is cast in matrix operator

form, which makes clear the qualitative nature of the vibration of these devices.

Numerical results are generated for example devices with one and two subsystems.

Dynamic response predictions are compared to natural frequency and vibration

mode results obtained from the eigenvalue problem. The power harvested from

sinusoidal base excitation is determined for a wide range of excitation frequencies.

The different resonances of the device are compared to determine the preferred

modes for energy harvesting applications. The natural frequencies, dynamic re-

sponse, and power harvested are calculated for a wide range of electric circuit
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model parameters.

2 Analysis

2.1 Analytical model

A schematic of the electromagnetic vibration energy harvester is shown in Fig.

1. The device consists of N energy harvesting subsystems. Each subsystem has

a proof mass mi (i = 1, 2, . . . , N) and an energy harvesting circuit. Adjacent

proof masses are connected by (i) elastic structures that have stiffnesses ki and

equivalent viscous damping coefficients ci and (ii) electromagnetic generators with

electromechanical coupling coefficients κi. The first proof mass is attached to

a vibrating host system with prescribed translational motion y(t). The relative

deflections of the proof masses with respect to the motion of the host system

are xi(t). Their absolute motions are Xi(t) = y(t) + xi(t). Each proof mass is

dynamically excited by an applied force fi(t). We assume these are fluctuating

forces that have vanishing mean components.

The electromagnetic generators provide input voltage to the energy harvesting

circuits. Because there are multiple energy harvesting circuits, this device has

the ability to power multiple electrical loads. Each circuit has inductance Li,

capacitance Ci, and resistance Ri. In some devices, the circuit’s inductance comes

from the coil in the electromagnetic generator [6,8,13,15]. Formulas for calculating

the inductance and electromagnetic coupling coefficient for a given electromagnetic

generator can be found in Ref. [15]. The resistances Ri represent the equivalent

resistance in the circuit. The majority of Ri is due to the electrical load powered by

the device, e.g., a sensor or other electronics. Additional resistance may occur due

to the circuit itself. In many devices this internal circuit resistance is significantly

lower than the load resistance and is neglected. The capacitance is an added
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element to the circuit, although an electrical load may have capacitance, like in

Ref. [13]. For the passive vibration energy harvesting devices investigated in this

work all of the inductances, resistances, and capacitances are fixed.

Relative velocity between the ends of the electromagnetic generators provide

input voltage to the energy harvesting circuits according to

Vi =















κiẋi, i = 1

κi (ẋi − ẋi−1) , 1 < i ≤ N.

(1)

The electromagnetic generators apply electromotive forces Fi = κiq̇i on the proof

masses.

The use of Newtonian mechanics gives the governing equations for each proof

mass as

m1ẍ1 + (c1 + c2)ẋ1 − c2ẋ2 + (k1 + k2)x1 − k2x2 + F1 − F2 = f1 −m1ÿ, (2a)

miẍi − ciẋi−1 + (ci + ci+1)ẋi − ci+1ẋi+1 − kixi−1 + (ki + ki+1)xi − ki+1xi+1 + Fi

− Fi+1 = fi −miÿ, 1 < i < N, (2b)

mN ẍN − cN ẋN−1 + cN ẋN − kNxN−1 + kNxN + FN = fN −mN ÿ. (2c)

The use of Kirchhoff’s voltage law for each energy harvesting circuit gives

Liq̈i +Riq̇i +
1

Ci
qi − Vi = 0, i = 1, 2, . . . , N. (3)

The governing equations for the device consist of Eq. (2) for the mechanical

degrees of freedom and Eq. (3) for the electrical degrees of freedom. Coupling

occurs in these equations between the proof mass velocities (ẋi) and the electric
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circuit currents (q̇i). Adjacent proof masses are coupled by the discrete stiffness

and damping elements.

For devices that consist of a single subsystem, the equation governing the

motion of the mass can be reduced from Eq. (2a) by requiring the quantities

c2, k2, F2, and x2 vanish. The electrical charge is governed by Eq. (3) with i = 1.

Use of the electromagnetic generator force F1 = κ1q̇1 and voltage V1 = κ1ẋ1 into

those results gives the electromechanically coupled equations of motion for the

device as

m1ẍ1 + c1ẋ1 + κ1q̇1 + k1x1 = f1 −m1ÿ, (4a)

L1q̈1 − κ1ẋ1 +R1q̇1 +
1

C1
q1 = 0. (4b)

Equations (4) agree with those derived in Ref. [25] for vanishing base motion. The

equation given in Ref. [13] for the mechanical system agrees with Eq. (4a) for

vanishing applied force f1. The equation for the electrical system in Eq. (4b),

however, differs with that given in Ref. [13] because in that work the equation is

expressed in terms of the circuit in the current. Substitution of the current I = q̇1

into Eq. (4b) and use of q1(t) =
∫ t

0
I(τ)dτ gives

L1İ − κ1ẋ1 +R1I +

∫ t

0

I(τ)

C1
dτ = 0, (5)

which agrees with that given in Ref. [13].

For purely resistive energy harvesting circuits (i.e., for vanishing inductances

(Li → 0) and large capacitances (Ci → ∞) so that the voltage drops across these

elements are negligible), Eq. (3) gives the electrical current q̇i = Vi/Ri. The use

of this result and Eq. (1) into Eq. (2) gives
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m1ẍ1 +

(

c1 + c2 +
κ21
R1

+
κ22
R2

)

ẋ1 −
(

c2 +
κ22
R2

)

ẋ2 + (k1 + k2)x1 − k2x2

= f1 −m1ÿ, (6a)

miẍi −
(

ci +
κ2i
Ri

)

ẋi−1 +

(

ci + ci+1 +
κ2i
Ri

+
κ2i+1

Ri+1

)

ẋi −
(

ci+1 +
κ2i+1

Ri+1

)

ẋi+1

− kixi−1 + (ki + ki+1)xi − ki+1xi+1 = fi −miÿ, 1 < i < N, (6b)

mN ẍN−
(

cN +
κ2N
RN

)

ẋN−1+

(

cN +
κ2N
RN

)

ẋN−kNxN−1+kNxN = fN−mN ÿ. (6c)

For dual-mass devices (N = 2) with a single electrical circuit between the two

masses and applied forced excitation, Eq. (6) agrees with that derived in Ref. [17]

for vanishing c1, κ1, f2, and y. For similar dual-mass devices with base excita-

tion, Eq. (6) differs with Ref. [17] because in that work the equations are cast in

terms of absolute deflections, whereas Eq. (6) uses deflections relative to the host

system’s motion y(t). For devices with purely resistive electrical circuits, Eq. (6)

shows that the impact of electromechanical coupling is similar to that for viscous

mechanical damping. These devices will have resonances at excitation frequencies

near the corresponding undamped mechanical systems’s natural frequencies, pro-

vided the total damping in the system is sufficiently small. For electrical circuits

that contain both inductance and capacitance, however, the governing equations

include dynamics in both the mechanical (Eq. (2)) and electrical systems (Eq.

(3)). This electromechanical coupling strongly impacts the device’s dynamics,

which will be demonstrated in the Results section.

Equations (2) and (3) are nondimensionalized using the nondimensional pa-

rameters
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t̂ =

√

k1
m1

t, x̂i =
xi
Y0
, ŷ =

y

Y0
, f̂i =

fi
k1Y0

, q̂i =
κ1

Y0
√
k1m1

qi, µi =
mi

m1
,

ζi =
ci√
k1m1

, ξi =
ki
k1
, νi =

κi
κ1
, αi =

Lik1
κ21

, βi =
Ri

√
k1m1

κ21
, γi =

m1

Ciκ
2
1

,

(7)

where Y0 is the amplitude of the host system’s motion in the case of base excitation.

In cases when the base motion vanishes and the device is excited by applied forces,

we choose Y0 to be the static deflection of the first proof mass. The resulting

nondimensional equations in matrix operator form are

Mü+ (D+ E) u̇+Ku = F(t), (8)

u = [x1, q1, x2, q2, . . . , xN , qN ]
T , (9)

M = diag(µ1, α1, µ2, α2, . . . , µN , αN), (10a)

D =

































ζ1 + ζ2 0 −ζ2 0 0 . . .

0 β1 0 0 0 . . .

−ζ2 0 ζ2 + ζ3 0 −ζ3 . . .

0 0 0 β2 0 . . .

0 0 −ζ3 0 ζ3 + ζ4 . . .

...
... . . .

. . .

































, (10b)

E =

































0 ν1 0 −ν2 0 . . .

−ν1 0 0 0 0 . . .

0 0 0 ν2 0 . . .

ν2 0 −ν2 0 0 . . .

0 0 0 0 0 . . .

...
... . . .

. . .

































, (10c)
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K =

































ξ1 + ξ2 0 −ξ2 0 0 . . .

0 γ1 0 0 0 . . .

−ξ2 0 ξ2 + ξ3 0 −ξ3 . . .

0 0 0 γ2 0 . . .

0 0 −ξ3 0 ξ3 + ξ4 . . .

...
... . . .

. . .

































, (10d)

F = [f1 − µ1ÿ, 0, f2 − µ2ÿ, 0, . . . , fN − µN ÿ, 0]
T , (10e)

where the hats on all nondimensional parameters have been removed for brevity

and the overdot here, and in the remainder of the paper, denotes nondimensional

time differentiation. The mass MT = M, damping DT = D, and stiffness KT =

K matrices are symmetric and positive-definite. The electromechanical coupling

matrix ET = −E is skew-symmetric.

2.2 Free vibration

The eigenvalue problem comes from the substitution of the time-separable solution

u(t) = χeλt into the homogeneous form of Eq. (8) as

λ2Mχ+ λ (D+ E)χ+Kχ = 0, χ = [X1, Q1, X2, Q2, . . . , XN , QN ]
T . (11)

Equation (11) is a polynomial eigenvalue problem that has a total of 4N eigenso-

lutions. The eigenvalues of Eq. (11) are generally complex-valued. This is seen

by pre-multiplication of Eq. (11) by χ
T to get the polynomial expression

mλ2 + (d+ je)λ+ k = 0, (12)
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where m = χ
TMχ, d = χ

TDχ, and k = χ
TKχ are real-valued because the mass,

damping, and stiffness matrices are real-valued and symmetric; they are positive

because these matrices are positive-definite. The quantity χ
TEχ = je (e is real-

valued) is purely imaginary because of the skew-symmetry of the electromechanical

coupling matrix E. Note that Eq. (12) is not the characteristic equation associated

with the eigenvalue problem in Eq. (11). The solution of Eq. (12) will give two,

but not all, of the device’s eigenvalues.

Solution of Eq. (12) using the quadratic formula gives

λ1,2 = −d + je

2m
±

√

(d+ je)2

4m2
− k

m
. (13)

The imaginary parts of the eigenvalues λ are the real-valued natural frequencies

of the device. The real parts of λ are the exponential decay or growth of the

vibrations, depending on their sign. For vibration energy harvesters, the real

parts of the eigenvalues are usually negative, indicating that the vibrations decay

exponentially in time. When the eigenvalues of Eq. (11) are complex-valued,

the eigensolutions come in complex-conjugate pairs. This can be seen by taking

the complex-conjugate of Eq. (11) and noting that all matrices are real-valued.

It is possible for some eigenvalues to be purely real-valued. Although Eq. (13)

is helpful for explaining the qualitative nature of the device’s eigenvalues, it is

not used to calculate these eigenvalues because the eigenvectors are necessary to

determine m, d, e, and k. All eigenvalue and eigenvector results shown in this

work are numerically calculated from the matrix eigenvalue problem in Eq. (11).

The eigenvectors χ have complex-valued elements. These physically represent

phase differences between coordinates when the device vibrates in a single mode.

Complex-valued eigenvectors are unique to within a change in amplitude and

a shift in phase. Indeed, the eigenvector χ → aχejθ, where a is an arbitrary

real-valued amplitude and θ is an arbitrary real-valued angle, also satisfies the
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eigenvalue problem in Eq. (11). To make the eigenvectors unique we normalize

them to have unit magnitude ‖χ‖ =
√

χ
T
χ = 1 and we select the phase shift so

that the first proof mass’s deflection X1 is real-valued.

The free, single-mode response of the device is u = χeλt + c.c. = 2Re
{

χeλt
}

(c.c. is the complex conjugate of the preceding terms). We express the eigenvalue

in its real and imaginary parts as λ = τ + jω, where τ and ω are real-valued

constants. The vibration coordinate corresponding to the ith mass can be written

in polar form as Xi = |Xi|ejφi, where | · | denotes the magnitude of a complex-

valued number and the phase angle φi is calculated from tanφi = Im(Xi)/Re(Xi).

Hence, the free vibration of the ith mass, which is one element of free response

vector u, is given as xi(t) = 2|Xi|eτt cos (ωt+ φi). This expression shows that

the imaginary part of the eigenvalue ω is the natural frequency of the device in

that mode. The real part of the eigenvalue τ , when negative, which is the typical

case for vibration energy harvesters, determines the rate that the vibrations decay

exponentially. The amplitudes and phases of the vibration are determined from

the components of χ.

The properties of the vibration modes and their corresponding free, single-

mode response are illustrated by a device with a single subsystem using the fol-

lowing dimensional parameters: m = 1 kg, c = 50 Ns/m, k = 1 kN/mm, L = 2

mH, R = 0.5 Ohm, and C = 0.3 mF. From the solution of the eigenvalue problem

in Eq. (11) with these parameters, the device has two pairs of complex-conjugate

eigenvalues λ1 = λ
−1 = −0.0366 + j0.828 and λ2 = λ

−2 = −0.113 + j1.55. The

corresponding eigenvectors are also complex-conjugates, i.e., χ
−1,−2 = χ1,2. The

device’s amplitude and phase normalized eigenvectors are shown in Figs. 2(a,b).

The first eigenvector χ1 (Fig. 2(a)) has meaningfully larger proof mass deflection

than electric circuit charge. The magnitudes of deflection and charge are com-

parable in χ2 (Fig. 2(b)). The sign of the phase of the electric circuit charge in

each eigenvector differs. Figures 2(c,d) show the free, single-mode response in each
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mode. The vibrations decay exponentially as a result of the eigenvalues having

negative real parts. The decay rates for each mode differ because of the differences

in the magnitudes of the real parts of the eigenvalues. The oscillations in the sec-

ond mode (Fig. 2(d)) are negligible after nearly eight oscillation cycles, whereas

the first mode still has meaningful vibration after 10 oscillation cycles (Fig. 2(c)).

The electric circuit charge lags the proof mass deflection in the free response of

the first mode (Fig. 2(c)) because the phase of Q is positive (Fig. 2(a)). When

the phase of Q is negative (like that for χ2 in Fig. 2(b)) the deflection lags the

electric circuit charge in single-mode free response (Fig. 2(d)).

2.3 Forced vibration

The dynamic excitation from applied loads fi = F0ie
jωt and base motion y = ejωt

is assumed to vary sinusoidally in time with nondimensional excitation frequency

ω. The corresponding force vector F(t) = F0e
jωt, where F0 = [F01 + µ1ω

2, F02 +

µ2ω
2, . . . , F0N + µNω

2] is a vector of known forcing amplitudes. The appropriate

form of the steady state response for this excitation is u(t) = Uejωt, where U =

[X1, Q1, X2, Q2, . . . , XN , QN ]
T is a vector of yet to be determined, complex-valued

elements. Substitution of the complex-valued forms of u and F into Eq. (8) and

solving for the response vector U gives

U =
[

−ω2M+ jω (D+ E) +K
]

−1
F0. (14)

The vibration of the masses and charges is determined from the calculated

elements of U. The deflection of the ith mass is xi = Xie
jωt = |Xi|ej(ωt+φi),

where the magnitude and phase shift are calculated as described earlier for free

vibration. Similarly, the ith charge is qi = Qie
jωt = |Qi|ej(ωt+ψi), where tanψi =

Im(Qi)/Re(Qi). For cosine (sine) forcing the response is the real (imaginary) parts

of these complex-valued expressions. The vibration amplitudes are given by the
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frequency response functions |Xi| for the proof mass deflections and |Qi| for the

electric circuit charges.

The power harvested by the device is the power dissipated by the resistance

in each energy harvesting circuit, which, with use of Ohm’s law, is given in

nondimensional form as Pi = βiq̇
2
i . For cosine forcing, use of the current q̇i =

−ω|Qi| sin(ωt + ψi) into this expression and simplification using a trigonometric

identity gives the harvested power as

Pi =
βiω

2|Qi|2
2

[1− cos(2ωt+ 2ψi)] . (15)

The power harvested in each circuit consists of mean and sinusoidally fluctuating

components. The fluctuations in Eq. (15) occur at twice the excitation frequency.

The phase difference between the power and forcing is twice that between the

electric circuit charge and forcing.

The average power harvested over one oscillation cycle is

〈Pi〉 =
1

T

∫ T

0

Pidt =
βiω

2 |Qi|2
2

, (16)

where T = 2π/ω is the oscillation period. We quantify the performance of the

device by the average power harvested in each circuit given by Eq. (16).

3 Results

3.1 Single subsystem device

This section investigates the vibration of devices with a single subsystem (i.e.,

devices with one proof mass and one energy harvesting circuit) that are dynami-

cally excited by nondimensional sinusoidal base motion y(t) = cosωt. The applied

dynamic excitation f1 vanishes. The corresponding governing equations (obtained
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by reduction of Eq. (8) for N = 1) are







1 0

0 α













ẍ

q̈






+













ζ 0

0 β






+







0 1

−1 0



















ẋ

q̇






+







1 0

0 γ













x

q






=







ω2 cosωt

0






,

(17)

where µ1 = 1, ν1 = 1, and ξ1 = 1 from Eq. (7), ζ2 = ξ2 = 0, and all subscripts

have been removed for brevity.

The system analyzed in this section has dimensional parameters m = 1 kg,

c = 10 Ns/m, k = 1 kN/mm, κ = 30 N/A, L = 2 mH, R = 0.1 Ohm, and C = 0.3

mF.

The eigenvalue problem associated with Eq. (17) has the general form given

in Eq. (11). It is solved numerically using the above parameters for the for the

eigenvalues λ and eigenvectors χ. This device has two pairs of complex-conjugate

eigenvalues λ1 = λ
−1 = −0.00731 + j0.828 and λ2 = λ

−2 = −0.0227 + j1.56.

The two natural frequencies are given by the imaginary parts of λ. They identify

frequencies where large amounts of electrical power could potentially be harvested

by the device. The decay rates of each eigenvalue (i.e., the real parts of λ) differ.

The magnitudes and phases of the components of each eigenvector are shown

in Fig. 3. Both eigenvectors have meaningful electromechanical coupling. We

anticipate that the second mode (χ2 in Fig. 3(b)) will perform better than the

first (χ1 in Fig. 3(a)) for vibration energy harvesting because the magnitude of

the charge in χ2 is nearly identical to that of the deflection.

Typical vibration energy harvesters with a single proof mass and electrical cir-

cuits with only resistance have one natural frequency [5–7]. The single subsystem

device analyzed in this section has two natural frequencies because the circuit has

both inductance and capacitance. These elements give dynamics in the electrical

circuit. Neither natural frequency is near the corresponding uncoupled, purely

mechanical system’s natural frequency at ω = 1 because of electromechanical cou-
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pling. These devices cannot be accurately modeled using a purely mechanical

systems that neglect electromechanical coupling.

The dynamic response of the single subsystem device is solved in closed-form

following the procedure given in Section 2.3. The resulting proof mass deflection

and electric circuit charge frequency response functions are

|X| = ω2
√

(γ − αω2)2 + β2ω2

√

[(1− ω2)(γ − αω2)− (1 + ζβ)ω2]2 + [βω(1− ω2) + ζω(γ − αω2)]2
,

(18a)

|Q| = ω3

√

[(1− ω2)(γ − αω2)− (1 + ζβ)ω2]2 + [βω(1− ω2) + ζω(γ − αω2)]2
.

(18b)

The dynamic response of the single subsystem device calculated from Eqs. (18)

is shown in Fig. 4 for a wide range of excitation frequencies. The response

calculations shown in Fig. 4 have been validated by results obtained by direct

numerical integration of Eq. (17) (not shown). The device has two resonances

that occur near its natural frequencies, which are calculated independently of the

response problem using the eigenvalue problem in Eq. (11). The first resonance

near ω = 0.828 ≈ Im(λ1) has larger amplitude deflection than charge. This agrees

qualitatively with the ratio of the magnitudes of the deflection and charge in χ1

(Fig. 3(a)). At the second resonance near ω = 1.56 ≈ Im(λ2) the amplitude of the

proof mass deflection is only slightly larger than that of the electric circuit charge,

which qualitatively agrees with the ratio of their magnitudes in χ2 (Fig. 3(b)). The

agreement between the dynamic response predictions and the eigenvalue problem

results demonstrates the usefulness of the eigenvalue problem for these devices.

Some dynamic characteristics of the device are determined by solving an eigenvalue

problem alone. Response calculations are not necessary. Natural frequency and

vibration mode analyses are important in the design stage when several different

configurations are being considered.
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Use of Eq. (18b) into Eq. (16) gives the average power harvested by the single

subsystem device as

〈P 〉 =
1
2
βω8

[(1− ω2)(γ − αω2)− (1 + ζβ)ω2]2 + [βω(1− ω2) + ζω(γ − αω2)]2
. (19)

The average power harvested calculated from Eq. (19) is shown by the dash-

dotted (red) line in Fig. 4. There are two local maxima near the resonances of

the device. The maximum average power harvested at the first resonance near

ω = 0.828 is 〈P 〉 = 5.56. This amplitude is significantly lower than that for the

proof mass deflection and electric circuit charge. The maximum average power

harvested at the second resonance near ω = 1.56 is 〈P 〉 = 25.7. In contrast to

that at the first resonance, the average power harvested here is substantially larger

than both the deflection and charge. The average power harvested at the second

resonance is greater than four times that at the first. For this device, the second

mode performs better than the first for vibration energy harvesting applications.

The average power harvested for the case of forced excitation (f = F0e
jωt)

and vanishing base excitation (y → 0) is 〈P̃ 〉 = 〈P 〉F 2
0 /ω

4, where 〈P 〉 is the

average power harvested for the case of base excitation given in Eq. (19). Hence,

the amplitude of average power harvested differs when the device is dynamically

excited by applied forces compared to the case of base excitation, in contrast to

what is reported in Ref. [25].

The changes in the single subsystem device’s eigenvalues for varying nondi-

mensional resistance β are shown in Fig. 5. For vanishing β the eigenvalues are

complex-valued with small negative real parts due to the viscous damping in the

device. The imaginary part of λ1 (i.e., the natural frequency of the first mode)

increases monotonically with increasing resistance for the entire range shown (Fig.

5(a)). The real part of λ1 (which is related to the decay rate of the first mode)

initially decreases with increasing resistance from β = 0. It reaches a local min-
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imum near β = 3.7. For β > 3.7 the real part of λ1 increases monotonically,

but remains negative, with further increases in β. The imaginary part of λ2 de-

creases monotonically with increasing β until near β = 6.22, where it vanishes.

Above β = 6.22 the eigenvalues λ2 and λ
−2 are real-valued and negative, with

one increasing and the other decreasing with further increases in resistance. This

interaction is shown in a root locus diagram in Fig. 5(b). For increasing β between

0 and 6.22, the complex-valued λ2 (λ
−2) has decreasing real part and decreasing

(increasing) imaginary part. The eigenvalues λ2 and λ−2 approach one another as

the resistance increases toward β = 6.22. These eigenvalues coalesce on the real

axis at β = 6.22. For increasing resistance above β = 6.22 they become real-valued

and negative and remain that way for extremely high resistances (not shown). Be-

cause the resistance β = 6.22 separates complex-valued eigenvalues from purely

real eigenvalues, we call it a critical resistance and denote it as βcrit. The critical

resistance separates oscillatory free response (β < βcrit) from overdamped free

response without oscillations (β > βcrit) for this mode.

Figure 6 shows a contour plot of the average power harvested at each resonance

for varying nondimensional resistance β and excitation frequency ω. The natural

frequency loci calculated from the eigenvalue problem in Eq. (11) are shown by

dotted (black) lines. Although the natural frequencies do not change meaningfully

for the range of resistances shown, the average power harvested varies substan-

tially. The average power harvested has local maxima near the natural frequencies

of the device. The resistance that maximizes the average power harvested differs

between the two resonances. Near the first resonance (Fig. 6(a)) the maximum

occurs near the nominal resistance (denoted by a dashed (red) vertical line). For

the second resonance in Fig. 6(b), however, the maximum average power har-

vested occurs for a value of β near the viscous damping coefficient ζ (denoted by a

dash-dotted (purple) vertical line). The exact electric circuit resistance that max-

imizes the average power harvested is determined by differentiation of Eq. (19)
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with respect to β, equating that result to zero, and then solving for β. Closed-

form solutions are difficult so the optimum resistance is determined numerically

at each resonance. The optimum resistance at the first resonance near ω = 0.828

is βe1 = 0.0693. The corresponding maximum power 〈P 〉 = 5.87. At the second

resonance near ω = 1.56 the optimum resistance is βe2 = 0.0119. The maximum

average power harvested at this resistance is 〈P 〉 = 73.7. This is a 287% improve-

ment in power harvested compared to the nominal resistance (Fig. 4). These

results are verified by the contour plots shown in Fig. 6.

For single subsystem devices with purely resistive electric circuits [7, 17] and

devices with adaptive circuits that include capacitance and inductance [25], the

maximum power harvested is 〈P 〉 = 1/8ζ when the device is operated near res-

onance (ω = 1) and β = ζ . (Note that this expression is twice that given in

Refs. [7, 17, 25] due to those works expressing the result in terms of the system’s

damping ratio, whereas here we use the nondimensional viscous damping coeffi-

cient.) For these devices the maximum average power harvested for ζ = 0.01 is

〈P 〉 = 12.5. The single subsystem device proposed in this section harvests signifi-

cantly more power than one with purely resistive circuits. We note that although

the damping in these two cases is similar, the resistances differ substantially. The

damping in devices with purely resistive circuits is inversely proportional to the

resistance (see Eq. (6)). For single subsystem devices with inductance and capac-

itance the resistance is proportional to the damping (see Eq. (4)).

The sensitivity of the device’s eigenvalues to changes in the nondimensional

inductance is shown in Fig. 7(a). The nominal inductance is indicated by a

dashed (red) vertical line. For increasing inductance from α = 1, but below the

nominal value, the natural frequency of the first mode (i.e., the imaginary part

of λ1) decreases slightly with increasing α. In contrast, the natural frequency of

the second mode decreases rapidly in this range. These two natural frequencies

interact with one another near the nominal inductance in a natural frequency veer-
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ing region [44–47]. Before the veering region the trajectories of the two natural

frequencies suggest that they will cross one another in the neighborhood of the

nominal inductance. As the natural frequencies get closer to one another, however,

they change course and veer away instead of intersecting. For increasing induc-

tance above the nominal value the natural frequency of the first mode decreases

substantially and that for the second mode decreases only slightly. The real part

of λ1 increases monotonically, but remains negative, for the entire range of in-

ductances shown. The real part of λ2 increases rapidly for increasing inductance

from α = 1. At higher inductances above the nominal value it becomes much less

sensitive to increasing inductance.

Figure 7(b) shows the sensitivity of the device’s eigenvalues to changes in γ,

which is inversely proportional to the capacitance in the electric circuit. The

natural frequencies of the device increase with increasing γ. The two natural

frequencies have a veering away region near the nominal value of γ (denoted by a

dashed (red) vertical line). This veering region is wider than that seen in Fig. 7(a)

when the nondimensional inductance α is varied. The real parts of the eigenvalues

remain negative for the entire range shown. They are only sensitive to γ in the

region between 0.1 and 10. The real part of λ1 increases monotonically with

increasing γ in this range. In contrast, the real part of λ2 decreases monotonically

with increasing γ. Outside of the region 0.1 < γ < 10, the real parts of the

eigenvalues do not change meaningfully with changes in γ.

The results in Figs. 5 and 7 show that the electric circuit parameters signifi-

cantly affect the vibration of the energy harvesting device. These parameters, like

those for the proof mass and elastic structure, could be used to tune the device’s

dynamics for optimal performance.
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3.2 Double subsystem device

This section investigates a device with two subsystems (N = 2), which powers

two separate electrical loads. The first subsystem has m1 = 1 kg, c1 = 5 Ns/m,

k1 = 1 kN/mm, L1 = 1 mH , R1 = 0.1 Ω, C1 = 0.3 mF , and κ1 = 30 N/A.

The second subsystem has m2 = 0.5 kg, c2 = 5 Ns/m, k2 = 0.2 kN/mm, L2 =

2 mH , R2 = 0.1 Ω, C2 = 0.15 mF , and κ2 = 30 N/A. The device’s eigenvalues

and eigenvectors are numerically determined from the eigenvalue problem in Eq.

(11) using these parameters. This device has four pairs of complex-conjugate

eigenvalues: λ1 = λ
−1 = −0.00300 + j0.510, λ2 = λ

−2 = −0.00743 + j0.889,

λ3 = λ
−3 = −0.0401+j1.96, and λ4 = λ

−4 = −0.0344+j2.37. Because this device

has complex-valued eigenvalues with negative real parts, its corresponding single-

mode free response will have decaying oscillations, like that shown in Fig. 2 for the

single subsystem device. The complex-valued eigenvectors of the double subsystem

device are shown in Fig. 8 by the magnitudes and phases of each coordinate. All

the vibration modes for this device are electromechanically coupled, although the

strength of the coupling varies between the modes. The first eigenvector χ1 (Fig.

8(a)) has weak electromechanical coupling, as seen by the large differences in

amplitude between the deflections and charges. This mode is dominated by the

deflection of the second proof mass |X2|. There is meaningful electromechanical

coupling in χ2 (Fig. 8(b)), although this mode is dominated by the deflection of

the first proof mass |X1|. The eigenvectors χ3 (Fig. 8(c)) and χ4 (Fig. 8(d))

have strong electromechanical coupling. The magnitude of the first charge |Q1| is

meaningfully larger than that for the other coordinates in χ3. This mode will likely

be a good candidate for energy harvesting applications, in particular, for providing

power to the resistance in the first subsystem. The components of χ4 have nearly

identical magnitudes. This mode could potentially harvest large amounts of power

for each resistance simultaneously.
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There are specific phase differences between the coordinates of χ1−4 in Fig. 8.

The deflections X1,2 are always nearly in-phase (Figs. 8(a,c)) or nearly π radians

out-of-phase (Figs. 8(b,d)). Similarly, the charges Q1,2 are always nearly in-phase

(Figs. 8(a,c)) or nearly π radians out-of-phase (Figs. 8(b,d)). The electric circuit

charges either lead or lag the proof mass deflections by nearly π/2 radians. This

phase difference also occurs between charges and deflections in Figs. 2 and 3 for

the single subsystem device.

Figure 9 shows the dynamic response for a wide range of excitation frequencies

that include the device’s four resonances. The device is dynamically excited by

nondimensional sinusoidal base motion y(t) = cosωt. The applied dynamic forces

f1,2 vanish. The results in Fig. 9 have been validated by numerical integration of

Eq. (8) (not shown). The four resonant frequencies of the device seen in Fig. 9

occur near its natural frequencies, which are obtained from the imaginary parts

of the eigenvalues. At the first resonance near ω = 0.510 the device has large

amplitude deflections of the proof masses, in particular, |X2|. The response at

the second resonance near ω = 0.889, like that at the first, has large amplitude

deflections of the proof masses. At this frequency |X1| has the largest amplitude

(Fig. 9(a)). The response at the third resonance near ω = 1.96 has significant

vibration in all coordinates; the charge in the first circuit has the largest amplitude

vibration. At the fourth resonance (ω ≈ 2.37) the deflections |X1,2| and charges

|Q1,2| have similar amplitudes. The features of the device’s dynamic response at

resonance agree with those of the corresponding vibration modes in Fig. 8. The

agreement between the eigenvalue problem results and response calculations for

the double subsystem device further demonstrates the utility of solving eigenvalue

problems for electromagnetic vibration energy harvesters.

The average power harvested by the double subsystem device is shown by the

dash-dotted (red) lines in Fig. 9. The maximum average power harvested by

the resistance in the first subsystem is 〈P1〉 = 13.1, which occurs at the third
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resonance (near ω = 1.96 in Fig. 9(a)). The maximum average power harvested

by the resistance in the second subsystem at this frequency is 〈P2〉 = 4.09 (Fig.

9(b)), which is nearly one-third of that for the resistance in the first subsystem.

At the fourth resonance (ω ≈ 2.37) the maxima are 〈P1〉 = 12.5 (Fig. 9(a)) and

〈P2〉 = 10.5 (Fig. 9(b)). At the second resonance near ω = 0.889 the maximum

average power harvested is 〈P1〉 = 3.85 and 〈P2〉 = 1.31. The sharpness of these

resonances, in addition to their small amplitudes, would make energy harvesting at

this frequency challenging. The first resonance near ω = 0.510 has negligible am-

plitudes of average power harvested, as suggested by the weak electromechanical

coupling in χ1 (Fig. 8(a)).

The results from Fig. 9 suggest that this device has two modes where large

amounts of energy can be harvested. The device’s third resonance is suited to ap-

plications where the two electrical loads (i.e., the resistances in each subsystem)

require different amounts of electrical power. Operation of the double subsystem

device near the fourth resonance provides similar amounts of electrical power to

both resistances simultaneously. The remaining two modes are not likely suitable

for energy harvesting applications. Devices with two subsystems and two reso-

nances where large amounts of energy are harvested are suited to applications

that have two operating conditions.

A contour plot of the average power harvested by the double subsystem device

for varying nondimensional resistance β1 and excitation frequency ω is shown in

Fig. 10 for excitation frequencies that include the third and fourth resonances.

The device’s natural frequencies (the dotted (black) lines calculated from Eq. (11))

are not sensitive to changes in β1 below the nominal value (denoted by a dashed

(red) vertical line). For resistances above its nominal value the natural frequencies

vary substantially with β1. The ω3 locus is particularly sensitive to resistance

above β1 = 1. This locus vanishes at β1crit = 4.45 (not shown). Interestingly, no

other natural frequencies vanish as β1 increases, even for extremely large β1. The
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maximum average power harvested by the first resistance is 〈P1〉 = 17.9, which

occurs for β1 = 0.0363 at the third resonance (near ω = 1.96 in Fig. 10(a)).

Another local maximum occurs for β1 = 0.120 at the fourth resonance (ω ≈ 2.37).

Here the maximum average power harvested is 〈P1〉 = 12.4. As seen in Fig. 10(b),

the average power harvested by the second resistance increases monotonically with

decreasing β1. This makes sense intuitively because decreasing β1 decreases the

total damping in the device, which results in larger amplitude vibrations and

larger amounts of power harvested by the resistance in the second subsystem. At

β1 = 0.001 (the smallest value shown) the maximum average powers harvested at

the third and fourth resonances are 〈P2〉 = 66.0 and 〈P2〉 = 37.8, respectively. The

power harvested by both resistances decreases with increasing β1 from its nominal

value.

Figure 11 shows that the average power harvested by the double subsystem

device differs substantially with changes in γ1. For all values of γ1 shown large

amplitudes occur near the natural frequency loci (dotted (black) lines) calculated

from Eq. (11). The average power harvested near ω1,2 is small for all γ1 shown.

Two veering away regions (denoted as “VA”) occur. The ω1 and ω2 loci veer away

near γ1 = 0.800. A region of veering away occurs between ω3 and ω4 near the

nominal value of γ1.

Figure 12 shows the difference in average power harvested at the third and

fourth resonances for two configurations of the double subsystem device that each

power only a single resistance. When the device is operated near ω3 the device

that powers only the second resistance (solid (black) line) harvests substantially

more power than the identical device that powers only the first resistance (dashed

(red) line). Near ω4 similar amounts of power are harvested by each configuration.

The power harvested near the first two resonances (not shown) is negligible for

both device configurations.
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4 Conclusions

By casting the eigenvalue problem for electromagnetic vibration energy harvesters

into matrix operator form the qualitative properties of their vibration are re-

vealed. These devices generally have complex-valued eigenvalues and eigenvectors

because of electromechanical coupling, viscous mechanical damping, and damping

associated with the power dissipated by the resistances in the electric circuits.

The imaginary parts of the eigenvalues are the device’s natural frequencies, where

large amplitude vibrations occur in forced response. The eigenvalues have nega-

tive real parts, which physically represent exponentially decaying oscillations in

single-mode free response. The complex-valued components of the eigenvectors

physically represent the amplitudes and phases of the device’s deflections and

charges in single-mode free or forced vibration.

Devices with a single subsystem (i.e., a single proof mass, elastic structure,

electromagnetic generator, and energy harvesting circuit) have two resonances.

Because the maximum average power harvested at each resonance differs substan-

tially, only one of the device’s two vibration modes is suited to vibration energy

harvesting applications. The maximum average power harvested occurs for resis-

tances slightly above the viscous damping coefficients. Double subsystem devices

can simultaneously power two separate electrical loads. These devices have four

resonances. Only two of these four modes are suitable for vibration energy har-

vesting applications. In one mode the average power harvested by each resistance

is meaningfully different. The other mode has nearly identical amounts of aver-

age power harvested by each resistance. The eigenvectors with strong electrome-

chanical coupling, as determined by the relative magnitudes of their vibration

coordinates, generally produce large amplitudes of average power harvested.

The device’s eigenvalues, dynamic response, and average power harvested are

sensitive to the inductance, resistance, and capacitance in the electric circuit. The
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device’s natural frequencies do not change significantly with changes in resistance

in the vicinity of the maximum power harvested. At higher resistances, however,

the natural frequencies are highly sensitive to changes in resistance. Overdamped

vibration behavior is possible for sufficiently large resistances. Regions of nat-

ural frequency veering occur as the inductances and capacitances vary due to

electromechanical coupling in the device.
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Figure 1: Schematic of a system of electromagnetic vibration energy harvesting
devices.
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Figure 2: Single subsystem vibration energy harvester eigenvectors (a) χ1 and (b)
χ2. Single-mode free response of (c) mode 1 (χ1) and (d) mode 2 (χ2). The solid
(blue) and dashed (black) lines in (c,d) are the deflection (x) of the proof mass
and charge (q) in the electric circuit, respectively.
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Figure 3: Magnitudes and phases of the complex-valued components of the single
subsystem device eigenvectors. (a) χ1 (λ1 = −0.00731 + j0.828) and (b) χ2

(λ2 = −0.0227 + j1.56).
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Figure 8: Magnitudes and phases of the complex-valued components of the double
subsystem device eigenvectors. (a) χ1 (λ1 = −0.00300 + j0.510), (b) χ2 (λ2 =
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Figure 10: Contour plots of the average power harvested (a) 〈P1〉 and (b) 〈P2〉 by
the double subsystem device for varying nondimensional resistance β1 and excita-
tion frequency ω. The dashed (red) vertical lines denote the nominal resistance.
The dotted lines are the natural frequency loci.
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Figure 11: Contour plots of the average power harvested (a) 〈P1〉 and (b) 〈P2〉
by the double subsystem device for varying nondimensional inverse capacitance γ1
and excitation frequency ω. The dashed (red) vertical lines denote the nominal
inverse capacitance. The dotted (black) lines are the natural frequency loci.
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