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DESIGN AND SYNTHESIS OF INHIBITORS OF HYPOXIA INDUCIBLE FACTOR-1-

MEDIATED FUNCTIONS

LINGYUN YANG

Under the Direction of Professor Binghe Wang

ABSTRACT
Hypoxia Inducible Factors (HIFs) are very important transcription factors that can respond to
low oxygen concentrations in the cellular environment. Inhibition of HIF’s transcriptional
activity represents a promising approach to new anticancer compounds. Herein, we describe the
design and synthesis of a series of HIF-1 inhibitors. Evaluation of these inhibitors using a cell-

based luciferase assay led to the discovery compounds with sub-micromolar potency.
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1 INTRODUCTION

1.1 Purpose of the Study

A tumor is an abnormal growth of body tissue. Malignant tumors or cancer
represent a major threat to human health. Based on the GLOBOCAN database," tens
of millions of people are diagnosed with cancer around the world each year, and more
than half of them die from it. Cancer is generally considered a name for a class of
diseases with varying characteristics. As a result, treatment outcome varies and a cure
is an elusive goal.””! Although there are debates as to whether one can truly summarize
certain traits as hallmarks of cancer,® one thing is true that malignant solid tumors
are often accompanied by a state of hypoxic, or low oxygen, conditions, presumably
due to their rapid growth and inadequate vascularization.”® Such hypoxic states activate
the expression of genes responsible for malignancy, aggressiveness, metastasis, and

treatment-refractory properties.!®!

1.2 Hypoxia Inducible Factor-1 Pathway

Hypoxia Inducible Factors (HIF) are a family of transcription factors that regulate
hypoxia-driven gene expression.”® HIFs can be activated under hypoxic conditions
and induce target genes that regulate adaptive biological processes such as cell
motility, anaerobic metabolism and angiogenesis.””! HIF-1 is the chief regulator in the
response of growing tumor to hypoxia.'” HIF-1 is a heterodimeric protein complex
composed of a and ( subunits, and HIF-1a plays a role as an oxygen-sensitive
transcriptional activator while HIF-1B is constitutively expressed in the cell nucleus.['"”

'3 |n the presence of oxygen, HIF-1a can be destroyed rapidly through the ubiquition-



proteasome pathway (UPP).['" HIF-1a subunit is dihydroxylated at key proline residues
within the oxygen dependent degradation domain (ODD) of HIF-1a. During this
process, PHD2, a member of the prolyl hydroxylase family, along with 2-oxoglutarate,
oxygen and Fe(ll) are required to promote the hydroxylation of HIF-1a.l">""! Following
this process, HIF-1a can bind to the von Hippel Lindau tumor suppressor protein
(pVHL) which can polyubiquitinate HIF-1a due to its E3-ubiquitin ligase activity,
subsequently signaling degradation via the ubiquition-proteasome pathway (UPP)."®!
Under hypoxic conditions, PHD2 activity is inhibited because of the reduction of
oxygen, and HIF-1a accumulates rapidly and forms the HIF-1 dimer with HIF-13,
regulating the transcription of many genes in a cell."® With the help of cofactor p300,
HIF-1 binds to the hypoxia-responsive element (HRE) sequence of DNA, and promotes
the expression of a number of target genes such as vascular epidermal growth factor
(VEGF) and erythropoietin (EPO), which help hypoxic cells survive.?*??! Solid tumors
need an increased blood supply to grow and spread to other organs and regions of the
body, and overexpression of VEGF is able to develop the enhanced blood supply for
them.?®l EPO has a role of controlling erythropoiesis or red blood cell production, and it
can be used to treat anemia from kidney failure or cancer treatment.”* Over
expression of EPO is a factor that exhibits an anti-apoptotic action on numerous cells,

including malignant ones.*”!



1.3 HIF-1 Inhibitors

Recently, many anti-cancer compounds have been developed to inhibit the HIF
pathway.?®’ Some of them have been applied in the clinic successfully. The 2016
Laskar award was given to three scientists: William Kaelin, Jr., Peter Ratcliffe, and
Gregg Semenza, for their seminal contributions in oxygen sensing and associated

biological implications, further demonstrating the importance of this area. Inhibition of

HIF-1 can be achieved in many ways, including decreased HIF-1a mRNA levels,

decreased HIF-1a protein synthesis, increased HIF-1a degradation, decreased HIF

subunit heterodimerization, decreased HIF binding to DNA, and decreased HIF
transcription activity.?”! Many drugs are in clinical trials to treat cancer by inhibition of
HIF-1, and they exhibited molecular mechanisms of inhibiting HIF-1 at different

steps.[28] For example, the prodrug AFP-464 (Figure 1) is already applied in phase |

cancer trials, and it almost blocks HIF-1a protein expression completely and partially
inhibits HIF-1a mRNA expression by decreasing both the stability and translation of

HIF-1a mRNA P!

AFP-464

Figure 1: Chemical Structure of AFP-464



Earlier, KCN1 (Figure 2) was discovered as a potent HIF-1 inhibitor without any

signficant toxicity.!

KCN1
IC5o = 590 NM

Figure 2: Structure and ICsy value of KCN1

Based on KCN1, a new compound SRIV-64b (Figure 3) was designed and synthesized

by our group. Compared to KCN1, ICsy of 0.59 pM (Figure 2), SRIV-64b was

determined to have a lower ICsy value and was considered the most potent HIF-1

inhibitor of this series synthesized previously.®

m; o
XN g o~
O,

SRIV-64b
|Cso =280 nM

Figure 3: Structure and ICsy value of SRIV-64b



1.4 HIF-1 Inhibitors Classes

During the past several years, more than 200 compounds have been synthesized
by our group. However, only less than half of the compounds in the library can be
considered as potent HIF inhibitors. In order to find more patent HIF inhibitors, new
scaffolds were needed.

Natural products manassantin A and manassantin B (Figure 4), isolated from
Saururus cernuus have been shown to inhibit HIF-1 in vitro at nanomolar

concentrations.®®*? With these natural products and our earlier HIF-1 inhibitors in

mind,’®’ we were interested in designing “hybrid” compounds as a new scaffold of

potential HIF-1 inhibitors. As a result, lead compound 2 (Figure 5) was developed with
the goal of achieving manassantin-like activity against HIF, while having a more facile
synthetic route than manassantins. Compound 2 was synthesized and shown as a
potent HIF inhibitor, and successfully demonstrated HIF inhibition in a luciferase assay
in glioblastoma cells. Our goal was to design new analogues by modifying lead
compound 2 and to test them for HIF inhibitory activity. Based on substituents at
different positions on the phenyl ring, five classes of compounds were designed and

synthesized (Figure 6).



R, HsC ~ CHs OCHjs
HO
R, R TN OCHg
HC” 0 0" " CHy
OCH OCHg

Manassantin A: R{=R,=-OCH,
Manassantin B: R{=R,=-OCH,0-

Figure 4: Manassantin A and B

|Cso = 0.58 MM

Figure 5: Lead compound structure and ICs, value
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Figure 6: Analogues Designed

2 CHEMISTRY DESIGN AND EXPERIMENTS
This work includes compounds synthesized by Jalisa Ferguson* and Marquis Griffin”.
12a, 14d, 9d, 9g, 19b, 17e and 22a were synthezied by Dr. Jalisa Holmes Ferguson™.

14a and 9a were synthesized by Marquis Griffin”.

2.1 Design

In Class |, we are interested in exploring the effect of having an ortho-substitution
on the phenyl ring of region A, while maintaining the methyl-protected catechol

structure on the right. In doing so, we expect that the torsional angle defined by



O(hydroxyl)-C-C-C to be slightly perturbed by alkoxy substitution at the ortho position.
In this class of compounds, we designed six analogues, and compared their different
structures for structure activity relationship study.

In Class Il, we are interested in examining the effect of para-subtitutions. In this
case, the torsional angle defined by O (hydroxyl)-C-C-C is not expected to be
perturbed. However, the various substitutions would allow us to explore the favorable
and unfavorable interactions between the binding pocket and the para-substituents of
the phenyl ring. In addition, such substitutions may also perturb the electronic
properties of the phenyl ring and to some degree the hydrophobicity of the moiety. The
various substituents at the para-position may also allow us to explore additional
functional group interactions. In Class Ill, we are interested in examining the effect of
substituents at the meta-position while keeping the protected catechol the same on the
right side. Similarly, class Ill can be compared with class Il. In Class IV and V, we are
interested in changing the protected catechol to protected pyragol, while sampling
various substituents on the phenyl ring on the left side. Below are the results of

synthesis and biological evaluation.

2.2 Chemistry
2.2.1 Class I: Ortho-phenolic ether benzhydrol analogues.

Class | analogues were synthesized in two steps: nucleophilic substitution
followed by lithium-halogen exchange with subsequent addition to aldehyde. 2-

Hydroxybenzaldehyde (3) was reacted with the corresponding bromide to generate



compounds (4a-f). Compounds (6a-f) were generated using a lithium-halogen
exchange reaction of bromide of 5 using n-butyllithium. The aryllithium generated was
used in situ in the subsequent addition reaction with aldehydes 4a-f, yielding final

compounds 6a-f.

Scheme 1: Synthesis of ortho-phenolic ether benzhydrol analogues.

CHO a CHO
R ——
X (L
OH 0]

3 4
Br N O\ b, ¢ O\
| —
.0 OH
R
5 6

R= allyl (4a, 6a), isopropy! (4b, 6b), propyl (4c, 6¢), hexyl (4d, 6d), methylcyclohexyl

(4e, 6e), and benzyl (4f, 6f).

Reagents and Conditions: (a) RBr, K.CO3, DMF, 78 °C, overnight, 97-99% yield. (b) n-BuLi,

THF, -78 °C, 1.5 hours; (c) 4, 2 hours, 55-69% vyield.

2.2.2 Class II: Para-phenolic ether benzhydrol analogues
Synthesis of Class Il analogues was achieved in either 2 or 4 steps. In Scheme 2,

the intermediates 8a-c were prepared by reaction between 4-hydroxybenzaldehyde (7)
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and bromide compounds. Next, lithium-halogen exchange of 5 using n-BulLi, followed
by addition of aldehyde 8, afforded the final compounds 9a-c. In Scheme 3, for
analogue 9g, di-tert-butyl dicarbonate was reacted with 2-(piperidin-4-yl)ethan-1-ol 10b
under aqueous conditions to yield intermediate 11b. Tosylation of 11b with 4-
methylbenzenesulfonyl chloride under mild conditions vyielded 12*. Next, the
intermediates 14a*-d were prepared by reaction between 4-bromophenol (13) and
compounds 12* or bromide compounds. Lastly, lithium-halogen exchange of 14 using
n-BuLi, followed by addition of 3,4-dimethoxybenzaldehyde, afforded the final

compounds 9d*-g*.

Scheme 2: Synthesis of Para-phenolic ether benzhydrol analogues 9a-9c.

CHO CHO
HO O

7 8
Y e T O
o~ o~
OH
5 9

R= isobutyl (8a, 9a), hexyl (8b, 9b), methylcyclohexyl (8¢, 9c).

Reagents and Conditions: (a) K.COs3, RBr, DMF, 78 °C, overnight, 95-97% yield. (b) n-BulLi,

THF, -78 °C, 1.5 hours; (c) 8a-c, 2 hours, 54-71% yield.
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Scheme 3: Synthesis of Para-phenolic ether benzhydrol analogues 9d*-9g*

OH a OH b n OTs
n R n
.N _N > N
H Boc Boc

10 11 12
0 o
o (Y e " )
HO "o o~
OH
13 14 9

n=2 (10b, 11b, 12*)
R= allyl (14a*, 9d*), isopropyl (14b, 9e), propy! (14c¢, 9f), (1-(tert-

butoxycarbonyl)piperidin-4-yl)ethyl (14d’, 9g*).

Reagents and Conditions: (a) Boc,O, H.O, room temperature, overnight, 96% vyield. (b) TsCl,
NEt;, THF, room temperature, overnight, 86% yield. (c) K.COs, 12; RBr, DMF, 90 °C, 5 hours,
95-97% vyield. (d) n-BuLi, THF, -78 °C, 1.5 hours; (e) 3,4-dimethoxybenzaldehyde, 2 hours, 54-

71% yield.

2.2.3 Class III: Meta-phenolic ether benzhydrol analogues

Class lll analogues were synthesized as described in Schemes 4 and 5. In
Scheme 4, the analogues were synthesized by alkylation of 3-hydroxybenzaldehyde
(15) using the corresponding bromide to give intermediates 16a-b. Next, lithium-
halogen exchange of 5 using n-BuLi, followed by addition of aldehyde 16, afforded the

final compounds 17a-b. In Scheme 5, for analogues 17c-e, the intermediates 19a-c
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were prepared by reaction between 3-bromophenol (18) and bromide compounds.
Next, analogues 17c-e were synthesized by lithium-halogen exchange as described

above.

Scheme 4: Synthesis of Meta-phenolic ether benzhydrol analogues 17a-17c.

oL —— . 1
HO CHO O CHO

15 16
O e W OO
OH
5 17

R= isobutyl (16a, 17a), isopropyl (16b, 17b), propyl (16¢c, 17c).

Reagents and Conditions: (a) K.CO3;, DMF, 78 °C, overnight, 92-96% vyield. (b) n-BuLi, THF, -

78 °C, 1.5 hours; (c) 16a-c, 2 hours, 67-78% yield.

Scheme 5: Synthesis of Meta-phenolic ether benzhydrol analogues 17d and 17e*.

o\
J — J L
— . -
HO Br R.o Br O O
OH

18 19 17

R= allyl (19a, 17d), hexyl (19b, 17e)*.
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Reagents and Conditions: (a) Ko.CO3, DMF, 90 °C, 5 hours, 93-97% yield. (b) n-BuLi, THF, -78

°C, 1.5 hours; (c) 3,4-dimethoxybenzaldehyde, 2 hours, 63-69% vyield.

2.2.4 Class IV: Ortho-benzyl ether benzhydrol analogues.

Synthesis of Class IV analogues was achieved in either 2 or 3 steps. For
analogues 22b and 22c, intermediates 11a-b were prepared by the same method as
described above (Scheme 3). Benzylic ether intermediates 21 were synthesized by O-
alkylation with sodium hydride as the base and 2-bromobenzyl bromide (20). Final
analogues 22a-c were synthesized using lithium-halogen exchange to generate the

arylitinium, followed by addition to trimethoxyphenyl aldehyde.

Scheme 6: Synthesis of ortho-benzyl ether benzhydrol analogues.

Q/@‘OH a O/()‘OH
N n B N n
H Boc~

10 11
~o
O\
SO S GRS
P Br R (l) OH
20 21 R 22

n=1 (10a, 11a), 2 (10b, 11b)
R= phenyl (21a, 22a*), (1-(tert-butoxycarbonyl)piperidin-4-yl)methyl (21b, 22b), (1-(tert-

butoxycarbonyl)piperidin-4-yl)ethyl (21c, 22c).
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Reagents and Conditions: (a) Boc,O, H.O, room temperature, overnight, 98-99% vyield. (b)
ROH; 11a-11b, NaH, DMF, 0 °C-rt, overnight, 96-98% yield. (c) n-BuLi, THF, -78 °C, 1.5 hours;

(d) 3,4,5-trimethoxybenzaldehyde, 2 hours, 59-71% vyield.

2.2.5 Class V: Tri-substituted phenolic ether benzhydrol analogues.

Class V analogues were synthesized in two steps. 4-Bromo-2-methylphenol (23)
was reacted with bromide compounds to form the ether intermediates 24a-f via
nucleophilic substitution. Next, analogues 25a-f were synthesized using lithium-

halogen exchange and addition to trimethoxyphenyl aldehyde.

Scheme 7: Synthesis of tri-substituted phenolic ether benzhydrol analogues.

~o

.0

Br Br o~
OH

23 24 25

R= allyl (24a, 25a), isobutyl (24b, 25b), isopropyl (24c, 25c¢), propyl (24d, 25c), hexyl

(24e, 25e), methylcyclohexyl (24f, 25f).

Reagents and Conditions: (a) RBr, K.CO3, DMF, 78 °C, overnight, 95%-99% vyield. (b) n-BulLi,

THF, -78 °C, 1.5 hours; (c¢) 3,4,5-trimethoxybenzaldehyde, 2 hours, 59%-65% vyield.
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3 BIOLOGY RESULT
All analogues synthesized herein were subsequently tested for their HIF-1

inhibition activity in a luciferase reporter assay performed by our collaborators at Emory

University’s Winship Cancer Institute, Dr. Erwin Van Meir. This luciferase reporter

assay is a tool used to measure expression of gene expression activated by HIF. In this
study, the 1Csp value of each analogue was tested using the HRE of VEGF gene with a
luciferase reporter gene. The firefly luciferase reporter gene were encoded by the HIF-
responsive luciferase under the control of a promoter and tandem repeats of the
hypoxia transcriptional response element (HRE).®! ICs, values over 10 uM for the
analogues were considered not potent enough for further evaluation. Therefore,
analogues with less than 1 uM of ICso were considered to have sufficient HIF inhibitor

activity for further pursual.

3.1 Results for Class I Analogues

Compounds 6a, 6b, 6¢, 6d, 6e, and 6f in class | were evaluated for their abilities
to inhibit the HIF-mediated transcription activity used in the luciferase assay as
described above. It was found that the best compound showed ICs5o of about 3.8 uM
(6¢), while several had ICso values of over 10 uM. Compared to compound 2, with ICsg
of 0.58 uM, the ortho-modified 6¢ was six-fold less potent. Such results suggest that
modifications at the ortho-position likely twist the molecule due to the disturbance of 1+
electron overlap and the O (hydroxyl)-C-C-C torsional angle in such a way that

disfavors the interactions with the intended target (Table 1).
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D
4 O/
OH
Compounds R ICs0 (LM)
6a /\/‘?1‘1_ >10
6b \(E >10
6¢c P 3.8
6d \/\/\/‘111 >10
6e LY 6.6
6f % >10

3.2 Results for Class II Analogues

Table 1: Class I Analogues

For analogues in class I, 9g* have ICsy value of less 1 uM, and the other

analogues (9a, 9b, 9¢) have a lower ICs value than most compounds in class I. When

comparing class Il and class [, the result showed that para-subtittuions exhibited better
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inhibition of HIF-1 activity than those analogues with ortho-substitutions. Specifically,

9g* with a Boc-protected piperidine substitution on the left side inhibited completely

HIF-1 activity most effectively with an ICso of 0.89 uM. (Table 2).

Tl 1
NS S O/
OH
Compounds R ICs0 (LM)
9a )v 1.1
%

9b NP 3.13
9c % 4.4
9d” P >5
9e \(”a >10
of /\/‘?g >10

Boc/N

Table 2: Class II Analogues




3.3 Results for Class I1I Analogues

Reviewing Table 3 below and Table 2 above, the analogues of class Il were seen
to show better ICso values than 9b, 9¢ and 9d* in class Il. Although there are only
minor differences in the structure, meta-substituted compounds exhibited lower ICsg
values than para-substituted compounds, especially compound 17d. The ICs, value of
17d is 0.5 uM, which is lower than the ICso value of compound 2, but the other
compounds were still three- to five-fold less potent compared to compound 2.

Temporarily, class Il and class Il without 9g* and 17d were not considered as potent

HIF inhibitors due to the low biology activities.

O\
Doy
o) o~
OH

Compounds R ICs0(HM)
17a )v%% 2.12
17b \(E >10

17¢ P 2.5

17d /\/‘%L 0.5

17e* \/\/\/LL&L 1.65

Table 3: Class III Analogues.
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3.4 Results for Class IV Analogues

Class IV analogues shown in Table 4 can best be compared to Class | analogues
except there are two major differences: 1) the use of a protected pyragollol on the right
side instead of the protected catechol, and 2) a methylene that separates the oxygen
atom of the ether and the phenyl ring on the left side. The ICsy values of three
compounds in class IV were determined and compared, and it was found that 22¢
showed the best inhibitory activity with an ICso value of 2.2 uM (Table 4). In contrast,
22a* was seen to give ICso over 10 uM. Silimar to class |, the resulting value of this
class indicated that ortho-modications on the left might twist molecules into a less

suitable conformation, unable to inhibit HIF-1 activity.

Compounds R ICs0 (LM)

22a* Ej“a >10

22b Boc N 57
s

Boc” N
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Table 4: Class IV Analogues

3.5 Results for Class V Analogues

The analogues from class V have the best ICso values of all these five classes,
listed in Table 5. Notably, 25b has better ICso value than the lead, 2, at 0.58 uM. 25d
has the same 1Csp value as compound 2; thus it can be considered as the same potent
compound. This class of compounds, featuring an additional methyl group on the left
ring and a protected pyrogallol ion the right, yields the most active class of compounds,
and are likely the best suited for interaction with the HIF-1 target. Following class V,
such compounds can be considered as potent inhibitors and evaluated further (Table

5).

0
O
O/
OH
Compounds R ICs0 (LM)
25a P 0.62

25b )\)1 0.4

25¢ YE 0.75

25d PN 0.58
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25e \/\/\/HQ 0.7

25f %, 1.2

Table 5: Class V Analogues.

4 CONCLUSIONS AND FUTURE WORK

4.1 Structure Activity Relationship Study

In conclusion, 27 analogs were synthesized within five different classes.
According to the HIF inhibition results from the luciferase assay described above, a
structure-activity relationship (SAR) was developed and analyzed. For the right side,
protected pyragollol or protected catechol was used on the phenyl ring, and both of
them are important to the activity. The different positions substituted on left phenyl ring
were compared according to results from the luciferase assay, and the additional
methyl group in Class V gave the best results. Otherwise, an important factor in
improving inhibitory activity is the substituted para-position of Class Il. Compared with
the ortho-substituted analogues were found to be the least potent inhibitors of the three
different types of compounds. The results suggest that ortho-substituted compounds
may twist the molecule unfavorably, resulting in a decrease of activity. However, for the
compounds with a Boc-protected piperidine, they exhibited better activity than there

comparable analogues, no matter the substitution (Class Il and 1V).



22

4.2 Future Work
For future work, more tri-substituted analogs with methyl group of Class V will be
synthesized by same method. In this study, class V compounds, especially 25b were

considered to be potent inhibitors. In the future, other similar compounds will be

pursued, such as compounds with a methoxy group on 3’-position of the left phenyl

ring.

5 EXPERIMENTAL
In this study, all starting materials were purchased from Sigma-Aldrich or
Oakwood chemicals without further purification. All intermediates from this study were
synthesized by according to literature reports. '"H amd *C NMR spectra were recorded
at 400 MHz and 100 MHz, respectively, on a Bruker Avance 400 NMR spectrometer.
The solvent for dissolving all compounds in this study to record NMR was CDCls. All
mass spectra analyses were obtained by the mass spectratrometry facilities at Georgia

State University.

General Procedure for the Synthesis of 4a to 4f. One equivalent of 3 was dissolved in
DMF. One equivalent of bromide and 2 equivalents of K,COs3; were added. The solution was
stirred overnight at 78 °C, and then ethyl acetate was added. The combined organic solution was
washed with water and brine, dried over MgSO4, and concentrated. The crude residue was
purified by column chromatography with 100:1 hexane-ethyl acetate as the leuent. 4a-4f were

synthesized by according to literature reports. [34-38]
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2-(Allyloxy)benzaldehyde (4a). Yield: 98%, '"H NMR (CDCls) 8 10.56 (s, 1H), 7.87 (d,
1H), 7.69 (t, J = 8Hz, 1H), 7.07-6.99 (m, 2H), 6.13-6.06 (m, 1H), 5.50 (d, J= 16Hz, 1H), 5.39
(d, J= 12Hz, 1H), 4.68 ppm (d, J = 8Hz, 2H).

2-Isopropoxybenzaldehyde (4b). Yield: 99%, '"H NMR (CDCls) 8 10.52 (s, 1H), 7.84 (d,
J = 8Hz, 1H), 7.55-7.51 (m, 1H), 7.02-6.99 (m, 2H), 4.71 (t, J = 12Hz, 1H), 1.42 ppm (d, J =
4Hz, 6H).

2-Propoxybenzaldehyde (4c¢). Yield: 97%. '"H NMR (CDCl;) 8 10.52 (s, 1H), 7.82-7.80
(m, 1H), 7.49 (t, J = 8Hz, 1H), 6.99-6.94 (m, 2H), 4.02 (t, J= 12Hz, 2H), 1.88-1.83 (m, 2H),
1.09-1.07 ppm (m, 3H).

2-(Hexyloxy)benzaldehyde (4d). Yicld: 98%. 'H NMR (CDCl;) & 10.51 (d, J = 4Hz, 1H),
7.83-7.81 (m, 1H), 7.54-7.49 (m, 1H), 7.01-6.96 (m, 2H), 4.08-4.04 (m, 2H), 1.86-1.81 (m, 2H),
1.49 (s, 2H), 1.26 (s, 4H), 0.92 ppm (t, J = 4Hz, 3H).
2-(Cyclohexylmethoxy)benzaldehyde (4e). Yield: 97%. '"H NMR (CDCl3) § 10.52 (d, J
= 4Hz, 1H), 7.83-7.81 (m, 1H), 7.54-7.49 (m, 1H), 7.01-6.95 (m, 2H), 4.08-4.04 (m, 2H), 1.86-
1.81 (m, 2H), 1.49 (s, 2H), 1.35 (s, 5H), 0.91 ppm (t, J = 4Hz, 3H).
2-(Benzyloxy)benzaldehyde (4f). Yield: 99%. 'H NMR (CDCl;) & 10.59 (s, 1H), 7.90-
7.88 (m, 1H), 7.55 (t, J = 8Hz, 1H), 7.48-7.38 (m, 5H), 7.08 (t, J = 8Hz, 2H), 5.22 ppm (s, 2H).

General Procedure for the Synthesis of 6a to 6f. One equivalent of 5 was dried for half
an hour under oil-vacuum pump, and dissolved in dry THF under argon gas. The solution was
cooled in a dry ice-acetone bath for 30 minutes, and then 1.1 equivalent of n-butyllithium was
added. The reaction was stirred for 1.5 hour, followed by the dropwise addition of 1 equivalent
of 4 in dry THF under Ar. The reaction was stirred for 2 hours at -78 °C. Then ethyl acetate was
added followed by NH4Cl. The mixture was washed with water, dried over MgSQO,, and
concentrated. The residue was purified by column chromatography with 100:1 hexane-acetone
as the eluent.

(2-(Allyloxy)phenyl)(3,4-dimethoxyphenyl)methanol (6a). Yield: 56%. 'H NMR
(CDCl3) 6 7.29-7.26 (m, 3H), 7.00 (t, J= 20Hz, 1H), 6.91-6.89 (m, 2H), 6.83 (d, /= 8Hz, 1H),
6.08-5.95 (m, 2H), 5.39-5.26 (m, 2H), 4.58-4.56 (m, 2H), 3.87 (d, J = 4Hz, 6H), 3.03 ppm (d, J
= 12Hz, 1H). °C NMR (CDCly): 8 155.64, 148.76, 148.13, 136.00, 132.95, 132.49, 128.59,
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127.70, 121.02, 118.79, 117.64, 111.97, 110.81, 110.00, 72.02, 68.92, 55.90, 55.82 ppm. HRMS
(ESI) m/z calculated for C1gH»004 + Na': 323.1259, found 323.1261.
(2-Isopropoxyphenyl)(3,4-dimethoxyphenyl)methanol (6b). Yield: 62%. 'H NMR
(CDCl3) & 7.28-7.23 (m, 2H), 7.02 (s, 1H), 6.93-6.81 (m, 4H), 5.97 (s, 1H), 4.65-4.59 (m, 1H),
3.88 (d, J= 4Hz, 6H), 3.28 (s, 1H), 1.31 (d, J = 4Hz, 3H), 1.27 ppm (d, J = 4Hz, 3H). °C NMR
(CDCl;): 6 154.93, 148.70, 148.04, 136.23, 132.90, 128.51, 128.00, 120.44, 118.83, 112.68,
110.74, 109.99, 72.65, 70.01, 55.92, 55.81, 22.16, 21.98 ppm. HRMS (ESI) m/z calculated for
CisH2004 - OH™: 285.1485, found: 285.1473.
(2-Propoxyphenyl)(3,4-dimethoxyphenyl)methanol (6¢). Yield: 69%. 'H NMR
(CDCly) & 7.28-7.23 (m, 2H), 6.97-6.88 (m, 4H), 6.84 (d, J = 4Hz, 1H), 6.03 (d, J = 4Hz, 1H),
3.99-3.93 (m, 2H), 3.89 (d, J = 4Hz, 6H), 3.14 (d, J = 8Hz, 1H), 1.81-1.79 (m, 2H), 1.01 ppm (t,
J=12Hz, 3H). °C NMR (CDCl;): 8 156.21, 148.76, 148.11, 136.02, 132.11, 128.64, 127.73,
120.60, 118.83, 111.45, 110.79, 109.98, 72.37, 69.62, 55.91, 55.81, 22.63, 10.64 ppm. HRMS
(EST") m/z calculated for C;sH,04 + Na': 325.1416, found 325.1426.
(2-(Hexyloxy)phenyl)(3,4-dimethoxyphenyl)methanol (6d). Yield: 61%. 'H NMR
(CDCl;) & 7.28-7.22 (m, 3H), 6.97-6.82 (m, 4H), 4.02-3.97 (m, 2H), 3.93-3.89 (m, 6H), 3.17
(d, J= 4Hz, 1H), 1.78-1.74 (m, 2H), 1.33-1.26 (m, 6H), 0.91 ppm (t, J = 16Hz, 3H). °C NMR
(CDCl;): 6 156.24, 148.77, 148.11, 136.04, 132.07, 128.64, 127.76, 120.57, 118.82, 111.44,
110.75, 109.96, 72.44, 68.06, 55.88, 55.79, 31.54, 29.26, 25.76, 22.56, 14.03 ppm. HRMS
(ESI") m/z calculated for CHa04 + Na': 367.1885, found 367.1877.
(2-(Cyclohexylmethoxy)phenyl)(3,4-dimethoxyphenyl)methanol (6e). Yield: 55%.
'H NMR (CDCl3) 8 7.28-7.19 (m, 4H), 6.99-6.79 (m, 3H), 6.00 (d, J = 4Hz, 1H), 3.87-3.85
(m, 4H), 3.79-3.75 (m, 2H), 3.14 (d, J = 4Hz, 1H), 1.75-1.71 (m, 6H), 1.26 ppm (t, J = 16Hz,
7H). *C NMR (CDClL): & 156.31, 148.79, 148.12, 136.03, 132.05, 128.66, 127.82, 120.49,
118.82, 111.34, 110.83, 109.97, 73.47, 72.42, 55.93, 55.80, 37.77, 29.90, 29.86, 26.40, 26.32,
25.82 ppm. HRMS (ESI") m/z calculated for C2,H,504 + Na'™: 379.1885, found 379.1886.
(2-(Benzyloxy)phenyl)(3,4-dimethoxyphenyl)methanol (6f). Yield: 64%. 'H NMR
(CDCl3) 8 7.33-7.26 (m, 8H), 7.03-6.97 (m, 3H), 6.84-6.80 (m, 2H), 6.05 (d, J = 4Hz, 1H),
5.06 (s, 2H), 3.88 (s, 3H), 3.77 (s, 3H), 2.96 (d, J = 4Hz, 1H), 1.59 ppm (s, 3H). °C NMR
(CDCl;): 6 155.76, 148.75, 148.11, 136.58, 136.14, 132.45, 128.67, 128.58, 128.09, 127.71,
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127.48, 121.09, 118.73, 111.95, 110.84, 110.05, 72.29, 70.18, 55.94, 55.71 ppm. HRMS (ESI")
m/z calculated for C2,H2,04 + Na': 373.1416, found 373.1398.

General Procedure for the Synthesis of 8a to 8c. One equivalent of 7 was dissolved in
DMF. One equivalent of bromide and 2 equivalents of K,COs3; were added. The solution was
stirred overnight at 78 °C, and then ethyl acetate was added. The combined organic solution was
washed with water and brine, dried over MgSQ4, and concentrated. The crude residue was
purified by column chromatography with 100:1 hexane-ethyl acetate as the eluent. 8a-8¢ were
synthesized by according to literature reports. %!

4-lsobutoxybenzaldehyde (8a). Yield: 95%. '"H NMR (CDCls) 8 9.89 (s, 1H), 7.84 (d, J =
8Hz, 2H), 7.01 (d, J = 8Hz, 1H), 3.82 (d, J = 8Hz, 2H), 2.17-2.10 (m, 1H), 1.05 ppm (t, J =
8Hz, 6H).

4-(Hexyloxy)benzaldehyde (8b). Yicld: 97%. 'H NMR (CDCls) 8 9.89 (s, 1H), 7.84 (d, J
= 8Hz, 2H), 7.01 (d, J = 8Hz, 1H), 4.06 (t, /= 8Hz, 2H), 1.86-1.79 (m, 2H), 1.51-1.36 (m, 6H),
0.95 ppm (t, /= 8Hz, 3H).

4-(Cyclohexylmethoxy)benzaldehyde (8c). Yield: 97%. 'H NMR (CDCl;) 8 9.90 (s,
1H), 7.84 (d, J = 8Hz, 2H), 7.01 (d, J = 8Hz, 1H), 3.86 (d, J = 4Hz, 2H), 1.91-1.72 (m, 6H),
1.35-1.21 (m, 3H), 1.13-1.07 ppm (m, 2H).

General Procedure for the Synthesis of 9a to 9c¢. One equivalent of 5 was dried for half
an hour under oil-vacuum pump, and dissolved in dry THF under argon gas. The solution was
cooled in a dry ice-acetone bath for 30 minutes, and 1.1 equivalent of n-butyllithium was added.
The reaction was stirred for 1.5 hour, followed by the dropwise addition of 1 equivalent of 8 in
dry THF under Ar. The reaction was stirred for another 2 hours at -78 °C. Then ethyl acetate
was added followed by NH4CIl. The mixture was washed with water, dried over MgSQO,, and
concentrated. The residue was purified by column chromatography with 100:1 hexane-acetone
as the eluent.

(4-lsobutoxyphenyl)(3,4-dimethoxyphenyl)methanol (9a). Yield: 66%. 'H NMR
(CDCl3) 6 7.27 (d, J= 8Hz, 2H), 6.94 (s, 1H), 6.93-6.84 (m, 4H), 5.75 (s, 1H), 3.86 (d, J =
4Hz, 6H), 3.72 (d, J = 8Hz, 2H), 2.35 (s, 1H), 2.12-2.06 (m, 1H), 1.04 ppm (d, J = 4Hz, 6H).
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BC NMR (CDCly): 6 158.72, 148.99, 148.33, 136.85, 136.02, 127.76, 118.79, 114.45, 110.92,
109.70, 75.56, 74.48, 55.92, 55.85, 28.28, 19.28 ppm. HRMS (ESI") m/z calculated for
Ci1oH2404 — OH™: 299.1642, found 299.1644.
(4-(Hexyloxy)phenyl)(3,4-dimethoxyphenyl)methanol (9b). Yield: 71%. 'H NMR
(CDCly) 8§ 7.30-7.27 (m, 3H), 6.95-6.82 (m, 4H), 5.79 (d, J = 4Hz, 1H), 3.96 (t, J = 8Hz, 2H),
3.88 (d, J = 8Hz, 6H), 2.15 (d, J = 4Hz, 1H), 1.80-1.75 (m, 2H), 1.49 (t, J = 8Hz, 2H), 1.36-1.33
(m, 4H), 0.94-0.91 ppm (m, 3H). °C NMR (CDCLy): § 158.63, 149.01, 148.36, 136.79,
135.99, 127.77, 118.78, 114.44, 110.91, 109.68, 75.60, 68.05, 55.93, 55.86, 31.59, 29.25, 25.73,
22.61, 14.04 ppm. HRMS (ESI') m/z calculated for CyHxO4 - OH: 327.1955, found
327.1941.

(4-(Cyclohexylmethoxy)phenyl)(3,4-dimethoxyphenyl)methanol (9c). Yield: 54%.
'H NMR (CDCl3) & 7.28 (s, 2H), 6.95-6.83 (m, 5H), 5.78 (s, 1H), 3.87 (d, J = 4Hz, 6H), 3.76
(d, J = 4Hz, 2H), 2.14 (s, 1H), 1.89-1.70 (m, 6H), 1.33-1.20 (m, 3H), 1.10-1.01 ppm (m, 2H).
BC NMR (CDCly): 6 158.77, 148.99, 148.33, 136.85, 135.97, 127.76, 118.78, 114.43, 110.92,
109.70, 75.57, 73.55, 55.93, 55.85, 37.70, 29.93, 26.54, 25.82 ppm. HRMS (ESI') m/z
calculated for C,oH»304 - OH™: 339.1955, found 339.1938.

General Procedure for the Synthesis of 11a and 11b. One equivalent of 10 was
dissolved in H,O. Then 1.1 equivalents of Boc;O was added in solution. The mixture was
stirred overnight at room temperature, followed by the addition of ethyl acetate. The mixture
was washed with water and brine, dried over MgSQO4, and concentrated. 11a-11b were
synthesized by according to literature reports. [*'***!

Tert-butyl 4-(hydroxymethyl)piperidine-1-carboxylate (11a). Yield: 99%. 'H NMR
(CDCl3) 6 4.15 (d, J = 12Hz, 2H), 3.52 (d, J = 8Hz, 2H), 2.75-2.69 (m, 2H), 1.75-1.63 (m,
4H), 1.49 (s, 9H), 1.20 ppm (t, J = 12Hz, 2H).

Tert-butyl 4-(2-hydroxyethyl)piperidine-1-carboxylate (11b). Yield: 96%. 'H NMR
(400 MHz, CDCls): & 3.89 (m, 2H), 3.51-3.48 (m, 2H), 3.16-3.14 (m, 1H), 2.54 (m, 2H), 1.54-

1.46 (m, 3H), 1.38-1.34 (m, 4H), 1.30 (s, 9H) 1.00-0.94 (m, 2H) ppm.
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General Procedure for the Synthesis of 12*. One equivalent of 11b was dissolved in
THF. Then 1.1 equivalents of TsCl and 1.1 equivalents of NEt; were added in solution. The
mixture was stirred overnight at room temperature, followed by the addition of ethyl acetate.
The solution was washed with water and brine, dried over MgSQO,, and concentrated.

Tert-butyl 4-(2-(tosyloxy)ethyl)piperidine-1-carboxylate (12*). Yield: 86%. '"H NMR
(CDCl5): 6 7.71 (d, J= 8Hz, 2H), 7.28 (d, J = 8Hz, 2H), 4.05-3.98 (m, 4H), 2.54 (m, 2H), 2.37

(s, 3H), 1.51-1.44 (m, 5H), 1.38 (s, 9H) 0.99-0.94 (m, 2H) ppm. *C NMR (CDCl;): & 170.9,

154.6, 144.8, 132.9, 129.8, 127.8,79.2, 67.9, 60.2, 43.5, 35.1, 32.1, 31.5, 28.3, 21.5, 20.9 ppm.

General Procedure for the Synthesis of 14a* to 14d". One equivalent of 13 was
dissolved in DMF. To this solution, one equivalent of bromide or 12 and 2 equivalents of
K,CO; were added. The solution was stirred 5 hours at 90 °C, followed by the addition of ethyl
acetate. The combined organic solution was washed with water and brine, dried over MgSQy,
and concentrated. The crude residue was purified by column chromatography with 100:1

hexane-ethyl acetate as the leuent. 14a”-14d” were synthesized by according to literature

reports. [43-44]

1-(Allyloxy)-4-bromobenzene (14a®). Yield: 42%. '"H NMR (400 MHz, CDCls): & 7.37 (d,

J = 8Hz, 2H), 6.80 (d, J = 8Hz, 2H), 6.08-5.98 (m, 1H), 5.40 (d, J = 16Hz, 2H), 5.30 (d, J =

12Hz, 2H), 4.51 (s, 2H) ppm. °C NMR (100 MHz, CDCls): & 157.7, 132.8, 132.2, 117.9, 116.5,

113.0, 69.0 ppm.

1-Bromo-4-isopropoxybenzene (14b). Yield: 96%. 'H NMR (CDCly) 8 7.47-7.43 (m,
2H), 6.83-6.79 (m, 2H), 4.52-4.48 (m, 1H), 1.33 ppm (d, J = 8Hz, 6H).
1-Bromo-4-propoxybenzene (14c). Yield: 98%. 'H NMR (CDCls) § 7.39-7.36 (m, 2H),
6.82-6.79 (m, 2H), 3.90 (t, J = 12Hz, 2H), 1.86-1.78 (m, 2H), 1.05 (t, J = 16Hz, 3H) ppm.
Tert-butyl 4-(2-(4-bromophenoxy)ethyl)piperidine-1-carboxylate (14d*). Yield: 85%.
'H NMR (400 MHz, CDCls): & 7.34 (d, J = 8Hz, 2H), 6.74 (d, J = 8Hz, 2H), 4.07 (m, 2H), 3.95

(t, J=THz, 2H), 2.72-2.66 (m, 2H), 1.70-1.67 (m, SH), 1.44 (s, 9H), 1.18-1.13 (m, 2H) ppm.
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C NMR (100 MHz, CDCl;): 8 158.0, 156.1, 154.9, 132.2, 132.1, 117.3, 116.2, 79.4, 65.6, 44.0,

35.6, 32.9, 32.0, 28.4 ppm.

General Procedure for the Synthesis of 9d* to 9g*. One equivalent of 14 was dried for
half an hour under oil-vacuum pump, and dissolved in dry THF under argon gas. The solution
was cooled in a dry ice-acetone bath for 30 minutes, and 1.1 equivalent of n-butyllithium was
added. The reaction was stirred 1.5 hour, followed by the dropwise addition of 1 equivalent of
3,4-dimethoxybenzaldehyde in dry THF under Ar. The reaction was stirred for another 2 hours
at -78 °C. Then ethyl acetate was added followed by NH,Cl. The mixture was washed with
water, dried over MgSO4, and concentrated. The residue was purified by column
chromatography with 100:1 hexane-actone as the leuent.

(4-(Allyloxy)phenyl)(3,4-dimethoxyphenyl)methanol (9d*). Yicld: 20%. "H NMR (400
MHz, CDCls): & 7.27 (d, J = 8Hz, 1H), 6.91-6.81 (m, 5H), 6.09-5.99 (m, 1H), 5.76 (s, 1H), 5.40

(d, J = 16Hz, 2H), 5.27 (d, J = 12Hz, 2H), 4.52 (d, J = 8Hz, 2H), 3.86 (s, 3H), 3.84 (s, 3H), 2.13
(s, IH). "CNMR and HRMS are based on MG-1-15.
(4-1sopropoxyphenyl)(3,4-dimethoxyphenyl)methanol (9e). Yield: 57%. 'H NMR
(CDCl;) & 7.24 (d, J= 8Hz, 2H), 6.92 (s, 1H), 6.92-6.80 (m, 4H), 5.70 (s, 1H), 4.56-4.51 (m,
1H), 3.84 (d, J = 8Hz, 6H), 2.61 (s, 1H), 1.33 ppm (d, J = 8Hz, 6H). °C NMR (CDCl;): &
157.25, 148.93, 148.25, 136.86, 136.10, 127.84, 118.79, 115.73, 110.87, 109.70, 75.47, 69.89,
55.90, 55.82, 22.06 ppm. HRMS (ESI") m/z calculated for CisH»,04 - OH: 285.1485, found
285.1484.

(4-Propoxyphenyl)(3,4-dimethoxyphenyl)methanol (9f). Yield: 62%. '"H NMR (400
MHz, CDCly) § 7.23 (d, J= 4Hz, 2H), 6.91 (d, J = 4Hz, 1H), 6.87-6.80 (m, 4H), 5.70 (s, 1H),
3.91 (t, J= 12Hz, 2H), 3.89 (d, J = 8Hz, 6H), 2.61 (s, 1H), 1.85-1.76 (m, 2H), 1.04 ppm (t, J =
16Hz, 3H). °C NMR (CDCl;): & 158.52, 148.96, 148.28, 136.92, 136.13, 127.78, 118.80,
114.39, 110.91, 109.73, 75.47, 69.53, 55.90, 55.82, 22.59, 10.54 ppm. HRMS (ESI') m/z
calculated for C;sH»,04 - OH: 285.1485, found 285.1480.

Tert-butyl 4-(2-(4-((3,4-
dimethoxyphenyl)(hydroxy)methyl)phenoxy)ethyl)piperidine-1-carboxylate (9g*).
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Yield: 16%. 'H NMR (400 MHz, CDCls) & 7.25 (d, J = 8 Hz, 2H), 6.91 (s, 1H), 6.83-6.79 (m,

4H), 5.74 (s, 1H), 3.99-3.96 (m, 2H), 3.84 (s, 3H), 3.83 (s, 3H), 2.71-2.65 (m, 2H), 2.35 (s, 1H),
1.70-1.68 (m, 5H), 1.44 (s, 9H), 1.16-1.13 (m, 2H) ppm. *C NMR (100 MHz, CDCl;) & 158.3,

154.8, 149.0, 148.3, 136.8, 136.2, 127.7, 118.7, 114.3, 110.9, 109.6, 79.2, 76.7, 75.5, 65.3, 60.3,

55.9,55.8,35.7,32.9, 32.0, 28.4, 21.0, 14.2 ppm. HRMS is in Dr. Jalisa Holmes Ferguson’s

data information

General Procedure for the Synthesis of 16a to 16¢. One equivalent of 15 was dissolved
in DMF, followed by the addition of one equivalent of bromide and 2 equivalents of K,COs.
The reaction was stirred overnight at 78 °C, followed by the addition of ethyl acetate. The
resulting mixture was washed with water and brine, dried over MgSQO,, and concentrated. The
resulting residue was purified by column chromatography with 100:1 hexane-ethyl acetate as
the eluent. 16a-16¢ were synthesized by according to literature reports. [**°!
3-Isobutoxybenzaldehyde (16a). Yield: 96%. '"H NMR (CDCls) 8 9.99 (s, 1H), 7.47-7.40
(m, 3H), 7.21-7.18 (m, 1H), 3.80 (d, J = 8Hz, 2H), 2.16-2.10 (m, 1H), 1.05 ppm (t, J = 8Hz,
6H).

3-Isopropoxybenzaldehyde (16b). Yicld: 95%. 'H NMR (CDCl;) & 9.98 (s, 1H), 7.45-
7.39 (m, 3H), 7.18-7.15 (m, 1H), 4.68-4.62 (m, 1H), 1.38 ppm (d, /= 8Hz, 6H).
3-Propoxybenzaldehyde (16c). Yield: 92%. '"H NMR (CDCl;) 8 9.99 (s, 1H), 7.46-7.40

(m, 3H), 7.21-7.18 (m, 1H), 4.00 (t, J = 4Hz, 2H), 1.89-1.81 (m, 2H), 1.07 ppm (t, J = 8Hz, 3H).

General Procedure for the Synthesis of 17a to 17c. One equivalent of 5 was dried for
half an hour under oil-vacuum pump, and dissolved in dry THF under argon gas. The solution
was cooled in a dry ice-acetone bath for 30 minutes, followed by the addition of 1.1 equivalent
of n-butyllithium. The reaction was stirred for 1.5 hour, and then 1 equivalent of 16 in dry THF
under Ar was added drop-wise. The reaction was stirred for another 2 hours at -78 °C, followed
by the addition of ethyl acetate to the solution. Then NH4Cl was added to quench the reaction.

The resulting reaction mixture was washed with water, dried over MgSO,, and concentrated.

The residue was purified by column chromatography with 100:1 hexane-acetone as the eluent.
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(3-Isobutoxyphenyl)(3,4-dimethoxyphenyl)methanol (17a). Yicld: 68%. 'H NMR
(CDCls) 8 7.28-7.23 (m, 1H), 6.97-6.90 (m, 4H), 6.85-6.81 (m, 2H), 5.76 (s, 1H), 3.87 (d, J =
4Hz, 6H), 3.72 (d, J = 4Hz, 2H), 2.33 (s, 1H), 2.10-2.07 (m, 1H), 1.04 ppm (d, J = 8Hz, 6H).
BC NMR (CDCLy): 6 159.45, 149.04, 148.49, 145.49, 136.48, 129.43, 118.99, 118.57, 113.45,
112.66, 110.95, 109.80, 75.94, 74.39, 55.92, 55.87, 28.32, 19.30 ppm. HRMS (ESI') m/z
calculated for C;9H»404 - OH™: 299.1642, found 299.1640.
(3-Isopropoxyphenyl)(3,4-dimethoxyphenyl)methanol (17b). Yield: 72%. 'H NMR
(CDCly) & 7.20 (t, J= 16Hz, 1H), 6.92-6.86 (m, 4H), 6.81-6.77 (m, 2H), 5.70 (s, 1H), 4.57-
4.51 (m, 1H), 3.88 (d, J = 8Hz, 6H), 2.70 (s, 1H), 1.29 ppm (d, J = 8Hz, 6H). °C NMR
(CDCl;): 6 157.94, 148.95, 148.36, 145.67, 136.57, 129.45, 118.97, 118.64, 114.62, 114.09,
110.90, 109.75, 75.80, 69.76, 55.89, 55.81, 22.06, 22.04 ppm. HRMS (ESI") m/z calculated for
CisH2004 - OH™: 285.1485, found 285.1481.
(3-Propoxyphenyl)(3,4-dimethoxyphenyl)methanol (17c). Yield: 67%. 'H NMR
(CDCly) & 7.28-7.22 (m, 1H), 6.98-6.84 (m, 4H), 6.82-6.79 (m, 2H), 5.71 (s, 1H), 3.90 (t, J =
8Hz, 2H), 3.84 (d, J = 8Hz, 2H), 2.66 (d, J = 4Hz, 1H), 1.83-1.77 (m, 2H), 1.04 ppm (t, J =
8Hz, 3H). °C NMR (CDCly): & 159.26, 149.00, 148.42, 145.61, 136.58, 129.41, 118.98,
118.64, 113.37, 112.68, 110.95, 109.82, 75.83, 69.45, 55.90, 55.84, 22.61, 10.56 ppm. HRMS
(EST") m/z calculated for C;sH,,04 — OH™: 285.1485, found 285.1483.

General Procedure for the Synthesis of 19a and 19b. One equivalent of 18 was
dissolved in DMF. To this solution, one equivalent of bromide and 2 equivalents of K,COs3 were
added. The solution was stirred 5 hours at 90 °C, followed by the addition of ethyl acetate. The
combined organic solution was washed with water and brine, dried over MgSO,4, and
concentrated. The crude residue was purified by column chromatography with 100:1 hexane-
ethyl acetate as the eluent. 19a-19b* were synthesized by according to literature reports. [*"**]
1-(Allyloxy)-3-bromobenzene (19a). Yicld: 95%. 'H NMR (CDCls) & 7.24-7.14 (m, 3H),
6.89-6.86 (m, 1H), 6.14-6.04 (m, 1H), 5.48-5.44 (m, 1H), 5.39-5.35 (m, 1H), 4.55-4.52 ppm (m,
2H).

1-Bromo-3-(hexyloxy)benzene (19b)*. Yield: 65%. "H NMR (400 MHz, CDCls): § 7.13 (t,
J = 8Hz, 1H), 7.07-7.06 (m, 2H), 6.83 (d, J = 8Hz, 2H), 3.93 (t, J = 7Hz, 2H), 1.77 (q, 2H),
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1.47-1.44 (m, 2H), 1.36-1.34 (m, 4H), 0.93 (t, J = 7Hz, 3H) ppm. °C NMR (100 MHz, CDCls):
§ 159.9, 130.4, 123.5, 122.8, 117.7, 113.5, 68.2, 31.5, 29.1, 25.7, 22.6, 14.0 ppm.

General Procedure for the Synthesis of 17d and 17e. One equivalent of 19 was dried
for half an hour under oil-vacuum pump, and dissolved in dry THF under argon gas. The
solution was cooled in a dry ice-acetone bath for 30 minutes, and 1.1 equivalent of n-
butyllithium was added. The reaction was stirred 1.5 hour, followed by the dropwise addition of
1 equivalent of 3,4-dimethoxybenzaldehyde in dry THF under Ar. The reaction was stirred for
another 2 hours at -78 °C. Then ethyl acetate was added followed by NH,Cl. The mixture was
washed with water, dried over MgSO., and concentrated. The residue was purified by column
chromatography with 100:1 hexane-actone as the eluent.
(3-(Allyloxy)phenyl)(3,4-dimethoxyphenyl)methanol (17d). Yield: 64%. 'H NMR
(CDCl3) 6 7.27 (t,J = 12Hz, 1H), 6.99-6.89 (m, 4H), 6.84 (d, J = 8Hz, 2H), 6.10-6.03 (m, 1H),
5.78 (s, 1H), 5.44 (d, J= 4Hz, 1H), 5.39 (d, J = 4Hz, 1H), 4.55-4.53 (m, 2H), 3.88 (d, /= 8Hz,
6H), 2.24 ppm (s, 1H). >C NMR (CDCls): § 158.68, 148.99, 148.41, 145.72, 136.56, 133.29,
129.42, 119.00, 118.98, 117.66, 113.56, 112.90, 110.96, 109.82, 75.73, 68.74, 55.90, 55.83
ppm. HRMS (ESI") m/z calculated for C1gH,004 — OH: 283.1329, found 283.1326.

(3-(Hexyloxy)phenyl)(3,4-dimethoxyphenyl)methanol (17e*). Yield: 93%. 'H NMR
(400 MHz, CDCls): 6 7.22 (t, J = 8Hz, 1H), 6.93-6.86 (m, 4H), 6.82-6.77 (m, 2H), 5.74 (s, 1H),
3.92 (t, J = THz, 2H), 3.85 (s, 3H), 3.84 (s, 3H), 2.30 (bs, 1H), 1.75 (p, J = 7Hz, 2H), 1.45-1.40
(m, 2H), 1.34-1.30 (m, 4H), 0.90 (t, J = 7Hz, 1H) ppm. *C NMR (100 MHz, CDCL;): § 159.4,
149.1, 148.5, 145.6, 136.5, 129.5, 119.0, 118.6, 113.5, 112.7, 111.0, 109.8, 76.0, 68.0, 56.0,
55.9, 31.7, 29.3, 25.8, 22.7, 14.1 ppm. HRMS is in Dr. Jalisa Holmes Ferguson’s data

information.

General Procedure for the Synthesis of 21a to 21c. One equivalent of 20 was dissolved
in DMF, followed by the addition of 1 equivalent of alcohol and 2 equivalents of NaH. The
reaction was stirred overnight at 0 °C to room temperature. To this solution, ethyl acetate was

added. The resulting mixture was washed with water and brine, dried over MgSQ,, and
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concentrated. The residue was purified by column chromatography with 100:1 hexane-ethyl
acetate as the eluent. 21a-21¢ were synthesized by according to literature reports."*>"!
1-Bromo-2-(phenoxymethyl)benzene (21a). Yield: 99%. '"H NMR (400 MHz, CDCl;): &
7.69-7.65 (m, 2H), 7.43-7.39 (m, 3H), 7.26 (t, J = 8Hz, 1H), 7.11-7.07 (m, 3H), 5.23 (s, 2H)
ppm. *C NMR (100 MHz, CDCl;): & 158.5, 136.4, 132.6, 129.6, 129.2, 128.9, 127.6, 122.3,
121.2,114.9, 69.3 ppm.

Tert-butyl 4-(((2-bromobenzyl)oxy)methyl)piperidine-1-carboxylate (21b). Yield:
96%. 'H NMR (CDCls) 8 7.56-7.54 (m, 1H), 7.49-7.47 (m, 1H), 7.33 (t, J= 16Hz, 1H), 7.18
(t, J= 12Hz, 1H), 4.57 (s, 2H), 3.42 (d, J = 8Hz, 2H), 1.80-1.77 (m, 4H), 1.48 (s, 9H), 1.28-1.15
ppm (m, 5H).

Tert-butyl 4-(2-((2-bromobenzyl)oxy)ethyl)piperidine-1-carboxylate (21c). Yield:
96%. 'H NMR (CDCLy) & 7.56 (d, J = 4Hz, 1H), 7.47 (d, J = 8Hz, 1H), 7.33 (t, J = 16Hz, 1H),
7.17 (t, J = 12Hz, 1H), 4.57 (s, 2H), 3.62 (t, J = 12Hz, 2H), 1.70-1.59 (m, 6H), 1.47 (t, J =
16Hz, 9H), 1.13 ppm (d, J = 12Hz, 3H).

General Procedure for the Synthesis of 22a to 22c. One equivalent of 21 was dried for
half an hour under oil-vacuum pump, and dissolved in dry THF under argon gas. The solution
was cooled in a dry ice-acetone bath for 30 minutes, followed by the addition of 1.1 equivalent
of m-butyllithium. The reaction was stirred for 1.5 hour, and then 1 equivalent of 3,4,5-
trimethoxybenzaldehyde in dry THF under Ar was added drop-wise. The reaction was stirred
for another 2 hours at -78 °C, followed by the addition of ethyl acetate to the solution. Then
NH4Cl was added to quench the reaction. The resulting reaction mixture was washed with
water, dried over MgSO,, and concentrated. The residue was purified by column
chromatography with 100:1 hexane-acetone as the leuent.

(2-(Phenoxymethyl)phenyl)(3,4,5-trimethoxyphenyl)methanol (22a*). Yield: 58%.
'HNMR (CDCls) 8 7.44 (d, J=4Hz, 1H), 7.33-7.28 (m, 5H), 7.00 (t, J = 4Hz, 1H), 6.92-6.90
(m, 2H), 6.55 (s, 2H), 6.07 (d, J = 4Hz, 1H), 5.02-4.94 (dd, J = 12Hz, 2H), 3.86 (d, J = 4Hz,
3H), 3.72 (d, J = 4Hz, 6H), 2.92 ppm (d, J = 4Hz, 1H). °C NMR and HRMS are in Dr. Jalisa

Holmes Ferguson’s data information.
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Tert-butyl 4-(((2-(hydroxy(3,4,5-
trimethoxyphenyl)methyl)benzyl)oxy)methyl)piperidine-1-carboxylate (22b).
Yield: 55%. '"H NMR (CDCly) 8 7.35-7.23 (m, 4H), 6.61 (s, 2H), 5.95 (d, J = 4Hz, 1H), 4.61
(d, J= 12Hz, 1H), 4.40 (d, J= 12Hz, 1H), 4.17-4.12 (m, 2H), 3.86 (s, 3H), 3.81 (s, 6H), 3.34 (t,
J = 4Hz, 2H), 2.67 (t, J = 8Hz, 2H), 1.79-1.69 (m, 4H), 1.46 (s, 9H), 1.17-1.13 ppm (m, 2H).
BC NMR (CDClL): 8 154.80, 153.12,143.32, 138.44, 136.98, 135.29, 130.76, 128.94, 128.88,
127.93, 103.57, 79.36, 75.51, 73.81, 72.46, 60.89, 56.09, 43.36, 36.50, 29.07, 28.45 ppm.
HRMS (ESI") m/z calculated for CosH3o0NO; - OH': 484.2694, found 484.2691.

Tert-butyl 4-(2-((2-(hydroxy(3,4,5-
trimethoxyphenyl)methyl)benzyl)oxy)ethyl)piperidine-1-carboxylate (22c). Yield:
59%. 'H NMR (CDCls) 8 7.36-7.24 (m, 4H), 6.62 (s, 2H), 5.95 (d, J = 4Hz, 1H), 4.60 (d, J =
8Hz, 1H), 4.39 (d, J= 8Hz, 1H), 4.24 (d, J = 4Hz, 1H), 4.05 (d, J = 8Hz, 2H), 3.87 (s, 3H), 3.79
(s, 6H), 3.34 (t, J = 4Hz, 2H), 3.57-3.52 (m, 2H), 2.67 (t, J= 12Hz, 2H), 1.71-1.54 (m, 5H),
1.46 (s, 9H), 1.12-1.09 ppm (m, 2H). °C NMR (CDCl3): 8 154.85, 153.10, 143.45, 138.50,
136.94, 135.39, 130.78, 129.10, 128.91, 127.92, 103.51, 79.26, 73.88, 72.32, 68.15, 60.90,
56.09, 43.81, 36.13, 32.90, 32.06, 28.46 ppm. HRMS (ESI") m/z calculated for CooH4;NO; -
OH": 498.2850, found 498.2827.

General Procedure for the Synthesis of 24a to 24f. One equivalent of 23 was dissolved
in DMF. To this solution, 1 equivalents of RBr and 2 equivalents of K,CO3; were added. The
reaction was stirred overnight at 78 °C, followed by the addition of ethyl acetate. The resulting
mixture was washed with water and brine, dried over MgSQy, and concentrated. The resulting
residue was purified by column chromatography with 100:1 hexane-ethyl acetate. 24a-24f were
synthesized by according to literature reports. 2%
1-(Allyloxy)-4-bromo-2-methylbenzene (24a). Yield: 97%. 'H NMR (CDCl;) & 7.29-
7.24 (m, 2H), 6.70 (d, J = 8Hz, 1H), 6.11-6.04 (m, 1H), 5.47 (d, J= 4Hz, 1H), 5.33 (d, J = 4Hz,
1H), 4.55-4.53 (m, 2H), 2.26 ppm (s, 3H).

4-Bromo-1-isobutoxy-2-methylbenzene (24b). Yield: 96%. 'H NMR (CDCl;) & 7.29-
7.24 (m, 2H), 6.70 (d, J = 8Hz, 1H), 6.11-6.04 (m, 1H), 5.47 (d, J = 4Hz, 1H), 5.33 (d, J = 4Hz,
1H), 4.55-4.53 (m, 2H), 2.26 ppm (s, 3H).
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4-Bromo-1-isopropoxy-2-methylbenzene (24c). Yield: 95%. '"H NMR (CDCl;) § 7.28-
7.25 (m, 2H), 6.69 (d. J = 8Hz, 1H), 3.73 (d, J = 4Hz, 2H), 2.24 (s, 3H), 2.19-2.09 (m, 1H), 1.08
ppm (d, J = 4Hz, 6H).

4-Bromo-2-methyl-1-propoxybenzene (24d). Yield: 97%. '"H NMR (CDCl3) & 7.25 (d, J
= 8Hz, 2H), 6.68 (d, J = 4Hz, 1H), 3.91 (t, J= 8Hz, 2H), 2.21 (s, 3H), 1.90-1.80 (m, 2H), 1.08
ppm (t, /= 8Hz, 3H).

4-Bromo-1-(hexyloxy)-2-methylbenzene (24e). Yicld: 99%. 'H NMR (CDCl;) § 7.24
(d, J= 4Hz, 2H), 6.69 (d, J= 4Hz, 1H), 3.91 (t, J = 4Hz, 2H), 2.22 (s, 3H), 1.86-1.79 (m, 2H),
1.52-1.48 (m, 1H), 1.40-1.33 (m, 5H), 0.92 ppm (s, 3H).
4-Bromo-1-(cyclohexylmethoxy)-2-methylbenzene (24f). Yield: 92%. 'H NMR

(CDCLy) & 7.28-7.24 (m, 2H), 6.67 (d, J = 4Hz, 1H), 3.73 (d, J = 4Hz, 2H), 2.21 (s, 3H), 1.89-

1.72 (m, 5H), 1.34-1.23 (m, 4H), 1.11-1.08 ppm (m, 2H).

General Procedure for Synthesis of 25a to 25f. One equivalent of 24 was dried for half
an hour under oil-vacuum pump, and dissolved in dry THF under argon gas. The solution was
cooled in a dry ice-acetone bath for 30 minutes, followed by the addition of 1.1 equivalent of n-
butyllithium. The reaction was stirred for 1.5 hour, and then 1 equivalent of 3,4,5-
trimethoxybenzaldehyde in dry THF under Ar was added drop-wise. The reaction was stirred
for another 2 hours at -78 °C, followed by the addition of ethyl acetate to the solution. Then
NH4Cl was added to quench the reaction. The resulting reaction mixture was washed with
water, dried over MgSO,, and concentrated. The residue was purified by column
chromatography with 100:1 hexane-acetone as the leuent.
(4-(Allyloxy)-3-methylphenyl)(3,4,5-trimethoxyphenyl)methanol (25a). Yicld: 60%.
'H NMR (CDCls) 8 7.16-7.15 (m, 2H), 6.79 (d, J = 4Hz, 1H), 6.63 (s, 2H), 6.12-6.05 (m, 1H),
5.71 (s, 1H), 5.46 (dd, J = 8Hz, 1H), 5.31-5.27 (m, 1H), 4.56-4.54 (m, 2H), 3.86-3.85 (m, 9H),
2.26 (s, 3H), 2.21 ppm (s, 1H). °C NMR (CDCl;): & 156.35, 153.21, 139.75, 137.11, 135.64,
133.50, 129.16, 127.17, 125.01, 117.00, 111.12, 103.39, 75.97, 68.77, 60.83, 56.11, 16.41 ppm.
HRMS (ESI") m/z calculated for Co0H240s ~ OH™: 327.1591, found 327.1592.
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(4-Isobutoxy-3-methylphenyl)(3,4,5-trimethoxyphenyl)methanol (25b). Yield: 59%.

'"H NMR (CDCl3) & 7.15-7.13 (m, 2H), 6.77 (d, J = 8Hz, 1H), 6.64 (s, 2H), 5.71 (d, J = 4Hz,

1H), 3.86 (d, J = 4Hz, 9H), 3.73 (d, J = 8Hz, 2H), 2.24 (s, 3H), 2.15-2.11 (m, 2H), 1.05 ppm (d,
J = 8Hz, 6H). >C NMR (CDCls): 6 156.84, 153.14, 139.99, 136.99, 135.33, 128.99, 126.94,
125.02, 110.62, 103.38, 75.92, 74.35, 60.80, 56.07, 28.43, 19.33, 16.34 ppm. HRMS (ESI") m/z
calculated for C,H»30s - OH™: 343.1904, found 343.1905.
(4-Isopropoxy-3-methylphenyl)(3,4,5-trimethoxyphenyl)methanol (25c). Yield:
43%. '"H NMR (CDCly) 8 7.16-7.11 (m, 2H), 6.81 (d, J = 8Hz, 1H), 6.64 (s, 2H), 5.72 (s, 1H),
4.54-4.51 (m, 1H), 3.86 (t, J = 4Hz, 9H), 2.21 (s, 3H), 2.13 (d, J = 4Hz, 1H), 1.35 ppm (d, J =
4Hz, 6H). °C NMR (CDCL): & 153.21, 139.74, 135.28, 129.27, 124.97, 112.82, 112.50,
104.27, 103.40, 76.04, 70.28, 60.84, 56.12, 56.03, 22.25, 16.56 ppm. HRMS (ESI") m/z
calculated for C,0HcOs - OH™: 329.1747, found 329.1732.
(3-Methyl-4-propoxyphenyl)(3,4,5-trimethoxyphenyl)methanol (25d). Yield: 69%. 'H
NMR (CDCly) & 7.13 (t, J= 8Hz, 2H), 6.78 (d, J = 8Hz, 1H), 6.63 (s, 2H), 5.70 (s, 1H), 3.93
(t, J= 8Hz, 2H), 3.88 (s, 9H), 2.34 (s, 1H), 2.23 (s, 3H), 1.86-1.81 (m, 2H), 1.07 ppm (t, J =
8Hz, 3H). °C NMR (CDClL): 8 156.65, 153.17, 139.88, 137.04, 135.30, 129.03, 127.02,
125.03, 110.75, 103.38, 75.97, 69.54, 60.82, 56.10, 22.71, 16.33, 10.66 ppm. HRMS (ESI") m/z
calculated for C,0H,sOs - OH™: 329.1747, found 329.1747.
(4-(Hexyloxy)-3-methylphenyl)(3,4,5-trimethoxyphenyl)methanol (25e). Yield: 63%.
'H NMR (CDCl3) & 7.15-7.13 (m, 2H), 6.78 (d, J = 8Hz, 1H), 6.64 (s, 2H), 5.72 (s, 1H), 3.97
(t, J= 12Hz, 2H), 3.85 (d, J = 4Hz, 9H), 2.23 (s, 3H), 2.19 (s, 1H), 1.83-1.77 (m, 2H), 1.51-1.47
(m, 2H), 1.38-1.34 (m, 4H), 0.92 ppm (t, J = 12Hz, 3H). *C NMR (CDCL): 8§ 156.92, 153.21,
139.79, 137.09, 135.21, 129.02, 127.06, 125.03, 110.72, 103.37, 76.04, 68.05, 60.84, 56.12,
31.57, 29.30, 25.82, 22.62, 16.36, 14.03 ppm. HRMS (ESI") m/z calculated for Cp3H3,05 -
OH™: 371.2217, found 371.2219.
(4-(Cyclohexylmethoxy)-3-methylphenyl)(3,4,5-trimethoxyphenyl)methanol (25f).
Yield: 62%. 'H NMR (CDCls) & 7.15-7.13 (m, 2H), 6.77 (d, J = 8Hz, 1H), 6.64 (s, 2H), 5.72 (d,

J=4Hz, 1H), 3.89 (s, 9H), 3.76 (d, J = 8Hz, 2H), 2.23 (s, 3H), 2.15 (d, J = 4Hz, 1H), 1.90-1.74
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(m, 6H), 1.25-1.08 ppm (m, 5H). °C NMR (100 MHz, CDCI3): & 156.91, 153.14, 139.96,

136.99, 135.26, 128.97, 126.97, 125.01, 110.62, 103.36, 75.94, 73.45, 60.80, 56.08, 37.84,
29.97, 26.57, 25.89, 16.38 ppm. HRMS (ESI") m/z calculated for Co4H3,05 - OH™: 383.2217,
found 383.2213.
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APPENDICES

Spectra

Class I: Ortho-phenolic ether benzhydrol analogues
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(2-(allyloxy)phenyl)(3,4-dimethoxyphenyl)methanol (6a)
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(3,4-dimethoxyphenyl)(2-propoxyphenyl)methanol (6¢)
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(3,4-dimethoxyphenyl)(2-(hexyloxy)phenyl)methanol (6d)
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(2-(cyclohexylmethoxy)phenyl)(3,4-dimethoxyphenyl)methanol (6e)
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(2-(benzyloxy)phenyl)(3,4-dimethoxyphenyl)methanol (6f)
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Class lI: para-phenolic ether benzhydrol analogues

4-isobutoxybenzaldehyde (8a).
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4-(hexyloxy)benzaldehyde (8b)
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4-(cyclohexylmethoxy)benzaldehyde (8c)
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1-bromo-4-isopropoxybenzene (14b)
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1-bromo-4-propoxybenzene (14c)
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Tert-butyl 4-(2-(4-bromophenoxy)ethyl)piperidine-1-carboxylate (14d)* Spectra will

be in Jalisa Ferguson’s information.

(3,4-dimethoxyphenyl)(4-isobutoxyphenyl)methanol (9a)
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(3,4-dimethoxyphenyl)(4-(hexyloxy)phenyl)methanol (9b)
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(4-(cyclohexylmethoxy)phenyl)(3,4-dimethoxyphenyl)methanol (9¢)
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(3,4-dimethoxyphenyl)(4-isopropoxyphenyl)methanol (9e)
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(3,4-dimethoxyphenyl)(4-propoxyphenyl)methanol (9f)
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tert-butyl 4-(2-(4-((3,4-dimethoxyphenyl)(hydroxy)methyl)phenoxy)ethyl)piperidine-1-

carboxylate (9g)* Spectra will be in Jalisa Ferguson’s information.

Class lll: Meta-phenolic ether benzhydrol analogues

3-isobutoxybenzaldehyde (16a)
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3-isopropoxybenzaldehyde (16b)
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3-propoxybenzaldehyde (16¢)
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1-bromo-3-(hexyloxy)benzene (19b)*

(3,4-dimethoxyphenyl)(3-isobutoxyphenyl)methanol (17a)
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(3,4-dimethoxyphenyl)(3-isopropoxyphenyl)methanol (17b)
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(3,4-dimethoxyphenyl)(3-propoxyphenyl)methanol (17¢)
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(3-(allyloxy)phenyl)(3,4-dimethoxyphenyl)methanol (17d)
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(3,4-dimethoxyphenyl)(3-(hexyloxy)phenyl)methanol (17¢)* Spectra will be in Jalisa

Ferguson’s information.

Class IV : Ortho-benzyl ether benzhydrol analogues.

1-bromo-2-(phenoxymethyl)benzene (21a)
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1-carboxylate (21b)

iperidine-

tert-butyl 4-(((2-bromobenzyl)oxy)methyl)p
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1-carboxylate (21¢)

iperidine-

Boc

tert-butyl 4-(2-((2-bromobenzyl)oxy)ethyl)p
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(2-(phenoxymethyl)phenyl)(3,4,5-trimethoxyphenyl)methanol (22a)*
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1-

iperidine-

tert-butyl 4-(((2-(hydroxy(3,4,5-trimethoxyphenyl)methyl)benzyl)oxy)methyl)p

carboxylate (22b)
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tert-butyl 4-(2-((2-(hydroxy(3,4,5-trimethoxyphenyl)methyl)benzyl)oxy)ethyl)piperidine-1-

carboxylate (22¢)
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Class V: Tri-substituted phenolic ether benzhydrol analogues

1-(allyloxy)-4-bromo-2-methylbenzene (24a)
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4-bromo-1-isobutoxy-2-methylbenzene (24b)
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4-bromo-1-isopropoxy-2-methylbenzene (24c)
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4-bromo-2-methyl-1-propoxybenzene (24d)
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4-bromo-1-(hexyloxy)-2-methylbenzene (24¢)
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(4-(allyloxy)-3-methylphenyl)(3,4,5-trimethoxyphenyl)methanol (25a)
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(4-isobutoxy-3-methylphenyl)(3,4,5-trimethoxyphenyl)methanol (25b)
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(4-isopropoxy-3-methylphenyl)(3,4,5-trimethoxyphenyl)methanol (25c¢)
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(3-methyl-4-propoxyphenyl)(3,4,5-trimethoxyphenyl)methanol (25d)
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(4-(hexyloxy)-3-methylphenyl)(3,4,5-trimethoxyphenyl)methanol (25¢)
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(4-(cyclohexylmethoxy)-3-methylphenyl)(3,4,5-trimethoxyphenyl)methanol (25f)
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