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OUTLINE OF THE THESIS 

This thesis is divided into seven chapters. Chapter 1 corresponds to a literature review 

of the main subjects of the thesis. Chapters 2 to 5 describe the publications achieved 

with experimental work and the main results accomplished. Chapter 6 includes an 

overall discussion and Chapter 7 describes the conclusions and future perspectives of 

this research. This thesis was designed to be based on research articles and a book 

chapter that have been published or accepted for publication.  
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ABSTRACT  

Brown algae contain interesting nutritional profiles, usually with low levels of lipids but 

relatively high amounts of polyunsaturated fatty acids (PUFA) and minerals. Moreover, 

brown algae have secondary metabolites that display several biological activities. 

However, studies on the chemical composition, bioactive compounds and respective 

biological activities of brown algae are scarce. Here it is shown that Cystoseira species 

have potential biotechnological applications. Among the species evaluated, C. 

tamariscifolia and C. baccata were those that in general had the highest ash, protein and 

lipid contents, while the highest levels of moisture and total carbohydrates were detected 

in C. nodicaulis and C. compressa. Cystoseira species had also high amounts of K, Ca 

and Fe, and a favorable Na/K ratio. C. tamariscifolia, C. compressa and C. nodicaulis 

stood out for their high polyunsaturated/saturated fatty acids (PUFA/SFA) and low n-6/n-

3 PUFA ratios as well as appropriate unsaturation, atherogenicity and thrombogenicity 

indices, suggesting a high nutritional value. C. tamariscifolia hexane extract had the 

highest antioxidant and anti-proliferative activities against a panel of tumoral cells. This 

extract was particularly selective for hepatocarcinoma cells (HepG2) when compared to 

non-tumoral cells. HepG2 cells presented pro-apoptotic features and disaggregation on 

3D multicellular tumor spheroids after incubation with the extract. Demethoxy cystoketal 

chromane was isolated and identified as an anti-proliferative compound, selective 

towards HepG2 cells. Furthermore, isololiolide was isolated for the first time also from 

C. tamariscifolia hexane extract. The latter compound exhibited significant cytotoxic 

activity against three human tumoral cell lines, namely HepG2 cells, whereas no 

cytotoxicity was found in non-malignant human fibroblasts. Isololiolide disrupted the 

HepG2 normal cell cycle and induced apoptosis. Moreover, it altered the expression of 

proteins that are important in the apoptotic cascade, increasing PARP cleavage and p53 

protein expression, and decreasing procaspase-3 and Bcl-2 expression levels. Taken 

together, the results here presented highlight the potential of Cystoseira macroalgae as 

sources of products for nutra- and pharmaceutical applications.  

 

Keywords: apoptosis; biological activities; Cystoseira; natural compounds; nutrition; 

PUFA. 
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RESUMO  

Desde o início da história da humanidade que os organismos marinhos proporcionam 

alimentos e subprodutos alimentares. Hoje em dia, são também considerados como uma 

valiosa fonte de metabolitos secundários com estruturas únicas e aplicações biomédicas 

importantes. As algas castanhas possuem perfis químicos interessantes do ponto de vista 

nutricional e biotecnológico, geralmente com baixos níveis de lípidos, mas enriquecidos 

em ácidos gordos polinsaturados, minerais e metabolitos secundários bioativos. No 

entanto, são escassos os estudos sobre a sua composição química, compostos bioativos e 

respetivas atividades biológicas. Assim, este trabalho visou estudar o perfil nutricional de 

macroalgas castanhas do género Cystoseira. Para além disso, foram analisadas as 

atividades biológicas de extratos orgânicos de diferentes espécies deste género, com 

especial ênfase no isolamento e caracterização de compostos bioativos e mecanismos de 

ação. A composição nutricional das algas C. humilis, C. tamariscifolia, C. nodicaulis, C. 

compressa e C. baccata foi determinada pela primeira vez relativamente à humidade, 

cinza, conteúdo total em proteína, lípidos, glúcidos e perfil de minerais. Em geral, as 

espécies C. tamariscifolia e C. baccata apresentaram maior teor de cinza, proteínas e 

lípidos. C. nodicaulis e C. compressa demonstraram conter mais humidade e glúcidos. 

Todas as espécies apresentaram um elevado conteúdo em minerais, especialmente K, Ca 

e Fe. Possuem também uma razão Na/K considerada benéfica para a saúde humana. A 

análise do perfil de ácidos gordos de seis espécies do género Cystoseira, nomeadamente 

C. compressa, C. humilis, C. tamariscifolia, C. nodicaulis, C. baccata e C. barbata, foi 

também realizada pela primeira vez. Os ácidos gordos polinsaturados corresponderam a 

29-46% do total de ácidos gordos detetados. As espécies C. compressa, C. tamariscifolia 

e C. nodicaulis destacaram-se por uma elevada proporção de ácidos gordos 

polinsaturados em relação aos saturados, uma razão baixa entre os ácidos gordos n-6 e n-

3, e índices de insaturação, aterogenicidade e de trombogenicidade favoráveis à saúde 

humana. Estes resultados sugerem que as espécies estudadas possuem um elevado valor 

nutricional e que poderão ter, efetivamente, potenciais aplicações na indústria alimentar e 

de nutracêuticos. 

Para além do potencial nutricional, vários estudos descrevem as algas castanhas como 

ricas em compostos secundários bioativos com importantes propriedades biológicas 

como atividade antioxidante e antiproliferativa, duas características importantes para 

compostos com potencial utilização farmacêutica. Neste trabalho, foram realizados 
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extratos orgânicos de três espécies de Cystoseira (C. humilis, C. tamariscifolia e C. 

usneoides). Estes extratos foram avaliados relativamente ao seu conteúdo em compostos 

fenólicos totais e actividade antioxidante contra o radical 1,1-difenil-2-picrilhidrazil 

(DPPH) e o ácido 2,2'-azino-bis(3-etilbenzotiazolina-6-sulfónico) ou ABTS. Além disso, 

os mesmos extratos foram testados em relação à sua atividade antiproliferativa contra 

várias linhas celulares de origem tumoral. O extrato de hexano de C. tamariscifolia 

apresentou o teor mais elevado de compostos fenólicos e também a maior actividade 

antioxidante, quando comparado com os outros extratos estudados. O extrato de hexano 

de C. tamariscifolia apresentou também a mais elevada actividade antiproliferativa 

contra uma linha celular de hepatocarcinoma (HepG2, IC50=2.31 µg/mL), tendo sido 

selecionado para uma caraterização química bio-guiada. De modo a averiguar a sua 

seletividade, o extrato foi aplicado em quatro linhas celulares tumorais adicionais 

(adenocarcinoma cervical HeLa; adenocarcinoma gástrico AGS; adenocarcinoma 

colorretal HCT-15; e neuroblastoma SH-SY5Y), e duas linhas celulares não-tumorais 

(células de estroma de medula óssea de murganho S17 e células endoteliais humanas do 

cordão umbilical HUVEC). O extrato de hexano de C. tamariscifolia reduziu 

significativamente a viabilidade celular de todas as linhas celulares tumorais estudadas 

mas, em particular, das células HepG2. Este efeito foi seletivo, especialmente quando 

comparando o valor de IC50 obtido para as células HepG2 com o valor obtido para as 

células não-tumorais. As células HepG2 incubadas com o extrato de hexano de C. 

tamariscifolia apresentaram evidências significativas de atividade pro-apoptótica, como 

o aumento da externalização da fosfatidilserina (analisado por citometria de fluxo pela 

ligação de anexina V à membrana celular) e alterações morfológicas visíveis ao 

microscópio após a marcação de células com 4',6-diamidino-2-fenilindole (DAPI). Para 

além disso, ocorreu uma clara desagregação celular no modelo de esferoides 

multicelulares tumorais 3D após a incubação com o referido extrato. Posteriormente ao 

fracionamento do extrato, foi isolado o composto dimetoxi cistoquetal cromano, um 

derivado do meroditerpenoide cistoquetal, o qual apresentou actividade antiproliferativa 

e seletiva contra as células HepG2. 

Por fim, foi descrito pela primeira vez o isolamento do isololiólido, um metabolito da 

degradação de carotenoides, a partir do extrato de hexano da alga C. tamariscifolia. Este 

composto apresentou actividade citotóxica significativa contra três linhas celulares 

tumorais, nomeadamente contra as células de hepatocarcinoma HepG2, sem apresentar 
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citotoxicidade significativa contra os fibroblastos humanos MRC-5 e HFF-1. Análises de 

citometria de fluxo demonstraram que o isololiólido causou disrupção total do ciclo 

celular e induziu a apoptose das células HepG2. Além disso, alterou significativamente a 

expressão de proteínas envolvidas em importantes vias de sinalização apoptóticas. A 

análise western de células incubadas com este composto revelou que o isololiólido 

causou um aumento da clivagem da PARP, aumentou a expressão da proteína supressora 

de tumores p53, promoveu a clivagem da procaspase-3 e reduziu os níveis de expressão 

da proteína anti-apoptótica Bcl-2. Assim, verificámos que o isololiólido não só inibe a 

progressão do ciclo celular, como também induz a morte programada de células de 

hepatocarcinoma humano através da modulação de vias de sinalização importantes para a 

ativação da apoptose.  

Em conclusão, esta tese contribuiu para um conhecimento mais alargado acerca da 

composição química, metabolitos secundários e atividades biológicas do género 

Cystoseira, nomeadamente das espécies C. compressa, C. humilis, C. tamariscifolia, C. 

nodicaulis, C. usneoides, C. baccata e C. barbata. Todas as espécies demonstraram ter 

potencial para poderem ser usadas nas indústrias nutra- e farmacêutica. Especificamente, 

a espécie C. tamariscifolia mostrou ser a mais promissora em relação ao isolamento de 

compostos com potencial anticancerígeno, devido à sua forte atividade antioxidante, 

antiproliferativa e pro-apoptótica em células de hepatocarcinoma. Além disso, foi desta 

espécie que foram isolados os dois compostos estudados, demonstrando que esta 

macroalga da costa portuguesa possui um elevado potencial na obtenção de metabolitos 

de valor terapêutico. Estudos futuros incluem avaliação da absorção, distribuição, 

metabolismo e excreção (ADME), tanto em modelos in vitro como in vivo, das moléculas 

aqui identificadas, assim como informação sobre a sua farmacocinética e 

farmacodinâmica, visando a sua aplicação. 

  

Palavras-chave: ácidos gordos polinsaturados; apoptose; atividades biológicas; 

compostos naturais; Cystoseira; nutrição. 
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1 Marine macroalgae: sources of food products and novel bioactive compounds 

Since the beginning of human history marine macroalgae have been viewed as a 

major source of food and food products and, more recently, of bioactive compounds to 

be used in different areas such as pharmaceuticals and cosmetics (Faulkner 2002).  

Macroalgae, commonly known as seaweeds, are defined as photosynthetic 

multicellular eukaryotic organisms with a wide variety of cell morphologies and life 

cycles. Their morphological diversity results from their polyphyletic origin within the 

eukaryotic tree of life (Keeling 2013). In their natural environment macroalgae grow on 

rocky substrates and form stable, multi-layered, perennial vegetation (Luning and Pang 

2003). Several classifications for macroalgae have been proposed over the years. They 

are usually divided into three main groups, according to the occurrence of several 

photosynthetic pigments that influence the color of their thalli. As such, they can be 

classified as green (Chlorophyta), red (Rhodophyta) and brown (Stramenopiles, 

Phaeophyceae) algae. Brown algae are the only macroalgae belonging to the 

Stramenopiles-Alveolata-Rhizaria evolutionary line. Their green and red counterparts 

are currently seen as part of the Archaeplastida megagroup, which includes the land 

plants (Keeling 2013). Whilst the taxonomic classification of several algal evolutionary 

lines is still being worked out, the one that gathers the most consensus amongst the 

scientific community is the one proposed by Keeling (2013). Other taxonomists 

(Cavalier-Smith and Chao 2006, Riisberg et al. 2009) have proposed that brown algae 

should be classified as belonging to the Ochrophyta, an unranked taxon within the 

Stramenopiles phylum (also known as Heterokonta or Heterokontophyta).  

Macroalgae play a major role as primary producers in the oceans. About 150 

macroalgal species are consumed as food and 250 have other commercial uses such as 

the extraction of industrial gums and chemicals (Kumari et al. 2011). Macroalgae are 

considered to be an excellent natural source of primary and secondary metabolites that 

could lead to the development of innovative food and novel compounds with a diverse 

array of biological activities. 

 

1.1 Phaeophyceae: General characteristics  

 Brown algae (Fig. 1.1) belong to the Phaeophyceae class, which consists of 

approximately 2000 known species of macroscopic organisms inhabiting mostly marine 
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waters. These species have adapted to a great variety of marine ecological niches, 

including all the tidal and intertidal zones, rock pools but also relatively deep waters, 

usually under 100 meters. A high number of Phaeophyceae are found in the intertidal or 

upper littoral area, where environmental factors such as temperature and salinity can 

change greatly in a 24-hour period.  

 

 
Fig. 1.1 – Phaeophyceae from the genera Laminaria (on top) and Cystoseira (on bottom) during low tide 

at Almograve beach, Odemira, south of Portugal (photo by the author). 

 

 In general, brown algae are composed of a holdfast (root-like structure), thallus 

and lamina. Pneumatocysts are commonly found in brown algae. They exert an upward 

force that allows the organism to float and thus receive more sunlight for photosynthesis 

(Martin and Gutow 2005). A prominent feature of Phaeophyceae algae is their brown or 

yellowish-brown color, resulting from their main carotenoid fucoxanthin. Along with 

fucoxanthin, the main photosynthetic and photoprotective pigments of brown algae are 

chlorophylls a, c1 and c2, β-carotene, violaxanthin and diatoxanthin. Their brown color 

is also influenced by the presence of phlorotannins stored in vesicles called physodes 

(Goodwin 1974). Contrary to Chlorophyta and Rhodophyta, their main storage product 

is not starch but laminarin, mannitol and oils. Their cell walls are composed of 

cellulose, alginate and sulfated polysaccharides (such as fucoidan), that have 

commercial purposes (Balboa et al. 2013). In fact, many Phaeophyceae have been 
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researched extensively, especially due to its commercial importance. Alginate, for 

instance, is used as thickening agent in the textile, cosmetic and food industries.  

 

1.1.1 The genus Cystoseira  

 The genus Cystoseira was first described by C. Agardh (1820) and initially 

included 37 species. Nowadays Cystoseira encompasses about 40 species and 20 

infraspecific taxa, the majority occurring in the Mediterranean or Atlantic-

Mediterranean (Guiry and Guiry 2016). Indeed, Cystoseira is a solely marine genus of 

worldwide distribution with about 80% of the species occurring along the 

Mediterranean, Adriatic and Atlantic coasts. In the Atlantic, the genus extends from the 

Cape Verde Islands, through the Canaries, Madeira and Azores, along the coasts of 

Morocco, Portugal, Spain and France, to the English Channel and up the west coast of 

the British Isles (Draisma et al. 2010). 

 From a morphological point of view Cystoseira is characterized by a partially 

perennial thallus that can vary from 30 cm to several meters in length, with a cylindrical 

or flat appearance. The thalli are attached to the rocky substrate by a conical fibrous 

base disk. Their profusely branched morphology imparts a tree-like feature to these 

algae. The lateral branches are repeatedly branched in a once, twice or thrice pinnate 

fashion and sometimes bear short spine-like or filiform appendages. Despite these 

common features, there is an emphasis on the variability of the genus, not merely as 

between species but also between individuals of a single species and, seasonally, within 

a single individual (Roberts 1967). 

 Noteworthy is also the fact that certain species (e.g. C. tamariscifolia and C. 

nodicaulis) can present a blue, purple or green iridescence when viewed under water 

(Fig. 1.2). The iridescence may vary in different individuals of the same species at 

different latitudes, or in a single individual at different times of the year (Ercegovir 

1952). Studies revealed that the iridescence is due to physode-like cellular inclusions 

that are proteinaceous and contain also polysaccharides and phenolic compounds such 

as phlorotannins (Ragan and Craigie 1976, Pellegrini 1980). Ercegovic (1952) claimed 

that such iridescence provided protection against excess light. Besides the proposed 

sunscreen effect, other authors suggest that the presence of phlorotannins in these 
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cellular inclusions may be an indication of herbivore deterrence or antimicrobial activity 

(Jegou et al. 2015). However, its precise function remains to be discovered.  

 

 
Fig. 1.2 – Detail from C. tamariscifolia iridescence (photo by the author). 

 

 Cystoseira are indicators of high quality coastal waters (Bermejo et al. 2013), 

according to the criteria of the Water Framework Directive of the European Union 

(WFD 2000/60/EC). In addition, species of the Cystoseira genus may have great 

interest when incorporated in food products, nutraceutical and pharmaceutical 

preparations (Andrade et al. 2013).  

 

1.2 Marine macroalgae: food source for a hungry world?  

 It is estimated that the world population will grow up to 9 billion by 2050, 

placing substantial demands on the food supply. Moreover, the ability of traditional 

agriculture to contribute and satisfy the increasing demand has been questioned due to 

low yields, increased land use and loss of crops due to climate change (Badgley and 

Perfecto 2007). On the other hand, consumer health awareness continues to grow with 

the widespread availability of health-related information and increased incidence of 

lifestyle-related ailments such as heart disease. It has therefore become highly important 

to find new solutions to face the major challenges caused by growing populations 

without compromising environmental integrity and public health.  

 Macroalgae could be part of a key solution to the expectable food crisis. 

Macroalgae have played an important role in Asian diet since ancient times and are also 

widely used by the food industry. The use of macroalgae in food and/or food products 
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has grown steadily since the early 1980s, particularly in western countries (Besada et al. 

2009), which had formerly been reluctant to consume such products. The use of 

ingredients with added-value properties constitutes an important source for the design of 

novel food products and is one of the strongest and most sustainable health-driven 

markets in the world (Buono et al. 2014). Traditionally, seaweed has been incorporated 

into diets through sushi, salads or soups. Recently, fresh and dried seaweeds have 

enjoyed growing popularity in gourmet cuisine as side dishes, garnishes and 

condiments. In 1990, the French government published regulations on the use of marine 

algae (including several brown algae such as Ascophyllum nodosum, Fucus vesiculosus, 

Fucus serratus and Undaria pinnatifida) as raw or semi-processed ingredients in 

prepared and processed foods. Several species are in fact consumed after undergoing 

only minor processing such as drying. 

 

1.2.1 Nutritional proximate composition of macroalgae  

 Macroalgae are considered to have high nutritional value due to their chemical 

composition. The chemical composition of seaweed depends on various factors such as 

the species, time of collection, geographic habitat, water temperature, light intensity and 

nutrient availability in water (Mabeau and Fleurence 1993, Marinho-Soriano et al. 

2006). It is often found that large differences in composition can occur among 

macroalgae of the same genus and species (Martínez and Rico 2002, Dawczynski et al. 

2007), making comparisons difficult. However, it is important to have an estimate of the 

nutritional profile of edible macroalgae. 

 One common feature of fresh macroalgae is that they contain large amounts of 

water. Macroalgae are likely to deteriorate rapidly within a few days upon harvesting 

and therefore drying is an essential step to preserve them. Drying delays microbial 

growth, helps to preserve desirable qualities and reduces storage volume (Rodrigues et 

al. 2015).  

 Macroalgae contain significant amounts of proteins (Lourenço et al. 2002), 

which are important and essential factors establishing the nutritional value of food. It 

has been reported that red and green seaweeds have relatively high protein 

concentrations averaging 10–30% of dry matter (Mabeau and Fleurence 1993, Burtin 

2003). On the other hand, in brown algae, the protein content is usually lower, varying 
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between 5 and 15% (Burtin 2003, Dawczynski et al. 2007). There have been some 

exceptions reported however: in Fucus serratus and Undaria pinnatifida, protein 

contents of 44% and 21.3% have been reported, respectively (Marsham et al. 2007, 

Mišurcová et al. 2012). 

 Lipids play diverse and critical roles in metabolism. The lipid content of 

macroalgae represents only 1–5%, and thus the contribution of this class of molecules 

as an energy source appears to be limited (Burtin 2003). However, Phaeophyceae such 

as Cystoseira are among the algae with higher lipid contents, in particular in terms of 

polyunsaturated fatty acids (PUFA), when compared to algae belonging to other phyla 

(Colombo et al. 2006, Pereira et al. 2012). PUFA account for almost half of this lipid 

fraction with a significant amount of it occurring in the form of “omega-3” (n-3) and 

“omega-6” (n-6) fatty acids such as eicosapentaenoic (EPA) and arachidonic (AA) 

acids, respectively (MacArtain et al. 2007). PUFA regulate a wide range of functions in 

the body, such as blood pressure, blood clotting, and the correct development and 

function of the brain and nervous systems (Patterson et al. 2012). Furthermore, PUFA 

have a role in regulating inflammatory responses through the production of eicosanoids, 

which are known inflammatory mediators (Calder 2006). In particular, the cis (Z) 

stereochemistry of the double bond causes a kink in the alkyl chain that has 

consequences in the physical properties of the molecules, like fluidity, which is 

important in a biological context, namely in cellular membranes. Brown algae are 

particularly rich in the n-3 fatty acids EPA and α-linolenic acid, and in the n-6 fatty 

acids AA and linoleic acid, along with relatively high levels of palmitic and oleic acids 

(Dawczynski et al. 2007). Brown algae have a balanced n-6/n-3 ratio (0.6–5.1:1), 

considering that in a healthy human diet the ratio of n-6/n-3 should not exceed 10:1 (van 

Ginneken et al. 2011). 

 Macroalgal carbohydrate content is considered high. However, digestibility of 

these carbohydrates is low (Bocanegra et al. 2009). Standard polysaccharides in brown 

algae are laminarin, cellulose, alginates, mannitol and fucoidan. Most of these 

polysaccharides are not digestible by the human gastrointestinal tract and therefore can 

be regarded as dietary fibers (Dawczynski et al. 2007). Storage polysaccharides such as 

agar, carrageenans and alginates, are the most commercially exploited components in 

seaweeds. These storage polysaccharides exhibit textural and stabilizing properties 
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(MacArtain et al. 2007). Hence they are used in thickening aqueous solutions, gels, 

water-soluble films and stabilizers. 

 The ash content of macroalgae is generally high, especially when compared to 

that of terrestrial vegetables. It is known that ash levels are associated with the amount 

of mineral elements. Minerals are an essential part of human diet and more than 95% of 

mineral intake originates from food. Minerals play an important role in the human body 

as they are structural materials for building tissues and also significant factors in vital 

reactions such as cofactors of many metalloenzymes. Macroalgae are known as a 

significant source of minerals due to their capacity to absorb inorganic ions from the 

environment, mainly iron, potassium, calcium and sodium (Misurcova et al. 2011). 

 

1.3 Nutraceuticals vs. Pharmaceuticals 

 In recent years, lifestyle shifts such as the consumption of diets rich in highly 

saturated fats, sugars, and salt (often named as “fast foods”) have significantly increased 

the risk of diseases such as atherosclerosis, stroke or type-2 diabetes. In this sense, 

“nutraceuticals” arose in the last decades as a way of improving human health through 

the diet and the intake of added-value food products. 

 Stephen DeFelice, MD, founder and chairman of the Foundation for Innovation 

in Medicine (FIM), used the term “nutraceutical” for the first time in 1989, merging the 

word “nutrition” with “pharmaceutical”. However, there is no common internationally 

recognized definition of what a nutraceutical is (Aronson 2016). The European 

Nutraceutical Association defines nutraceuticals as nutritional products that have an 

effect on the health of humans or animals and that are neither synthetic substances nor 

chemical compounds formulated for specific indications. Currently, “nutraceutical” can 

be defined as a comprehensive term which includes isolated nutrients, food, herbal 

products or dietary supplements that provide medical or health benefits, including the 

prevention and/or treatment of disease (Russo et al. 2016). Among the different 

nutraceuticals, applicability of marine-derived nutraceuticals is a blooming sector of the 

food industry, and macroalgae are playing a major role in it. 

 On the other hand, “pharmaceuticals” are defined by the European Union law 

(Directive 2001/83) as “any substance or combination of substances presented as having 

properties for treating or preventing disease in human beings” or “any substance or 
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combination of substances which may be used in or administered to human beings 

either with a view of restoring, correcting or modifying physiological functions by 

exerting a pharmacological, immunological or metabolic action, or by making a medical 

diagnosis”. Pharmaceuticals are commonly referred to as molecules with established 

therapeutical effect with specific indications, in a formulation where the concentration 

and route of administration is well defined. The search for pharmaceuticals in marine 

organisms, including algae, has greatly increased in the past decades as many of the 

drugs sold today are copies or simple synthetic modifications of substances found in 

nature (Hussain et al. 2012).  

 

1.4 Primary and secondary bioactive metabolites 

 In order to understand the term “secondary metabolite” one must first 

differentiate between primary and secondary metabolism. Primary metabolism can be 

summarized as the synthesis and breakdown of compounds namely carbohydrates, 

proteins, lipids and nucleic acids, that are vital for the growth of all organisms (Dewick 

2002). The compounds involved are usually referred to as “primary metabolites”. 

Secondary metabolism, on the other hand, is the process by which biomolecules 

frequently found to be specific to an organism, or of the expression of the individuality 

of a limited number of species, are produced (Sarker et al. 2001). These “secondary 

metabolites”, often designated by “natural products”, are generally not essential for the 

growth, development or reproduction of an organism, but are produced either as a result 

of adaptations to its surrounding environment or as a defense mechanism against 

predators (Dewick 2002). Secondary metabolism typically depends on the primary 

metabolism for carbon skeletons in the form of, for example, amino acids or acetate. 

These compounds can then be diverted to secondary metabolic pathways and produce 

“shunt metabolites”. These intermediates have apparently adopted an alternate 

biosynthetic route, leading to the production of secondary metabolites (Sarker et al. 

2001). The biosynthesis and accumulation of this wide array of natural products provide 

unique chemical structures with unusual biological activities. 

 Marine algae are among the richest sources of chemically diverse natural 

products (Dias et al. 2012), although their potential in drug discovery has remained 
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largely unexplored. Nevertheless, great effort has been done in the last decades in order 

to investigate this resource. 

 

1.5 Biologically active natural products from marine macroalgae 

 Biological activity can be defined as the specific effect of, or a reaction to, the 

exposure of a living organism/tissue/cell/enzyme to a given compound or mix of 

compounds (e.g. extracts). Humans have explored different terrestrial plants as sources 

of biologically active compounds for centuries. Historically, marine organisms have had 

a limited number of reported applications in traditional medicine as compared to their 

terrestrial counterparts (Dias et al. 2012). In the past decades, however, this trend has 

changed. Intense research has been performed due to the discovery of novel and diverse 

bioactive molecules that have become good candidates for the development of 

innovative drugs.  

 Biodiversity is vital in the screening for new chemical entities in drug discovery 

research. In this context, the search of new biologically active compounds from marine 

organisms can be seen as an almost unlimited field. Marine organisms produce a large 

amount of secondary metabolites that are not found in terrestrial ones. Extreme and 

different environmental conditions have led to the development of chemical defense 

strategies that resulted in a significant diversity of compounds. 

 Recent surveys of drugs from natural sources have shown that algae are 

promising organisms that provide new biochemically active compounds with beneficial 

effects on human health and nutrition (Rocha-Santos and Duarte 2014). More than 

22000 compounds have been isolated from marine organisms and algae account for 

14% of these (Fig. 1.3).  

 Several compounds with biological activities isolated from macroalgae have 

been reported. Intertidal macroalgae live in complex habitats submitted to extreme 

conditions (e.g. fluctuations in salinity, temperature, nutrients, UV-Vis irradiation, and 

pressure). Hence, they produce a great variety of secondary metabolites with different 

chemical structures (Cardozo et al. 2007). 
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Fig. 1.3 – Contribution of different sources of marine natural products in the discovery of novel bioactive 
compounds from 2010 to 2013 (adapted from Rocha-Santos and Duarte 2014). 

 

   

1.6 Extracts and compounds from macroalgae with antioxidant properties 

 Extracts and compounds from macroalgae with antioxidant properties are being 

intensively investigated due to the current growing demand from the food and 

pharmaceutical industries for antioxidant agents. An antioxidant is a substance capable 

of preventing or slowing down the oxidation of other molecules (Flora 2009). Oxidation 

is a chemical reaction that can produce free radicals, leading to chain reactions that may 

damage cells. In an organism or tissue, oxidation may cause oxidative stress. Oxidative 

stress occurs when there is an imbalance between the production of reactive oxygen 

species (ROS) and the ability of a biological system to readily detoxify the reactive 

intermediates or to repair the resulting damage. The end result is typically the 

generation of free radicals that need to be scavenged in order to prevent cell damage. 

Indeed, a free radical is defined as a chemical species capable of independent existence, 

having one or more unpaired electrons. These unpaired electrons make free radicals 

unstable and highly reactive towards other substances, and even towards themselves. 

Examples of ROS include superoxide (O2
-), singlet oxygen (1O2), hydroxyl (HO•), 

peroxyl (ROO•) and nitric oxide (NO). ROS are continuously produced during 

physiological events and can initiate the peroxidation of membrane lipids, leading to the 

accumulation of lipid peroxides (Gülçin 2010). In addition to the biological processes 

that produce endogenous forms of ROS, the human organism is also exposed to ROS 
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generated by the exposition to external factors such as UV radiation, tobacco smoke, 

certain pollutants, organic solvents and pesticides (Lobo et al. 2010). If ROS are not 

effectively scavenged, they can stimulate free radical chain reactions, subsequently 

damaging cellular biomolecules such as proteins and lipids. Importantly, reaction of 

ROS with nucleic acids of the nuclear and mitochondrial genomes can lead to mutations 

and disease (Taylor and Turnbull 2005). However, this imbalance can be shifted when 

levels of antioxidants are increased.  

 In food and food products, protection against oxidation is essential to maintain 

nutritional value and organoleptic properties such as flavor, color, odor and texture. In 

these products, autoxidation of lipids by chemical, thermal, electromagnetic and/or 

enzymatic processes is a frequent event that leads to an increase in free radicals. Lipid 

hydroperoxides, for instance, are unstable and easily converted to secondary oxidation 

products (e.g. aldehydes, ketones, alcohols, hydrocarbons) that affect food quality 

(Balboa et al. 2013). Several synthetic antioxidants as for example butylated 

hydroxyanisole (BHA), butylated hydroxytoluene (BHT), propyl gallate (PG), and tert-

butylhydroquinone (TBHQ) have been used to avoid oxidation of food and other 

products, although they have been associated with undesirable side effects such as 

toxicity and carcinogenicity (Lanigan and Yamarik 2002). Therefore, the safety issues 

have caused an increasing need to study and identify alternative sources of antioxidants 

to be used in the food industry (Cho et al. 2011). 

 Brown algae encompass the highest number of macroalgal families that are rich 

in bioactive compounds with antioxidant properties, including Sargassaceae (Zubia et 

al. 2009). Several extracts, fractions and compounds with antioxidant activity have been 

isolated from brown algae, most of them belonging to the phenolic fraction (Balboa et 

al. 2013). Regarding the Cystoseira genus, it was previously identified as antioxidant 

the dichloromethane/methanol extract (1:1) of C. tamariscifolia (Zubia et al. 2009), 

super-critical water extract of C. abies-marina (Plaza et al. 2010), methanol extract of 

C. hakodatensis (Airanthi et al. 2011), chloroform extract from C. crinita (Mhadhebi et 

al. 2011) and tetraprenyltoluquinol derivatives from C. crinita (Fisch et al. 2003). 
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1.7 Macroalgae-derived compounds and anti-proliferative activities: general 

aspects and specific applications 

1.7.1 Cancer cells proliferation: cell survival vs. cell death under pathological 
conditions  

 The balance between cell division and cell death is a basic feature in the 

development and maintenance of homeostasis. Disturbances in this balance can cause 

disease: too much cell death can cause injury; too little cell death is a prerequisite for 

the development of cancer. Thus, a tight control of the equilibrium between cell death 

and proliferation is necessary. Under typical conditions this balance is maintained by 

tightly regulating both processes. However, when one or both processes are deregulated, 

cancer may ensue.  

 Andreeff et al. (2003) stated that cancer is primarily the accumulation of clonal 

cells, leading to therapies that consist in trying to reduce the number of tumor cells and 

preventing their accumulation. These approaches are implemented either by cytotoxic 

(stimulating cancer cell death) or via cytostatic effects. Briefly, anti-proliferative 

mechanisms preventing carcinogenesis may include up-regulation of apoptosis, 

inhibition of DNA synthesis and cell cycle progression. The inactivation of apoptosis is 

central to the development of cancer and, in the last decades, targeting apoptosis for the 

treatment of cancer has become an increasingly attractive strategy. 

 

1.7.2 Apoptosis: Morphological and biochemical changes in the cell 

 The word “apoptosis” was proposed by Kerr et al. (1972) to describe a 

controlled physiologic process of removing individual unnecessary components of an 

organism without destruction or damage to the organism. Apoptosis was initially 

confirmed as a specific form of programmed cell death that served to eliminate 

excessive or unwanted cells during embryonic development and normal tissue growth 

(Williams 1991), but at a later stage this process was also linked to cellular injury 

(Haslett 1992). Deregulation of the apoptotic program is a complex pathophysiological 

underpinning involved in the development of chronic diseases, including cancer (Wang 

2014). 

 From the morphological point of view, apoptotic cells show cytoplasmic cell 

shrinkage, budding of plasma membrane, exposure of membrane phosphatidylserine 



 

 
 

15 
 

(PS) on the extracellular side, chromatin condensation and DNA fragmentation. The 

plasma membrane maintains intact throughout the whole process. The expression of PS 

in the outer leaflet of the cell membrane is an early process that allows recognition of 

dead cells by macrophages, resulting in phagocytosis without a significant release of 

pro-inflammatory cellular components (Elmore 2007). The typical morphological 

features demonstrated at a later stage are the consequence of a series of precisely 

regulated events that are frequently altered in tumor cells (Kasibhatla and Tseng 2003). 

These events provide the opportunity for selective clinical intervention to bring about 

the death of the tumor cell by apoptosis without damaging the surrounding tissues.  

 Apoptosis is primarily executed by a family of proteases known as caspases 

(cysteinyl, aspartate-specific proteases) that cleave and inactivate or activate target 

substrates within a cell. Caspases are synthesized as inactive zymogens, which must be 

cleaved at two (or three in some cases) aspartate residues to generate the active mature 

enzyme (Amirkhiz et al. 2013). The generation of active caspases forms a cascade in 

which the initiator caspases cleave the executioner caspases that perform critical 

proteolysis of specific cellular substrates, resulting in the final apoptotic cell death. 

Caspases are central to the mechanism of apoptosis, as they are both initiators (caspase-

2, -8, -9 and -10 are primarily responsible for the beginning of the apoptotic pathway) 

and executioners (caspase-3, -6 and -7, responsible for the definite cleavage of cellular 

components) of cell death (Tan et al. 2009). Among them, caspase-3 has been identified 

as a key mediator of apoptosis in mammalian cells. Caspase-3 is one of the pro-

apoptotic executioner caspases that are activated by upstream initiator caspases and are 

responsible for the cleavage of key proteins, such as cytoskeletal proteins, which give 

rise to the typical morphological changes observed in cells undergoing apoptosis 

(Elmore 2007).  

Although apoptosis can be triggered by several different stimuli, apoptotic 

signaling is mainly transduced by two major molecular pathways: an extrinsic pathway 

mediated by death receptors on the cell surface, and an intrinsic pathway, which is 

triggered at the mitochondrial level (Fig. 1.4). Both pathways culminate in the 

activation of executioner caspases (such as caspase-3) cleaving various substrates that 

ultimately cause the morphological and biochemical changes seen in apoptotic cells 

(Tait and Green 2010). 
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Many of the signals eliciting apoptosis converge in the mitochondria, which 

responds to pro-apoptotic signals by releasing cytochrome c, an apoptogenic factor that 

triggers the formation of the apoptosome, along with APAF-1 (apoptotic protease 

activating factor 1), promoting caspase-9 activation (Czabotar et al. 2014). Members of 

the Bcl-2 family of proteins, that can have either pro-apoptotic (such as Bax and Bak) or 

anti-apoptotic (Bcl-2, Bcl-XL, Bcl-W) function, act in part by governing mitochondrial 

death signaling through cytochrome c release.  
 

 

Fig. 1.4 – Overview of the apoptotic pathways studied in this thesis. Caspase-dependent apoptosis 
has been dichotomously discussed as extrinsic (death receptors) and intrinsic (mitochondrial) 
pathways. In the extrinsic pathway caspase-8 is activated, while in the intrinsic pathway caspase-9 
is triggered. Both pathways culminate in the activation of caspase-3. Caspase-3 cleaves several 
substrates such as PARP, inactivating it and originating DNA fragmentation and apoptosis. On the 
other hand, p53 may increase pro-apoptotic Bax expression and relocation, increasing the release 
of cytochrome c from mitochondria, which will produce the apoptosome that will activate caspase-
9. Moreover, p53 can also down-regulate the anti-apoptotic Bcl-2. Bcl-2 prevents the release of 
cytochrome c from the mitochondria, inhibiting the intrinsic pathway. 
 

One of the most widely studied negative regulators of apoptosis is Bcl-2, thought 

to prevent the release of cytochrome c from the mitochondria. Bcl-2 is expressed in a 

wide variety of fetal tissues. However,  in the adult organism, expression seems to be 
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confined to cells that are rapidly dividing and differentiating (Kirkin et al. 2004). Up-

regulation of the anti-apoptotic Bcl-2 protein ensures that over-proliferating cells 

survive to acquire further mutations promoting tumorigenesis.  

 Poly (ADP-ribose) polymerase (PARP) is a molecular sensor of DNA breaks 

and has a key role in the spatial and temporal organization of their repair. It is a highly 

conserved multifunctional enzyme (Megnin-Chanet et al. 2010). Through its physical 

association with, or by the poly(ADP-ribosyl)ation (PAR) of partner proteins, it 

regulates chromatin structure and DNA metabolism (Fig. 1.5). These partner proteins 

include histones, topoisomerases I and II, DNA helicases, single-strand break repair and 

base-excision repair factors, and various transcription factors (Schreiber et al. 2006). 

There is increasing evidence that a deficiency of PARP leads to DNA repair defects, 

genomic instability, failure of induction of cell death and modulation of gene 

transcription.  

 

 
 
Fig. 1.5 – Poly (ADP-ribose) polymerase (PARP) is an abundant enzyme present in all somatic cells that 
detects and signals DNA damage to other gene products involved in DNA repair. Once PARP detects 
DNA damage, it binds to the DNA and begins the synthesis of a poly (ADP-ribose) chain (PAR) as a 
signal for other DNA-repairing enzymes. After DNA repair, the PAR chains are degraded. Conversely, 
PARP is cleaved and inactivated in cells undergoing apoptosis. 
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 Caspase-3 is primarily responsible for the cleavage of PARP, inactivating it 

during cell death (Megnin-Chanet et al. 2010). Furthermore, the sequence at which 

caspase-3 cleaves PARP is very well conserved in the PARP protein from very distant 

species, indicating the potential importance of PARP cleavage in apoptosis (Boulares et 

al. 1999). 

 p53 (also known as protein 53 or tumor suppressor protein 53) is a potent 

transcription factor playing a critical role in the cellular stress response in cancer. p53 

induces either growth arrest, which prevents the replication of damaged DNA, or 

apoptosis, eliminating defective cells. It is usually responsible for activating DNA repair 

proteins when DNA has sustained damage, blocking the cell cycle at regulation 

checkpoints in DNA damage recognition or initiating apoptosis if DNA damage proves 

to be irreparable (Amaral et al. 2010). Indeed, development of a full malignant 

phenotype in many cell types requires deletion or inhibition of p53 functions to bypass 

senescence (Kirkin et al. 2004). Approximately 50% of all human tumors express 

mutated p53, which make this protein an important target for cancer therapy (Rivlin et 

al. 2011). 

 

1.7.3 Cell cycle arrest 

 Tumor cells accumulate mutations that result in constitutive mitogenic signaling, 

triggering mitosis and defective responses to anti-mitogenic signals that contribute to 

unscheduled and increased proliferation. In addition, most tumors acquire genomic 

instability that leads to additional mutations as well as chromosomal instability, a defect 

responsible for changes in chromosomes. These alterations result not only in 

proliferative advantages but also in increased susceptibility to the accumulation of 

additional genetic mutations that contribute to tumor progression and acquisition of 

more aggressive phenotypes (Giam and Rancati 2015). These cell cycle defects are 

mediated, directly or indirectly, by misregulation of cyclin-dependent kinases (CDK). 

p21 is an inhibitor of most of the CDK which regulates the cell cycle and it is an 

important target of p53 (Fig. 1.6). Proper progression through the cell cycle is 

monitored by checkpoints that sense possible defects during DNA synthesis and 

chromosome segregation. Since p21 inhibits both the cyclin-dependent G1 and the 

G2/M-specific kinases, p53 is capable of controlling both G1 and G2/M checkpoints 
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(Pucci et al. 2000). Activation of these checkpoints induces cell cycle arrest through 

modulation of CDK activity. Cell cycle arrest allows cells to properly repair these 

defects, thus preventing their transmission to the resulting daughter cells. As a result, 

DNA damage checkpoints protect cells from accumulating mutations in the DNA. 

 
 

 
 
Fig. 1.6 – A simplified scheme of p53-induced cell cycle arrest in G1 and G2/M phases. A key 
transcriptional target of p53 is p21, an inhibitor of CDK, which inhibits cyclin-CDK complexes and 
thereby causes cell cycle arrest in G1 and G2/M phases. 
 
 

 A few cell cycle arrest promoter compounds are now in clinical trials (Tao et al. 

2013). However, there is still the need to improve existing therapies as well as searching 

for novel drugs that provide higher survival rates and lower the impact of side effects, 

especially in p53 or p21-mutated tumor cells.  

 A coordinate modulation of apoptosis and cell cycle, ordered in space and time, 

orchestrates the complex response to injury by inducing genes that regulate cell 

survival, proliferation, differentiation and tissue specific functions. On this basis, 

pharmacological or molecular modulation of these pathways is currently under 

consideration as an approach to therapy of neoplastic conditions (Surova and 

Zhivotovsky 2013). 

 

 

1.7.4 Anti-proliferative properties from brown macroalgae: specific applications 

 Compounds from Phaeophyceae macroalgae have been reported to possess 

bioactive properties including anti-proliferative activities (Dias et al. 2012). Several 

molecules with anti-proliferative activity were identified, such as polysaccharides, 

quinones, sterols, terpenoids and others, and are presented in Table 1.1.  
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 Ale et al. (2011), for instance, found that fucose-containing sulfated 

polysaccharides extracted from the seaweeds Sargassum henslowianum and Fucus 

vesiculosus decreased the proliferation of melanoma cells in a dose-response fashion via 

induction of apoptosis involving the activation of caspase-3.  

 Khanavi et al. (2012) identified fucosterol, the most abundant phytosterol from 

the hexane fraction of Sargassum angustifolium, as the responsible for the cytotoxic 

effect of this extract against human ductal breast epithelial tumor (T47D) and human 

colon carcinoma (HT29) cell lines. 

 A phloroglucinol derivative, dioxinodehydroeckol, isolated from Ecklonia cava 

inhibited the proliferation of human MCF-7 breast cancer cells. Treatment with 

dioxinodehydroeckol induced an increase in caspase (-3 and -9) activity and PARP 

cleavage (Kong et al. 2009).  

 Carotenoids are well known terpenoids with a strong anti-proliferative effect. 

Zeaxanthin, for instance, has shown to induce apoptosis in human melanoma cells 

through members of the Bcl-2 family (Bi et al. 2013). Fucoxanthin, on the other hand, is 

commonly found in brown macroalgae and it has been shown to have antioxidant, anti-

inflammatory and anti-proliferative properties. Additionally, it exhibited pro-apoptotic, 

cell cycle arrest and anti-angiogenesis activities (Peng et al. 2011, Rengarajan et al. 

2013). Interestingly, even the metabolites of carotenoids seem to have anti-proliferative 

activities as well. For example, fucoxanthinol, a fucoxanthin metabolite, displayed 

remarkable anti-proliferative effects on human adult T-cell leukemia cells in vitro 

(Ishikawa et al. 2008) and also in breast cancer cell lines MCF-7 and MDA-MB-231 

(Rwigemera et al. 2015).  
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Table 1.1 Anti-proliferative compounds from brown macroalgae.1  

Fraction / Compound   Organism Reference(s) 

Structure / Name    Family Species  

Carboxylic  acid         

 Turbinaric acid  
Sargassaceae Turbinaria ornata Asari et al. 1989 

Polysaccharides        
 

Fucose-containing sulfated 
polysaccharide 

 
Sargassaceae Sargassum 

henslowianum 
Ale et al. 2011 

 
Fucose-containing sulfated 
polysaccharide 

 
Fucaceae Fucus vesiculosus Ale et al. 2011 

Quinones        
 

Bis-prenylated quinones 
 

Sporochnaceae Perithalia capillaris Blackman et al. 1979 

Sterols        
 

6 -hydroxy-24-
ethylcholesta-4,24(28)-dien-
3-one 

 
Sargassaceae Turbinaria conoides Sheu et al. 1999 

 
24 -hydroperoxy-6 -
hydroxy-24-ethylcholesta-
4,28(29)-dien-3-one 

 
Sargassaceae Turbinaria conoides Sheu et al. 1999 

 
24-ethyl-cholesta-4,24(28)-
dien-3-one 

 
Sargassaceae Turbinaria conoides Sheu et al. 1999 

 
Fucosterol 

 
Sargassaceae Sargassum angustifolium Khanavi et al. 2012 

Terpenoids        
 

4-acetoxydictyolactone 
 

Dictyotaceae Dictyota dichotoma Ishitsuka et al. 1988 
 

Atomarianones A and B 
 

Dictyotaceae Taonia atomaria Abatis et al. 2005 
 

Bifurcadiol 
 

Sargassaceae Bifurcaria bifurcata Guardia et al. 1999 
 

Cystoseirol monoacetate 
 

Sargassaceae Cystoseira myrica Ayyad et al. 2003 
 

Dictyol F monoacetate 
 

Sargassaceae Cystoseira myrica Ayyad et al. 2003 
 

Dictyone acetate 
 

Sargassaceae Cystoseira myrica Ayyad et al. 2003 
 

Dictyotalide A 
 

Dictyotaceae Dictyota dichotoma Ishitsuka et al. 1988 
 

Dictyotalide B 
 

Dictyotaceae Dictyota dichotoma Ishitsuka et al. 1988 
 

Dolabellane 
 

Dictyotaceae Dictyota sp. Tringali et al. 1984 
 

12-hydroxygeranylgeraniol 
 

Sargassaceae Bifurcaria bifurcata Gulioli et al. 2004 
 

Isodictytriol monoacetate 
 

Sargassaceae Cystoseira myrica Ayyad et al. 2003 
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Fraction / Compound   Organism Reference(s) 

Structure / Name    Family Species  

 
Isozonarone 

 
Dictyotaceae Dictyopteris zonarioides Fenical et al. 1973 

 
Nordictyotalide 

 
Dictyotaceae Dictyota dichotoma Ishitsuka et al. 1988 

 
Sargol, Sargol I and II 

 
Sargassaceae Sargassum tortile Numata et al. 1991 

 
Terpenoid C 

 
Dictyotaceae Stypopodium zonale Dorta et al. 2002 

1 - This table intends to present examples of the chemical diversity of anti-proliferative compounds found in brown 
macroalgae, and not to be a comprehensive list of what has been published in the literature. 
 

 Several crude extracts have also demonstrated anti-proliferative activity. For 

example, the hexane fraction of Sargassum swartzii and Cystoseira myrica showed 

selective cytotoxicity against proliferation of Caco-2 (IC50<100 μg/ml) and T47D 

(IC50<100 μg/ml) cells, increasing apoptosis (Khanavi et al. 2010). Huang and 

collaborators (2005) demonstrated that the ethyl acetate extract from Colpomenia 

sinuosa inhibited the growth of human hepatoma HuH-7 cells and leukemia U937 and 

HL-60 cells in a time- and dose-dependent manner.  

 It is clear that marine brown algae are prolific producers of biologically active 

secondary metabolites, especially terpenoids, with cytotoxic activity. Global research 

aimed at the discovery of novel and clinically useful anti-tumor agents derived from 

marine sources continues nowadays at a remarkably active pace. 

 

1.8 Bioactive secondary metabolites isolated from Cystoseira species 

 The genus Cystoseira is known to produce a range of relatively complex 

terpenoids. Cystoseira usneoides contains usneoidone E with antiviral and anti-

proliferative activities. However, this compound also has a high level of cytotoxicity 

toward normal cells (Urones et al. 1992). Six tetraprenyltoluquinols, two 

triprenyltoluquinols and two tetraprenyltoluquinones were isolated from C. crinita, 

collected from the South Coast of Sardinia. All compounds were tested for antioxidant 

properties using the DPPH and TBARS assays. The six tetraprenyltoluquinols and the 

two triprenyltoluquinols exhibited potent radical scavenging effects, while the two 

tetraprenyltoluquinones were significantly less active, but still comparable to that of 

BHT (Fisch et al. 2003). Cystoseira myrica, collected in the Gulf of Suez, afforded four 
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hydroazulene diterpenes, namely dictyone acetate, dictyol F monoacetate, isodictytriol 

monoacetate and cystoseirol monoacetate. All compounds exhibited moderate 

cytotoxicity against the murine cancer cell line KA3IT, but reduced cytotoxicity against 

non-tumoral NIH3T3 cells (Ayyad et al. 2003).  

 Despite the progress done by authors such as Amico (1995) in the search of 

bioactive compounds from Cystoseira species, there are still numerous possibilities to 

explore. 

  

1.9 Scope of research and justification of the thesis  

 Several studies have focused on the determination of the proximate composition 

and fatty acid profile of macroalgae. However, a complete study of these parameters in 

Cystoseira species was yet to be carried out. Research dealing with macroalgae natural 

products is still widely unexplored, especially for compounds with anti-tumoral 

potential. In addition, the study of natural products from macroalgae seldom considers 

the mechanisms and pathways involved in the observed bioactivities.  

 Thus, the main objective of the research conducted in this thesis was to 

investigate whether Cystoseira species had the potential to be used by the nutra- and/or 

pharmaceutical industries in an effort to identify their composition, bioactivities and 

underlying mechanisms of action.  

 To do so, several biological questions were addressed here for the first time: 

 what is the proximate composition of Cystoseira species?  

 what is their fatty acid profile? 

 do they have the characteristics of a healthy food or food product? 

 do they have antioxidant potential? 

 do these species display anti-proliferative activity?  

 which compounds are responsible for the bioactivies?  

 what molecular pathways do these compounds modulate? 

 

 Collectively, with the results obtained in this thesis, we aim to improve the 

knowledge about Cystoseira composition in order to be used as a food, as part of a food 

product and/or as source of novel drug leads for the pharmaceutical industry.  
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2.1 Abstract 

Macroalgae are valuable resources for human consumption in many countries. This 

work reports for the first time a comparative evaluation of the nutritional properties of 

five edible macroalgae from the genus Cystoseira, namely C. humilis, C. tamariscifolia, 

C. nodicaulis, C. compressa and C. baccata. For this purpose, their proximate 

composition was determined in terms of moisture, ash, and total contents of protein, 

lipids, carbohydrates and mineral profile. Cystoseira tamariscifolia and C. baccata were 

the species that in general had the higher ash, protein and lipid contents, while the 

highest levels of moisture and total carbohydrates were detected in C. nodicaulis and C. 

compressa. Cystoseira species had also high amounts of minerals, especially of 

potassium, calcium and iron, and a favorable Na/K ratio. The present study shows that 

Cystoseira has a balanced nutritional composition, suitable for human consumption, and 

that its intake can contribute to a healthy and well-balanced diet. 

 

Keywords: brown algae; Cystoseira; minerals; nutritional profile; proximate 

composition. 

 

 

 

Fig. 2.1 – Graphical abstract for the work achieved in Chapter 2. 
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2.2 Introduction 

It is estimated that the world’s population will grow to 9 billion by mid-century, putting 

substantial demands on the planet’s food supply. Macroalgae (also known as 

“seaweeds”) are major coastal resources that are valuable for human consumption in 

many countries. Edible macroalgae are widely consumed in Asia, but the demand has 

grown worldwide especially in the United States of America and Europe. Seaweeds are 

a highly nutritive food that additionally can be eaten in raw salads, soups, cookies, 

meals, and condiments (Aguilera-Morales et al. 2005). The nutritional value ascribed to 

macroalgae along with their non-animal nature makes them particularly appropriate for 

use in the food and additive industries (Lordan et al. 2011). However, compared to their 

terrestrial counterparts, the chemical composition of macroalgae has been poorly 

investigated and most of the available information refers to species traditionally 

consumed in Japanese cuisine. There has also been a growing interest in the mineral 

content of macroalgae, which is higher than that of many land plant products (Tabarsa 

et al. 2012). Cystoseira is one of the most widely distributed genera of the class 

Phaeophyceae and is abundant not only on European coasts, but also in the Pacific and 

Indian Oceans (Valls and Piovetti 1995). Several species belonging to the 

Phaeophyceae, such as Laminaria japonica and Sargassum naozhouense (Patra et al. 

2015; Peng et al. 2013), among many others, are traditionally used as food. Although 

Cystoseira species are not commonly used as food, they are defined as edible and are 

potential candidates for food products, nutraceutical and pharmaceutical preparations 

(Andrade et al. 2013) and thus could be considered as alternative sources of nutritional 

elements. Therefore, the focus of the present study was to evaluate the proximate 

composition and mineral content of five species of brown macroalgae belonging to the 

genus, namely Cystoseira humilis Schousboe ex Kützing, C. tamariscifolia (Hudson) 

Papenfuss, C. nodicaulis (Withering) M. Roberts, C. compressa (Esper) Gerloff & 

Nizamuddin and C. baccata (S.G. Gmelin) P.C. Silva, as well as to consider and discuss 

the use of these macroalgae as food and/or incorporated in supplements. To the best of 

the authors’ knowledge this is the first report on the proximate composition and mineral 

contents of these Cystoseira species. 
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2.3 Materials and methods 

 

2.3.1 Algal biomass sampling and preparation 

Cystoseira humilis, C. compressa, C. tamariscifolia, C. nodicaulis and C. baccata were 

collected in the middle/lower intertidal areas of the Algarve (Albufeira and Odeceixe, 

Portugal) coast, in May 2010, during low tide (Table 2.1). Specimens were identified by 

Dr Aschwin Engelen (Centre of Marine Sciences, University of Algarve, Portugal) and 

Dr Javier Cremades Ugarte (Facultade de Ciencias, University of A Coruña). Voucher 

specimens of C. compressa (code number MB004), C. humilis (code number MB007), 

C. tamariscifolia (code number MB016), C. nodicaulis (code number MB014-2), and C. 

baccata (code number MB001) are deposited at the Centre of Marine Sciences, 

University of Algarve. Individual thalli were washed thoroughly with freshwater upon 

arrival in the laboratory to remove epiphytes and washed again with distilled water. In 

order to have enough biomass for the determination of the proximate composition and 

minerals, each replicate was prepared by combining two to three individual thalli of a 

given species. The replicates were assessed for moisture content while fresh and were 

then oven-dried, ground into a fine powder and stored in tightly closed plastic bags 

containing silica gel until analysis.  

 

Table 2.1 Date and location of sample collection of different Cystoseira species from Portugal.  

 Date GPS coordinates Location (Beach, County) Voucher specimen 

code number 

C. humilis 

 

 

07-05-2010 37º4’36.19’’N 

8º18’36.49’’W 

 

Manuel Lourenço, Albufeira MB007 

C. compressa 08-05-2010 37º4’35.83’’N 

8º16’33.74’’W 
Arrifes, Albufeira MB004 

C. tamariscifolia 07-05-2010 37º5’24.31’’N 

8º11’9.72’’W 
Olhos de Água, Albufeira MB016 

C. nodicaulis 07-05-2010 37º4’36.19’’N 

8º18’36.49’’W 

 

Manuel Lourenço, Albufeira MB014-2 

C. baccata 11-05-2010 37º26’41.48’’N 

8º48’3.90’’W 
Odeceixe, Aljezur MB001 
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2.3.2 Proximate biochemical analysis 

For the determination of the proximate composition, 6 replicates were prepared as 

described in the previous section. Moisture was determined by drying the replicates at 

95°C until constant weight as described by the AOAC method (AOAC 1995). Ash 

content was measured by weight difference before and after 5 hours of incineration in a 

muffle furnace at 525°C. Total nitrogen content of dried samples was determined using 

a Vario EL III elemental analyzer (Elementar), and the protein content was estimated by 

multiplying the total nitrogen content by a nitrogen conversion factor of 6.25 (Lourenço 

et al. 2002). Total lipid content was determined by a modified method of Bligh & Dyer 

(Pereira et al. 2013). Carbohydrate content was assumed to be the remaining biomass 

and was calculated from the difference between 100% and the summed contents of ash, 

protein and lipids (Marinho-Soriano et al. 2006).  

 

2.3.3 Mineral content 

Mineral elements were analyzed by atomic absorption spectrometry (AAS). Three 

replicates about approximately 300 mg of the dried powder from each species were 

digested by microwave (Milestone Ethos Touch) in high-pressure Teflon vessels. The 

digestion was made using 6 ml of Fluka supra-pure HNO3 (65 %), 1 ml of Riedel-

Dehaen p.a. HClO4 (70 %) and 1 ml of Merck supra-pure H2O2 (30 %) (ETHOS PLUS, 

2001). A procedural blank was prepared and included in each digestion batch of 10 

samples. Calcium, magnesium, sodium, potassium, iron, manganese and zinc were 

analyzed by flame AAS with an air-acetylene flame in an atomic absorption 

spectrometer (GBC Avanta Sigma, Australia). The accuracy of the analytical procedure 

was assessed by the analysis of certified reference material (BCR-60 - aquatic plant 

Lagarosiphon major, from the Institute for Reference Materials and Measurements, 

JRC-IRMM, Belgium). Procedural blanks always accounted for less than 1% of the 

metal concentrations in samples. Values were expressed as g kg-1 dry weight (DW) for 

Ca, Mg, Na and K or mg kg-1 DW for Fe, Mn and Zn. 
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2.3.4 Statistical analysis 

Biological replicates were collected on a given date and location (Table 2.1) and were 

used for the determination of the proximate (n = 6) and mineral composition (n = 3). 

Significant differences were assessed by analysis of variance (ANOVA) and 

significance between means was analyzed by the Tukey HSD test (p<0.05).  SPSS 

statistical package for Windows (release 15.0, SPSS Inc.) was used.  

 

2.4 Results  

The present study aimed to evaluate the proximate composition of different Cystoseira 

species (namely C. humilis, C. compressa, C. tamariscifolia, C. nodicaulis and C. 

baccata) collected on the Algarve coast, Portugal. Results are summarized in Table 2.2. 

The moisture content ranged from 49% of wet weight (WW) in C. tamariscifolia to 

63% in C. compressa, while the ash levels varied from 7% in C. compressa to 24% in 

C. tamariscifolia. Cystoseira tamariscifolia also presented the lowest total carbohydrate 

(54%) and the highest protein (13%) contents. Conversely, C. nodicaulis, along with C. 

compressa, had the highest total carbohydrate levels (73%) and low protein contents (9-

10%). The highest level of total lipids was 11% in C. baccata, followed by C. 

tamariscifolia (10%) and the lowest value was observed in C. nodicaulis (4%, Table 

2.2). 

Table 2.2 Proximate composition of different Cystoseira species from Portugal, including 

moisture (% of wet weight), ash, total protein, total lipids, carbohydrates (% of dry weight).  

Values are mean (n = 6). Different superscript letters indicate that, for each variable, differences 

between species are significant at p = 0.05. 

 C. humilis C. compressa C. tamariscifolia C. nodicaulis C. baccata 

Moisture 57.06b 63.05a 48.99d 58.95b 51.43c 
Ash 20.35a,b 7.30d 23.85a 13.45c 19.10b 

Protein  10.34b 10.16b 12.52a 9.20c 12.46a 

Lipids 5.22c 9.45b 9.57b 4.31d 10.92a 

Carbohydrates 64.09 73.09 54.06 73.04 57.52 

 

The mineral content of the samples was also evaluated, and results are given in Table 

2.3. The total for all macrominerals, expressed as the sum of K, Na, Ca and Mg, ranged 

from 40 g kg−1 in C. baccata to 101 g kg−1 in C. compressa. However, in terms of 
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microminerals, C. tamariscifolia was the highest (1013 mg kg−1) and C. compressa the 

lowest (173 mg kg−1). Potassium was the most abundant macromineral in C. compressa, 

C. humilis and C. baccata (60, 30 and 22 g kg−1, respectively). Sodium content ranged 

from 8 g kg−1 in C. humilis to 16 g kg−1 in C. tamariscifolia. The Na/K ratios varied 

from 0.15 in C. compressa and 0.97 in C. tamariscifolia (Table 2.3). In Cystoseira 

tamariscifolia and C. nodicaulis, calcium was the most abundant macromineral (both 

around 26 g kg−1). Magnesium concentration varied from 5.7 g kg−1 in C. nodicaulis to 

19 g kg−1 in C. compressa.  

 

Table 2.3 Mineral content of different Cystoseira species. Values are mean (n = 3). Different 

superscript letters indicate that, for each variable, differences between species are significant at 

p = 0.05. 

Mineral Symbol C. humilis C. compressa C. tamariscifolia C. nodicaulis C. baccata 

Expressed as g kg−1 dry biomass 

 
Calcium Ca 23.70b 13.08c 25.82a 26.50a 9.43d 

Magnesium Mg 12.90b 18.53a 6.56c 5.69d 6.78c 

Sodium Na 7.56e 8.94d 16.36a 11.61b 10.81c 

Potassium K 29.78b 60.02a 16.87d 15.98e 22.10c 

Na/K ratio  0.25 0.15 0.97 0.73 0.49 

Total  73.94 100.57 65.61 59.78 39.69 

 

Expressed as mg kg−1 dry biomass 

       

Iron Fe 171.88c 149.74d 508.06a 413.14b 109.59e 

Manganese Mn 152.18c 14.27e  398.46a 193.54b 108.35d 

Zinc Zn 41.16c 9.43d 105.99b 113.82a 106.73b 

Total  365.22 173.44 1012.51 720.50 324.67 

 

Among the microminerals detected, iron was the most abundant ranging from 110 mg 

kg−1 in C. baccata to 508 mg kg−1 in C. tamariscifolia. Cystoseira tamariscifolia also 

had the highest content of manganese (398 mg kg−1), while the lowest manganese 

content was observed in C. compressa (14 mg kg−1), which also contained the lowest 

amount of zinc (9.4 mg kg−1). The highest content of zinc was found in C. nodicaulis 

(114 mg kg−1), though C. tamariscifolia and C. baccata also presented values above 100 

mg kg−1 (Table 2.3). 
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2.5 Discussion 

This study reports for the first time the proximate composition and mineral profiles of 

five species of Cystoseira found on the coast of Algarve (Portugal), namely C. humilis, 

C. tamariscifolia, C. nodicaulis, C. compressa and C. baccata. The first parameter 

assessed was the moisture of fresh specimens. As found in most brown macroalgae, the 

moisture values for fresh specimens were high. For example, the moisture determined 

for C. compressa was 63%, which was similar to the value reported for Sargassum 

(Holdt and Kraan 2011). 

Most ash contents obtained for Cystoseira are in agreement with published values for 

other Phaeophyceae, such as those of Ascophyllum (18–27%), Fucus (19-30%) and 

Sargassum (14-44%). The only exception was the ash content for C. compressa (7%), 

which was lower than the usual range (Holdt and Kraan 2011). 

The protein values obtained in this study (9-13% DW) are of the same order as those 

reported in previous studies on brown algae. In previous studies, the protein content of 

Ascophyllum and Sargassum ranged from 1.2-12% and 9-20%, respectively (Holdt and 

Kraan 2011). The protein content is often lower in brown macroalgae than in green and 

red macroalgae (Holdt and Kraan 2011). 

Regarding total lipids, the Cystoseira species showed higher levels than its green and 

red counterparts. In general, macroalgae have low lipid contents, usually below 5% of 

dry matter (Burtin 2003). However, C. compressa, C. tamariscifolia and C. baccata 

showed total lipid contents higher than 9.4%. Gosch et al. (2012) claimed that brown 

macroalgae typically have the highest levels of total lipids amongst seaweeds. In fact, 

some species have total lipid content higher than 15%, particularly those from the 

Dictyotales order, which consistently display total lipid contents between 11 and 20% 

DW (McDermid and Stuercke 2003). Our results are in accordance with these data, 

showing that the closely related Cystoseira (Fucales) algae also contain relatively high 

lipid levels. The fatty acid profiles of C. humilis, C. compressa, C. tamariscifolia, C. 

nodicaulis and C. baccata have been reported previously (Vizetto-Duarte et al. 2015) 

and showed that polyunsaturated fatty acids (PUFA) in the studied Cystoseira species 

corresponded to 29 – 46% of the total fatty acids detected. In addition, Cystoseira 

species also previously presented high nutritional value due to their low PUFA vs. 

saturated fatty acids (SFA) ratio (PUFA/SFA), low n-6 PUFA/n-3 PUFA ratios as well 
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as favorable unsaturation, atherogenicity and thrombogenicity indices (Vizetto-Duarte 

et al. 2015). 

In this study, the carbohydrate content varied from 42 to 73% DW in Cystoseira 

species. Interestingly, Hadj Ammar et al. (2015) showed lower total carbohydrate 

contents (13-45% DW) for C. compressa, C. sedoides and C. crinita collected in June in 

Tunisia. A possible explanation for the observed differences might be the location and 

season of the year when the thalli were sampled. Moreover, carbohydrate contents 

might also vary with the physiological state (e.g. developmental stage of the alga), and 

environmental factors (e.g. temperature and depth; Holdt and Kraan 2011). Previous 

studies have also suggested an inverse relationship between carbohydrates and proteins 

in macroalgae (Marinho-Soriano et al. 2006), which was also observed in our samples. 

Macroalgae are known to have a high mineral content, usually higher than of most 

terrestrial plants (Ortega-Calvo et al. 1993). In fact, edible seaweeds are considered to 

be valuable nutritional resources due to their high content of several essential minerals 

(Bocanegra et al. 2009). Potassium and sodium values of the macroalgae here studied 

were higher than those reported for land vegetables, such as lettuce and spinach (USDA 

2015). Nevertheless, the Na/K ratios were below 1.0 in all the species of Cystoseira 

studied (0.15–0.97, Table 2.3), which is interesting from a nutritional point of view, 

since diets with a high Na/K ratio have been related to the incidence of hypertension 

(Taboada et al. 2010). For instance, Na/K ratio in sausages is 4.89 (Ortega-Calvo et al. 

1993). Calcium and magnesium also recorded high values compared to that of land 

vegetables (USDA 2015). Regarding microminerals, C. tamariscifolia and C. nodicaulis 

displayed remarkably high iron contents (> 400 mg kg−1) as compared to those of other 

Cystoseira species (Table 2.3) and of commercial seaweeds such as Fucus, Laminaria, 

Undaria, Chondrus and Porphyra (33-103 mg kg−1; Rupérez 2002). The same 

conclusion can be drawn with respect to the iron concentrations usually found in 

terrestrial vegetables (35-233 mg kg−1; USDA 2015). Ortega-Calvo et al. (1993) 

reported that Fucus sp., a brown edible marine macroalga, had manganese contents 

ranging from 33–190 mg kg−1 and zinc levels from 42–37000 mg kg−1. In a study by 

Rupérez (2002), Fucus vesiculosus contained 55 mg kg−1 of Mn and 71 mg kg−1 of Zn. 

The concentration of these trace elements detected by us (Table 2.3) also fall within the 

ranges observed in previous reports on macroalgae, except for C. compressa that 

exhibited lower values. Mineral composition is also known to vary according to 
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seasonal, environmental, geographical and physiological factors (Mabeau and Fleurence 

1993). 

 

2.6 Conclusions 

Taken together, our results indicate that Cystoseira has a balanced nutritional 

composition suitable for human consumption, and that its intake could contribute to a 

healthy and well-balanced diet. This study showed that species of Cystoseira have high 

ash and carbohydrate contents, and relatively high total lipids compared to other 

macroalgae. Mineral analysis also showed that these species contain useful amounts of 

macrominerals and trace elements. Among the nutritional profiles described here for the 

first time, C. tamariscifolia stands out for its high content of ash (and therefore, 

minerals) and total protein, its high lipid content, and relatively low carbohydrate 

content. Cystoseira tamariscifolia also contains high Ca and was the species with 

highest micromineral levels, especially Fe and Mn. The Na/K ratio of all species was 

suitable for human diet. Together with recent studies on the edibility of Cystoseira and 

the need for alternative sources of non-animal food, our results show that these species 

could be used as alternative sources of valuable food products. 
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3.1 Abstract 

The fatty acid (FA) composition of six macroalgae from the Cystoseira genus, namely 

C. compressa, C. humilis, C. tamariscifolia, C. nodicaulis, C. baccata and C. barbata, 

was determined. Polyunsaturated fatty acids (PUFA) corresponded to 29-46% of the 

total FA detected. C. compressa, C. tamariscifolia and C. nodicaulis stood out for their 

high PUFA/SFA, low n-6 PUFA/n-3 PUFA ratios as well as favourable unsaturation, 

atherogenicity and thrombogenicity indices, suggesting a high nutritional value with 

potential applications in the nutraceutical industry. 

 

Keywords: brown algae; Cystoseira; fatty acids; nutrition; PUFA. 

 

 

 

 

 

 

Fig. 3.1 – Graphical abstract of the study completed on Chapter 3. 
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3.2 Introduction 

Marine macroalgae are being increasingly exploited as sources of polyunsaturated fatty 

acids (PUFA) for nutritional purposes (Pereira et al. 2012). The main dietary source of 

n-3 PUFA in humans is seafood, through the direct consumption of oily fish (e.g. 

salmon and mackerel). However, the sustainability of fish sources for the exploitation of 

PUFA is rather uncertain due to declining fish stocks and increasing market demand 

(FAO 2010). Hence, there is a need to find sustainable alternative sources of PUFA for 

food and feed applications. Ochrophyta (e.g. Cystoseira) is one of the most promising 

phyla of algae due to increased amounts of PUFA commonly detected in several species 

when compared to other algal phyla (Colombo et al. 2006; Silva et al. 2013). 

In this sense, the objectives of this work are to report the fatty acid (FA) profile of six 

species of brown macroalgae belonging to the Cystoseira genus, namely C. humilis, C. 

compressa, C. tamariscifolia, C. nodicaulis, C. baccata and C. barbata, as well as 

consider and discuss the use of these seaweeds as sources of nutraceuticals . To the best 

of the authors’ knowledge this is the first report on the FA profile of C. compressa, C. 

humilis, C. baccata and C. barbata.  

 

 

3.3 Experimental procedures 

3.3.1 Sampling and processing 

C. compressa, C. humilis, C. tamariscifolia, C. nodicaulis and C. baccata were 

collected in May 2010 on the Algarve (Portugal) coast, namely in Albufeira and 

Odeceixe beaches. C. barbata was collected on the Mediterranean coast near Cádiz, 

Spain. Identification of specimens was made by Dr Aschwin Engelen (Centre of Marine 

Sciences, University of Algarve, Portugal) and Dr Javier Cremades Ugarte (Facultade 

de Ciencias, University of A Coruña). A voucher specimen of C. compressa (code 

number MB004), C. humilis (code number MB007), C. tamariscifolia (code number 

MB016), C. nodicaulis (code number MB014-2), C. baccata (code number MB001) and 

C. barbata (code number MB017) is deposited at the Centre of Marine Sciences, 

University of Algarve. Samples were kept cold and, upon arrival to the laboratory, 

washed thoroughly with freshwater to remove epiphytes. Biomass was then washed 

with distilled water, freeze dried, pulverized into powder and stored at -20 °C until 

further analysis.  
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3.3.2 FA composition  

The extraction and analysis of FA were made according to a modified Lepage and Roy 

(1984) procedure as described by Pereira et al. (2012).  

 

3.3.3 Determination of fatty acid methyl esters profile by GC-MS  

Extracts were analyzed on an Agilent GC-MS (Agilent Technologies 6890 Network GC 

System, 5973 Inert Mass Selective Detector) as described in Pereira et al. (2012).  

 

3.3.4 Determination of nutritional indices  

The unsaturation index (UI) was determined by summing up the percentage of each FA 

multiplied by its number of double bonds (Kumari et al. 2013). The atherogenicity 

index (AI) and the thrombogenicity index (TI) were determined according to Ulbricht & 

Southgate (1991) equations: 

A                         FA         FA          FA  
                           FA               FA            FA    n     FA 

  n     FA  
 

where    FA,   n-    FA  and   n-6 PUFA) are the sum of MUFA, n-3 and n-6 

PUFA in % of total fatty acids (TFA), respectively. 

 

3.3.5 Statistical analysis 

Results are represented as mean ± standard deviation (SD) of four replicates. 

Differences between species were assessed using analysis of variance (ANOVA). Post-

hoc comparisons were determined using the Tukey HSD test. Significant differences 

were considered when p < 0.05 by means of the statistical program StatSoft 

STATISTICA (release 7.0).  

 

3.4 Results and discussion 

3.4.1 Total fatty acid methyl esters (FAME) concentration 

Total FAME concentration (Fig.3.2) ranged from 6.7 in C. humilis to 9.4 mg/g of dry 

weight (DW) in C. nodicaulis. These data is in accordance with the values obtained for 
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other ochrophytes (Pereira et al. 2012). However, the total FAME concentration 

obtained for C. nodicaulis and C. tamariscifolia in this work (9.4 and 8.4, respectively) 

was higher than the ones reported by Silva et al. 2013 (1.9 and 0.8, respectively). 

 

 

Fig. 3.2 – Total FAME concentration of different macroalgae from Cystoseira genus. 

Bars represent means ± SD (n = 4).
 
Different letters (a-b) indicate significant differences 

by Tukey HSD test at p < 0.05. 
 

 

3.4.2 Fatty acid profiles 

Saturated fatty acid (SFA) varied from 34% in C. compressa to 54% in C. barbata. 

Palmitic acid (C16:0) was the most abundant SFA in all studied species, ranging from 

26% in C. compressa and C. nodicaulis to 35% of total fatty acids (TFA) in C. barbata 

(Table 3.1). Our results are in accordance with the ones obtained in different Cystoseira 

species, namely C. nodicaulis, C. tamariscifolia, C. usneoides, C. abies-marina, C. 

crinita and C. osmundacea from other locations (Khotimchenko et al. 2002; Frikha et 

al. 2011; Ivanova et al. 2013; Patarra et al. 2013; Silva et al. 2013). It is known that a 

high intake of palmitic acid has a cholesterol-raising effect (Clandinin et al. 2000); 

however, this effect can be counterbalanced by high levels of linoleic acid (Clandinin et 

al. 2000; French et al. 2002). Monounsaturated fatty acids (MUFA) ranged from 13% of 

TFA in C. humilis to 23% of TFA in C. baccata (Table 3.1). Palmitoleic acid (C16:1) 

varied from 2% in C. nodicaulis to 13% in C. baccata. Oleic acid (C18:1) corresponded 



 

60 

 

to 9% and 17% of TFA in C. tamariscifolia and C. compressa, respectively. These 

MUFA are commonly reported as the majors MUFA in C. barbata (Frikha et al. 2011), 

C. nodicaulis, C. tamariscifolia, C. usneoides (Silva et al. 2013), C. abies-marina 

(Patarra et al. 2013), C. crinita (Ivanova et al. 2013) and C. osmundacea 

(Khotimchenko et al. 2002). Diets rich in MUFA (and PUFA) have showed to reduce 

the total cholesterol in plasma and low density lipoprotein cholesterol in clinical studies 

(Ginsberg et al. 1990). Regarding PUFA, C. compressa, C. tamariscifolia and C. 

nodicaulis were the species with the highest PUFA levels (Table 3.1). Total PUFA 

contents varied from 29% in C. barbata and 46% of TFA in C. compressa. Arachidonic 

acid (C20:4n-6, AA) was the most abundant PUFA detected in all studied species (12 - 

27% of TFA) except for C. humilis which presented a higher abundance of linoleic acid 

(C18:2n-6, LA). These results are in accordance with previous studies, where AA was 

reported to be the main PUFA in C. osmundacea (Khotimchenko et al. 2002). Although 

AA may have a proinflammatory role, recent studies have shown that AA 

supplementation can contribute to lower coronary risk (Chowdhury et al. 2014) and 

might be beneficial for the development of the nervous central system (Uauy et al., 

2001). Interestingly, n-3 PUFA, such as eicosapentaenoic acid (C20:5n-3, EPA), which 

was detected in most species at relatively high amounts (5% – 10%), has been shown to 

compete with the conversion of LA to AA, regulating in this way the relative amounts 

of n-3 and n-6 PUFA (Calder 2012). Moreover, EPA presents potential beneficial 

applications in asthma, psoriasis, rheumatoid arthritis, antibiotic, inflammatory bowel 

disease, depression, allergies, cardiovascular diseases and cancer treatment, among 

others (Calder 2010). Considering all these benefits there is increasing interest in the 

incorporation of EPA in diet in order to meet the European recommendations of n-3 

PUFA, namely EPA + docosahexaenoic acid (DHA): 250 mg/day (EFSA, 2010). 

Although DHA was not detected in any of the samples evaluated in this work, these 

species can be interesting sources of EPA. DHA is generally absent or is present at low 

levels in different ochrophytes, including C. nodicaulis, C. tamariscifolia and C. 

usneoides (Pereira et al. 2012; Silva et al. 2013).  
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Table 3.1. Fatty acid methyl esters (FAME) profile of different Cystoseira species (C. 

humilis, C. compressa, C. tamariscifolia, C. nodicaulis and C. baccata). 

Fatty acid 

(%) 

Common name C. humilis C. compressa C. tamariscifolia C. nodicaulis C. baccata C. barbata 

C12:0 Lauric acid 0.33 ± 0.04 nd nd nd nd nd 

C14:0 Myristic acid 15.25 ± 1.06 4.34 ± 0.05 7.83 ± 0.05 7.15 ± 0.20 9.69 ± 0.31 8.59 ± 0.10 

C15:0 Pentadecanoic acid 0.42 ± 0.01 0.32 ± 0.01 0.50 ± 0.01 0.48 ± 0.02 0.75 ± 0.10  1.11 ± 0.08 

C16:0 Palmitic acid 33.86 ± 0.44 26.47 ± 0.08 27.47 ± 0.11 26.81 ± 0.12 28.09 ± 0.18 35.15 ± 0.61 

C17:0 Margaric acid nd nd 0.17 ± 0.01 0.19 ± 0.01 1.14 ± 0.37 1.47 ± 0.02 

C18:0 Stearic acid 1.08 ± 0.06 0.76 ± 0.01 1.22 ± 0.03 1.17 ± 0.11 1.48 ± 0.19 2.14 ± 0.15 

C20:0 Arachidic acid nd 0.72 ± 0.03 0.71 ± 0.01 0.98 ± 0.01 1.45 ± 0.05 1.78 ± 0.19 

C22:0 Behenic acid nd 0.93 ± 0.03 0.78 ± 0.01 0.67 ± 0.12 2.01 ± 0.09 2.17 ± 0.39 

C24:0 Lignoceric acid nd 0.74 ± 0.03 0.54 ± 0.02 nd 1.72 ± 0.07 1.98 ± 0.23 

∑ SFA  50.94 ± 1.15 b 34.28 ± 0.11 f 39.22 ± 0.13 d 37.45 ± 0.28 e 46.33 ± 0.57 c 54.39 ± 0.81a 

C16:1 Palmitoleic acid 3.84 ± 0.12 2.74 ± 0.01 7.50 ± 0.08 2.31 ± 0.03 13.15 ± 0.35 4.87 ± 0.21 

C18:1 Oleic acid 9.24 ± 0.22 17.07 ± 0.06 8.73 ± 0.16 16.44 ± 0.15 10.00 ± 0.21 11.68 ± 0.12 

C20:1 Eicosenoic acid nd nd 0.21 ± 0.01 0.15 ± 0.01 nd nd 

∑ MUFA  13.08 ± 0.20 d 19.81 ± 0.06 b 16.44 ± 0.09 c 18.90 ± 0.15 b 23.15 ± 0.41 a 16.55 ± 0.24 c 

C18:2 (n-6) Linoleic acid 17.08 ± 0.41 10.45 ± 0.04 7.05 ± 0.06 8.93 ± 0.03 3.48 ± 0.23 5.31 ± 0.18 

C20:2 (n-6) Eicosadienoic acid 0.57 ± 0.01 0.60 ± 0.01 0.40 ± 0.01 0.62 ± 0.01 0.89 ± 0.02 1.26 ± 0.11 

C16:3 (n-3) Hexadecatrienoic acid nd nd 0.34 ± 0.01 nd nd nd 

C18:3 (n-6) γ-Linolenic acid nd 2.28 ± 0.01 1.76 ± 0.02 nd nd nd 

C20:3 (n-6) Eicosatrienoic acid 1.04 ± 0.09 2.35 ± 0.01 2.13 ± 0.03 2.53 ± 0.05 0.99 ± 0.03 1.20 ± 0.12 

C20:4 (n-6) Arachidonic acid 11.71 ± 1.22 20.11 ± 0.05 22.82 ± 0.16 26.51 ± 0.20 19.93 ± 0.44 19.08 ± 0.82 

C20:5 (n-3) Eicosapentaenoic acid 5.58 ± 0.56 10.12 ± 0.05 9.84 ± 0.13 5.06 ± 0.02 5.23 ± 0.33 2.21 ± 0.21 

∑ PUFA  35.98 ± 0.40 b 45.91 ± 0.09 a 44.34 ± 0.22 a 43.65 ± 0.21 a 30.52 ± 0.60 c 29.06 ± 0.88 d 

Note: Results are expressed as means ± SD (% of total FAME). nd, not detected. 
a-f

 Different letters in 

the same row indicate significant differences between species (p < 0.05). 

 

 

 

Table 3.2. Nutritional indices calculated for different Cystoseira species (C. humilis, C. 

compressa, C. tamariscifolia, C. nodicaulis and C. baccata). 

 C. humilis C. compressa C. tamariscifolia C. nodicaulis C. baccata C. barbata 

PUFA/SFA 0.71 a 1.34 a 1.13 a 1.17 a 0.66 a 0.53 a 

∑n-3 5.58 ± 0.56 b 10.12 ± 0.05a 10.18 ± 0.13 a 5.06 ± 0.02 b 5.23 ± 0.33 b 2.21 ± 0.21 b 

∑n-6 30.40 ± 1.29 c 35.79 ± 0.07 a,b 34.16 ± 0.18 b,c 38.59 ± 0.21 a 25.29 ± 0.50 d 26.85 ± 0.86 d 

∑n-6/∑n-3 5.45 b, c 3.54 b, c 3.36 c 7.63 b 4.84 b, c 12.15 a 

UI 126.17 d 186.83 a 184.52 a 176.95 b 140.72 c 120.67 e 

AI 1.94 a 0.67 e 0.97 d 0.89 d 1.25 c 1.52b 

TI 1.30 b 0.54 e 0.65 e 0.80 d 0.98 c 1.61 a 

Note: SFAs: Saturated fatty acids, MUFAs: Monounsaturated fatty acids, PUFA: Polyunsaturated fatty 

acids, UI: Unsaturation index, AI: Atherogenic index, TI: Thrombogenic index. 
a-e

 Different letters in the 

same row indicate significant differences between species by Tukey HSD test at p < 0.05. 
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3.4.3 Nutritional assessment 

The PUFA/SFA ratio was found to be between 1.34 for C. compressa and 0.53 for C. 

barbata (Table 3.2). Since the mean ratio of PUFA/SFA recommended by the British 

Department of Health is 0.45 or higher (HMSO 1994) all examined species exhibit a 

favourable PUFA/SFA ratio. A growing attention has been given to the n-6 PUFA/n-3 

PUFA ratio. In fact, WHO currently recommends a ratio lower than 10 in order to 

prevent inflammatory, cardiovascular and neurological disorders (Kumari et al. 2013). 

The n-6 PUFA/n-3 PUFA ratios determined in this study ranged from 3.36 in C. 

tamariscifolia to 7.63 in C. nodicaulis (Table 3.2), which are within the values 

recommended by WHO. The only exception was obtained with C. barbata (12.15). The 

present Western diet is considered to be deficient in n-3 PUFA, with estimated n-6 to n-

3 ratios of 15-20 (Simopoulos 2008). Hence, brown macroalgae, and Cystoseira in 

particular, could decrease n-6 PUFA/n-3 PUFA ratios if used in nutraceuticals 

applications or in food products. Furthermore, the high unsaturation indices (UI) 

determined for Cystoseira algae (Table 3.2) suggests that these macroalgae may also be 

beneficial for the prevention of type-2 diabetes mellitus, as higher flexibility of 

biological membranes has been linked to improved glucose transport effectiveness 

(Weijers 2012). Lastly, in this study, the atherogenicity (AI) and thrombogenic (TI) 

indices ranged from 0.67 to 1.94 and 0.54 to 1.61, respectively (Table 3.2). These low 

AI and TI are similar to those reported by Kumari et al. (2013) for other Cystoseira 

species, such as C. indica (AI = 0.8 and TI = 0.8) and C. trinodis (AI = 0.6 and TI = 

0.5). These results are significant, as it has been shown that the introduction of brown 

algae in the diet of hyperlipidemic-induced rats decreases the AI of their serum lipid 

profile (Yoon et al. 2008). Moreover, López-López et al. (2009) have shown that the 

addition of macroalgae to meat products improved their TI and AI, thereby illustrating 

the potential of macroalgae in development of healthier lipid formulations.  

 

3.5 Conclusions 

Among the FAME profiles described for the first time C. compressa  stands out for its 

high content of unsaturated fatty acids (especially PUFA), its low n-6 PUFA/n-3 PUFA 

ratios and AI and TI indices as well as high PUFA/SFA and UI indices. Overall, this 

species, together with C. tamariscifolia and C. nodicaulis, presents a FA profile that 
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would be considered as beneficial if incorporated in the formulation of low fat food and 

feed and PUFA–rich nutraceuticals. 
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4.1 Abstract 

Marine organisms are a prolific source of drug leads in a variety of therapeutic areas. In 

the last few years, biomedical, pharmaceutical and nutraceutical industries have shown 

growing interest in novel compounds from marine organisms, including macroalgae. 

Cystoseira is a genus of Phaeophyceae (Fucales) macroalgae known to contain 

bioactive compounds. Organic extracts (hexane, diethyl ether, ethyl acetate and 

methanol extracts) from three Cystoseira species (C. humilis, C. tamariscifolia and C. 

usneoides) were evaluated for their total phenolic content, radical scavenging activity 

against 1,1-diphenyl-2picrylhydrazyl (DPPH) and 2,2'-azino-bis(3-

ethylbenzothiazoline-6-sulphonic acid) (ABTS) radicals, and antiproliferative activity 

against a human hepatocarcinoma cell line (HepG2 cells). C. tamariscifolia had the 

highest TPC and RSA. The hexane extract of C. tamariscifolia (CTH) had the highest 

cytotoxic activity (IC50=2.31 µg/mL), and was further tested in four human tumor 

(cervical adenocarcinoma HeLa; gastric adenocarcinoma AGS; colorectal 

adenocarcinoma HCT-15; neuroblastoma SH-SY5Y), and two non-tumor (murine bone 

marrow stroma S17 and human umbilical vein endothelial HUVEC) cell lines in order 

to determine its selectivity. CTH strongly reduced viability of all tumor cell lines, 

especially of HepG2 cells. Cytotoxicity was particularly selective for the latter cells 

with a selectivity index = 12.6 as compared to non-tumor cells. Incubation with CTH 

led to a 2-fold decrease of HepG2 cell proliferation as shown by the bromodeoxyuridine 

(BrdU) incorporation assay. CTH-treated HepG2 cells presented also pro-apoptotic 

features, such as increased Annexin V/propidium iodide (PI) binding and dose-

dependent morphological alterations in DAPI-stained cells. Moreover, it had a 

noticeable disaggregating effect on 3D multicellular tumor spheroids. Demethoxy 

cystoketal chromane, a derivative of the meroditerpenoid cystoketal, was identified as 

the active compound in CTH and was shown to display selective in vitro cytotoxicity 

towards HepG2 cells. 
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Fig. 4.1 – Graphical abstract demonstrating the main results accomplished in Chapter 4. 
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4.2 Introduction 

Macroalgae are used as food and feed, and also as sources of bioactive metabolites. 

In particular, Phaeophyceae algae have high contents of polysaccharides, minerals, 

polyunsaturated fatty acids and vitamins (Balboa et al., 2013). Furthermore, these 

organisms contain high levels of secondary metabolites with pharmacological interest, 

such as terpenoids, phenolic compounds and alkaloids, which have been linked to 

interesting biomedical activities, including antitumoral and neuroprotective (Smit, 2004; 

Blunt et al., 2014). Among Phaeophyceae, the Cystoseira genus comprises a large 

number of species widely distributed in the Atlantic and Mediterranean Sea (Guiry and 

Guiry, 2015). Phytochemical studies have revealed that species belonging to this genus 

are rich in phlorotannins, sterols, meroditerpenoids and sesquiterpenoids (Amico, 1995; 

Moreno et al., 1998; Khanavi et al., 2012; Sathya et al., 2013; Montero et al., 2014), 

some of which exhibiting antioxidant, antitumoral, antifouling and/or antimicrobial 

activities with potential applications in the pharmaceutical industry (Amico, 1995; 

Gouveia et al., 2013; Valls and Piovetti, 1995).  

Phaeophyceae algae have already shown interesting biomedical properties such as 

Dictyota ciliolata, Padina sanctae-crucis, Turbinaria tricostata and Petalonia fascia 

with antiproliferative activity in cancer cell lines (Caamal-Fuentes et al., 2014; Kurt et 

al., 2014). Cystoseira and Fucus genus are also known to contain molecules with 

antioxidant properties (Mhadhebi et al., 2011; Heffernan et al., 2015; Hadj Ammar et 

al., 2015). Bearing in mind the high biotechnological potential of brown algae, in this 

work we evaluated the total phenolic contents and antioxidant activity of organic 

extracts of C. tamariscifolia, C. humilis and C. usneoides. The anti-proliferative 

potential was screened on human hepatocellular carcinoma HepG2 cells, a cell line 

known to be recalcitrant to cytotoxic drugs (Liu et al., 2010). The most bioactive extract 

(C. tamariscifolia hexane extract; named CTH) was also evaluated in several other 

human tumor cell lines and compared to non-tumor cells used as selectivity controls. 

Cytotoxicity was then further studied in terms of its action on cell proliferation 

inhibition and apoptosis induction, important features for potential anti-cancer therapies. 

It was also evaluated its effect on multicellular tumor spheroids (MCTS). This extract 

was then subjected to a bioactivity-guided fractionation to afford the meroditerpene 

demethoxy cystoketal chromane, which was bioactive against HepG2 cell line. 
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4.3 Material and Methods 

4.3.1 General 

Hexane, ethyl acetate (EtOAc) and diethyl ether were from Prolabo (VWR 

International, Leuven, Belgium). Roswell Park Memorial Institute medium (RPMI), 

Dulbecco's Modified Eagle's medium (DMEM), fetal bovine serum (FBS), L-glutamine 

and penicillin/streptomycin were obtained from Lonza Ibérica (Barcelona, Spain). 2,2'-

azino-bis(3-ethylbenzothiazoline-6-sulphonic acid (ABTS) and 3-(4,5-dimethylthiazol-

2-yl)-2,5-diphenyltetrazolium bromide (MTT) were obtained from AppliChem and 

Calbiochem, respectively. 1,1-diphenyl-2-picrylhydrazyl (DPPH), potassium persulfate, 

sodium carbonate and bromodeoxyuridine (BrdU) were purchased from Sigma-Aldrich 

(Steinheim, Germany). Mouse anti-BrdU antibody was acquired from Dako (Glostrup, 

Denmark). Vectashield mounting medium for fluorescence with 4',6-diamidino-2-

phenylindole (DAPI) was acquired from Vector Laboratories Inc., Peterborough, UK. 

Merck (Darmstadt, Germany) supplied dimethyl sulphoxide (DMSO), trichloroacetic 

acid (TCA) and Folin-Ciocalteu (F-C) reagent, whereas methanol was from Fisher 

Scientific (Loughborough, UK). FITC-conjugated Annexin V/ propidium iodide (PI) 

assay kit was acquired from Cayman Chemical Company, USA. Silica gel (Merck, 40-

63 µm mesh) was used for column chromatographic separation, while silica gel 60 PF254 

(Merck) was used for analytical (0.25 mm) TLC. DMSO-d6 (Aldrich) was used as 

solvent for 1H and 13C NMR spectra acquisition and TMS (Aldrich) was used as internal 

standard. 1D and 2D NMR spectra were recorded at Bruker Digital Avance 800 MHz 

spectrometer. Additional reagents and necessary solvents were purchased from VWR 

International (Leuven, Belgium). 

 

4.3.2 Sampling 

Samples of C. tamariscifolia, C. humilis and C. usneoides were collected in the 

middle/lower intertidal areas, during the low tide, between May and September 2012 on 

the Portuguese coast. Identification of specimens was made by Dr. Aschwin Engelen 

(Centre of Marine Sciences, University of Algarve, Portugal) and Dr. Javier Cremades 

Ugarte (Facultade de Ciencias, University of A Coruña). Voucher specimens of C. 

humilis (code number MB007), C. tamariscifolia (code number MB016) and C. 

usneoides (code number MB013) are deposited at the Centre of Marine Sciences, 

University of Algarve. Biomass was cleaned with distilled water (dH2O) and 
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macroscopic epiphytes and extraneous matter were carefully removed. Samples were 

freeze-dried and stored at -20 °C until the extraction procedure. 

 

4.3.3 Preparation of the Extracts 

The extracts were prepared by sequential extraction with solvents of increasing 

polarities index (PI), namely hexane (PI = 0.1), diethyl ether (PI = 2.8), ethyl acetate (PI 

= 4.4) and methanol (PI = 5.1). Biomass was mixed with hexane (1:10, w/v) and 

homogenized for 2 min using a disperser IKA T10B Ultra-Turrax at room temperature 

(RT). The tubes were then vortexed for 1 min, centrifuged (5000 g, 10 min, RT) and the 

supernatants recovered. The extraction procedure was repeated 3 times and the 

supernatants combined and filtered. The residue was then sequentially extracted with 

diethyl ether, ethyl acetate and methanol as described above. The organic extracts were 

dried at 40ºC under vacuum. All extracts were dissolved in DMSO for biological 

activities screening or in the adequate solvent for chemical characterization, aliquoted 

and stored (-20°C).  

 

4.3.4 Total Phenolic Content (TPC) 

TPC was determined using the F-C colorimetric method (Velioglu et al., 1998). 

Briefly, 5 µL of the extracts at the concentration of 10 mg/mL were mixed with 100 µL 

of a 10-fold diluted F–C reagent, incubated at RT for 5 min and mixed with 100 µL of 

sodium carbonate (75 g/L, w/v). After a 90 min incubation period at RT, absorbance 

was measured at 725 nm on a microplate reader (Biotek Synergy 4). The amount of 

TPC was calculated as gallic acid equivalents (GAE) using a calibration curve prepared 

with gallic acid standard solutions, and expressed as GAE in milligrams per gram of 

dried extract. 

 

4.3.5 Antioxidant activity 

4.3.5.1 Radical-scavenging activity (RSA) against DPPH 

RSA against the DPPH radical was determined according to the method 

described by Brand-Williams et al. (1995) adapted to 96-well microplates (Moreno et 

al., 2006). Samples (22 µL) at concentrations ranging from 0.125 to 10 mg/mL were 

mixed with 200 µL of DPPH solution (120 µM) in methanol and incubated in darkness 

at RT for 30 min. The absorbance was measured at 515 nm (Biotek Synergy 4) and 

results expressed as antioxidant activity (%) relative to a control containing DMSO and 
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as half maximal inhibitory concentration (IC50, mg/mL). Butylated hydroxytoluene 

(BHT, E320) was used as a positive control at the same concentrations of the extracts. 

 

4.3.5.2 RSA against ABTS 

RSA against ABTS was evaluated according to Re et al. (1999). A stock solution 

of ABTS•+ (7.4 mM) was prepared in potassium persulfate (2.6 mM) as the oxidizing 

agent, and placed in darkness for 12-16h at RT. The ABTS•+ solution was diluted with 

ethanol down to an absorbance of 0.7 units at 734 nm on a Biotek Synergy 4 microplate 

reader. Samples (10 µL) at concentrations ranging from 0.125 to 10 mg/mL were mixed 

with 190 µL of ABTS•+ solution in 96-well flat bottom microtitration plates, and 6 min 

upon mixing absorbance was read at 734 nm. Results were expressed as antioxidant 

activity (%) relative to a DMSO-containing control and as IC50 values (mg/mL). BHT 

was used as a positive control at the same concentrations of the extracts. 

 

4.3.6 Cell Lines and Culture Conditions 

Human hepatocellular carcinoma HepG2 (ATCC® HB-8065™), human cervix 

adenocarcinoma HeLa (ATCC® CCL-2™), human gastric adenocarcinoma AGS  

(ATCC® CRL-1739™) and human colorectal adenocarcinoma HCT-15 (ATCC® CCL-

225™) cell lines were maintained in RPMI-1640 culture media supplemented with 10% 

FBS (v/v), L-glutamine (2 mM), penicillin (50 U/mL) and streptomycin (50 µg/mL). 

Murine bone marrow stromal S17 cell line was kindly provided by D. Rawlings, UCLA, 

Los Angeles, CA. The latter cell line as well as human umbilical vein endothelial 

HUVEC  (ATCC® CRL-1730™) and human neuroblastoma SH-SY5Y (ATCC® CRL-

2266™) cell lines were grown in DMEM culture media supplemented with 10% FBS 

(v/v), L-glutamine (2 mM), penicillin (50 U/mL) and streptomycin (50 µg/mL). All 

cells were grown in an incubator at 37 ºC and 5.0% CO2 in humidified atmosphere. 

 

4.3.7 In vitro cytotoxic activity and selectivity  

In vitro cytotoxic activity of the extracts was assessed by the MTT colorimetric 

assay (Mosmann, 1983). Briefly, exponentially growing cells were seeded at a density 

of 5 × 103 cells/well on 96-well plates and incubated for 24h at 37°C in 5.0% CO2. The 

extracts were then applied at concentrations ranging from 125 to 3.9 µg/mL for 72h and 

cytotoxicity was evaluated. Positive and negative control cells were treated for 72h with 

etoposide at the same concentrations of the extracts and DMSO at the highest 
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concentration used in the test wells (0.5%, v/v), respectively. Two hours before the end 

of the incubation period, 20 μL of MTT (5 mg/mL in PBS, w/v) were added to each 

well and further incubated for 2h at 37ºC. The optical density (OD) was measured on a 

Biotek Synergy 4 spectrophotometer at 590 nm. Results were expressed in terms of cell 

viability (%) and as half maximal inhibitory concentration (IC50, µg/mL). The 

selectivity index (SI) of the extracts was determined using the equation SI = CT/CNT, 

where CT and CNT correspond to the extract-induced cytotoxicity on tumor (e.g. HepG2) 

and non-tumor cells (e.g. S17), respectively (Oh et al., 2011). 

 

4.3.8 Cellular proliferation analysis by the BrdU incorporation assay  

The effect of the extracts on HepG2 cells proliferation was evaluated by the 

BrdU incorporation assay. HepG2 cells were incubated for 72h with complete medium, 

DMSO (0.5%, v⁄v), or with CTH at the concentrations of 2.31 or 4.62 µg/mL, which 

were the IC50 or 2×IC50 concentration previously determined by the MTT assay. After a 

1h pulse with 10 µM BrdU, cells were washed with phosphate buffer saline (PBS), 

fixed in 4% paraformaldehyde in PBS, and cytospins prepared. After incubation in 2M 

HCl for 20 min, cells were incubated with mouse anti-BrdU (1:10, v/v) and further 

incubated with fluorescein-labeled rabbit anti-mouse antibody (1:100, v/v). For nuclear 

staining, Vectashield mounting medium for fluorescence with DAPI was used. Cells 

were observed in a LEICA DM2000 microscope using a 200 × magnification, and a 

semi-quantitative evaluation was performed by counting a minimum of 500 cells per 

slide. 

 

4.3.9 Detection of apoptosis 

4.3.9.1 Flow cytometry apoptosis detection through Annexin V-FITC staining  

Apoptotic cells were identified and quantified by flow cytometry using the 

FITC-conjugated Annexin V/PI assay kit, according to the manufacturer’s instructions. 

Briefly, cells were treated for 72h with complete medium, DMSO (0.5%, v⁄v), or with 

CTH at the concentrations of 3.9, 7.8 and 15.6 µg/mL. Etoposide treated-cells at IC50 

concentration (1.85 µg/mL) were used as positive control. HepG2 cells were washed 

with ice-cold PBS, resuspended in 100 μL binding buffer, and stained with 5 μL of 

FITC-conjugated Annexin V (10 mg/mL) and 10 μL of propidium iodide PI (50 

mg/mL). The cells were incubated for 15 min at RT in the dark and then 500 μL of 

binding buffer was added. Flow cytometry was performed using a FACS Calibur Flow 
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Cytometer (Becton-Dickinson, USA) and data acquisition and analysis were done with 

CellQuest Pro software. At least 1×104 events were recorded for each sample and 

represented as dot plots. For analysis, HepG2 cells were gated separately according to 

their size and granularity on forward scatter vs. side scatter plots. Apoptosis was 

evaluated on fluorescence channel 2 (for PI) vs. fluorescence channel 1 (for Annexin) 

plots (Zhang et al., 1997; Abu Bakar et al. 2010). 

 

4.3.9.2 DAPI staining  

HepG2 cells were grown in 6-well plates at seeding densities of 5×105 cells/well 

and treated for 72h with CTH at 3.9, 7.8 and 15.6 µg/mL. Cells incubated with culture 

medium or with DMSO at the concentration of 0.5% (v/v) were used as blank or 

negative control, respectively. Etoposide treated-cells at IC50 concentration (1.85 

µg/mL) were used as positive control. Cells were then washed with PBS and incubated 

with DAPI (5 μg/mL in PBS) for 2 min at RT. Fluorescence was visualized using a 

Leica DM LB (Leica Microsystems DI, Cambridge) microscope, magnification 400 ×. 

Images were acquired using a Leica DC 300 FX digital camera. Cells under apoptosis 

were identified by marked condensation of chromatin and cytoplasm (apoptotic cells), 

plasma membrane blebbing (apoptotic bodies), and intra- and extracellular chromatin 

fragments (Murugan et al., 2010). 

 

 

4.3.10 Determination of cytotoxic activity in a 3D multicellular tumor spheroids 

model (MCTS) 

4.3.10.1 Generation of MCTS 

HepG2 cells were used to produce spheroids by modification of the hanging 

drop method (Keller, 1995). Single-cell suspensions (1x104 cells/mL) were generated 

from trypsinized monolayers. Aggregate culture of HepG2 cells were generated by 

growth on non-adherent, bacterial-grade polystyrene Petri dishes. Cell suspension (30 

mL) was then dispensed into 6 drops into the lid of a Petri dish. Upon inversion of the 

lid, the hanging drops were held in place by surface tension and cells accumulated at the 

free liquid–air interface. The Petri lids were placed in the dishes with PBS and 

incubated for four days under standard conditions. 
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4.3.10.2. MCTS treatment with bioactive extract 

After four days, in each Petri dish, three of the six multicellular tumor spheroids 

(MCTS) were incubated with CTH at 20, 40 and 80 µg/mL for 24 and 48 h. Incubation 

was carried out by replacing the medium with 30 μL of fresh culture medium containing 

the extract. The remaining three MCTS were used as control; the cultured medium was 

replaced by fresh medium containing the same volume of DMSO. Images were captured 

at incubation time 0, 24, 48 and 72 hours by means of an Olympus SZX7 microscope 

(using a 20 × magnification) with a digital camera (Optica B3). Each experiment was 

done in triplicate. 

 

4.3.11 Compound isolation and elucidation 

CTH (9 g) was fractionated by column chromatography (2.5×18 cm) over silica 

gel (SiO2) using increasing amounts of ethyl acetate in hexane (9:1; 85:15; 4:1; 75:25; 

7:3; 3:2; 1:1) and increasing amounts of methanol in ethyl acetate (9:1; 8:1; 5:1; 2:1; 

1:1), methanol (100%) and water (100%) as eluents to give 57 fractions. Each fraction 

was analyzed by TLC and pooled together to afford 21 samples. These samples were 

tested for cytotoxic activity and selectivity and the active fraction 7 (21.6 mg) was 

chosen for characterization. Fraction 7 was re-fractionated over SiO2 eluted with 

hexane; hexane/EtOAc (8:2); hexane/EtOAc (7:3); hexane/EtOAc (6:4); hexane/EtOAc 

(5:5); hexane/EtOAc (4:6); EtOAc and MeOH to afford compound 1 (1.1 mg).  

Compound 1. Oil. 1H NMR (DMSO-d6, 500 MHz) (1H, s, 4’-OH), 6.34 

1H, br s, H-5’), 6.25 (1H, d, J = 3.0 Hz, H-3’), 6.20 (1H, d, J = 5.0 Hz, H-14), 5.57 (1H, 

d, J = 5.0 Hz, H-13), 4.29 (1H, s, H-6), 2.71 (2H, t, J = 7.5 Hz, H-1), 2.16 (2H, s, H-4), 

2.07 (3H, s, 6’-CH3), 1.90 – 1.20 (6H, m, H-8, H-9 and H-10), 1.79 (2H, m H-2), 

1.31/1.28 (3H, s, H-20), 1.25 (3H, s, H-17), 1.24 (3H, s, H-16), 1.23 (3H, s, H-19), 0.83 

(3H, s, H-18); 13C NMR (DMSO-d6, 125 MHz)  149.4 (C-4´), 146.3 (C-1’), 143.9 (C-

5), 140.1 (C-13), 126.2 (C-6’), 125.7 (C-14), 120.7 (C-2’), 115.5 (C-12), 114.6 (C-3’), 

112.4 (C-5’), 110.4 (C-6), 87.8 (C-15), 74.8 (C-3), 45.6 (C-4), 43.6 (C-11), 43.2 (C-7), 

42.5 (C-8), 35.6 (C-10), 30.8 (C-2), 28.5 (C-17), 26.3 (C-18), 24.9 (C-20), 22.6 (C-1), 

21.9 (C-16), 19.9 (C-9), 19.6 (C-19), 15.9 (6’-CH3); LRESIMS m/z 425 [M+H]+. 

Chemical shifts are reported in  units (parts per million) and coupling constants (J) in 

Hertz. 

 



82 

 

4.3.12 Statistical Analysis  

Results were expressed as mean ± standard error of the mean (SEM). Analysis 

of variance (ANOVA) was assessed using the SPSS statistical package for Windows 

(release 15.0, SPSS Inc.), and significance between means was analysed by the Tukey 

HSD test (p<0.05). The IC50 values were calculated by sigmoidal fitting of the data by 

means of GraphPad Prism v. 5.0 (GraphPad Software, Inc., La Jolla, CA). Pearson 

correlation coefficient (r) was also calculated (p < 0.01) to assess the strength of the 

linear relationship between two variables. 

 

4.4 Results and discussion 

4.4.1 TPC and antioxidant activity 

The results of total phenolic content and antioxidant activity are summarized in 

Table 4.1. C. tamariscifolia was the species with the highest TPC, mainly in the hexane, 

diethyl ether and ethyl acetate extracts, which presented TPC values higher than 100 mg 

GAE/g DW. C. usneoides diethyl ether extract also had a high TPC (122 mg GAE/g 

DW), whereas C. humilis methanol extract had the lowest levels of phenolic content 

(4.78 mg GAE/g DW). The highest RSA were observed with C. tamariscifolia ethyl 

acetate, diethyl ether and hexane extracts which IC50 for DPPH (IC50-DPPH) and for 

ABTS•+ (IC50-ABTS) ranged from 0.17 to 0.63 mg/mL and from 0.26 to 0.52 mg/mL, 

respectively. Similar results were obtained with C. usneoides diethyl ether extract (IC50-

DPPH = 0.65 mg/mL; IC50-ABTS = 0.60 mg/mL). The hexane and methanol extracts of C. 

humilis had the lowest scavenging activity (IC50 > 10 mg/mL for both radicals).  

Taken together, our results indicate that C. tamariscifolia contains phenolic 

compounds of different polarities, which occur mainly in the less polar extracts. 

Distribution of phenolic compounds through different solvents may vary greatly usually 

due to their amphipathic properties and wide range of structures (Ivanova et al., 2005; 

Demiray et al., 2009). Though commonly found in polar extracts such as methanol and 

water, phenolic compounds can also be present in less polar extracts including hexane, 

diethyl ether and ethyl acetate (Li et al., 2007; Maimoona et al., 2011). This may in fact 

explain the high levels of phenolic compounds in less polar extracts of Cystoseira, since 

the sequential extraction procedure used began with solvents of lower polarity (Li et al., 

2007). 

Phenolic compounds are described as strong antioxidants (Dai and Mumper, 

2010). In this work, a significant correlation was observed between TPC and RSA on 
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DPPH (r²=0.868, p<0.01) as well as TPC and RSA on ABTS (r²=0.921, p<0.01), 

suggesting that the antioxidant activity observed might be due to the activity of phenolic 

compounds. Data on TPC and antioxidant activity in macroalgae are scarce, but the 

Cystoseira genus generally has one of the highest total phenolic levels and antioxidant 

activities among Phaeophyceae macroalgae, such as Fucus serratus, Dictyota 

dichotoma, Bifurcaria bifurcata, Sargassum horneri and Alaria crassifolia among 

others (Zubia et al., 2009; Airanthi et al., 2011). A few authors were able to relate the 

elevated antioxidant activity with tocopherol-like compounds, such as 

tetraprenyltoluquinol derivatives (Foti et al., 1994; Fisch et al. 2003).  

 

Table 4.1 Total phenolic content (TPC, mg GAE/g DW), and radical scavenging activity 

(RSA) on DDPH and ABTS radicals (IC50, mg/mL) of organic extracts of different 

species of Cystoseira.  

 

Species 

/compound 

Extract TPC (mg GAE/g 

DW) 

IC50-DPPH 

(mg/mL) 

IC50-ABTS 

(mg/mL) 

C. humilis Hexane 24.42 ± 0.46e > 10 > 10 

 Diethyl ether 20.34 ± 0.68e 8.28 ± 0.13d 8.85 ± 0.23d 

 Ethyl acetate 32.06 ± 0.72d 5.04 ± 0.13c 9.25 ± 0.43d 

 Methanol 4.78 ± 0.80f > 10 > 10 

C. tamariscifolia Hexane 113.13 ± 2.31b 0.63 ± 0.01a 0.52 ± 0.02a 

 Diethyl ether 116.61 ± 2.44b 0.30 ± 0.00a 0.47 ± 0.02a 

 Ethyl acetate 165.28 ± 1.92a 0.17 ± 0.00a 0.25 ± 0.01a 

 Methanol 45.04 ± 2.28d 1.08 ± 0.06b 2.93 ± 0.67b 

C. usneoides 

 

Hexane 75.56 ± 0.21c 4.37 ± 0.03c 5.54 ± 0.06c 

Diethyl ether 122.30 ± 0.81b 0.65 ± 0.01a 0.60 ± 0.01a 

 Ethyl acetate 17.76 ± 0.78e 7.37 ± 0.76d > 10 

 Methanol 17.03 ± 0.70e 7.16 ± 0.01d > 10 

BHT*  n.a. 0.07 ± 0.01 0.11 ± 0.00 

Results are expressed as mean ± SEM of data obtained from six independent 

experiments. a-f Different letters in the same row indicate significant differences by 

Duncan’s New Multiple Range Test at p < 0.05. *positive control, 1 mg/mL; n.a. not 

applicable. 
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In addition, the high RSA obtained for Cystoseira extracts suggests that these 

macroalgae are potential sources of novel antioxidants that may help prevent oxidative 

stress and also an alternative to BHT and butyl-4-hydroxyanisole (BHA), two synthetic 

antioxidants found to be toxic and carcinogenic in animal models (Ito et al., 1986; Safer 

and Al-Nughamish, 1999). 

Oxidative stress is considered to be one of the underlying causes of several 

chronic diseases, including cancer, and is implicated in both cytotoxic and apoptotic 

mechanisms (Goswami and Singh, 2006). The link between oxidative stress and cell 

death has been associated, for example, with lipid peroxidation, a process of oxidative 

degradation of lipids in which free radicals ‘remove’ electrons from membrane lipids. 

These events damage lipid bilayers, and impair several intra- and extra mitochondrial 

membrane transport systems, thus contributing to apoptosis. As a result, antioxidant 

compounds from natural sources have attracted much attention due to their ability to 

diminish oxidative stress. In fact, antioxidant compounds play an important role in 

regulation of gene expression and protection of DNA, lipids and proteins from oxidative 

stress-induced injury (Saura-Calixto, 2011). Because of this protective effect, it has 

been proposed that antioxidants may inhibit apoptosis when cancer cells should undergo 

cell death (Zeisel 2004). However, the opposite has also been shown, i.e. molecules 

with known antioxidant properties have been described to also promote apoptosis 

(Moustapha et al., 2015). Therefore the chemical structure of the antioxidant and its 

biological properties seemed to be essential to define the outcome of a given therapy 

with compounds with antioxidant properties. 

 

 

4.4.2 Cytotoxic activity and selectivity  

Natural extracts are considered as promising sources of antitumoral compounds 

when they exhibit IC50 values lower than 30 µg/mL (Dos Santos et al., 2010). This was 

the case for the hexane (CTH) and diethyl ether extracts of C. tamariscifolia, with IC50 

values of 2.31 and 6.83 μg/mL, respectively (Table 4.2). In fact, in the literature, C. 

tamariscifolia also stood out as a potential source of antiproliferative compounds among 

other Phaeophyceae species (Zubia et al., 2009; Khanavi et al. 2010).  
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Table 4.2 In vitro cytotoxic activity, expressed as IC50 values (µg/mL) of organic extracts of 

different species of Cystoseira and etoposide on a human hepatocarcinoma cell line 

(HepG2).  

 

Extracts C. humilis C. tamariscifolia C. usneoides Etoposide 

Hexane > 125 2.31 ± 0.08a 31.4 ± 3.22b 

1.85 ± 0.12a 
Diethyl ether > 125 6.83 ± 0.01a 52.0 ± 3.19b 

Ethyl acetate > 125 44.2 ± 1.41b > 125 

Methanol > 125 > 125 > 125 

Results are expressed as mean ± SEM of data obtained from six independent experiments. a,b 

Different letters in the same row indicate significant differences by Duncan’s New Multiple Range 
Test at p < 0.05.  

 

Interestingly, CTH had an IC50 statistically similar to that of the pure 

chemotherapeutic drug etoposide (IC50=1.85 μg/mL). This result indicates that CTH has 

cell growth inhibitory activity in vitro comparable with etoposide, a potent anti-cancer 

compound that acts as a topoisomerase II inhibitor (Scott and William, 2000). In fact, 

etoposide is one of the most potent drugs used in the treatment of several types of 

tumors, including testicular and ovarian cancer (Hande, 1998). However, different 

success rates are described for the treatment of different types of cancer with that 

compound. For example, Miao et al. (2003) reported the occurrence of resistant cell 

lines to this compound. It is also noteworthy to mention that HepG2 cells are known to 

display greater resistance to drugs and toxins comparing to other cells lines (Liu et al., 

2010).  

Since CTH had the highest cytotoxic activity towards HepG2 cells, this extract 

was further evaluated in other human tumor cell lines, namely cervical (HeLa), 

neuroblastoma (SH-SY5Y), gastric (AGS) and colorectal (HCT-15) carcinoma cells. 

Furthermore, CHT treatment was also carried out in murine stromal S17 and human 

umbilical HUVEC cell lines, both non-tumor cell lines, to determine the selectivity 

index (SI). As shown in Fig. 4.2, CTH had a strong cytotoxic activity in all tumor cell 

lines tested, except HeLa cells. This effect was, however, more pronounced towards 

HepG2 cells (IC50=2.31 µg/mL, p<0.01 vs. S17 and HUVEC cells). Samples with SI 

values higher than 3 are deemed as highly selective (Mahavorasirikul et al., 2010). CTH 



86 

 

was therefore considered highly selective when comparing HepG2 and S17 cells 

(SI=5.5, Fig.4.2) and especially against HUVEC cells (SI=12.6). Based on these results, 

CTH was further used to study the mode of action associated with the cytotoxicity 

observed on HepG2 cells. 

 

 

 

 

 

Fig. 4.2 – Effect of CTH on the viability of different cell lines. (A) IC50 values of CTH 

on tumor and non-tumor cells (bars). Selectivity (scatter lines) was calculated using IC50 

values of the non-tumor cell line S17 (●) or HUVEC (○) vs. the tumor cell lines. (B) 

IC50 value of CTH on non-tumor cell lines. Results are expressed as mean ± SEM of 

data obtained from six independent experiments, *p<0.05, **p<0.01 vs. HUVEC cells. 
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4.4.3 Cytotoxicity mechanisms 

4.4.3.1 Cellular proliferation analysis by the BrdU incorporation assay 

The BrdU incorporation assay was used in order to assess the effect of CTH on 

HepG2 cells proliferation. Results show that cells treated with CTH at concentrations of 

2.31 or 4.62 µg/mL incorporated less BrdU than control cells (treated with medium only 

or with 0.5% DMSO). In fact, the proliferation levels, expressed as the percentage of 

proliferating cells, underwent an almost 2-fold reduction, decreasing from 25.8% to 

17.5% or 13.6% respectively after treatment with CHT at the concentration of 2.31 

µg/mL or 4.62 µg/mL for 72h (p < 0.01, Fig. 4.3).  

Although previous data on the inhibition of cell proliferation with macroalgae 

extracts is very limited, it is interesting to observe that these results are consistent with 

studies from Funahashi et al. (1999). According to those authors, rats fed with 

commercial feed supplemented with wakame, an edible brown macroalga (Undaria 

pinnatifida) also belonging to the Phaeophyceae, showed significantly lower BrdU 

indices in tumor mammary cells as compared to a control group eating commercial feed 

alone. In fact, the authors showed that this phaeophyta had a strong suppressive effect 

on rat mammary carcinogenesis without toxicity, possibly via apoptosis induction. 
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Fig. 4.3 – BrdU incorporation (stained in green) with nuclei labelled with DAPI (stained 

in blue). HepG2 cells (200 × magnification) were treated for 72h with complete medium 

alone (A), 0.5% DMSO (B), or CTH at concentrations of 2.31 (C) or 4.62 µg/ml (D). 

Semi-quantitative analysis of BrdU incorporation was carried out by counting a 

minimum of 500 cells per treatment in each independent experiment (E). Results are 

expressed as the mean ± SEM of three independent experiments, *p<0.05 vs. DMSO 

0.5%. Scale bar = 100 µm. 
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4.4.3.2 Apoptosis-inducing activity  

In order to verify whether CTH had apoptotic-inducing effect on HepG2 cells, 

two methodologies were applied: (i) analysis of the externalization of 

phosphatidylserine using flow cytometry (FITC-conjugated Annexin V/PI assay) and 

(ii) visualization of morphological alterations following DAPI staining.  

During apoptosis there is a loss of membrane asymmetry due to the translocation 

of phosphatidylserine from the inner to the outer layer of the cell membrane (Koopman 

et al., 1994). This translocation occurs before nuclear breakdown and DNA 

fragmentation (Koopman et al., 1994; Wu et al., 2005). Since Annexin V strongly binds 

to phosphatidylserine, Annexin V binding to cells is considered to be a major marker of 

apoptosis (Zhang et al., 1997). The FITC-conjugated annexin V/PI assay is a well-

established method for the detection of living cells in early and late apoptosis. The four 

different quadrants of flow cytometric data represent four different states of cells. The 

lower left (LL) quadrant shows annexin-/PI-normal healthy cells. The lower right (LR) 

and upper right (UR) represent early (annexin+/PI-) and late apoptotic (annexin+/PI+) 

cells, respectively. On the upper left quadrant (UL), necrotic (annexin-/PI+) cells are 

displayed.  

In this study, treatment of HepG2 cells with CTH resulted in a 2, 4 and 5-fold 

increase in the number of apoptotic cells, at the concentrations of 3.9, 7.8 and 15.6 

µg/mL respectively (Fig. 4.4). Necrotic cells were also observed, but mostly after 

incubation with the highest concentration tested (15.6 µg/mL; 7.12 %). In fact, it has 

been described that treatment with cytotoxic drugs might stimulate apoptosis at lower 

doses and necrosis at higher doses (Zong and Thompson, 2006). Etoposide treated-cells 

(positive control) demonstrated 36.07 % of apoptotic cells after 72h. These results 

indicate that apoptosis contributed significantly to the reduction in HepG2 viability 

when exposed to CTH. Moreover, the morphological alterations observed upon DAPI 

staining confirmed the results of the FITC-conjugated Annexin V/PI assay. In fact, 

treated cells exhibited noticeable morphological alterations typical of apoptosis, such as 

nuclear fragmentation and chromatin condensation (Fig. 4.5). These morphological 

modifications were dose-dependent and already visible after treatment with the lowest 

concentration tested (3.9 µg/mL). 

Failure of apoptosis is a characteristic of the tumorigenic process. Thus, one 

strategy underlying anticancer drug development is the induction of the apoptotic 

machinery in cancer cells. In fact, most cytotoxic compounds used for cancer treatment 
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are apoptotic inducers (Vecchione and Croce, 2010). On that note, recent research has 

shown strong evidence for anti-proliferative, pro-apoptotic and growth-inhibiting 

properties of Phaeophyceae extracts in a number of tumor models, including melanoma, 

lymphoma and lung cancer (Aisa et al., 2005; Culioli et al., 2004; Dias et al., 2005). 

Taken together, these results strongly indicate that C. tamariscifolia contains 

compounds that are able to induce apoptosis in a human hepatocarcinoma cell line.  
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Fig. 4.4 – Incubation of HepG2 cells with CTH promotes apoptosis. Hepatocytes were 

treated with medium alone as blank (A), DMSO 0.5% (B, control), or CTH at 

concentrations of 3.9 (C), 7.8 (D) or 15.6 µg/mL (E) for 72h. Hepatocytes were then 

stained with PI/Annexin V-FITC and analyzed by flow cytometry. (F) Quantitative 

analysis of apoptotic cells. Solid bars and errors represent the mean ± SEM, respectively 

(n = 6), *p < 0.01 vs. DMSO 0.5%. 
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Fig. 4.5 – HepG2 cells exposed to CTH showing apoptotic features. Representative 

images (400 × magnification) in which hepatocyte nuclei are stained with DAPI (in 

blue) are shown. Hepatocytes were treated with medium alone as blank (A), DMSO 

0.5% (B, control), or CTH at concentrations of 3.9 (C), 7.8 (D), 15.6 µg/mL (E) or 1.85 

µg/mL etoposide (F) as a positive control for 72h. Scale bar = 50 µm. 
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4.4.4 Effect on MCTS 

Anticancer drugs must penetrate into tumor cell masses to reach all cells at 

adequate concentrations. According to the vast majority of literature reports, many 

treatments are expected to lose efficacy in a three-dimensional (3D) pathophysiological 

environment, and testing on in vitro spheroid tumors is often considered a useful tool 

for negative selection to reduce animal testing or to evaluate drug candidates with 

enhanced tissue distribution and efficacy (Hirschhaeuser et al., 2010).  

The effect of the application of CTH on 3D MCTS was examined in detail by 

optical microscopy. As shown in Fig. 4.6, MCTS presented a homogeneous size 

distribution in the controls. Loss of spheroid integrity was observed after 24 and 48 h 

following application of the extract at a concentration of 20 µg/mL. After incubation 

with 40 µg/mL of extract, this outcome was more evident and incubation with the 

hexane extract at 80 µg/mL, total disaggregation of MCTS occurred.  

Generally, tumor cell lines are more resistant to antineoplastic agents when the 

cells are grown as spheroids rather than as monolayer cultures. The resistance of MCTS 

to anticancer drugs appears to reflect both limited drug penetration into the inner 

regions of the 3D cell masses as well as acquired resistance at the multicellular level 

(Gong et al. 2015). Although in vivo, tumors are affected by other cell types such as 

fibroblasts monocultures of multicellular spheroids from human tumor cell lines have 

proven to be a prevailing tool in the study of the micro-environmental regulation of 

tumor cell physiology and therapeutic problems associated with metabolic and 

proliferative gradients in a 3D cellular context (Rodriguez-Enriquez et al., 2008). The 

fact that the whole mass of tumor cells completely lost their adherence demonstrates 

that the compounds present in CTH have penetrated and may be effective in a 

multicellular tumor stage. The observed results combined with the anti-proliferative 

data confirmed the potential of CTH as a promising source of anticancer compounds.  
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Fig. 4.6 – MCTS aggregation and morphology was influenced by CTH (20 × 

magnification). Control MCTS, growing as a suspension of multicellular aggregates, are 

shown with no incubation. The multicellular aggregates dissociated with 20, 40 and 80 

µg/ml incubations for 24 and 48 h. Scale bar = 200 µm. 
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4.4.5 Compound isolation, structural elucidation and bioactivities  

CTH was subjected to a bio-guided fractionation, affording 21 fractions, which 

were tested for cytotoxicity at 20 µg/mL against HepG2 using the MTT assay (Fig. 4.7). 

Fractions 7, 9, 13 and 14 were those that strongly reduced the viability of HepG2 cells 

(Fig. 4.7, p < 0.001). Among these, fraction 7 was the one combining a high effect on 

HepG2 cell viability and highest selectivity index comparing to S17 cells (SI = 5.6). 

Thus, fraction 7 was further purified in order to isolate and identify its major compound.  

 

 

Fig. 4.7 – Effect of different fractions obtained from CTH, at a concentration of 

20µg/mL, on HepG2 and S17 cellular viability. Results are expressed as % of viability 

relative to a control containing DMSO (0.5%, v/v).  Solid bars and errors represent the 

average and SEM, respectively (n = 12). Selectivity (scatter lines) was calculated using 

IC50 values of the non-tumor cell line S17 vs. the tumor cell lines.  

 

 

Compound 1 (Fig. 4.8) was obtained as an epimeric mixture at C-3 and 4. The 1H 

NMR spectrum (DMSO-d6) showed two coupled aromatic hydrogen atoms at  6.34 (br, 

s) and 6.25 (d, J = 3.0 Hz), assigned to H-5’ and H-3’, respectively. Two chemical shifts 

attributed to hydrogens linked to sp2 carbons were also observed at  4.29 (s, H-6), 5.57 

(d, J = 5.0 Hz, H-13) and 6.20 (d, J = 5.0 Hz, H-14) while six methyl groups were 

detected at  2.07 (6’-CH3), 1.31/1.28 (H-20), 1.25 (H-17), 1.24 (H-16), 1.23 (H-19), 

and 0.83 (H-18). The occurrence of a chromane moiety in the molecule was proposed 

due the cross peaks at d 2.58 (t, J = 7.5 Hz) and 1.79 (m), assigned to H-1 and H-2, 
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respectively, as observed in the COSY spectrum. The 13C NMR data confirmed the 

structural similarity with a cystoketal derivative (Amico et al., 1984) mainly due to the 

signals attributed to carbons of aromatic ring C-1’ to C-6’ ( 112.4 – 149.4), to carbons 

of double bonds C-5 ( 143.9), C-6 ( 110.4), C-13 ( 140.1), C-14 ( 125.7) as well as 

to carbinolic carbons C-12 ( 115.5), C-15 ( 87.8), and C-3 ( 75.8). LRESIMS 

spectrum showed the protonated molecular ion [M+H]+ at m/z 425, establishing the 

molecular formula C27H36O4. Data of the isolated compound was consistent with 

demethoxy cystoketal chromane (compound 1, Fig. 4.8), a meroditerpene previously 

isolated from C. amentacea (Valls et al., 1996), a species closely related to C. 

tamariscifolia.  

 

 

Fig. 4.8 – Structure of compound 1 (demethoxy cystoketal chromane). 

 

Compound 1 was evaluated for antioxidant activity at the concentration of 1 

mg/mL, and had an activity of 18.21% and 13.73% towards DPPH and ABTS radicals, 

respectively. These results indicate that compound 1 was not responsible for the 

antioxidant activity detected in the crude extract. In fact, the antioxidant activity is most 

likely a result of a synergistic effect between different constituents of the crude extract 

as described by Palafox-Carlos et al. (2012).  

Finally, compound 1 was tested towards HepG2 and S17 cells and was able to 

significantly reduce the viability of HepG2 cells (IC50 = 14.77 µg/ml) while maintaining 

a high selectivity towards S17 (IC50 = 48.46 µg/ml, SI = 3.28). Meroditerpenoids 

consist of a polyprenyl chain attached to hydroquinone ring moiety. In those, 

plastoquinones, chromanols and chromenes are included and they are found in animals, 
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plants, and microorganisms (Luckner, 1984). In the marine environment, these 

compounds are especially abundant in brown algae such as species belonging to the 

Cystoseira and Sargassum genera (Blunt et al. 2014). In addition, various diterpenes 

have been identified as bioactive in C. crinita (Fisch et al., 2003), C. myrica (Ayyad et 

al., 2003) and C. usneoides (Urones et al., 1992). Furthermore, brown algal-derived 

chromene metabolites have shown to exhibit anticancer and antimutagenic activities as 

well as inhibitory activities against various enzymes (Stonik, Makarieva, and 

Dimitrenok 1992; Yamamoto et al. 1999). 

To date, no bioactivities of this compound have been reported previously. To the 

authors’ knowledge, this is the first time that demethoxy cystoketal chromane has been 

isolated from C. tamariscifolia and described as antiproliferative in HepG2 cells. In the 

future this molecule could be structurally optimized in order to increase 

pharmacokinetic and pharmacodynamic parameters among others. 

 

4.5 Conclusions 

In this work, three Cystoseira species were evaluated for their potential as 

sources of antioxidant and cytotoxic compounds. C. tamariscifolia had a strong 

antioxidant potential and a high content of phenolic compounds as well as a potent 

selective cytotoxic effect against hepatocellular carcinoma cells, especially its hexane 

extract (CTH). Moreover, CTH reduced cell proliferation and inhibited cell growth 

through apoptosis induction. This extract also had promising results in a 3D MCTS 

model, promoting the disaggregation of the mass of tumor cells after 24 h. Using 

bioactivity-guided fractionation procedures, it was possible to isolate and identify 

demethoxy cystoketal chromane as the major compound of CTH, and its selective 

cytotoxicity towards the recalcitrant HepG2 cell line was confirmed. It is also important 

to mention that this is the first description of demethoxy cystoketal chromane (1) in C. 

tamariscifolia, which was fully characterized as demethoxy cystoketal by analysis of 

MS and NMR spectral data. Overall, Cystoseira can be considered a valuable source of 

bioactive secondary metabolites and a promising source of health products. 

 

4.6 Acknowledgements  

The authors would like to thank Jesus Garcia (IRB – Institute for Research in 

Biomedicine) for the realization of the spectra. 

 



98 

 

4.7 References 

Abu Bakar, M.F., Mohamad, M., Rahmat, A., Burr, S.A. and Fry, J.R. 2010. 

Cytotoxicity, cell cycle arrest, and apoptosis in breast cancer cell lines exposed to an 

extract of the seed kernel of Mangifera pajang (bambangan).  Food Chem Toxicol 48, 

1688-1697.  

Airanthi, M.K., Hosokawa, M. and Miyashita, K. 2011. Comparative antioxidant 

activity of edible Japanese brown seaweeds. J Food Sci  76, C104-111.  

Aisa, Y., Miyakawa, Y., Nakazato, T., Shibata, H., Saito, K., Ikeda, Y. and Kizaki, M. 

2005. Fucoidan induces apoptosis of human HS-sultan cells accompanied by 

activation of caspase-3 and down-regulation of  R  pathways.  Am J Hematol 78, 7-

14. 

Amico, V. 1995. Marine brown algae of family Cystoseiraceae: Chemistry and 

chemotaxonomy. Phytochemistry 39, 1257-1279. 

Amico V., Cunsolo F., Oriente G., Piatelli M. and Ruberto, G. 1984. Cystoketal, a new 

metabolite from the Brown alga Cystoseira balearica. J Nat Prod 47, 947-952. 

Ayyad, S.E., Abdel-Halim, O.B., Shier, W.T. and Hoye, T.R. 2003. Cytotoxic 

hydroazulene diterpenes from the brown alga Cystoseira myrica. Z Naturforsch C 

Bio Sci 58, 33 – 38. 

Balboa, E.M., Conde, E., Moure, A., Falqué, E. and Domínguez, H. 2013. In vitro 

antioxidant properties of crude extracts and compounds from brown algae. Food 

Chem 138, 1764-85. 

Blunt, J.W., Copp, B.R., Keyzers, R.A., Munro, M.H.G. and Prinsep, M.R. 2014. 

Marine natural products. Nat Prod Rep 31, 160-258. 

Brand-Williams, W., Cuvelier, M. and Berset, C. 1995. Use of a free radical method to 

evaluate antioxidant activity. LWT - Food Sci Tech 28, 25–30. 

Caamal-Fuentes, E., Moo-Puc, R., Freile-Pelegrín, Y. and Robledo D. 2014. Cytotoxic 

and antiproliferative constituents from Dictyota ciliolata, Padina sanctae-crucis and 

Turbinaria tricostata. Pharm Biol 27, 1-5. 



99 

 

Culioli, G., Ortalo-Magne, A., Daoudi, M., Thomas-Guyon, H., Valls, R. and Piovetti, 

L. 2004. Trihydroxylated linear diterpenes from the brown alga Bifurcaria bifurcata. 

Phytochemistry 65, 2063-2069. 

Custódio, L., Soares, F., Pereira, H., Barreira, L., Vizetto-Duarte, C., Rodrigues, M.J., 

Rauter, A.P., Alberício, F. and Varela, J. 2013. Fatty acid composition and biological 

activities of Isochrysis galbana T-ISO, Tetraselmis sp. and Scenedesmus sp.: 

possible application in the pharmaceutical and functional food industries. J Appl 

Phycol 26, 151-161. 

Dai, J. and Mumper, R.J. 2010. Plant phenolics: extraction, analysis and their 

antioxidant and anticancer properties. Molecules 15, 7313-7352. 

Demiray, S., Pintado, M.E. and Castro, P.M.L. 2009. Evaluation of phenolic profiles 

and antioxidant activities of Turkish medicinal plants: Tilia argentea, Crataegi 

folium leaves and Polygonum bistorta roots. World Acad Sci Eng Technol 3, 270-

275. 

Dias, P.F., Siqueira, J.M. Jr, Vendruscolo, L.F., de Jesus Neiva, T., Gagliardi, A.R., 

Maraschin, M. and Ribeiro-do-Valle, R.M. 2005. Antiangiogenic and antitumoral 

properties of a polysaccharide isolated from the seaweed Sargassum stenophyllum. 

Cancer Chemother Pharmacol 56, 436-446. 

Dos Santos, J.H., Oliveira, D., De, C.D., Pinto, J., Campos, V., Mourão, A., Pessoa, C., 

De M.M. and Costa L.L. 2010. Evaluation of native and exotic Brazilian plants for 

anticancer activity. J Nat Med 64, 231-238. 

Fisch, K.M., Böhm, V., Wright, A.D. and König, G.M. 2003. Antioxidative 

meroterpenoids from the brown alga Cystoseira crinita. J Nat Prod 66, 968-975. 

Foti, M., Piattelli, M., Amico, V. and Ruberto, G. 1994. Antioxidant activity of phenolic 

meroditerpenoids from marine algae. J Photochem Photobiol B 26, 159-164. 

Funahashi, H., Imai, T., Tanaka, Y., Tsukamura, K., Hayakawa, Y., Kikumori, T., 

Mase, T., Itoh, T., Nishikawa, M., Hayashi, H., Shibata, A., Hibi, Y., Takahashi, M. 

and Narita, T. 1999. Wakame seaweed suppresses the proliferation of 7,12-



100 

 

dimethylbenz(a)-anthracene-induced mammary tumors in rats. Jpn J Cancer Res 90, 

922-927. 

Gong, X., Lin, C., Cheng, J., Su, J., Zhao, H., Liu, T., Wen, X. and Zhao, P. 2015. 

Generation of multicellular tumor spheroids with microwell-based agarose scaffolds 

for drug testing. PLoS One 10, e0130348. 

Goswami, P.C. and Singh, K.K. 2006. Oxidative stress and multistage carcinogenesis. 

In: Oxidative stress, disease and cancer. Singh K. editor. Imperial College Press, 

London, pp 705-731. 

Gouveia, V.L.M., Seca, A.M.L., Barreto, M.C., Neto, A.I., Kijjoa, A. and Silva, A.M.S. 

2013. Cytotoxic meroterpenoids from the macroalga Cystoseira abies-marina. 

Phytochem Lett 6, 593-597. 

Guiry, M.D. and Guiry, G.M. 2015. Algae Base. World-wide electronic publication, 

National University of Ireland, Galway,; http://www.algaebase.org (searched on 

14.01.15). 

Hadj Ammar, H., Lajili, S., Ben Said, R., Le Cerf, D., Bouraoui, A. and Majdoub, H. 

2015. Physico-chemical characterization and pharmacological evaluation of sulfated 

polysaccharides from three species of Mediterranean brown algae of the genus 

Cystoseira. Daru 23, 1. 

Hande, K.R. 1998. Etoposide: four decades of development of a topoisomerase II 

inhibitor. Eur J Cancer 34, 1514-1521. 

Heffernan, N., Brunton, N.P., FitzGerald, R.J. and Smyth, T.J. 2015. Profiling of the 

molecular weight and structural isomer abundance of macroalgae-derived 

phlorotannins. Mar Drugs 13, 509-528. 

Hirschhaeuser, F., Menne, H., Dittfeld, C., West, J., Mueller-Klieser, W. and Kunz-

Schughart, L.A. 2010. Multicellular tumor spheroids: an underestimated tool is 

catching up again. J Biotechnol 148, 3-15.  



101 

 

Ito, N., Hirose, M., Fukushima, H., Tsuda, T., Shirai, T. and Tatenatsu, M. 1986. 

Studies on antioxidants: their carcinogenic and modifying effects on chemical 

carcinogens. Food Chem Toxycol 24, 1071-1092. 

Ivanova, D., Gerova, D., Chervenkov, T. and Yankova, T. 2005. Polyphenols and 

antioxidant capacity of Bulgarian medicinal plants. J Ethnopharmacol 97, 145-150. 

Khanavi, M., Gheidarloo, R., Sadati, N., Ardekani, M.R.S., Nabavi, S.M.B., Tavajohi, 

S. and Ostad, S.N. 2012. Cytotoxicity of fucosterol containing fraction of marine 

algae against breast and colon carcinoma cell line. Pharmacogn Mag 8, 60-64. 

Koopman, G., Reutelingsperger, C.P., Kuijten, G.A., Keehnen, R.M., Pals, S.T. and van 

Oers, M.H. 1994. Annexin V for flow cytometric detection of phosphatidylserine 

expression on B cells undergoing apoptosis. Blood 84, 1415-1420. 

Kurt, O., Ozdal-Kurt, F., Tuğlu, M. and Akçora, C. 2014. The cytotoxic, neurotoxic, 

apoptotic and antiproliferative activities of extracts of some marine algae on the 

MCF-7 cell line. Biotech Histochem 28, 1-9. 

Li, H.-B., Cheng, K.-W., Wong, C.-C., Fan, K.-W., Chen, F.and Jiang, Y. 2007. 

Evaluation of antioxidant capacity and total phenolic content of different fractions of 

selected microalgae. Food Chem 102, 771-776. 

Liu, Y., Zhao, C., Li, H., Yu, M., Gao, J., Wang, L. and Zhai, Y. 2010. Cytotoxicity and 

apoptosis induced by a new podophyllotoxin glucoside in human hepatoma (HepG2) 

cells. Can J Physiol Pharmacol 88, 472-9. 

Mahavorasirikul, W., Viyanant, V., Chaijoroenkul, W., Itharat, A.and Na-Bangchang, 

K.  2010. Cytotoxic activity of Thai medicinal plants against human 

cholangiocarcinoma, laryngeal and hepatocarcinoma cells in vitro. BMC 

Complement Altern Med 10, 1-8. 

Maimoona, A., Naeem, I., Saddiqe, Z. and Ali, N. 2011. Analysis of total flavonoids 

and phenolics in different fractions of bark and needle extracts of Pinus 

roxburghiiand Pinus wallichiana. J Med Plants Res 5, 5216-5220. 



102 

 

Mhadhebi, L., Laroche-Clary, A., Robert, J. and Bouraoui, A. 2011. Antioxidant, anti-

inflammatory, and antiproliferative activities of organic fractions from the 

Mediterranean brown seaweed Cystoseira sedoides. Can J Physiol Pharmacol 89, 

911-921. 

Miao, Z.H., Tang, T., Zhang, Y.X., Zhang, J.S. and Ding, J. 2003. Cytotoxicity, 

apoptosis induction and downregulation of MDR-1 expression by the anti-

topoisomerase II agent, salvicine, in multidrug-resistant tumor cells. Int J Cancer 

106, 108-115. 

Montero, L., Herrero, M., Ibáñez, E. and Cifuentes, A. 2014. Separation and 

characterization of phlorotannins from brown algae Cystoseira abies-marina by 

comprehensive two-dimensional liquid chromatography. Electrophoresis 35, 1644-

1651. 

Moreno, P., Petkov, G., Ramazanov, Z. and Garsia, G. 1998. Lipids, fatty-acids and 

sterols of Cystoseira abies-marina.  Bot Mar 41, 375-378. 

Moreno, S., Scheyer, T., Romano, C.S. and Vojnov, A.A. 2006. Antioxidant and 

antimicrobial activities of rosemary extracts linked to their polyphenol composition. 

Free Radical Res 40, 223-231. 

Mosmann, T. 1983. Rapid colorimetric assay for cellular growth and survival:  

Application to proliferation and cytotoxicity assays. J Immunol Methods 65, 55-63. 

Murugan, R.S., Priyadarsini, R.V., Ramalingam, K., Hara, Y., Karunagaran, D. and 

Nagini, S. 2010. Intrinsic apoptosis and NF-κB signaling are potential molecular 

targets for chemoprevention by black tea polyphenols in HepG2 cells in vitro and in 

a rat hepatocarcinogenesis model in vivo. Food Chem Toxicol 48, 3281-3287. 

Oh, S.H., Ahn, J., Kang, D.H. and Lee, H.Y. 2011. The effect of ultrasonificated 

extracts of Spirulina maxima on the anticancer activity. Mar Biotechnol 13, 205-214. 

Palafox-Carlos, H., Gil-Chávez, J., Sotelo-Mundo, R.R., Namiesnik, J., Gorinstein, S. 

and González-Aguilar, G.A. 2012. Antioxidant interactions between major phenolic 

compounds found in ‘Ataulfo’Mango pulp: chlorogenic, gallic, protocatechuic and 

vanillic acids. Molecules 17, 12657–12664. 



103 

 

Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M. and Rice-Evans, C.  1999. 

Antioxidant activity applying an improved ABTS radical cation decolorization assay.  

Free Radic Biol Med 26, 1231-1237. 

Rodriguez-Enriquez, S., Gallardo-Perez, J.C., Aviles-Salas, A., Marin-Hernandez, A., 

Carreno-Fuentes, L., Maldonado-Lagunas, V. and Moreno-Sanchez, R. 2008. Energy 

metabolism transition in multi-cellular human tumor spheroids. J Cell Physio 216, 

189–197. 

Safer, A.M. and Al-Nughamish, A.J. 1999. Hepatotoxicity induced by the antioxidant 

food additive butylated hydroxytoluene (BHT) in rats: an electron microscopical 

study. Histol Histopathol 14, 391-406.  

Sathya, R., Kanaga, N., Sankar, P. and Jeeva, S. 2013. Antioxidant properties of 

phlorotannins from brown seaweed Cystoseira trinodis (Forsskål) C. Agardh. 

Arabian J Chem doi:10.1016/j.arabjc.2013.09.039. 

Saura-Calixto, F. 2011. Dietary fiber as a carrier of dietary antioxidants: an essential 

physiological function. J Agric Food Chem 59, 43–49. 

Scott, H.K. and William, C.E. 2000. Induction of apoptosis by cancer chemotherapy. 

Exp Cell Res 256, 42-49. 

Smit, A.J. 2004. Medicinal and pharmaceutical uses of seaweed natural products: A 

review. J Appl Phycol 16, 245-262. 

Urones, J.G., Basabe, P., Marcos, I.S., Pineda, J., Lithgow, A.M., Moro, R.F., Palma, 

F.M.S.B., Araújo, M.E.M. and Gravalos, M.D.G. 1992. Meroterpenes from 

Cystoseira usneoides. Phytochemistry 31, 179-182. 

Valls, R., Mesguiche, V., Piovetti, L., Prost, M. and Peiffer, G. 1996. Meroditerpenes 

from the brown alga Cystoseira amentacea var. stricta collected off the French 

mediterranean coast. Phytochemistry 41, 1367-1371. 

Valls, R. and Piovetti, L. 1995. The chemistry of the Cystoseiraceae (Fucales, 

Pheophyceae): chemotaxonomic relationships. Biochem Syst Ecol 23, 723-745. 



104 

 

Vecchione, A. and Croce, C.M. 2010. Apoptomirs: small molecules have gained the 

license to kill. Endocrine-Related Cancer 17, F37-50. 

Velioglu, Y.S., Mazza, G., Gao, L. and Oomah, B.D. 1998. Antioxidant activity and 

total phenolics in selected fruits, vegetables and grain products. J Agric Food Chem 

46, 4113-4117. 

Wong, R.S. 2011. Apoptosis in cancer: from pathogenesis to treatment. J Exp Clin 

Cancer Res 30, 87.  

Wu, S.J., Ng, L.T. and Lin, C.C. 2005. Cinnamaldehyde-induced apoptosis in human 

PLC/PRF/5 cells through activation of the proapoptotic Bcl-2 family proteins and 

MAPK pathway. Life Sci 77, 938-951. 

Yu, B.P. 1994. Cellular defenses against damage from reactive oxygen species. Physiol 

Rev 74, 139-162. 

Zhang, G., Gurtu, V., Kain, S.R. and Yan, G. 1997. Early detection of apoptosis using a 

fluorescent conjugate of Annexin V. Biotechniques 23, 525-531. 

Zong, W.X. and Thompson, C.B. 2006. Necrotic death as a cell fate. Genes Dev 20, 1-

15. 

Zubia, M., Fabre, M.S., Kerjean, V., Lann, K.L., Stiger-Pouvreau, V., Fauchon, M. and 

Deslandes, E. 2009. Antioxidant and antitumoural activities of some Phaeophyta 

from Brittany coasts. Food Chem 116, 693-701. 

 



 

 

CHAPTER 5  

 

ISOLOLIOLIDE, A CAROTENOID 

METABOLITE ISOLATED FROM THE BROWN 

ALGAE CYSTOSEIRA TAMARISCIFOLIA, IS 

CYTOTOXIC AND ABLE TO INDUCE 

APOPTOSIS IN HEPATOCARCINOMA CELLS 

THROUGH CASPASE-3 ACTIVATION, 

DECREASED BCL-2 LEVELS, INCREASED P53 

EXPRESSION AND PARP CLEAVAGE 

 

 

 

 

Vizetto-Duarte C, Custódio L, Gangadhar KN, Lago JHG, Dias C, Matos AM, Neng N, 

Nogueira JMF, Barreira L, Albericio F, Rauter AP and Varela J (2016). Isololiolide, a 

carotenoid metabolite isolated from the brown alga Cystoseira tamariscifolia, is cytotoxic and 

able to induce apoptosis in hepatocarcinoma cells through caspase-3 activation, decreased Bcl-2 

levels, increased p53 expression and PARP cleavage. Phytomedicine, 23: 550 – 557. 

DOI:10.1016/j.phymed.2016.02.008. 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



107 

 

Isololiolide, a carotenoid metabolite isolated from the brown alga Cystoseira 

tamariscifolia, is cytotoxic and able to induce apoptosis in hepatocarcinoma cells 

through caspase-3 activation, decreased Bcl-2 levels, increased p53 expression and 
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5.1 Abstract 

Background: Brown macroalgae have attracted attention because they display a wide 

range of biological activities, including antitumoral properties. In a previous screen we 

isolated isololiolide from Cystoseira tamariscifolia for the first time. 

Purpose: To examine the therapeutical potential of isololiolide against tumor cell lines. 

Methods/Study design: The structure of the compound was established and confirmed 

by 1D and 2D NMR as well as HRMS spectral analysis. The in vitro cytotoxicity was 

analyzed by colorimetric 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide 

assay in tumoral as well as in non-tumoral cell lines. Cell cycle arrest and induction of 

apoptosis were assessed by flow cytometry. Alteration of expression levels in proteins 

important in the apoptotic cascade was analyzed by western blotting. 

Results: Isololiolide was isolated for the first time from the brown macroalga Cystoseira 

tamariscifolia.  Isololiolide exhibited significant cytotoxic activity against three human 

tumoral cell lines, namely hepatocarcinoma HepG2 cells, whereas no cytotoxicity was 

found in non-malignant MRC-5 and HFF-1 human fibroblasts. Isololiolide completely 

disrupted the HepG2 normal cell cycle and induced significant apoptosis. Moreover, 

Western blot analysis showed that isololiolide altered the expression of proteins that are 

important in the apoptotic cascade, namely increasing PARP cleavage and p53 

expression while decreasing procaspase-3 and Bcl-2 levels.  

Conclusion: Isololiolide isolated from C. tamariscifolia is able to exert a selective 

cytotoxic activity on hepatocarcinoma HepG2 cells as well as induce apoptosis through 

the modulation of apoptosis-related proteins. 

 

Keywords: Marine natural product; Cystoseira; Isololiolide; Carotenoid metabolite; 

Cell cycle; Apoptosis 
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Fig. 5.1 – Graphical abstract for the work accomplished in Chapter 5. 
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5.2 Introduction 

Cancer is a major public health problem with an estimated prevalence of about 

3% in Europe, increasing to 15% at old age. Moreover, cancer related deaths are 

estimated to increase to over 11 million in 2030 (WHO, 2010). Hepatocellular 

carcinoma (HCC) is the third leading cause of cancer-related death worldwide, after 

lung and stomach cancer (Ferenci et al. 2010). The current therapeutics used for HCC 

treatment involves surgical resection, transplantation and/or systemic chemotherapy; 

however, surgery and transplantation may not be appropriate for many patients and 

chemotherapy often fails (Liu et al. 2014). Chemotherapy is also constrained by its 

toxicity, significant resistance to available chemotherapeutic agents and side effects, 

including neutropenia and myelosuppression (Chau et al. 2006). Current studies 

involved in developing effective cancer prevention approaches have focused on the use 

of bioactive natural agents that may have less adverse effects and can exert selective 

cytoxicity against cancer cells (Ghate et al. 2014).  

The chemical and biological diversity of the marine environment is 

immeasurable and therefore is an extraordinary resource for the discovery of novel 

anticancer drugs. Brown algae are a rich source of secondary metabolites displaying a 

wide variety of bioactivities with important features for pharmaceutical purposes. 

Cystoseira tamariscifolia has demonstrated interesting biological activities such as 

antibacterial, antifungal, antiprotozoal, cell division inhibition, anti-inflammatory, 

antioxidant and cytotoxic properties (Bennamara et al. 1999, Spavieri et al. 2010, Lopes 

et al. 2012, Andrade et al. 2013). These properties have been ascribed to the presence of 

different classes of molecules that were identified in C. tamariscifolia, such as 

phlorotannins (fucophloroethol, fucodiphloroethol, fucotriphloroethol, 7-phloroeckol, 

phlorofucofuroeckol and bieckol/dieckol), phloroglucinol, proline, -sitosterol, 

fucosterol, and diverse fatty acids (Ferreres et al. 2012, Andrade et al. 2013, Vizetto-

Duarte et al. 2015). As C. tamariscifolia extracts have previously demonstrated 

cytotoxic potential, in this study we describe the identification of isololiolide, a known 

carotenoid metabolite, as a selective cytotoxic compound that was isolated from the 

brown macroalga Cystoseira tamariscifolia for the first time. Here we show evidence 

that exposure of hepatocarcinoma HepG2 cells to isololiolide is associated with changes 

in the expression of p53, PARP, Bcl-2 and procaspase-3. These results might explain 

the dramatic suppression of the S phase as well as the induction of apoptosis caused by 

this monoterpene. 
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5.3 Material and methods 

5.3.1 Chemicals and reagents 

Hexane and ethyl acetate were purchased from Prolabo (VWR International, 

Leuven, Belgium). Merck (Darmstadt, Germany) supplied dimethyl sulfoxide (DMSO). 

Roswell Park Memorial Institute medium (RPMI), Dulbecco's Modified Eagle's 

medium (DMEM), fetal bovine serum (FBS), L-glutamine and penicillin/streptomycin 

were obtained from Lonza Ibérica (Barcelona, Spain). 3-(4,5-dimethylthiazol-2-yl)-2,5-

diphenyltetrazolium bromide (MTT) was obtained from Calbiochem. Primary 

antibodies for poly (ADP-ribose) polymerase (PARP), p53, Bcl-2, actin and respective 

secondary antibodies were from Santa Cruz Biotechnology Inc., Heidelberg, Germany. 

FITC-conjugated annexin V/ propidium iodide (PI) assay kit was acquired from 

Cayman Chemical Company, USA. Silica gel (Merck, 40-63 µm mesh) was used for 

column chromatographic separation, while silica gel 60 PF254 (Merck) was used for 

analytical (0.25 mm) TLC. CDCl3 (Aldrich) was used as solvent for 
1
H and 

13
C NMR 

spectra acquisition and TMS (Aldrich) was used as internal standard. 1D and 2D NMR 

spectra were recorded at Bruker Digital Avance 800 MHz spectrometer. Additional 

reagents and necessary solvents were purchased from VWR International (Leuven, 

Belgium). 

 

5.3.2 Sampling 

Cystoseira tamariscifolia was collected in the middle/lower intertidal areas, 

during the low tide, between May and September 2012 on the Portuguese coast. 

Biomass was rinsed with distilled water and macroscopic epiphytes and extraneous 

matter were carefully removed. Identification of specimens was made by Dr Aschwin 

Engelen (Centre of Marine Sciences, University of Algarve, Portugal) and Dr Javier 

Cremades Ugarte (Facultade de Ciencias, University of A Coruña) and a voucher 

specimen of C. tamariscifolia (code number MB016) was deposited at the Centre of 

Marine Sciences (CCMAR), University of Algarve. Samples were freeze-dried and 

stored at -20 °C until the extraction procedure. 
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5.3.3 Extraction 

Biomass was mixed with hexane (1:10, w/v) and homogenized for 2 minutes 

using a disperser IKA T10B Ultra-Turrax at room temperature (RT). The tubes were 

then vortexed for 1 minute, centrifuged (5000 g, 10 minutes, RT) and the supernatants 

recovered. The extraction procedure was repeated 3 times and the supernatants 

combined and filtered. The extract was dried at 40 ºC under vacuum and dissolved in 

DMSO for biological activities screening or in the adequate solvent for chemical 

characterization, aliquoted and stored (-20 °C).   

 

 

5.3.4 Isolation and elucidation of isololiolide  

C. tamariscifolia hexane extract (9 g) was fractionated by column 

chromatography (2.5 cm × 18 cm) over silica gel (SiO2) using increasing amounts of 

EtOAc in hexane (9:1; 85:15; 4:1; 75:25; 7:3; 3:2; 1:1) and increasing amounts of 

MeOH in EtOAc (9:1; 8:1; 5:1; 2:1; 1:1), MeOH (100%) and H2O (100%) as eluents. 

This procedure afforded 57 fractions, which were analyzed by TLC and pooled together 

in 21 groups (A – U). Fraction 14 (70 mg) was re-fractionated over SiO2 eluted with 

hexane (100 %); hexane/EtOAc (9:1, 8:2, 7.5:2.5, 7:3, 6.5:3.5, 6:4, 5.5:4.5, 1:1, 4:6), 

EtOAc (100 %) and MeOH (100 %) to afford 151 fractions which were pooled together 

in 9 groups after TLC analysis. Group 6 – 8, obtained from the hexane/ EtOAc elution 

(6:4 through 1:1), was purified by reverse phase preparative HPLC to afford 3 mg of 

isololiolide. 

Isololiolide. Pale yellow oil;
1
H NMR (800 MHz, CDCl3, TMS, ppm) δ 5.71 (1H, 

s, H-7), 4.21 (1H, m, H-3), 2.55 (2H, br d, J = 2.4 Hz, H-4), 2.03 (1H, br d, J = 2.4 Hz, 

H-2), 1.59 (3H, s, H-11), 1.23 (3H, s, H-10), 1.21 (3H, s, H-9). 
13

C-NMR  (200 MHz, 

CDCl3, TMS, ppm): 181.2 (C-6), 171.5 (C-8), 113.3 (C-7), 86.4 (C-5), 65.1 (C-3), 49.8 

(C-2), 47.9 (C-4), 35.0 (C-1), 29.9 (C-9), 25.6 (C-11), 25.1 (C-10); HRESIMS m/z 

219.0993 [M + Na]
+
 (calc to C11H16O3Na 219.0997).          

 

5.3.5 Cell culture 

HepG2 cells (human hepatocellular carcinoma) were maintained in RPMI-1640 

culture media supplemented with glucose (1000 mg/ml), 10% FBS, L-glutamine (2 

mM), penicillin (50 U/ml) and streptomycin (50 µg/ml). MRC-5 and HFF-1 human 

fibroblasts, AGS human gastric cancer, HCT-15 human colon cancer cells were grown 
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in DMEM culture media supplemented with glucose (1000 mg/ml), 10% FBS, L-

glutamine (2 mM), penicillin (50 U/ml) and streptomycin (50 µg/ml). Cell lines were 

grown in an incubator at 37 ºC and 5.0% CO2 in humidified atmosphere. 

 

5.3.6 Anti-proliferative assay 

In vitro cytotoxic activity of isololiolide was assessed by the MTT colorimetric 

assay. Hepatocarcinoma HepG2, gastric cancer AGS and colon cancer HCT-15, and 

also non-tumoral cells (MRC-5 and HFF-1 human fibroblasts) were seeded at a density 

of 5 × 10
3
 cells/well on 96-well plates and incubated for 24 h at 37 °C in 5.0% CO2. The 

effect of isololiolide was evaluated on the viability of these cells and the half maximal 

inhibitory concentration (IC50) was calculated upon a 72 h incubation period. Positive 

control cells were treated with etoposide, while negative control cells were treated with 

DMSO at the highest concentration used in test wells (0.5%, v/v). The selectivity of the 

compound was estimated using the following equation: Selectivity = CT/CNT, where 

CT and CNT indicate the compound-induced cytotoxicity on tumoral cells and on non-

tumoral cells, respectively (Oh et al., 2010). 

 

5.3.7 Cell cycle distribution analysis 

HepG2 cells were plated at a density of 5 × 10
4
 cells/ml in 6-well plates and 

incubated with complete medium only (blank), medium with the solvent DMSO 

(control, 0.5% v/v) or with isololiolide at IC50 concentration (13.15 µM), which was 

previously determined by the MTT assay. Cells were harvested following 72 h 

incubation and further processed for cell cycle analysis. Cellular DNA content for cell 

cycle distribution analysis was evaluated using an Epics XL-MCL Coulter flow 

cytometer plotting at least 10000 events per sample. Cell cycle distribution data analysis 

was subsequently performed using the FlowJo 7.2 software (Tree Star, Ashland, USA).  

 

5.3.8 Apoptosis detection 

HepG2 cells were plated at a concentration of 5 × 10
4
 cells/ml in 6-well plates 

and incubated with complete medium only (blank), medium with the solvent DMSO 

(control, 0.5% v/v), or with isololiolide at IC50 concentration (13.15 µM) for 72 h. 

Induction of apoptosis was evaluated by the annexin V-FITC/PI apoptosis Kit (Bender 

MedSystems, Vienna, Austria) according to the manufacturer’s instructions. 

Measurement of annexin V binding due to phosphatidylserine externalization was 
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analyzed using an Epics XL-MCL Coulter flow cytometer plotting at least 20 000 

events per sample. Apoptotic data analysis was subsequently performed using the 

FlowJo 7.2 software (Tree Star, Ashland, USA).  

 

5.3.9 Protein expression analysis 

For the analysis of protein expression, HepG2 cells were treated with complete 

medium (blank), medium with the solvent (DMSO) or with loliolide at the IC50 

concentration (13.15 µM), and incubated for 24, 48 and 72 h. After each incubation 

period cells were lysed in Winman’s buffer (1% NP-40, 0.1 M Tris–HCl pH 8.0, 0.15 M 

NaCl and 5 mM EDTA) with EDTA-free protease inhibitor cocktail (Boehringer, 

Mannheim, Germany). Proteins were quantified using the DC Protein Assay Kit 

(BioRad, Hercules, CA, USA) and separated in 12% tris-glycine sodium dodecyl 

sulphate (SDS)–polyacrylamide gel. Proteins were then transferred to a nitro-cellulose 

membrane (GE Healthcare, Madrid, Spain). The membranes were incubated with the 

following primary antibodies for PARP (1:4000), actin (1:2000), p53 (1:250), Bcl-2 

(1:200) and procaspase-3 (1:2000), and further incubated with the appropriate 

secondary antibodies conjugated with horseradish peroxidase (HRP) diluted 1:2000 in 

5% non-fat dried milk in T-TBS. The signal was detected with the Amersham ECL kit 

(GE Healthcare). Hyperfilm ECL (GE Healthcare) and Kodak GBX developer and fixer 

twin pack (Sigma). 

 

 

5.3.10 Statistical analysis 

Results were expressed as mean ± standard error of the mean (SEM). Analysis 

of variance (ANOVA) was assessed using the SPSS statistical package for Windows 

(release 15.0, SPSS Inc.), and significance between means was analyzed by the Tukey 

HSD test (p < 0.05). IC50 values were calculated by sigmoidal fitting of the data using 

GraphPad Prism v. 5.0 (GraphPad Software, Inc., La Jolla, CA). Statistical analysis was 

performed by the non-parametric Friedman’s test followed by Dunn’s Post-test using 

GraphPad Prism 5 software. P values  < 0.05 were considered as statistically significant. 
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5.4 Results and discussion 

5.4.1 Characterization of isololiolide 

HRESIMS of the isolated compound showed a [M + Na]
+
 quasi-molecular ion 

peak at m/z 219.0993, indicating the molecular formula C11H16O3, with four 

unsaturations. Its 
1
H NMR spectrum displayed, despite other signals, peaks assigned to 

hydrogens of three methyl groups at H 1.21 (s, 3H), 1.23 (s, 3H) and 1.59 (s, 3H), one 

olefinic hydrogen at H 5.71 (s, 1H) and one oxymethine hydrogen at H 4.13 (m, 1H). 

The 
13

C and DEPT 135 showed eleven peaks assigned to three methyl, two methylene, 

two methine and four quaternary carbons, including one -unsaturated carbonyl group 

at C 171.5 (C-8), 113.3 (C-7) and 181.2 (C-8) and one carbinolic carbon at C 65.1 (C-

3). HMBC spectrum showed cross peaks between the signals at H-11 with C-4/C-5/C-6, 

H-9 with C-1/C-6/C-10, H-10 with C-2/C-6/C-9 and H-7 with C-5/C-6/C-8. Isololiolide 

(Fig. 5.2) was identified comparing the obtained data with that reported in the literature 

(Kimura and Maki 2002).  

 

 

 

Fig. 5.2 – Chemical structure of isololiolide. 

 

5.4.2 Anti-proliferative activity of isololiolide in tumoral and non-tumoral cell lines 

Isololiolide obtained from the C. tamariscifolia hexane extract was tested on 

human hepatocellular carcinoma cells (HepG2), gastric cancer cells (AGS) and colon 

cancer cell line (HCT-15). Additionally, the anti-proliferative activity of the compounds 

was evaluated in human fibroblasts (MRC-5 and HFF-1). The compound proved to be 

cytotoxic against the different tumoral cell lines, namely AGS (IC50 = 32.36 µM), HCT-

15 (IC50 = 23.59 µM) and especially HepG2 cells (IC50 = 13.15 µM; Table 5.1), 

showing selectivity indices (SI) of up to 86 and 47 against MRC-5 and HFF-1 

fibroblasts, respectively (Table 5.1).  
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Table 5.1 – IC50 (µM) of isololiode obtained from the hexane fraction from C. tamariscifolia in 

different cell lines at 72h.  

Cell lines IC50 SI: MRC-5 SI: HFF-1  

HepG2  13.15 ± 0.56
a
 86.07

A
 47.04

B
 

AGS  32.36 ± 0.20
c
 34.97

C
 19.12

D
 

HCT-15  23.59 ± 0.15
b
 47.98

B
 26.22

D
 

MRC-5  1131.76 ± 1.22
e
 - - 

HFF-1 618.62 ± 1.12
d
 - - 

The values presented correspond to IC50 values and are the mean ± S.E; of at least 3 independent experiments in 

triplicate. In the same column, values followed by different letters (a-e for IC50 values and A-D for SI) are 

significantly different (Tukey HSD test, p < 0.05). HepG2: human hepatocarcinoma; AGS: human gastric 

adenocarcinoma; HCT-15: human colorectal adenocarcinoma; MRC-5: human lung fibroblast derived from healthy 

tissue; HFF-1: human foreskin fibroblast derived from healthy tissue. 

 

 

The cytotoxic effect of this molecule towards HepG2 cells was particularly 

evident, whereas no significant toxic effect was observed in MRC-5 or HFF-1 human 

fibroblasts. Interestingly, extracts from C. tamariscifolia had previously demonstrated 

antiproliferative potential against Daudi (human Burkitt’s lymphoma), Jurkat (human 

leukemic T cell lymphoblast) and K562 (human chronic myelogenous leukemia) cells 

(Zubia et al. 2009). Isololiolide has been described as a carotenoid metabolite whose 

precursor is zeaxanthin (Repeta 1989). Carotenoids, such as zeaxanthin, lycopene and 

astaxanthin have been previously described as modulators of growth factors that play 

important roles in cell cycle regulation and carcinogenesis (Bi et al. 2013, Alvarez et al. 

2014). Moreover, it has been previously demonstrated that breakdown products of 

carotenoids (e.g. 3-OH-β-apo-10’-carotenal and apo-10’-lycopenal) might act as 

chemotherapeutic agents against breast and hepatic cancer (Tibaduiza et al. 2002, Ip et 

al. 2014). Loliolide, an isololiolide isomer, is also a well-known carotenoid metabolite 

derived from the breakdown from fucoxanthin able to inhibit algal growth (Taylor and 

Burden 1970). On the other hand, isololiolide has been previously isolated from brown 

algae namely from Undaria pinnatifida (Kimura and Maki 2002), Dictyopteris 

divaricata (Song et al. 2004) and Homoeostrichus formosana (Fang et al. 2015). 

However, this is the first report describing the occurrence of isololiolide in C. 

tamariscifolia.  
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5.4.3 Effects on cell cycle profile 

Because of the potential application of carotenoid breakdown products in cancer 

therapeutics and the observed cytoxicity in HepG2 cells, we researched the 

effectiveness of isololiolide in arresting the cell cycle in the latter hepatocarcinoma cell 

line. For this purpose, HepG2 cells were incubated with isololiolide at 13.15 µM (IC50) 

for 72 h and its effect on cell cycle distribution was studied. Analysis of the cell cycle 

was performed by flow cytometry and the results showed that this monoterpenoid 

completely disrupted the normal HepG2 cell cycle. In fact, isololiolide induced G2/M 

cell cycle arrest along with a concomitant decrease in the percentage of cells in the S 

phase (Fig. 5.3A) and this effect was sustained throughout the 72 h treatment. In fact, 

the percentage of cells in G2/M phase was 15.09 % and 14.91 % for the control and 

DMSO 0.5 %, respectively, increasing to 57.95 % upon treatment with isololiolide at 

13.15 µM for 72 h (Fig. 5.3B). In addition, there were virtually no cells in the S phase 

after the same incubation. Taken together, these results suggest that isololiolide affects 

the molecular pathways monitoring and controlling cell cycle progression by arresting 

the cells at the G2/M checkpoint. The cell cycle checkpoints play an important role in 

the control system by sensing defects occurring during essential processes, such as 

DNA replication or chromosome segregation, inducing a cell cycle arrest until the 

defects detected are repaired (Malumbres 2012).  
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Fig. 5.3 – HepG2 cell cycle analysis (A) from control (incubation with complete 

medium only), DMSO (0.5% v/v) or isololiolide (13.15 µM) treatment for 72 h. 

Percentage of cells in G1, S and G2/M phases upon the treatments described above (B). 

 

5.4.4 Apoptosis induction by isololiolide treatment 

The annexin V-FITC/PI flow cytometry assay was used in order to determine if 

isololiolide was inducing apoptosis in HepG2 cells. Bivariate staining using annexin V-

FITC/PI further demonstrated that isololiolide induced apoptosis at the IC50 

concentration (Fig. 5.4A). HepG2 cells were treated with isololiolide for 72 h and a 

significant increase (P < 0.01) in the percentage of apoptotic cells was observed, from 

6.9 % in untreated cells, to 29.1 % in cells treated with isololiolide (Fig. 5.4B). 

Apoptosis is described as an active process of programmed cellular death that avoids an 

exacerbated inflammatory response (Fink and Cookson 2005) and is associated with 

responses to cancer therapy. In fact, it is widely described that resistance to apoptosis is 

one of the hallmarks of cancer cells (Hanahan and Weinberg 2011). This resistance 

enables cancerous cells to survive and divide even in the presence of endogenous 

proapoptotic stimuli. Therefore, induction of apoptosis is an important mechanism in 

selecting novel molecules with anti-cancer potential. 
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Fig. 5.4 – Flow cytometric analysis (A) and the proportion of apoptotic (B) HepG2 cells 

treated for 72 h with control (incubation with complete medium only), DMSO (0.5% 

v/v) or isololiolide (13.15 µM) for 72 h stained for annexin V-FITC/PI. **P < 0.01 vs. 

DMSO 0.5 %. 

 

 

5.4.5 Western blot analysis of apoptosis-related proteins  

Based on the results obtained with annexin V-FITC demonstrating that apoptosis 

is occurring, the expression of apoptosis-related proteins was evaluated by assessing 

procaspase-3, PARP, Bcl-2 and p53 protein levels expression in HepG2 cells incubated 

with complete medium (control), vehicle (DMSO 0.5% v/v) or isololiolide (13.15 µM).   

Concerning caspase-3, a decrease in procaspase-3 expression upon isololiolide 

treatment at 24 h was measured (Fig. 5.5, P < 0.05). In human cells, apoptosis takes 

place through a cascade of events involving two main pathways: the intrinsic and the 

extrinsic pathways (Kroemer et al. 2007). Both pathways ultimately converge on the 

activation of procaspases (primarily procaspase-3, but also procaspase-7 and 

procaspase-6) to caspases, which are the cysteine proteases that cleave their protein 

substrates within the cell. Effector caspase-3 zymogen (or procaspase-3) exists within 
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the cytosol as an inactive dimer (Boatright and Salvesen 2003). It is activated by limited 

proteolysis within the interdomain linker, which is carried out by an initiator caspase or 

occasionally by other proteases under specific circumstances. At cytosolic 

concentrations in human cells, the caspase-3 zymogens are already dimers, but cleavage 

within their respective linker segments is required for activation (Boatright and 

Salvesen 2003). Therefore, a decrease in procaspase-3 levels is due to its proteolysis, 

leading to caspase-3 activation. Our results showed that incubation of HepG2 cells with 

isololiolide resulted in a 2-fold decrease of procaspase-3 levels, strongly suggesting that 

procaspase-3 was processed to caspase-3. In addition, concentrations of procaspase-3 in 

certain cancerous cells are significantly higher than those in non-cancerous controls 

(Putt et al. 2006). 

 

Fig. 5.5 – Procaspase-3 expression levels upon incubation with complete medium 

(control), vehicle (DMSO 0.5 %) or isololiolide (13.15 µM) at 24 h. *P < 0.05 vs. 

DMSO 0.5 %. 

 

PARP cleavage increased about 4-fold upon isololiolide incubation at 13.15 µM 

for 24 h (Fig. 5.6, P < 0.01). Interestingly, this increment seems to be time-dependent as 

shown in Fig. 5.6. PARP plays an active role in key biological processes, such as 

transcription and cell cycle regulation, response to DNA damage, apoptosis and 

maintenance of genome integrity. The presence of cleaved PARP is one of the most 
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used biomarkers for the detection of apoptosis (Duriez and Shah 1997). Moreover, 

PARP is a substrate of caspase-3 and its cleavage into two fragments has been 

considered to be indicative of functional caspase activation (Bressenot et al. 2009). 

Cleaved PARP was observed after treatment with isololiolide, in a time-dependent 

manner. In fact, (Soldani et al. 2001) reported that PARP proteolysis by caspase is a 

very early response to the apoptotic stimulus.  

 

 

Fig. 5.6 – Full length (PARP) and cleaved PARP (PARP*) expression levels upon 

incubation with complete medium (control), vehicle (DMSO 0.5 %) or isololiolide 

(13.15 µM) at 24, 48 and 72 h. *P < 0.05, **P < 0.01 vs. DMSO 0.5 %. 

 

Western blot performed in the cell lysates obtained from isololiolide-treated 

cells showed increased expression of p53 at 24 h (Fig. 5.7, P < 0.05 vs. DMSO 0.5 %). 

The tumor suppressor protein p53 acts as a key player in tumor suppression, as it 

induces apoptosis and cell cycle arrest as well as suppress angiogenesis (Amaral et al. 

2010). p53 is usually responsible for activating DNA repair proteins when DNA has 

extensive damage, arresting the cell cycle at regulation points or initiating apoptosis if 

DNA damage shows to be irreparable. Interestingly, p53 not only induces G1 cell cycle 
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arrest, but it is also described to act at the G2/M checkpoint, preventing cells from 

entering mitosis if DNA damage is found (Taylor and Stark 2001). Furthermore, p53 

has the ability to activate the transcription of various pro-apoptotic genes, including 

those encoding members of the Bcl-2 family (Roos and Kaina 2006). 

 

 

Fig. 5.7 – p53 expression levels upon incubation with complete medium (control), 

vehicle (DMSO 0.5 %) or isololiolide (13.15 µM) at 24 h.*P < 0.05 vs. DMSO 0.5 %. 

 

Our results showed that anti-apoptotic Bcl-2 protein expression remained 

unchanged after 24 h of incubation with isololiolide, decreasing after 48 h with the same 

treatment (Fig. 5.8,  P < 0.05 vs DMSO 0.5 %). Overexpression of anti-apoptotic Bcl-2 

family members have been associated with chemotherapy resistance in various human 

cancers, and targeting the anti-apoptotic Bcl-2 family members have shown promising 

results in preclinical studies (Kang and Reynolds 2009). Bcl-2 suppresses apoptosis by 

binding to Bax or Bak. It is described that inhibiting the anti-apoptotic Bcl-2 could 

sensitize tumor cells to chemo- and radiotherapy. Therefore, decrease of Bcl-2 levels 

may be a plan of choice to increase treatment efficacy. Furthermore, it was suggested 

that p53 also modulates Bcl-2 by downregulation (Kirkin et al. 2004). 
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Fig. 5.8 – Bcl-2 expression levels upon incubation with complete medium (control), 

vehicle (DMSO 0.5 %) or isololiolide (13.15 µM) at 24 and 48 h. *P < 0.05 vs. DMSO 

0.5 %. 

 

 

In summary, application of isololiolide resulted in the increase on caspase-3 

expression, concomitant with increase in PARP cleavage and p53 expression. 

Corresponding down-regulation of anti-apoptotic/pro-survival Bcl-2 protein was also 

detected. Indeed, molecules that activate caspase-3 and p53, cleave PARP or bind to 

Bcl-2 have shown potential in cell culture and preclinical models of cancer (Peterson et 

al. 2009). 

Taken together, our results strongly suggest that isololiolide is able to exert 

potent anti-proliferative properties, significantly promoting cell cycle arrest in S phase 

and inducing cellular apoptosis in a human-derived hepatocarcinoma cell line. 
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5.5 Conclusions 

This report demonstrates for the first time the in vitro anti-tumoral activity of 

isololiolide obtained from C. tamariscifolia hexane extract against hepatocarcinoma 

through the induction of apoptosis by altering the expression of proteins important to 

the apoptotic cascade. As isololiolide exhibited no cytotoxicity on non-tumoral human 

fibroblasts under the same conditions, it would be important in the future to perform 

structure-activity relationships (SARs) analysis for further studies. In addition, it may 

provide novel clues as to how carotenoids and their metabolites play a role in 

preventing and/or slowing down cancer progression. 
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6.1 Overall discussion 

In this thesis, we aimed to improve the knowledge of the biochemical 

composition of Cystoseira macroalgae in order to ascertain their suitability as a food, as 

part of a food product and/or as source of novel drug leads for the pharmaceutical 

industry. 

The proximate biochemical composition and minerals profile of five macroalgal 

species belonging to the Cystoseira genus, namely C. humilis, C. tamariscifolia, C. 

nodicaulis, C. compressa and C. baccata were determined for the first time (Chapter 2). 

The nutritional value of the majority of marine macroalgae is primarily related to their 

ash content and with the carbohydrates levels, since they are rich in minerals and 

soluble and insoluble dietary fiber (Lahaye 1991, McDermid and Stuercke 2003, Ortiz 

et al. 2006). The biochemical composition of several brown macroalgae has been 

previously described by various authors and is summarized in Table 6.1. In accordance 

with these studies, the species investigated in this thesis have indeed presented high ash 

and carbohydrates contents. The protein and lipid levels were also in agreement with 

those reported in previous studies on brown algae (Holdt and Kraan 2011).  

As shown in Table 6.1, there can be considerable variability in the proximate 

composition among algae of the same genus and even between individuals of the same 

species (e.g. Dictyota ciliolata) when studies carried out on samples from different 

geographical locations and different seasons are compared. The samples studied in 

Chapter 2 and 3 were collected in the middle/lower intertidal zones on the Algarve 

(Albufeira and Odeceixe, Portugal) coast in May 2010 during the low tide. The 

nutritional composition of marine algae can be influenced by nutrient concentration in 

seawater, water temperature and depth, amongst several other environmental factors 

such as the amount of photosynthetically active radiation. Therefore, harvest locations 

and dates are also important information that should be recorded by researchers. In 

addition, biochemical composition may also change according to the physiological state 

of the specimen as discussed in Chapter 2. 

Macroalgae are particularly rich in minerals due to the fact that they absorb the 

elements from the surrounding seawater. Potassium, calcium and iron, for instance, tend 

to accumulate at much higher levels in macroalgae than in terrestrial plants (Hwang et 

al. 2013).  
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Table 6.1 – Proximate composition of a variety of brown algae (% DW). 

Species Moisture Ash Protein Carbohydrates Lipids 

Colpomenia sinuosa 11.5 28.1 9.2 32.1 1.5 

Dictyota ciliolata – 33-47.2 4.1-10.7 15.2-20.3 7.1-7.8 

Dictyota dichotoma – 27.02 17.73 – 2.94 

Feldmannia indica – 45.1 7.4 17.7 3.6 

Fucus spiralis 87.7 22.31 9.71 17.59 5.23 

Hydroclathrus clathratus – 49.4 4.2 18.3 2.9 

Padina boryana – 33.5-36.5 6.4-10.6 18.4-19.3 4.4-5.2 

Padina gymnospora – 36.6 9.86 1.86 – 

Padina pavonica – 33.08 11.83 – 1.79 

Rosenvingea nhatrangensis – 45.2-56.6 3.4-6.6 8.4-12.6 2.6-3.1 

Sacchoriza polyschides 10.88 28.2 14.4 45.6 1.1 

Sargassum decurrens – 30.4 7.1 22.2 3.3 

Sargassum filifolium – 28.2 10.2 21.4 4.0 

Sargassum filipendula – 44.29 8.72 3.73 – 

Sargassum ilicifolium 10.4 29.9 8.9 32.9 2.0 

Sargassum muticum 9.64 22.9 16.9 49.3 1.45 

Sargassum vulgare 14.66 14.20 15.76 67.8 0.45 

Turbinaria conoides – 34.4 5.9 19.7 2.3 

Undaria pinnatifida – 28.3 16.8 52.1 2.7 

      

Cystoseira humilis 57.06 20.35 10.34 64.09 5.22 

Cystoseira compressa 63.05 7.30 10.16 73.09 9.45 

Cystoseira tamariscifolia 48.99 23.85 12.52 54.06 9.57 

Cystoseira nodicaulis 58.95 13.45 9.20 73.04 4.31 

Cystoseira baccata 51.43 19.10 12.46 42.48 10.92 

Sources: (Robledo and Pelegrin 1997, Marinho-Soriano et al. 2006, Renaud and Luong-Van 2006, 

Rohani-Ghadikolaei et al. 2012, Tabarsa et al. 2012, Taboada et al. 2013, Paiva et al. 2014, Rodrigues et 

al. 2015, Vizetto-Duarte et al. 2015). –, information not available. 

  

In Table 6.2, the mineral composition of a variety of brown algae, including the 

Cystoseira species evaluated in this thesis, is shown. It can be observed that K is often 

highly accumulated in brown macroalgae. In nutrition, particular importance is given to 

the Na/K ratio. Even under a Na-restricted diet, Na deficiency does not occur in humans 

(Strazzullo and Leclercq 2014). In contrast, excessive Na consumption has been related 

to increased risk of hypertension, cardiovascular diseases (CVD) and kidney problems 

among others (Galletti et al. 2014). Interestingly, adequate intakes of K have been 
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reported to protect against CVD (Geleijnse et al. 2007). Therefore, it is thought that the 

intake of food or food-products with favorable Na/K ratios, such as those of the 

Cystoseira macroalgae studied, could be included in healthy diets.  

 

Table 6.2 – Mineral composition of a variety of brown algae. 

Species Na K Ca Mg Fe Mn Zn 

 g kg
-1

 mg kg
-1

 

Alaria marginata – – – – 60 3.79 23.6 

Dictyota acutiloba – 72.6 10.3 13.6 438 0.012 16 

Dictyota sandvicensis – 55.7 18.1 9.1 608 0.021 13 

Eisenia bicyclis – – – – 80 13.8 14 

Fucus vesiculosus – – – – 520 5.77-27.9 14-24 

Laminaria japonica – – – – 80 6.79 13 

Laminaria saccharina – – – – 40 3.04 8.5 

Laminaria spp. 9-60 13-106 5-30 5-20 40-800 – – 

Sargassum hemiphyllum 9.5 44.7 22.4 9.89 20.8 0.002 1.6 

Sargassum echinocarpum – 95 13.1 11.6 92 0.006 7 

Undaria pinnatifida 16-70 55-63 11-30 10-30 80-400 – – 

        

Cystoseira humilis 7.56 29.78 23.70 12.90 171.88 152.18 41.16 

Cystoseira compressa 8.94 60.02 13.08 18.53 149.74 14.27 9.43 

Cystoseira tamariscifolia 16.36 16.87 25.82 6.56 508.06 398.46 105.99 

Cystoseira nodicaulis 11.61 15.98 26.50 5.69 413.14 193.54 113.82 

Cystoseira baccata 10.81 22.10 9.43 6.78 109.59 108.35 106.73 

Sources: Mabeau and Florence 1993, McDermid and Stuercke 2003, Vizetto-Duarte et al. 2016.  

–, information not available. 

 

Caution must be applied, however, when considering the use of macroalgae as 

nutritional sources of minerals, due to the possible accumulation of toxic metals. 

Although toxicological research has showed that most metals in algal biomass are 

generally below the legislation limits allowed in several countries (Indergaard and 

Minsaas 1991), metal accumulation depends on several factors. Concentration of a 

given element in water can be a major factor, but others may be as important, such as 

interactions between elements, salinity, pH and also individual growth, modulating 

mineral concentration (Zbikowski et al. 2006). In addition, one has to take into account 

that the association of minerals with polysaccharides might limit the absorption of 
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minerals as well, modulating its bioavailability (Mabeau and Fleurence 1993). Having 

this in mind, Cystoseira species could be used, with prudence, in the formulation of 

mineral-rich formulations. 

In Chapter 3, the FA profiles of C. humilis, C. tamariscifolia, C. nodicaulis, C. 

compressa, C. baccata and C. barbata were determined. Macroalgae have in general 

low lipid contents, containing 1–5% on a DW basis. However, Phaeophyceae have 

higher percentages than most green and red algae, and the Cystoseira species reported 

here also presented higher lipid levels (4.31–10.92%). Moreover, the nutritionally 

important C18 and C20 PUFA, including n-3 PUFA, are commonly present in brown 

algae in significant high amounts, ranging from 24 to 58% (Kumari et al. 2013), which 

is also a typical character of the class Phaeophyceae that differentiates them from the 

members  of the Chlorophyta and Rhodophyta members  (Pereira et al. 2012). 

In this research, palmitic acid was the main FA detected for all species, which is 

in accordance with other Phaeophyceae (Pereira et al. 2012). As its name indicates, 

palmitic acid is a major component of palm oil, a widely used vegetable oil, found in 

food products such as margarine, cereals, sweets and baked goods. It is known that a 

high intake of palmitic acid may exert a negative effect on human health by raising the 

cholesterol blood levels (Clandinin et al. 2000) and by promoting the development of 

CVD (Mancini et al. 2015). However, it has been described that this effect can be 

counterbalanced by high levels of linoleic acid (Clandinin et al. 2000, French et al. 

2002), which is present in relatively high amounts in the Cystoseira species included in 

this work. In fact, it was previously reported that oral administration of extracts from 

brown algae such as Iyengaria stellata, Colpomenia sinuosa, Spatoglossum asperum 

(Ara et al. 2002) and Ecklonia stolonifera (Yoon et al. 2008) had an anti-hyperlipidemic 

effect in terms of decreasing total cholesterol, low-density lipoprotein (LDL) cholesterol 

and triacylglycerols. Hyperlipidemia is considered to be a major risk factor for CVD, 

including atherosclerosis, myocardial infarction, heart attacks and cerebrovascular 

diseases. In addition, the Cystoseira algae studied here showed a lipid profile enriched 

in total MUFA and PUFA. Diets rich in MUFA and PUFA have been shown to decrease 

total cholesterol and LDL cholesterol (Hargrove et al. 2001). By potentially reducing 

hyperlipidemia, brown algae show once again their potential towards nutraceutical 

applications.  

PUFA are known for having positive effects on human health and are vital 

elements in human nutrition. In fact, the mean ratio of PUFA/SFA recommended by the 
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British Department of Health is 0.45 or higher (HMSO 1994). Although many of the 

species analyzed in this work had high amounts of SFA, some species exhibited higher 

concentrations of PUFA, and PUFA/SFA ratios higher than 1 (C. tamariscifolia, C. 

nodicaulis and C. compressa). However, not all PUFA have beneficial effects on human 

health as excess n-6 PUFA are generally considered as pro-inflammatory or as 

promoters of other cell harmful effects. On the other hand, n-3 PUFA derivatives are 

thought to be less inflammatory or even anti-inflammatory (Calder 2006). Since the 

biosynthetic pathways of both n-3 and n-6 PUFA compete for the same enzymes, the 

health promoting effects are dependent on the n-6/n-3 ratio of PUFA obtained through 

diet. The World Health Organization (WHO) recommends a ∑n-6/∑n-3 ratio lower than 

10 (Pereira et al. 2012). In this study, all Cystoseira algae except for one (C. barbata, 

12.15) can be considered as a good source of dietary PUFA, since they showed ratios 

ranging between 0.29 and 6.73 (Vizetto-Duarte et al. 2015).  

The type of FA consumed contributes to many processes in health and disease. 

Consumption of fatty acids can have a direct effect on stimulating or precluding 

atherosclerosis and coronary thrombosis due to their effect on blood cholesterol and 

LDL cholesterol concentrations as discussed above. Therefore, Ulbricht and Southgate 

(1991) proposed two indices that might better characterize the atherogenic and 

thrombogenic potential of the diet: the index of atherogenicity (IA) and index of 

thrombogenicity (IT). The IA indicates the relationship between the sum of the main 

SFA considered pro-atherogenic (favoring the adhesion of lipids to cells of the immune 

and circulatory systems), and of the main classes of unsaturated FA considered anti-

atherogenic, inhibiting the plaque aggregation and diminishing the levels of esterified 

fatty acids, cholesterol and phospholipids (Ulbricht and Southgate 1991). The IT is an 

estimate of the effect of a given FA profile on the promotion of clot formation in blood 

vessels. This is defined as the relationship between the pro-thrombogenic (saturated 

C14:0, C16:0 and C18:0) and the anti-thrombogenic MUFA, n-6 and n-3 PUFA 

(Ulbricht and Southgate 1991). Stearic, myristic and palmitic FA (C12:0, C14:0 and 

C16:0, respectively) are known to be among the most atherogenic FA, whereas the 

longer chain stearic acid (C18:0) is believed to be thrombogenic, but neutral with 

respect to atherogenicity (Attia et al. 2015). In Chapter 3, it was also calculated the 

unsaturation index (UI), which accounts for the number of unsaturation of each FA 

(Kumari et al. 2013). As lipid unsaturation provides higher flexibility and fluidity to the 

bilayer of biological membranes, the high UI determined for Cystoseira algae suggests 
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that these macroalgae may also be beneficial for preventing a diverse array of diseases, 

such as type-2 diabetes (Weijers 2012) or Alzheimer’s (Hosono et al. 2015), since 

membrane fluidity is known to affect the function of biomolecules (e.g. proteins) 

integrated or bound to the lipid bilayer.  

The evaluation of the PUFA/SFA and ∑n-6/∑n-3 ratios as well as of the 

unsaturation, atherogenic and thrombogenic indices showed that Cystoseira  species 

have beneficial nutritional value. Nonetheless, the profiles of C. compressa, C. 

tamariscifolia and C. nodicaulis were considered as the “healthiest” according to these 

parameters.  

In summary, Cystoseira macroalgae could be regarded as highly nutritive food 

and/or incorporated in food supplements due to their high amounts of carbohydrates and 

minerals, especially of K, Ca and Fe, and a favorable Na/K ratio. Moreover, this study 

demonstrates that Cystoseira species can have beneficial effects if be incorporated in the 

formulation of low fat food and PUFA-rich nutraceuticals. The results described in this 

work, together with recent studies on the edibility of Cystoseira (Andrade et al. 2013), 

demonstrate that these algae may be alternative sources of valuable non-animal food 

and food products.  

Another aspect explored in this thesis was the evaluation of antioxidant and anti-

proliferative properties of extracts from different Cystoseira species, namely C. humilis, 

C. tamariscifolia and C. usneoides (Chapter 4). Aiming the evaluation of antioxidant 

activity, the total phenolic contents and the radical scavenging activity against DPPH 

and ABTS radicals were determined. DPPH and ABTS radical scavenging activity 

assays were selected as they are simple, rapid, sensitive and reproducible procedures 

(Lu et al. 2010, Zampini et al. 2010, Li et al. 2012). The tested algal extracts showed 

antioxidant activity in both bioassays. The hexane and diethyl ether extracts of C. 

tamariscifolia and the diethyl ether extract of C. usneoides had the highest antioxidant 

potential (Chapter 4). Brown algae, such as Cystoseira and Fucus, are known to contain 

molecules with antioxidant properties (Mhadhebi et al. 2011, Heffernan et al. 2015). In 

addition, Kosanić et al. (2015) analyzed acetone extracts of three Cystoseira species (C. 

amentacea, C. barbata and C. compressa) and found relatively strong scavenging 

activity in the acetone extract of C. amentacea. In another study, the lipid extracts of 

eight marine algae belonging to the genus Cystoseira (C. amentacea var. amentacea, C. 

jabukae, C. crinita, C. amentacea var. stricta, C. elegans, C. algeriensis, C. elegans, 

and C. barbata) were evaluated for their antioxidant activity in a micellar model system 
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by Ruberto et al. (2001). These authors found that all lipid extracts showed antioxidant 

activity and among them the C. amentacea var. stricta extract was the most active. The 

authors ascribed this activity to the presence in the extracts of tetraprenyltoluquinols 

namely cystoketal, strictaketal, amentaepoxide and amentol. In Chapter 4, demethoxy 

cystoketal was isolated from C. tamariscifolia and tested for antioxidant properties 

against DPPH and ABTS but the compound did not present significant antioxidant 

activity.  Ruberto et al. (2001) reported that cystoketal seemed to be a compound 

responsible for the antioxidant activity. Although the two compounds are structurally 

related, it is known that molecules with slight differences in structure may have 

different physiological activities, including pharmacological effects, toxicology and 

metabolism (Chhabra et al. 2013). Moreover, Ruberto and collaborators (2001) used a 

micellar model that can afford different results than those determined by the DPPH or 

ABTS assays (Chandrasekara et al. 2016). In addition, the authors evaluated the 

antioxidant activity of the extract, but did not evaluate the antioxidant activity of the 

isolated compound. Therefore, other studies could be done to ascertain if cystoketal 

contributed for the observed antioxidant activity. 

In our research work, the antioxidant activity was shown to correlate with the 

total phenolic content in the algal extracts. Phenols are important antioxidants because 

of their ability to scavenge free radicals such as singlet oxygen, superoxide and 

hydroxyl radicals. In accordance with our results, several studies have found a high 

correlation between antioxidant activities of algae and phenolic contents (Balboa et al. 

2013, Farasat et al. 2014). On the other hand, studies such as that of Heo et al. (2005) 

reported that the antioxidant activity did not correlate with the total phenolic content in 

the algal extract. Extraction from algal biomass is usually not selective and the resulting 

extracts are complex mixtures of compounds. Different solvents, according to their 

polarity, may extract various compounds including pigments (carotenoids, chlorophylls 

a and b), alkaloids, phenolic compounds and essential oils. As many of these 

compounds have antioxidant activity, it is possible that synergistic effects may be at 

play (Balboa et al 2013).  

In the past years, the importance of antioxidants in the protection of organisms 

against oxidative stress, and of food and food products against oxidation, has become 

evident in several areas including physiology, pharmacology, nutrition and food 

processing (Magalhaes et al. 2009). Compounds such as BHA, BHT, TBHQ and PG 

chemically synthesized are often used in food and pharmaceutical formulations as 
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antioxidants. However, the use of BHA and BHT has been restricted due to concerns 

regarding their toxic and carcinogenic effects (Lanigan and Yamarik 2002). Hence, 

there is a growing interest in new, safe and cheaper antioxidants for food applications, 

mostly of natural sources due to an increasing trend in consumer preferences towards 

natural antioxidants (Sanches-Silva et al. 2014). The high RSA obtained for Cystoseira 

extracts suggests that these macroalgae are potential sources of novel antioxidants. 

In Chapter 4, C. tamariscifolia hexane extract (CTH) had the higher anti-

proliferative activity in HepG2 cells among the other extracts, as demonstrated by its 

lower IC50. Moreover, CTH was selective towards tumor cells when compared to non-

tumoral ones. 

Lower cell proliferation values in the MTT assay can be explained by either 

decreased cell proliferation and/or occurrence of cell death. Thus, proliferation of 

HepG2 cells treated with CTH was analyzed through the BrdU incorporation assay, 

whereas analysis of cell morphology and phosphatidylserine (PS) externalization were 

carried out to determine whether cell death occurred via apoptosis. Indeed, CTH 

inhibited proliferation and induced apoptosis of HepG2 cells (Chapter 5). Both anti-

proliferative processes are thought to be one way to prevent carcinogenesis, as tumoral 

cells are considered to have limitless replicative potential and the ability to evade 

apoptosis (Hanahan and Weinberg 2011). 

Furthermore, the application of C. tamariscifolia hexane extract was tested on 

3D MCTS, because compounds with anti-tumoral potential must penetrate into tumor 

cell masses to reach cancer cells at adequate concentrations. Spheroid cultures are 

known to mimic more closely the properties of tumor tissue than monolayer cultures 

with regard to growth kinetics and metabolic rates (Herrmann et al. 2008). Tumor cell 

lines are in general more resistant to antineoplastic agents when the cells are grown as 

3D MCTS rather than as monolayer cultures (Ivascu and Kubbies 2006). In addition, the 

susceptibility of multicellular spheroids to drugs has been reported to resemble the in 

vivo sensitivity (Hirschhaeuser et al. 2010). In our experiments, the tumoral spheroid 

completely lost its integrity after a 24h treatment, confirming the potential of CTH as an 

anti-tumoral agent in a 3D model. 

Demethoxy cystoketal (1, trivial name) was isolated by bio-guided fractionation 

from CTH. Compound 1 was structurally elucidated by NMR and identified as an anti-

proliferative molecule. Its structure was elucidated using 
1
H and 

13
C NMR data analysis 

and comparison with data previously described in the literature. All spectral data 
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showed to be identical to those reported by Valls et al. (1996). Additionally, the 

molecular mass of compound 1 was confirmed as C27H36O4 by LRESIMS data analysis. 

Therefore, and as this compound corresponds to a known natural product isolated from 

other Cystoseira species (C. amentacea), chromane 1 was unequivocally identified as 

demethoxy cystoketal chromane, although NOESY was not recorded due to the low 

compound amount.   

Terpenoids are particularly abundant in brown algae and are one of the most 

representative groups of secondary metabolites of these organisms. Many of these 

compounds possess various interesting biological properties that include cytotoxic, 

antioxidant, antifungal and antibacterial activities (Bennamara et al. 1999, Ayyad et al. 

2003, Fisch et al. 2003). 

In the 1980’s and 1990’s, Amico and collaborators performed a thorough 

screening of the chemistry of Cystoseira species (Amico 1995) and have reported the 

presence of cystoketal, a tetraprenylhydroquinol derivative, in C. balearica (Amico et 

al. 1984). In 1996, Valls et al. described two new cystoketal derivatives, demethoxy 

cystoketal chromane and cystoketal quinine, in the brown alga C. amentacea var. stricta 

collected off the French Riviera coast. However, in this thesis, we reported for the first 

time this compound in C. tamariscifolia and its anti-proliferative bioactivity. 

In Chapter 5, we isolated isololiolide (trivial name) from C. tamariscifolia for 

the first time. The isolated compound displayed a [M + Na]
+
 quasi-molecular ion peak 

at m/z 219.0993, indicating the molecular formula C11H16O3, with four unsaturations. 

Again, using 
1
H and 

13
C NMR data analysis and comparison with data previously 

described in the literature (Kimura and Maki 2002), isololiolide was identified. 

Isololiolide is a loliolide derivative and both of them are carotenoid catabolites. 

Loliolide was first isolated from the plant Fumaria officinalis (Manske 1938) and its 

chemical synthesis has already been previously achieved (Rouessac et al. 1983). 

Recently loliolide and isololiolide have been found in other terrestrial plants such as 

Vernonia cinerea (Youn et al. 2014) and Vitex leptobotrys (Pan et al. 2014). These 

epimers were also identified in other brown algae such as Undaria pinnatifida (Kimura 

and Maki 2002), Sargassum crassifolium (Kuniyoshi 1985), Dictyota dichotoma (Ali et 

al. 2003), Sargassum thunbergii (Park et al. 2004), Cladostephus spongiosus f. 

verticillatus (El Hattab et al. 2008) and Homoeostrichus formosana (Fang et al. 2015). 

In fact, high concentrations of loliolide were found in the brown macroalgae Taonia 

atomaria and Cutleria multifida (Percot et al. 2009). 
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The origin of loliolide and isololiolide has been discussed by several authors. 

They suggested that loliolide is a degradation (Ghosal et al. 1976) or a photo-oxidation 

product of carotenoids such as fucoxanthin and zeaxanthin (Isoe 1972, Repeta 1989). 

Isololiolide, on the other hand, is thought to originate only from zeaxanthin (Fig. 6.1).  

 

 

Fig.6.1 – Formation of loliolide and isololiolide from fucoxanthin and zeaxanthin. 

 

From a biological point of view, loliolide is a phytotoxic compound and has 

various effects, such as inhibition of seed germination  (Hiraga et al. 1997) and also of 

cyanobacterial growth (Xian et al. 2006). It was considered by the latter authors as an 

allelochemical, a compound produced by an organism that influences germination, 

growth, survival and/or reproduction of other organisms and that can be an important 

defense against herbivory. Loliolide has also demonstrated ant-repellent properties 

(Okunade and Wiemer 1985) and immunosuppressive activity (Duan et al. 2002). 

In addition, metabolites of carotenoids such as fucoxanthinol had previously 

shown modulatory actions on viability, cell-cycle arrest and apoptosis. Interestingly, 

fucoxanthinol effects were even more pronounced than those of fucoxanthin (Martin 

2015, Rwigemera et al. 2015). 

In our study, isololiolide had anti-proliferative activity and was highly selective 

towards HepG2 cells, especially when comparing with non-tumoral human fibroblasts.  
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Furthermore, isololiolide disrupted the normal HepG2 cell cycle, inducing G2/M 

cell cycle arrest along with a decrease in the percentage of cells in S phase (Chapter 5). 

Cells with an intact DNA damage response frequently arrest or die in response to 

DNA damage, thus reducing the likelihood of progression to malignancy. A transient or 

prolonged delay in cell cycle progression in either G1 or G2 phases allows the 

intervention of DNA repair mechanisms to achieve error-free DNA replication and 

correct chromosome segregation. This is essential for the maintenance of genomic 

integrity before entry into the S phase and mitosis (Sclafani and Holzen 2007). 

Isololiolide significantly induced apoptosis in hepatocarcinoma HepG2 cells as 

demonstrated in Chapter 5. In hepatocytes, as well as in many other cell types, apoptosis 

mainly occurs through two major pathways: the extrinsic death receptor pathway and/or 

the intrinsic mitochondrial pathway (Guicciardi et al. 2013). In the death receptor 

pathway, and following the interaction with its cognate ligand, the receptors located at 

the cellular membrane recruit adaptor proteins such as initiator caspase-8, triggering the 

activation of caspases to orchestrate apoptosis. In the mitochondrial pathway, stimuli 

target mitochondria either directly or through the mediation of pro- or anti-apoptotic 

members of the Bcl-2 family. One of the most widely studied negative regulators of 

apoptosis is Bcl-2, thought to prevent the release of cytochrome c from the 

mitochondria. Indeed, it has been demonstrated that overexpression of Bcl-2 prevents 

the efflux of cytochrome c from mitochondria whilst protecting cells from apoptosis 

(Gogvadze et al. 2006). Isololiolide decreased anti-apoptotic Bcl-2 protein expression, 

suggesting that apoptotic stimulus through the intrinsic pathway may be occurring (Fig. 

6.2). 

Proaspase-3 (or caspase-3 zymogen) exists within the cytosol as an inactive 

dimer (Boatright and Salvesen 2003). Cleavage of procaspase-3 within their respective 

linker segments is required for caspase-3 activation. A decrease in procaspase-3 levels 

is due to its proteolysis, leading to caspase-3 activation. Our results showed that 

incubation of HepG2 cells with isololiolide resulted in a 2-fold decrease of procaspase-3 

levels, strongly suggesting that procaspase-3 was processed to caspase-3 (Chapter 5). 

Active caspase-3 cleaves several substrates including PARP, and activates death 

effector molecules triggering the structural changes characteristic of apoptotic cells. 
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Fig. 6.2 – Suggestion of a model of how isololiolide affected the apoptotic pathways in HepG2 cells in 

the research performed in this thesis (red arrows and cross). Isololiolide treatment on HepG2 cells 

resulted in increased p53 expression, decreased procaspase-3 (strongly suggesting its activation to 

caspase-3), increased PARP cleavage and Bcl-2 downregulation. 

 

In addition, exposure to isololiolide induced proteolysis of PARP in HepG2 

cells. PARP is a substrate of caspase-3 and its cleavage has been considered to be 

indicative of functional caspase activation (Bressenot et al. 2009). PARP plays an active 

role in key biological processes, such as transcription and cell cycle regulation, response 

to DNA damage, apoptosis and maintenance of genome integrity. Targeting DNA repair 

with PARP inhibitors has shown a broad range of anti-tumor activities in patients with 

advanced malignancies (Nguyen et al. 2011).  

Given the ability of p53 to induce both cell cycle arrest and apoptosis, we 

assessed its expression by western blot analysis after 24, 48 and 72h incubation periods 

with isololiolide. Interestingly, p53 protein expression increased after 24h of isololiolide 

treatment, a level that was maintained even after 72h. By arresting the cell cycle and 

allowing time for the repair of potentially lethal double-strand breaks, p53 maintains 

chromosomal integrity and improves the survival of damaged cells. In addition to 

enforcing cell cycle checkpoints, p53 also regulates a group of genes involved in DNA 
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recombination and repair (Gatz and Wiesmuller 2006). Indeed, p53 integrates multiple 

stress signals into a series of diverse anti-proliferative responses. Besides its function in 

cell cycle arrest, one of the most important p53 functions is its ability to activate 

apoptosis (Amaral et al. 2010). Given the profound proliferative advantage produced by 

loss of p53 function, it is not surprising that p53 is the most commonly inactivated 

tumor suppressor gene in human cancer (Rivlin et al. 2011).  

Overall, isololiolide treatment on HepG2 cells resulted in increased p53 

expression, decreased procaspase-3 (strongly suggesting its activation to caspase-3) and 

increased PARP cleavage. These changes were further reinforced by the observed 

down-regulation of the anti-apoptotic/pro-survival Bcl-2 protein. 

Based on this study, a timeline for the molecular events involved in isololiolide-

induced apoptosis was constructed (Fig. 6.3).  

 

Fig. 6.3 – Temporal sequence of events during isololiolide-induced apoptosis in HepG2 cells. The 

sequence of events is shown linearly for simplicity. 

 

Overexpression of p53, PARP cleavage and procaspase-3 decrease can be 

observed as early as 24h. Corresponding decrease in Bcl-2 protein expression is not 

observed until 48h. The delay between the Bcl-2 and the former protein expressions 

suggests that a separate regulatory mechanism might exist to control the timing of Bcl-2 

downregulation. This may coincide with a cellular commitment to apoptosis that 

requires an integration of other signaling pathways. Moreover, increment of PARP 

cleavage (or inactivation) was expressed in a time-dependent fashion. These results 

suggest that there is a sequential activation of different apoptotic proteins at different 

times. 
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Taking all these results together, we can indeed conclude that Cystoseira 

tamariscifolia can be an important source of bioactive compounds, which could be used 

as pharmaceutical agents in the near future. However, the structure of natural bioactive 

compounds is often complex which hinders their identification, isolation and synthesis 

as well as a better understanding of the molecular mechanisms involved in their 

therapeutical potential. Moreover, insufficient yields can also become a limitation. 

Nonetheless, the wide spectrum of bioactivities found in marine algae underlines the 

important potential application of algal compounds in the pharmaceutical industry, 

which can complement and inspire the synthesis of novel drugs. 
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7.1 Conclusions and future perspectives 

 

Marine macroalgae possess a remarkable chemical and pharmacological 

potential for nutrition and drug discovery purposes. In this thesis, the main goal was to 

evaluate if Cystoseira species had the potential to be used in the nutra- and 

pharmaceutical industries. As a result, their biochemical composition and biomedical 

properties were determined and characterized.  

In this context, biological questions were answered here for the first time and 

several concluding remarks can be drawn from the data obtained in this thesis, which 

are summarized in Fig. 7.1. 

 

 

Fig. 7.1 – Summary of the main conclusions obtained with Cystoseira species in this thesis. 

 

The nutritional proximate composition of five Cystoseira species was assessed 

and shows that these macroalgae have the characteristics of a healthy, nutritious 

food/food product. The fatty acid profile of six Cystoseira species also confirmed that 

they could be used in health-derived food products.  

Cystoseira extracts exhibited antioxidant and anti-proliferative properties, 

especially the hexane extract of C. tamariscifolia. Two bioactive compounds with anti-

proliferative activity and selectivity (demethoxy cystoketal and isololiolide) were found 

in C. tamariscifolia for the first time. Isololiolide showed to be a promising natural 

product that modulates molecular pathways involved in cell cycle and apoptosis, which 
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could be a valuable starting point in the quest for novel molecules for hepatocellular 

carcinoma treatment.   

The outcomes of this thesis showed that some of the samples studied here have 

potential to become candidates for generating new nutra- and/or pharmaceuticals. 

Hopefully, the results here obtained will contribute to raise awareness of the importance 

of this renewable resource as a useful, full of potential genus of marine macroalgae. 

As future research, a number of ideas can be considered. This work can, in the 

near future, be used to promote Cystoseira macroalgae as ingredients in gourmet salads 

or soups, among other preparations. Cystoseira lipids can be incorporated in the 

formulation of low fat food and PUFA-rich nutraceuticals. Future studies may also 

include the evaluation of controlled culture conditions in order to increase biomass and 

lipids (or other biomolecules) yield and commercial sustainability in, for instance, an 

integrated multi-trophic aquaculture. In addition, the extracts and compounds could be 

screened against a larger tumoral and non-tumoral panel cells and in models for other 

bioactivities such as anti-diabetic or neuroprotection. Moreover, for the compounds here 

isolated, it would be important to do absorption, distribution, metabolism and excretion 

(ADME) studies together with pharmacodynamics and pharmacokinetics.  

As apoptosis is regulated by a complex network of signaling pathways, the effect 

of isololiolide on other key molecular players of the apoptotic cascade could also be 

assayed. Furthermore, other types of cell death such as autophagy could be evaluated. 

One interesting approach would be to assess co-treatment strategies with drugs currently 

used in the clinic, such as etoposide and doxorubicin among others, in order to try to 

improve efficacy. During the pre-clinical evaluation, in vivo studies, including the 

assessment of in vivo toxicity in terms of time and dose response, will have to be 

performed. Furthermore, there is also the possibility to optimize the existing compounds 

structures with structure-activity relationship (SAR) analyses. 

 


