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Abstract

As technology and our understanding of the human brain evolve, the idea of creating

robots that behave and learn like humans seems to get more and more attention.

However, although that knowledge and computational power are constantly growing

we still have much to learn to be able to create such machines. Nonetheless, that

does not mean we cannot try to validate our knowledge by creating biologically

inspired models to mimic some of our brain processes and use them for robotics

applications.

In this thesis several biologically inspired models for vision are presented: a

keypoint descriptor based on cortical cell responses that allows to create binary

codes which can be used to represent specific image regions; and a stereo vision

model based on cortical cell responses and visual saliency based on color, disparity

and motion. Active vision is achieved by combining these vision modules with an

attractor dynamics approach for head pan control.

Although biologically inspired models are usually very heavy in terms of pro-

cessing power, these models were designed to be lightweight so that they can be

tested for real-time robot navigation, object recognition and vision steering. The

developed vision modules were tested on a child-sized robot, which uses only visual

information to navigate, to detect obstacles and to recognize objects in real time.

The biologically inspired visual system is integrated with a cognitive architecture,

which combines vision with short- and long-term memory for simultaneous localiza-

tion and mapping (SLAM). Motor control for navigation is also done using attractor

dynamics.

KEYWORDS: Keypoint Descriptors; Stereo Vision; Active Vision; Cogni-

tive Robotics; Object Recognition; SLAM.
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Resumo
À medida que a tecnologia e a nossa compreensão do cérebro humano aumenta, a

ideia de criar robôs que se comportam e aprendem como os seres humanos começa

a ganhar mais e mais atenção. Contudo, apesar de esse conhecimento e do poder

computacional estarem constantemente a aumentar, ainda temos muito para apren-

der até sermos capazes de criar tais máquinas. No entanto, isso não nos impede de

tentar validar o nosso conhecimento ao criar modelos biologicamente inspirados que

imitem alguns dos processos do nosso cérebro e usá-los para aplicações robóticas.

Nesta tese são apresentados diversos modelos biologicamente inspirados para

visão: um descritor de keypoints baseado em respostas das células da área V1 do

córtex visual que permite a criação de códigos binários que podem ser usados para

representar regiões espećıficas das imagens; um modelo de visão estéreo também

baseado em respostas de células da zona do córtex visual V1 e um modelo de saliência

visual baseado em cor, disparidade e movimento. Combinando estes modelos de

visão com um modelo de atractores dinâmicos para controlo da rotação da cabeça

criou-se um sistema de visão activa.

Apesar de os modelos computacionais biologicamente inspirados serem geral-

mente bastante pesados em termos de processamento, os modelos apresentados

foram concebidos para que fossem suficientemente leves em termos de poder de

processamento de maneira a poderem ser usados em robôs para navegação, recon-

hecimento de objectos e para foco-de-atenção em tempo real. Os modelos de visão

desenvolvidos foram testados num robô com o tamanho de uma criança, que usa

apenas informação visual para navegar, detectar obstáculos e reconhecer objectos

em tempo real. O sistema de visão biologicamente inspirado é ainda integrado com

uma arquitectura cognitiva, que combina os processos visuais com estruturas de

memória a curto e longo prazo para SLAM. O controlo dos motores para navegação

também é feito utilizando atractored dinâmicos.

PALAVRAS-CHAVE: Descritores de Keypoints; Visão Stereo; Visão Ac-

tiva; Robótica Cognitiva; Reconhecimento de Objectos; SLAM.
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– Terzić, K. and Lobato, D. and Saleiro, M. and du Buf, J.M.H. (2014)

A fast neural-dynamical approach to scale-invariant object detec-

tion, Proc. Int. Conf. On Neural Information Processing, LNCS

vol. 8834, pp. 5611-518.
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Chapter 1

Introduction

Abstract: This chapter introduces the scope of this thesis, namely, an integrated

cortical architecture for robot vision and cognitive robotics, relying on biological

vision principles and properties.

1.1 Scope of the thesis

Throughout history, humans have created tools, and later machines, to improve

and accelerate daily tasks. In the same way that the human being has evolved,

its creations have also evolved to the point where we find ourselves today,

where most of the harder, longer and repetitive tasks could be performed by

robots. However, the robots that have been developed in the past decades were

dedicated to industrial environments, where they realize specific tasks under

human supervision. The term “autonomous robot” is used many times but the

truth is that truly autonomous robots still hardly exist. They are autonomous

only in the sense that they are able to execute a previously programmed task

on their own. They are not quite able to adapt to changes in the workspace.

In some cases, very small changes in the workspace may be enough to make a

robot fail in its task.

There has been much research and advances in artificial intelligence to in-

crease the autonomous component of robots so that they can learn by them-

1
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selves while interacting with the surrounding environment. A big part of that

research can provide good solutions for specific cases but there may still fail

when the changes in the workspace increase. However, we know of a system in

nature that is capable of learning and solving a large number of highly complex

problems: the human brain. This system is capable of processing the various

stimuli (sounds, images, smells, etc.) of the surrounding environment in an

extremely fast and efficient way. On the other hand, we must take into account

that the creation of a computational model that is able to simulate the human

brain in all its components and with all its capabilities is extremely complex.

Although some are optimistic [Kurzweil, 2006], this will certainly take many

more years since we do not even completely know how our brain works.

Considering the human brain as a model when we think of autonomous

robots, it is important to focus on one of its features: cognition. The word

“cognition” generally refers to the faculty of mental activities of human beings

dealing with abstraction of information from the real world, their representation

and storage in memory, as well as automatic recall [Patnaik, 2007]. It is believed

that through cognition we may overcome the limitations of classical artificial

intelligence, hence allowing us to create cognitive robots: robotic systems that,

instead of being pre-programmed to execute a task, are able to execute it by

learning from its past experiences and emotions [Ratanaswasd et al., 2005].

Cognition implies an apprenticeship and any process of learning begins with

the acquisition of information. In the case of human beings, that acquisition

of information begins in the senses. Concerning the five human senses, we may

consider vision as the most important one in the cognitive process. Using only

the visual system we are able to immediately identify objects, places, other

people and other animals. Vision also allows us to have notions of distance

and size. Another factor that leads us to consider vision as one of the most

important senses is the fact that it is closely connected to memory: it is much

easier to recognize someone by the face than by the voice; it is also easier to

recognize an object by looking at it than by what we feel when we touch it.

Doing this analysis in a reverse direction, when we think about someone we

know, we easily remember the face. However, although we can easily remember
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some things and create mental representations of objects, places and people, we

cannot remember everything to the very finest detail. Some things remain in

our memory for our entire life whereas other things may not even remain there

for a few seconds. This duality in the storage of information in our brain has

been studied by researchers and cognitive psychology scientists for a very long

time. They usually consider the existence of two main types of memory: short-

term memory and long-term memory [Patnaik, 2007]. Some even consider the

existence of a third type of memory: sensory memory, which consists of the

immediate perception of the surrounding environment [Brady et al., 2008].

A very simple example of the distinction between the several types of mem-

ory is the observation of an image. In the immediate moment in which we

observe it, we are able to describe everything to the finest detail, since all the

captured information is still present in sensory memory. After a few seconds

we are able to describe less details, since only the most important details were

moved to short-term memory. Finally, if we are going to describe the same

image after a few days, we are only able to give a short description of the

scene without many details when compared to the descriptions based on the

short-term and sensory memories. In this triadic memory system there is a

process of filtering the information in such a way that only important things

remain in memory. However, we may not say that visual long-term memory

cannot have a high degree of detail: apart from being able to remember spe-

cific scenes, we are also able to remember details that allow us to distinguish

objects of the same type and their states. The detail of the stored information

depends on our attention and concentration while observing the world around

us. Although we normally suppress most of the details, we are able to store

lots of detailed information when we have to [Brady et al., 2008].

In the same way that we are naturally capable of selecting and storing

only the relevant information that comes from perceptions, we are also able

to direct our attention to regions that are relevant, discarding the rest. This

ability to filter out important information is something that reflects our brain’s

efficiency. If our brain would analyze all the information provided by our senses

it would be constantly busy [Rensink, 2000]. As an example, when we observe
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a scene we easily identify several objects without analyzing everything in our

field of view. The same does not happen when we analyze images using classical

computer vision algorithms. In these, the images are normally processed pixel

by pixel, which makes the processing extremely heavy and slow when compared

to human capabilities.

Another problem that emerges when we try to model human cognition

is object recognition. This topic has been widely studied but, as for most

of the problems already described, it does not have a solution that allows

for generalization. Most used recognition methods can only deal with objects

which already exist in training databases [Forssén et al., 2008].

The implementation of cognitive systems in robots, even if only very rudi-

mentary, may yield a new generation of robots that may, in a certain way,

adapt to changes in the workspace and interact with humans. By implement-

ing a cognitive system, human-machine interaction may become much more

dynamic and would allow the system to evolve.

There are countless applications for cognitive robots, such as assistance

robots for elderly or handicapped people. From tasks that may seem simple, like

navigation in dynamic environments, other applications may emerge like guid-

ing robots for blind people in airports or shopping malls, surveillance robots,

etc. Despite the countless applications, the pursuit of cognition in robots is

still in its first steps. However, the increasing exchange of information between

engineers, psychologists and neuroscientists, among others, certainly will result

in the creation of biological models that will get closer and closer to the cog-

nitive system of which we know that it works but still not how it works: our

own brain.

1.2 Human visual system

For a better comprehension of the text, in this section we briefly introduce some

main aspects of the Human Visual System (HVS), namely, the visual attention

models and object recognition. The state-of-the-art about each chapter topic

in done within the chapter.
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1.2.1 Visual attention models

Most of the scenes that we observe are too complex to be totally perceived.

The human brain, although being extremely complex and having great capa-

bilities, also has its limitations and it is not able to instantly process all the

sensory information. Hence, we may say that its great capabilities are also due

to the ability of selecting and using only the necessary and essential sensory

information. In this process, humans must select the essence of the scenes they

observe – gist – and process this sequentially [Martins et al., 2009].

This selection process is not only performed by humans. It is also a very

important process for the survival of animals, allowing them to quickly detect

their preys and their predators. However, although this process is just a small

part of the visual system, when combined with other processes it allows us to

draw some conclusions on how it works [Martins et al., 2009]: (1) very quick

extraction of the essence of the perceived scene, (2) also very fast extraction

of the essence of some objects and drafting a spatial layout map, in parallel

with (3) the construction of a saliency map for Focus-of-Attention (FoA), and

finally (4) sequential analysis of different regions of the observed scene for

precise object recognition, using peaks and regions of the saliency map with

Inhibition-of-Return (IoR), in order not to process the same region more than

once.

The last step (4) may occur in a conscious (directed or overt) or unconscious

(covert) way [Martins et al., 2009]. Focus-of-Attention [Itti and Koch, 2001] is

a cognitive process that may be described as the ability to focus one or more

senses on a specific object or sound. FoA is directly related to the saccadic

movements of the eyes (saccades), which occur countless times per minute

without us being aware of this. However, the existence of information about

the place where something is going to happen may influence our movements

[Masciocchi et al., 2009]. When we look at an image, our eyes will sequentially

focus the most salient regions by descending order of conspicuity, because some

regions will have a bigger concentration of salient points than others.

The regions with higher concentration of points usually correlate with the

detected salient regions. The grouping of these salient and spatially organized
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regions we call a saliency map. Saliency maps represent the instantaneous

saliency of the different parts of the visual input. Such maps can be built from

several features, such as color, orientation, intensity, among others [Itti and

Koch, 2001].

The identification of salient regions in the periphery of the field of view

may also cause movements of the head, for directing the field of view towards

regions of higher interest. The fact that visual attention guides our field of

view towards areas with higher saliency makes it one of the most important

mechanisms for perceiving the surrounding environment [Ruesch et al., 2008].

As already mentioned, saliency maps may be built from several features,

such as keypoints, contours, color, texture, orientation, movement, disparity,

etc. However, each of these features results in a different saliency map, making

it necessary to combine multiple saliency maps into one “master” map. The

result can be the intersection of the multiple maps or their union [Martins et al.,

2009]. However, in some cases it is possible to obtain good results using only

a small amount of features. An example of this is the saliency and segregation

algorithm proposed by Martins et al. [2008] which is based on color, one of the

most relevant features.

One of the reasons of the above algorithm is the fact that the color re-

gions are normally very well defined because of differently colored objects and

backgrounds. This makes it easy to delimit them and segregate them from the

rest of the image. Later, Martins et al. [2009] presented a biologically plau-

sible method to obtain a saliency map not only based on color but also on

texture. The combination of color saliency with texture saliency makes the

method more complete, since it can highlight other types of features in images,

therefore making it more robust to multiple environments.

A very different attention algorithm for a robot was developed by Meger

et al. [2008]. Their algorithm uses stereo vision to determine the depth of the

field in order to highlight objects that are not in the ground plane. This method

implies the use of a stereo camera to generate the disparity maps. Apart from

the saliency map obtained from disparity, a color-based saliency map is also

created and merged with the previous one. The combined saliency map is
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obtained by the intersection of the two maps.

Another algorithm to create saliency maps was proposed by Butko et al.

[2008]. Their algorithm applies an approximation to a Bayesian model, opti-

mized to be used in real time with low computational cost, to direct the cameras

of a robot for the development of social robots.

In general, visual attention algorithms are very similar with some common

aspects, even if they are based on different features or combinations of multiple

features. Color is one of the most used features due to its relevance and to the

good results that can be obtained. However, other aspects such as texture, ori-

entation or disparity may also provide very interesting and useful results. Once

a saliency map is computed we can then apply object recognition algorithms

to the most salient regions.

1.2.2 Object recognition

Object recognition is one of the major topics in computer vision since it is

connected to all the branches of computer vision. Throughout times significant

research has been done to develop representation methods and algorithms to

recognize images captured under multiple conditions (different points of view,

different illumination conditions, occlusions, etc.). In some cases of very specific

objects, such as fingerprints, faces and traffic signs, substantial success rates

have been accomplished. One of the objectives of object recognition is also to

perform categorization.

In most applications involving artificial vision it is necessary to make a

distinction between the detection and the recognition of one or several objects.

As an example, in an industrial environment the objects to detect are previously

well defined and sometimes the position where they will appear is also known.

This makes the recognition task much easier and straight-forward [Ohali, 2011].

If the objects can appear in any position, the task becomes a lot more difficult.

In the case that many different objects may appear and that they may appear

with different views and in different backgrounds, it becomes extremely hard to

perform object recognition using the methods from classical computer vision.

An aspect that makes it even harder is if the objects are partially occluded.
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Many object recognition methods are based on the use of big image data sets,

containing multiple views of each object to be detected [Meger et al., 2008].

However, the efficiency of the algorithms decreases and the processing time

increases with the increase of the number of objects in the data sets, since the

number of comparisons to be made between the objects from the data set and

the captured image grows. Another problem emerges from the small variations

that objects may have, even if they belong to the same type of objects, i.e. class

or category. Taking all of this into account, it is not hard to conclude that we

are still far away from having an object recognition system which comes close

to our visual system.

We, human beings, are able to detect and recognize an infinity of objects

almost instantly, regardless of the variations caused by illumination, position

or occlusion [Al-Absi and Abdullah, 2009]. By peeking into a room in a house

we instantly realize whether it is a living room, a bedroom or an office, since

we immediately recognize the kinds of objects in that room. This allows us to

draw conclusions about the type of room that we are looking at [Vasudevan

et al., 2007] or even predict which other objects we may expect in that room,

even if we have not yet seen them.

In the next section we will focus on the human visual system component

that relates to object recognition. After that some object recognition methods

will be described.

1.2.3 Object recognition by humans

Object recognition is an ability that we possess since early childhood. With

a simple observation of an object, we are able to identify and categorize it

irrespective of the countless changes that may occur due to illumination, posi-

tion, orientation or occlusion. It is therefore a great challenge to develop vision

systems that may get close to the cognitive capabilities of human beings. The

main difficulties in the development of such methods lie in the variations men-

tioned above and in the challenge of creating a generalization of an object from

a group of sample images.

We still do not completely know how our visual system works. However, it
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has been the object of many studies from which some theories about its inner

workings have arisen. Some of the studies were made by recurring to expensive

equipment [Rodrigues, 2008] which allowed researchers to measure the activity

levels in certain brain regions when objects or scenes were shown to the test

subject.

On the other hand, other studies were a lot simpler, consisting of the anal-

ysis of certain human behaviors in an attempt to understand which features

have the biggest importance in the recognition of objects and how they are

stored in memory. One of those studies was done by Vasudevan et al. [2007].

It allowed to conclude that the structure of the objects was a fundamental

aspect to perform recognition. The structure of an object may be represented

by points, lines and contours. There are some methods that use this kind of

information to perform object recognition. These will be described in the next

section.

Regarding the recognition process, for some time we used to think that our

vision system applies a sequence of processes (detection, segregation, catego-

rization and recognition). According to recent research [Bar et al., 2006] these

processes cannot be completely sequential. They must occur in “parallel,” at

least partially. It was a common habit to think that to recognize an object we

first had to isolate it from the background. However, recent research suggests

that the categorization of objects occurs before their segregation. In other

words, when we realize what the object that we observe is, the brain already

knows which object it is [Rodrigues and du Buf, 2009a].

Apart from all these breakthroughs and research, we still do not know the

exact order in which processes occur, as well as in which cases there is parallel

processing. We are only certain that object recognition cannot be seen as a

simple task. This process must be seen as a task with several levels [Rodrigues

and du Buf, 2009a], and it is possible that at each level multiple processes occur

simultaneously.

The breakthroughs that have been achieved have inspired the creation of

several biological models which try to mimic human vision. However, these

models demand a large processing power, making it mandatory to use high
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performance multi-core processors. These processing demands make it difficult

to apply this type of models in real-time applications, such as in robotics.

1.2.4 Object recognition methods

There are several methods for object recognition that can be split into two main

types: dedicated object recognition methods and general object recognition

methods. The dedicated methods are developed with the goal of recognizing

a limited number of objects and, as such, they are optimized to detect those

specific objects. These methods are usually applied in industrial environments

to inspect products and to monitor processes [Ohali, 2011]. General object

recognition methods may work on a vast majority of applications, despite of

having a bigger computational cost [Lowe, 1999; Evans, 2009].

Object recognition methods rely on the extraction and recognition of image

regularities taken under different illuminations and positions. In other words,

most algorithms use certain representations and models to capture those char-

acteristics, making it easier to execute procedures to identify the objects [Lowe,

2004]. The representations may be 2D or 3D geometric models. After the ex-

traction of the fundamental features of the image the recognition procedure is

performed. It is based on the comparison of the models or object representa-

tions with the test image [du Buf et al., 2010].

The most common features on which object recognition algorithms are

based are geometry, aspect and interest points. To analyze object geome-

try, some perspective invariant geometric primitives (lines, circles, etc.) are

extracted. Algorithms devoted to aspect are based on patterns of the ob-

jects (features, textures, histograms, etc.) [Shotton et al., 2008]. Finally, the

methods based on interest points search for certain points in images that are

invariant to changes provoked by illumination or scaling. One of the most used

representation methods for vision applications is SIFT (Scale-Invariant Feature

Transform), proposed by Lowe [1999].

Using the SIFT representation, a recognition system was developed which

consists of transforming an image into a collection of vectors of scale- and

rotation-invariant keypoints. These keypoints are also partially invariant to
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changes in illumination and 3D projections. The fact that keypoints are invari-

ant to a wide range of changes resulted in the creation of a robust method for

object recognition, even in cases of occlusion of parts of the objects or in clut-

tered environments and with complex backgrounds. In the keypoint matching

process, every cluster of keypoints with at least three matches can be accepted

as a detected object [Ramisa et al., 2008].

The enhanced SIFT method, proposed by Lowe [2004], was tested and an-

alyzed by Ramisa et al. [2008]. It was compared with the “bag of features”

method proposed by Nistér and Stewénius [2006]. From the results obtained by

Ramisa et al. [2008], it was verified that for textured objects, being the texture

uniform or not, the results are similar for both algorithms. However, we must

note that the SIFT method was not able to detect untextured objects in the

experiments.

There is another type of descriptors based on SIFT, called SURF (Speeded-

Up Robust Features) [Bay et al., 2008]. The SURF algorithm was developed

with the purpose of being more efficient in terms of processing cost, therefore

more suitable for real-time applications. According to the authors, the SURF

algorithm is faster, more robust and more precise than SIFT.

Another method that is not only suitable for object recognition, but also for

categorization, is the one proposed by Rodrigues and du Buf [2009a]. This one

is biologically inspired, it is a cortical model. The method is based on multi-

scale features: lines, edges and keypoints are extracted by using the responses

of simple, complex and end-stopped cells in cortical area V1. The keypoints

are used to build saliency maps that are then used for Focus-of-Attention.

The latter algorithm allows us to obtain 2D translation, rotation and scale

invariance through the dynamic mapping of saliency maps based on information

provided by the multi-scale keypoints. The model is functional and is split into

two parts: keypoints are used for object recognition and lines and edges for

categorization. Apart from this division in two parts, there is also a progression

of detail in the data flows, starting in both cases with a coarse scale (less detail)

and progressively using finer scales (more detail).

Recently some new descriptors have been developed, but unlike SIFT and
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SURF, which are floating-point descriptors, most of these are binary. The

interest in binary descriptors was powered by the increase of mobile devices,

which had limitations in terms of processor and memory, and which needed

faster and lightweight descriptors for mobile applications. Binary descriptors

are much faster to match than floating-point descriptors because the match-

ing is done by calculating the Hamming distance. Some of these descriptors

are simple binarizations of existing floating-point descriptors (e.g. LDAHash

is based on SIFT features [Strecha et al., 2012]). With the growing interest in

binary descriptors came some that have a biological inspiration, like BRISK

[Leutenegger et al., 2011], FREAK [Alahi et al., 2012] or BRIEF [Calonder

et al., 2012]. However, their performance lags behind non-biological binary de-

scriptors, even though the biological ones use more bits than the non-biological

descriptors.

1.3 Cognitive robotics

Cognitive robotics is an approach to robotics that is still in its initial steps.

Most of the research in robotics focuses on the realization of specific tasks,

not implying a need for an architecture that allows the robot to learn and

evolve while performing several tasks. Most of the time, robots use several

types of sensors (infra-red, ultrasonic, laser, odometric, etc.) which allow them

to precisely perform tasks that they are specifically programmed to perform.

However the kind of data used with those types of sensors has not much to do

with the type of data that we use to perceive the world around us [Montemerlo

et al., 2002].

Although our visual system allows us to make coarse estimations of distances

and to know if the objects that we detect and recognize are close or far away,

it does not provide us with very precise distances.

If we consider these limitations when trying to program a robot to solve

the classical problem of SLAM (Simultaneous Localization and Mapping) we

realize that it becomes a really difficult task to accomplish [Davison et al., 2007].

Without precise metrics it becomes difficult to build a map of the surrounding
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environment.

To solve this problem we have to make the robot proceed as a human

and perceive the surrounding environment using vision to recognize objects in

order to create references in space, so that the robot can calibrate its position.

However, in an attempt to mimic the human visual system, before performing

object recognition it becomes necessary to apply a visual saliency model [Itti

et al., 1998] in order to select the regions of the image that may contain the

most relevant objects and to recognize them fast, and ignore the non-relevant

information.

Another problem to be solved is to create a system that allows a robot to

adapt to changes in the surrounding space, like we do, due to the way our

memory works [Deco and Rolls, 2004; Brady et al., 2008]. Although we have

a great ability to store information in our brain, we only remember the most

important information. In classical robotics, enormous amounts of data are

stored in electronic storage devices, and traditional SLAM systems make use

of all that information [Montemerlo et al., 2002]. However, when we consider

the case of a robot that may be able to adapt to changes of the surrounding

environment, the continuous storage of information becomes unreliable since

many of the stored data may become redundant or obsolete after some time.

It is also necessary to conceive a way to make the robot’s architecture scal-

able. When thinking about cognition, we must consider to implement several

action levels, so that the robot may build complex tasks by combining simpler

ones, which may be common to several other tasks [Ratanaswasd et al., 2005].

In non-cognitive robotics, robots are only provided with predefined, complex

operation cycles.

In short, there are five major distinct problems that, however, are connected

to each other: (a) SLAM; (b) memory organization; (c) attention models; (d)

object recognition and (e) multi-level task scheduling.

1.3.1 Simultaneous localization and mapping

The ability to simultaneously localize the robot and map the surrounding near

space is a fundamental pre-requisite to develop truly autonomous robots [Se
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et al., 2001; Montemerlo et al., 2002]. In order to navigate in unknown locations,

the robot must be able to perceive them well enough to navigate safely.

Mapping in mobile robotic applications is something that has often been

applied and resulted in many different models of maps [Thrun et al., 2000;

Davison et al., 2007]. The models may differ in several ways, such as the

number of dimensions or the quantity and type of used references. The types

of mapping may be classified according to several features, but there are two

main features. (a) The number of dimensions (2D or 3D) [Dellaert and Stroupe,

2007; Davison et al., 2007]. Each type has its advantages and disadvantages.

The 2D maps are simpler, but do not allow for a correct localization of specific

references in the map since there may be two references in the same spot but

at different heights [Se et al., 2001]. On the other hand, 3D maps do not have

that issue but they are much more complex. (b) The type of used references

(landmarks). A map can be metric or topological [Thrun et al., 1998; Tomatis

and Nourkbakhsh, 2001] or, in some cases, hybrid [Buschka and Saffioti, 1998].

In metric maps the representation of the surrounding world is based on a set

of coordinates arranged in a Cartesian coordinate system [Thrun et al., 1998].

This kind of mapping is normally used when a robot has an odometry1 system

and multiple sensors that allow it to measure distances. An example of this

kind of mapping is FastSLAM [Montemerlo et al., 2002], in which the map is

built by an odometry system with laser sensors, registering at every point of

its path the distances to detected obstacles. However, errors in the odometry

system and in the sensors cause loss of precision over time. On the other hand,

topological maps are built by establishing connections between reference points,

without any precise metrics [Tomatis and Nourkbakhsh, 2001]. As such, these

maps cannot provide an exact location, neither of the robot nor of the reference

points.

Until here only the basic types of mapping were referred to. However, a

large number of variations of the described methods have been implemented.

One of those was proposed by Se et al. [2001] and consists of the use of stereo

vision computed from a group of scale and rotation invariant keypoints. These

1Odometry refers to measuring speeds and distances.
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points are acquired using the SIFT descriptors [Lowe, 1999]. Since these points

are invariant to several transformations, they provide good references for a

mobile robot. Using vertical and horizontal disparity (3-camera system) they

were able to know the keypoints’ location in three-dimensional space for their

mapping. A very similar approach, also using a 3-camera system was proposed

by Saeedi et al. [2003].

Another variant, proposed by Tomatis and Nourkbakhsh [2001], consists of

a hybrid architecture which combines topological and metric maps in a SLAM

system, creating a compact model which does not require highly consistent

information on a global scale. The maps used in this approach consist of

a group of nodes (openings) connected with each other, the list of reference

points (corners) being placed between each pair of two nodes. The nodes may

be transitions to another division (room) or a connection to another hallway.

Topological maps also fit in the work of Vasudevan et al. [2007], who con-

firmed the existence of a hierarchical sequence of structural elements when

people describe how to go from one place to another. They also verified the use

of reference points such as doors and walls which delimit a place or a room.

Another hybrid concept, presented by Kawamura et al. [2002] considers ego-

centric navigation. This concept possesses a metric component very different

from most methods. In this case, at the beginning of navigation the robot

already has a sketch of the map in its memory, with reference points placed

at their corresponding locations. The initial sketch does not require precise

metrics since the robot’s navigation is done in a topological way. In addition

to the sketch, the sequence of reference points that the robot must go through

to reach its destination is also placed in memory.

An interesting aspect involved in this method is the sensory egosphere,

which consists of the useful information in the environment close to the robot

at each moment. This concept is an approach to short-term memory, which

will be described in the following sections. One example of this concept can be

seen in Fig. 1 from Kawamura et al. [2002]. It shows a sketch of a map without

any metric precision that allows the robot to navigate by using the annotated

reference points. The path used by the robot to go from point A to point B is
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also sketched.

There are also methods which explore a combination of the robot’s “percep-

tions” and its motor actions [Zetzsche et al., 2008], creating a hybrid architec-

ture which is also related to human behavior, since our movements are directly

related to our vision. According to this model, when the robot finds itself ex-

ploring the surrounding environment, instead of doing a random exploration, it

goes towards the paths where it may find a larger amount of information, which

is what we, humans, do. To perform such exploration, the authors combine the

mapping system with a model of visual attention, that resembles saccadic eye

movements, in order to find regions of interest.

More recently, Ball et al. [2013] released a new SLAM system, OpenRat-

SLAM, successor of RatSLAM [Milford and Wyeth, 2010]. They are both

based on two types of cells that exist in rat brains, the hippocampus: local

view cells and pose cells, which are similar in characteristics to navigation neu-

rons found in many mammals, called grid cells. OpenRatSLAM is composed

of four nodes: (a) a pose cell network, that manages the energy packet that

represents pose in response to odometric and local view connections; (b) local

view cells that determine whether a scene given by the current view is novel

or familiar by using image comparison techniques; (c) experience map; and (d)

visual odometry, which provides an odometric estimate based on changes in

the visual scene. Excellent results have been obtained with OpenRatSLAM in

different experimental setups: it was successful in mapping the suburbs of St.

Lucia, in Australia, using only a laptop on top of a car, and in mapping a small

controlled environment using a rat-sized robot.

1.3.2 Cognitive memory

Throughout times, several models for cognition were developed. In a general

way, a cognition model is composed of a group of mental states, by their transi-

tions and also by cognitive memory which is connected to the various cycles in

the model. This interconnection is a fundamental part of the cognition model.

An example of a cognitive model was proposed by Patnaik [2007]. It contains

a total of seven mental states plus memory: sensoring and acquisition, reason-
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ing, attention, recognition, learning and planning, action and coordination (see

Fig. 1.1).

Figure 1.1: Example of a cognitive model in which it is possible to verify the

existence of three cycles: acquisition, perception, and learning and coordina-

tion. The main block of the system is long-term memory (LTM), the second

main block being the short-term memory (STM). Adapted from Fig. 1.1 in

Patnaik [2007].

The central role of cognitive memory is evident in this model, with a

stronger emphasis on long-term memory. There are three cycles in the model,

the long-term memory being the connection between all three. The acquisi-

tion cycle is composed by the short- and long-term memories, by sensoring

and acquisition, and by the attention states [Patnaik, 2007]. The perception

cycle contains the states of reasoning, attention and recognition, and the long-

term memory. Finally, the third cycle is composed by the states of learning,

planning, action and coordination, and also by long-term memory.

The process of cognition starts in the acquisition cycle, in which a human

being acquires information by using its senses and puts it in short-term memory.

The information will then be processed and will be sent, or not, to long-term

memory. In the perception cycle the brain processes previously acquired in-

formation, performing the recognition of information and creating higher level

information which is also stored in long-term memory. At last, the cycle of

learning and coordination uses the information stored in long-term memory in
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order to proceed to learning, action and coordination.

Taking into account the evident importance of memory in the cognitive

process, it becomes necessary to study it more deeply in order to find out how

to implement a similar structure on a mobile robot.

1.3.3 Types of memory

The human brain has an enormous capacity for storing information [Brady

et al., 2008]. However, some of the acquired information is stored only for a

short time while the rest may be stored for a very long time. This duality

evidences the existence of more than one type of memory in the human brain.

Much research has been done to identify how many types exist and what their

purpose is.

We can say that there are three main types of memory in our brain [Brady

et al., 2008; Smith et al., 2008]. They can be distinguished by the duration

that the information may remain in them, and also by their source of infor-

mation. Sensory memory is only used to store information provided by the

senses, quickly fading unless that information is being focused by the attention

system. Short-term memory consists of our brain’s working memory and con-

tains only the information that is being processed. Long-term memory stores

all persistent information. The information stored in this last type of memory

may remain there for a very long time, even if it is not regularly used [Smith

et al., 2008]. The capacity of short-term memory is very small if we take into

account the complexity of the tasks that we perform. Recent research suggests

that the information stored in short-term memory consists only of references

to information stored in long-term memory [Smith et al., 2008].

1.3.4 Cognitive memory in robotics

The use of multiple types of memory (sensory, STM and LTM) in robotics is

not something common. In most applications information is accumulated over

time, disregarding its importance for the task that the robot must perform. An

example of this is reflected in the work of Lowe [1999], where a large number
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of keypoints must be stored to allow the robot to navigate in an unknown

environment. However, there are a few attempts to model the inner workings

of human memory in robotic applications.

An example of an implementation of a memory management system was

proposed by Kawamura et al. [2002]. The authors considered the existence of

two types of similar storage structures: the robot’s sensory egosphere and the

sensory egosphere of the landmarks that the robot uses to locate itself. The

first one corresponds to STM and the second to LTM. While the robot roams

around, STM will constantly be changing, in contrast to what happens to the

landmarks’ egospheres that are stored in LTM for later use. This storage is done

spatially, in order to create a map with relative positions of landmarks. The

dual memory structure is simple but it was mainly designed for the localization

and mapping problem, therefore lacking some other features which are required

for the cognitive process.

Another, more complex, approach to cognitive memory was developed by

Ratanaswasd et al. [2005]. The authors used memory structures to keep in-

formation for immediate tasks and also to store experiences that may be used

during a decision process. Again, two memory structures were used: STM and

LTM.

STM consists of the storage of sensory information in a sensory egosphere.

The amount of information stored in the sensory egosphere is very small, con-

taining only simple information like keywords or colors. Another feature of

STM is the fact that the stored information will fade over time, which also

happens in our brain. In turn, LTM stores information that may be used in

the future. In this case, LTM can be considered to be split into three parts:

process memory, which stores primitives of movement and behavior; seman-

tic memory, which is a database with information about the existing objects

in the surrounding environment; and episodic memory, that stores past experi-

ences, such as objectives or sequences of tasks that have been performed before.

The grouping of these memory structures and the inherent flow of information

between them is called Working Memory System.
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1.3.5 Task realization and management

Another feature of human cognition is the fact that we can plan and execute

sequences of actions in order to achieve an objective. Even in cases when the

sequence of actions is not consciously accessible, often we are able to infer the

sequence of actions to be realized, taking into account previous experiences

[Meinert, 2008]. A relevant characteristic is the capacity of building complex

sequences of actions by aggregating simpler tasks which, in turn, are built from

even simpler tasks. We can say that there are several levels of complexity

involved in our actions. Taking these features into account, we may conclude

that it is necessary to implement a task management system that consists of

multiple complexity levels and the aggregation of already known, simple tasks

into more complex ones.

There has not been a lot of effort in the development of systems of this kind:

it is still a big challenge. In traditional robotics, the execution of predefined

procedures was enough for most tasks. The remaining cases could be solved

by using artificial intelligence methods which could provide the ability to learn

to realize the requested task. However, that kind of learning would always

be based on probabilities and mathematical calculus that have no resemblance

with the human way of learning. Another problem of this type of learning

is that it is not appropriate for dynamic environments which are constantly

changing.

According to Ratanaswasd et al. [2005], any actions must be carefully se-

lected using information from past experiences, from the task itself and from

the workspace. The authors presented a cognitive control model that joins the

short- and long-term memories with a procedural memory (also with long term

characteristics) in which the procedures of some tasks to be realized are stored.

The stored procedures can then be combined with other tasks to realize more

complex tasks. The management of the planning and the execution of tasks is

done by a Central Executive Agent. The choice of tasks to be realized is then

made through a reward system: the chosen tasks to be executed are the ones

that are expected to provide the biggest rewards.

Another management, planning, selection and execution system was pro-
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posed by Alami et al. [2006]. This system has also a component which is re-

sponsible for controlling and monitoring the behavior of the robot. Also in this

case, there is a series of simple tasks that are chained together to accomplish

other tasks.

A slightly different way of trying to solve this problem was developed by

Jung et al. [2007]. The authors created a database of knowledge and rules in

specific scripts. The bigger the amount of stored scripts, the more flexible the

robot will be and more tests can be executed. Flexibility comes from the fact

that a task can be decomposed into basic scripts which can be recombined to

perform a different task. However, there is also flexibility in the insertion of

scripts in the robot’s memory, making it easier to increase the robot’s knowl-

edge base. Besides that, by using this kind of system it becomes possible to

contextualize the knowledge. All scripts include a pre and a post condition

which allow the management system to start or terminate them. There is also

a condition related to the workspace, so that the robot can select the informa-

tion accordingly.

Apart from these three characteristics, the scripts also have sequences of

scenes with pre and post conditions which, in turn, result in actions that also

have their own pre and post conditions. Actions consist of sequences of primi-

tive actions. This way of structuring the task realization is very versatile and

allows the robot to have a behavior that follows some sort of narrative or a

logic chain of causes and effects.

1.4 Overview of the thesis

This thesis is divided into six chapters, each one corresponding to a specific

subject. It is important to stress, that some sections inside the chapters may

be slightly repeated because they were based on publications that are already

published or will be published soon.

The chapters are organized as follow:

• Chapter 2 (page 25) presents the initial studies, describing the use of

biologically inspired vision for human-robot interaction that makes use
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of the stereo vision algorithm for robot navigation and obstacle/human

detection and the initial approach to the biological descriptor presented

in Chapter 3, in this case for gesture recognition. We also integrate

head and hand detection models using SVMs trained on head and hand

datasets. It also describes an improved saliency algorithm that integrates

motion. The whole system is tested on a mobile robot platform that was

used for testing all the work described in this thesis. This chapter was

partially published in Saleiro et al. [2013b] and fully published in Saleiro

et al. [2015].

• Chapter 3 (page 41) describes the process of learning binary biological

local descriptors (improving the descriptor presented in Chapter 2). It ex-

plores how we can use cortical cell responses from cortical area V1 to code

image areas around keypoints, which can also be extracted using the same

cell responses. This allows for a completely biologically inspired keypoint

extraction and description. The performance of the obtained descriptors

is very promising, outperforming, by far, any other biologically inspired

keypoint descriptor and also outperforms a SIFT-based non-biological de-

scriptor. We also explore how the binary descriptors can be used for early

vision processes like optical flow, stereo vision or object recognition. This

chapter has been submitted to BioSystems international journal.

• Chapter 4 (page 71) describes a fast biological active vision model com-

prising stereo vision, saliency and object recognition. The included bi-

ologically inspired stereo model was specifically designed for real-time

robotics applications and when evaluated using stereo testing datasets

proved to outperform other biologically-inspired stereo models. The re-

sulting disparity maps are also used as input for the saliency algorithm

described in Chapter 2 that also uses color and motion as input. The

saliency algorithm is used to select interesting image regions for fur-

ther object recognition using the state-of-the-art biological descriptor

presented in Chapter 3. Motor control of the robot head is done us-

ing attractor dynamics. The whole system is successfully tested in a
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child-sized robot in a real environment. An initial version of this chapter

was fully published in Saleiro et al. [2014], and now is being prepared an

updated version for a journal.

• Chapter 5 (page 107) describes a cognitive robot architecture with the bi-

ologically inspired active vision system presented in Chapter 4 for SLAM.

It explores the use of cognitive robot framework that comprises the inte-

gration of biological vision models with motor control for active vision.

The cognitive robot framework also includes a memory management sys-

tem that mimics the human memory model and a task management sys-

tem. Motor control of the mobile robot platform is made using attractor

dynamics. An initial version of this chapter was partially published in

Saleiro et al. [2012] and Terzić et al. [2013a] and is being prepared for

publication in an international journal.

• Chapter 6 (page 127) provides a summary of major achievements, con-

cluding remarks and ideas for future research.
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Chapter 2

Biologically inspired vision for

human-robot interaction

Abstract: Human-robot interaction is an interdisciplinary research area that

is becoming more and more relevant as robots start to enter our homes, work-

places, schools, etc. In order to navigate safely among us, robots must be able

to understand human behavior, to communicate, and to interpret instructions

from humans, either by recognizing their speech or by understanding their body

movements and gestures. We present a biologically inspired vision system for

human-robot interaction which integrates several components: visual saliency,

stereo vision, face and hand detection and gesture recognition. Visual saliency is

computed using color, motion and disparity. Both the stereo vision and gesture

recognition components are based on keypoints coded by means of cortical V1

simple, complex and end-stopped cells. Hand and face detection is achieved by

using a linear SVM classifier. The system was tested on a child-sized robot.

2.1 Introduction

It is expected that, in the future, robots will employ a growing number of roles

in society. Currently robots are mainly used in factory automation, but they are

also deployed in service applications, medical assistance [Messias et al., 2014],

25
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schools [Saleiro et al., 2013a] and entertainment, among other application fields.

As they start to roam among us, there will be a need to interact with them in

easy and natural ways. Human-robot interaction (HRI) research is therefore

attracting more and more attention. Researchers are trying to develop new,

easy and natural ways of programming robots, either by teaching them by

manipulating a robot’s hardware manually [Kronander and Billard, 2014] or

by creating programming interfaces so simple that even children can use them

at school [Saleiro et al., 2013a]. However, programming a robot still requires

some skill that must be learned. In a world where robots navigate next to us,

it will be necessary to be possible to interact with them effortlessly, using voice

commands or gestures. In an ideal situation, robots should even be able to

perceive some of our intentions by analyzing the motions of our body.

The analysis and recognition of static hand gestures for HRI has been an

interesting research area for some time and there have been many approaches.

Some are intrusive, requiring the user to use specially designed gloves [Kumar

et al., 2012], while others are less intrusive, but still require specific hardware

like Leap Motion [Han and Gold, 2014] or Microsoft Kinect [Qian et al., 2013].

Other approaches rely on simple cameras and computer vision methods. A

simple solution can be based on skin color segmentation and matching of pre-

viously stored gesture templates [Saleiro et al., 2013b]. More complicated is to

extract the skeleton of the hand [Ionescu et al., 2005] and use this for matching.

For dynamic gestures there are methods that perform tracking and motion de-

tection using sequences of stereo color frames [Ghaleb et al., 2014], or gestures

are characterized by using global properties of trajectories described by a set

of keypoints [Suk et al., 2010]. Although many solutions may work quite well

for a specific type of application, they are too simple for more complex ges-

tures. In addition, they are often limited by fixed hardware devices or lighting

conditions. In order to use gesture analysis and recognition for human-robot

interaction, a system that is able to work under most lighting conditions and

almost anywhere is needed.

In our previous work [Saleiro et al., 2013b] we developed a biological and

real-time framework for detecting and tracking both hand and head gestures.
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In this chapter we present an extension of the system and also add new features

to improve the system for human-robot interaction. The previously developed

framework is based on multi-scale keypoints detected by means of models of

cortical end-stopped cells [Rodrigues and du Buf, 2006, 2009]. We have im-

proved the previous annotation of keypoints by using a fast binary descriptor

that allows for fast and robust matching. We also added a combined disparity

and motion saliency process so that the robot can initially focus on the hands

of the user and track them. Gesture recognition is performed by matching the

descriptors of the detected keypoints with the descriptors of previously stored

templates. We also integrated a head and hand detector based on a linear SVM

classifier.

The robot uses stereo vision for navigation, which also allows it to detect

obstacles. Every time it finds an obstacle in front of it, it looks up and searches

for the user’s head in order to start the interaction. The robot attempts to

center its own camera on the user’s face, and then starts performing hand

detection and gesture recognition. To detect a face/hand we employ a modified

HOG (Histogram of Oriented Gradients) descriptor combined with responses of

complex cells and a linear SVM to code the shape. The face and hand detectors

were trained and evaluated on the FaceScrub dataset Ng and Winkler [2014]

and the Oxford hand dataset [Mittal et al., 2011], respectively. The developed

HRI system does not need any prior calibration and has been designed to run

in real time.

2.2 Biologically inspired HRI system

In this section we describe all components of the developed system: (a) keypoint

descriptor, (b) stereo vision for navigation and obstacle detection, (c) visual

saliency, (d) face and hand detection, and finally (e) gesture recognition.

2.2.1 Keypoint descriptors for gesture recognition

In cortical area V1 there are simple, complex and end-stopped cells [Ro-

drigues and du Buf, 2009], which are thought to be responsible for part of the



28

process of coding the visual input: they serve to extract multi-scale line, edge

and keypoint information (keypoints are line/edge vertices or junctions and

also blobs). In the present section we briefly describe multi-scale keypoint de-

tection and the fast binary descriptor that we designed for matching keypoints.

The descriptor is also based on V1 cell responses.

Keypoint detection: Responses of even and odd simple cells, which corre-

spond to the real and imaginary parts of a Gabor filter [Rodrigues and du Buf,

2009], are denoted by RE
s,i(x, y) and RO

s,i(x, y), i being the orientation (we use

4 ≤ Nθ ≤ 12). The scale s is defined by λ, the wavelength of the Gabor filters,

in pixels. We use 4 ≤ λ ≤ 12 with ∆λ = 4. Responses of complex cells are ob-

tained by computing the modulus Cs,i(x, y) = [{RE
s,i(x, y)}2 + {RO

s,i(x, y)}2]1/2.

The process of edge detection is based on responses of simple cells: a positive

or negative line is detected where RE shows a local maximum or minimum,

respectively, and RO shows a zero crossing. In the case of edges the even and

odd responses are swapped. Lateral and cross-orientation inhibition are used

to suppress spurious cell responses beyond line and edge terminations, and

assemblies of grouping cells serve to improve event continuity in the case of

curved events. On the other hand, keypoints are based on cortical end-stopped

cells [Rodrigues and du Buf, 2006] and they provide important information be-

cause they code local image complexity. Since keypoints are caused by line and

edge junctions, they are usually located at interesting locations of the image.

When combined with a proper descriptor, they can be very useful for object

categorization [Terzić et al., 2013a]. There are two types of end-stopped cells,

single and double. These are applied to Cs,i and are combined with tangential

and radial inhibition schemes to obtain precise keypoint maps Ks(x, y). For

a detailed explanation with illustrations see Rodrigues and du Buf [2006] and

Terzić et al. [2013a].

Binary keypoint descriptors: Creating a biological descriptor for key-

points is not a trivial task, mainly because responses of simple and complex

cells, which code the underlying lines and edges at vertices, are not reliable

due to response interference effects [du Buf, 1993]. Therefore, the responses

in a neighborhood around a keypoint must be analyzed, the neighborhood size
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Figure 2.1: Top: Example of matching. Bottom: comparison between our

descriptor (blue), BRISK (green), BRIEF (red) and LDAHash (pink) over

200,000 patches.

being proportional to the scale of the cells. In our approach we developed a

128-bit binary keypoint descriptor based on the responses of simple cells, each

bit coding the activation level of a single cell. Also, from a computational point

of view, a binary descriptor is much faster to compute and to match than a

floating-point one. This method is an improvement of the previous method

[Saleiro et al., 2014].

We start by applying maximum pooling in a circular region around each

keypoint, followed by zero-mean normalization and extraction of the maximum

cell responses in 8 filter orientations. Then we combine the extracted values
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by a weighted sum, using a weight matrix previously learned using LDAHash

[Strecha et al., 2012] on the Notredame dataset [Brown, 2011]. Finally, we

apply a threshold vector, also previously trained on the Notredame dataset,

to set each of the 128 bits to 1 or 0. The resulting descriptor is a huge im-

provement of the previous one [Saleiro et al., 2014]. It is comparable to the

SIFT-based LDAHash descriptor in terms of performance when tested on the

Yosemite dataset [Brown, 2011]. The developed descriptor significantly out-

performs other biologically-inspired descriptors. In terms of processing time,

the descriptor is also very fast to compute and to match. Figure 2.1 (top)

shows one example of matching using the present descriptor. The bottom

graph shows a comparison between our descriptor (128 bits), BRISK (512 bits)

and BRIEF (128 bits) and LDAHash (128 bits) over 200,000 patches of the

Yosemite dataset.

2.2.2 Stereo vision for robot navigation and obstacle de-

tection

Stereo vision is a fundamental process for robot navigation: it allows the robot

to detect open spaces, obstacles on its path and to estimate the distance to those

obstacles. It can also be useful for computing visual saliency. The algorithm we

used to generate the disparity maps is the same as previously used by Saleiro

et al. [2014]: (a) resize the left and right images to a small size (160 × 120);

(b) extract complex cell responses on circles around each pixel; (c) compare

each pixel P in the left image to the next K pixels in the right image on the

same line and starting from the same position P as in the left image (we used

K = 35); (d) use the Hamming distance to find the best-matching pixels; and

(e) apply median filtering (5× 5 kernel) to reduce noise due to wrong matches.

The computed disparity maps are then thresholded using a threshold value, td,

to find nearby obstacles (we used td = 70). Whenever the robot detects an

obstacle by using the thresholded disparity maps, it looks up and evaluates if

it is a person by trying to find a human face using a linear SVM classifier, as

described in Section 2.2.4. Figure 2.2 (top) row shows an example of stereo
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images acquired by the robot and the respective disparity map.

2.2.3 Visual saliency

Visual saliency is also an important component of the real-time vision system,

since by using it the robot can select important regions to process instead of

processing entire images. The generated saliency maps are also useful to seg-

regate hands from the background, to reduce clutter and to improve gesture

recognition rates. The visual saliency algorithm we developed is an improve-

ment of the one described in Saleiro et al. [2014] and combines three different

features: color, disparity and motion. The three features are processed sep-

arately and then merged into a single saliency map with equal weights. The

top row of Fig. 2.2 shows an image of a person in front of the robot (left

and right frames) and the resulting disparity map. The middle row shows the

motion (left), color (middle) and disparity(right) saliency maps. The bottom

row shows the combined saliency map, the thresholded map and the selected

regions. Details are explained below.

Color Saliency: We build a stack of 6 retinotopic maps representing dif-

ferent channels in CIE L*A*B color-opponent space, which is based on retinal

cones and provides a standard way to model color opponency. The first three

channels code white, green and blue. The remaining three channels comple-

ment the first ones and represent black, red and yellow. After computing the

maps, a stack of bandpass Difference-of-Gaussians (DoG) filter kernels with

σ+ ∈ {5, 10, 20} and σ− = 2σ+ are used for blob detection. Since a saliency

map does not need to be detailed, we compute them using subsampled color

images for faster processing.

Disparity Saliency: To generate the disparity-based saliency map, we use

the disparity map as described in Section 2.2.2, and extract a single disparity

layer where pixels with disparity d = 100 get the maximum value M = 20 and

pixels with disparities bigger or smaller than d get smaller values according to

the difference from d. After this step we apply the same filtering used for the

color-based saliency maps.

Motion Saliency: To compute the motion-based saliency map, we first



32

Figure 2.2: Top row: stereo images acquired by the robot camera and the

disparity map. Middle row, from left to right: motion saliency, color saliency

and disparity saliency. Bottom row, from left to right: resulting saliency

map, thresholded saliency map (using threshold value tf = 200) and selected

regions after blob detection and region growing.

calculate the optical flow using Farneback’s method for every pixel [Farneback,

2003]. Then we process the flow’s magnitude and direction separately, creating

a feature stack of magnitudes and orientations of motion. The feature stack has

3 maps representing the magnitude (speed) of motion and it also has 8 maps

representing 8 different directions of motion with either 0 or the magnitude of

movement at that orientation. In practice, 0 occurs when a pixel is not moving

in the preferred direction or with preferred speed. When a pixel is moving in

the preferred direction or with preferred speed we consider the value to be the

value of the pixel at that location. Objects moving in a certain direction with

certain speed will thus cause large coherent regions in one of the maps of the

stack.

Final Saliency Map: The final saliency is the equally-weighted sum of
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the three normalized saliency maps. After computing this map we threshold

it using threshold value tf = 200 to get only the nearest regions and then

apply the fast blob detection algorithm from Saleiro et al. [2009]. After blob

detection, only the two biggest blobs are kept. Each blob is converted into a

square region that afterwards is grown by 15 pixels in all directions, so that

there is enough margin to apply the Gabor filters to extract the simple cell

responses and keypoints and to build keypoint descriptors.

2.2.4 Face and hand detection

Detection of faces and hands is achieved by coding responses of cortical complex

cells within a region into a feature vector and by using a classifier (linear SVM)

to predict whether a face/hand is inside the detection region or not. The process

is similar to that of Dalal and Triggs [2005], but in our case the detection process

employs a single Gabor filter scale (λ = 6) and 8 orientations (Nθ = 8) for the

complex cells (see Section 2.2), but also in combination with several scales of

the HOG-like features (several sizes) over the entire image, and then a sliding

window (6× 6 blocks) to scan all blocks inside the sliding window’s region.

At each layer, the pooling cell size is increased, but the detection window

size and the block’s size remain the same. To this purpose, we use between

6×6 and 10×10 pixels per cell with a stride of 1 pixel. Finally, non-maximum

suppresion is applied to eliminate multiple detections of the same face/hand

(see below). We used the FaceScrub dataset [Ng and Winkler, 2014] and the

Oxford Hand dataset [Mittal et al., 2011] to train and evaluate our face and

hand detectors. For each detector we trained an initial classifier using the

positive and a random set of negative examples, then we used it to scan over

images not containing faces or hands in order to collect false positives, and

then we did a second round of training by including the false positives into the

negative training set. The FaceScrub dataset consists of 107,818 face images

of 530 celebrities (265 male and 265 female), although only 80,659 faces could

be downloaded successfully and a few samples were unusable for training. For

negative samples we took 100,000 42 × 42 pixel patches from random images

of the SUN database [Xiao et al., 2010]. For training our hand classifier we
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Figure 2.3: (Left to right) a person in front of the robot in gray scale (left)

coded by HOG-like features (middle) with detected face and hands (right).

used the Oxford hand dataset which contains 13,050 annotated hand instances

(26,100 mirrored samples). Again, we took 30,000 random 42×42 pixel patches

from the SUN database as negative samples.

HOG-like features: A modified version of the Dalal and Triggs HOG fea-

tures is used for person detection. In their implementation, Dalal and Triggs

[2005] used the RGB color space with no gamma correction, 1D gradient fil-

ters, linear gradient voting into 9 orientation bins, 16× 16 pixel blocks of four

8 × 8 pixel cells, a Gaussian spatial window with σ = 8 pixels, L2-Hys block

normalization, a block spacing stride of 8 pixels, and a 64× 128 detection win-

dow for training the linear SVM classifier for pedestrian detection. Here we

use an adapted and slightly modified version of the previous procedure for face

and hand detection: (a) we use only grayscale information for speed purposes,

(b) complex cell responses are used as gradient information, (c) no Gaussian

window is applied, (d) the L2-norm is used instead of L2-Hys and (e) a 42× 42

detection window is used. Complex cell responses provide a good alternative

for gradient information since they are also robust to noise. In addition, linear

gradient voting can be skipped because of the cells’ oriented responses. We use

12× 12 pixel blocks of four 6× 6 pixel cells with 50% block overlap; see below

for parameter assessment and evaluation. Our selection ensures optimal per-

formance while also complying with Dalal and Triggs’ recommendations [Dalal

and Triggs, 2005] of having many orientation bins in combination with moder-

ately sized, strongly normalized and overlapping descriptor blocks. See Fig. 2.3

(middle) for the bio-inspired HOG-like features.

Classification: To detect a face or a hand, features in a detection window
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are classified using a linear SVM. The face and hand classifiers are trained us-

ing the FaceScrub dataset and the Oxford hand dataset, respectively, with a

soft linear SVM (C=0.01) using LIBLINEAR [Fan et al., 2008]. As mentioned

above, we used a 42 × 42 pixel detection window for training both classifiers,

since the sizes of hands and faces in the image relative to the robot are similar.

This results in 6× 6 blocks to be used by the classifiers across the image at all

scales. We found that a detection window of 42 × 42 pixels for training con-

stitutes a good trade-off between performance and running speed. Increasing

the detection window’s size beyond 42× 42, although increasing detection per-

formance, has a significantly higher computational cost due to more features

being used for classification.

Non-maximum suppression: The detection window is applied to salient

image regions using a sliding window approach where multiple detections of

the same head or hands often occur. To remove multiple detections due to the

sliding window, a non-maximum suppression technique is applied to discard

overlapping windows: when two windows overlap at least 50%, the window

with the weakest classification response is discarded. To this purpose, we use

the unsigned SVM classification output in order to determine a window’s clas-

sification response. Figure 2.3 (right) shows detected regions of face and hands

after non-maximum suppression.

Concerning performance evaluation and optimization, several factors have

been evaluated in the classifier training stage, namely Gabor filter scale (λ),

number of orientations (Nθ), cell size, block size and overlap. Smaller sets

of 2000 positive and 2000 negative random samples for training, and 1000

positive and 1000 negative random samples for testing were used for cross-

validation and parameter optimization for both classifiers. We used detection

error trade-off (DET) and miss rate (better: 1.0 - Recall) measures to quantify

the performance.

First, the scale of the cortical cells was analyzed in order to determine the

optimal λ. Figure 2.4 (top-left) shows the overall performance of seven different

scales λ = [4, 10]. Smaller scales yield better performance than bigger scales,

mainly due to lines and edges being better encoded by smaller filters. Moreover,
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by choosing a smaller λ the processing time decreases. Here, λ = 4 performed

best. Figure 2.4 (top-middle) shows the performance impact of the number of

orientations used (Nθ ∈ [4, 12]) in the HOG-like feature bins. Increasing the

number of orientations beyond 8 does not improve performance significantly.

Therefore, for the final classifier we chose Nθ = 8 orientations which gave a

1.4% and 8.03% miss rates for face and hand detection, respectively. Three

other key factors taken into account were the block size vs. cell size vs. block

overlap. Figure 2.4 (middle and bottom) shows three graphs with 0% (left),

25% (middle) and 50% (right) block overlap, with block sizes ranging from 1×1

to 4 × 4 and pooling cell sizes from 4 × 4 to 10 × 10 for faces (middle) and

hands (bottom). From all tested combinations, block sizes of 2× 2 with 6× 6

pooling cells and 50% overlap, gave the best performance with a 1.1% miss rate

for face and 8.6% for hand detection. Figure 2.4 (top-right) shows the overall

performance of the two detectors.

2.2.5 Gesture recognition

In order to be able to recognize gestures, the robot keeps in its memory a small

set of templates of different hand gestures. These templates have been prepared

prior to robot operation, and by applying exactly the same processing as done

during real-time robot operation. At the moment we use a set of 7 different

gestures for both hands, with several samples for each gesture with different

backgrounds and sizes. After finding the hand regions, the robot then processes

those regions for keypoint extraction and their descriptors. Descriptor matching

is based on the 128-bit Hamming distance: when the distance between two

keypoint descriptors is smaller than 30, a match is accepted. When at least 4

matches between the acquired hand region and a template are found, the robot

assumes that the gesture that corresponds to the matched template has been

detected. For faster computation time and higher reliability of the system, we

extract keypoints at scale λ = 12 and use simple cell responses at scale λ = 6

for the descriptors. By extracting keypoints at a coarser scale, they become

more stable. By using scale λ = 6 on extracted keypoint locations, more detail

is available to describe the keypoints.
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Figure 2.4: HOG-like feature parameter performance. Top row: effects of λ

(left) and the number of orientations (middle) in face (solid lines) and hand

(dotted lines) detection. The right plot shows the overall performance of our

face and hand detectors. Middle and bottom rows, left to right: block vs. cell

size combinations with 0%, 25% and 50% block overlap, and with block size

from 1 × 1 to 4 × 4 and cell size from 4 × 4 to 10 × 10 (bluer is better) for

face (middle) and hand (bottom) detectors. The best result is given by 2 × 2

blocks with 6 × 6 cell size and 50% overlap with 1.1% miss rate for face and

8.6% for hand detection

2.3 Tests and results

To test the developed system we used a child-sized Pioneer 3DX robot, equipped

with a Bumblebee-2 stereo camera, a PhantomX robot turret for pan and tilt
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movement of the camera, and ultrasonic and laser rangefinder sensors (see

Fig. 2.5 left). The Bumblebee-2 camera captures images at a resolution of

1024 × 768 pixels. The range sensors are only used for emergency collision

avoidance, not for navigation. A structure has been mounted on the robot in

order to make it taller, providing the point of view of a child with a height

of 115 cm and eyes at 110 cm. The robot has been set up with ROS (Robot

Operating System). Although the robot is of mecanoid type, its pan and tilt

system combined with the stereo camera convey the idea that it has a neck and

a head with two eyes. Since it is programmed to focus on a person’s head in

the center of the image, it seems like it is looking the person in the eyes. This

makes it much more engaging than a robot with static cameras and no neck

movements.

Figure 2.5 right shows some results: on the left we can see the mobile robot

platform used for testing; on the middle left column we show two examples of

gesture recognition using the extracted keypoints and their descriptors; on the

middle right column we show some of the gesture templates; and on the right

we show some examples of head and hand detection using the SVM classifiers.

Figure 2.5: Left: robotic platform used for testing. Middle left: examples of

recognition of two different gestures. Middle Right: some of the gesture tem-

plates. Right: detection of heads and hands using the SVM classifiers.

The system proved to work quite well, being able to recognize the 7 different

gestures for both hands in most situations. At the start it failed to recognize
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some of them but as we added more gesture templates with different sizes and

backgrounds the gesture recognition was improved.

As usual with most vision systems, we noticed that under bad illumination

the system can sometimes fail to detect hands or head and thus may not be able

to recognize gestures. Failure in detection of hands and recognizing gestures

could also happen during fast hand movements, since in these cases the image

of the hands is blurred.

2.4 Discussion

In this chapter we presented a biologically inspired vision system for human-

robot interaction. It allows the robot to navigate and to evaluate if an obstacle

is, in fact, a person by trying to find a human face whenever it encounters an

obstacle. The system also allows the robot to direct its attention to important

visual areas using an attention model which is based on color, disparity and

motion. The presented methods allow the robot to identify human hands in

salient regions and then recognize the gestures being made by using keypoints

and keypoint descriptors based on V1 cell responses. Although biologically

inspired methods usually require a high computational power and long compu-

tation time, due to the many filter kernels at several orientations and scales,

by choosing only a few scales the system is able to run in real time. The SVM

classifiers showed to be fast in detecting faces and hands in an image using a

sliding window. Faces had the best performance overall with few false nega-

tives, while hands had less performance in detection mainly due to the large

intra-class variability. The keypoints and their descriptors proved to be quite

robust and work quite well for recognizing the gestures previously stored as

templates. Although sometimes few keypoints were matched to wrong key-

points, most of them were matched to the correct ones. These wrong matches

can easily be eliminated by using some geometry between groups of keypoints

to validate or invalidate matches. Experiments showed that the system can

now be programmed to execute different actions according to specific hand

gestures.
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As future work we plan to add more gestures to the system, increase the

precision such that individual fingers can be detected, and to integrate facial

expression recognition in order to allow the robot to act according to a per-

son’s mood. We also plan to use the ability of recognizing gestures and facial

expressions as a way to teach the robot simple tasks through reinforcement

learning: by using different gestures or facial expressions it will be possible

to tell the robot that it is doing the right or the wrong thing. Another part

of future work consists of integrating the binary keypoint descriptor into the

GPU implementation of the keypoint extractor in order to free the CPU for

other future developments. Future work will also address motion prediction, a

process that occurs in cortical area MST.



Chapter 3

Learning biological binary

keypoint descriptors

Abstract: Learning robust keypoint descriptors has become an active research

area in the past decade. Matching local features is not only important for com-

putational applications, but may also play an important role in early biological

vision for disparity and motion processing. Although there were already some

floating-point descriptors like SIFT and SURF that can yield high matching

rates, the need for better and faster descriptors for real-time applications and

embedded devices with low computational power led to the development of bi-

nary descriptors, which are usually much faster to compute and to match. Most

of these descriptors are based on purely computational methods. The few descrip-

tors that take some inspiration from biological systems are still lagging behind

in terms of performance. In this chapter, we propose a new biologically inspired

binary descriptor. Built on responses of cortical V1 cells, it significantly out-

performs the other biologically inspired descriptors. The new descriptor can be

easily integrated with a V1-based keypoint detector that we previously developed

for real-time applications.

41
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3.1 Introduction

During the last decades, the modeling of processes in vision is a research field

that has been attracting more and more attention. Models of simple, complex

and end-stopped cells in visual area V1 have been developed and these models

have been used for line, edge and keypoint detection [Rodrigues and du Buf,

2006, 2009]. Lines and edges have been successfully used for multiple applica-

tions like object segregation, scale selection, saliency maps and disparity maps

[Rodrigues et al., 2012], optical flow [Farrajota et al., 2011b], face detection and

recognition [Rodrigues and du Buf, 2006], facial expression recognition [Sousa

et al., 2010], etc. The model for keypoint detection was computationally too

expensive to be used in real-time applications at the time it was developed, but

recent advances in computer hardware and code optimizations led to a much

faster model that can now be used in real time [Terzic et al., 2015]. However,

although keypoints indicate the location of specific events in an image, they

do not contain information about the regions where they are located: the local

image structure. For keypoint matching across images it is necessary to take

the local image information around a keypoint and to code this, building a local

image descriptor for every single keypoint. These descriptors must be robust

to image variations, like changes in illumination, rotation, translation, etc.

Descriptors characterize local image regions by means of a compact numer-

ical representation which should be consistent under a wide range of image

transformations. A metric such as Euclidean distance in descriptor space can

then provide a measure of similarity between two image patches. Robustness

and reliability of modern descriptors have made them indispensable in count-

less applications of Computer Vision, such as image stitching, optical flow and

object recognition and tracking. Although there are already some very robust

and reliable histogram-based descriptors such as SIFT [Lowe, 2004] and SURF

[Bay et al., 2008], which are floating-point descriptors that can be used with

the Euclidean distance metric, there has been a more recent trend towards

binary descriptors such as ORB [Rublee et al., 2011] and BRISK [Leuteneg-

ger et al., 2011]. These encode a region by a bit vector and typically use the
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Hamming distance in the matching process1. These descriptors have therefore

many advantages over the floating-point ones: reduced memory and bandwidth

requirements, and faster extraction and matching. This makes them ideal for a

growing number of real-time applications and embedded devices with low com-

putational power. Some recent binary descriptors have been shown to be on par

with histogram-based methods, or even excelled them in some test scenarios

[Trzcinski et al., 2013].

It is generally accepted that the brain actively constructs explanations for

its sensory inputs [Bastos et al., 2012], and several predictive coding models

have appeared in the literature [Larkum, 2013; Mumford, 1992; Mumford and

Lamme, 1998]. There has been much research into hierarchical models and

intermediate representations for fast object recognition [Fukushima, 2003; Serre

et al., 2007], but feature matching may occur already at the earliest stages of

vision, especially in the case of stereo disparity and motion processing. We

note that binary descriptors can neatly represent excitation patterns of neural

populations, and that their dissimilarity in terms of Hamming distance can be

easily computed by networks of integrate-and-fire neurons [Vogels and Abbott,

2005]. Pairwise comparison of patches at the early stages of vision can thus

be seen as a comparison between simple and efficient codes built directly from

the responses of V1 cells. This could explain the speed and accuracy of feature

matching at the earliest stages of vision. The remaining challenge then is to

create a neuronally plausible method for efficiently extracting binary codes

from V1 responses, which can compare in performance to the best descriptors

in Computer Vision. Some recent binary descriptors such as FREAK [Alahi

et al., 2012] and BRISK [Leutenegger et al., 2011] have been partly motivated

by biological vision, but their performance is still poor compared to the state

of the art in descriptor matching [Trzcinski et al., 2013]. Our work addresses

this problem by learning receptive fields needed to construct good binary codes

based on the responses of cortical V1 cells.

Two things are often considered to be important when constructing a binary

1When using a processor with SSE4.2 instructions, matching can be done by using only

two instructions: XOR and POPCNT.
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descriptor: (i) compact representation, thus reducing storage and bandwidth

costs, and (ii) low redundancy between bits, since the Hamming metric implic-

itly assumes their independence. In this chapter, we present a compact binary

biological local descriptor built from responses of cortical V1 cells. The coding

of the responses is trained on 200K pairs of image patches using LDAHash

[Strecha et al., 2012]. This allows to create a projection matrix that minimizes

the in-class covariance and maximizes the covariance across classes. Each bit of

the descriptor is then computed through a linear combination of cell responses.

The result of the linear combination is thresholded to binarize the output. From

a biological point of view, we can consider each bit as a cell that takes input

from multiple V1 cells, each one with a different weight. Depending on the

linear combination of the inputs, the cell may fire (output one), or not (zero).

The resulting binary vectors can then be matched by using the Hamming dis-

tance. We will show that our descriptor outperforms all biologically inspired

descriptors proposed in the literature, and that it approaches the matching per-

formance of the best binary descriptors, even outperforming the SIFT-based

LDAHash descriptor. During the development of the proposed descriptor we

performed extensive tests, trying cell responses with several combinations of

scales, with different maximum pooling steps and different pooling sizes. We

also experimented with applying the same approach to biological HMAX and

HMIN features instead of V1 cell responses. Since the developed descriptor is

compact and takes V1 cell responses as input, it is fast to compute and it can

be used for real-time applications. By integrating the new descriptor with the

previously developed V1 keypoint extractor Terzić et al. [2013a], a biologically

motivated keypoint extraction, description and matching pipeline is achieved.

In the next section related work concerning keypoint descriptors will be

described. Section 3.3 details the methods that were used to build binary

descriptors, and Section 3.4 deals with the optimization experiments in order to

improve the performance. This ends with performance comparisons with other

biological and non-biological descriptors and some considerations concerning

the processing time (Section 3.5). In the last section (4.9) conclusions and

suggestions for future work will be presented.
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3.2 Related work

Image regions are often described in terms of gradient histograms collected in

predefined sampling regions [Bay et al., 2008; Dalal and Triggs, 2005; Lowe,

2004]. Although such histograms have been considered the absolute state of the

art for a long time, they have a large dimensionality. They require a lot of stor-

age capacity and this results in comparably slow matching. Subsequent work

has reduced dimensionality by using subspace methods [Ke and Sukthankar,

2004] or compression [Chandrasekhar et al., 2009], while keeping most of the

benefits of the original methods. An appealing alternative approach is based

on binary descriptors which can be matched by using the Hamming distance.

Early binary descriptors were based on the BRIEF descriptor, which employed

pairwise comparisons of amplitudes, i.e., gradients or partial derivatives [Calon-

der et al., 2012]. BRIEF was later modified to take advantage of discriminative

projections [Trzcinski and Lepetit, 2012] and keypoint dominant orientation

[Rublee et al., 2011]. Improved sampling patterns were shown to boost perfor-

mance while still using gradients [Alahi et al., 2012; Leutenegger et al., 2011].

Descriptors such as BRIGHT [Iwamoto et al., 2013] introduced a variable bit-

string length for mobile applications. An alternative, but very popular way

to obtain binary descriptors, is by quantizing more complex descriptors, as in

[Strecha et al., 2012; Gong et al., 2013a,b].

Recently, focus has shifted towards learning efficient descriptors, which was

aided by the availability of large datasets of registered image patches [Brown

et al., 2011]. Approaches include learning the Mahalanobis distance [Jain et al.,

2012], supervised hashing [Liu et al., 2012; Wang et al., 2010] and LDA [Strecha

et al., 2012; Gong et al., 2013b]. More recent research has moved into learning

not only feature weights, but also the best pooling strategy [Brown et al., 2011;

Simonyan et al., 2014]. Most impressive results so far have been achieved by a

boosting approach [Trzcinski et al., 2013], which jointly optimizes both feature

weights and the pooling strategy. Like in our approach, each subsequent bit is

optimized to correct the mismatches which are left after learning the previous

bits.
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While there is some recent work on biologically plausible keypoint detection

[Terzić et al., 2013a,b], we are not aware of a completely biologically plausible

approach for extracting low-level image descriptors. Biological features are usu-

ally formulated with object recognition in mind, creating a hierarchy with in-

termediate features of increasing invariance, such as alternations of pooling and

maximum operations which simulate stacked layers of simple and complex cells,

the HMAX model [Fukushima, 2003; Serre et al., 2007], or intermediate-level

convolutional kernels in deep neural networks [Schmidhuber, 2012]. However,

these features were optimized for object classification, not feature matching.

While BRISK [Leutenegger et al., 2011] and FREAK [Alahi et al., 2012] use

biologically-motivated sampling patterns, they make no use of cortical simple

and complex cells. Descriptor learning of Brown et al. [2011] comes closest, by

using cortically-inspired filters similar to HMAX [Serre et al., 2007]. Binary

trees were used for efficient histogram compression by Chandrasekhar et al.

[2009], but the resulting descriptors require a special matching procedure and

they are based on histograms instead of biological features.

The novelty of the present work lies in two aspects: (i) only biologically

plausible V1 features will be used, so the descriptor can be implemented using

a neural architecture; and (ii) to our knowledge, we present the first system

that performs keypoint detection, feature extraction and matching using only

biologically plausible features and processes. We note, like Brown et al. [2011],

that cortical cells perform many operations which can be used for descriptor

coding: they are orientation and scale selective, they pool over spatial regions

of varying sizes and shapes, and they respond strongly to discontinuities (gra-

dients). Unlike most descriptor learning approaches, here the goal is not to

create a short descriptor; we are more interested in creating a simple coding

mechanism that can be used for disparity and optical flow in the earliest stages

of vision and that can also be applied in some object recognition applications.

In this chapter, we show that the coding of V1 features can summarize the

local image content by relatively short binary codes that allow for robust patch

matching, outperforming any other biologically inspired image descriptors and

closely approaching the non-biologicals but state-of-the-art descriptors.
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Figure 3.1: Sample patches from the Notre Dame (top two rows) and

Yosemite (bottom) datasets that show small differences in terms of scale, dis-

placement, rotation, contrast and brightness.

3.3 Method

In order to build and test the descriptors we used two datasets: Notre Dame

(the church in Paris, France) and Yosemite (the Natural Park in California,

USA) [Brown, 2011]. Both sets contain image patches sampled from 3D recon-

structions of interest points, i.e., 64× 64 pixels in grayscale, with variations in

viewpoint, distance, contrast and brightness; see Fig. 3.1. Matching patches

are from the same interest points with a maximum of 5 pixels difference in

position, 0.25 octave in scale and π/4 radians in angle. Non-matching patches

have the same variations but are from different interest points. For training we

used 200K patch pairs from the Notre Dame dataset (100K matches and 100K

non-matches) and for evaluation we used 100K patch pairs from the Yosemite

dataset (50K matches and 50K non-matches), so that we could compare our

results with those obtained by Trzcinski et al. [2013].

All patches were resized to 32 × 32 pixels in order to speed up processing,

after which responses of even and odd simple cells and of complex cells were
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computed (see below). Since we applied up to 8 cell orientations and 7 cell

scales, in principle it is possible to compute 3 × 8 × 7 × 322 features for each

patch. The total number of 172,032 is excessive for any real-time application.

Therefore, the basic idea is to construct an optimal projection matrix which

also reduces the number of features, and to experiment with different feature

selections and sampling or pooling strategies.

We extracted cell responses from all the image patches of the Notre Dame

set at multiple scales and orientations and then applied the LDAHash [Strecha

et al., 2012] method to construct a projection matrix that minimizes the in-

class covariance (matching patch pairs) and maximizes the covariance across

classes (the non-matching patch pairs). Then we applied this projection matrix

to the cell responses of the training data to determine the optimal threshold

vector to binarize each projected feature value. To evaluate the results we used

the Yosemite dataset. In the following subsections will be described each step

in detail.

3.3.1 Training and evaluation

The training set serves to determine an optimal projection (rotation) matrix

together with an optimal threshold vector which must be applied to all image

patches and their features of a real application, like stereo disparity or opti-

cal flow. Once such a matrix and vector have been determined by using the

training data, exactly the same procedure must be applied to other data of the

real application: the same cell selection, filter orientations, scales and pool-

ing scheme. In other words, the Notre Dame training data are used once for

constructing a matrix and corresponding vector, and these are then applied in

robot vision, for example. The Yosemite test data are completely irrelevant.

Here, in this chapter, the goal is to experiment with different parameter

selections: responses of simple and/or complex cells, the number of cell ori-

entations and their scales, etc. This means that for each parameter selection

the Notre Dame data are used to determine one matrix and one vector. Then,

exactly the same parameters and matrix plus binarization vector are applied

to the Yosemite test data for evaluation purposes: now matching thresholds
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are systematically varied in order to count true and false positive matches and

to construct ROC curves. These curves only serve to gain insight into the per-

formance of the different parameter selections. At the end, once we can draw

firm conclusions about which parameter selections are best, one selection must

be applied to the training data in order to determine a final projection matrix

and its corresponding binarization vector.

3.3.2 V1 cortical cells

In cortical area V1 there are different types of cells: simple, complex and end-

stopped . These cells are thought to play an important role in coding the visual

input: they allow to extract multiscale lines and edges [Rodrigues and du Buf,

2009] and keypoints, which are line/edge vertices or junctions, but also blobs

[Rodrigues and du Buf, 2006].

Responses of even and odd simple cells, which correspond to the real and

imaginary part of a Gabor quadrature filter [Rodrigues and du Buf, 2009],

are denoted by RE
s,i(x, y) and RO

s,i(x, y), i indicating the orientation (we used

Nθ = 8). The scale s is given by λ, the wavelength of the Gabor filters, in pixels

(we used λ = {4, 6, 8, 12, 16, 24, 32}.) Responses of complex cells are modeled

by the modulus

Cs,i(x, y) = [{RE
s,i(x, y)}2 +RO

s,i(x, y)2]1/2. (3.1)

For more details see Rodrigues and du Buf [2006]. What is important here is

that receptive fields of even and odd simple cells can be seen as derivatives of

Gaussians. Hence, like SIFT and derived methods, our method is based on

spatial derivatives of the local image structure.

In summary, from each patch we can extract responses of even and odd

simple cells at 8 orientations and 7 different scales. The responses at each

scale are normalized to unit vector, and then we perform maximum pooling

on circular receptive fields with a diameter of 4, 6 or 8 pixels and with strides

(shifts) of 2 or 4 pixels.
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3.3.3 Learning the projection matrix

For learning optimal data projections we apply the LDAHash method [Strecha

et al., 2012]. As already mentioned, we use two sets of the Notre Dame training

data, matching patch pairs and non-matching patch pairs. Let us call these P

(positive) pairs in which patches must be matched and N (negative) in which

patches must not be matched. The goal is to obtain a projection that (a)

reduces the number of features, (b) maximizes the probability that P patches

are matched, and (c) minimizes the probability that N patches are matched.

Suppose we have one feature (column) vector x of length n and we want to

have a projection y = Px + t where y has dimension m � n, P is a matrix

with dimensions m × n and t is a translation vector with dimension m. The

translation vector serves binarization and will be dealt with later.

The training data contain matching (positive, P) and non-matching (nega-

tive, N) patch pairs. Let us call their feature vectors x and x′ in case of positive,

and x and x′′ in case of negative pairs. The pairs of feature vectors of positive

patches are “stacked” into two matrices with n features (rows) and N samples

(columns): X and X ′, here with N = 100, 000. Likewise, for the negative pairs

we have two matrices X and X ′′.

Now, concerning the LDAHash method, the two matrix pairs are subtracted:

P = X −X ′ and N = X −X ′′. Then, the two covariance matrices of P and N

are computed: ΣP and ΣN ; and the ratio matrix after computing the inverse

of ΣN : ΣR = ΣPΣ−1N .

Because ΣR is positive semidefinite, SVD can be applied for the eigende-

composition ΣR = USUT where S holds the (positive) eigenvalues and U the

corresponding set of orthogonal eigenvectors. The orthogonal m × n matrix

P that minimizes the trace of PΣRPT is the projection of x onto the space

spanned by the m eigenvectors with the smallest eigenvalues of ΣR, and

PΣ
−1/2
N = S̃−1/2m ŨTΣ

−1/2
N , (3.2)

where S̃ is the m×m matrix with the smallest eigenvalues and Ũ is the n×m

matrix with the m eigenvectors. We note that the eigenvectors are divided

by the square roots of their eigenvalues, and Strecha et al. [2012] keep the
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normalization by Σ
−1/2
N because this “... makes the projected differences P(x−

x′) normal and white.”

3.3.4 Learning the optimal binarization thresholds

To calculate the optimal binarization thresholds we evaluate each dimension in-

dependently. We start by finding the minimum, mT , and maximum value, MT ,

of all projected feature values in all Notre Dame patches. We created a vector

of K values (we used K = 3000), equidistantly spaced between mT and MT .

We then tested each of these values as a binarization threshold and evaluated

which of them provided the largest sum of correct matches and correct non-

matches for the current feature dimension being evaluated. After evaluating

all the dimensions we have a threshold vector, t, containing as many elements

as projected feature dimensions.

After having the projection matrix P and the optimal binarization threshold

vector, t, we can finally compute binary descriptors by thresholding each of the

feature dimensions. Each dimension is coded with a 1 if it is bigger than the

corresponding threshold value, or a 0 if it is smaller.

3.4 Evaluation

As previously mentioned, for evaluation we used 100K patches from the Yosemite

dataset (50K matches and 50K non-matches). This means that the projection

matrix P , as trained on the Notre Dame dataset, is applied to all patches of

the Yosemite set. Then, for each selection of cell responses and pooling step

and size, the projected data are binarized by varying the threshold values. For

each threshold, true and false positive detection rates are determined in or-

der to construct ROC curves. We ran multiple tests in the attempt of finding

the best selection of input data: we experimented with different cell scales

λ = {4, 6, 8, 12, 16, 24, 32}, different pooling steps p = {2, 4}, and different

pooling sizes s = {4, 6, 8}. All patches were resized to 32 × 32 pixels before

feature extraction to speed up evaluation. Pooling means response selection

by searching for the maximum response in circular windows with a diameter
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of e.g. 4 pixel positions (the pooling size) and this window is shifted e.g. 2

pixels in x and in y (the pooling step). Each scale is evaluated independently

in order to determine the scale’s optimal pooling step and pooling size.

3.4.1 Cell selection: even simple, odd simple or com-

plex?

The first test was about which cells or combination of cells contained the most

discriminative information: even simple cells, odd simple cells or complex cells.

Throughout all our tests we verified that, in most cases, complex cells provided

the least discriminative information: since they are computed from combina-

tions of simple cell responses, there is loss of discriminative information. On

the other hand, even and odd simple cells performed better at most scales, and

very similarly. At the finest scale (λ = 4) best results are obtained when using

combinations of odd and even simple cell responses (95% error rate of 50.2%,

as in [Trzcinski et al., 2013]: this means that at a true positive rate of 95%, the

false positive rate is 50.2%). This result is followed by using only even or only

odd cell responses. At all other scales, best results were obtained by using a

combination of even, odd and complex cells. Worst results of each scale were

obtained by using only complex cells.

By combining even and odd simple cell responses, the use of more features

leads to the best performance. When combining all cell responses there is also

an improvement, except for scale λ = 4. At coarser scales (λ = {8, 12, 16, 24}),

the combination of even, odd and complex cell responses yields the best perfor-

mance: since the number of features per cell type becomes smaller, combining

multiple cell types leads to better results. However, in most cases the difference

between combining only even and odd simple cells and also using complex cells

responses is not very significant, which means that complex cells do not add

much more discriminative information. The increase in performance by com-

bining simple cell responses with complex cell responses gets smaller at coarser

scales. At scale λ = 32 the result of using even, odd and complex cells is worse

than if using only even and odd simple cells.
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In most cases, best results were obtained by using even and odd simple cells.

To illustrate the differences in performance, Fig. 3.2 shows results obtained

with descriptors built from features at three different scales, λ = {4, 12, 24},

and with a pooling step of 2 pixels. It can be seen that for the three scales

shown in Fig. 3.2 complex cells have a poorer performance than even or odd

simple cells at the same scale. Similar differences in performance were obtained

when testing other scales.
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even, λ=12, s = 4, 128b, 392 features
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complex, λ=24, s = 4, 128b, 72 features

odd, λ=24, s = 4, 128b, 72 features

even+odd, λ=24, s = 4, 128b, 144 features

complex+even+odd, λ=24, s = 4, 128b, 216 features

Figure 3.2: Comparison of results using different types of cells. In most cases

even or odd simple cell responses result in better performance than when us-

ing responses of complex cells. Results obtained with even and odd simple

cells are very similar. Combining different cell responses may or may not re-

sult in better performance, depending on the scale and the cells used. All the

plots were generated using a pooling step p = 2 pixels. At scale λ = 24 only

64 bits were used for each individual type of response because the number of

features was insufficient to generate a 128 bit descriptor.
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3.4.2 Scale comparison

As previously mentioned, we tested seven different cell scales: λ = {4, 6, 8, 12, 16,

24, 32}. From our tests we can say that, in general, the more features are used,

the better the performance will be. Since finer scales have more features, they

performed much better than features from coarser scales. When comparing

scales with similar numbers of features (e.g. λ = 4 and λ = 6), the finer scales

perform slightly better. Figure 3.3 shows the best results obtained for each of

the scales, and it also mentions the number of features used for each of the

results.
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Figure 3.3: Comparison of the best results for each of the scales tested. The

best result is obtained using λ = 4 (95% error rate of 49.1%), closely followed

by λ = 6. As the scale gets coarser, the number of features is reduced and

performance also decreases.
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In addition, Fig. 3.3 shows that scale λ = 4 yields the best result when

combining responses of even and odd simple cells, followed by scale λ = 6,

using only even simple cell responses.

3.4.3 Pooling region size

The size of the pooling region also influences the performance of the descriptor.

By using a larger pooling region we get less features, but the features may

be more robust and have a higher invariance to small transformations. We

tested all the scales with pooling regions with diameters of 4, 6 and 8 pixels to

determine which pooling size would lead to a better performance. Some results

are shown in Fig. 3.4.
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Figure 3.4: Evaluation of performance for pooling regions with different sizes.

For all scales a pooling size of 4 pixels leads to the best results. Performance

decreases with increasing pooling size. Results shown are for 128 bit descrip-

tors built from even simple cell responses with a pooling step of 2 pixels. Re-

sults are similar for other cell responses.
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From this figure it can be seen that for the three scales a pooling size of

s = 4 provides the best results (95% error rate of 48.5%). As the pooling size

increases, the number of features decreases, as does performance. Results for

a pooling size of 8 pixels are not shown in the figure, but they were worse than

those with sizes of 4 and 6 pixels.

At scale λ = 8 we can see that the performance clearly drops as the pooling

size increases. The same happens at other coarse scales. A bigger pooling size

drastically reduces the number of features at coarser scales.

3.4.4 Pooling step selection

As shown in the previous sections, although a larger number of features usually

leads to better results, that is not always true. We therefore tested the influence

of increasing the pooling step to evaluate if by cutting down the number of

features, especially at finer scales, we could obtain a similar performance.
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Figure 3.5: Evaluation of performance of 128-bit descriptors generated from

even simple cell responses with pooling steps of 2 and 4 pixels and a pooling

size of 4 pixels. There is a clear decrease in performance for p = 4.
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This could be useful to improve the descriptor computation speed. The pooling

step was increased to 4 pixels, which effectively reduces the number of features

to 1/4 of the features extracted with a pooling step of 2 pixels. Some results

are shown in Fig. 3.5. It can be seen that by reducing the number of features

to 1/4 of the total number of features, the performance significantly decreases.

This means that most of the features contain useful discriminative information

and cannot be discarded without affecting performance.

3.4.5 Dimensionality of the descriptor

In this step we tested the influence of the dimensionality, or number of bits,

nbits, on the performance of the descriptor. We evaluated the best results from

the two scales with best results (λ = 4 and λ = 6 with a pooling size of 4 pixels

and a pooling step of 2 pixels) for nbits = {64, 128, 256, 512}.
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Figure 3.6: Comparison of results using 4 different numbers of bits for scales

λ = 4 (blue) and λ = 6 (red). Best results at both scales are obtained using

128 bits, but for scale λ = 6 results with 256 bits are very similar.



59

Figure 3.6 shows that the performance peaks at 128 bits and it decreases as

the number of bits increases. Using 256 bits results in a drop in performance and

a bigger drop occurs when using 512 bits. Results using 64 bits are worse than

those with 256 bits for small false positive (FP) rates, but they are better at

larger FP rates. These results are consistent with the dimensionality evaluation

done for LDAHash; see Fig. 3.6 from Trzcinski et al. [2013].

3.4.6 Combining different scales

Up to this point we evaluated the influence of different parameters on descrip-

tor performance for each scale individually. However, in cortical area V1 cell

responses at multiple scales are combined to create higher level representations.
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Figure 3.7: Comparison between the best 128-bit single-scale result previ-

ously obtained (λ = 4 with a pooling size of 4 pixels and a pooling step of

2 pixels) and three 128-bit descriptors built from different combinations of

cell responses. Only the combination of complex cells at all scales performed

worse than the best single scale result.
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Taking this into account, it can perhaps be expected that by combining cell

responses at several scales a better result may be achieved. Therefore we ex-

perimented with a few combinations of responses at all scales. We also tested

what happens when we combine the cells that provided the best result at each

individual scale. Figure 3.7 illustrates the results obtained.

From Fig. 3.7 it can be seen that two of the three different cell combina-

tions perform much better than the best single-scale, even simple cell 128-bit

descriptor: (1) the combination of even and odd simple cells at scale λ = 4;

and (2) the combination of all best single scale results. It can also be seen that

the descriptor built only from even simple cells provides a better result than

that built only from complex cells at all scales. The best result is obtained with

the combination of all the best single-scale results (95% error rate of 35.1%)

but it is very similar to the one obtained by combining even and odd simple

cells at scale λ = 4 (95% error rate of 35.8%). From the plot it seems once

more that responses of complex cells are less discriminative than those of even

or odd simple cells.

3.4.7 Testing HMAX features

Since the goal of the work described in this chapter was to develop a biologically-

plausible local descriptor, we also included tests with biologically inspired

HMAX features [Serre et al., 2007]. We employed the HMIN implementation

[Mutch, 2011], which extracts 8150 features from each patch, and we also ex-

perimented with combining HMAX features with our even simple cell responses

at scale λ = 4. The results can be seen in Fig. 3.8. Using only HMAX fea-

tures results in a poor performance. Using HMAX features together with even

simple cell responses leads to a result which is only slightly better. Relative

to the best result that we had up to this point (all even and odd simple cells

at all scales with a pooling step of 2 pixels), we can see that performance is

much worse. Even using only even simple cell responses at scale λ = 4 yields

a better result. Apart from the lower performance, HMAX features also have

the disadvantage of taking much more time to compute than our simple cell

responses. This makes them unsuitable for any real-time applications with the
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Figure 3.8: HMAX features are much weaker than our even simple cell re-

sponses at scale λ = 4, even considering that we could use 8150 HMAX fea-

tures and only 1800 even simple cell features. When combining them with

our even simple cell responses, the performance becomes slightly better but it

is still worse than the result when using only even simple cell responses.

computational power currently available.

3.4.8 Comparison with other biologically inspired local

descriptors

In this section we compare the descriptor that we developed and the biologically

inspired descriptors BRISK (512 bits) and BRIEF (256 bits). Figure 3.9 shows

that the descriptor that we developed significantly outperforms both of them.

The 64-bit version of our descriptor, either using only scale λ = 4 or using the
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combination of even and odd simple cells at all tested scales, is already good

enough to clearly outperform them. They have respectively false positive rates

of 48.5% (single-scale) and 35.8% (multi-scale) for a 95% error rate, versus

55.0% of BRIEF and 73.2% of BRISK, which use 4 and 8 times more bits.
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Figure 3.9: Comparison of our descriptor performances with other biologi-

cally inspired descriptors BRIEF and BRISK. Our descriptor, either using

only even simple cells at scale λ = 4 or using a combination of even and odd

simple cells at multiple scales, outperforms both BRIEF and BRISK, even

when using four or eight times less bits.

If we consider a direct comparison in terms of bits, the 256 bit version of our

descriptor at scale λ = 4 has a 95% error rate of 54.3%, which is only 0.7%

better than BRIEF but it is much better at low false positive rates. Comparing

the present descriptor built from multiple scales, the 95% error rate difference
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to BRIEF is bigger: 19.8%. Making the same comparison with BRISK, we have

95% error rate differences of 37.7% and 14.8%. The present descriptor clearly

outperforms the other biologically inspired descriptors BRIEF and BRISK,

even when using four or eight times less bits.

3.4.9 Comparison with the SIFT-based LDAHash local

descriptor

Figure 3.10 shows that both our single-scale and multi-scale 128-bit descriptors

outperform the SIFT-based 128-bit descriptor LDAHash, a state of the art, non-

biological descriptor. The present descriptors have 95% error rates of 48.5%

(single-scale) and 35.8% (multi-scale), which are both better than LDAHash

(52.9%). When considering low false positive rates, our descriptors are still

better than LDAHash, and even when using a 64-bit version of the multi-scale

descriptor we still get better results (a 95% error rate of 40%).
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Figure 3.10: Comparison of our descriptors with the non-biologically inspired

descriptor LDAHash.
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3.4.10 Computation time

After showing that the new descriptor outperforms the other biologically-inspired

descriptors BRIEF and BRISK and also the non-biological SIFT-based de-

scriptor LDAHash comes the question: can it be used as alternative to other

descriptors currently used in real-time applications? To evaluate the computa-

tion time in a proper way the processing time was split into two steps: feature

extraction and keypoint computation.

We measured the average time for feature extraction over 1000 patches of

32 × 32 pixels, thus implicitly assuming one keypoint at the center of each

patch. For the single scale features (λ = 4) features the average time was

2.15 ms and for the multi-scale features (λ = {4, 6, 8, 12, 16, 24, 32}) the aver-

age time was 2.35 ms. Times were measured on a computer with a quad-core

processor running at 2.4 GHz and with OpenMP for parallel processing. Re-

garding the construction of the descriptor, it is a much faster process and

takes only an average time of 0.45 ms for only scale λ = 4 and 0.52 ms for

the combination of several scales. However, in this step no parallel processing

was applied and there is still room for optimization. Since feature extraction

and descriptor computation take a few milliseconds, processing times are good

enough for some real-time applications. However, the processing time can be

greatly reduced using a more modern processor. Another option is to use the

GPU implementation of feature extraction and keypoint detection Terzic et al.

[2015]. This can reduce computation time very significantly, while leaving the

CPU processor free for other processes.

3.5 Applications

In this section some applications will be shown of the descriptor that we de-

veloped. As referred to in previous sections, descriptors can be used for early

vision processes, such as optical flow and stereo vision, but also for object

recognition.
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3.5.1 Optical flow

Optical flow is the motion pattern caused by moving objects in a visual scene.

It can be described by the motion or displacement vectors of entire objects

or parts of them between consecutive time frames. From a biological point-of-

view, there are strong arguments indicating that neurons in a specialized region

of the cerebral cortex play a very important role in flow analysis [Wurtz, 1998].

According to William and Charles [2008], neuronal responses to flow are shaped

by visual strategies for steering, and according to Warren and Rushton [2009],

the flow processing has a very important role in the detection and estimation

of scene-relative object movement during egomotion.

Using our previous developed keypoint detector [Terzic et al., 2015], we

extracted keypoints in sucessive camera frames. Then we applied our new

descriptor to match keypoints from one frame to the other, thus obtaining each

keypoint’s displacement vector. Since keypoint displacement is expected to be

relatively small from one frame to the next one, depending on frame rate, we

can limit keypoint matching to a specific range, and not waste computation

time in matching very distant keypoints. Since our descriptors are binary and

we only have to match each descriptor against a few other descriptors, optical

flow can be determined in a very simple, fast and effective way.

Figure 3.11 shows two examples of optical flow estimated by using our

cortical keypoint detector and descriptor. Keypoints were extracted at scale

λ = 4 and annotated by the 128-bit single-scale descriptor, also using only

λ = 4. The matching was done between each keypoint in the first frame and

all keypoints within a 30 pixel distance in the second frame. The top video in

Fig. 3.11 has a resolution of 584× 388 pixels and an average of 1932 keypoints

per frame. The bottom video has a size of 640× 480 pixels with an average of

1594 keypoints.
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Figure 3.11: Example of optical flow determination using our keypoints and

keypoint descriptors. Rows 1 and 3 show two sequential frames from two dif-

ferent sets. Rows 2 and 4 show the optical flow results obtained from match-

ing keypoints between the two frames. The images belong to the Middlebury

Optical Flow dataset [Scharstein, 2009a].
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3.5.2 Stereo vision

Stereo vision is another important process in our brain. It allows us to estimate

distances to obstacles and objects and is especially important for navigation.

In our primary visual cortex we have binocular neurons which take input from

both left and right eyes and integrate the signals together to create a per-

ception of depth. These cells are selective, usually tuned to specific disparity

ranges. We assume that each binocular neuron takes as input higher level rep-

resentations from points on the same epipolar line from left and right images,

compares them, and fires if the representations are similar. These higher level

representations could be our keypoints and their descriptors.

Figure 3.12: Example of stereo matching using our descriptor to match pixels

from the left image to the right image. The image is part of the Middlebury

dataset for stereo vision [Scharstein, 2009b].
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Looking at the problem from a computational point of view, we can compute

disparity maps through the following process: instead of applying keypoint

detection we can code each pixel from the left and right images by using our

keypoint descriptor. Then we match each coded pixel of the left image to the

next K pixels on the same epipolar line of the right image. The horizontal

displacement between the two best matching pixels then corresponds to the

disparity value of that pixel.

Figure 3.12 shows an example of a disparity map, with K = 30. Since the

goal of this section is only to show the possibility of applying the descriptors for

stereo matching, no extra pre- or post-processing was applied. If the goal was

to achieve a state of the art stereo algorithm, further processing is necessary.

However, rough stereo maps are sufficient for robot navigation and obstacle

avoidance.

3.5.3 Object recognition

Object recognition can also be achieved by using our descriptor. We applied

keypoint extraction and description to a library of labeled object templates so

that each object is represented by groups of keypoint descriptors. Then we

can take a query image, apply the same keypoint detection, build the keypoint

descriptors, and use the Hamming distance to match them against the ones

of the labeled templates. Once we have at least 30% of matching keypoints

between the query image and a template, we can assume that a match has

been detected. Figure 3.13 shows an example of matching a cup. We are able

to perform object recognition in real time and by using several scales we can

match objects that have different sizes.
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Figure 3.13: Example of object recognition using our keypoint descriptors,

extracted at scales λ = 8 and λ = 16. Since the cup in the left image is

at a smaller scale than the one in the right image, the descriptors from scale

λ = 8 in the left image correctly match those from scale λ = 16 in the right

image.

3.6 Conclusions

In this chapter we presented a process to learn and optimize biologically inspired

binary keypoint descriptors. We showed that they clearly outperform other bi-

ologically inspired binary descriptors and also the non-biological SIFT-based

LDAHash descriptor. Both the single-scale and the multi-scale descriptors that

combine even and odd simple cell responses are fast enough for real-time appli-

cations, and we have shown that they can be used to model some early vision

processes such as optical flow, stereo disparity and also object recognition.

The best descriptor we were able to build combines even and odd simple cell

responses at multiple scales. According to the experiments it was verified that

by using more scales and more even and odd simple cell responses, the result

is usually better. Complex cells, on the other hand, do not add much useful

information.
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As further work we intend to create a GPU implementation of the descrip-

tor construction process which can be integrated with the keypoint detection

implementation. Since keypoint detection is also based on responses of sim-

ple and complex cells, the responses of these cells are readily available for the

descriptor process. The result will be a complete keypoint detection and de-

scription framework that is fast enough for several real-time applications, such

as real-time vision for biologically inspired robotics. Another step for the fu-

ture is to repeat the work described in this chapter for building descriptors

with a smaller number of features and with a smaller number of bits. Although

these descriptors will perform worse than the ones tested in this chapter, they

may still be useful to speed up processes such as optical flow and stereo vision,

which, as shown, can be implemented by matching descriptors against a small

set of other descriptors. Our brain performs these processes very efficiently.



Chapter 4

Biologically Inspired Active

Vision for Robot Head

Abstract: Active vision has been an interesting research topic for about four

decades. The possibility of having a camera system that can acquire information,

process it, and move the camera towards regions that can provide more informa-

tion, has a wide range of applications. Robotics, either fixed or mobile, stands as

one of the areas where active vision can be particularly useful. In order to create

such systems it is necessary to have a visual perception system that is able to

analyze images captured by the robot’s cameras and extract interesting regions to

where the cameras should point at next. Depending on the application, multiple

different features can be used to evaluate the level of importance of certain image

regions. In this chapter we propose a real-time biologically inspired active vision

system to control a robot head with two degrees of freedom. Acquired images are

processed for color, disparity and motion information which are used to create

a saliency map that will generate motor commands. Motor control is performed

using 2D attractor dynamics. In order to achieve real-time performance, we de-

veloped a new biologically-inspired binary descriptor, a new stereo-vision model

that outperforms any other biologically-inspired model. In addition, a new object

recognition model was also developed.

71
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4.1 Introduction

The first general framework for active vision was proposed by Aloimonos and

Weiss [1988] with the objective of improving the perceptual quality of track-

ing results. The term “active vision” implies the existence of a continuous

perception-action cycle where the acquisition of information directly affects

the movements to be made, which will then also affect the information that

will be captured next. In robotics, active vision can be particularly useful since

it helps in focusing computational resources on the important elements of a

scene [Tatler et al., 2011].

In nature, active vision is very common and essential for survival, since it

allows animals to track their preys or predators. We, humans, have a very

sophisticated active vision system that processes the information acquired by

our eyes, extracts several cues like color, movement, disparity and texture, and

combines them to create a saliency map that determines where to look next.

Although the (computational) interest in active vision has emerged almost four

decades ago, most computer vision systems nowadays still use a static camera.

Some of these systems have the camera mounted on a vehicle or on a moving

arm, but usually there is little or no control of the camera movements.

On the other hand, in biology, both the eye and the head are extremely

active: the eyes perform rapid and frequent saccades and tracking movements,

and the head pans and tilts to change the viewpoint so that the eyes can acquire

more information relative to the current position. In our retinae the distribution

of receptor cells is extremely non-uniform, having the greatest concentration

at the fovea. Only the center region is seen sharp. Saccades are then used to

complete the perception of the scene by joining multiple sharp regions. Also,

since our eyes have a limited field of view (FoV), head movements are used

to improve the amount of information that we can acquire. In these systems

the acquisition of information is an active process, not passive. The foveal

structure of the human eye is related to the selective aspect of human active

vision [Findlay and Gilchrist, 2003].

Naturally, this selectivity is also related to overt and covert visual attention.
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Visual attention is a biological process that processes the information acquired

by the eyes to select which regions must be analyzed in more detail. Since

the brain cannot process all sensory stimuli in the physical world it must focus

resources on the stimuli that can maximize the information gain. Saliency

models for visual attention can be built from several cues (see Section 4.2).

One cue, which is surely important for systems that have some sort of real

world interaction, is disparity. A mobile robot can benefit from getting it’s

attention drawn to nearby obstacles in order to avoid them and a robot arm

can also benefit from being able to select objects on top of a table to grasp

them.

Proof of those benefits is the growing trend of using depth sensors like

Microsoft Kinect in robotics applications [Oliver et al., 2012; Biswas and Veloso,

2012]. Traditionally, depth information is calculated using stereo vision, by

taking images from two horizontally displaced cameras and matching the pixels

from the left image to the right one or vice-versa. Many stereo vision models

have been proposed with outstanding results, see e.g. Zhang et al. [2015] (see

also Section 4.2).

In direct relation to disparity, the process of visual saliency is useful for

selecting interesting regions in a scene. These interesting regions can then be

processed for object or landmark recognition. One of the used approaches to de-

tect objects or landmarks is by using keypoints and keypoint descriptors [Terzic

et al., 2015]. Keypoints indicate the location of specific events in an image but

they do not contain any information about the regions where they are located,

hence they cannot be matched to each other. To perform keypoint matching

across images it is necessary to take the local image information around them

and to code this, building a local image descriptor for every keypoint. These

descriptors must be robust to image variations, like illumination changes, ro-

tation, etc. Descriptors characterize image regions by means of a numerical

representation which can be floating point numbers or a binary strings (see e.g.

[Rublee et al., 2011; Leutenegger et al., 2011]).

An active vision system implies a continuous perception-action cycle where

the pan and tilt motor are jointly actuated according to the acquired infor-
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mation. Most robotics systems commonly use PID controllers to drive the

robot motors, including the pan and tilt camera motors (if they exist) [Wu

et al., 2010; Zhang et al., 2010]. An alternative to PID controllers is to use

Attractor Dynamics controllers, which take inspiration from biology and have

been successfully used in several robotics applications such as sensor data fu-

sion, autonomous vehicle control and obstacle avoidance [Bicho et al., 1998]

and formation control [Monteiro et al., 2004]. Dynamic Neural Fields, an ex-

tension of attractor dynamics, have also been used for learning sensorimotor

transformations [Sandamirskaya and Conradt, 2013].

All models presented in this chapter are biologically plausible processes,

mostly based on features extracted in V1 cortical region. The main contri-

butions are: (i) a novel biologically inspired stereo model that is able to run

in real-time for robotics applications; (ii) the integration of this stereo model

with color and motion for saliency extraction; (iii) the application of a state-of-

the-art biologically inspired binary descriptor for object recognition in salient

regions (the same as the one presented in Chapter 3); (iv) the use of attractor

dynamics for pan control; and (v) the test of the whole system in real-time using

a robot head with real objects and object recognition in a real environment.

In the next section we will be briefly describe some of the work that has

been done in active vision and related fields. In Section 4.3 the biologically

inspired active vision system, including the system architecture, is described,

and in Section 4.4 we will present the bio-inspired multiscale binocular cell

stereo model. Section 4.5 presents the saliency model, and in Section 4.6 the

object recognition model. Section 4.7 deals with attractor dynamics for pan

control, followed in Section 4.8 by all the evaluations and tests. In the last

section we will draw some conclusions and refer to some future work.

4.2 Related work

The use of biologically inspired models in vision has been getting more atten-

tion and some interesting implementations have already been realized. Serre

et al. [2005] proposed a set of features for object recognition inspired by the
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visual cortex that outperformed some more complex computer vision systems.

Holzbach and Cheng [2014a] also proposed a concurrent real-time biologically-

inspired visual object recognition system. Their approach was based on a

hierarchical model of the visual cortex for feature extraction and rapid scene

categorization. To achieve real-time performance, they applied optimization

methods from signal detection theory, signal processing and linear algebra.

They made improvements on the computation speed of HMAX features, which

are composed of several layers which model the simple and complex cells from

the human visual cortex. They used maximum response occurrences in the

image to perform object localization.

Directly associated with object recognition is visual attention, which can

be categorized into two distinct functions: bottom-up and top-down attention.

Bottom-up attention refers to attentional guidance performed by external fac-

tors that are salient due to their inherent properties (color, texture, orientation,

disparity, motion, etc.) relative to the background of the image. On the other

hand, top-down attention refers to attention guidance based on prior knowledge

and task objectives [Katsuki and Constantinidis, 2014].

Visual attention can be materialized by saliency maps. Several computa-

tional saliency models have been developed so far. One of the first models,

which is still a reference today, was proposed by Itti et al. [1998], and uses

cues like color, intensity and orientation. These cues are processed by a bank

of center-surround filters to create several saliency maps that finally are com-

bined to generate a single, final saliency map. Other approaches use only color

information [Martins et al., 2008] or keypoint density, since keypoints code lo-

cal image complexity [Rodrigues and du Buf, 2006]. More recently, a texture

based model was proposed by Terzić et al. [2015] and results have shown it to

be competitive with the original model by Itti et al. [1998]. Moreover, when

combined with color it outperformed the original model. This model also has

biological inspiration since it uses responses of complex cells from V1 cortical

area. Several saliency-based object recognition approaches were proposed by

different authors [Walther et al., 2002; Holzbach and Cheng, 2014b; Frintrop

et al., 2014].
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It is important to stress at this point that, just like our brain, current com-

puter processors also have their limitations. It is known that our brain is much

more powerful and efficient than current processors and yet it still cannot pro-

cess all the available stimuli, therefore using saliency for a more efficient usage

of resources. Hence, using saliency for robotics applications could also bring

some benefits, reducing processing time while increasing perception efficiency.

Associated with the concept of visual saliency, and also a tool to create more

efficient systems, is the concept of Inhibition of Return (IoR): the relative sup-

pression of FoA stimuli that have been recently/before processed [Posner et al.,

1995]. The goal of this stimulus suppression is to drive attention to novelty

[Posner and Cohen, 1984], serving as a search or exploration facilitator [Itti

and Koch, 2001].

Nevertheless, other solutions exist. Gould et al. [2007] developed an inter-

esting approach for peripheral-foveal vision for real-time object recognition and

tracking in video. Their method uses a learned, attentive low-resolution inter-

est map to direct a high-resolution fovea towards the interest points. Objects

recognized in the fovea can then be tracked using peripheral vision. In their

tests they used a low-resolution wide angle camera for peripheral vision and

a high-resolution pan-tilt-zoom camera for foveal vision. With this setup they

were able to achieve real-time performance, since object recognition only had

to be performed on a small foveal area.

Siagian and Itti [2007] developed a robot localization system using biologically-

inspired robotics vision. The system models two extensively studied human vi-

sual capabilities: extracting the gist of a scene to produce a coarse localization

hypothesis and refining it by using saliency to locate landmark regions in the

scene. Gist was computed as a holistic statistical signature of the image, allow-

ing for abstract scene classification and spatial layout. Saliency was computed

as a measure of interest at all image locations in order to direct the landmark

identification process towards the most likely candidate locations. Both gist

and salient landmark features are then processed using a Monte-Carlo localiza-

tion algorithm. Their system was tested in three different outdoor environments

and the robot was able to localize itself in most situations.
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One of the most advanced works on biologically inspired active vision was

the model proposed by Leitner et al. [2013] for learning visual object detection

and localization using the icVision framework. They used an iCub robot to

detect and recognize objects in a table-top scenario. They used several filters,

in RGB and HSV color space, to detect objects and the FAST features [Rosten

et al., 2010] to perform pre-segmentation. They also used genetic programming

to automatically learn filters to detect objects and experimented using the

saliency model developed by Itti et al. [1998] coupled with stereo vision provided

by the iCub stereo camera for scene exploration and object segmentation.

Related to stereo, MeshStereo proposed by Zhang et al. [2015] is one of the

top-performing models and, unlike other stereo models, it does not output a

simple disparity map but is able to output a 3D triangular mesh which can

be directly used for view interpolation. NTDE [Kim and Kim, 2016] is an-

other of the top-performing stereo algorithms. It applies adaptive smoothness

constraints using texture and edge information. The method penalizes depth

discontinuities in non-textured regions and it complements the primary CNN-

based matching cost with a color-based cost. Then, by combining two edge

maps from the input image and a pre-estimated disparity map, denoised edges

are extracted which correspond to depth discontinuities with high probabili-

ties. Small differences of neighboring disparities near the denoised edges are

penalized.

It is surprising that although stereo vision is commonly present in biological

systems, there are not many biologically inspired stereo vision models. Most of

the available methods rely on purely mathematical or computational models.

One biologically inspired method is BioDEM, [Martins et al., 2011] which con-

sists of a disparity energy model using a trained neuronal population. Actually,

two neuronal populations are used: one for encoding, which consists of a set of

neurons tuned to a wide range of parameters such as horizontal disparities, spa-

tial frequencies and orientations; and another for decoding which estimates the

disparity. The same authors also proposed an improvement over this method,

LCVB-DEM [Martins et al., 2015] which combines luminance, color, viewpoint

and line and border detection with the disparity energy model. This model is
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currently the best bio-inspired stereo model in the Middlebury dataset. How-

ever, although these bio-inspired models can generate disparity maps that could

be good enough for disparity-based saliency or disparity-based robot naviga-

tion, they are computationally too expensive for real-time applications.

Also related to stereo and to the Martins et al. work, in our visual system

there are binocular neurons, which are neurons that assist in the creation of

stereopsis from binocular disparity. These neurons are present in the primary

visual cortex, where the first steps of binocular convergence begin [Qian and

Zhu, 1997; Scholl et al., 2013]. Binocular neurons are considered to have re-

ceptive fields in both left and right eyes and integrate the signals together to

create a perception of depth. This type of cells can be tuned to a wide range

of spatial frequencies [DeValois et al., 1982; Shapley and Lennie, 1985] and

phase differences [Qian and Zhu, 1997], responding differently to stimuli with

different disparities. According to some authors, these cells can be classified

to 3 types: far cells, near cells and zero-tuned cells. Far cells respond to dis-

parities in planes more distant than the plane of fixation, near cells respond

to stimuli in planes closer than the plane of fixation, and zero-tuned cells re-

spond to disparities in the plane of fixation [Purves et al., 2012]. In some work

this classification is extended to 6 types: near, far, near tuned, zero tuned and

inhibitory tuned [Poggio and Fischer, 1977; Poggio et al., 1988; Poggio, 1990].

Going back to disparity maps, one of the keys for fast disparity maps that

can be used by a robot in real time, is a fast (keypoint) descriptor. The most

known keypoint descriptors are SIFT [Lowe, 2004] followed by SURF [Bay et al.,

2008]. Both yield a floating point representation and for matching they use the

Euclidean distance. However, binary descriptors such as ORB [Rublee et al.,

2011] and BRISK [Leutenegger et al., 2011] have been getting more and more

attention because they need less memory and are much faster to extract and

match. This makes them suitable for real-time applications, even on embedded

devices with low computational power.

There are also biologically inspired keypoint detectors, such as the ones

based on simple, complex and end-stopped cells from cortical area V1 [Ro-

drigues and du Buf, 2006, 2009] and a binary biologically-inspired descriptor,
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which encodes the cell responses into a binary vector using LDAHash [Strecha

et al., 2012]. This descriptor was shown to clearly outperform any other descrip-

tors with biological inspiration and it also slightly outperforms the SIFT-based

LDAHash (see also Chapter 3).

Finally in our previous work, Saleiro et al. [2012] developed a minimalistic

vision-based cognitive SLAM system comprising visual saliency, object segre-

gation and object recognition. The vision processes were integrated with a

cognitive memory structure composed of short- and long-term memories, the

first one having a small capacity and storing only information necessary for

immediate navigation. The latter stores important information, selected from

short-term memory, for longer periods of time so that it can be used for global

navigation. The system was tested on a small robot in a small sandbox. The

vision components of this system used standard computer vision methods for

saliency and object recognition. In more recent work, Saleiro et al. [2014]

developed a preliminary version of the biologically-inspired binary keypoint

descriptors and stereo algorithm. The authors also developed saliency based

on color, motion and disparity, and integrated the three vision models in a

child-sized mobile robot and performed navigation tests in a real environment,

with both static and mobile obstacles. In this work the robot-head was static

and no active vision was used.

4.3 Biologically inspired architecture of the ac-

tive vision system

The biologically inspired robot head architecture is composed of (a) an ac-

quisition module, (b) vision modules and (c) a motor control module. When

connected together they create an action-perception loop for active vision.

The acquisition module is based on a stereo camera, which captures a pair

of images. These images are used as input for the vision modules, i.e., to

create the disparity and saliency maps. The saliency module takes as input

(besides other features) the disparity, and the output of the saliency module

is fed into the Focus-of-Attention (FoA) module, that provides salient regions
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of the image to the object recognition module (by the order of saliency). The

output of the saliency module is also used as input for the Attractor Dynamics

Motor Control module. Fig. 4.1 illustrates the generic system architecture.

Image Capture

(Stereo Camera)

Left Image Right Image

Disparity

Saliency
Focus of

Attention

Object 

Recognition

Attractor Dynamics

Motor Control

Figure 4.1: System architecture.

For a better comprehension of the following sections, we briefly describe the

vision process (see Fig. 4.2). It starts with image capture by the left and right

cameras from the stereo camera. V1 cortical cell responses and CIE LAB color

components [Martins et al., 2008] are computed for each image. V1 cortical

cell responses [Rodrigues et al., 2012] are also used for line/edge and keypoint

extraction. Disparity maps are computed using the cell responses, line/edges

and LAB color channels. Disparity maps and LAB color components are used

as input for the saliency module that generates regions of interest (RoI). In

each RoI the keypoints are computed and the keypoint descriptors are created

from the left image. These are matched against keypoint descriptors from

previously stored templates in memory and the system is able to perform object

recognition. The visual process is illustrated in Fig. 4.2. The following sections

describe the whole process in detail.
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Figure 4.2: Vision component overview.

4.4 Multiscale binocular stereo cells

From a biological point of view, our stereo model takes inspiration from the

concept that there are binocular cells (see e.g. Qian and Zhu [1997]; Scholl

et al. [2013] and Chap. 4.2) tuned to different disparities and that, like many

other neurons in the visual cortex, can receive excitatory or inhibitory input

from other neurons. From an implementation point of view, in order to achieve

real-time performance, the stereo vision model we propose takes inspiration

from the Binary Stereo Matching algorithm [Zhang et al., 2012], which applies

the BRIEF binary keypoint descriptor [Calonder et al., 2012] to every single

pixel of both left and right images to perform matching between pixels of both

images.

This matching is combined with a binary mask built by comparing the

absolute color difference in the LAB color space between pixels from left and

right images. However, to meet our speed requirements and to improve the

results we use a different descriptor and apply the binary mask in a different

way, as well as add some extra steps to the algorithm that we will explain in

the following sections.
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As mentioned before, the stereo model has also input from the V1 cells.

Let’s briefly define the multi-scale information retrieved by the cells in visual

cortical area V1. In this area we find simple, complex and end-stopped cells

[Rodrigues and du Buf, 2006], which are thought to play an important role

in coding the visual input: they allow to extract multiscale lines and edges

[Rodrigues and du Buf, 2009] and keypoint information (keypoints are line/edge

vertices or junctions, and also “blobs”). Responses of even and odd simple cells,

which correspond to the real and imaginary part of a Gabor quadrature filter

[Rodrigues and du Buf, 2009], are denoted by RE
s,i(x, y) and RO

s,i(x, y), being i

the orientation. The scale s is given by λ, which is the wavelength of the Gabor

filters, in pixels. Responses of complex cells are modelled by the modulus,

Cs,i(x, y) = [{RE
s,i(x, y)}2 + RO

s,i(x, y)2]1/2 (for more details see Rodrigues and

du Buf [2006]).

The basic scheme for line and edge detection is based on responses of simple

cells: a positive or negative line is detected where RE shows a local maximum or

minimum, respectively, and RO shows a zero crossing. In the case of edges the

even and odd responses are swapped. This gives four possibilities for positive

and negative events. An improved scheme proposed by Rodrigues and du Buf

[2009] consists of combining responses of simple and complex cells, i.e., simple

cells serve to detect positions and event types, whereas complex cells are used

to increase the confidence. Lateral and cross-orientation inhibition are used

to suppress spurious cell responses beyond line and edge terminations, and

assemblies of grouping cells serve to improve event continuity in the case of

curved events. We denote the line and edge map by LEs(x, y).

If two edges, e.g., one vertical and one horizontal, meet in a point, complex

cells tuned to the edge orientations will produce a maximum response at that

position. Cells tuned to other orientations will also respond at the edges, but

with weaker responses. However, if we compute the first and second derivatives

of the responses of the complex cells we obtain single and double end-stopped

cells, in the same orientations as those of the complex cells. This implies that

single-stopped cells will produce responses that are maximum on both sides

but zero in the middle. On the other hand, double-stopped cells will produce
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responses that are maximum at the edge positions and decrease on both sides.

By summing all responses over all orientations we get a peak at the corner,

where all cells respond. At these peak locations we extract keypoints; Ks(x, y),

[Terzic et al., 2015].

Our algorithm follows 7 major steps, which are repeated for each scale

(s): (a) LAB image resizing; (b) binary mask computation; (c) building the

binary pixel descriptors; (d) pixel descriptor matching between left and right

images (pixel correspondence); (e) DoG filtering; (f) final disparity map, built

from matching costs contribution, spatial filtering and a winner-take-all (WTA)

approach.

As mentioned, our approach is multi-scale, taking a coarse-to-fine approach.

We start with the coarser scales, which are much faster to compute and result in

a coarser disparity map, and use progressively finer scales to get more detailed

disparity maps. Disparity information from coarser scales is weighted according

to their level of certainty and is provided as input to finer scales where certainty

is low. This progressive multi-scale approach not only yields good results but

also permits to find a good compromise between computation time and detail

of disparity maps for the pretended application. It is important to stress that

in most of the applications small and coarse disparity maps are good enough

to compute the saliency for object detection.

4.4.1 LAB image resizing

If I l,r are the original left (l) and right (r) images acquired by the RGB stereo

camera, we start by computing a stack of Ns differently-sized RGB images

(with Ns the number of scales), so that they have smaller sizes as a function

of the scale s, i.e., for instance for three scales s = {1, 2, 3} with λ = {4, 8, 16}

we compute a stack of 3 RGB images, having the first one the same size of

the original images, the second one half of that, and the third one a quarter of

the original size. As the scale doubles, the image size gets divided by a scaling

factor (sf) of 2. After computing the stack of differently scaled RGB images

we convert them to LAB color space, obtaining I l,rs,c, being s the scale of the

image and c = {L,A,B} the different components of the LAB color space.
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These images will be used in the next step to compute the binary masks for

each scale.

4.4.2 Binary masks

Like BSM [Zhang et al., 2012], our algorithm uses binary masks as part of

the matching cost computation in order to minimize the problem known as

edge-flattening.

For the three components of the CIE LAB color space (c), and for each pixel

(plc) from the left image (I ls,c) we compute the sum of the absolute differences

(SAD) between that pixel and next Nd pixels (prc) from the right image (Irs,c)

on the epipolar line, i.e., SAD(m, k) =
∑

c={L,A,B} |plc(m)− prc(m+ k)|, with m

the pixel coordinate (x, y), k = {0, ..., Nd}, being Nd = m
sf

, md the maximum

disparity and sf the scale division factor for the current scale.

The next step consists of computing the binary mask φ, with size Nd, for

each pixel position (m), by using a binary threshold BT which corresponds

to the Nth smallest SAD value (e.g. fifth smallest value, for Nth = 5), with

Nth = log2(md/sf). The binary mask is given by

φ(m, k) =

1 : SAD(m, k) ≤ BT

0 : SAD(m, k) > BT.

The binary masks will afterwards be used to calculate the matching cost

between pixels (see Section 4.4.4).

4.4.3 Binary pixel descriptors

For the pixel correspondence between left and right images to create the dispar-

ity map, instead of using the BRIEF descriptor as used in BSM [Zhang et al.,

2012], we created a simpler and faster descriptor to suit our purpose. Apart

from being slower, BRIEF uses a 32 × 32 window to sample the information

to build the descriptor. This causes a 16-pixel wide “waste” of information

near the borders of the images, which is especially problematic when dealing

with small images. The same arguments apply to the descriptor explained in
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Figure 4.3: Descriptor sampling pattern.

Section 3.5.3, which was built for object recognition.

Our descriptor for stereo matching is a 256-bit binary vector, built using

a sampling region of 33 cell responses (see Fig. 4.3) around and including the

pixel position (x, y). It uses information from odd simple cells (RO
s,i) at 8

orientations (sampling region of 33 × 8); similar results can be achieved by

using the complex cells or the even simple cells. For each pixel position x we

take the 8 cell responses, before and after the pixel position. The same is done

on the lines below and above, but now for the 4 pixels before and after the

pixel position.

In the sampling region defined above, each value of RO
s,i is compared with

its right neighbor and if it is bigger the bit will be 1, otherwise it will be 0 The

same is done on the above and below lines, returning 32-bit responses for each

of the 8 orientation (32× 8 = 256-bit descriptor),

γ̂{s,i}(x+ i, z) =

0 : RO
s,i(x+ i, z) ≤ RO

s,i(x+ i+ 1, z)

1 : RO
s,i(x+ i, z) > RO

s,i(x+ i+ 1, z).

with i = {−8, ..., 8} for z = y and i = {−4, ..., 4} for z = {y − 1, y + 1}.

To create the 256-bit descriptor we simply concatenate all γ̂, i.e.,

γs(x, y) = CONCAT
i={0,...,7};z={y−1,y,y+1}

(γ̂{s,i}(x, z))

The overall computation speed comes from the fact that to compute the

descriptor for position (x + 1, y) we just have to rotate the bits of all the

γ̂{s,i} segments by one position to the left, and perform the same comparison

described above with the new cell responses from the right, placing the new

bits at the free position on the right of each of the γ̂{s,i}. Using this strategy we

get a fast binary descriptor with information sampled from the region around
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each pixel.

4.4.4 Pixel correspondence

In this step we calculate and store the matching cost (M) between each de-

scriptor γs(x, y)l from the left image and the next Nd descriptors on the same

epipolar line starting from the same position (x, y) in the right image (γs(x, y)r).

The matching cost is computed using the Hamming distance between descrip-

tors. At the end of this matching process we have for each scale s an array of

Nd images with the matching costs between each descriptor and the descrip-

tor at position m at all the possible horizontal displacements m + k (see also

Section 4.4.2).

From a biological point of view, we can consider each of these images as

populations of binocular cells tuned to a certain horizontal disparity and each

matching cost is the response of a binocular cell, however the response ampli-

tude is inverted: the lower the matching cost, the bigger the cell response.

After calculating all the matching costs (M) we combine them with the

binary mask previously computed in Section 4.4.2, φ(m, k), and obtain the

combined matching costs, Mφ. The binary mask based on color information is

used to boost or decrease the matching costs. Each combined matching cost,

Mφ, is computed by

Mφ(m, k) =

M(m, k)× (1 + κ) : φ(m, k) = 0

M(m, k)× (1− κ) : φ(m, k) = 1

, κ ∈ [0, 1],

with m the (x, y) position, and k = {0, ..., Nd} (see Section 4.4.2). All empirical

tests showed that the best results were obtained by using κ = 0.2.

4.4.5 DoG filtering

In this step we apply a 1D Difference-of-Gaussians (DoG) function to the

matching costs, Mφ, along the displacement dimension (k) for each pixel posi-

tion. The objective is to make adjacent low matching costs boost each other

and erroneous low matching costs get penalized by adjacent high matching
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Figure 4.4: Example showing the use of the DoG to model the inhibition and

excitation interactions between cells tuned to different disparities.

costs. From a biological point of view we could see this filtering process as a

series of excitation and inhibition interactions between binocular neurons tuned

to different disparities.

Being Mφ(m, k) the 3D matrix (m = (x, y)) with the k elements, the vector

containing the matching costs of all possible displacements at position m, the

filtered matching costs, M ′
φ(m, k), are computed as follows:

M ′
φ(m, k) = τ ×Mφ(m, k) ∗

(
α

1√
2πσ2

1

e
− k2

2σ21 − β 1√
2πσ2

2

e
− k2

2σ22

)
,

with τ = 0.4, σ1 = 1/sf , σ2 = 8/sf , α = 1 and β = 0.5 (obtained empirically).

4.4.6 Disparity map

Since we are using multiple scales, at this point we can combine the filtered

matching costs of the current scale (M ′
φ,s(m, k)) with the final matching costs

(MF ) from the previous, coarser scale.

In case the image of the previous scale is smaller than the one of the current

scale, the matching costs matrix is upsampled to the same size (by multiplying

all dimension (m, k) by sf) of the matching costs matrix of the current scale.
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While matching costs below a value L remain unchanged (we used L = 10%×

MAX(M ′
φ,s); typically the value of L is 20), all the other matching costs are

changed through an average with matching costs for the same displacement

from the previous coarser scale, MF,s−1:

Mf,s(m, k) = (M ′
φ,s(m, k) +MF,s−1(m, k))/2,

with,

MF,s(m, k) =

Mf,s(m, k) + |Mf,s(m, k)− ws| × r : ws > Mf,s(m, k)

Mf,s(m, k)− |Mf,s(m, k)− ws| × r : ws ≤Mf,s(m, k),

where ws is the weighted sum of the matching costs at Mf,s(m, k), in a 3 ×

3 window centered at m, ignoring the values at positions that contain lines

or edges, i.e., LEs (lines and edges appear due to discontinuities in images,

where they are used as barriers for spatial filtering). The value of r = 1.6 was

determined empirically.

The above process is repeated while the number of “stable” values between

two iterations is smaller than w% (we used w = 10%) of the total number of

elements in the matching costs matrix. A value is considered stable if both

MF (m, k) and Mf (m, k) are smaller than a threshold value ThD (we used

ThD = 25), and it will not change in remaining iterations. The value w = 10%

can be changed to a higher/lower value if we pretend a faster or more precise

final disparity map.

This step helps in clearing outliers, especially in flat regions. From a bi-

ological point of view we can consider this step as excitation and inhibition

between binocular neurons tuned to the same disparities at different scales.

The final disparity map (for the left image, Dl(x, y)) is generated by using

a winner-take-all approach and taking only the displacements with the smaller

matching cost for each position m.

Once more, this final step can be seen as a series of interactions between

binocular neurons that keep occurring until stability of the disparity map has

been achieved.
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4.5 Saliency

To detect salient regions in the captured images a saliency module that com-

bines (a) color with (b) disparity and (c) motion to create a saliency map,

Sl(x, y), was developed.

For the color component (a) we build a stack of 6 retinotopic maps repre-

senting different channels in the CIE LAB color-opponent space. The CIE LAB

model is based on retinal cones and provides a standard way to model color

opponency (see Saleiro et al. [2015] or Chapter 2). The first three channels

code the image in LAB color space, thus represent white, green and blue color

components. The other three channels are the complements of the first three

channels, thus represent black, red and yellow components. After computing

the retinotopic maps we apply a blob-detection kernel based on a Difference of

Gaussians operation.

The same process is applied to (b) the disparity map, Dl(x, y), after we

threshold (15% of the maximum value of Dl) it to get only the nearest regions.

For the motion component (c) we calculate the optical flow using Farneback’s

method [Farneback, 2003] with images I lt , I
l
t−1 (see Fig. 4.2). The flow’s mag-

nitude and direction are processed separately, creating a feature stack of mag-

nitudes and orientations of motion. Once more, the same blob-detection kernel

used for the disparity and color is used. We stress that t reflects the present

image and t− 1 the previous image.

The saliency map (S ′) is obtained by summing the individual color maps,

the individual motion maps and the disparity map, giving equal weights to

each of the three different components. Since a saliency map does not need to

be detailed, we compute it using the subsampled images for faster processing.

After computing the above visual saliency map we can threshold it to 66% (2/3)

of the maximum value of S ′ obtaining the final saliency map S. Interesting

regions can then be processed for object recognition.

Figure 4.5 shows the examples of the resulting saliency map. On the left,

1st and 3rd rows, we can see the image captured by the left camera and on

the right the respective disparity map is shown. In the 2nd and 4th rows, left
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Figure 4.5: Two examples (1st and 3rd row) showing the resulting saliency

map (2nd and 4th row). On the top we can see the image captured by the

left camera (left) and the respective disparity map (right). On the bottom we

can see the saliency map (left) and the highlighted regions (right) that will

be used for object recognition (see Fig. 4.6).
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and right, we can see the resulting saliency Sl, and the representation of the

objects cropped by the saliency. It is important to stress that in the saliency

map on the left of 4th row the two black boxes (see image in the 3rd row left)

do not appear as salient, as expected, once they are “not important” for the

near field robot vision or for robot navigation.

4.6 Object Recognition

For object recognition we selected a set of objects to which we apply the bi-

ologically inspired keypoint extraction of Terzic et al. [2015] and the binary

keypoint descriptor algorithm that was presented in Chapter 3.

The resulting keypoint descriptor arrays are then stored in the robot’s mem-

ory for faster processing during runtime. During robot activity, these descriptor

arrays are matched to keypoint descriptors extracted from the salient regions

(Sl; see Fig. 4.5) of the images captured by the robot’s left camera. Since we

use binary descriptors, matching is quickly done by calculating the Hamming

distances.

We consider that when at least 5 of the descriptors of a certain object are

detected, i.e. by having a Hamming distance smaller than 20% (i.e., 25 in 128

bits), a match is confirmed. Figure 4.6 shows the recognition of the objects

from the image presented in Fig. 4.5, 1st row on the left, using the saliency

map presented on the left of the 2nd row of the same figure. All objects were

recognized, and all the matches were “true matches” with the exception of one.

However, although it matches to a keypoint in a wrong object, it’s actually a

correct match in terms of keypoint matching because it matches to the “Lipton”

logo that exists in both tea boxes (Fig. 4.6 bottom row).
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Figure 4.6: Object recognition from the image presented in Fig. 4.5, 1st row

at left. All objects were recognized.

4.7 Attractor dynamics for robot head pan con-

trol

To control the robot head, we tried to model typical human behavior, gener-

ically characterized by how humans (and many animals) explore their field of

view using eye saccades, and only moving the head when they need to change

the field of view to a “new” attraction point.

Our test setup was a table top, following the setup proposed by Leitner

et al. [2013]. We used a fixed tilt angle, with the robot cameras facing a little

downward to look at the objects on the table top (see also Section 4.8). To

control the horizontal rotation of t he head (pan) we used an attractor dynamics

approach, and the “center” of the salient regions (Sl) of the images were used

as attraction points.
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Salient regions in the current camera field of view are analyzed for object

recognition by order of saliency (FoA) without requiring any head movement.

However, groups or individual salient points can create attractors which make

the head of the robot rotate (camera pan; ϕ) to better fit those salient regions

into the camera’s field of view. In order to create an exploring behavior we

also use a time-variant repulsive forcelet having its main repulsive point at the

current pan (ϕ) orientation. The strength of the repulsive forcelet for a given

orientation increases with time, which forces the robot to switch to a different

attraction point.

To implement the above behavior we split the 180o robot’s head (not cam-

era) field of view, ranging from −90o to 90o, into 9 sections, each with a

20o range, and stored the orientation values of the 9 sections in an array

Ao = {−80o,−60o, ..., 0, ..., 60o, 80o}. In the present setup, the horizontal FoV

of the robot camera was only 43o.

Considering the saliency map Sl of size M × N , we split it into B regions

(taking into account the small horizontal field of view of our robot camera we

used B = 3) corresponding to B of 9 sections that correspond to the orien-

tations of Ao, depending on the robot head orientation (ϕ) With vertical size

N and horizontal size M/B, each region has a size of (M/B) × N . Then, for

each of the B regions, we compute the maximum saliency value inside salient

regions with a size of at least 200 pixels. These saliency values are stored in a

vector Ast, with the same size as Ao.

In order to create an exploration behavior and to make the robot change

it’s field of view after some time, we applied a repulsive forcelet, which is built

in a similar way as the attractor, but taking a repulsion vector, Art (same size

as Ao). Art starts with all values set to a maximum, which corresponds to

minimum repulsion, except in the first and last position of the array. In these

positions the values are set to a minimum. This creates maximum repulsion

which prevents the robot from rotating its head more than 90o in each direction.

Every time (t) that a new frame is captured at an orientation ϕ, the Art that

corresponds to the ϕ section in Ao is decremented by a constant (5% of the

minimum repulsion value), which increases repulsion at that orientation. The
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values of the remaining sections of Art are incremented with the same constant,

decreasing the repulsion forces.

As mentioned, there are two vectors (with the same dimension as Ao) to

create the attractor (Φa) and the repulsion (Φr) forcelets, namely:

Φat = −αa× Ao× e
Ast
βa × e

Ao2

εa ,

and

Φrt = αr × Ao× e
Art
βr × e

Ao2

εr ,

with αa = αr = 50, βa = βr = 10, εa = 10, and εb = 15. All values were

empirically estimated. By changing these values we can change the behavior

of the robot head.

By summing all the values of vector Φat at each frame aquisition (t) we get

the attraction rate towards the strongest attraction point, and by summing all

the values of Φrt we get the repulsion rate away from the strongest repulsion

point.

The final pan movement rate of the camera/robot head, ϕ̂t, at each instance

t, is then calculated by summing all Φat and Φrt, i.e.,

ϕ̂t = Σ9(Φat) + Σ9(Φrt),

.

The value ϕ̂t is converted to the pan motor control of the robot head at instance

t.

To get the angular position which must be applied to the pan motor, it

is only necessary to multiply the attraction rate with a constant value, which

depends on the specifications of the motor driver (in our case the value is 1

since the motor driver accepts angle commands in radians).

Since the attraction rate decreases as the pan angle gets closer to the at-

traction point, the robot head will eventually reach a stable state which will

only be affected if a much stronger attraction point appears in the camera’s

field of view, or if a strong repulsion point appears at the current robot head

orientation. Otherwise the robot head pan angle will tend to remain unchanged.
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To create the exploration behavior we simply increase the repulsion at the

section that corresponds to the current robot pan angle every time that a

new image is captured. On the other hand, all the other sections get their

repulsion force decreased. This leads to a big repulsive effect at the current

robot orientation after some time, forcing it to move to a new attraction state.

This is a very versatile strategy, since different behaviors can be created by

simply manipulating the repulsive and attraction forces. As an example, for

robot navigation an attraction point could emerge periodically at orientation

zero (looking in front) to force the robot to detect obstacles frequently. The

same could be done for other orientations in order to make the robot look to the

sides every now and then, since the horizontal FoV of the camera is very small

if compared to the FoV of our eyes. To create a tracking behavior repulsion

can be increased at all orientations except at the orientation where the object

is detected.

Figure 4.7 shows one example of vision steering using attractor dynamics.

At the top we can see the captured image which is processed for saliency and

split into B = 3 parts. The middle and right parts contain salient regions and

the maximum saliency value of these regions are placed in the positions of the

attractor forcelet array that correspond to the current head orientation. The

orange arrows show where the two attractor points are in the plot. Attractor

points are represented by decreasing pink curves which cross the horizontal

axis of the plot. In the second plot, on the right, we see that a big repeller

appears at the current orientation (ascending yellow curve crossing the zero

axis) forcing the robot orientation (black dot) to move to the attractor point

on the right. Finally we can see the captured image after the head rotation. In

the following sections a summary of the evaluation tests will be presented.
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Figure 4.7: Example of vision steering using attractor dynamics (see text).
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4.8 Evaluation and tests

In the following sections we will present: (a) the robot setup developed to test

the active vision, (b) the tests and evaluation of the stereo model, a key element

of the active vision model, and (c) the robot active vision tests realized in real

environments. The last addressed scene exploration, object recognition and

tracking.

4.8.1 The robotic platform

As briefly already mentioned along the text, to test the biologically inspired

active vision system we used a child-sized Pioneer 3DX robot, equipped with

a Bumblebee-2 stereo camera and a PhantomX turret for pan and tilt camera

movement.

The robot structure (see Fig. 4.8) has several platforms mounted in order

to give it more height, and provide the point-of-view of a child with a height

of 1.20 m. The robot has been set up with ROS (Robot Operating System).

Although the robot is also equipped with a laser rangefinder and 6 ultrasonic

sensors, they were not used.

Figure 4.8: Child-sized robot used for the active vision tests.

For processing we used a notebook with an Intel I7-4700HQ quad-core pro-

cessor and 16GB of DDR3 RAM. The average achieved processing frame rate
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was 2.4 frames per second.

To achieve real time processing we used only scale λ = 16 for stereo com-

putation during the tests except for the Middlebury stereo evaluation.

4.8.2 Middlebury dataset for stereo evaluation

The goal of developing the new stereo model was to get fast, reliable and

biologically-inspired stereo vision that could be used in real-time robotics ap-

plications. It was tested using the Middlebury evaluation dataset [Scharstein

and Szeliski, 2002].

The dataset (version 3) is composed of training and testing datasets, with

15 image pairs each, having each a different image size and a different maxi-

mum disparity value. Ground-truth images are provided for the training set

but not for the testing set to prevent training with the testing images, as oc-

curred in version 2 of the evaluation set. Moreover, submission of results is

only once possible. First we proceeded to optimize our method’s parameters

using the training set, and the best results we achieved were using 7 scales:

λ = {6, 8, 10, 12, 14, 16, 24}. Since our method was designed with a real-time

goal (speed), we have as “inputs” small images. However, when using bigger

images our method requires too much memory, due to the storage of matching

costs at all disparities and at several scales. Hence, we were only able to per-

form evaluation using the quarter size images, which is a big handicap when

comparing to other methods that can use half- or full- size images. However, as

shown at the top in Fig. 4.9 on the Middlebury training set our model, BioBin,

performed almost as good as the previously mentioned BSM (Binary Stereo

Matching) of Zhang et al. [2012] from which we got some inspiration. However,

in terms of computing speed, our method was 5.3 times faster; see Fig. 4.9 at

bottom (we stress that BSM was also evaluated using the quarter-sized images).

Since in the Middlebury evaluation version 2 BSM has a much higher score

than BioDEM and in version 3 our method ranks very close to BSM, we could

say that our method is probably the best biologically inspired stereo algorithm.

To truly validate this affirmation we are still waiting for the Middlebury accep-

tance of the submitted test results and their final ranking. Figure 4.10 shows
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Figure 4.9: At the top the Middlebury Stereo Evaluation table for the train-

ing dataset. Our model is referenced as BinBio. Bottom row: the same but

now for execution time.

two examples of our model applied to the Middlebury dataset (version 3). On

the top row we show the Playtable image from the training dataset and at the

bottom Djembe from the testing dataset.

Finally, it is important to mention that in Fig. 4.9, top, we selected the

bad=4 metric because we used the quarter-sized images and when the results

are up-scaled for evaluation it is natural to get disparity errors of up to 4 pixels.
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Figure 4.10: Playtable image from Middlebury training dataset (version 3)

and Djembe image from Middlebury the testing dataset.

4.8.3 Test results of the active vision system

To test our system we performed three types of tests: (a) presenting several

objects in the robot’s field of view to see if it is able to direct its attention

towards them and recognize them; (b) placing the robot in different static and

dynamic scenarios and observe which elements of the scene are focused by the

robot’s cameras, and (c) test if the system is able to track objects. Again, as

previously mentioned, we followed the test setup proposed by Leitner et al.

[2013]: a table top scenario with multiple objects on it.

Scene exploration

For the scene exploration tests, in which the robot had to detect and focus

peaks of the saliency map by doing head/camera pan movements, we tried

multiple table top setups with different numbers of objects, different positions,

etc. Regardless of any changes we made to the setup, the robot was able

to successfully explore the table top scenario in a very natural way, looking

successively at salient regions in its FoV caused by nearby objects. During

runtime we removed objects, added new objects and changed object positions,

and the robot head would move accordingly to the available stimuli. The two
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big repulsion values on the sides of the repulsive forcelet array also successfully

prevented the robot from rotating its head more than 90o. Figure 4.11 shows

a sequence of images with movements of the head to focus the salient regions.

1

2

3

4

Figure 4.11: Sequence of images showing the movement of the head to focus

the salient regions on the table top setup. From left to right: captured image,

disparity map, saliency map and thresholded saliency map. Top 4 rows: table

top setup; bottom rows: corridor setup.

We also explored non-table top scenarios which also worked as expected.

The robot was able to explore different, cluttered and dynamic scenarios and

change its head orientation according to the salient information in its FoV.

Figure 4.12 shows the corridor setup.
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1
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Figure 4.12: Sequence of images showing the movement of the head to focus

the salient regions on the corridor setup. From left to right: captured image,

disparity map, saliency map and thresholded saliency map. Top 4 rows: table

top setup; bottom rows: corridor setup.

Object Recognition

In these tests we used a set of 50 objects: tea boxes, cups, bottles, coffee boxes,

etc. Some of the objects were very different (e.g., yogurt bottle vs. tea box) but

others were very similar (two Lipton tea boxes, three paper cups). Keypoints

scales were λ = {6, 12, 24}.

The tests showed that the number of false positives was quite low, even when

the keypoints that were matched were common among similar objects (success-

ful recognition rate was typically around 70%, with the table top scenario even

85%). Examples of the above mentioned erroneous matches were cup borders

and the “Lipton” logo on the tea boxes. Figure 4.6 shows some examples of

object recognition and in one of them it is possible to see the matching of a
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Figure 4.13: More examples of the robot recognizing objects. The recognized

objects are shown below the image. Since the yellow cup is only partially vis-

ible in the bottom left corner of the image, it could not be recognized. The

two black boxes were also not recognized because they generate only a very

small number of keypoints, making it hard to recognize them.

keypoint in the “Lipton” logo of the wrong tea box. However, we stress that

although the two tea boxes are very similar, the object recognition model was

able to distinguish between them (see Fig. 4.6, bottom row). As can also be

seen the descriptors were quite robust, allowing for matches even when the ob-

jects were slightly rotated, with different sizes and under different perspectives.

However, according to our tests, to achieve good invariance for 3D objects, a

template image for every 20o of the object is necessary. Figure 4.13 shows a

few more examples of objects recognized during the tests.

Object tracking

In this test we used the same table top scenario and used several different

objects. To illustrate the tracking behavior we modified the repulsive forcelet
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Figure 4.14: Sequence example of a tracked object.

to be active at every orientation except at the current orientation of the tracked

object.

The robot was able to successfully track an object in its field of view. A few

problems emerged due to the narrow FoV of the robot’s camera: if we moved

the object out of the camera’s FoV it would lose the object and stop tracking

it. However, this is a technical limitation of the hardware we used. Humans

have a much wider FoV and use peripheral vision to aid in scene exploration

and object tracking. Figure 4.14 shows a sequence of frames acquired by the

robot when tracking a “predefined” object.

4.9 Discussion

In this chapter we presented a real-time biologically inspired active vision sys-

tem to control a robot head. The vision part comprises a new model for stereo

vision, a saliency module based on color, disparity and motion, and also ob-

ject recognition using a state-of-the-art biological binary keypoint descriptor

that we developed (see Chap. 3). The motor control component makes use of

attractor dynamics to implement a behavior based on input from the vision

component.

Throughout our tests we were able to verify that the developed stereo

model proved to work fast and good enough for real-time robot operation.

The single-scale version we used provided very rough disparity maps but they

worked as desired when embedded in the active vision framework that we de-

veloped. Moreover, even though it was not our goal to make a state-of-the-art

biologically-inspired stereo model, and although (so far) we could not make

a direct comparison, the present model achieved results close to BSM, which

was directly compared and clearly outperformed other state-of-the-art biolog-
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ical stereo models in Middlebury stereo evaluation version 2. Although this is

a good indicator that our method might outperform other biologically-inspired

stereo models, we can only claim to have a state-of-the-art biologically-inspired

stereo model once we have the final testing results on the Middlebury dataset

- version 3.

Regarding the saliency model, it also proved to work within our active vision

framework, highlighting the salient objects at nearby positions, with distinct

colors and moving objects. The use of motion as a saliency feature caused some

minor problems in the generation of saliency maps, but only when the robot

camera moved. These problems could be minimized by computing the global

optical flow of the image and only considering motions in different directions

than that. This would be fundamental for using this active vision system in a

mobile robot.

The binary descriptor which we developed also worked very well. It was

possible to accurately match keypoints between templates and salient regions

in the captured images, leading to robust object recognition in our tests. We

verified that the number of false positives was quite low, and many times those

false positives were actually due to matching similar keypoints that ocurred in

other areas of the image or in similar objects. Taking the results of our tests

into account we consider that we have a good basis for the development of a

more complex, higher level, object recognition system, for example by using

the relative keypoint positions to validate the recognition of objects. One more

option for future work would be to develop an automatic object learning system,

so that the robot could learn new objects during runtime.

In terms of motor control the attractor dynamics approach also worked as

desired both for scene exploration and for object tracking, with some minor

issues in the latter case due to technical limitations of the used hardware (the

small horizontal FoV of the camera). The approach proved to be very versatile

since the behavior of the robot can be modified in a very easy way by manipu-

lating the attraction and repulsion vectors. As future work in terms of motor

control we could extend this approach to two dimensions, using it also for tilt

control. Another option for future work would be to explore the use of 2D
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neural dynamic fields for motor control.

Although we were able to successfully test the active vision system, we

realize that the processing time for each perception-action cycle was near the

acceptable limit. Although the achieved processing frame rate may seem low, to

the best of our knowledge it was the first time that a fully biologically-inspired

active vision system was implemented and tested in real time on a real robot

and in a real environment, which is not an easy task if we consider the heavy

processing usually necessary for biological vision models. To use this active

vision framework on a mobile robot, it would have to navigate very slowly.

As future work we could improve the stereo model by reducing the number

of constants, having them computed during runtime in an optimized way. In

addition, we could take advantage of the distributed computing capabilities

of ROS and low-cost and low-power single-board computers that are getting

cheaper and more powerful. Multiple independent modules could process every

component of the vision module in parallel. Another possibility would be to

develop GPU implementations of the vision components.



Chapter 5

A cognitive robot with

biological vision for SLAM

Abstract: A major goal of cognitive robotics is to create a system which can adapt

to dynamic environments and which can learn from its own experiences. We present

a cognitive SLAM architecture, which is minimalistic in terms of sensors and mem-

ory. It employs a stereo camera with pan control, three memories, and odometry.

Short-term memory is an egocentric map which holds information at close range

at the actual robot position. Long-term memory is used for mapping the environ-

ment and the registration of encountered objects. Object memory holds features of

learned objects which are used as navigation landmarks and task targets. Saliency

maps are used to sequentially focus important areas for object and obstacle de-

tection, but also for selecting directions of movements. Reinforcement learning is

used to consolidate or to weaken environmental information in long-term memory.

The system is able to achieve complex tasks by executing sequences of visuomotor

actions, decisions being taken by goal-detection and goal-completion tasks. Exper-

imental results show that the system is capable of executing tasks like localizing

specific objects while building a map, after which it manages to return to the start

position even when new obstacles have appeared.

107
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5.1 Introduction

Autonomous mobile robots must be able to learn and interact with dynamic

environments in which they navigate. Many explored approaches are based on

traditional algorithms from artificial intelligence. They employ perceptions of

the surrounding environment which are based on precise data from distance

sensors (infrared, ultrasonic, laser) in combination with precise odometry for

navigation. They may allow robots to perform simple tasks in controlled en-

vironments, but are less appropriate for highly dynamic and complex envi-

ronments [Ratanaswasd et al., 2005]. The latter require flexible and adaptive

systems, i.e., cognitive ones like our brain. However, also many lower ani-

mals like mice and crows are experts in mastering complex tasks in dynamic

environments.

Egocentric navigation using a predefined map but without precise metrics

can be achieved by a cognitive robot [Kawamura et al., 2002]. This robot fea-

tured a memory system split into short- and long-term ones, and it employed

a simple vision system to detect colored tags which were used as references.

However, it was not used for SLAM (simultaneous localization and mapping)

because the map was predefined. Another robot [Meger et al., 2008] employed

a more sophisticated vision system, combining saliency, object recognition and

stereo vision along with a laser sensor for navigation and mapping. RatSLAM

[Milford and Wyeth, 2010] is a navigation and mapping system which relies on

goal-oriented navigation and on biologically inspired SLAM. Another biologi-

cally inspired navigation system consists of an implementation of a particular

path-integration model, i.e., modified continuous-time recurrent neural net-

works [Papauschek and Zillich, 2010]. A cognitive architecture can also be

based on biologically inspired multiple memory systems, involving episodic,

semantic, procedural and working memory units [Kleinmann and Mertsching,

2011].

In this chapter we present a cognitive framework for robots composed of

four interactive systems: vision, memory, SLAM and task management. The

major contributions are: (a) the implemented SLAM system is directly inte-
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grated with the short- and long-term memories and it is affected by time, which

allows the robot to adapt to dynamic environments by means of reinforcement

learning; (b) the implemented task management and task building system is

based on a hierarchy of only three basic actions; (c) we employ a stereo camera

for vision, and no other sensors apart from odometry are used; (d) the robot

features a complex vision system with disparity, saliency, Focus-of-Attention

and object recognition; and (e) the robot head is steered by the complex vision

system (active vision).

The rest of this chapter is organized as follows. In Section 2 we present the

cognitive robot framework, including the vision, task manager and localization

and mapping modules. In Section 3 we present results, and in Section 4 a final

discussion.

5.2 Cognitive robot framework

Cognition generally refers to the faculty of mental activities of humans and

certain animals dealing with abstractions of information from the real world,

their representations in memory, as well as automatic recall [Patnaik, 2007].

Cognition may provide a solution to overcome the limitations of Artificial In-

telligence (AI), allowing us to create cognitive robots that can execute new

tasks by combining knowledge gathered in previous experiences and emotions

[Ratanaswasd et al., 2005].

Through cognition, the human brain is able to acquire and process per-

ceptions of the surrounding environment in a very fast and efficient way. Such

perceptions consist of complex information captured using our sensory systems,

notably our visual system which collects the most important information for

navigation. In contrast to precise sensor systems in traditional robotics, our

visual system allows us to recognize objects and to know whether they are near

or far, but it does not provide us with very precise distances.

Another important feature of the human brain is the close connection be-

tween sensory systems and memory. This close connection also works as a

filter: some of the information acquired remains in memory for a long time,
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whereas other information may be instantly discarded or kept for a brief time.

This duality in information storage has been studied in cognitive psychology for

many decades, which resulted in the assumption of two major types of memory:

short-term memory (STM) and long-term memory (LTM) [Patnaik, 2007]. In

this memory structure, only the most important information flows from STM

to LTM, the importance of the information being affected by attention and

concentration. Although most information may be discarded, the human brain

can store a higher level of detail if necessory [Brady et al., 2008].

In the same way that the brain can select which information should be

stored, the visual system can select which areas of the surrounding environment

deserve most attention based on the saliency of those areas [Itti et al., 1998].

This information-filtering process is also very important because otherwise the

brain would always be busy processing all the information gathered by our

senses [Rensink, 2000]. After selecting which areas deserve most attention, the

brain processes those areas for object recognition, comparing the objects seen

with normalized templates previously stored in memory [Rodrigues and du Buf,

2009].

Another feature of human cognition is to plan and execute sequences of

actions for accomplishing a goal, even sequences which have never been done

before. This property is closely related to learning, because we can deduce new

sequences by combining actions which we have done or seen before [Meinert,

2008].

The implementation of a cognitive system may lead to a new generation

of robots which can adapt to dynamic environments and can interact with

humans. There have already been some developments. The most relevant ones

use vision as the main source of information, a memory system composed of

STM and LTM, and an egocentric navigation system [Kawamura et al., 2002].

Stereo vision is also possible [Meger et al., 2008]. In addition to memory and

visual systems which differ from those used in traditional robotics, a cognitive

robot also needs SLAM capability, but one which, unlike traditional SLAM,

is not based on large amounts of data from precise range sensors and precise

odometry systems [Montemerlo et al., 2002].
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In our previous work [Saleiro et al., 2012] we developed a minimalistic vision-

based cognitive SLAM system that comprises a complex visual system and cog-

nitive memory structures: short- and long-term memories. The visual system

models processes like saliency, Focus-of-Attention (FoA), Inhibition-of-Return

(IoR), and object recognition (all vision modules were based on computer vi-

sion algorithms, not bio-inspired). The system also featured a task manage-

ment system. The system was successfully tested on a small robot platform

(20 centimeter height).

In the following sections we describe a new version of the developed architec-

ture. The complex visual system still features the mentioned visual processes,

but all algorithms have been replaced by biologically inspired models. Motor

control of the robot head and wheels has also been improved by using attractor

dynamics. As before, the system features STM and LTM, which are closely

integrated with the SLAM system.

5.2.1 Robotic platform

The cognitive system was implemented and tested using a child-sized Pioneer

3DX robot, equipped with a Bumblebee-2 stereo camera and a PhantomX

turret for pan and tilt camera movement. The robot also features differential

steering. All the processing is performed on a notebook computer mounted on

the robot, and the robot was a completely independent system. The notebook

features an Intel I7-4700HQ quad-core processor and 16GB of DDR3 RAM.

Regarding the movement of the head, we only used one tilt position which,

due to the height of the cameras, allows for a good vertical field of view. Pan-

ning of the camera is done using an attractor dynamics approach that takes

input from saliency maps (see Chapter 4).

The robot structure (see Fig. 5.1, top) has several platforms mounted in

order to give it more height, and provide the point-of-view of a child with a

height of 1.20 m. The robot has been set up with ROS (Robot Operating

System). Although the robot is also equipped with a laser rangefinder and 6

ultrasonic sensors, they were not used.
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Figure 5.1: Child-sized robot used for the active vision tests (top) and im-

age showing the robot monitoring panel (bottom). On the robot monitor-

ing panel we can see, from top to bottom, left to right: captured left image,

saliency map, disparity map, thresholded saliency map, navigation attractor

dynamics, long-term memory, head pan attractor dynamics and short-term

memory.

In terms of software the robot system is composed of several independent

nodes, either for the vision processes or for the motor control modules which
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are interconnected using the ROS framework. For saliency we used the method

described in Section 2.2.3 and for object recognition we used the keypoint

descriptors and keypoint matching that we described in Chap. 3. For obstacle

and limit detection we used the stereo algorithm described in Section 4.4. For

motor control we used an attractor dynamics approach for differential steering

that will be described in Section 5.4. In order to monitor all robot activity we

also developed a robot monitoring tool, which shows the robot images, saliency

map, disparity map, robot pan attractor dynamics, robot movement attractor

dynamics, long-term memory map and short-term memory in real-time (see

Fig. 5.1, bottom).

On average the robot achieved a processing rate of 2.4 frames per second.

The complete system is going to be detailed in the following sections.

5.2.2 Active vision system

As previously mentioned, we used a complex biologically inspired visual system

that we developed (see Chapter 4) for active vision that comprises: (a) stereo

vision, (b) saliency, (c) object recognition and (d) attractor dynamics motor

control. We will briefly describe each component of the active vision system.

The biologically-inspired stereo model (see Section 4.4) takes inspiration

from the concept of binocular cells [Qian and Zhu, 1997; Scholl et al., 2013]

tuned to different disparities and that, like other neurons in the visual cortex,

can receive excitatory and inhibitory input from other neurons.

For stereo we start by computing responses from V1 cells at multiple scales

and orientations and create a binary descriptor for every pixel position. Then

we use these descriptors to perform matching on the same epipolar lines from

left and right images.

A binary mask is created by calculating the absolute maximum difference

of the three color components between every pixel of the left image and every

pixel at every possible disparity from the right image in the same epipolar line.

The maximum absolute difference is then binarized by using a threshold BT .

The binary masks are then used to boost or decline the descriptor matching

scores.
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The result is a three-dimensional matrix with x, y and disparity dimensions.

Afterwards we apply a DoG filter to the disparity dimension. When more than

one scale is used, this is followed by a weighted sum with disparity costs from

the previous scale.

Finally we apply an iterative spatial filtering processes, which consists in

performing weighted sums of the matching costs in 3 × 3 windows until the

number of changed pixel disparities is a smaller than w% (we used w = 10%)

of the total number of elements in the matching costs matrix. A WTA (Winner-

Take-All) approach is used to select the best matching results in the 3D matrix.

For fastest computation of disparity maps during robot navigation, we used

only one scale (λ = 16), which results in a small disparity map of only 160×120

pixels. Despite the small size it is big enough to be used as input for the

saliency algorithm and also for obstacle detection. Figure 5.2 (top row) shows

an example of a disparity map computed during robot navigation.

Instead of processing the entire images for object recognition we applied

a saliency algorithm to select the image regions which may contain the most

important information. Each selected region is then processed for object recog-

nition. To this purpose the regions are delimited and sorted in decreasing order

of saliency, which mimics sequential processing by Focus-of-Attention (FoA)

with Inhibition-of-Return (IoR) to already analyzed regions.

The detection of salient regions is done using a modified version of the

saliency algorithm that we developed (see Chap. 4.5). The original algorithm

combined color, disparity and motion to create a saliency map, but in this

application we removed the motion component since it would cause salient

regions to be detected everywhere during robot navigation. To use the motion

component, a modification would have to be made to the algorithm: the global

optical flow vector would have to be subtracted from the individual local optical

flow vectors (removing the egomotion).

For the color component we build stacks of 6 retinotopic maps represent-

ing different channels in the CIE LAB color opponent space. This model is

based on retinal cones and provides a standard way to model color opponency.

The first three channels code the image in LAB color space, thus representing
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white, green and blue color components. The remaining three channels are the

complements of the first ones, representing black, red and yellow. Afterwards

we apply a blob-detection kernel based on a Difference-of-Gaussians (DoG)

operation.

For the disparity component we threshold the disparity map at 15% of

the maximum disparity value to get only the nearest regions, and then apply

the same blob-detection kernel as applied for the color component. For fast

processing we apply the saliency algorithm to captured images downscaled to

160 × 120 pixels. Figure 5.2 (2nd row) shows an example of a saliency map

captured during robot navigation.

As mentioned before, we use the descriptor that we developed (Chap. 3) to

recognize objects. Like we humans store normalized images of many objects

in memory [Rodrigues and du Buf, 2009], the robot also needs to memorize

one or more views (templates) of the objects which will serve as navigation

landmarks and task targets. Before the robot starts navigating, all stored

templates are processed by our keypoint extraction algorithm and the keypoints

are coded using our binary keypoint descriptor, creating the keypoint arrays

for fast object matching during robot navigation. During navigation, when

a region with high saliency captured by the left camera must be analyzed,

the region’s keypoint descriptor array is built by using the same process as

used for the object/landmark templates. This array is matched against all

stored object arrays using the Hamming distance, and if there are at least 5

matching keypoints with a score of at least 20% (25 out of 128 bits) an object

is recognized. For an example of object recognition see Fig. 5.2 (top row on

the right, with a rectangle around the object).

For the control of the robot head we tried to model typical human behavior,

usually characterized by how we (and many animals) explore the field of view

using eye saccades and only moving the head for changing the field of view

to a “new” attraction point. To achieve this behavior we used an attractor

dynamics approach (see Section 4.7) and used the “center” of salient regions

as attraction points. Salient regions in the current camera field of view are

analyzed for object recognition by order of maximum saliency (FoA) and do
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Figure 5.2: From top to bottom, captured images during robot navigation,

disparity map and saliency map. Object recognition is shown in the first row

on the right, being the recognized object marked with a rectangle around it.

not require any head movement. However, groups or individual salient points

create attractors which make the head of the robot rotate to better fit (center)

those salient regions into the camera’s field of view. Multiple salient points are

used to create an attractor forcelet.

To generate an exploring behavior we employ a time-variant repulsive forcelet,

with its main repulsive point at the current pan orientation. As the strength

of this repulsive forcelet increases with time, it forces the robot to switch to a

different attraction point.

By summing both attractive and repulsive forcelets we obtain the resulting

attractor forcelet from which we can extract the rotation angle to be applied to

the panning motor. Every time the head rotates to a new attraction point, it

gets into a stable position which will only be affected when the repulsive forcelet

increases its strength. An example of attractor dynamics working during robot

navigation can be seen in Fig. 5.6 (bottom row).

5.3 Memory and mapping

Building a map of the environment is fundamental for navigation and localiza-

tion. As mentioned before, the cognitive robot architecture we developed uses

three memories: short-term memory (STM), long-term memory (LTM) and

object/landmark memory (ObjM). STM consists of a small map containing
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only information needed for immediate navigation. On the other hand, LTM

consists of a global map containing information for global navigation. ObjM

can be considered as part of LTM that contains object and landmark location

information. We will now describe STM and LTM in a little more detail.

5.3.1 Short- and long-term memory

Since short-term memory is essentially used for immediate navigation, it only

contains obstacle and wall information at the current robot position. This

is used for obstacle avoidance. STM is an egocentric map that comprises the

180o field of view and accumulates any obstacle information in that range. Any

detected obstacles remain in STM if the robot moves a small distance, but they

are removed as soon as they are beyond the 180o range. Similarly to what was

done in Section 4.7, the 180o range is split into 9 radial sections.

To build the STM we start by thresholding the disparity map to get only the

closest obstacles (20% of maximum disparity). We then split the thresholded

disparity map into three vertical sections. In each of the sections we evaluate

the maximum disparity and attribute that value to one of the 9 sections of

the 180o field of view, depending on the current head pan angle. The values

attributed to the 9 sections are stored in an array that will be afterwards used

by the attractor dynamics for differential motor control and also by the LTM

to build a global map. See Fig. 5.3 (bottom right) for one example map of the

STM.

Long-term memory (LTM) is a memory that stores all the information ac-

quired by the robot during navigation. It can be seen as a global map, with

lower resolution than STM. Detected obstacles at a current location are trans-

lated and rotated, according to the robot’s global position and orientation, and

stored in the global LTM map. Detected objects or landmarks are also stored

in LTM. Whenever an obstacle, object or landmark is stored, an associated

time-tag is also stored. Figure 5.3 (bottom left) shows one example map of the

LTM.

LTM map is afffected by positive and negative reinforcements: (a) if an

object is repeatedly detected at the same position, it is positively reinforced
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Figure 5.3: Top: captured image. Bottom, from left to right: LTM map,

head pan attractor dynamics, STM. LTM shows the accumulated information

that transitioned from STM. The black dot in the attractor dynamics plot

shows that the robot is looking to the left, and explain why the STM shows a

black “slice”(obstacle) on the left.

with a value PR, until a maximum value MR is reached; (b) if a previously

detected object is not found at the same position, it is negatively reinforced

with NR; (c) there is also a negative reinforcement over time. Objects which

have reached MR are assumed to be fixed and stable, but all other ones are

“feebled” by NR after every time interval of tLTM seconds. The latter process

allows the robot to “forget” inconsistent information. In the actual setup we
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used MR = 200, PR = 40 MR = 200, NR = −40 and tLTM = 300. Figure 5.4

shows an LTM map acquired while the robot was completing a SLAM task.

Some of the blue dots (obstacles) are false obstacles which were registered due

to noise caused by motion blur. However, since it is unlikely that they will be

positively reinforced, after some time they end up disappearing.

chair 1 chair 2

objectivestart point

Figure 5.4: LTM map acquired while the robot was completing a SLAM task.

The green line represents the robot’s trajectory. The objective was to find

the box shown in Fig.5.2.
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5.3.2 Task management

As mentioned before, in our previous work [Saleiro et al., 2012] we designed a

task management system that allows the robot to build and execute complex

tasks from combining simpler ones. A central agent is responsible for building

and organizing the tasks in order to accomplish a requested goal [Ratanaswasd

et al., 2005; Alami et al., 2006]. Only two levels of tasks are considered to ex-

ist: micro-tasks, which are atomic actions like “go forward” and “turn right”,

and macro-tasks, the latter are more complex. They are built from the aggre-

gation of micro-tasks and simple macro-tasks. The simple macro-tasks were

pre-programmed, but always associated with simple actions like “search” and

“return home.” When the robot was given more than one general (top) task,

it placed them in a task buffer for their sequential – but also concurrent –

execution.

Each macro-task consisted of three blocks: (a) a visuomotor action cycle

which consisted of movements to be made according to newly captured visual

information; (b) the objective detection function that served to detect the

actual, requested goal; and (c) the condition for task conclusion function to

track whether a task had been completed or not.

The block structure is hierarchical: the three above blocks can each be split

into sub-blocks, using the same block structure. This hierarchical and dynamic

structure enables concurrent execution of multiple tasks. However, since there

is always one main task, only one visuomotor cycle can be active at any time,

during which all other visuomotor cycles remain inactive. Nevertheless, while

one visuomotor cycle is being executed, the two detection functions related

to other tasks are still evaluated. When a task is completed, its blocks are

deactivated and the next task’s visuomotor cycle is activated. This process is

repeated until all pending tasks are completed. Concurrent task processing is

implemented by using three separate block buffers: one for visuomotor blocks,

one for objective detection blocks, and one for objective conclusion condition

blocks. The blocks in the last two buffers are executed sequentially within

each visuomotor block which controls the robot. The visuomotor blocks are

always the most complex ones, since the other two types only consist of simple
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detection functions. Figure 5.5 illustrates the task building process.

The main difference between our previous task management system and the

current one lies in the abstraction level of micro tasks. Before, the sequence of

motor control actions, either for robot movement or for head movement, were

previously pre-programmed, one by one. Instead, the current robot system

makes use of active vision with attractor dynamics in order to deal with this

level of actions in a behavioral way, making it much more robust and versatile.

This approach makes it unnecessary to specify every visuomotor action, and it

also allows the robot to handle static and mobile obstacle avoidance effortlessly

while maintaining the route to the target destination.

For the robot’s navigation, we considered only two fundamental modes: (a)

the exploration mode is used to navigate in an unknown environment, and (b)

in the excursion mode the robot uses gathered information to move itself in a

more efficient way.

Figure 5.5: Three macro-tasks are concurrently executed by sequences of sim-

ple macro-tasks and micro-tasks. Blue: visuomotor blocks. Green: objective

detection blocks. Orange: objective conclusion condition blocks. The grey

blocks are inactive.
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5.4 Attractor dynamics for differential motor

control

For motor control we also use an attractor dynamics approach as done before

by Bicho et al. [1998]. However, instead of using IR sensors or sonars we use

STM information obtained from the disparity map.

As in Chapter 4, the approach requires attractor and repeller forcelets that

are combined to create the resulting forcelet. However, in this case the attractor

forcelet is computed differently. The rate of change of the attractor forcelet

(Φat) towards the target destination is computed as follows:

Φat = −αa × sin(φrobot − φtarget).

On the other hand the repelling forcelet is computed the same way as in

Chapter 4, i.e., we split the 180o egocentric field of view, ranging from −90o

to 90o, into 20o ranges, and store the orientation values of the 9 sections in

an array Ao = {−80o,−60o, ..., 0, ..., 60o, 80o}. The maximum disparity values

detected in each section, already stored in STM, are used to build another array

Art (repulsion vector). The repelling forcelet can then be calculated as follows:

Φrt = αr × Ao× e
Art
βr × e

Ao2

εr ,

with αa = 1, αr = 25, βr = 40 and εr = 0.34 (all empirically determined).

By summing all the values of vector Φat at each frame acquisition (t) we get

the attraction rate towards the strongest attraction point, and by summing all

the values of Φrt we get the repulsion rate away from the strongest repulsion

point.

The final angular velocity of the robot, ϕ̂t, at each instance t, is then cal-

culated by summing all Φat and Φrt, i.e.,

ϕ̂t = Σ9(Φat) + Σ9(Φrt),

with ϕ̂t the value that is converted to the angular velocity to be applied to the

robot base at instance t.
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To get this angular velocity value to be applied to the robot, it is only

necessary to multiply the attraction rate with a constant value, which depends

on the specifications of the motor driver (in our case the value is 1 since the

motor driver accepts angle commands in radians).

This approach will result in the robot navigating towards the goal. It will

smoothly avoid any obstacles that may appear, since the rate of change away

from the obstacles changes depending on the distance at which they are de-

tected. Figure 5.6 shows a sequence of images of the attractor dynamics being

used for robot navigation. In the bottom line we can see the evolution of the

repulsive forcelet as the robot approaches the obstacle: as the robot gets closer

to the obstacle the repulsive force increases (yellow curve), forcing the white

dot (robot orientation) to move to the left in the plot, which corresponds to a

rotation to the right.

5.5 Conclusions

We presented a cognitive robot architecture for SLAM which integrates biolog-

ically inspired active vision, dual memory and hierarchical task management.

The main contributions are: (a) visual saliency is used for FoA and object

recognition; (b) SLAM is directly integrated with short- and long-term mem-

ory and affected by time, allowing the robot to filter important information and

adapt to changes in the environment; and (c) the task management system can

build complex tasks from simpler ones.

Regarding vision, we verified that the use of saliency with attractor dynam-

ics allows the robot to explore its surroundings in most situations. Since the

robot moves, the attraction points are always changing, which means that the

repulsive forcelet is always repelling different orientations, never getting strong

enough to make the robot change its field of view. This causes the robot to

keep looking at obstacles until it passes around them, sometimes missing other

obstacles outside the field of view at that orientation. The stereo also proved to

work well for wall and obstacle detection. Noise would occasionally appear in

captured images that were blurred due to the robot’s movement and panning
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Figure 5.6: Sequence of images of the attractor dynamics being used for

robot navigation. From top to bottom: captured left image, saliency map,

disparity map, short-term memory, navigation attractor dynamics. In the

bottom row it is possible to see the changing repulsive forcelet due to the ob-

stacle. Is is also possible to see the white dot (current orientation) changing

to the left, indicating that the robot is turning right.

movements. The keypoint descriptor also worked quite well for object recog-

nition, showing only some problems in case of untextured objects. The use of

these biological models in combination with motor control based on attractor

dynamics results in a vision model which resembles the human visual system.
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The use of attractor dynamics in navigation also proved to work as expected,

allowing the robot to navigate from it’s current location to a target destination.

Although we were able to verify that the system can work, we must say that

much further testing is required with different scenarios. We can also say that

there is much room for improvement in multiple fields. Regarding the hardware

field, a camera with a wider field of view would be very useful, allowing the

robot to capture more information without needing to be constantly panning

the head, which in conjunction with the robot’s movements caused blurring of

the images. In addition, we could take advantage of the distributed computing

capabilities of ROS and low-cost and low-power single-board computers that

are getting cheaper and more powerful. Multiple independent modules could

process every component of the vision module in parallel. Another possibil-

ity would be to develop GPU implementations of the vision components. By

speeding up the processing we could also increase frame rate and decrease the

blurring of the images caused by the robot’s movements. By increasing frame

rate we could also increase the speed of the robot during navigation.

Regarding the system itself, there is still much room for tuning the vision

modules and the attractor dynamics motor controllers. There is also room for

studying ways of manipulating the attractor and repulsive forcelets to create

different behaviors.
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Chapter 6

Concluding Remarks

Abstract: This chapter summarizes the previous chapters, main conclusions and

achievements and presents directions for further research.

6.1 Summary

Chapter 1 introduced the scope of the thesis along with some brief explanations

on the differences between Computer Vision (CV) and Human Vision (HV). It

briefly described the main research topics, offering a brief overview of each one

and of the cortical aspects of HV and their own very different purposes.

In Chapter 2 we showed an application of the biologically inspired vision

processes to human-robot interaction. We used a child-sized robot platform

with an initial version of our biological stereo algorithm presented in Chapter

4 to detect obstacles, and when an obstacle is detected the robot lifts its head

in order to see if the obstacle is a human. To detect if an obstacle is a human

it uses a linear SVM. Once a human is detected, it uses a saliency algorithm

based on color, motion and disparity to detect important image regions, and

it applies another SVM for hand detection in those regions. When the hands

are detected, the robot then uses cortical keypoints and an initial version of

the keypoint descriptors we presented in Chapter 3 to match gestures with

previously stored gesture templates, allowing the human to interact with the
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robot, giving it orders or feedback.

Chapter 3 presented the process of learning a robust and fast binary key-

point descriptor using cell responses from cortical area V1. We described the

extensive tests that we performed to optimize the descriptor, a step-by-step

analysis of the results showing the influence of the type of cell response, scale,

pooling step, pooling region size and the number of features on the performance.

After describing the whole evaluation and training process, we compare it to

other biologically inspired binary descriptors and also with a non-biological key-

point descriptor. We showed some applications, arguing that it can be used in

some early vision processes such as stereo vision, optical flow and object recog-

nition. We showed that by simply doing basic keypoint matching, without any

pre- or post-processing, we can obtain very acceptable results.

Chapter 4 presented a biologically-inspired active vision system which in-

tegrates processes like disparity, saliency, Focus-of-Attention, Inhibition-of-

Return and object recognition with motor control based on attractor dynamics.

The disparity model was specifically designed to be fast to allow for real-time

robot operation. Although the generated disparity maps are not very detailed,

they are good enough for robot navigation and to be used as input to the

saliency algorithm that is also based on color and motion saliency. We also

described some tests that we have done using the same robot platform used as

used in Chapter 2, in front of a table-top scenario where it successfully explored

salient regions in its field of view, performed object tracking and recognized

most of the objects using the descriptor presented in Chapter 3.

Chapter 5 focused on a cognitive robot architecture that integrates the ac-

tive vision model from Chapter 4 with a human memory model comprising

STM and LTM for SLAM. The cognitive system also features a task manage-

ment unit, which allows the robot to build complex tasks from simpler ones.

Attractor dynamics are used to control the motors of the robot base.
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6.2 Integrated architecture

This thesis dealt with several modules that can be integrated into a single

architecture for active vision in robot cognition. In terms of vision, a robot can

use the saliency algorithm to generate saliency maps which are then used to

select important regions of the visual field that must be processed for object

recognition. Using saliency in combination with attractor dynamics, motor

control can direct the camera towards interesting regions, acting according to

the visual stimuli that it receives. Once it focuses on important regions, the

robot can proceed to object recognition in order to attempt to identify what

it is looking at. The recognition of objects depends on the dataset of objects

that is previously given to the robot. The stereo algorithm is also part of

the global architecture and is used as input for the saliency algorithm and for

obstacle detection. The detected obstacles are then stored for a short period in

STM, which is used for local navigation. Afterwards the detected obstacles and

objects transition from STM to LTM, where they will remain or fade with time

if their existence is not often confirmed. Items available in long-term memory

can be used for global navigation and path and task planning. This architecture

is very different from the usual non-biological robotics architectures, which

make use of many types of different sensors and which store huge amounts of

data.

6.3 Achievements

There are four major achievement categories. These are summarized in this

section and they are the basis for future research that will be presented in the

next section. Namely:

• Biologically inspired vision for human robot interaction. We

managed to create a robotic system for human robot interaction that

makes use of vision processes based on cortical cells. This achievement is

important because it validated the use of biological processes in real-time

robotics applications.
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• Learning biologically inspired binary descriptors. Throughout

the process of learning biologically-inspired binary descriptors we were

able to create keypoint descriptors that are able to outperform any other

biologically-inspired local descriptors, even when using 4 times less bits

than the top binary descriptor. Moreover, some of the tested descrip-

tors are also able to outperform the non-biological SIFT-based LDAHash

descriptor. By combining our descriptor with our keypoint detector, we

have the first biologically inspired integrated keypoint detection and de-

scription system, completely based on cortical cell responses from area

V1. Moreover, we were able to successfully use the integrated system in

real time for robotic vision.

• Biologically inspired stereo vision for robot navigation. We were

able to create a fast, real-time stereo vision algorithm based on cortical

cell responses, and used it for robot navigation and as input to a visual

saliency model.

• Active vision framework for robotics. The integration of several vi-

sual processes with attractor dynamics motor control allowed us to create

an active vision framework that enables a stimulus-guided exploration of

the robot’s field of view.

• Cognitive robot architecture with integrated active vision for

SLAM. We managed to integrate the active vision framework with a

cognitive framework that comprises a human memory model for SLAM

and task realization.

6.4 Final considerations for future research

The work of this thesis took about 5 years. It yielded significant achievements

in evolving models of human vision processes and combining them into an

integrated architecture that is fast enough to run in real time and be used in

robotics applications. To the best of our knowledge, this was done for the first

time. In general, although we were able to successfully integrate the system
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for robot vision and robot navigation, we feel that we have just scratched the

surface of what can be done using biological vision models and how much they

can be improved. Regarding the binary keypoint descriptors, we would like to

perform even more extensive tests using many more scales. Since the brain is

a massively parallel machine, analyzing visual stimuli at many different scales

simultaneously, and by looking at the results of the descriptor learning process,

we suspect that by using cell responses extracted at many more different scales

it may be possible to achieve even better results and maybe compete with

other non-biological state-of-the-art descriptors. Another goal we would like

to achieve in the future would be to integrate the keypoint descriptor code

with the GPU implementation of the keypoint detector, creating a fast unified

system for cortical keypoint detection and description.

Regarding stereo, we believe that there is still room for improvement by

experimenting with combinations of different cells at different scales and us-

ing both top-down and bottom-up propagation of disparity information be-

tween different scales. Concerning saliency, there is also a lot of room for

improvements: new features like texture, shape or symmetry could lead to bet-

ter saliency maps; to create saliency models that can be tuned to a certain goal

could also be very interesting.

On the topic of object recognition there is also space for improvement. The

development of a hierarchical coarse-to-fine approach for object recognition

could be very interesting for robotics applications, speeding up the process when

using large object libraries: each object in the library would be described by a

tree of keypoints described at multiple scales and the robot, by using a coarse-

to-fine approach would be able to progressively reduce the number of possible

matches, using finer keypoints as the number of possible matches is reduced.

Regarding the whole robotic architecture, it would be interesting to integrate

the entire visual system with more complex neural-dynamics approaches for

head pan and tilt, for robot steering and task learning.

Since our knowledge of how the human brain works is still so limited, each

process that we try to model and understand leads to a new set of interesting

possibilities that must be experimented with and evaluated.
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Saleiro, M., Farrajota, M., Terzić, K., Krishna, S., Rodrigues, J., du Buf, J., 2015. Bi-

ologically inspired vision for human-robot interaction. Universal Access in Human-

Computer Interaction, Springer LNCS 9176, 505–517.
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Vasudevan, S., Gächter, S., Siegwart, R., 2007. Cognitive Spatial Representations

for Mobile Robots: Perspectives from a User Study. Eidgenössische Technische
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