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Abstract 
 
Background  

Human milk is considered the best source of nutrition for all newborns as it contains 

important growth, developmental and immunological factors. The WHO (2003) 

recommends exclusive breastfeeding for the first six months of age, with 

complementary breastfeeding up to two years and beyond. However, some women 

experience complications of the breast that lead to early cessation of breastfeeding, 

which can adversely affect the well being of the developing infant and her own health.  

 

Nipple pain is the most commonly cited reason for weaning in the first week post 

partum. Nipple pain is also linked to mastitis from milk stasis and possible bacterial 

infection, although the influence of bacteria is still largely unknown. However, it is 

known that the presence of bacteria and fungi along with their metabolites contribute 

to the composition of the milk as the baby receives it.  

 

Metabolomics is increasingly being utilised in the dairy industry to determine 

spoilage as a result of teat trauma and mastitis. Given the current diagnostic 

application of metabolomics in clinical medicine uses blood and urine samples, it has 

been proposed as a potential tool for detecting biomarkers and determining 

compositional changes in human milk. Measuring the composition of milk from 

human mothers experiencing persistent nipple pain, with or without evidence of 

trauma, and identifying the influence of this condition on endogenous and exogenous 

metabolites may determine the relationship between milk composition and nipple 

pain. 

 

Aims 

The aims of this study were to source the appropriate human and bovine milk 

samples; to identify and quantify bacterial and fungal species using traditional culture 

and microscopy techniques; to measure the effect of nipple pain on the paracellular 

pathway of the breast by measuring the sodium and potassium concentration and ratio 

in the milk; to optimise GC-MS methodology for the measurement of milk 

metabolites; and to use untargeted metabolomics to identify compositional differences 



 xviii 

in the metabolite profile in human milk from mothers presenting with nipple pain 

compared to healthy control mothers.  

 

Results 

Two groups were recruited; a control group of mothers not experiencing nipple pain 

(n=22 samples) and a group of mothers experiencing persistent nipple pain during 

breastfeeding (n=11 samples); mothers with unilateral nipple pain supplied a milk 

sample from their affected and non-affected breast (n=4). The nipple pain group 

(n=11) was divided into two subgroups; persistent nipple pain without evidence of 

trauma (PG) (n=6) and persistent nipple pain with evidence of trauma (TG) (n=5). 

Additionally 9 bovine samples were collected, 3 from healthy cows (control), 4 from 

cows presenting with mastitis and 2 from a single storage vat, to be used as positive 

controls throughout the study.  

 

All 42 samples were tested for the presence of microbial and fungal species, sodium 

and potassium concentrations and ratio were determined and untargeted metabolomics 

analysis of the milk metabolome was performed.  

 

Overall there was no significant difference in microbe content between the human 

control and nipple pain group (1, 623 CFU/ml vs. 1, 503 CFU/ml); the TG subgroup 

had the highest colony count of 2, 778 CFU/ml. The bovine mastitis group had a 

higher colony count than the bovine control group, 2, 173 CFU/ml vs. 473 CFU/ml. 

Coagulase negative staphylococcus ssp. were the most frequently isolated 

microorganisms and was found in 91% of human milk samples and 100% of bovine 

milk samples. Staphylococcus aureus were identified in one human milk sample from 

a mother in the PG subgroup and in one bovine sample from a cow suffering from 

untreated mastitis as well as both pooled bovine vat samples. Streptococcus ssp. and 

yeast were only found in bovine samples. 

 

The TG subgroup had the highest Na+ concentration of the human milk samples (8.04 

± 2.40 mM), significantly highly than the control group (4.32 ± 1.18 mM; p<0.001). 

There was no significant difference in Na+ concentration between the TG and PG 

subgroups. The Na+/K+ ratio was significantly higher in the TG subgroup (0.55 ± 

0.14) compared to the control group (0.34 ±0.09) (p<0.001); there was no significant 
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difference in ratio between the PG and TG subgroups (p=0.10). No sample recorded a 

Na+/K+ ratio above 1, consistent with the physiological observations and indicative of 

no mother presenting with mastitis.   

 

Untargeted metabolomic analysis found compositional differences between the 

human control and nipple pain groups, in particular samples from the TG subgroup. 

Compositional variations between milk from the control and nipple pain subgroups 

was identified using principal component analysis and PC4 best represented the 

differences in metabolite composition between the groups. This result is consistent 

with the subtlety of the nipple pain condition. A list of the most influential 

metabolites based on their correlation loadings (explained within 50-100% of the 

model) was determined. The most influential metabolites with respect to the TG milk 

samples were included isoleucine, proline, galactose and some as yet unidentified 

metabolites.  

 

Conclusion 

As nipple pain is often a precursor to mastitis the results from this study will form a 

basis for further development using metabolomics as a tool for more efficient 

detection and treatment of breast infection and inflammation within the nipple and 

breast. 

 

 

 

 
 
 
 
 
 
 
 
 



 1 

1 Literature Review   
 

1.1 Introduction 

1.1.1 Benefits of breastfeeding for mother and infant 

Human milk is considered the ‘gold standard’ nutrition for infants as it provides 

optimal nutrition, promotes normal growth and development and reduces the risk of 

developing illness or disease (Heikkila & Saris, 2003).  The WHO (2003) 

recommends exclusive breastfeeding for the first six months of age, with 

complementary breastfeeding up to two years and beyond. In Australia the National 

Health and Medical Research Council (NHMRC) Guidelines recommend exclusive 

breastfeeding for the first six months of age and the continuation of breastfeeding for 

up to at least one year (NHMRC, 2012). Where breastfeeding is not possible human 

donor milk is the preferred substitution ahead of infant formula (Hartmann, Pang, 

Keil, Hartmann & Simmer, 2007). 

 

Breast milk is readily available, financially affordable and an environmentally 

sustainable source of sustenance for developing infants and contributes to numerous 

positive health outcomes for both the mother and infant. An American based study by 

Bartick and Reinhold (2010) found that if 90% of US families could comply with the 

medical recommendation to breastfeed exclusively for 6 months that the United States 

would save almost $13 billion a year and prevent an excess of 911 deaths annually, 

nearly all of whom would be infants (95%) (Table 1.1).  
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Table 1.1  Excess costs and deaths at current breastfeeding rates compared 
with projected costs if 90% or 80% of US parents complied with 
the medical recommendation to exclusively breastfeed for 6 
months.  

  
 Excess Costs Compared 

with 90% Compliance 

(Excess Deaths), 2007 

$US 

Excess Costs Compared 

with 80% Compliance 

(Excess Deaths), 2007 

$US 

Total  12 974 676 651 (911) 10 491 841 489 (741) 

SIDS 4 725 328 464 (447) 3 722 074 013 (352) 

NEC deaths  2 631 165 267 (249) 2 218 109 495 (210) 

LRTI deaths  1 820 102 146 (172) 1 537 915 767 (146) 

Otitis media  908 793 396 765 766 295 

Atopic dermatitis  601 358 918 497 497 274 

Childhood Obesity  592 100 121 404 195 504 

LTRI hospitalisation  451 592 572 381 578 219 

Childhood asthma  335 796 234 229 194 255 

NEC 266 536 884 219 843 084 

Childhood asthma deaths  216 869 872 (21) 148 022 294 (14) 

Gastroenteritis  186 016 678 162 076 307 

Childhood leukaemia deaths  133 422 239 (13) 133 422 239 (13) 

Childhood T1D deaths  95 231 472 (9) 64 999 258 (6) 

T1D 8 376 168 5 717 067 

Childhood leukaemia  1 986 220 1 430 416 

This table was reproduced from Bartick & Reinhold (2010) 
LRTI- Lower respiratory track infection  
NEC- Necrotizing enterocolitis 
T1D- Type 1 diabetes  
 

Breastfeeding has been linked to many immediate and lifelong benefits for the 

developing infant. Research has shown that an exclusively breastfed infant between 

the ages of 1-6 months consumes an average of 750-800ml over a 24 hour period 

(range 500-100 ml) (ABS, 2015). A study of nine year old children by McCrory and 

Layte (2012) found that children who were breastfed (>13 weeks) had a 38% reduced 
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risk of obesity and those who were breastfed for 26 weeks and beyond had a 51% risk 

reduction for obesity. Additional studies have found a dose-response effect on 

cognitive and neural development, where the duration of breastfeeding correlated 

positively with an increase in IQ (Michaelsen, Lauritzen, Mortensen & Jorgensen, 

2003).  

 

Functional nutrients such as human milk oligosaccharide (HMO) in human milk 

provide the microenvironment for gut protection and maturation (Newburg, 2005). 

Due to the immature nature of the infants gut at birth they are more susceptible to 

intestinal and systemic infections. The ingestion of breast milk, in particular 

colostrum, results in differentiation of immature to mature epithelia (with subclasses 

of enterocytes and lymphoid tissue) and active maturation of the infants own mucosal 

immune system for protection against infection and immune mediated disease 

(Walker, 2010).  

 

Furthermore, research has found that breastfed infants are less susceptible to a range 

of serious illnesses and conditions such gastroenteritis, respiratory illness and otitis 

media (AIHW, 2009). Conversely, exclusive formula feeding presents numerous 

health risks to the developing infant including increased risk of allergies including 

eczema and atopic dermatitis, and (potential) ingestion of contaminants (Tait, 2000).  

 

Breastfeeding has been found to provide many maternal benefits and research 

suggests a dose-response effect with breastfeeding and health risk (Godfrey & 

Lawrence, 2010). A history of lactation has been associated with a reduced risk of 

cancer including breast and ovarian and decreased incidence of type II diabetes (Ip, 
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Chung, Ramam, Trikalinos & Lau, 2009). The practice of breastfeeding enhances the 

mother-child bond and therefore positively correlated with a decrease in post-partum 

depression and associated with a decreased rate of neglect and abuse (Strathearn, 

Mamun, Najman & O'Callaghan 2009).  

 

Numerous maternal benefits are associated with breastfeeding such as a decrease in 

maternal post-partum blood loss, more rapid involution of the uterus and a quicker 

return to pre-pregnancy body weight than mothers who don’t breastfeed (American 

Academy of Pediatrics, 2012). In mothers with no history of gestational diabetes 

breastfeeding duration was found to decrease the risk of developing type II diabetes 

by 4-12% (Schwarz et al., 2010). Furthermore mothers who breastfeed are less likely 

to develop rheumatoid arthritis (Karlson, Mandl, Hankinson, & Grodstein, 2004), 

hypertension, hyperlipidaemia and cardiovascular disease including coronary heart 

disease (Godfrey & Lawrence, 2010).  

 

Given the multitude of short and long term benefits of breastfeeding to the mother and 

infant, promotion of breastfeeding is of global importance given the increase in 

incidences of the diseases aforementioned, particularly in developing countries where 

breastfeeding rates have been falling. 

 

1.1.2 Breastfeeding incidence and duration in Australia  

In Australia and internationally breastfeeding has received increased attention as a 

means for improving public health, contributing to health, nutrition and wellbeing of 

infants and mothers. Benefits of breastfeeding are largely dose-dependent, therefore 

extending duration is highly desirable in terms of facilitating infant growth and 
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development and ensuring maximal maternal benefit. A national survey in 2001 found 

87 % of infants aged up to three years of age had obtained nutrition from breast milk 

at some stage, in the form of exclusive breastfeeding or complementary breastfeeding 

with the addition of solids or substitutes (ABS, 2003). The incidence of breastfeeding 

post hospital discharge has increased from 40-45% in the 1970’s to 82% and 83% in 

1995 and 2001 respectively (ABS, 2003). Despite rising rates in initiation of 

breastfeeding, duration rates still dramatically decline despite recommended duration 

of one year by the NHRMC (2010) or up to two years by the WHO (2001).  

 

Rates of duration of breastfeeding between 1995 and 2001 showed that 48% of 

mothers were still breastfeeding at 6 months, however this decreased to 23% at 1 year 

and only 1% of mothers were still breastfeeding 2 years after parturition (Figure 1.1) 

(NHRMC, 2003).  

 

 

Figure 1.1 Prevalence of breastfeeding in Australia in 2001.  
Reproduced from The National Health and Medical Research Council (2003). 
 
 
More recent research suggests that the incidence and duration of breastfeeding in 

Perth, Western Australia, has increased significantly, in particular between 1992/3-
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2002/3 where prevalence reached national targets for breastfeeding (>90% of mothers 

were breastfeeding at the time of discharge) (Graham, Scott, Binns & Oddy, 2005). In 

Perth 93% of mothers were breastfeeding at discharge from the hospital between 

2002-2004 (Win, Binns, Zhao, Scott and Oddy, 2006). Additionally, the 2010 

Australian National Infant Feeding Survey (NHMRC, 2010) found breastfeeding 

initiation rates have increase to 90-96% on discharge from hospital, with 50-60% and 

22-28% still breastfeeding at 6 and 12 months respectively. Despite these initiation 

rates being higher than the national average in 2001, previously mentioned as 83%, 

and approaching those reported for Nordic countries (Lande et al., 2003; Ekstroem, 

Widstroem & Nissen, 2003), the increase in initiation doesn’t appear to be 

accompanied with an increase in breastfeeding duration (Scott, Binns, Oddy& 

Graham, 2006). Breastfeeding rates dropped to 45.9 % (of whom 12 % were 

exclusively breastfeeding) by 6 months post partum and by one year only 19.2 % 

were reported to be breastfeeding (Scott et al., 2006).  

 

Whilst hospital policy, promotion and support have increased breastfeeding initiation 

rates, breastfeeding duration has not substantially improved. This is likely due to the 

need to return to work and difficulties experienced by breastfeeding women such as 

perceived inadequate milk supply, nipple pain and mastitis which lead to premature 

weaning (Abou-Dakn, Richardt, Schaefer-Graf & Wockel, 2010).  

 

1.2 Anatomy of the lactating breast  

An understanding of the macroscopic and microscopic anatomy of the lactating breast 

can help us better understand the development of pathologies and their observed 

effects on the mammary tissue and its’ secretions. Breast pathologies, for example 
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mastitis, can compromise the integrity of the breast, therefore changes in milk 

composition are considered to be an important indicator of the physiological state of 

the mammary tissue (McManaman & Neville, 2003). A fundamental knowledge of 

the anatomy of the breast can aid in diagnosis and treatment development.   

 

1.2.1 Macroscopic anatomy  

The human breast is comprised of two main tissues, adipose and glandular (secretory), 

held loosely together by a network of fibrous connective tissue called coopers 

ligaments (Ramsay, Kent, Hartmann, R. & Hartmann, P., 2005) (Figure 1.2). It is 

important to note that there is large variation between women. Not only do the breasts 

of some women contain more adipose tissue, the amount of adipose tissue situated 

between glandular tissue is also highly variable (Geddes, 2007). In some cases the 

amount of glandular tissue was found to exceed adipose tissue by double (Geddes, 

2007). A study by Ramsay et al. (2005) found no correlation with milk production or 

storage capacity and the estimated volume of secretory or glandular tissue (including 

the number of ducts and the mean diameter of the milk ducts) (Ramsay, et al. 2005).  

 

The glandular tissue contains a secretory system, which is drained by a ductal system 

that stores and transports milk to the nipple during lactation. Based on the 1840’s 

Cooper’s dissections of the lactating breast (Cooper, 1840), it was previously believed 

that the lactating breast contained 15-20 ducts (however, Cooper identified up to 22 

ducts in one instance), with 7-12 generally found to be patent. However, more recent 

studies using 2D ultrasound (Ramsay et al. 2005) found the glandular tissue of each 

breast to contain approximately 9 milk ducts (range 4-18) with a mean diameter of 2 ± 

0.8 mm (range 1.0-4.4 mm) (Ramsay et al. 2005). Another study by Love and Barsky 
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(2004), using a combination of in vivo and in vitro techniques, resolved that 90 % of 

nipples contained 5–9 milk ducts (with a nipple orifice), arranged in a central and 

peripheral orientation.   

 

Furthermore Cooper (1840) described the proximal ducts to be large sac like 

structures that converged into one main milk duct, known as a lactiferous sinus. 

However, recent studies using 2D ultrasound imaging (Ramsay al. 2005) and 3D 

ultrasound imaging (Gooding, Finlay, Shipley, Duck & Halliwell, 2010) found an 

absence of lactiferous sinuses and rather the main milk ducts to be relatively small 

with expanding areas coinciding with merging ducts. Furthermore the ducts have been 

found to dilate during milk ejection in order to transport milk towards the nipple for 

the suckling infant (Ramsay et al. 2005). 

  
Figure 1.2  Macroscopic anatomy of the normal lactating mammary gland. 
Reproduced from Ramsay et al. (2005). 
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1.2.2 Microscopic anatomy  

The mammary gland is comprised of lactocytes, ductal epithelial cells, myoepithelial 

cells and mammary stem cells (Berry, 2009). The lactocytes, secretory epithelial cells, 

line the alveoli of the breast and are responsible for producing and secreting milk into 

the luminal space of the alveoli (Berry, 2009). Lactocytes are cuboidal/columnar in 

shape and link with several specialised junctions, for example tight junctions, which 

prevent the passage of substances external to the alveolus during established lactation 

(Linzell & Peaker, 1971). The alveoli are surrounded by myoepithelial cells and a 

vascular connective tissue stroma that contains adipocytes and fibroblasts 

(McManaman & Neville, 2003). Myoepithelial cells function during milk ejection 

when suckling stimulus causes the release of oxytocin into the maternal circulation. 

Oxytocin binds to myoepithelial cells and causes them to contract (neuroendocrine 

reflex) thereby ejecting milk from the alveoli into the ducts towards the nipple to be 

removed by the infant or a breast pump (McManaman & Neville, 2003).  

 

The cytoplasm of lactating alveolar cells is dense in mitochondria and there is an 

extensive rough endoplasmic reticulum network, as would be expected in a highly 

active secretory cell (McManaman & Neville, 2003). Additionally the cells contain a 

Golgi apparatus and secretory vesicles containing casein micelles located in the apical 

region of the cell (McManaman & Neville, 2003).  The alveolar epithelial cells are 

connected through an apical junctional complex and the epithelial cells on the basal 

side of the alveolar contact the myoepithelial cells and basement membrane. This 

forms a separation between the epithelial cells and the stroma and vascular system, 

creating a barrier for the transfer of substances from blood or stromal cells to the milk.  
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1.3 Physiology of lactation 
 
The prepubescent breast consists of a basic network of immature ducts, formed by 

epithelial cells, submerged in the mammary fat pad (Thomas, Williams and 

Hartmann, 2010). At puberty an increase in ovarian hormones stimulates the ducts to 

branch out and extend from the nipple and pervade the surrounding fat pad creating a 

complex ductal network (Thomas et al., 2010). However, the human breast does not 

reach maximal growth and functional development until pregnancy and parturition 

(Hale & Hartmann, 2007). The ability to secrete milk develops during pregnancy and 

is regulated by changes in multiple hormones.  

 

Lactation is defined as the stage of sustained milk production (Pang & Hartmann, 

2007).  The initiation of lactation occurs in two stages, secretory differentiation and 

secretory activation (Pang & Hartmann, 2007).  Secretory differentiation describes the 

stage of pregnancy where buds on the end of each duct proliferate and then 

differentiate to form alveoli lined with functional lactocytes capable of milk synthesis 

(Hale and Hartmann, 2007). Secretory activation describes the onset of copious milk 

secretion in association with changes in milk composition as a result of progesterone 

decline and increase in prolactin secretion at parturition (Pang & Hartmann, 2007). It 

is essential that secretory activation closely precede parturition to ensure the newborn 

has a continuous source of nourishment. 

 
 

1.3.1 Secretory differentiation 

Secretory differentiation usually occurs in the later stages of pregnancy at around 24 

weeks gestation and is characterised by rapid growth of both the ductal and alveolar 

structures accompanied by accumulation of the first secretion (colostrum) within the 
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alveoli and ducts (Hassiotou & Geddes, 2013). Secretory mammary epithelial cells 

differentiate into lactocytes, functional mammary epithelial cells, with the ability to 

synthesize unique milk metabolites such as lactose, casein, alpha-lactalbumin and 

fatty acids (Pang & Hartmann, 2007). Milk synthesis describes the anabolic process 

leading to the accumulation of milk components in the lactocytes (Pang & Hartmann, 

2007). 

  

Alveolar development occurs during the early stages of pregnancy and can be 

described as the proliferative activity that leads to the development of the mature milk 

secreting unit (Pang & Hartmann, 2007). Reproductive hormones; oestrogen, 

progesterone and prolactin together with metabolic hormone’s growth hormone, 

glucocorticoids and insulin must be present for secretory differentiation to occur 

(Pang & Hartmann, 2007). 

 

1.3.2 Secretory activation  
 
Secretory activation occurs shortly after parturition in women, and it is defined as the 

onset of copious milk production and marks the commencement of milk secretion 

(Jensen, 1995). Clinical signs of secretory activation are an abrupt sensation of breast 

engorgement occurring between 24-72 hours post parturition (Arthur, Smith & 

Hartmann, 1989).  Progesterone withdrawal at parturition, due to the expulsion of the 

placenta, initiates secretory activation, however the hormones prolactin, insulin and 

cortisol must also be present (Pang & Hartmann, 2007). Blood prolactin levels are 

high during early lactation, shown to stimulate milk synthesis and proliferation 

(Neville et al., 2002). This results in accumulation of milk in the alveoli followed by 

copious milk secretion.  
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Post parturition the basement membrane (separating the mammary stroma from the 

epithelium) experiences a change in integrity characterised by tightening and reduced 

permeability, resulting in the control of systemic and stromal signalling to the 

mammary epithelium (Hassiotou & Geddes, 2013). This serves to control the 

movement of milk components or their precursors via paracellular pathways between 

the systemic circulation lactocytes and alveolar lumen or the lactocytes (Hassiotou & 

Geddes, 2013).  

 

1.4 Secretory pathways  
 
Secretory alveoli are enclosed by a basement membrane separating them from the 

surrounding stroma (Thomas et al., 2010). The basement membrane is important in 

regulating the activity of the alveolar cells and the components that can pass from the 

mother’s bloodstream or interstitial fluid into the milk (Thomas et al., 2010). There 

are a number of potential barriers that control the transfer of exogenous substances 

from the blood or stromal cells to the milk.  Metabolites both endogenous and 

exogenous to the mother can enter the milk via means of transcellular and paracellular 

pathways.  

 

1.4.1 Transcellular pathways 
 
The transcellular pathway allows movement across the lactocytes and is the mode of 

movement employed by fat globules, ions (e.g. calcium), glucose, protein hormones, 

immunoglobulins, and water  (Pang and Hartmann 2007).  

 

The transcellular pathway can be divided into four general mechanisms of movement. 

Two exist for the secretion of endogenously generated molecules, aqueous solutes 
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including proteins and oligosaccharides and nutrients such as lactose, citrate, 

phosphate and calcium, and two exist for the transport of exogenous molecules, 

including numerous macromolecules derived from serum and stromal cells and many 

ions and small metabolites (McManaman & Neville, 2003).  

 

1.4.2 Paracellular pathway 
 
The paracellular pathway allows direct, bi-directional and extracellular movement of 

low molecular weight substances and macromolecular solutes from the serum or 

interstitial space into the milk (McManaman & Neville, 2003). The paracellular 

pathway becomes closed during lactation as a result of tight junctions between 

epithelial cells, at which point transcellular pathways act as the only route for transfer 

of solutes to milk (McManaman & Neville, 2003). The transport of metabolites 

through this pathway is largely affected by the functional capacity of the mammary 

gland and can be a direct indication of the physiological state of the lactating breast. 

Inflammation resulting from mastitis can cause the paracellular pathway to reopen, 

allowing small molecules including sodium, chloride and glucose to pass freely into 

the milk space, while molecules such as lactose, potassium and calcium pass from the 

milk space into the plasma (Jensen, 1995).  

 

1.5 Pathology of the human breast  

Breastfeeding is the preferred source of nutrition for all newborns however it is not 

always an option for all women, as some women experience physiological, 

psychological or clinical difficulties that prevent them breastfeeding either 

temporarily or for an extend period of time. A West Australian study of 306 
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breastfeeding women by Fetherston (1997) found that mastitis is the third most 

common reason for weaning, with one in four women citing mastitis as their reason 

for ceasing breastfeeding (Michie, Lockie & Lynn, 2003). More recently a study by 

Abou-Dakn et al. (2010) found that the most common reason for premature cessation 

of breastfeeding in early lactation, affecting up to 50% of mothers, is nipple pain and 

mastitis. In weeks 1-3 insufficient milk supply (37.3%), commonly due to mastitis 

(Abou-Dakn et al., 2010), followed by breast pain or mastitis (32.9%) was the most 

common reasons for cessation of breastfeeding (Schwatrz, 2002). Women who 

reported pain in the first three weeks of breastfeeding were more likely to cease 

breastfeeding than mothers who reported pain beyond three weeks (Schwartz et al., 

2002). 

 

The study by Schwartz et al. (2002) also found that women who developed mastitis in 

the first three weeks post partum were nearly six times more likely to cease 

breastfeeding than women not suffering from mastitis. Furthermore with every day of 

pain in the first three weeks there was an increased risk of 10-25% for termination of 

breastfeeding (Schwartz et al. 2002). Thus mastitis, pain and days with pain in the 

first three weeks post partum are important clinical factors associated with 

breastfeeding termination in mothers who prenatally identified themselves as mothers 

who intended to breastfeed (Schwartz et al., 2002).  

 

Mastitis or, inflammation of the mammary tissue, is a debilitating disease that largely 

contributes significantly to weaning in the first three weeks post partum. Factors 

associated with mastitis include pain and discomfort when breastfeeding, ineffective 
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milk removal, reduced milk flow and the inability to provide sufficient nutrition for 

the growing infant (Foxman, D’Arcy, Gillespsie, Bobo & Schwartz, 2002).  

 

1.5.1 Nipple pain  

Nipple pain, with or without trauma, is a complication associated with breastfeeding 

found to have a significant impact on breastfeeding in the first few weeks post 

partum. The incidence is reported to range from 34% up to 96%, with the highest 

prevalence on day 3 and decreasing by day 7 (Page, Lockwood & Guest, 2009). 

Incorrect positioning and attachment has been implicated as the major cause of nipple 

pain, with speculation that increases in suction pressure applied by the infant may be a 

cause of pain in some women (McClellan et al., 2008); vasospasm, tongue tie and 

eczema are less common causes of nipple pain. Nipple infection accounts for a 

proportion of the cases of nipple pain and is thought to be a consequence of nipple 

trauma. Determining the cause of nipple pain is often difficult, for example severe 

pain combined with whitish changes of the nipple is often misdiagnosed as Candida 

spp., resulting in many breastfeeding women receiving incorrect treatment (Holmen & 

Bache, 2009). The involvement of bacteria in nipple pain is still largely unknown, 

however a study by Eglash, Plane & Mundt (2006) stated that women with nipple 

pain without symptoms of acute mastitis were 3 times more likely to culture 

pathogenic bacteria, most commonly Staphylococcus aureus, than candidiasis.  

 

Most lactation consultants agree that nipple soreness in the first week post partum is 

quite normal, however nipple pain that exceeds the first week is normally a sign of a 

greater problem that requires skilled assessment and observation (Tait, 2000). 

Associated with both frictional and suction lesions, pain can range from an 
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uncomfortable feeling to severe pain possibly preventing the continuation of 

breastfeeding (Page et al., 2009). As a result, as many as one third of mothers who 

experience these complications may change to alternate methods of infant nutrition in 

the first six weeks after birth (Page et al., 2009).  

1.5.2 Mastitis  

Mastitis and breast abscess occurs in all populations and at any stage of lactation. 

WHO (2000) reported the incidence of mastitis to affect ~20% of all lactating women, 

with 74-95% of cases occurring in early lactation (first 12 weeks after birth). Mastitis 

can be defined as cellulitis of the interlobular connective tissue within the mammary 

gland of the breast (Foxman et al., 2002). Clinical symptoms range from focal 

inflammation with minimal systemic symptoms to abscess and septicaemia in more 

severe cases (Foxman et al., 2002). Systemic symptoms such as pyrexia and flu like 

symptoms are often sudden in their onset and vary in severity, with women reporting 

duration of symptoms ranging from one to 12 days (Fetherston, 2001). The affected 

breast may appear red, hot and swollen. Factors associated with mastitis also include 

pain, discomfort when breast feeding and poor drainage (reduced milk removal) 

which may cause some women to cease breastfeeding (Foxman et al., 2002). 

 

Past research has determined that mastitis is most frequently the result of stasis of 

milk, without significant deviation in ‘normal/healthy’ bacterial counts and species. 

On occasions where milk stasis is not the cause of mastitis, milk infection is often the 

cause of bacterial colonisation of the breast and can be detected through increased 

colony counts and predominance of a small number of bacterial clones (Michie et al., 

2003). Consequently, mastitis is frequently defined as infectious or non-infectious. 

The most common type of mastitis is non-infectious mastitis, where inflammation of 
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the breast tissue results from milk stasis, blocked ducts, engorgement or physical 

injury (Crepinsek, Crowe, Michener & Smart, 2012).  

 

Infectious mastitis may result from trauma to the skin of the nipple, damaging the 

integrity of the breast and consequently providing a route for microbial infection 

(Crepinsek et al., 2012). The most common portal of entry for bacterial infection in 

women with mastitis is assumed to be through nipple pores into lactiferous ducts 

(Fetherston, 2001). Infectious mastitis is most often associated with Staphylococcus 

aureus, an organism that can cause an abscess to develop if left untreated (Amir, 

Forster, McLachlan & Lumley, 2004). A study by Delgado et al. (2009) found that 

Staphylococcus epidermidis was the most prevalent staphylococcus species isolated 

from mastitic milk and was prevalent in concentrations significantly higher than that 

normally present in the healthy mother. S. epidermidis has been increasingly 

recognised as an opportunistic pathogen and as a casual pathogen of mastitis, despite 

being a normal inhabitant of healthy human skin and mucosal microflora (Delgado et 

al., 2009). Staphylococci are known for their pronounced genetic variability and S. 

epidermidis has been found to have mechanisms for adhesion and biofilm formation. 

Its resistance to certain antibiotics has increased in recent years and it is consequently 

emerging as a common nosocomial pathogen (Ziebuhr et al., 2006).  

 

Alternatively mastitis can be viewed as a continuum of a disease where the initial 

non-infectious mastitis develops into a secondary infectious mastitis resulting in the 

formation of an abscess (Crepinsek et al., 2012). Hence infection, when it occurs, is 

not primary, but the result of stagnant milk providing a medium for bacterial growth.  
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Although effective milk removal through feeding, pumping or both is the foundation 

for all treatment to remove stagnant milk, antibiotics are usually prescribed 

prophylactically to cover possible bacterial infection (Jahanfar, Ng & Tang, 2013). 

However, antibiotic prescription is not based on analysis of breast milk, therefore it is 

not known how many cases are unnecessarily adding to the increase in antibiotic 

resistant strains of bacteria. To reduce the number of bacteria becoming resistant to 

antibiotics it is important to correctly diagnose each case of mastitis to reduce their 

inappropriate use. Thomsen, Hansen & Moller (1983) proposed that levels greater 

than 103 CFU/ml of pathogenic bacteria in breast milk was an indication that 

antibiotic treatment is required. They concluded that a high bacterial count together 

with leukocytosis was indicative of infection. Note that the colony forming unit 

(CFU) count does not take into account the normal bacterial content in milk.  

 

1.5.3 Breast thrush  
 
Some breastfeeding mothers also experience a burning pain in the nipple/breast 

known as breast thrush, which occurs in 10% of women. Although the exact cause of 

breast thrush has not yet been confirmed, many researchers believe it is the result of 

Candida albicans infection (Amir et al., 2011). However, due to the presence of other 

microorganisms it is difficult to identify C. albicans as the sole cause. Consequently, 

it is possible that breast thrush is the result of co-infection caused by the presence of 

multiple microorganisms such as S. aureus or E. coli as well as C. albicans or other 

Candida spp.  
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Australian milk banks currently examine the bacteriology of donor milk by culturing 

all donations on cysteine-lactose-electrolyte deficient (CLED) agar and 5% horse 

blood agar and quantifying colony growth (Hartmann et al., 2007). Critical limits 

have been defined for the level of contamination acceptable in raw milk and donations 

containing a confluent growth of microorganisms exceeding 105 CFU/ml are 

discarded (Hartmann et al., 2007). However, this is not routine practice for the 

diagnosis of mastitis or causative agents of nipple pain, nor is it conducted before the 

administration of antibiotics or alternative medications.  

1.6 Composition of human milk  

Milk is a complex biological matrix made up of thousands of compounds. The 

complexity of milk reflects the activities of the mammary secretion and transport 

processes, the physiological condition of the breast and the unique nutritional 

requirements of the developing newborn (McManaman & Neville, 2003). The 

constituents in milk provide nutrition, structural components for cellular membranes 

and non-nutritive functional components e.g. immunological factors (Jensen, 1995).  

 

The composition of human milk is dynamic and highly variable. Variation occurs 

over the course of lactation, between and within feeds, diurnally, between mothers 

and with treatment of expressed milk including storage and pasteurisation (Chung, 

2014).  The mother’s nutrition, body mass index (BMI) and parity have also been 

found to influence milk composition (Hsu et al., 2014). A study by Eilers et al. (2011) 

found a positive correlation with milk leptin concentration and BMI, suggesting that 

mothers' adiposity may increase the leptin levels in milk. 
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Milk composition changes over the course of lactation, which can be divided into the 

known milk stages colostrum, transitional milk and mature milk. Colostrum marks the 

first phase of lactation spanning the first 3-5 days after parturition. Colostrum has a 

distinct biochemical and cellular composition, characterised by high concentrations of 

protein, fat-soluble vitamins, minerals, and immunoglobulin, designed to provide 

enhanced immunological protection and nutritional and developmental support to the 

infant (Hassiotou & Geddes, 2013).  

 

Transitional milk proceeds the colostrum stage lasting up until 2-3 weeks postpartum 

and has higher levels of fat, lactose and water soluble vitamins and contains more 

calories than colostrum (Jensen, 1995) (Table 1.2). Thereafter, breast milk is said to 

have reached the mature phase, the final stage of milk transition, which is maintained 

for the remainder of lactation (Hassiotou & Geddes, 2013). Mature milk is comprised 

of 90% water and 10 % carbohydrates, proteins and fats. 

 

Table 1. 2 Human milk composition between 1 and 28 days post partum.  

 

Component 

Days post partum 

1 2 3 4 5 14 28 

Yield g/24 hr 50 190 400 625 700 1100 1250 

Lactose (g/L) 20 25 31 32 33 35 35 

Fat (g/L) 12 15 20 25 24 23 29 

Protein (g/L) 32 17 12 11 11 8 9 

Recreated from Jensen (1995). Handbook of Milk Composition.  
The volume of milk, lactose and fat increase and protein decreases as lactation 
progresses days post partum.  
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1.6.1 Macronutrients and micronutrients 

Milk is a highly complex suspension of lipids, proteins, carbohydrates, secretory 

immunoglobulins, calcium and various other macro and micro molecules, ions and 

bioactive factors (Thomas et al., 2010).  Table 1.3 is a summary of macronutrient 

composition of human milk findings from past studies. Fat content (grams per 100ml) 

can be identified as the most variable nutrient across populations, however individuals 

within a population showed equal if not greater variations (Prentice, 1995; Wojcik, 

Rechtman, Lee, Montoya & Medo, 2009).  

 

Table 1.3 Summary of macronutrient composition from past studies.  
 
Population  Fat Lactose Protein  Reference  

Philippines (Manila) 3.93 7.31 0.85 WHO, 1985 

The Gambia  3.78 7.74 1.09 Prentice et al., 1981a 

Australia 3.74 6.14 0.92 Mitoulas et al., 2002 

Bangladesh  2.66 8.08 1.00 Brown et al., 1986 

Sweden 5.69 6.70 0.83 WHO, 1985 

Guatemala  2.40 8.00 0.94 WHO, 1985 

Zaire 3.30 6.30 1.30 WHO, 1985 

USA (DARLING) 3.80 7.40 1.10 Nommsen et al., 1991 

Mean 3.66 7.21 1.00  

Reproduced from ‘Predictors of breast milk macronutrient composition in Filipino 
mothers’, Quinn, Largado, Power & Kuzawa (2012). 
Contents recorded in grams per 100ml and calculated where necessary using a 
nitrogen to protein conversion factor of 6.38.  
The summary of milk macronutrients from past studies found that fat content of 
human milk varied between 2.4 to 5.69 g/100ml across populations, however women 
within the same population showed equal if not greater variation than different 
populations. Carbohydrate and protein content of milk showed less variance, with 
carbohydrate ranging from 6.14 to 8.08 g/100ml and protein ranged from 0.83 to 
1.03 g/100ml.  
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During the initiation of secretory activation the paracellular pathway closes, 

preventing movement of small molecules from serum or interstitial space into the 

milk and vice versa. The closure of tight junctions blocks the paracellular pathway 

preventing lactose (made by the epithelial cells) from passing from the alveolus to the 

plasma and sodium and chloride from entering the alveolar lumen from the interstitial 

space (McManaman & Neville, 2003). This resulted in a fall in sodium and chloride 

concentration and an increase in lactose concentrations in milk (Table 1.4), which 

occurs immediately after birth and is complete by 72 hours post delivery 

(McManaman & Neville, 2003).  

 
Table 1.4  Changes in selected milk components in early lactation.  

 

Component (mmol/L) 

Hours post partum 

21 48 60 96 120 

Volume (ml/day) - 180 350 560 540 

Lactose  100 140 160 160 160 

Potassium  13.8 15 18 18 18 

Sodium  34 25 16 14 14 

Chloride  44 35 25 20 20 

Calcium  4.0 6.0 6.6 7.6 8 

Recreated from Jensen (1995). Handbook of Milk Composition.  
The volume of milk and amount of lactose, potassium and calcium increase and 
sodium and chloride decrease as lactation progresses hours post partum.  
 
Epithelial cells are connected via an apical junctional complex composed of adherens 

and tight junctional elements that act to prevent direct paracellular exchange of 

interstitial and milk components (McManaman & Neville, 2003). However, during an 

episode of mastitis or inflammation the tight epithelial junctions dividing milk and 

plasma become compromised and the paracellular route reopens, causing plasma 

components such as sodium and chloride to leak into the milk (McManaman & 
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Neville, 2003) and components such as lactose and potassium to pass from the milk 

into the plasma (Jensen, 1995). An elevated milk sodium concentration above the 

norm (5-6mmol/L) has previously been considered indicative of infection.  However, 

as milk composition varies largely between individuals, it is difficult to determine if 

sodium concentration levels are an accurate measure of infection or inflammation and 

consequent damage to the mammary tissue. For this reason, the sodium to potassium 

ratio has recently been suggested as a possible indication of infection or inflammation 

as it accounts for individual differences, with a elevated sodium to potassium ratio 

above 1.0 being considered indicative of mastitis (Aryeetey, Marquis, Timms, Lartey 

& Brakohipa, 2008). 

 

1.7 New methods of milk analysis  
 
There have been many studies in recent years on bovine mastitis, described as a 

production disease, as it is the most expensive disease effecting dairy farms world 

wide, causing enormous financial loss to the dairy industry (Hogeveen, Huijps & 

Lam, 2011). Metabolomics has been utilized increasingly within the food industry and 

has been proposed as a useful tool in the dairy industry to ensure proper milk 

composition and milk of the highest quality (Boudonck, Mitchell, Wulff & Ryals, 

2009). Previously diagnosis of mastitis in domesticated animals focused 

predominantly on quantitative measures, most commonly monitoring milk somatic 

cell count, which is known to increase during an episode of mastitis (Michie et al., 

2003). Estimates of the milk cell count are widely employed to assess milk quality, 

with lower cell counts attracting higher prices. More recently, a study by Sundekilde 

et al. (2013) found a series of metabolite biomarkers, including isoleucine, lactate, 

butyrate and acetate, that were associated with elevated somatic cell count in bovine 
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milk and suggested that detection of these could be a potential tool to determine milk 

quality, diagnose mastitis and consequently determine whether milk should be 

discarded. This knowledge and technology could also be applied to human milk, 

determining metabolome changes as a means for diagnosis of breast complications 

particularly mastitis. Furthermore, it can be reasoned that if bacterial and fungal 

infections are a causative agents of nipple trauma and mastitis, their presence and 

associated endogenous metabolites will contribute to the composition of expressed 

milk. Consequently, if severity of trauma is correlated to underlying infection, then 

profiling the metabolome of expressed milk may identify differences in metabolite 

composition between mothers experiencing varying degrees of pain and discomfort.  

 

1.7.1 Metabolomics  
 
Metabolomics revolves around the central concept that an individual’s metabolic state 

is a close representation of their current physiological state indicating their health or 

disease status (Fanos, Barberini, Antonucci & Atzori, 2012). Our metabolome is not 

solely determined by our genes but also influenced by our environment and unique 

body flora and therefore consists of a mix of endogenous and exogenous metabolites, 

some of which may include food component or environmental chemicals. 

Metabolomics aims to improve understanding of physiology and metabolism by using 

analytical chemistry techniques to assess metabolic changes in biofluids, tissues and 

cell extracts to create a metabolic profile (Veselkov et al., 2011).  

 

Metabolomics aims at a quantitative analysis of a large number of low molecular 

weight metabolites existing as substrates or products in metabolic pathways present in 

all living systems (Moco, Collino, Rezzi & Martin, 2013). The metabolomics 
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approach is based on highly sensitive analytical methods with data obtained by 

quantifying multiple metabolites or small molecules in test samples (Fanos et al., 

2012). A typical metabolomic data matrix consists of metabolites and their relative 

abundances for a sample set including two or more conditions (control and study 

group/s). The direction of statistical analysis is to identify differences in presence and 

abundance of metabolites between control and study groups (De Livera et a., 2012). 

Current techniques commonly used in metabolomic analysis include mass 

spectrometry coupled with gas chromatography (GC-MS) or liquid chromatography 

(LC-MS) and nuclear magnetic resonance (NMR) (Fanos et al., 2012). 

 

1.7.2 Gas chromatography mass spectrometry (GC-MS) 

GC-MS is a synergistic combination of two techniques, firstly gas chromatography 

which separates the components of a mixture of molecules and the second, the mass 

spectrometer which provides structural information of each component measured 

(Kitson, Larsen & McEwen, 1996). In GC-MS-based metabolomics, complex 

mixtures of metabolites from a cell, tissue or biofluid are analysed. 

 

Gas chromatography involves volatilization of the sample in a heated inlet, separation 

of the components of the mixture in a capillary column and detection of each 

component at the detector (Figure 1.3). A carrier gas (mobile phase) is used to transfer 

the volatilised sample from injector through the column where separation of each 

analyte is determined by the partition of each component between the mobile and 

stationary phase. Only materials that can be volatilised without decomposition are 

suitable for analysis by gas chromatography.  
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Within the mass spectrometer analytes are ionised and measured as a function of their 

mass to charge ratio and represented as a mass spectrum of ions each in relative 

abundance, which provides a quantitative measure of the abundance of each ionic 

species as it elutes from the column (Hubschamann, 2008). The measurements are 

calibrated against ions of known mass to charge ratio and compared to a database of 

known metabolites to determine presence and abundance of metabolites in a sample 

(Hubschamann, 2008). 

 

 

 
Figure 1.3  A simplified model of a gas chromatograph mass spectrometer.  
Reproduced from Dunnivant and Ginsbach, 2008.  
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Interrogation of the GC-MS data requires deconvolution of the chromatogram to 

distinguish metabolites from non-biological analytes (e.g. artefacts from storage 

conditions) and to identify these from instrument noise and co-eluting analytes. GC 

retention times and calculated retention indices together with reproducible and 

predictable mass fragmentation (for comparison of the features with analysed 

metabolite standards) are used to identify metabolites by composition, against a 

library of metabolite mass spectra (Gummer et al., 2012). When used for 

metabolomics studies, the use of appropriate quality control measures, including 

internal standards to account for sample extraction and instrumental inter-sample 

efficiencies and system equilibration, is imperative (Gummer et al., 2012).  

 

1.7.3 Untargeted metabolomics 

Metabolomics is a reflection of genetic factors with the expressed metabolites defined 

as the end point. Mapping a person’s metabolome against their phenotype has been 

proposed as a useful tool for clinical systems biology to detect metabolic changes 

even before disease symptoms appear (Smolinska, Blanchet, Buydens & Wijmenga, 

2012). Blood and urine samples are frequently used to anlyse the human metabolome. 

Milk is an ideal bio-fluid for metabolomics studies since it can be obtained 

noninvasively, and the composition is directly reflective of genetic and environmental 

factors affecting breast health, more specifically mammary tissue and the milk 

secreting cells (lactocytes). With respect to lactation, nipple pain and mastitis have 

been found to produce biochemical changes in human milk including an increase in 

sodium and protein concentrations. As a result of cellular changes such as increased 

neutrophil count and activation of leukocytes causing them to extravasate into the 

milk at the site of inflammation (Michie et al., 2003; Hassiotou et al., 2013).  
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1.7.4 Targeted metabolomics 

Bacterial and fungal metabolites can be used to detect and quantify bacteria and fungi 

in a solution. Furthermore metabolites only present in specific species of bacteria 

could allow more specific detection of target bacteria. GC-MS has successfully been 

used to identify biomarkers in complex matrixes (e.g. blood and urine) and provides 

high sensitivity and detection of markers even when present at nanogram levels 

(Sebastian & Larsson, 2003).  

 

1.7.5 Summary  
 
Research has already begun to identify the milk metabolome, however these studies 

lack focus on nipple pain and mastitis and their causative agents. There has been no 

untargeted analysis of metabolites linked to mastitis that may be present in the milk 

during a mastitis event. Identification of changes to the metabolome in the presence of 

nipple pain or mastitis, if established, could be a useful tool in clinical diagnosis and 

determining the underlying problem. Therefore, metabolite profiling has the potential 

to provide a diagnostic tool for the early identification of inflammatory processes 

contributing to nipple pain and mastitis. Targeted metabolomics could be used to 

identify the presence of specific metabolites, such as bacterial metabolites, to 

determine the influence of bacteria and identify the presence of bacteria as a possible 

cause of nipple pain and mastitis. This research provides an investigative model for 

the current work in the human metabolome and provides direction for more specific 

analysis following the optimisation of untargeted metabolite profiling. 
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1.8 Aims and Hypothesis 
 

1.8.1 Project outline  

This project aims to use current knowledge of human and bovine milk together with 

traditional microbial and biochemical methods to identify where new generation 

methods can be useful to gain further knowledge into breast milk composition and the 

effect of infection and inflammation. Metabolomics using gas chromatography mass 

spectrometry (GCMS) will allow metabolite profiling of human and bovine milk 

samples and the identification of possible biomarkers for nipple pain that could 

potentially develop into mastitis.  

 

1.8.2 Hypothesis  

The presence of persistent nipple pain, with and without evidence of trauma, in 

lactating women will result in changes in human milk metabolite profile due to 

infection and inflammation compared to asymptomatic women (controls).  

 

1.8.3 Aims 

Aim 1:  To identify the presence of bacteria and fungi using conventional culture 

techniques, and to quantify bacteria and fungi detected.  

 

Aim 2: To measure the effects of nipple pain and trauma on the paracellular pathway 

of the breast by measurement of the sodium and potassium concentration and 

ratio in human and bovine milk.   
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Aim 3:  To optimise methodology for GC-MS (untargeted) measurement of 

metabolites in human milk and bovine milk.  

 

Aim 4: To identify differences in the metabolic profile of human milk in mothers with 

nipple pain (with and without trauma) compared to healthy control mothers 

(asymptomatic), using untargeted analysis.  
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2 Materials and Methods 
 

2.1 Materials  

All materials used in the methods, are presented in (the following) tables, 2.1-2.5. 

Materials are separated into four tables to reflect the four sections presented in the 

methods. The fifth table contains the identification of metabolite reference standards 

used for metabolomic optimisation. Materials are presented with supplier and 

abbreviations where possible and suppliers are arranged in the order they appear in 

Methods.  

 

Reagents were prepared using double deionized water (DDI) (supplied by The 

Hartmann Human Lactation Research Group, UWA) unless stated otherwise. DDI 

water was prepared with a PRELAB Classic water purification system (Ibis 

Technology, Osborne Park, WA, Australia); the DDI water used for breast 

sterilisation was further heat sterilised using an autoclave.  
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Table 2.1  Human milk collection method, with supplier listed.  
 

 
 
  

Chemical   

  

Thermo Fisher Scientific Australia Pty. Ltd.  

PDI Alcohol prep pads (70% isopropyl)  

  

Medical and Surgical Requisites Pty Ltd, QLD, Australia  

5% Chlorhexidine skin cleanser (Microshield)  
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Table 2.2  Bacteriology methods, with supplier and abbreviations listed.  
 
Chemical  Abbreviation 

  

Pathwest Laboratory Medicine WA, Forrest House Mt Claremont, WA, Australia 

5% Horse blood agar plates (PO81)  

Deoxyribonuclease (DNase) agar plates (P090)  

Sabouraud Dextrose agar powder (Oxoid- CM0041) 

Vogel-Johnson agar plates (1347) 

Yeast Extract Glucose Chloramphenicol (YGC) agar (1498) 

Dichloran Rose Bengal Chlortetracycline (DRBC) agar plates (1139) 

 

  

Sigma-Aldrich Pty. Ltd., Castle Hill, NSW, Australia 

Mannitol Salt Phenol Red agar powder (63567)  

  

Amber Scientific, Midvale, WA, Australia 

Gram stain kit (ref#-76):        Crystal violet 0.5% stain (CV-500) GV 

Gram’s iodide solution (GI-500) GI 

Decoulourizer solution (DECL-500) DECL 

Safarin aqueous stain (SF-500) SF 

  

Blackaby Diagnostics, Darlington, WA, Australia  

Phadebact latex kit  

  

Thermo Fisher Scientific Australia Pty Ltd, Melbourne, VIC, Australia 

Hydrochloric acid (1N) (SA48-1) HCl  
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Table 2.3  Sodium and potassium analysis, with supplier and abbreviations 

listed.  
  
Chemical  Abbreviation 

  

Univar ®, Redmond, WA, USA 

Sodium chloride (465) NaCl 

Potassium chloride (383) KCl 
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Table 2.4  Metabolomic analysis of human and bovine milk, with supplier 
and abbreviations listed.  

 
Chemical  Abbreviation  

  

Thermo Fisher Scientific Australia Pty. Ltd., Melbourne, VIC, Australia 

Methanol (LCMS grade) (A454-4) MeOH 

Water (LCMS grade) (W6-4)  

Acetonitrile (A955-4) ACN 

Hexane 95% (H306-4)  

  

Sigma-Aldrich Pty. Ltd., Castle Hill, NSW, Australia 

D-Sorbitol-13C6 99% (605514)  

N-Methyl-N-(trimethylsilyl) trifluoroacetamide(M7891)(394866) MSTFA  

Methoxyamine hydrochloride 98% (226904)  

2-Aminoanthracene (A38800) 

 

 

Ajax Finechem, Sydney, NSW, Australia 

Pyridine (AJA430) 

 

 

Chem Service Inc., West Chester, PA, USA   

n-decane C10 (0-729) (Purity – 99.8%)  

n-dodecane C12 (0-731) (Purity - 99.4%)  

n-pentadecane C15 (0-2238) (Purity - 98.9%)   

n-nonadecane C19 (0-2203) (Purity – 99.4%)   

n-docosane C22 (0-2089) (Purity – 99.2%)  

n-octacosane C28 (0-2227) (Purity- 99.5%)   

n-dotriacontane C32 (0-2095) (Purity - 98.5%)   

n-hexatriacontane C36 (0-2128) (Purity - 98%)  

  

Grace Davison Discovery Sciences, Rowville, VIC, Australia 

SPE bulk sorbent prevail C18 (%125474) SPE 
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Table 2.5  List of metabolite reference standards used for metabolomic 
method optimisation, with supplier listed.    

Metabolite   

Sigma-Aldrich Pty. Ltd., Castle Hill, NSW, Australia 

L-Valine (V0500) (Purity 98%)   

L- Alanine (A7627) (Purity 98%)  

Glycine (241261) (Purity 99%)   

L- Leucine (L8000) (Purity 98%)   

L-Proline (P0380) (Purity 99%)   

L-Isoleucine (I2752) (Purity 98%)  

L-Norleucine (N6877) (Purity 98%)   

L-Cysteine (168149) (Purity 98%)  

Urea (U5378)   

L-Serine (S4500) (Purity 99%)  

Ethanolamine (E9508) (Purity 98%)   

L-Threonine (T8625) (Purity 98%)   

Succinic Acid (398055) (Purity 99%)  

Putrescine (dihyrdochloride) (P7505) (Purity 98%)  

L-Serine (S4500) (Purity 99%)  

L-Methionine (M9625) (Purity 98%)  

L-Aspartic acid (A9256) (Purity 98%)   

L-Glutamic Acid (G1251) (Purity 99%)  

L-Phenylalanine (P2126) (Purity 98%)  

a-Ketoglutaric acid (K1750) (Purity 98.5%)  

Ribitol (Adonitol) (A5502) (Purity 99%)  

Citric acid (251275) (Purity 99.5%)  

L-Lysine (L5501) (Purity 98%)  

D-(-)-Fructose (F0127) (Purity 99%)  

L-Tyrosine (W373605) (Purity 97%)  

D-Mannitol (M4125) (Purity 98%)  

D-Sorbitol (S1876) (Purity 98%)  

Myo-inositol (I5125) (Purity 99%)  

Ribose-5-phosphate (disodium salt hydrate) (83875) (Purity 99%) 

L-Tryptophan (T0254) (Purity 98%)  
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Table 2.6  Equipment used, with manufacturer listed.  
 
Equipment  

 

Medela AG, Baar, Switzerland  

Symphony® breast pump and attachments  

Quick Clean™ microwave bags  

 

Corning Incorporated, Corning, NY, USA 

PC-351 HOT Plate Stirrer  

 

Getinge AB Group, Getinge, Sweden  

HS4406 Steam Sterilizer (autoclave)  

 

Forma Scientific, Inc., Marietta, OH, USA  

3164 - Water Jacketed Incubator  

 

Horiba Scientific Ltd., Kyoto, Japan  

LAQUAtwin sodium ion electrode (S022)  

LAQUAtwin potassium ion electrode (S030) 

 

Crown Scientific Pty Ltd., NSW, Australia  

Eppendorf Thermomixer® comfort 

Microcentrifuge 5415R 

IKA MS1 Works (vortex)  

 

Bruker Daltonics, Billerica, MA, USA 

450-GC Oven  

 

Shimadzu Corporation, Kyoto, Japan 

GC-MS- Shimadzu QP2010 Ultra, Kyoto, Japan 
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Table 2.7 Data analysis software, with manufacturer listed.  
 
Software  

 

R Development Core Team  

R 3.0.3 GUI 1.638 Snow Leopard build 32-bit (6660) 

 

SpectralWorks Ltd, Cheshire, United Kingdom  

AnalyzerPro 2.7.0.0 

 

Shimadzu Corporation, Kyoto, Japan 

GCMSsolution 2.61 

 

Camo Software AS 

The Unscrambler  

 

SAS Institute Inc.  

JMP 8.0.2 
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2.2 Methods  
 

2.2.1 Human sample collection  
 

2.2.1.1 Recruitment  
 
Mothers between the ages of 18-45 years currently breastfeeding a baby between the 

age of 1-6 months were recruited. Participants were predominantly recruited through 

community engagement and ongoing communication using flyers, World Wide Web 

(e.g. social media) and in person promotion. Additional participants were recruited via 

the Australian Breastfeeding Association (ABA), local community health nurses and 

lactation consultants and through posts on the University of Western Australia 

website. Mothers already participating in research studies associated with Hartmann 

Human Lactation Research Group (HHLRG) under the supervision of Professor Peter 

Hartmann were also invited to participate.  

 

Mothers were supplied with a consent form and general information sheet to complete 

at the time of milk collection (Appendix 2.1 and 2.2). Using the Visual Analogue 

Scale (VAS) for pain intensity as described by McClellan et al. (2012) mothers were 

asked to rate their pain when breastfeeding from ‘no pain’ to the ‘worst pain 

imaginable’. Measured pain intensity was recorded and converted to a numerical 

value between 0 and 10, 0 being no pain and 10 representing the highest level of 

perceived pain.  

 

Mothers were registered online with the HHLRG and provided with a unique 

identification number. Mothers received their identification number via email which 

contained a link directing them to an online questionnaire with questions relating to 
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parity, infant and maternal age, medication and current health status of the mother and 

infant. The questionnaire is provided in Appendix 2.3. 

 

2.2.1.2 Human milk collection 
 
Milk samples were collected from mothers with and without persistent nipple pain at 

a single time-point. Milk samples were collected from a single breast in mothers 

without nipple pain (control). Mothers with bilateral nipple pain provided a single 

milk sample from the breast experiencing the greatest level of perceived pain during 

breastfeeding. Mothers with unilateral nipple pain were asked to provide a sample 

from the affected breast and non-affected breast; this acted as a paired control.    

 

Participating mothers were requested not to express or breastfeed for at least 3 hours 

prior to milk collection (most relevant to those presenting with unilateral nipple pain 

and therefore suitable to donate both a nipple pain and control sample) to ensure the 

breast was full or near full at the time of collection (Hassiotou et al, 2013), and/or 

required to provide a sample from the breast that had not recently expressed. Before 

collection mothers were required to adequately clean their hands (using Aqium 

antibacterial hand gel) and their breast to remove skin contaminants. The breast was 

washed by rinsing the nipple and surrounding skin with sterile water (DDI water that 

had been sterilised by autoclave at 120 °C for 15 minutes), followed by an alcohol 

wipe (70 % isopropyl alcohol) (Thermo Fisher Scientific Australia Pty Ltd.), a mild 

disinfectant (chlorhexidine) (Medical and Surgical Requisites Pty Ltd) and then a 

final rinse with sterile water before milk collection (Hale, Bateman, Finkelman & 

Berens, 2009). The breast pump and its attachments were sterilised in Quick Clean ™ 

microwave sterilising bags (Medela, AG) prior to use. Participating mothers were 
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fitted with a breast shield connected to a Symphony® electric breast pump (Medela 

AG) and instructed to set the pump to a setting comfortable for them. A minimum of 

15 ml of breast milk was collected and immediately put on ice, covered from light and 

transported to the laboratory for storage.   

 

On arrival at the laboratory the samples were gently mixed and divided into three 

aliquots of 5 ml into 15 ml falcon tubes and stored at -80 °C until analysis.  

 

For sample analysis purposes human participants were de-identified and given 

reference identification numbers, mothers were labelled M01-M29 with the addition 

of sample identification numbers separating the control (C01-C22) and NP (NP01-

NP11) participants. 

 

2.2.1.3 Participant demographic data analysis  
 
Analyses of participant demographics were conducted to identify differences between 

control and nipple pain subgroups. Participant identification numbers and sample 

identification numbers are presented in the tables in the appendix.  

 

Demographic analysis focused on maternal age, infant age and parity. All analyses 

were performed using R 3.0.3 GUI 1.638 Snow Leopard for Mac OSX (R 

Development Core Team, 2011) using the base packages, and the libraries NLME 

(Pinheiro, Bates, DebRoy & Sarkar, 2011) and multcomp (Hothorn, Bretz & Westfall, 

2008), which were used for linear mixed modelling and multiple comparison of 

means, respectively. A linear mixed effect model and linear regression (linear model) 

were calculated and compared by ANOVA to determine underlying physiological 
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differences between individuals. Categorical variables, including parity, were 

compared using Fisher’s exact test. Summary statistics are presented as mean ± SD, 

or median (IQR), or proportion. p < 0.05 was considered to be statistically significant.  

 

2.2.2 Bovine sample collection  
 
A set of bovine milk samples, from healthy cows (control), cows suffering from 

mastitis and pooled samples from a single storage vat, were collected for comparative 

purpose to be used as positive control throughout the study. Milk samples were 

collected from Friesian Holstein (Black and White) dairy cows at a functional dairy in 

the south west of Western Australia. Pooled milk samples were collected by removing 

a 15 mL aliquot from a single storage vat prior to pasteurisation.  Samples from 

individual cows were collected by hand expression of 15 ml of milk into a 25 ml 

falcon tube.  All samples were sealed, covered from light, stored on ice and 

immediately returned to Perth for storage in an -80 °C freezer.  

 

Bovine milk samples were collected from four lactating cows, given reference 

identification numbers B01-04, and the pooled bovine vat collections were labelled 

V01-V02. Additionally individual bovine samples were identified by sample 

identification numbers BC01-03 for bovine control samples, BM01-04 for samples 

retrieved from cows with mastitis and BV01-BV02 for the two pooled bovine vat 

samples.  
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2.2.3 Microbial methods  
 

2.2.3.1 Media preparation 

Mannitol Salt agar  

Mannitol salt phenol red agar powder (Sigma-Aldrich Pty. Ltd., Australia) 111 g/L 

was prepared (in Millipore filtered double deionised distilled water). Agar solution 

was sterilize by autoclave (HS4406 Steam Sterilizer) (Getinge AB Group, Sweden) at 

121 °C for 15 minutes and stored in 100 mm plates (50 plates, 25 ml per plate) below 

8 °C. 

 

 

Sabouraud Dextrose agar  

Sabouraud Dextrose agar powder (Sigma-Aldrich Pty Ltd., Australia) 65 g/L was 

prepared (in Millipore filtered double deionised distilled water) and brought to boiling 

point until dissolved, using a PC-351 HOT plate Stirrer (Corning Incomprated, USA). 

Agar solution was sterilize by autoclaving (HS4406 Steam Sterilizer) (Getinge AB 

Group, Sweden) at 121 °C for 15 minutes and poured into 100 mm plates (50 plates, 

25 ml per plate) below 8 °C. 

 

2.2.3.2 Culture 

Bacterial cultures were prepared in a laminar flow hood under sterile condition as 

recommended by the National Mastitis council (2012). 50 µl of each milk sample 

were spread evenly on each of the following agar plates in dublicate; 5 % Horse blood 

agar, Mannitol Salt agar (MSA) and Sabouraud Dextrose agar. Plates were incubated 

(3164 - Water Jacketed Incubator, Forma Scientific, USA) at 37 °C for 24 ± 2 hours; 

Sabouraud agar plates were incubated for an additional 96 hours.  
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A colony forming unit (CFU) count was conducted to determine total CFU/ml on 5% 

Horse Blood agar, MSA and Sabouraud agar. Bacterial species were identified by 

Gram stain with the help of Cristina Farrar (Senior Medical Scientist at Princess 

Margaret Hospital, Subiaco W.A.). S. aureus was identified based on positive latex 

agglutination test (to detect the coagulase enzyme) and positive culture on DNase S. 

aureus specific agar plate. 

 

Additional agar plates Dichloran Rose Bengal Chlortetracycline (DRBC) agar and 

Yeast Extract Glucose Chloramphenicol (YGC) agar (supplied by PMH) were used 

for specific isolation and identification of yeast species and Vogel-Johnson agar was 

used for the isolation and quantification of S. aureus following previous identification 

of target species (yeast and S. aureus) on Sabouraud agar and MSA respectively. All 

cultures were prepared following previously mentioned culture techniques, i.e. 50 µl 

of whole milk spread evenly on the agar plate and incubated at 37 °C for 24  ± 2 

hours.  

 

2.2.3.3 Bacterial and fungal species detection through Gram stain  
 
Traditional Gram stain technique, as adapted from the original publication of Gram 

(1984) was used for microbial identification (Gram, 1884; Gephart et al., 1981). The 

colony of interest was transferred by loop onto a clean glass slide and heat fixed prior 

to applying a Gram stain. Using a Gram stain kit (Amber Scientific, Australia) the 

slide was flooded with crystal violet solution for up to a minute, washed briefly with 

distilled water and the excess water drained. Using Gram’s iodide solution the slide 

was flooded again and left to sit for one minute before washing with distilled water 
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and draining. Using paper towel the slide was gently blotted dry and flooded for 10 

seconds with decolourizer solution followed by washing with distilled water and 

draining. Lastly the slide was flooded with Safranin aqueous stain for 30 seconds. The 

slide was then washed using distilled water, followed by draining and blotting dry 

(being careful not to rub). 

 

All slides were examined under an oil immersion lens and bacterial species were 

identified.  

 

2.2.3.4 S. aureus identification  

2.2.3.4.1 Latex agglutination test  

The latex agglutination test was conducted to confirm the presence of S. aureus using 

a latex agglutination kit (Blackaby Diagnostics, Australia); following culture on blood 

agar and MSA.  

 

Once a potential culture of S. aureus was identified on an MSA plate an inoculation 

loop was used to transfer a single colony to a latex agglutination card. A drop of red 

latex was added and the solution was mixed thoroughly using an inoculation loop 

followed by gently hand rocking the card for a further 20 seconds. Agglutination or 

clumping should be instantaneous with most S. aureus strains.  

 

2.2.3.4.2 DNase agar plate  

Additionally any potential S. aureus cultures identified on MSA plates were cultured 

on a DNase agar plate (supplied by Pathwest Laboratory Medicine, Australia). Using 
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an inoculation loop a single colony was transferred to a DNase agar plate and spread 

in a small circle on the surface of the agar. The plate was incubated (3164 - Water 

Jacketed Incubator, Forma Scientific, USA) for 24 hours at 37 °C followed by the 

addition of 1N HCl (Thermo Fisher Scientific Australia Pty Ltd.). The addition of 

HCl precipitates DNA in the media causing cloudiness, unless the DNA has been 

hydrolysed by S. aureus in which case creating a clear zone or ‘halo’ around the 

growing colony occurs, which indicates positive growth for S. aureus.  

 

2.2.3.5 Data analysis  

Data analyses of CFU/ml (as determined by culture on 5% horse blood agar) was 

performed using R 3.0.3 GUI 1.638 Snow Leopard for Mac OSX (R Development 

Core Team, 2011) using the base packages, and the libraries NLME (Pinheiro et al., 

2011) and multcomp (Hothorn et al., 2008), which were used for linear mixed 

modelling and multiple comparison of means, respectively. Summary statistics are 

presented as mean ± SD of the CFU/ml and logarithmic value of the CFU/ml. A        

p-value < 0.05 was considered to be statistically significant. 

 

2.2.4 Sodium and potassium analysis  

Sodium (Na+) and potassium (K+) ion analysis was based on a previous method using 

ion electrodes by Fetherston, Lai and Hartmann (2006).  To determine the accuracy 

and reproducibility of the ion electrodes a set of concentration standards and 

calibration recovery standards were prepared and analysed prior to the analyses of the 

final sample set. Quality controls were used to identify unwanted variation such as the 

result of preparation or instrumental error (De Livera et al., 2012). Additional 

concentration standards and calibration recovery standards were analysed throughout 
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the final sample set to ensure that reproducibility within ± 10 % was being 

maintained.  

Na+ and K+ concentration was measured using Horiba LAQUAtwin sodium ion 

electrode (S022) and Horiba LAQUAtwin potassium ion electrode (S030) (Horiba 

Scientific Ltd.). 300 µl from each sample was transferred by pipette onto the electrode 

and the reading was recorded (mV).  The sample was removed and discarded and the 

electrode was washed using DDI water and dried with blotting paper and the process 

repeated. This method was used for the final sample set. 

 

2.2.4.1 Preparation of concentration standards 
 
A total of 10 sets of 7 preparation standards of known concentration were prepared, 

one set was used for method optimisation and the remainder were used for analysis of 

the final sample set.  

 

A 25mM sodium/potassium (Na/K) stock was prepared by dissolving 1.461 g/L of 

NaCl (Univar ®, USA) and 1.964 g/L of KCl (Univar ®, USA) in 100 ml of (DDI) 

water. Using the 25 mM stock, Na/K standards between 0.5-25 mM were prepared in 

15 ml falcon tubes as per Table 2.8.  

 

The standards were divided into 1.5 ml aliquots using 2 ml centrifuge tubes and stored 

at -20 °C before use. Aliquots of the standards were used later to create a sodium and 

potassium standard curve to assist with calculation of sodium and potassium ion 

concentration in actual milk samples. 
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Table 2.8 Preparation of sodium and potassium standards for a standard 

curve.  
 

Concentration (mM) 25mM Stock (ml) DDI (ml) 

0.5 0.2 9.8 

2.5 1.0 9.0 

5.0 2.0 8.0 

10.0 4.0 6.0 

12.5 5.0 5.0 

17.5 7.0 3.0 

25.0 10 0 

 
 

2.2.4.2 Preparation of calibration recovery standards 
 
A total of 10 sets of 3 calibration recovery standards was prepared, 3 sets were used 

for method optimisation and the remainder were used as part of the analysis of the 

final sample set.  

 

A 15 mM Na/K stock standard was prepared in a 25 ml falcon tube by adding 12 ml 

of the previously made 25 mM Na/K stock to 8 ml of DDI. Using the 15 mM Na/K 

stock 10 sets (3 test tubes per set) of calibration recovery standards were dispensed in 

2 ml centrifuge tubes as seen in Table 2.9. All aliquots were stored at -20°C. 

 
 
Table 2.9 Preparation of calibration recovery standards.   
 

Test tube  

1 750 μl of whole milk + 750 μl of 15 mM standard 

2 750 μl of whole milk + 750 μl of DDI 

3 750 μl of DDI + 750 μl of 15 mM standard 
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2.2.4.3 Method optimisation: recovery assay for calibration recovery standards  
 
One full set of Na+/K+ standards (seven tubes) and three sets of calibration recovery 

standards (nine tubes) were removed from the freezer and incubated at room 

temperature for 5 minutes. Na+ and K+ concentrations in mV was measured and 

recorded in duplicate using the previously described method (2.2.4).  

A logarithmic standard curve was prepared for the Na+ and K+ concentration 

standards. This was plotted on an XY graph (Figure 2.1 and Figure 2.2) and used to 

determine the unknown concentrations of the calibration recovery standards.  
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Figure 2.1  Na+ standard curve and logarithmic equation. 
 
 
 
 

 
 
Figure 2.2 K+ standard curve and logarithmic equation. 
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To determine the accuracy and reproducibility of the electrodes, the calculation as 

seen in Figure 2.3 was used for each set of calibration recovery standards using the 

average concentration of the individual aliquot duplicates. A reproducibility of ± 10% 

was considered acceptable. 

 
 
[ONE (mM)  – TWO (mM)]  =  1.00   =  100% 
       THREE (mM) 
_________________________________________________________________ 
Example Calculation:   
 
Tube one: 13.59 mM 
Tube two: 7.05 mM 
Tube three: 6.43 
 
13.59 – 7.05 =  1.02 = 102% 
      6.43 
 
Figure 2.3  Reproducibility calculations for calibration recovery standards. 
Values ONE, TWO and THREE correspond with calibration recovery standards test 
tubes 1, 2 and 3 in Table 3.2.  
 
 
Table 2.10 illustrates the reproducibility calculated for the initial three sets of 

calibration recovery standards. All sets produced reproducibility within ± 10 % and 

only five measurements displayed reproducibility less than ± 5 % (represented by the 

shaded cells in Table 2.10). These results were deemed satisfactory to move onto 

subsequent analysis.    
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Table 2.10  Reproducibility of calibration recovery standards.  
 

Recovery set Ion Aliquot A Aliquot B Aliquot C 

1 Na+ 1.02 0.99 1.01 

 

K+ 1.02 1.00 1.00 

2 Na+ 0.99 0.97 1.04 

 

K+ 0.94 0.96 1.10 

3 Na+ 0.95 1.00 0.92 

 

K+ 0.94 1.07 1.02 

Reproducibility of less than ± 10 % is required for each set of calibration recovery 
standards.  
Most samples had a % recovery less than 5 %.  
Highlighted cells indicate reproducibility ≥ ± 5 %. 
 

2.2.4.4 Measurement of Na+ and K+ ion concentration in milk 

A set of concentration standards and calibration recovery standards were analysed 

each day prior to milk sample analysis. The calibration recovery standards were used 

to ensure reproducibility was being maintained and the concentration standards were 

used to calculate a logarithmic equation used to determine the Na+/K+ concentrations 

of the samples analysed on that day (total of four days of analysis).  

 

The Na+ and K+ concentration of each milk sample was measured in mV and recorded 

in duplicate using the previously described method (2.2.4.). Readings were converted 

from mV to mM using the equation calculated from the sodium and potassium 

standards as previously explained. Once all Na+ and K+ measurements were converted 

to mM the Na+/K+ ratio was calculated [by dividing the Na+ concentration by the K+ 

concentration]. A Na+/K+ ratio level above 1 was considered abnormal and a sign of 

inflammation or possible infection (Aryeetey et al., 2008).   
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Following analysis of all milk samples and corresponding standards the equations for 

all standard curves was compared to identify any differences in concentrations that 

may have occurred between days (Figure 2.4 and Figure 2.5). 

 

 

Figure 2.4 Comparison of Na+ standard curves.  
This figure shows the reproducibility of the Na+ standard curve as measured on four 
separate occasions.  
 
 

 
 
Figure 2.5 Comparison of K+ standard curves.  
This figure shows the reproducibility of the K+ standard curve as measured on four 
separate occasions.  
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2.2.4.5 Data analysis  
 

All samples were analysed for Na+ and K+ concentration and Na+/K+ ratios were 

calculated. All analyses were performed using R 3.0.3 GUI 1.638 Snow Leopard for 

Mac OSX (R Development Core Team, 2011) using the base packages, and the 

libraries NLME (Pinheiro et al., 2011) and multcomp (Hothorn et al., 2008), which 

were used for linear mixed modelling and multiple comparison of means, 

respectively. A linear mixed effect model and linear regression (linear model) were 

calculated and compared by ANOVA to determine underlying physiological 

differences between individuals. Summary statistics are presented as mean ± SD. A  

p-value < 0.05 was considered to be statistically significant.  
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2.2.5 Metabolomic profiling of human and bovine milk  

Due to the complexity of human milk, together with the large variability between 

individuals, and the inherent difference between milk and other biological matrices, 

key components of the methods were optimised for the measurement of milk 

metabolites. The components requiring optimisation were the sample volume and the 

derivatisation reaction temperature.  

 

Derivatisation allows the analysis of compounds that are not directly amenable to GC 

analysis. An increased volatility is one such benefit of derivatisation, and particularly 

for early eluting compounds, improved volatility can permit analysis in an otherwise 

obscured chromatographic background (Gullberg, Jonsson, Nordström, Sjöström, & 

Moritz, 2004). Within the literature a range of derivatisation reactions and conditions 

including temperatures and derivatisation reaction times has been used previously 

(Gummer, Trengove, Oliver and Solomon, 2013; Gullberg et al., 2004; Dunn et al., 

2011; Bressanello et al., 2014).  

 

Therefore, sample preparation optimisation, namely the incubation temperature for 

MSTFA derivatisation, and the optimal sample volume that can be analysed in a 

single derivatising volume, was carried out prior to the analyses of the final sample 

set. 

 

2.2.5.1 Metabolite analyses  
 
Polar metabolites were isolated from the milk using a solid phase extraction approach, 

following removal of the protein content by organic solvent precipitation. The dried 
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extract was then derivatised using a combination of oximation and silylation in 

preparation for instrumental analysis.  

Proteins were precipitated by the addition of 1.2 mL ACN, added whilst gently 

mixing, and incubated at room temperature for 10 minutes. The precipitate was 

pelleted by centrifuging for 20 minutes at 10°C at 16,100 g. The supernatant (1,600 

µl) was transferred into a fresh 2 ml centrifuge tube and the remaining pellet 

discarded. The supernatants were divided into two aliquots of 180 µl (equivalent to 50 

µl of milk), which were frozen on dry ice and dried by lyophilisation. The remaining 

volume was stored at -80°C.  

  

Samples were redissolved and fractioned by SPE according to the methods of 

Gummer and Trengove (Unpublished 2015). Specific details are not available due to 

intellectual property issues regarding patent of this method. Briefly, the method 

involves separating polar metabolites from non-polar. The polar fraction was then 

dried by lyophilisation in preparation for derivatisation. The remaining non-polar 

components were stored at -80°C for future studies. 

 
Dried samples were derivatised in batches of 24, including QC samples, based on the 

methods of Gummer et al. (2013), but further optimised for milk analysis (in this 

thesis). A methoxyamine solution was prepared by dissolving 20 mg/ml of 

methoxyamine hydrochloride (Sigma-Aldrich Pty. Ltd.) in pyridine (Ajax Finechem). 

20 µl was added to each sample and agitated at 1,200 rpm for 90 minutes at 30°C 

using an Eppendorf Thermomixer® Comfort (Crown Scientific Pty Ltd.). Samples 

were then centrifuged in a Microcentrifuge 5415R (Crown Scientific Pty Ltd.) for one 

minute at 18 °C and 16,100 g. The methoxymated sample solution was transferred to 

a glass analytical vial with a glass insert followed by the addition of a 5 µl solution of 
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n-alkanes C10, C12, C15, C19, C22, C28, C32, C36 (Chem Service Inc., USA), in n-hexane 

(95 %) (Thermo Fisher Scientific Australia Pty Ltd) for calculation of retention 

indices, and 40 µl of MSTFA (Sigma-Aldrich Pty. Ltd.). The vials were cap sealed 

and gently mixed using a vortex, IKA MS1 Works (Crown Scientific Pty Ltd.), before 

incubating in a 450-GC oven (Bruker Daltonics), pre-heated to 75°C, for 60 minutes. 

The samples were mixed on low using a vortex, IKA MS1 Works (Crown Scientific 

Pty Ltd.), at 15 minute intervals during this 60 minutes incubation period.  

 

The vials were removed from the GC oven and set aside to rest for two hours before 

analysis by GC-MS.  

 

The samples were analysed in random order including a 20 minute methanol blank 

between all samples and 60 minute methanol blank every four injections. QC samples 

were used to equilibrate the system ahead of sample analysis and analysed within the 

sample batch every fifth sample. 

 

2.2.5.1.1 Milk volume optimisation for derivatisation  
 
A series of 5 milk samples (from each of the sampling groups) were prepared in 

duplicate to determine the optimal volume for milk analysis by GC-MS; one human 

control, one nipple pain without trauma, one nipple pain with trauma, one bovine 

control and one bovine mastitis. Two 600 µl aliquots of each sample was used and 

prepared according to the protein precipitation method in 2.2.5.1. The resultant 

supernatant (1,600 µl) was dispensed into a 2 ml centrifuge tube and divided into two 

sets of four volumes 75, 150, 225 and 300 µl, sample volumes containing an 

equivalent volume of 25, 50, 75 and 100 µl of milk, respectively. Internal standards of 
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65 µl of 500 µg/ml 13C6 Sorbitol (Sigma Aldrich Pty. Ltd.) and 45 µl of 10 µg/ ml 2-

aminoanthracene (Sigma Aldrich Pty. Ltd.) (in water) plus 1,455 µl of water (Thermo 

Scientific Australia Pty. Ltd.) was added to each sample. All samples were frozen on 

dry ice and dried by lyophilisation. One of each duplicate set of four was stored at -

80ºC for future studies. 

 

Samples were redissolved and fractioned by SPE followed by derivatisation according 

to the methods in 2.2.5.1 Milk samples were analysed in random order using a 

Shimadzu QP2010 Ultra GC-MS (Shimadzu Corporation).  

 

The optimal sample volume was determined with compromise between the detected 

signal (peak area) of each metabolite; particularly those present in smaller 

concentrations, instrument capability (efficiency and required preventive  

maintenance) and the ability to dissolve the dried metabolite extracts; with data 

reproducibility being the major deciding factor.  The optimal equivalent volume of 

milk required was determined to be 50 µl; this equivalent volume was used for all 

subsequent analyses.  

 
 

2.2.5.1.2 Derivatisation temperature optimisation  
 
Metabolite reference standard mixes (mix containing 30 metabolites, Table 2.5) were 

derivatised following the derivatisation method described in section 2.2.5.1, with the 

exception that after the addition of MSTFA (Sigma Aldrich Pty. Ltd.) each were 

incubated at one of five temperatures. The MSTFA derivatisation was assessed at the 

five temperature increments, 37°C, 45°C, 60°C, 75°C and 90°C, using a 450-GC oven 

(Bruker Daltonics).  Two controls were also included for the 37ºC and 60ºC reaction 
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temperatures, which additionally varied from the described methods in that they were 

not transferred to glass vials before MSTFA addition. These two sets were heated in 

an Eppendorf Thermomixer® comfort (Crown Scientific Pty Ltd.) within 2 ml tubes 

for comparison to already established methods. Samples incubated within vials were 

sealed by crimp cap after the addition of MSTFA and gently mixed using a vortex, 

IKA MS1 Works (Crown Scientific Pty Ltd.) at 15 minute intervals during incubation. 

All were prepared in triplicate. 

 

The vials were removed from the GC oven and Thermomixer and set aside to rest for 

two hours before analysis using a Shimadzu QP2010 Ultra GC-MS (Shimadzu 

Corporation).  

 

Each reference metabolite peak was de-convoluted from the total ion chromatogram 

(TIC) and peak area(s) calculated using AnalyzerPro 2.7.0.0 (SpectralWorks Ltd.). 

The standard deviation was calculated using the measured technical replicates, which 

was plotted for each metabolite at each temperature and heating method. The optimal 

temperature was determined by the reproducibility of the triplicate measurements for 

each temperature. The optimal MSTFA derivatisation temperature was determined to 

be 75 °C; this temperature was used for all subsequent analyses.  

 

2.2.5.2 Preparation of the final sample set (using the optimised methodology) 
 
Milk samples were dispensed in 500 µl volumes into 2 ml centrifuge tubes. To each 

sample was added 26 µl of 500 µg/ml 13C6 Sorbitol and 60 µl of 10 µg/ml 2-

aminoanthracene (each in LC grade water), in a final volume of 600 µl (by the 
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addition of LC-MS grade water). Each were stored at -80°C and thawed on ice prior 

to preparation.   

 

Milk samples were prepared by protein precipitation and fractioned by SPE to isolate 

the polar metabolites according to methods in 2.2.5.1, with a final dried down volume 

equivalent to 50 µl of milk. Dried samples were derivatised according to the method 

in 2.2.5.1. prior to analysis using a Shimadzu QP2010 Ultra GC-MS (Shimadzu 

Corporation). 

 

For the purposes of quality control (QC), a second set of 500 µl aliquots was removed 

from the -80°C freezer and pooled by combining 175 µl from each of the 42 samples 

in a 10 ml falcon tube, followed by gently mixing using a vortex, IKA MS1 Works 

(Crown Scientific Pty Ltd.). The pooled QC milk was dispensed and prepared 

randomised among the samples described above.  

 

2.2.5.3 Instrumentation and data acquisition  

GC-MS analysis was carried out using a Shimadzu QP2010 Ultra GC-MS (Shimadzu 

Corporation, Kyoto, Japan) injected with 1µl of derivatised milk metabolites. The 

GC-MS was fitted with a FactorFour VF-5ms capillary column (30m x 0.25mm x 

0.25µm + 10m EZ-Guard; Agilent, Santa Clara USA). The injection inlet temperature 

was set to 230 °C, with an interface temperature of 300 °C, and an ion source 

temperature of 230 °C. Helium was selected as the carrier gas and set to flow between 

0.8 and 1.0 ml min-1. Prior to sample injection the inlet pressure was adjusted to elute 

mannitol (6-TMS) at 30.6 minutes. The temperature gradient commenced at an initial 

temperature of 70°C, increasing at 1°C per minute for 5 minutes, then changing to an 
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oven ramp rate of 5.6 °C min-1 with a 10 minute hold at the final maximum 

temperature of 320°C. Ionisation occurred by electron ionization (EI) at 70 eV. The 

mass spectrometer was operated in scan mode in the range m/z 40 – 600, at a scan rate 

of 5,600 amu sec-1.  For selected ion monitoring (SIM), ions were scanned at 0.38 

second intervals.  

 

2.2.5.4 Data analysis  
 
GC-MSsolutions 2.61 (Shimadzu Corporation, Kyoto, Japan) was used to acquire and 

analyse the data post GC-MS metabolomic analysis. AnalyzerPro 2.7.0.0 

(SpectralWorks Ltd.) was used for deconvolution. Appropriate qualifier and quantifier 

ions were determined from the MS and the full scan spectra searched again against the 

in house metabolite library and the already predetermined database (a list of tentative 

metabolite identifications compiled during method optimisation of the sample 

volume) of metabolite identities, for relative quantitation using the peak area of the 

analyte. 

 

2.2.5.5 Data processing and interpretation 
 
For the method optimisations, analyte peak areas were interrogated using JMP 8.0.2 

(SAS Institute Inc.). For the metabolomics analyses, peak areas were normalised to 

the internal standard, 13C6 sorbitol, and scaled to the median intensity (De Livera et 

al., 2012), range scaled and log transformed (log10(x + 1) using The Unscrambler 

(Camo) software. Principal component analysis (PCA) was used to model the 

transformed data and PCA correlation loadings calculated using The Unscrambler 

(Camo). 
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3 Results  

3.1 Human study population  
 
Human milk samples were donated by 29 mothers from the Perth metropolitan area 

and its surrounds as well as the South West Region of Western Australia spanning 

222 km (including Capel, Australind, Harvey and Bunbury) (Figure 3.1).  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.1 Sample collection area.  
Where stars indicate locations of sample collection. 
Reproduced from Google Maps (2015).  

 

Milk samples were collected from women who had no pain (control group) and those 

with nipple pain (nipple pain group). The control group (CG) contained only mothers 
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who were experiencing pain-free breastfeeding and were used as the ‘healthy’ 

baseline for comparison with nipple pain samples. Nipple pain (NP) samples were 

collected from mothers who were experiencing persistent nipple pain during 

breastfeeding, determined by the perceived pain level during breastfeeding at the time 

of collection. Additionally participants with nipple pain were assessed for nipple 

trauma and breast changes (including abscess, broken nipple skin and suction lesions) 

and further divided into two subgroups; persistent nipple pain with no visible trauma 

(PG) and nipple pain with visible trauma (TG). Presence of trauma together with 

perceived pain levels were used as a general measure of breast health and potential 

damage to mammary tissue.  

 

There were 4 mothers who were experiencing nipple pain in only one breast.  These 

mothers donated samples from both breasts and provided both a nipple pain and a 

control sample.  Three were in the Nipple Pain group (PG) and 1 was in the Trauma 

Group (TG). 

 

All mothers were non-smokers during lactation and only one reported taking 

medication prior to sample collection. Mothers with infants outside the 1-6 month age 

(4-24 weeks) requirement were excluded from this study.  

 

3.1.1 Sample demographics  
 

A summary of all sample demographics is shown below in Table 3.1 (full 

demographic data set in Appendix 3.1).  The mean age of the 29 mothers was 31.82 

years (± 5.21) with a range of 22.2-40.8 years. Mothers in the NP group were on 
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average 2.86 years older than the CG (p=0.16), however there was no significant 

difference in maternal age between the CG and NP groups or subgroups.  

 

Seventeen mothers reported the gestational age of their infant; of these mothers the 

mean gestational age was 39 weeks (median=39) with a range of 37 – 41 weeks.  

Of the 29 infants, 11 were female and 18 were male.  

 

The average age of the 29 infants in the study was 13.75 weeks (± 7.42) with a range 

of 4.6-26.1 weeks. The infant age in the NP group was an average 6.94 weeks 

younger than the CG group (p=0.01). The TG subgroup had the youngest mean infant 

age (9.02 ± 7.70 weeks) and was an average of 7.36 weeks younger than the CG 

(p=0.04) (Table 3.1). There was no significant difference in infant age between the 

PG and TG subgroups (p=0.98).  

 

Of the 29 mothers 17 were multiparous; 13 had 2 children, 3 mothers had 3 children 

and only 1 had 4 children. There was no significant difference of parity between 

nipple pain subgroups. 

 

3.1.2 Pain assessment 
 
Using the Visual Analogue Scale (VAS) for pain intensity as described by McClellan 

et al. (2012), mothers with nipple pain were asked to rate their pain when 

breastfeeding from ‘no pain’ to the ‘worst pain imaginable’. Pain intensity was 

converted to a numerical value between 0 and 10, 0 being no pain and 10 representing 

the highest level of perceived pain. The control mothers (n=22) all reported a pain 

level of 0 during breastfeeding. Of the 11 mothers in the NP group, 6 mothers 
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reported a pain level of 5 or higher, with the 3 highest pain scores (10, 8, 8) reported 

from mothers experiencing persistent nipple pain with no visible trauma. Mean and 

SD of the PG and TG subgroups was 5.83 (± 3.25) and 5.0 (±1.30) respectively. There 

was no significant difference in pain score between the two nipple pain subgroups 

(Table 3.1).   

 

3.1.3 Medication  
 
Participants were asked to document any medication they were taking at the time of 

collection. Some drugs have the potential to alter the transport processes in the 

mammary gland directly or by altering metabolism or normal developmental 

processes, which can directly affect the milk metabolome irrespective of patient 

health and breast pathology. Of the 29 mothers, only one mother (M18) reported 

taking an antibiotic at the time of collection; M18 was being treated for unilateral 

nipple pain without evidence of trauma (PG).  
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Table  3.1 Characteristics of infants and mothers in control group and nipple pain subgroups.  
 

Characteristic 

Control Group 

(CG) 

n = 18 

Nipple Pain 

(PG) 

n =6 

Nipple Pain 

(TG) 

n = 5 

All 

n = 29 
p-value 

Maternal Age (years) 30.73 (± 5.50) 33.43 (± 5.50) 33.79 (± 3.13) 31.82 (± 5.21) 0.37 

Infant Age (weeks) 16.38 (± 6.83) 9.80 (± 6.00) 9.02 (± 7.70)* 13.75 (± 7.42) 0.43 

Parity (n) 2 (1, 3) 1 (1, 4) 2 (1, 2) 2 (1, 4) 0.07 

Pain (1-10) 0 5.83 (± 3.25) 5.2 (± 1.30) 5.55 (± 2.46) - 

Antibiotics (n) 0 1 0 1 - 

Paired Samples (n) - 3 1 4 - 

 
Paired samples denote those where the mother also donated a control sample; mothers who donated both control and nipple pain samples are 
counted only in their relevant nipple pain subcategory.  
Maternal age, infant age and perceived pain levels (nipple pain mothers only) are presented as a mean (± SD).  
Parity is presented as median (IQR).  
 
P-value is ANOVA (continuous) or Fisher’s exact test (categorical) comparison of all three groups. Significant differences between pain groups 
and control (reference) are indicated as: * = p<0.05.
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3.2 Bovine study population  

Seven bovine milk samples were collected from 4 lactating cows. Control and mastitis 

samples were collected from the same cow when possible; i.e. when only a quarter or 

more was presenting with mastitis, not the entire udder (Table 3.2). Each cow 

supplied up to three milk samples. Three control samples were collected from the 

quarters of three cows that did not appear to be suffering from mastitis at the time of 

collection, including one colostrum sample collected from a cow shortly after 

parturition. Four milk samples were collected from the quarters of three cows 

suffering from mastitis, one of which has been treated with Clavulox, an amoxicillin 

based penicillin antibiotic administered by direct injection into the affected quarter. 

 

Two pooled milk samples were collected from a single storage vat prior to heat 

pasteurisation.   

 

Table 3.2  Distribution of bovine milk samples  
 

 
 
 
 
 
  

Test Group 
Samples  

(n) 

Treated (w/penicillin) 

(n) 

Untreated  

(n) 

Control 3 - - 

Mastitis 4 1 3 
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3.3 Microbe assessment results  
 
 
Traditionally human milk has been cultured on a selection of selective and differential 

media to determine bacterial abundance and species composition. Australian milk 

banks, which follow United Kingdom guidelines for operating human milk banks, 

require all human milk to undergo microbial culture on 5% horse blood agar and 

CLED agar plates before and after heat pasteurisation (Hartmann et al., 2007). 

Microbial testing is conducted for the identification and quantification (CFU/ml) of 

pathogenic organisms. Australian human milk banks standards require that donations 

do not contain enterococci, Enterobacteriaceae or any bacterial pathogen capable of 

producing heat-stable enterotoxins. Samples with confluent microbial growth 

exceeding 105 CFU/ml are deemed unacceptable for milk bank use (Hartmann et al., 

2007).  

 

S. aureus has traditionally been considered the most common etiological cause of 

nipple pain and mastitis, with recent studies also identifying coagulase negative 

staphylococcus (such as S. epidermidis) as being a possible factor in the development 

of breast pain and mastitis (Amir et al., 2011). Additionally the presence of Candida 

albicans and the development of breast thrush have been associated with breast and 

nipple pain in breastfeeding mothers (Brent, 2001).   

 

For the purpose of this study three main media types together with traditional 

microbial analysis were used for primary identification and quantification of 

microbial and fungal organisms.  
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i. 5% Horse Blood agar: A non-selective media suitable for all microbial growth and 

quantification of microbial species in CFU/ml. 

ii. Mannitol Salt agar (MSA): A selective media for the isolation of staphylococci 

growth with the addition of a colour indicator differential for S. aureus.  

iii. Sabouraud Dextrose agar: A selective medium used for the isolation and 

quantification of fungal species 

 
 
Secondary microbial cultures were conducted using Vogel-Johnson agar to confirm 

identification of S. aureus. Additional subcultures on Yeast Extract Glucose 

Chloramphenicol (YGC) agar and Yeast Dichloran Rose Bengal Chlortetracycline 

(DRBC) agar were used to confirm the identification of yeast on primary agar 

cultures.  

 

Gram stain techniques were used to determine the identification of bacterial and 

fungal species. Additionally a latex agglutination test was used to confirm the 

identification of S. aureus on primary agar cultures following species detection by 

Gram stain.  

 
 
Analysis of microbial organisms was used to identify possible causative agents 

contributing to persistent nipple pain with and without visible trauma. 
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3.3.1 Quantification of microorganisms  
 
Microorganism growth was quantified and reported in CFU/ml, on 5% horse blood 

agar. Fungal and bacterial colonies were included in this quantification. The full data 

set is presented in Appendix 3.3. An average CFU/ml and standard deviation for each 

group was calculated (Table 3.3). The data was plotted to visualise spread and 

identify outliers (Figure 3.2). Subsequent culture on specific agars was used to 

confirm the identity of the organism present in primary cultures.  

 

Of the 22 human control samples 21 produced positive culture on 5% horse blood 

agar, with a mean colony count of 1 623 CFU/ml (± 4 099). One sample had no 

growth. All of the samples in the nipple pain with trauma (TG) subgroup cultured 

positive on 5% horse blood agar. The TG samples showed the highest bacterial counts 

of the human participants; the mean CFU was 2 778 CFU/ml (± 5 265). All of the 

samples in the persistent nipple pain without evidence of trauma (PG) subgroup 

displayed positive culture on 5% horse blood agar. The PG group produced the lowest 

bacterial count with a mean CFU of 440 CFU/ml  (± 289).  The combined mean CFU 

for the nipple pain group was 1 503 CFU/ml (± 3 494). There was no statistical 

significance between groups (p=0.55).   

 

All bovine samples (n=9) cultured positive on 5% horse blood agar with a combined 

mean CFU of 11 098 CFU (± 540). The bovine mastitis samples (BM) (n=4) had a 

mean CFU of 2 173 (± 2775), higher than the bovine control group (BC) (n=3) with a 

mean CFU of 473 CFU/ml (± 519). The pooled bovine samples (BP) (n=2) (collected 

from a single storage vat) displayed the most abundant microbial growth with a 

combined CFU of 44 885 CFU/ml (± 13 584).  
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As a result of the small sample size the log form of the CFU/ml was calculated to 

scale the data and remove the influence of outliers (Figure 3.2, Table 3.3). Figure 3.2 

illustrates the large variation in CFU/ml of the human control samples. Despite 

individual control samples having the samples with the largest CFU/ml the log of the 

CFU/ml is lowest in the control group as indicated by black markers, Figure 3.2.  

 

Figure 3.2  Log of the CFU/ml in human whole milk cultured on blood agar. 
Individual sample counts are represented as triangle. The mean of each group is 
represented by a black bar.  
(CG; human milk, control samples, PG; human milk, persistent nipple pain without 
trauma, TG; human milk, persistent nipple pain with evidence of trauma.  
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Table 3.3  Number of microorganisms in human and bovine whole milk samples from blood agar cultures.  
 

 

Control Group 

(CG) 

n = 22 

Nipple Pain 

(PG) 

n =6 

Nipple Pain 

(TG) 

n = 5 

All 

n = 33 

Bovine 

Control 

n = 3 

Bovine 

Mastitis 

n = 4 

All 

n = 9 

CFU/ml 

 
1 623 (± 4 099) 440 (± 289) 2 778 (± 5 265) 1 583 (± 3 853) 473 (± 519) 2 173 (± 2 775) 1 357 (± 1 833) 

Log of CFU/ml 2.37 (± 0.98) 2.45 (± 0.60) 2.86 (± 0.76) 2.48 (± 0.88) 2.37 (± 0.98) 2.64 (± 0.68) 2.48 (± 0.88) 

 

CFU/ml and log of CFU/ml are presented as mean ± SD. 
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3.3.2 Identification of microorganisms 
 
Following microorganism quantification on 5% blood agar, bacterial and fungal 

species were identified by Gram stain. Gram staining and oil immersion microscopy 

identified bacterial and fungal species. Specific identification of bacteria and yeast 

species was made by use of selective media.   

 

3.3.2.1 5% Horse blood agar  
 

5% horse blood agar is an enriched growth medium containing a variety of complex 

nutrients suitable for the growth of most bacterial and fungal species and the detection 

of haemolytic activity. Blood agar is often used to identify haemolytic streptococcus.  

 

Blood agar culture of human and bovine milk samples resulted in cultures of a variety 

of morphologies and species were identified based on morphology and Gram stain. S. 

aureus was only identified in one human sample. S. aureus was identified in one 

bovine sample and both pooled bovine vat samples.  

 

Mothers presenting with unilateral nipple pain supplied a sample from their affected 

and unaffected breast. Figure 3.3 is an example of a mother (M18) who was 

experiencing persistent nipple pain without evidence of trauma in one breast. Pictured 

are blood agar cultures of the control and nipple pain milk samples she provided. 

Plate A is a blood agar culture of milk from her non-affected breast (control) and 

Plate B is a blood agar culture of milk from the affected breast. Plate A indicates no 

growth of pathogenic microorganisms. Two bacterial species were identified, 

Corynebacterim diphtheria (blue circles) and CNS (white circles). Both species are 
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commonly found in human and bovine milk, CNS in particular was found in 91 % of 

the human milk samples in this study. A blood agar culture of the donor’s affected 

breast (Plate B), which was experiencing persistent nipple pain without visible trauma 

identified 82 % S. aureus colonies with 18 % other species (predominately CNS). 

This is the only human milk sample where S. aureus was detected. Fungi were not 

identified in any human milk samples. 

 

 
Figure 3.3 Blood agar cultures of human milk, control and nipple pain.  
Plate A is a culture of a control sample and Plate B a culture of a nipple pain sample, 
which were collected from a single mother who was experiencing unilateral nipple 
pain (M18). Plate A: Blue circle; Corynebacterim diphtheria ssp. and white circle; 
strains of CNS. Plate B: Yellow circle; S. aureus.  
 
 
Organisms most likely thought to cause pain such as yeast and Streptococcus ssp. 

were found only in pooled bovine vat samples (Figure 3.4 and 3.5, respectively) and 

identified using Gram stain techniques.  
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Figure 3.4  Blood agar culture and Gram stain of a bovine vat sample (BV02).  
The purple circle indicates a yeast colony as presented in the Gram stain on the right. 
 
 
 
 

 
Figure 3. 5 Blood agar culture and Gram stain of a bovine vat sample (BV01).  
The green circle indicates enlarged streptococcus colonies as presented in the Gram 
stain on the right.  
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3.3.2.2 Mannitol salt agar  

All samples were cultured on MSA to confirm the presence of S. aureus and to verify 

if S. aureus growth was restricted or overlooked on primary agar cultures, on 5% 

blood agar. MSA is a selective media for Gram-negative bacteria and staphylococci, 

but more specifically for the selective identification of S. aureus. MSA contains the 

pH indicator phenol red for the specific detection of S. aureus, which causes the agar 

to turn yellow (Figure 3.6). S. aureus was identified in one human milk sample which 

was donated by a mother experiencing unilateral persistent nipple pain with no trauma 

(M18), a bovine sample from a cow presenting with mastitis which had not been 

treated with antibiotics (BM01), and both pooled vat samples (BV01/02). 

 

 
Figure 3.6. MSA culture and Gram stain of a human milk sample from a 

mother (M18) experiencing persistent nipple pain (PG).  
The culture was 100% S. aureus colonies (360 CFU/ml). B: Gram stain of S. aureus; 
colony indicated by the black circle in image A.  
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3.3.2.3 Vogel-Johnson agar  

Samples previously identified to contain S. aureus growth were cultured on Vogel-

Johnston agar to confirm the presence of S. aureus and to ensure S. aureus growth 

wasn’t restricted or overlooked on 5% horse blood agar or MSA cultures.  

Vogel-Johnson is selective for coagulase positive, mannitol fermenting 

staphylococcus and thus is used for the clinical identification of S. aureus. S. aureus 

begin to appear after 24 hours of incubation and form characteristic black colonies 

(Figure 3.7). S. aureus was positively identified in one human milk sample (M18), 

donated by a mother suffering unilateral persistent nipple pain without visible trauma 

(Figure 3.7). Additionally S. aureus was identified in one individual bovine sample 

(BM01), collected from a cow presenting with mastitis and both pooled bovine vat 

samples (BV01 and BV02) (Figure 3.7).  
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Figure 3.7  Vogel Johnson cultures of human and bovine milk samples.  
Plate A is a culture of a human milk sample from a mother with persistent nipple pain 
without trauma (M18), Plate B is a culture of a bovine milk sample from a cow 
suffering from mastitis (BM01) and Plates C & D are cultures from each of the bovine 
vat samples (BV01 & BV02). 
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3.3.2.4 S. aureus specific DNase agar plate  

 
The DNase agar plate was also used to positively identify S. aureus. The microbe is 

able to use the DNA in the agar as a source of carbon and energy for growth. This is 

accomplished by the use of a DNase enzyme which is specific for S. aureus.  The 

presence of a clear halo surrounding the targeted colony indicates a positive test for S. 

aureus, as shown in Figure 3.8. The presence of S. aureus was confirmed in one 

human milk sample (NP02) collected from a mother in the PG group and 3 bovine 

samples, one individual bovine sample (BM01) and both pooled bovine vat samples 

(BV01 and BV02).  

 

 
Figure 3.8 DNase agar plate used for the identification of S. aureus. 
The sample shown on the left is from a mother presenting with nipple pain with no 
trauma. This sample shows a distinct halo around the colony and indicates a positive 
test for S. aureus; the sample on the right is a negative control.  
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3.3.2.5 Latex agglutination test  

 
Gram staining and microscopy under oil immersion was used to confirm the 

identification S. aureus prior to employing the latex agglutination test. The latex 

agglutination test was used to confirm the presence of S. aureus via the detection of 

the coagulase enzyme in the microorganism. Coagulase present in the sample 

interacts with the latex particles and produces visible agglutination (Figure 3.9C). The 

latex agglutination test was used in conjunction with MSA, Vogel-Johnson agar and 

S. aureus specific DNase agar to confirm definitively the presence of S. aureus. It was 

confirmed that one human milk sample (NP02) contained S. aureus and three bovine 

samples, one individual (BM01) and both pooled bovine vat samples (BV01 and 

BV02) were also confirmed to contain S. aureus. No additional sample tested positive 

for S. aureus growth.  

 

 

Figure 3.9 The Latex agglutination test for the detection of S. aureus.  
Position C on the oxoid card indicates a positive result for S. aureus; in a sample 
from a mother experiencing persistent nipple pain with no visible trauma.  
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3.3.3 Fungal species identification 
 

Following the identification and quantification of microorganisms on 5% horse blood 

agar, all whole milk samples were cultured on Sabouraud agar for the identification and 

quantification of fungal species. Following the identification of fungal species on 

Sabouraud agar, select whole milk samples were cultured on Yeast Extract Glucose 

Chloramphenicol (YGC) agar and Dichloran Rose Bengal Chlortetracycline (DRBC) 

agar to confirm the presence of fungal species.  

 

3.3.3.1 Sabouraud Agar 
 
Sabouraud agar was used for the identification of fungal species, more specifically to 

determine the presence of any Candida ssp. often thought to cause breast pathology. 

No human milk sample cultured positive for the growth of any fungal species. The 

pooled bovine vat samples (BV01 and BV02) where the only samples to culture 

positive for fungal species (Figure 3.10).  

 

Figure 3.10  Sabouraud agar culture and Gram stain of a bovine milk sample. 
The bovine milk sample (BV02) was collected from a storage vat prior to 
pasteurisation.  A: Black circles indicate yeast colonies. B: Gram stain of yeast 
colony.   



 82 

3.3.3.2 Yeast Extract Glucose Chloramphenicol (YGC) agar and Dichloran Rose 
Bengal Chlortetracycline (DRBC) agar 

 

YGC and DRBC agar are selective for the growth of fungi and contains 

chloramphenicol to inhibit the growth of accompanying bacterial species. YGC and 

DRBC agar are used for the isolation and quantification of yeast. Bovine vat samples 

(BV01/B02) were positive for the growth of yeast. Figure 3.11 are YGC and DRBC 

cultures of BV01 and illustrate positive growth of yeast as indicated by the black 

circles.  No human samples were positive for yeast on YGC or DRBC agar.  

 

 
Figure 3.11 YGC and DRBC agar cultures of a single pooled bovine vat 

sample (BV01). 
The bovine milk sample was collected from a storage vat prior to pasteurisation.      
A: YGC agar culture; The black circle indicates a yeast colony. B: DRBC agar 
culture; Black circles indicate yeast colonies.  
 
 
 
 
 
 
 
 



 83 

3.3.4 Microbial diversity 
 
The following microorganisms were positively identified: Coagulase negative 

staphylococcus ssp., Corynebacterium diphtheria, S. aureus, Micrococcus ssp., 

Streptococcus ssp., Bacillus ssp. and yeast ssp.  A summary of the distribution of 

bacterial and fungal species identified in the human and bovine samples are presented 

in Table 3.4.  

 

S. aureus was only identified in one human sample, from the PG (subgroup), and one 

bovine sample, from a cow with untreated mastitis, and both pooled bovine vat 

samples collected from the storage vat prior to heat pasteurisation. Only the pooled 

bovine vat samples displayed growth of Streptococcus ssp. and yeast.  

 

Table 3.4  Distribution of bacterial and fungal species between groups.  

Group Microorganism species identified  

CG Coagulase negative staphylococcus ssp., Corynebacterium diphtheria 

ssp. and Bacillus ssp. 

PG Coagulase negative staphylococcus ssp., Corynebacterium diphtheria 

ssp, S. aureus, Micrococcus ssp.  

TG Coagulase negative staphylococcus ssp., Corynebacterium diphtheria 

ssp, Micrococcus ssp. 

BC Coagulase negative staphylococcus ssp., Corynebacterium diphtheria ssp 

and Bacillus ssp. 

BM Coagulase negative staphylococcus, ssp., Corynebacterium diphtheria 

ssp, S. aureus, Micrococcus ssp and Bacillus ssp. 

BP Coagulase negative staphylococcus ssp., Corynebacterium diphtheria 

ssp, S. aureus, Micrococcus ssp, Streptococcus ssp., Bacillus ssp and 

yeast ssp.  

The table is divided into human and bovine subgroups. 
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3.4 Sodium and potassium ion analysis  
 

Elevated sodium ion concentration in milk has been used previously as a measure of 

breast health and damage to mammary tissue (Filteau et al., 1999). However, as milk 

composition is highly variable between individuals it was proposed that potassium 

concentration be used as a baseline and a sodium to potassium ratio used as a new 

measure of breast pathology (Aryeetey et al., 2008). This study measured the sodium 

and potassium concentration in all samples and determined the sodium/potassium 

ratio, an elevated sodium to potassium ratio above 1.0 was considered indicative of 

infection and mastitis (Aryeetey et al., 2008). 

 

3.4.1 Measurement of sodium and potassium in human and bovine milk 
samples  

 
 
The sodium (Na+) and potassium (K+) ion concentrations and sodium to potassium 

ratio (Na+/K+) was recorded for the duplicates of all human and bovine samples. The 

mean (± SD) for Na+ and K+ concentration and Na+/K+ ratio were calculated for the 

human control and nipple pain subgroups, and is shown in Table 3.5 (complete 

sample set in Appendix 3.4).  

 

The TG subgroup had a mean Na+ concentration of 8.01 mM (± 2.40), which was on 

average 2.23 mM (± 0.93) higher than the PG group (p=0.056). The TG had a 

significantly higher Na+ concentration than the control group which was on average 

3.77 mM (± 0.76) lower than the TG subgroup  (p<0.001).  
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Analysis of the K+ concentration in milk found that both the PG and TG subgroups 

had a higher mean concentration than the control group, 13.55 mM and 14.45 mM vs. 

12.72 mM, respectively. However, there was no statistically significant difference 

between the control and nipple pain group or subgroups (p=0.053).  

 

Calculation of the Na+/K+ ratio found that the TG subgroup had the highest mean ratio 

(0.55 ± 0.15), which was significantly higher than the control group (0.34 ± 0.09)  

(p<0.001). The mean ratio for the TG subgroup was higher than the PG subgroup 

(0.43 ± 0.11), however no significant difference in Na+/K+ ratio was found between 

the subgroups (p=0.10).  
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Table 3.5 Summary of Na+ and K+ concentrations and Na+/K+ ratio recorded for human milk samples.  
 
 

 

Control Group 

(CG) 

(n=22) 

Nipple pain 

(PG) 

(n=6) 

Nipple Pain 

(TG) 

(n=5) 

All 

(n=33) 
p-value 

Na+ (mM) 4.32 (±1.18) 5.81 (±1.94)* 08.04 (±2.40) † 5.15 (±2.02) 0.0001 

K+ (mM) 12.72 (±1.23) 13.55 (±1.98) 14.45 (±1.64)*** 13.13(±1.54) 0.0530 

Na+/K+ ratio 0.34 (±0.09) 0.43 (±0.11) 00.55 (±0.15) † 0.39 (±0.13) 0.0005 

 
 
P-value calculated by ANOVA (continuous) comparison between all three groups. Significant differences between pain groups and control 
(reference) are indicated as: * = P<0.05, † = P<0.001.  
Data are presented as mean ± SD.     
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Despite the TG (0.55 ± 0.15) and PG (0.43 ± 0.11) subgroups displaying a higher 

mean Na+/K+ ratio than the control group (0.34 ± 0.09), no sample had an elevated 

ratio above one, a cut off previously considered to be indicative of infection (Figure 

3.12). The highest Na+/K+ ratio was 0.811 recorded for M26/NP07 in the TG 

subgroup.  

 
Figure 3.12  Box plots of Na+ and K+ concentration and Na+/K+ ratio. 
Samples are shown in groups (CG: control, PG: nipple pain and TG: nipple pain with 
trauma subgroup). 
Box plots illustrating median, quartiles, range and outliers (°).  
 
 

The mean Na+ concentration for the bovine samples (n=9) was 21.63 mM (± 11.44). 

The bovine control group (n=3) had a mean Na+ concentration of 16.86 mM (± 7.4) 

and the bovine mastitis group had a Na+ concentration of 30.26 mM (± 11.07) with 

the highest Na+ concentration measured for a cow with untreated mastitis (45.48 

mM). The two vat samples had an average Na+ concentration of 11.54 mM (± 0.01). 
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The mean K+ concentration for the bovine group (n=9) was 21.75 mM (± 4.29). The 

mean K+ concentration for the bovine control samples was 23.68 mM (± 2.36), which 

was higher than the bovine mastitis samples (19.08 ± 5.29 mM). The two vat samples 

had an average K+ concentration of 24.21 mM (± 0.22). 

 

The average Na+/K+ ratio for the bovine samples (n=9) was 1.16 (± 1.0). The bovine 

control group had a mean Na+/K+ ratio of 0.73 (± 0.34). The bovine mastitis group 

had the highest mean ratio (1.82 ± 1.22); a cow with untreated mastitis had the highest 

ratio (3.56). A summary of the results are shown in Table 3.6.  

 

Table 3.6  Summary of Na+ and K+ concentration and Na+/K+ ratio recorded 
for Bovine milk samples. 

 

 

Control 

(n=3) 

Mastitis 

(n=4) 

Vat 

(n=2) 

All 

(n=9) 

Na+ (mM) 16.86 (± 7.4) 30.36 (± 11.07) 011.54 (± 0.02) 21.63 (± 11.44) 

K+ (mM) 23.68 (± 2.36) 19.08(± 5.29) 24.21 (± 0.22) * 21.75 (± 4.49) 

Na+/K+ ratio 0.73 (± 0.34) 1.83 (± 1.22) 00.48 (± 0.004) 1.16 (± 1.0) 

 
Data is shown as mean (± SD). 
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The human and bovine samples were plotted together to identify trends in the data 

(Figure 3.13). The human samples were plotted as box plots for the control and nipple 

pain groups, the bovine samples are indicated by red stars. It is important to note that 

only the Na+/K+ ratio is comparable. Figure 3.13 identifies that both the human nipple 

pain and bovine mastitis samples have an elevated Na+/K+ ratio. 

 

 

 
Figure 3.13 Box plots of Na+ and K+ concentration and Na+/K+ ratio for human 

milk samples, with individual bovine values.   
 
Box plots illustrating median, quartiles and range. 
Human samples are shown in control and pain groups.  
Individual bovine samples are represented by red stars (*); milk samples retrieved 
from animals with mastitis are represented as part of the ‘pain’ category.  
Pooled bovine vat samples are excluded from this figure.  
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3.5 Metabolomics methods optimisation  
 
Due to the complex nature of human milk and the large variability between 

individuals it is important to develop methodology that allows the unbiased analysis 

of as many milk metabolites as are amenable to the analytical technique employed, 

whilst eliminating any unnecessary preparation steps and reducing the addition of 

human and experimental error. Therefore, optimisation of a number of experimental 

conditions was required. These included the temperature of derivitisation and the 

volume of sample for analysis.  

 

3.5.1 Sample volume optimisation  
 
Optimisation of the sample volume required for analysis was necessary to assess the 

dynamic range in concentration of the measured metabolites of human milk, and to 

identify a volume that would not overload the instrument, while still being large 

enough to detect metabolites present at the lower concentrations.  

 

Human and bovine milk volumes of 25 µl, 50 µl, 75 µl and 100 µl were tested to 

determine the maximum volume of milk that could be analysed in a single 

derivatising volume, using the previously described method of preparation. 13C6 

sorbitol was added to each sample at the same concentration, regardless of the milk 

volume being tested. The alkanes were also added at a consistent volume. These 

internal standards allowed a comparison of the reproducibility (calculated as %RSD) 

of the measured signal(s) within an increasingly more concentrated sample matrix 

(namely, 25 µl through to 100 µl equivalent milk volumes).  
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The relative standard deviation (%RSD) of the 13C6 labelled D-sorbitol was calculated 

for the sample set (n=5) and pooled QCs for each test volume (Table 7.1). The 50 µl 

test volume had the highest reproducibility for this internal standard, with a %RSD of 

10.56 %. The 75 µl and 100 µl volumes had a reproducibility of 36.32 % and 40.02 % 

respectively, much higher than the 30% RSD which is commonly deemed acceptable 

for biological samples (Dunn et al., 2011; Edmands, Barupal and Scalbert, 2014) and 

less than the 20 % RSD deemed acceptable by the Food and Drugs Administration 

guidelines for biomarker studies (Kirwan, Broadhurst, Davidson & Viant, 2013). This 

is likely due to the sample preparation inconsistencies (as noted during preparation) of 

the 75 µl and 100 µl volumes, many of which appeared opaque and presented with 

precipitation, which suggests the larger sample volumes were not completely 

dissolved in the derivatisation solvents at the higher sample concentrations.  

 

To assess if the chosen internal standard, 13C6 -D-sorbitol, would likely be able to 

account for signal fluctuations across the chromatogram when applied to the greater 

metabolomics study, the 13C6 -D-sorbitol was compared against the measured signal 

of the added alkanes. The peak intensity of n-alkanes C12, C15, C19, C22, C28, C32, C36 

was divided by the corresponding peak area of the internal standard, 13C6 -D-sorbitol. 

The %RSD of the seven n-alkanes in the test samples were calculated and used to 

determine reproducibility (Table 3.7). A comparison of the %RSD of the n-alkanes in 

the four test volumes found that only the 25 µl and 50 µl sample volumes produced a 

%RSD below the desirable 30 % RSD cut off (Edmands, Barupal and Scalbert, 2014). 

The 50 µl replicate volumes produced a lower mean %RSD for the normalised n-

alkane values than the QC pooled samples of the same volume, however both 

recorded values below 20 % RSD (Table 3.7). The 25 and 50 µl (equivalent) milk 
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volumes, therefore resulted in the most reproducible measurements whereby the 

internal standard would be most effective at correcting sample preparation and/or 

analytical differences between samples within the greater metabolomics study. A 50 

µl sample volume was used for the subsequent analysis of all study samples. 
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Table 3.7 %RSD of the area ratios of 13C6 Sorbitol and Alkanes.  
 

 

Volume (µl) 

 

% RSD  

(13C6 – Sorbitol; 

raw peak area) 

 

% RSD (Alkanes; corrected) 

 

C12,  C15,  C19,  C22,  C28 C32 C36  

25 12.50 7.12 6.13 6.17 6.15 5.71 5.25 10.12 

50 10.56 4.40 6.24 7.53 8.91 12.82 11.79 16.50 

QC (50) 20.08 15.25 14.06 12.86 12.04 14.37 15.13 17.13 

75 36.62 82.20 81.05 77.91 78.99 88.15 78.91 71.62 

100 40.02 59.70 58.84 59.66 59.57 57.87 60.02 61.28 

 
Uncorrected relative standard deviations of 13C6 D-sorbitol, calculated from the raw peak areas.  
Relative standard deviations of alkanes normalised to 13C6 labelled D-sorbitol.  
The highlighted row indicates the %RSD recorded for the pooled QCs which were 50 µl in volume.  
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3.5.2 Temperature optimisation  
 
Derivatisation is the chemical modification of an analyte, often used to facilitate gas 

chromatography. Optimisation of this technique was employed to ensure the samples 

were as close to complete derivatisation as possible making them amenable to 

analysis by GC-MS, while reducing the number of derivatives for a single metabolite 

to achieve optimal signal intensity, and identification of the maximal number of 

metabolites.   

 

A temperature trial was conducted to determine the optimal temperature for MSTFA 

derivatisation. To determine the optimal derivatisation temperature for derivatisation, 

the peak area of each metabolite in a mixture of thirty metabolite reference standards 

was compared, and the standard deviation between the triplicates at each of the test 

temperatures calculated. The measured signal intensity (represented by peak area) is 

important to the analysis and reflective of the effectiveness of the derivatisation, 

however sample reproducibility (represented as standard deviation) was ultimately the 

determining factor in identifying the optimal derivatisation temperature. Ideally, a 

large peak area (high signal intensity) with a low standard deviation (good 

reproducibility) would indicate the optimal temperature.  

 

The methods for temperature optimisation were based on a derivatisation method by 

Gummer et al. (2013) using a Thermomixer (TM) for incubation. For comparative 

purpose two TM control temperatures were analysed, 37°C and 60°C, as previously 

stated in 2.2.5.1.2 (derivatisation temperature optimisation). The derivatisation of 

these two TM controls occurred within the microcentrifuge tubes that the metabolite 

standards were prepared in. This approach was determined less suitable for incubation 
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at elevated temperatures as it resulted in a greater signal of analytical artefacts (non-

biological analytes) leaching from the 2 ml polypropylene tubes.   

 

All of the 30 measured metabolite standards were assessed for reproducibility at the 

different derivatisation temperatures (Appendix 3.5a-3.4t), however those found most 

relevant to the final results of this thesis are presented here (Figures 3.14-3.17). L-

phenylalanine and L-methionine (Figures 3.14 and 3.16, respectively), demonstrate 

the least signal reproducibility at the lowest and highest reaction temperatures. The 

remaining figures are provided in Appendix 3.5a-3.4t. The optimum derivatisation 

temperature varied amongst the individual reference standards, however 60°C and 

75°C generally provided the strongest reproducibility in signal intensity when 

incubated within the sealed analytical vial, rather than in polypropylene (Figures 3.14-

3.17). Figure 3.14 and 3.15 display the peak area and standard deviation for 

metabolite L-phenylalanine (1 TMS). Figure 3.16 and 3.17 display the peak area and 

standard deviation of metabolite L-methionine (1 TMS) respectively.  

 

L-phenylalanine (1 TMS) was the least reproducible when derivatised at 90°C and L-

methionine (1 TMS) was least reproducible at 37°C. Incubation at 90°C had the 

lowest reproducibility across the entire metabolite range, followed by 37°C (37°C is 

the MSTFA derivatisation temperature employed in many current protocols; Francki, 

Hayton, Gummer, Rawlinson & Trengove, 2015; Gummer et al., 2013).  
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Figure 3.14 Measured Peak area of L-Phenylalanine (1 TMS) using MSTFA 

incubation temperatures of 37°C, 45°C, 60°C, 75°C, 90°C with the 
incubation performed in a GC oven (GC) or with agitation in a 
Thermomixer (TM).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.15 Standard deviation of the measured peak area (n=3) of L-

Phenylalanine (1 TMS) using MSTFA incubation temperatures of 
37°C, 45°C, 60°C, 75°C, 90°C with the incubation performed in a 
GC oven (GC) or with agitation in a Thermomixer (TM). 
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Figure 3.16 Measured peak area of L-Methionine (1 TMS) using MSTFA 

incubation temperatures of 37°C, 45°C, 60°C, 75°C, 90°C with the 
incubation performed in a GC oven (GC) or with agitation in a 
Thermomixer (TM). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.17 Standard deviation of the measured peak area (n=3) of L-

Methionine (1 TMS) using MSTFA incubation temperatures of 
37°C, 45°C, 60°C, 75°C, 90°C with the incubation performed in a 
GC oven (GC) or with agitation in a Thermomixer (TM). 
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The derivatisation temperature with the smallest standard deviation for both L-

Phenylalanine (1 TMS) and L-Methionine (1 TMS) and therefore most reproducible 

for these specific metabolites was 75°C as shown in Figures 3.15 and 3.17 

respectively. Across the tested metabolite reference standards 75°C demonstrated the 

greatest reproducibility between replicates. Where the 75°C incubation temperature 

wasn’t the most reproducible, it still produced high peak intensity and a relatively low 

standard deviation.  Consequently, sample derivatisation was carried out at 75°C in 

the later metabolomics analyses, in accordance to these findings.  

 

3.6 Changes to the metabolite composition of human milk in response to 
pain and trauma of the nipple  

 

Untargeted metabolomics analysis was conducted on human milk samples from women 

experiencing persistent nipple pain (NP) without evidence of nipple trauma (pain 

subgroup; PG), or with trauma (trauma subgroup; TG) and of women not presenting 

with nipple discomfort (control group; CG). Milk samples from bovine control and of 

bovine animals presenting with mastitis were also assessed. A list of metabolites was 

compiled and relative abundances determined to identify metabolites differing between 

the TG and PG patient samples, for comparison to CG, and identify those of most 

interest to this study. The use of QC samples was determined paramount to the data 

integrity and used to guide the data interpretation. The QC sample was a pooled milk 

sample containing all 42 milk samples both human and bovine.  

 

 
The final metabolomics sample set prepared for GC-MS analysis comprised the 42 

individual human and bovine milk samples, pooled milk quality controls (QC) and a 

derivatisation (no milk) control. A series of conditioning solvent blanks were run at the 
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start of the sequence followed by five QCs, for the purposes of conditioning the 

instrument prior to milk sample analysis. Following this initial run sequence, milk 

samples were randomised amongst the QC samples, with one QC analysed before and 

after every four experimental samples (Figure 3.18).  

 

Preventive instrument maintenance of the GC-MS was required during analysis of the 

sample set. Due to the composition of the milk samples and non-volatile components 

adhering to the inlet liner, frequent preventive GC maintenance was required. 

Maintenance frequency was determined by an observed drop in signal intensity 

(assessed during the sample sequence), requiring the replacement of inlet consumables 

and trimming of the guard-column.  

 

Following complete data interrogation, the QC sample results as modelled by PCA 

indicated that the first 29 injections were comparable, following which the signal 

intensity was noticeably poorer. Unfortunately data normalisation (to the internal 

standard) and scaling were unable to correct the signal in the data acquired after this 

point in the analytical sequence (as seen in the scores plot in Appendix 3.6). Therefore, 

only the first 29 samples were used for the final data interpretation.  

 

The final data set consisted of the analysis of the pooled QCs (14 replicate 

preparations), five of which were analysed at the start of the GC-MS analytical 

sequence (QC01-QC05), followed by one QC preceding every fourth milk sample 

(which were analysed at random; QCs06-14). The QC samples were modelled by PCA 

together with the experimental samples, allowing the projected clustering of the QC 

samples to identify reliable measurement of the samples run amongst them.  The 
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projection of the scores of the first two principal components demonstrated an obvious 

lack of reproducibility after sample QC_P_29 (Figure, in appendix 3.6). Subsequent 

analyses could not verify if the compositional differences between samples post 

QC_P_29 were biological or instrumental, therefore samples following QC_P_29 were 

not used for the final interpretation. 

 

The final sample set used for the metabolomics comparisons and interpretation included 

11 control (CG), one nipple pain without trauma (PG), three nipple pain with trauma 

(TG), two bovine control (BC), one bovine mastitis (BM), one bovine vat/pooled 

sample (BV) and 10 QCs (Figure 13.8). Two of the human samples were collected 

from the same mother (M03/N10), which were a CG and PG milk sample.  
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Figure 3.18 Final metabolomic GCMS sequence run order. 
Samples are labelled with their sample identification number, i.e. M02_C02 from a human participant who donated a control sample, followed 
by a sequence run identification label including sample type and position in sequence, i.e. Hs_cont_06 (Hs_cont; human milk, control sample, 
Hs_T; human milk, nipple pain with trauma sample, Hs_NT; human milk, nipple pain without trauma sample, QC_P; pooled quality control of 
all milk samples, Bt_cont; bovine milk, control sample, Bt_mast; bovine milk, mastitis sample, Bt_vat; bovine milk, pooled sample collected from 
storage vat. 

START OF 
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Using the previously compiled metabolite library, the final samples were analysed 

using GCMSsolutions software to compile a list of metabolites and calculated peak 

areas for each analyte. Analytes measured in the no-sample-control derivatisations 

were deemed analytical artefacts and removed from the data matrix, as they were 

found to be of non-biological origin. The remaining features other than those of the 

added analyte standards were considered metabolites endogenous to the milk samples. 

The metabolite abundances were interrogated using PCA to model the variance 

between the human nipple pain group and controls, together with the bovine and 

pooled QC samples.  

 

A scores plot was used as a visual tool for data mining, where the projected position of 

each of the samples on the scores plot is a measure the metabolite abundances 

(metabolome) relative to the metabolite abundances of the other samples on the plot. 

The PCA scores plot, representing the modelling variance within the data, showed like 

groupings, indicative of common features of the metabolite profiles. As anticipated, 

principal component 1 (PC1), which explains 25% of the variance between test groups, 

demonstrated distinct grouping of human and bovine samples with pooled QCs situated 

in the middle of the two groups (Figure 3.19).  
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Figure 3.19 Scores plot of PC-1 (25%) vs. PC-2 (14%) for the final sample set. 
The human milk samples are indicated by the blue circle, pooled QCs by the black 
circle and bovine milk samples by the red circle (Hs_cont; human milk, control sample, 
Hs_T; human milk, nipple pain with trauma sample, Hs_NT; human milk, nipple pain 
without trauma sample, QC_P; pooled quality control of all milk samples, Bt_cont; 
bovine milk, control sample, Bt_mast; bovine milk, mastitis sample, Bt_vat; bovine 
milk, pooled sample collected from storage vat).  
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Samples found towards the centre of the axis indicate samples that have little influence 

on the data model; in this instance the central samples are the pooled QCs as they’re an 

average of the two sample sets. The samples projected with the most extreme 

coordinates are the most influential in the data set relevant to principal components of 

the scores plot.  Therefore, it can be seen that there were markedly different groupings  

for the human samples (blue circle) compared to the bovine samples (red circle), on 

Figure 3.19. 

 

Human milk samples were further analysed independent of the bovine samples and 

plotted using PCA to determine any compositional variations in milk between control 

mothers and those presenting with nipple pain. When plotted, the first three principal 

components showed little significant grouping of test groups. However, principal 

component 4 (PC4), associated with 8 % of the variance between human milk samples,  

(red circles) demonstrated tentative grouping of the control and nipple pain samples 

indicating possible metabolite differences consistent with the trauma state between the 

two subgroups (Figure 3.20). Two samples collected from a single mother (one control: 

Hs_cont_11 and one nipple pain: Hs_NT_09) are outlined by a black square. This 

mother was experiencing unilateral nipple pain without evidence of trauma; the 

similarity in metabolite composition between the two samples may indicate the low 

severity of her condition. This result also supports that the modelled data reflects 

changes to the milk composition arising out of a trauma event, rather than nipple pain 

presenting without trauma.  
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Figure 3.20 Score plot of PC-3 (10%) vs. PC-4 (8%) for human milk samples.  
Red circles indicate nipple pain with trauma samples and the black square encloses 
the two samples that were retrieved from the same mother, M03/NP10) (Hs_cont; 
human milk, control sample, Hs_T; human milk, nipple pain with trauma sample, 
Hs_NT; human milk, nipple pain without trauma sample.  
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A loadings plot is used to visualise the influence of individual metabolites relative to 

the modelled Scores projection. The metabolite position on the loadings plot indicates 

its loadings value and explains its individual influence on the projected component 

model. Metabolites of the most extreme values have the greatest leverage on the sample 

groups as projected on the scores plot. Consistent with the Scores projection (Figure 

3.20), the metabolites with the most extreme PC4 coordinates have the greatest 

influence on the observed differences between trauma and no trauma groups. The 

metabolites with the lowest PC4 axis coordinates (negative values) are the metabolites 

most heavily associated with milk from mothers of the trauma category (TG) (Figure 

3.21).  

 
Figure 3.21 Loadings plot of PC-3 (10%) vs. PC-4 (8%) for human milk 

metabolites. 
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To further investigate the metabolites contributing to the projection of PC4 (found to 

model differences between CG and TG samples) the correlation loadings of each 

metabolite was calculated from the PCA loadings. This was to identify metabolites 

most reliably contributing to the variance (Figure 3.22). The correlation loading is the 

correlation between the scores and the actual observed data. The outer ellipse on the 

correlation loadings plot indicates 100% of explained variance and the inner ellipse 

indicates 50% of explained variance (Figure 3.22).  The metabolites in the radius 

between the ellipses are more discriminating for the sample set being analysed.  
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Figure 3.22  Correlation loadings plot of PC-3 (10%) vs. PC-4 (8%) for human 
milk metabolites.  

 
The outer ellipse indicated 100% of explain variance and the inner ellipse indicates 
50% of explained variance. Metabolites between the ellipses have the highest 
influence on the data set being analysed.  
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A list of the most influential metabolites based on their correlation loadings 

(explained within 50-100% of the model) was constructed, as shown in Table 3.8. 

Metabolites listed at the top half of the table indicate metabolites that are positively 

correlated with the trauma category and have been identified to explain the variance 

between TG and CG samples. Metabolites listed towards the bottom of the table 

indicate metabolites positively correlated with control samples as they are found more 

frequently and in larger volumes in control samples than in nipple pain samples. 

Together the list of metabolites describes the most influential changes in milk 

composition between the CG and TG samples.  

 

The metabolites that displayed strong positive correlation with the TG samples in PC4 

include Isoleucine 1TMS (-0.79), Unknown_29.43_1874_281 (tentative, analyte 116) 

(-0.68), L-isoleucine 2TMS (-0.63), L-proline 2TMS (-0.62) and D-(+)-galactose 

MEOX 29.94 1880 (-0.60) (Table 3.8).  

 

Metabolites strongly correlated with the CG samples include Unknown_ 

31.54_1971_218 (0.71) and Uridine 3TMS, 38.98, 2462 (0.70) (Table 3.8).  
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Table 3.8  Correlation loadings plot metabolite IDs, and axis coordinates, associated with nipple pain and control sample groups. 

Sample grouping  PC4 axis coordinate  Data matrix ID Library Match  
 
 
 
 
 
 
Nipple pain 
      (TG) 

-0.79 Isoleucine 1TMS_14.47_1186_86 In house library  
-0.68 Unknown_29.43_1874_281  - 
-0.63 L-Isoleucine 2TMS Wiley  
-0.62 L-Proline 2TMS Wiley 
-0.60 D-(+)-Galactose 5TMS MEOX_29.94_1880_319 In house library 
-0.59 Unknown_42.99_2721_204  In house library  
-0.59 L-Proline xTMS, 24.06, 1585_ In house library 
-0.59 L-Proline x TMS_24.06_585_142  In house library 
-0.58 Ascorbic acid, x TMS 29.67 Wiley 
-0.55 Unknown_21.95_1484_233 In house library 
-0.53 B-Lactose 8TMS, 42.26 Wiley 
-0.53 L-Methionine, 1 TMS_20.27_1416_104  In house library  
-0.52 3-Hydroxybutyric acid, 2 TMS_13.87_1157_86  In house library  
-0.51 Stearic acid 1TMS  Wiley 

       
 
 
 
 
 
 
Control  
  (CG) 

0.50 Unknown_31.54_1971_218 In house library 
0.52 Myristic acid 1TMS_29.3_1850_131 In house library 
0.52 Propanoic acid, 2,3-bis(TMS)oxy) TMS ester Wiley  
0.55 Unknown_24.98_1633_192  - 
0.60 Silicate Wiley 
0.64 L-Alanine xTMS_1894_1361 In house library 
0.65 D-(+)-Glucose 5 TMS , MEOX_30.38_1924_130 In house library 
0.65 Silane, trimethyl(1-methyl-1-phenylethoxy) Wiley  
0.65 Oxalic acid 2TMS_13.13_1125_221 In house library 
0.66 Glycine 3TMS_17.63_1308 In house library 
0.70 Uridine 3TMS_38.98_2462_217 In house library 
0.71 Unknown_ 31.54_1971_218 In house library 
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4 Discussion  
 

Breast milk is the preferred source of nutrition for the developing infant, with 

breastfeeding linked to many health, nutritional, immunological, developmental, 

psychological, social, economic, and environmental benefits (Anatolitou, 2012). 

Nipple pain and mastitis during the first three weeks of breastfeeding are important 

clinical factors associated with early cessation of breastfeeding (Schwartz et al., 

2002).  The intensity and duration of maternal nipple pain during breastfeeding have 

been correlated to interference with breastfeeding and general quality of life 

(McClellan et al., 2012). Women who experience pain in the first three weeks post-

partum are also more likely to give up breastfeeding than women who experience pain 

after the first three weeks (Schwartz et al., 2002), thus jeopardising both their own 

and their infants short and long term health. Rapid identification and treatment of 

these conditions would potentially reduce premature weaning and extend 

breastfeeding duration. Despite initiation of breastfeeding increasing in Perth (90-

96% on discharge from hospital), the prevalence of breastfeeding at 6 (50-60%) and 

12 months (22-28%) are still below the national targets of 80% and 40%, respectively 

(Scott et al, 2006; NHRMC, 2010).    

 

A recent Australian study recorded the incidence of nipple pain in 360 breastfeeding 

women who intended to breastfeed beyond 8 weeks postpartum (Buck, Amir, 

Cullinane & Donath, 2014). They found that 79% of women reported nipple pain in 

the first week post partum and 58% experienced nipple damage, including cracked or 

grazed nipples (Buck et al., 2014). The prevalence of nipple pain and nipple trauma 

had at best reduced by half at 4 weeks post partum (43% and 24%, respectively) with 
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a further decline identified at 8 weeks post partum where 20% reported nipple pain 

and 8% reported nipple damage (Buck et al., 2014). In this study 20 women ceased 

breastfeeding before the end of the study (>8 weeks) as a result of developing nipple 

pain and trauma (Buck et al., 2014).  

 

Despite the highest incidence of nipple pain identified in early lactation, women in the 

first four weeks of lactation were deemed not acceptable for this study. This study 

aimed to identify compositional changes in breast milk associated with nipple pain 

and trauma. However, the composition of milk undergoes many changes over the first 

three weeks post parturition until it reaches the mature phase which is maintained for 

the remainder of lactation (Hassiotou & Geddes, 2013).  Therefore, the composition 

of milk is too variable in the initial stage of lactation to enable identification of 

changes resulting from breast pathology compared to transitional changes of the milk 

to mature milk. For this reason participants in this study were recruited between 1-6 

months post parturition to eliminate compositional changes in the milk due to the 

establishment of lactation, thereby identifying only those changes associated with 

breast pathology.  

 

The primary aim of this study was to determine compositional changes to human 

milk, consequential to mothers experiencing persistent nipple pain with and without 

evidence of trauma. It was hypothesized that the presence of nipple pain in lactating 

women would result in changes in the human milk metabolite profile possibly due to 

infection and/or inflammation of the breast, compared to asymptomatic women. A 

series of bovine samples from asymptomatic cows and cows presenting with mastitis 

served as comparative controls.  
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The treatment for inflammatory symptoms of the breast, including nipple pain and 

mastitis, has been under discussion for some time. This is largely due to the wide 

spectrum of symptoms under the umbrella of ‘mastitis’, the myriad of potential 

causes, and lack of international scale for the measurement of symptoms (Kvist, 

Larsson, Hall-Lord, Steen & Schalen, 2008). 

 

McClellan et al. (2012) investigated a selection of pain scales as objective measures 

to compare the pain experienced by breastfeeding women. Differences in pain scale 

were reported for women with nipple pain with and without evidence of trauma. Pain 

scores reported for the mothers in the nipple pain with trauma group were 

significantly higher than the nipple pain without trauma group (p<0.001). Mothers 

experiencing nipple pain with trauma described their pain as ‘piercing’ ‘tight’ and 

‘tearing’, whereas mothers in the nipple pain without trauma group most commonly 

referred to their pain as ‘radiating’. In this study participants’ pain was converted to a 

numerical value between 0-10; zero being no pain and 10 being the worst perceived 

pain possible. Participants in the control group all reported their pain to be 0, 

participants in the nipple pain group reported perceived pain levels between 4 to 10. 

The mean pain level was reported for the nipple pain without evidence of trauma was 

5.83 with one participant reporting pain as high as 8; however this was not different to 

the TG subgroup with a mean pain score of 5.2. Compared to McClellan et al. (2012) 

the trauma group was not reporting as much pain and therefore may not have been as 

advanced in the mastitis continuum.  

 

The influence of bacteria in the development of nipple pain and nipple trauma is still 

not clear. Within the literature there are several studies surrounding the identification 

and quantification of pathogenic bacterial species in an attempt to determine the 
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causative agents of nipple pain and mastitis. Kvist et al. (2008) conducted a bacterial 

study (using PCR) to determine the role of bacteria in nipple pain and mastitis and 

found five main bacterial species to be the most prevalent between control and case 

samples; coagulase negative Staphylococci (CNS), viridans streptococci, 

Staphylococcus aureus (S. aureus), Group B streptococci (GBS) and Enterococcus 

faecalis. Despite this, viridans streptococci (OR: 1.43; p=0.04), S. aureus (OR: 1.81; 

p=0.001) and GBS (OR: 2.40; p<0.001) were found significantly more often in case 

samples than control. Additionally, CNS were detected significantly more often in the 

milk of healthy control mothers (90%) than in those suffering from mastitis (83%) 

(OR: 0.60; p=0.02) (Kvist et al., 2008). In this thesis study, CNS were found in 94% 

of human milk samples and 100% of human control samples. CNS was found in 

highest abundance in the human control samples (1,231 CFU/ml) compared to the 

nipple pain samples (370 CFU/ml). Kvist et al. (2008) concluded that CNS was an 

important bacterium in the protection against pathogens, and increasing bacterial 

counts did not influence the clinical manifestation of mastitis. Furthermore, a S. 

aureus study by Heikkila and Saris (2003) found that the commensal bacteria in 

breast milk might inhibit the growth of S. aureus and prevent maternal breast 

infections, which could explain the higher abundances in control milk samples.  

 

The study of 346 mothers by Amir et al. (2013) using PCR found that S. aureus was 

found in 82% of women presenting with nipple pain and in 79% of women without 

symptoms of nipple pain or mastitis. Conversely, a microbial culture study by Rowan 

et al. (2008) looking at the potential of S. aureus as a causative agent in nipple pain 

and trauma found no S. aureus in their control group. Furthermore, Rowan et al. 

(2008) identified S. aureus in 38% of mothers with nipple pain with minimal trauma 

and no obvious infection and in 100% of the mothers presenting with nipple pain with 
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obvious nipple trauma and infection. The data presented in this thesis identified no S. 

aureus in the control group samples. S. aureus was positively identified in only one 

nipple pain sample out of a total eleven nipple pain samples. This sample was 

collected from a mother suffering from unilateral nipple pain (PG) and had 82% S. 

aureus growth (620 CFU/ml) in milk from her affected breast, with no S. aureus 

identified in the milk collected from her unaffected (control) breast. However, this 

was the sample from a mother with nipple pain where S. aureus growth was 

identified, suggesting that in this study nipple pain was not always the result of S. 

aureus infection.  

 

It should be noted that traditional microbial culture is not always a clear 

representation of the microbial flora of a sample, as culture dominant species can over 

grow or inhibit the growth of other species, not all species are amenable to any one 

method of culture, or at all. Microorganisms isolated using standard culture 

techniques are rarely the dominant and/or functionally significant species in the 

communities from which they were obtained (Hugenholtz, 2002).  

 

The study by Amir et al. (2013) found a statistically significant association between 

the presence of Candida ssp. and nipple pain symptoms presenting 2-8 weeks post 

partum (p=0.014). A PCR analysis of the milk of 346 lactating women found that 

33% of women were positive for Candida ssp., distinctly different from the 5% of 

milk samples from the same sample set that cultured positive for Candida ssp. (Amir 

et al., 2013). Furthermore, control samples that tested positive for Candida ssp. at any 

point were 87% more likely to develop nipple pain symptoms than mothers who 

tested negative for Candida ssp. (Amir et al., 2013).  
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A study by Hale et al. (2009) using microbial culture and a β-glucan assay (where β-

glucan concentration 80 pg/mL is considered a presumptive measure of Candida 

infection) found that β-glucan was more commonly found in higher concentrations in 

control samples than in symptomatic patients, although no control samples and one 

symptomatic sample cultured positive for Candida (1 CFU/15 µL of milk). Hale et al 

(2009) suggested that their results were the product of the extreme clean-catch 

technique used for milk collection (which formed the basis for the collection method 

used in this study) and that studies that draw conclusions on Candida mastitis or the 

role of Candida in nipple pain may be the result of insufficient aseptic techniques and 

evidence of microbial contamination through the infant’s saliva on unsterilised 

nipples. Amir et al. (2013) suggested that the Hale et al. study (2009) may indicate 

alternative causes of breast and nipple pain, including mechanical causes such as 

infant tongue tie or bacterial infection. 

 

A protocol similar to that of Hale et al. (2009) was used for milk collection in this 

study to ensure microbial contamination of the milk, from skin flora or environmental 

contaminants, did not influence the microbial composition of the milk. No fungal 

species were isolated from the human samples, with nipple pain or otherwise, in this 

study. Yeast species were isolated from bovine milk from both pooled vat samples 

collected from a single storage vat (BV01 and BV02), but not from individual bovine 

milk samples. The ability to culture yeast in pooled bovine samples showed that 

Sabouraud agar was a suitable medium for the isolation of fungal species, with 

evidence of only fungal species isolated by these means. Furthermore, these results 

indicate that there were no fungal species in the human samples. Molecular 

techniques (PCR or sequencing) would be required to confirm definitively that no 
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fungal species were present in the human milk samples, or identify species non-

amenable to this culture technique.  

 

Biochemically it is possible to detect changes in certain macronutrients and 

micronutrients in breast milk that are associated with closure of the tight junctions 

between the lactocytes at the onset of secretory activation (Pang and Hartmann, 

2007). A study by Fetherston, Lai and Hartmann (2006) found that mastitis was 

associated with the reopening of the tight junctions and consequently paracellular 

pathways, accompanied by increased breast permeability, inflammation of the breast, 

and reduced milk synthesis. A significant increase in Na+ concentration was observed 

in women with nipple trauma (p<0.004), and a further increase in mean Na+ 

concentration was observed in women with clinical mastitis (21.8 mmol/L) 

(Fetherston et al., 2006). In this thesis, a significant difference in Na+ concentration 

was observed between mothers in the control and TG groups (p<0.001). However, the 

mean Na+ concentration for the TG subgroup (8.04 ± 2.40 mM) was much lower than 

that observed in women with mastitis in the Fetherston et al. study (2006), indicating 

that no participant in the study had mastitis, but possibly had the potential to develop 

into mastitis if left untreated.  

 

The composition of milk is highly variable over the course of lactation, between feeds 

and between mothers (Chung, 2014) and can be influenced by maternal and infant 

health and medication use (McManaman & Neville, 2003). Paracellular pathways 

allow the direct exchange of interstitial or serum substances into the milk. This 

transport pathway closes during the initiation of lactation, due to the reduction of tight 

junctions between the epithelial cells (McManaman & Neville, 2003). This pathway is 

affected by the physiological state of the breast, and during an episode of 
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inflammation or mastitis, tight junctions between the epithelial cells can become 

compromised, allowing plasma components such as sodium and calcium to leak into 

the milk (Shennan & Peaker, 2000). 

 

Assessment of the increased permeability of the paracellular pathway can be 

determined by measuring the solute content of the milk, in particular Na+ and K+ 

(Shennan & Peaker, 2000). Damage to the paracellular pathway can be identified by 

an increase in Na+ concentration and decrease in K+ concentration. However, 

measurement of the Na+/K+ ratio has been proposed as a more accurate indicator as it 

reduces the influence of individual differences due to the large variation in human 

milk composition between individuals. Areetey et al. (2008) proposed an elevated 

Na+/K+ ratio above 1.0 to be considered indicative of infection.  

 

No individual in this study recorded a Na+/K+ ratio above one. The highest ratio was 

0.811 recorded from the milk of a mother experiencing persistent nipple pain with 

trauma. The TG subgroup had a significantly higher ratio than the control group 

(p<0.001) and a mean ratio difference of 0.13 between the TG and PG nipple pain 

subgroups indicating, alike the pain scores, little difference between the groups.  

 

Sodium and potassium analysis has been found to be a useful tool in relation to 

mastitis, however it appears less conclusive in the analysis of nipple pain. Mastitis can 

cause a significant amount of damage to mammary tissue, resulting in considerable 

alteration in milk composition. As nipple pain without incidence of mastitis is often 

less invasive, it is possible that the damage to the mammary tissue was not extensive 

enough to result in a significant increase in Na+/K+ concentration or ratio in this study.  
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All analyses of sodium and potassium concentrations presented here should be treated 

with caution, as the sample size can be considered too small to draw definitive 

conclusions. This is due to the pre-expected marginal differences between the groups 

due to the subtleties of the pain condition. To detect a true difference in Na+/K+ ratio 

between nipple pain samples in TG and PG subgroups, a larger sample size would be 

required. Using the independent nipple pain samples from this study, a t-test power 

calculator was used to determine the sample size required to improve the power of the 

study to 80 and 90% (Lenth, 2009). The two-sample group t-test found that an 

increase in sample size to 20 participants per group would be required to increase the 

power of the study to 80% and 26 participants per group would increase the power of 

the study to 90% (Lenth, 2009). It is assumed that each participant would be included 

in only one group, and that only one sample would be taken from each. If more 

samples were taken, or another study design was used, then smaller numbers might be 

appropriate.  

 

The burgeoning area of metabolomics as a diagnostic medium has begun to be 

explored in the dairy industry. A metabolomics study by Sundekilde et al. (2013) 

identified a series of metabolite biomarkers including isoleucine, lactate, butyrate and 

acetate to be linked with an elevated somatic cell count in bovine milk, which is 

indicative of mastitis. Sundekilde et al. (2013) proposed that the detection of these 

biomarkers could be used to determine milk quality, diagnose mastitis and to 

determine the level of infection. The same concept could be applied to human milk: 

determining changes to metabolited as a means of diagnosis for breast complications. 

Metabolite profiling has the potential to illuminate how the presence of infection and 

inflammation affects breast milk composition, leading to a greater understanding of 

the effect of nipple pain and mastitis on the lactating breast and providing a means of 
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monitoring treatment. As nipple pain is often a precursor to mastitis, it is important to 

understand if underlying breast pathology exists. Consequently, if the severity of 

nipple trauma is associated with underlying infection, then profiling the metabolome 

of expressed milk will identify any differences in metabolite composition between 

mothers experiencing varying degrees of pain and discomfort. 

 
 
Although there have been some studies that associate certain species of bacteria with 

incidences of nipple pain and mastitis, there is still no reliable diagnostic biomarker of 

pain or infection to enable rapid effective treatment. Metabolomics is widely used as a 

functional tool in biomarker detection and systems biology. Metabolomics involves 

the unbiased quantitative and/or qualitative analysis of the complete set of metabolites 

present in a biological system. Biostatistics plays an essential role in analysing 

differences in metabolomes and enabling the identification of metabolites pertinent to 

a particular phenotypic characteristic (Koek, Jellema, van der Greef, Tas & 

Hankemeier, 2011).  

 

Generally a non-targeted metabolomics approach is used to gain new insights and a 

better understanding of the biological functioning of a cell or organism in an attempt 

to interpret biological outcomes (Koek et al., 2011). It is crucial that all steps of the 

analytical method, namely sample preparation, data acquisition and data processing, 

are addressed when determining a suitable experimental design. Optimisation, 

validation and quality control of analytical methods are of the highest importance 

(Koek et al., 2011). 

 

Optimisation of sample preparation, namely sample volume, was important to identify 

the dynamic range in metabolite concentrations that would allow the unbiased 
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measurement of sample components for any given instrumental analysis. The 

optimisation of the sample loading on the GC was required to determine an 

amount/mass of metabolite extract that would not overload the instrument while still 

being large enough to identify metabolites present at low abundance. Milk sample 

volumes of 25 µl, 50 µl, 75 µl and 100 µl were analysed with the addition of an 

internal standard (13C6 labelled D-sorbitol) to determine reproducibility and to assess 

the capacity for this internal standard to reliably correct for changes in signal intensity 

across data from GC-MS acquisition.  

 

Extraction and derivatisation efficiency can be estimated using labeled n-alkanes as 

reference compounds and comparing their response to the response of derivatised 

metabolites (Koek, Muilwijk, van der Werf, & Hankemeier, 2006). In this instance we 

sought to assess the reproducibility of the peak intensity of a series of n-alkane 

analytical standards (C12, C15, C19, C22, C28, C32, C36) added to derivatised milk 

extracts of differing concentration and the capacity for the corresponding peak area of 

the internal standard, 13C6 labelled D-sorbitol, to correct for differences in analytical 

reproducibility among a sample set. The %RSD of the alkanes was used to determine 

the reproducibility of the four test volumes. Food and Drug Administration guidelines 

(FDA) for biomarker studies specify a RSD of < 20% to be an acceptable level of 

precision (Kirwan et al., 2013). The dried 50 µl milk volume metabolite extract was 

the largest sample volume that could be dissolved in a single derivatising volume 

while maintaining reproducibility of the added compounds (alkanes) below a %RSD 

of 30. Larger sample volumes may be compromised due to inadequate amounts of 

TMS reagent for complete derivatisation, a factor of milk being a complex biological 

matrix, as well as potential interference with deconvolution and therefore accuracy in 

measurement of peak areas.  In order to not compromise the measurement of the 



 122 

lower abundant metabolites, the largest reproducible volume, 50 µl, was used for 

subsequent metabolomics analyses.  

 

Many metabolites contain polar functional groups, and are thermally unstable at the 

temperatures required for injection into a GC or are simply not volatile. Derivatisation 

prior to GC analysis is often needed to extend the application range of GC based 

methods (Koek et al., 2011).  The majority of GC-based metabolomics methods are 

based on derivatisation using an oximation reagent followed by silylation (often by 

MSTFA), or solely silylation (Gullberg et al., 2004; Jonnson et al., 2006; Zhang, 

Wang, Du, Zhu & A, 2007).  

 

Koek et al. (2006) tested several derivatisation reagents including BSTFA, MSTFA, 

MSTFA with 1% TMCS, BSA, TMSI and TMSI/BSA/TMCS 3:3:2, and found the 

highest recoveries and smallest RSDs were found using MSTFA. Within the literature 

a range of derivatisation temperatures has been tested. Gullberg et al. (2004) trialled 

MSTFA derivatisation at 20°C, 40°C and 60°C and found that 60°C was the optimal 

temperature. Dunn et al. (2011) used rapid derivatisation at 80°C. Gummer et al. 

(2013) used 37 °C for MSTFA derivatisation. Bressanello et al. (2014) incubated at 

100°C following the addition of MSTFA. 

 

For this study a range of derivatisation temperatures were assessed to determine the 

optimal derivatisation temperature. Samples were prepared using methoxymation 

followed by MSTFA derivatisation incubated at 37°C, 45°C, 60°C, 75°C and 90°C. 

Depending on the target metabolites, different analytical approaches are required and 

different requirements are posed on analytical performance, including detection 

limits, accuracy of compound identification and reproducibility (Koek et al., 2011). In 
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this instance, reproducibility is of the upmost importance due the already highly 

variability of human milk composition between individuals. 

 

Analysis of the tested derivatisation temperatures found that incubation at 75 °C 

resulted in high signal intensity, but more importantly the highest reproducibility 

(determined by comparison of standard deviation across the three replicates for each 

of the test temperatures). The reliability and suitability of sample preparation, data 

acquisition, data preprocessing and data analysis are imperative for accurate 

biological interpretation (Koek at al., 2011). 

 

Metabolomics revolves around the central concept that an individual’s metabolic state 

is a close representation of his/her current physiological state (Fanos et al., 2012). 

Analysis of an individual’s metabolome is indicative of their current heath and 

disease status (Fanos et al., 2012). Here, we used a metabolomics analysis of human 

milk from control mothers, and mothers experiencing persistent nipple pain with or 

without evidence of trauma, to identify metabolite difference reflective of underlying 

physiological breast health.  

 

Due to the large variation in breast milk composition between individuals, 

irrespective of their health status, it was important to ensure appropriate quality 

controls and internal standards were used in the metabolomics analysis to account for 

noise within the data and identify true biological variation between the control and 

nipple pain subgroups. Using only a single internal standard for purpose of 

normalisation can also be presumptuous in that it assumes that all metabolites in a 

sample are subject to the same amount of unwanted or external variation, often failing 

to remove unwanted factors (De Livera et al., 2012). In this case a labelled internal 
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standard, 13C6 labelled D-sorbitol, with the addition of pooled QCs, a mixture of the 

entire sample set under study, were used to normalise and interrogate the data. A 

labelled or synthetic internal standard prevents variation resulting from chemical 

properties and confusion of the internal standard with metabolites of interest that may 

co-elute or appear similar in structure (De Livera et al., 2012). The use of multiple 

internal standards or similar, the use of pooled QCs for example, has been found to be 

more effective at removing unwanted instrumental interference and leads to lower 

variability of the normalised metabolite abundances (De Livera et al., 2012). 

Normalisation allows the reduction of variation or interference between sample 

extraction efficiency and instrumentation. Resulting values can then be scaled to the 

median intensity (as opposed to mean; which has been found to be less effective) for 

each metabolite across the data set (Veselkov et al., 2011). The data manipulation 

employed in this thesis was to reduce the influence of the highest abundant 

metabolites within the model by reducing the range of dynamic abundance and 

therefore the bias within the raw data. A log scaling approach was also used as an 

additional level of scaling for data modelling (Veselkov et al., 2011). Additionally 

within this thesis, PCA was used for quality control purposes and initially focused on 

the pooled milk (quality control) samples, which were run at regular intervals between 

samples throughout data acquisition.  

 

It is known that the first few injections of samples on the instrument show variability 

and give unrepresentative results within metabolomics analyses due to small changes 

in signal intensity and retention time (Veselkov et al., 2011). For this reason, the 

column was ‘conditioned’ using five injections of the same biological matrix as the 

sample set, in this case pooled QC samples, to reduce this initial variability between 

sample replicates.  
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The ion source of the MS can become contaminated, especially when using 

metabolite dense biological matrices such as human and bovine milk, resulting in a 

gradual decline in instrument sensitivity over time (Veselkov et al., 2011). A slow 

degradation of signal intensity was observed over the duration of analysis within this 

study despite preventive cleaning of the ion source and regular monitoring and 

maintenance of GC consumables. Internal standards and QCs were unable to correct 

for instrumental error and decline in signal intensity. This indicated that the observed 

decline in signal intensity was not uniform across the chromatogram and could 

unlikely be corrected.   As a consequence any samples analysed within the analytical 

sequence amongst the QC samples that failed to group by PCA were determined as 

not meeting the requirements of the quality control and were excluded from the final 

interpretation.  

 

Within the sample data, the PCA showed that the first three principal components 

exhibited little significant grouping of the human nipple pain groups. PC-4, associated 

with 8% of the variance between the human milk and samples, best showed difference 

in metabolite composition between the control and trauma samples. Whilst ideally the 

first components of a PCA would distinguish sample groupings consistent with the 

study design, the result of finding PC4 of most relevance was not entirely unexpected 

due to the subtlety of the condition under study (nipple pain) as demonstrated 

throughout this thesis, such as in the Na+/K+ results, and the inherent variation in milk 

composition between individuals and within individuals over time (Grote et al., 

2015).   
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The projected position of each of the samples on the scores plot (Figure 3.19) is a 

measure of their individual metabolite abundances relative to the metabolite 

abundances of the other samples on the plot. Samples found close to each other on the 

scores plot indicate high positive correlation. This can be seen with Hs_cont_6 (C02) 

and Hs_NT_09 (NP05), which are closer to each other on the scores plot than other 

samples, indicated by the black square in Figure 3.19. These samples were retrieved 

from a single mother (M03) who donated both a control and nipple pain sample. The 

mother was suffering from unilateral nipple pain with no evidence of trauma and had a 

Na+/K+ ratio of 0.54 (where a ratio above 1 is considered indicative of infection) with 

no evidence of pathogenic bacteria in her milk, it is therefore consistent that these 

samples are compositionally similar. In contrast, samples located in diagonally opposite 

quadrants have a tendency to be negatively correlated, indicating a compositional 

difference between nipple pain with trauma samples (Hs_T_13, Hs_T_18 and 

Hs_T_23) located at the bottom of the scores plot, with a negative PC-4 score 

coordinate, and the control samples present in the opposite quadrants, with a positive 

PC-4 score coordinate (Figure 7.7). Additionally, the trauma samples recorded the 

highest Na+/K+ ratio; of note was sample Hs_T_13 (NP07), which had the highest ratio 

of 0.81, a measurement used as an indication of breast trauma resulting in reopening of 

paracellular pathways in the mammary tissue (Aryeetey et al., 2008). 

 

The correlation loadings plot (Figure 3.20) displays all of the measured metabolites 

from the human milk and was used to identify which metabolites were able to 

constitute to the variance between the human sample set as well as identify metabolites 

that are positively and negatively correlated with control and nipple pain samples. 

Metabolites found closer to the middle of the plot do not contain enough structured 
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variance and cannot be explained by the plot. These were determined inconsequential 

to a nipple trauma event. 

 

Amino acids, in particular isoleucine and proline, were amongst the metabolites found 

most positively correlated with human trauma samples. Within the literature there are 

several studies that have identified a link between an increase in amino acid 

concentration in response to inflammatory diseases including osteoarthritis, Crohn’s 

disease and inflammatory bowel conditions. Alteration in tissue concentration of amino 

acids is likely the result of gross tissue destruction or cellular apoptosis (Fitzpatrick & 

Young, 2013). 

 

A study by Marchesi et al. (2007) of faecal matter from healthy participants and 

participants with Crohn’s disease and ulcerative colitis found a significantly higher 

quantity of amino acids in participants with inflammatory bowel conditions. An 

increase in isoleucine concentration (+ 0.69) was observed in the faecal matter of 

patients with Crohn’s when compared to control samples (Marchesi et al., 2007). Other 

amino acids showing increases included leucine, alanine, lysine and valine. A study by 

Zhai et al. (2010) of serum from patients with osteoarthritis found an increase in amino 

acids, in particular valine and leucine, in test patients compared to controls. 

Additionally Griffin et al. (2004) used an adenoviral vector to induce a focal 

inflammatory lesion in rats and identified an increase in urinary amino acids, including 

leucine, isoleucine and valine, in response to tissue inflammation.  

 

Examples relating to bovine milk also exist in the literature. Sundekilde et al. (2013) 

profiled bovine milk from cows with mastitis to identify metabolites associated with 

increased somatic cell count. Again, isoleucine was positively correlated with an 
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increased somatic cell count and a significant difference was found between healthy 

cows and cows with mastitis (p=0.014). A preliminary bovine study by Ianni et al. 

(2015) profiled selective amino acids in milk from cows with sub-clinical and clinical 

mastitis to identify metabolite differences in milk from cows with varying levels of 

mastitis. This study found that amino acids, aspartic acid, isoleucine and valine were 

only detectable in the milk from cows with clinical mastitis and not in the sub clinical 

mastitis milk samples (Ianni et al., 2015).  Consequently, it was proposed that these 

three potential biomarkers could be useful for the confident identification of clinical 

mastitis in cases that are difficult to diagnose (Ianni et al., 2015). Similarly the 

measured increase in amino acids in breast milk presented in this thesis may serve as an 

indication of inflammation and damage to mammary tissue including paracellular 

pathways.  

 

Due to the small sample numbers resulting from technical problems and instrumental 

error, we are unable to conclude complete significance of these results. However, the 

conditions determined and the data provide promising direction for future 

metabolomics studies. Metabolomics offers opportunities for further refinement of 

these presented analyses and potential application for more complete human milk 

analysis if complementary techniques together with the GC-MS analyses presented 

here were to be combined for a more complete understanding of the milk metabolome. 
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5 Conclusion 
 

Nipple pain is a common problem for breastfeeding mothers in Australia and often 

persists for several weeks post partum. As a result it is largely responsible for 

cessation of breastfeeding in early lactation (weeks 1-4), which can adversely affect 

the developing infant. It is important to establish the effect of nipple pain and trauma 

on breast health via breast milk composition, which would then enable rapid diagnosis 

of pathology, timely intervention and appropriate monitoring of treatment.   

 

In this study microbial analysis of the milk of mothers with nipple pain found limited 

numbers of potentially pathogenic bacteria, therefore participants were unlikely to 

have subclinical mastitis, which is reflected also in the pain scores and Na+/K+ ratios.   

However, GC-MS analysis identified differences in metabolite composition between 

the human control and nipple pain groups. A series of amino acids, previously found 

to be associated with inflammatory conditions, was elevated in nipple pain milk 

samples, suggesting that indeed metabolomics may potentially identify mothers with 

nipple pain that might be predisposed to infection. Consequently, if severity of trauma 

is related to an underlying infection, then profiling the metabolites may lead to 

identification of differences in the metabolite composition between mothers'. 

 

Future analysis of human milk should employ LC-MS for analysis of the non-polar 

fraction of the milk to further the understanding of the milk metabolome. Following 

the optimisation of an untargeted metabolomics approach, a targeted analysis for the 

identification of bacterial and fungal metabolites will also increase the potential for 

diagnosis and provide insight into the breast microbiome.  
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In conclusion, these results provide preliminary support to confirm the concept that 

milk expressed by mothers presenting with nipple pain contain compositional 

differences, detected by metabolomics, which may be related to the early stages of the 

continuum of mastitis. Further study is required on much larger sample sets to 

determine the efficacy of this technique in the detection of breast infection and the 

relationship between compositional change and severity of infection.   
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Appendices 
 
Appendix 2.1 Consent form provided to all participants prior to milk collection.  
 
 

 
Biochemistry and Molecular Biology 
School of Biomedical, Biomolecular and Chemical 
Sciences 
M310, The University of Western Australia 
35 Stirling Highway 
CRAWLEY WA 6009 
Prof. Peter E. Hartmann 
Telephone: +61 (0)8 6488 3327 
Facsimile:   +61 (0)8 6488 1148 
Email: hartmanp@cylllene.uwa.edu.au  

 
 

 Breastfeeding Centre of Western Australia: 
Agnes Walsh House 
King Edward Memorial Hospital for Women 
Bagot Road 
SUBIACO WA 6008 
 
Telephone +61 (0)8 9340 1846 

 
 
Composition of human milk 
 
Consent Form 
 
This study aims to learn more about the composition of human milk and the changes in 
concentration during the day and throughout lactation, and possible contaminants.   
 
I  
  FAMILY NAME   GIVEN NAMES 
 
have read the information sheet about this study and any questions I have asked have been 
answered to my satisfaction.  I agree to participate in this activity, realising that I may 
withdraw at any time without reason and without prejudice.  
 
I understand that all information provided is treated as strictly confidential and will not be 
released by the investigator unless required to do so by law. 
 
I have been advised as to what data is being collected, what the purpose is, and what will be 
done with the data upon completion of the research. 
 
I agree that research data gathered for the study may be published provided my name or other 
identifying information is not used. 
 
_______________________________________ _____________________ 
Participant Date 
 
The Human Research Ethics Committee at the University of Western Australia requires that 
all participants are informed that, if they have any complaint regarding the manner, in which a 
research project is conducted, it may be given to the researcher or, alternatively to the 
Secretary, Human Research Ethics Committee, Registrar’s Office, The University of Western 
Australia, 35 Stirling Highway, Crawley, WA 6009 (telephone number 6488-3703). All study 
participants will be provided with a copy of the Information Sheet and Consent Form for their 
personal records. 
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Appendix 2.2. General information sheet provided to all participants prior milk 
collection.  
 
Have you previously participated in a 
study with the Hartmann Human Lactation 
Research Group? 

 

First Name   

Last Name   

DOB Baby (dd/mm/yy)  

DOB mother (dd/mm/yy)  

Email  

Phone/Mobile  

Address  

Number of Children   

Have you done a HIV and Hepatitis 
check? 

 

If you have other children, did you 
breastfeed any of them? If yes, for how 
long? 

 

General Healthy Status of mother/baby 
(presence of nipple pain trauma/no trauma) 

 

Current Medication   

 
Visual Analogue Scale (pain intensity during breastfeeding)  
 
No pain                                                                               Worst Pain Imaginable  
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Appendix 2.3. Online questionnaire which participants were asked to fill out 
following milk ample collection.  
Retrieved from: https://breastfeeding.bcs.uwa.edu.au 
 
Section A 

 Date of Birth  

 Last year of completed education  

 Further completed education  

 Marital Status  

 Number of Children  

 Ethnic Group  

 Height and Weight  

 Left or Right handed  

Section B  

 Bra Size before pregnancy  

 Current Bra Size  

 Breast Piercing  

 Did you smoke during pregnancy?  

 Do you smoke now?  

 List of experienced problems:  

High Blood Pressure 

Gestational Diabetes 

Antenatal Bleeding 

Postpartum Haemorrhage 

Depression 

Hospitalisation for any reason 

 

 Current medications  

 Allergies  

Section C 

 Infant Gender  

 Infant Date of Birth  

 Gestational Weeks and Days  

 Birth Weight  

 Birth Length  



 149 

 Birth Apgar Scores  

 Mode of Delivery  

 Drugs during delivery  

 Was the baby admitted to special Care nursery?  

 Special Care Nursery Details?  

 Baby's allergies  

 Baby's current medications  

 Time before baby's first feed  

 Day milk came in  

 Baby feed method  

 Intended baby feed length  

 Baby's weight at 6 weeks  

 Baby's dummy usage  

 Breastfeeding relationship concerns  



ix 

 
Appendix 3.1. Human sample demographic data. 

Participant ID Group ID Right Breast Left Breast 
Mother Age 

(Years) 

Infant Age 

(Weeks) 
Parity 

AB 

(Y/N) 

Pain 

(1-10) 

M01 C01 Control N/A 23.65 11.9 1 N 0 

M02 C02/NP05 NP-No Trauma Control 29.15 5.9 1 N 8 

M03 C03/NP10 NP-Trauma Control 31.7 5.7 1 Y 6 

M04 C04 Control N/A 28.39 15.7 2 N 0 

M05 C05 Control N/A 25.78 8.3 2 N 0 

M06 C06 N/A Control 32.84 16.3 3 N 0 

M07 C07 Control N/A 30.87 17.7 2 N 0 

M08 C08 Control N/A 29.84 21.1 1 N 0 

M09 C09 Control N/A 30.72 25.6 2 N 0 

M10 C10 N/A Control 40.2 25.7 1 N 0 

M11 C11 Control N/A 34.35 26.1 2 N 0 

M12 C12 Control N/A 34.34 10.7 3 N 0 

M13 C13 Control N/A 22.59 19.7 2 N 0 

M14 C14 N/A Control 35.06 17.4 2 N 0 

M15 C15 Control N/A 32.8 22.7 1 N 0 

M16 C16 Control N/A 33.28 22.3 1 N 0 
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Highlighted rows indicate participants who were suffering from unilateral nipple pain and provided a control and nipple pain sample. 

M17 C17 N/A Control 40.8 14 3 N 0 

M18 C18/NP02 NP-No Trauma Control 28.06 10.4 1 N 10 

M19 C19 Control N/A 22.19 5 2 N 0 

M20 C20 N/A Control 31.26 7.6 2 N 0 

M21 C21 Control N/A 24.18 7.1 1 N 0 

M22 C22/NP06 Control NP-No Trauma 34.82 7.1 1 N 2 

M23 NP01 NP-No Trauma N/A 28.94 21.6 1 N 4 

M24 NP03 N/A NP-No Trauma 40.43 6.9 1 N 3 

M25 NP04 NP-No Trauma N/A 39.18 6.9 4 N 8 

M26 NP07 NP-Trauma N/A 37.11 5.1 2 N 5 

M27 NP08 NP-Trauma N/A 35.87 4.6 2 N 4 

M28 NP09 NP-Trauma N/A 29.5 7 2 N 7 

M29 NP11 NP-Trauma N/A 34.79 22.7 2 N 4 
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Appendix 3.3. CFU counts for blood agar cultures of human milk samples and 
individual and pooled vat bovine milk samples.  
 
Participant ID Sample ID Group CFU/ml 

M01 C01 Control 500 

M02* C02 Control 2670 

M03* C03 Control 0 

M04 C04 Control 1050 

M05 C05 Control 300 

M06 C06 Control 18680 

M07 C07 Control 50 

M08 C08 Control 10 

M09 C09 Control 760 

M10 C10 Control 80 

M11 C11 Control 70 

M12 C12 Control 10 

M13 C13 Control 70 

M14 C14 Control 50 

M15 C15 Control 500 

M16 C16 Control 400 

M17 C17 Control 310 

M18* C18 Control 2500 

M19 C19 Control 130 

M20  C20 Control 6750 

M21 C21 Control 500 

M22* C22 Control 320 

M23 NP01 Pain- No Trauma 20 

M18* NP02 Pain- No Trauma 760 

M24 NP03 Pain- No Trauma 580 

M25 NP04 Pain- No Trauma 690 

M02* NP05 Pain- No Trauma 380 

M22* NP06 Pain- No Trauma 210 

M26 NP07 Pain- Trauma 110 

M27 NP08 Pain- Trauma 450 
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M28 NP09 Pain- Trauma 990 

M03* NP10 Pain- Trauma 12000 

M29  NP11 Pain- Trauma 340 

B01 BC01 Control 410 

B01 BM01 Mastitis (Untreated) 330 

B01 BM02 Mastitis (Untreated) 1010 

B02 BM03 Mastitis (Treated) 1400 

B02 BC02 Control 20 

B03 BC03 Control (Colostrum) 30 

B04 BM04 Mastitis (Untreated) 50 

V01 BV01 VAT 1 4630 

V02 BV02 VAT 2 4330 

 
 
(*) Indicates paired samples for human participants who donated both a control and 
nipple pain sample.  
 
 



ix 

Appendix 3.4. Complete Na+/K+ data set.  
 

Participant ID Sample ID Group 
Na+ 

(mM) 

K+ 

(mM) 
Na+/K+ Ratio 

M01 C01 Control 6.490 12.416 0.523 

M02* C02 Control 5.744 14.403 0.399 

M03* C03 Control 4.073 13.461 0.303 

M04 C04 Control 4.555 11.757 0.387 

M05 C05 Control 7.138 12.635 0.565 

M06 C06 Control 5.126 13.431 0.382 

M07 C07 Control 4.699 13.199 0.356 

M08 C08 Control 4.407 12.553 0.351 

M09 C09 Control 3.613 11.108 0.325 

M10 C10 Control 3.948 13.379 0.295 

M11 C11 Control 4.918 13.579 0.362 

M12 C12 Control 4.490 13.608 0.330 

M13 C13 Control 3.933 12.858 0.306 

M14 C14 Control 4.593 11.886 0.386 

M15 C15 Control 5.222 15.013 0.348 

M16 C16 Control 2.541 10.047 0.253 

M17 C17 Control 3.204 12.443 0.257 

M18* C18 Control 3.613 10.541 0.343 

M19 C19 Control 3.990 13.274 0.301 

M20  C20 Control 3.409 11.527 0.296 

M21 C21 Control 2.698 14.275 0.189 

M22* C22 Control 2.621 12.447 0.211 

M23 NP01 Pain- No Trauma 3.641 11.217 0.325 

M18* NP02 Pain- No Trauma 4.809 13.466 0.357 

M24 NP03 Pain- No Trauma 6.068 14.179 0.428 

M25 NP04 Pain- No Trauma 9.212 16.552 0.557 

M02* NP05 Pain- No Trauma 4.720 14.332 0.329 

M22* NP06 Pain- No Trauma 6.392 11.527 0.555 

M26 NP07 Pain- Trauma  11.528 14.209 0.811 

M27 NP08 Pain- Trauma 7.032 14.580 0.482 
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M28 NP09 Pain- Trauma 7.300 14.301 0.510 

M03* NP10 Pain- Trauma 9.136 16.875 0.541 

M29  NP11 Pain- Trauma 5.204 12.277 0.424 

B01 BC01 Control  19.779 21.011 0.941 

B01 BM01 Mastitis (Untreated)  45.482 12.789 3.556 

B01 BM02 Mastitis (Untreated)  29.776 17.654 1.687 

B02 BM03 Mastitis (Treated)  26.562 20.432 1.300 

B02 BC02 Control 8.442 25.495 0.331 

B03 BC03 Control (Colostrum)  22.357 24.527 0.912 

B04 BM04 Mastitis (Untreated) 19.213 25.440 0.755 

V01 BV01 VAT 1 11.528 24.058 0.479 

V02 BV02 VAT 2 11.552 24.370 0.474 

* Indicate mothers that have given both a control and nipple pain sample 
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Appendix 3.5a Measured peak area of L-Methionine (1 TMS) MSTFA 
incubation temperatures of 37°C, 45°C, 60°C, 75°C, 90°C with the incubation 
performed in a GC oven (GC) or with agitation in a Thermomixer (TM). 
 

 
 
Appendix 3.5b Standard deviation of the measured peak area (n=3) L-
Methionine (1 TMS) using MSTFA incubation temperatures of 37°C, 45°C, 60°C, 
75°C, 90°C with the incubation performed in a GC oven (GC) or with agitation 
in a Thermomixer (TM). 
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Appendix 3.5c Measured peak area of Aspartic acid (2 TMS) using MSTFA 
incubation temperatures of 37°C, 45°C, 60°C, 75°C, 90°C with the incubation 
performed in a GC oven (GC) or with agitation in a Thermomixer (TM). 
 

 
 
Appendix 3.5d Standard deviation of the measured peak (n=3) of Aspartic acid 
(2 TMS) using MSTFA incubation temperatures of 37°C, 45°C, 60°C, 75°C, 90°C 
with the incubation performed in a GC oven (GC) or with agitation in a 
Thermomixer (TM). 
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Appendix 3.5e Measured peak area of Mix N Unknown 1 using MSTFA 
incubation temperatures of 37°C, 45°C, 60°C, 75°C, 90°C with the incubation 
performed in a GC oven (GC) or with agitation in a Thermomixer (TM). 
 

 
 
Appendix 3.5f Standard deviation of the measured peak area (n=3) of Mix N 
Unknown 1 using MSTFA incubation temperatures of 37°C, 45°C, 60°C, 75°C, 
90°C with the incubation performed in a GC oven (GC) or with agitation in a 
Thermomixer (TM). 
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Appendix 3.5g Measured peak area of Ribitol (5 TMS) using MSTFA incubation 
temperatures of 37°C, 45°C, 60°C, 75°C, 90°C with the incubation performed in a 
GC oven (GC) or with agitation in a Thermomixer (TM). 
 

 
 
Appendix 3.5h Standard deviation of the measured peak area (n=3) of Ribitol (5 
TMS) using MSTFA incubation temperatures of 37°C, 45°C, 60°C, 75°C, 90°C 
with the incubation performed in a GC oven (GC) or with agitation in a 
Thermomixer (TM). 
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Appendix 3.5i Measured peak area of Mannitol (6 TMS) using MSTFA 
incubation temperatures of 37°C, 45°C, 60°C, 75°C, 90°C with the incubation 
performed in a GC oven (GC) or with agitation in a Thermomixer (TM). 
 

 
 
Appendix 3.5j Standard deviation of the measured peak area (n=3) of Mannitol 
(6 TMS) using MSTFA incubation temperatures of 37°C, 45°C, 60°C, 75°C, 90°C 
with the incubation performed in a GC oven (GC) or with agitation in a 
Thermomixer (TM). 
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Appendix 3.5k Measured peak area of D(-)-Fructose (5 TMS, 1 MEOX) using 
MSTFA incubation temperatures of 37°C, 45°C, 60°C, 75°C, 90°C with the 
incubation performed in a GC oven (GC) or with agitation in a Thermomixer 
(TM). 
 

 
 
Appendix 3.5l Standard deviation of the measured peak area (n=3) of D(-)-
Fructose (5 TMS, 1 MEOX) using MSTFA incubation temperatures of 37°C, 
45°C, 60°C, 75°C, 90°C with the incubation performed in a GC oven (GC) or 
with agitation in a Thermomixer (TM). 
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Appendix 3.5m Measured peak area of Citric acid (4 TMS) using MSTFA 
incubation temperatures of 37°C, 45°C, 60°C, 75°C, 90°C with the incubation 
performed in a GC oven (GC) or with agitation in a Thermomixer (TM). 
 

 
 
Appendix 3.5n Standard deviation of the measured peak area (n=3) of Citric 
acid (4 TMS) using MSTFA incubation temperatures of 37°C, 45°C, 60°C, 75°C, 
90°C with the incubation performed in a GC oven (GC) or with agitation in a 
Thermomixer (TM). 
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Appendix 3.5o Measured peak area of Putrescine using MSTFA incubation 
temperatures of 37°C, 45°C, 60°C, 75°C, 90°C with the incubation performed in a 
GC oven (GC) or with agitation in a Thermomixer (TM). 
 

 
 
Appendix 3.5p Standard deviation of the measured peak area (n=3) of Putrescine 
using MSTFA incubation temperatures of 37°C, 45°C, 60°C, 75°C, 90°C with the 
incubation performed in a GC oven (GC) or with agitation in a Thermomixer 
(TM). 
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Appendix 3.5q Measured peak area of Sorbitol (5 TMS) using MSTFA 
incubation temperatures of 37°C, 45°C, 60°C, 75°C, 90°C with the incubation 
performed in a GC oven (GC) or with agitation in a Thermomixer (TM). 
 

 
 
Appendix 3.5r Standard deviation of the measured peak area (n=3) of Sorbitol (5 
TMS) using MSTFA incubation temperatures of 37°C, 45°C, 60°C, 75°C, 90°C 
with the incubation performed in a GC oven (GC) or with agitation in a 
Thermomixer (TM). 
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Appendix 3.5s Measured peak area of Myo-insositol (6 TMS) using MSTFA 
incubation temperatures of 37°C, 45°C, 60°C, 75°C, 90°C with the incubation 
performed in a GC oven (GC) or with agitation in a Thermomixer (TM). 
 

 
 
Appendix 3.5t Standard deviation of the measured peak area (n=3) of Myo-
insositol (6 TMS) using MSTFA incubation temperatures of 37°C, 45°C, 60°C, 
75°C, 90°C with the incubation performed in a GC oven (GC) or with agitation 
in a Thermomixer (TM). 
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Appendix 3.6 Scores plot of PC-1 (18%) vs. PC-2 (11%) illustrating the 
reproducibility of the pooled quality controls 
 
 
 

 
The black circle indicates the cluster of QCs with comparatively lower variance; the 
red circles indicate where variation in QCs is introduced by instrumental 
maintenance cycles.   
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