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Lisbon, Portugal, 2 Centro de Quı́mica Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Lisbon,
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Abstract

The study of ocular drug delivery systems has been one of the most covered topics in drug

delivery research. One potential drug carrier solution is the use of materials that are already

commercially available in ophthalmic lenses for the correction of refractive errors. In this

study, we present a diffusion-based mathematical model in which the parameters can be

adjusted based on experimental results obtained under controlled conditions. The model

allows for the design of multi-layered therapeutic ophthalmic lenses for controlled drug deliv-

ery. We show that the proper combination of materials with adequate drug diffusion coeffi-

cients, thicknesses and interfacial transport characteristics allows for the control of the

delivery of drugs from multi-layered ophthalmic lenses, such that drug bursts can be mini-

mized, and the release time can be maximized. As far as we know, this combination of a

mathematical modelling approach with experimental validation of non-constant activity

source lamellar structures, made of layers of different materials, accounting for the interface

resistance to the drug diffusion, is a novel approach to the design of drug loaded multi-lay-

ered contact lenses.

Introduction

The use of ophthalmic lenses (OLs) as drug carriers has been well established among the scien-

tific community as a promising technique for increasing the efficacy of several ophthalmologi-

cal therapies [1,2]. The main advantage of using OLs as drug carriers is that the immediate,

uncontrolled delivery of drugs, such as by conventional eye drops and intravenous solutions,

is prevented. Moreover, drugs instilled as eye drops have a short residence time in the tear

film, leading to a low drug bioavailability [3,4]. Therapeutic OLs may increase the ocular resi-

dence time of drugs, minimizing drug waste and side effects [1]. However, to achieve these

goals, therapeutic OLs must deliver the drug in a controlled manner. To do so, important

questions that have impaired the commercial availability of such drug delivery systems must

be solved. The main drawbacks that remain to be solved include the initial burst of drug release
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Editor: Hélder A. Santos, Helsingin Yliopisto,

FINLAND

Received: September 9, 2016

Accepted: November 19, 2016

Published: December 9, 2016

Copyright: © 2016 Pimenta et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the paper and its Supporting Information

files.

Funding: This study was supported by Fundação
para a Ciência e a Tecnologia for A. Pimenta and P.

Paradiso PhD grants (SFRH/BD/52334/2013 and

SFRH/BD/71990/2010) and for funding through the

projects PEstOE/QUI/UI0100/2013 and M-ERA.

NET/0005/2012.

Competing Interests: The authors have declared

that no competing interests exist.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositório Comum

https://core.ac.uk/display/84111018?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0167728&domain=pdf
http://creativecommons.org/licenses/by/4.0/


and the limited duration of active release after the placement of the lens in the eye. The sim-

plest approach for preparing drug-loaded OLs, which has been the focus of many previous

studies, involves soaking hydrophilic lenses in commercial drug solutions [2,5,6]. This mini-

malistic approach, although leading to more effective drug release control and drug absorption

than eye drops, in general, cannot provide extended drug release [7,8]. To increase the tempo-

ral profile of drug release, several approaches have been suggested. Gulsen et al. [9] developed

nanoparticle-laden gels capable of loading substantial amounts of drug that could be released

at a controlled rate. Hiratani et al. [10] and Ali et al. [11] proposed ‘imprinted’ contact lenses,

which led to a significant increase in partition coefficients and to slower drug release. Ander-

son et al. [12] modified the surface of poly(2-hydroxyethylmethacrylate) (P(HEMA)) gels with

an n-alkyl coating to produce a hydrophobic rate-limiting barrier that controlled the release of

antibiotics. More recently, our group showed that plasma treatment may reduce the initial

drug release kinetics of drug-loaded contact lenses made of a P(HEMA)-based hydrogel and a

silicone-based hydrogel [13]. Although the approaches listed above are effective in increasing

the drug release duration, longer periods of release are still required, especially in the case of

intraocular lenses, which are designed to remain inside the eye.

A promising approach for therapeutic OLs recently presented by Ciolino and co-workers

[14,15] was the use of a sandwich structure that encapsulated a drug-containing film in a dif-

ferent drug-free polymeric matrix. The authors developed a so-called drug-eluting contact lens

capable of delivering glaucoma medication to the eye in a sustained manner for at least four

weeks [14,15]. Despite the extended temporal duration of the drug release, the authors referred

to an unavoidable initial drug release burst, which they attempted to reduce by pre-condition-

ing the OLs in PBS for a few days. However, this pre-conditioning step led to a reduced

steady-state concentration.

The mathematical modeling of the different mechanisms responsible for controlled release

from hydrogels such as diffusion, swelling or degradable controlled systems is well described

in literature [16,17]. Siepmann and Siepmann described analytically the mass transport from

different diffusion controlled drug delivery systems including from a reservoir type slab [18].

Mathematical description and characterization of the release behavior allows the prediction

and selection of the system parameters in order to tailor the drug release profile.

The aim of this work was to describe and characterize through a diffusion-based mathemat-

ical model the design of multi-layered drug-loaded lenses with optimal drug release behavior.

The model of the drug release profiles of the devices is described, and the results are compared

with experimental data. Then, we used the model to predict the drug release behavior of a spe-

cially manufactured multi-layered lens loaded with levofloxacin and chlorhexidine and to ana-

lyze the contributions of the parameters of multi-layered OLs, namely the roles of the drug

diffusion coefficient in the material and the thickness and interfacial transport characteristics

of the layers. We show that the initial burst may be minimized, and near zero-order release

conditions may be achieved by properly selecting the relative dimensions and characteristics

of the loaded/non-loaded layers of the lenses.

Materials and Methods

2-hydroxyethyl methacrylate (HEMA), ethylene glycol dimethacrylate (EGDMA), 2,2-azobis

(2-methylpropionitrile) (AIBN) and levofloxacin (LVF) were all purchased from Sigma-

Aldrich. Poly(vinylpyrrolidone) (PVP, KollidonVR 30) was kindly provided by BASF. Sodium

chloride was obtained from Merck, and chlorhexidine diacetate monohydrate (CHX) was

obtained from AppliChem. A Millipore Milli-Q water purification system was used to prepare

distilled and deionized (DD) water.
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Hydrogel preparation and drug loading and release experiments

A P(HEMA)-based hydrogel (HEMA/PVP) was prepared by dissolving appropriate amounts

of the EGDMA crosslinker and the AIBN initiator in HEMA to obtain final concentrations of

80 mM and 10 mM, respectively. PVP was added to the mixture at a ratio of 98/2 HEMA/PVP

(w/w). The mixture was poured into a mold that consisted of two parallel silanized glass plates,

and the mixture was thermopolymerized at 50˚C for 14 h followed by 24 h at 70˚C. The

obtained hydrogel sheet was soaked in DD water for 5 days to remove unreacted monomers,

cut into discs (2 cm2, average thickness of 0.3 mm), which were then dried in an oven at 40˚C

overnight and stored. Additional details on the protocol followed for the preparation of the

hydrogel can be found in Paradiso et al. [6].

Levofloxacin was dissolved in saline solution (130 mM) at concentrations of 5 mgmL-1 and

10 mgmL-1. Chlorhexidine was dissolved in DD water at concentrations of 1 mgmL-1 and 2.5

mgmL-1 due to its reduced solubility in saline solution. The hydrogels were drug loaded by

soaking each disc in 5 mL of the drugs solutions for 5 days at 4˚C. In vitro drug release tests

were performed at 37˚C while stirring (180 rpm) 5 mL saline solution until the release of the

drug was complete. At chosen time intervals, aliquots of 0.5 mL of the supernatant were col-

lected and replaced by the same volume of fresh saline solution. The drug concentration values

in the release medium were quantified using a spectrophotometer UV–VIS MultiscanGO

from Thermo Scientific1 at wavelengths of 255 nm for CHX and 290 nm for LVF. All the

experiments were carried out in triplicate.

To experimentally simulate the multi-layered lens system, a support ring made of Per-
spex1 acrylic was designed. A levofloxacin-loaded HEMA/PVP disc (loaded with a 5

mgmL-1 solution) was placed between two non-loaded HEMA/PVP discs inside the support,

and the disks were pressed against one another in the peripheral zone. A schematic repre-

sentation of the experimental multi-layered system is presented in Fig 1. In vitro drug

release was characterized in a volume of saline solution proportional to the volume used in

the single-lens drug release assays, i.e., maintain the ratio of the cross-sectional area/volume

of the supernatant.

Mathematical model for simulation of in vitro drug release—monolayered

lens

The simplest case was used to describe the drug release from the drug-loaded homogeneous

lens immersed in a liquid wherein the lens was considered a plate of infinite surface area and

finite thickness, l, and Fick’s second law of diffusion was applied, which is an approach similar

to that recently used by Pascoal, Silva and Pinheiro [16]. Assuming drug diffusivity, D, inde-

pendent of time and space and taking the space coordinate x orthogonal to the surface of the

lens with the origin at the left edge of the lens (Fig 2), the mass transfer problem considering a

Fig 1. Schematic representation of the experimental multi-layered drug-releasing system.

doi:10.1371/journal.pone.0167728.g001
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material with a certain concentration of drug (C) can be described using the following equa-

tion:

dC
dt
¼ D

@2C
dx2

� �

ð1Þ

The initial and boundary conditions for a lens immersed in a drug-free medium (CExt) are

as follows:

Cðx; 0Þ ¼ Co; x 2 ½0; l� ð2:1Þ

dC
dx

l
2
; t

� �

¼ 0; t � 0 ð2:2Þ

CExt ¼ 0; t � 0 ð2:3Þ

� D
@C
@x
ð0; tÞ ¼ a ðCð0; tÞ � CExtÞ; t > 0 and D

@C
@x
ðl; tÞ ¼ a ðCðl; tÞ � CExtÞ; t > 0 ð2:4Þ

The initial condition 2.1 states that the lens at t = 0 has a uniform concentration of drug, Co.

Conditions 2.2 and 2.3 define, first, a standard symmetry condition where l
2

is half of the thick-

ness of the lens and, second, that the concentration of the drug at the exterior of the lens, CExt,

is always null. Finally, Eq 2.4 represent the boundary conditions where α accounts for the resis-

tance to mass transport, in this case considered null (α = 1).

As shown in Fig 2, N represents the number of spatial nodes of the system, and Δx, the dis-

tance between nodes, is given by Dx ¼ l
N. Respecting the initial condition stated in Eq 2.1, at

t = 0, the normalized initial value of the concentration is Ct¼0
k ¼ 1; k ¼ ½1;N � 2� because we

considered that, at the boundary nodes (1 and N), the drug concentration is equal to the

Fig 2. Schematics of the implementation of the diffusion model for a homogeneous lens initially loaded

with a homogeneous normalized unitary concentration of drug C
t¼0

k
, where k = [1, N − 2].

doi:10.1371/journal.pone.0167728.g002
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concentration in the exterior medium. The time step was fixed at 1 minute and the Crank-Nic-

olson implicit method was used to solve Eq 1.

Fig 3 shows the evolution of Ct
k with time, where the inner part of the lens is maintained at a

higher concentration than the outer borders during all of the release period, as expected. At

each time, the (normalized) amount of drug released is given by the difference between the ini-

tial amount of drug and the total amount of drug that remains in the lens. For example, the

normalized released amount for t = 100 min is represented by the shadowed area in Fig 3

(delimited by the line and squares). This approach allows the numerical simulation results to

be directly compared with the experimental results.

Mathematical model for simulating in vitro drug release—multi-layered

lenses (drug-loaded core with a non-loaded coating)

In this section, we assume the ophthalmic lens as a composite sandwich in which each layer is

characterized by a certain thickness and a certain diffusivity (D) of the drug loaded within it.

Only the inner layer is loaded with the drug, as schematically shown in Fig 4.

For this system, the Crank-Nicolson scheme was also used. In this case, the drug diffusivity

in the coated layer and in the inner-loaded layer may be equal or different. The thicknesses of

Fig 3. Evolution with time of the fractional drug mass in the lens. Time (minute) 0 (circles), 100 (squares), 1000

(triangles) and 10000 (stars); the profiles were obtained for a lens with a thickness of 1 mm and a diffusivity of 1x10-12 m2s-1.

doi:10.1371/journal.pone.0167728.g003
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the lateral coatings ([0, l1] and [l2, l3]) are equal. This system can be described by Cin and Din as

the drug concentration and diffusivity, respectively, of the interior layer and by Cout and Dout

as the drug concentration and diffusivity, respectively, of the outer layers, with the following

conditions:

Cinðx; 0Þ ¼ Co; x 2 ½l1; l2� ð3:1Þ

Coutðx; 0Þ ¼ 0; x 2 ½0; l1½ or x 2�l2; l3� ð3:2Þ

dCin

dx
ltotal

2
; t

� �

¼ 0; t � 0 ð3:3Þ

CExt ¼ 0; t � 0 ð3:4Þ

Din
@Cin

@x
ð l1; tÞ ¼ Dout

@Cout

@x
ð l1; tÞ; t > 0 and Din

@Cin

@x
ð l2; tÞ ¼ Dout

@Cout

@x
ð l2; tÞ; t > 0 ð3:5Þ

� Din
@Cin

@x
ð l1; tÞ ¼ a ðCinð l1; tÞ � Coutð l1; tÞÞ; t > 0 and

Din
@Cin

@x
ð l2; tÞ ¼ a ðCinð l2; tÞ � Coutð l2; tÞÞ; t > 0 ð3:6Þ

At t = 0 only the inner layer has a certain concentration of drug, Co, with the exterior layers

having null drug concentrations. As in the system described in the previous section, a symme-

try condition is imposed at half of the thickness of the total system length (
ltotal

2
), and the concen-

tration in the exterior medium is maintained null. Resistance to the mass transport through

the interfaces between the interior and exterior layers is accounted for with an adjustable α.

Fig 4. Schematics of the implementation of the diffusion model for a homogeneous drug-loaded lens initially loaded

with a homogeneous normalized unitary concentration, C
t¼0

k
, and coated on both sides with a non-loaded diffusion

barrier.

doi:10.1371/journal.pone.0167728.g004
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Results and Discussion

Adjustment to experimental results: Determination of system parameters

The initial condition for the lens, either for the single-layer model Eq (2.1) or the multi-layer

model Eq (3.1) requires that at the beginning of the experiment, the concentration of drug

through the entire lens must be constant. Therefore, soaking in the drug solution should be

sustained for a sufficient amount of time to ensure drug homogeneity in the lens. Different

loading times were tested, and it was concluded that 5 days was enough time to achieve this

condition. To ensure that the concentration of drug in the surface of the lens is zero at t> 0,

the release was performed while stirring and within a sufficiently large volume of medium,

which could be considered as infinitely diluted (sink conditions).

To compare the experimental profiles with the calculated profiles, the released mass was

normalized, i.e., the mass released up to time t, M(t), was divided by the total mass M(1). To

solve the model system, a normalized initial value of Ct¼0
k ; k ¼ ½1;N � 2� was considered, and

a constant volume of the lens was assumed. Then, the numerically calculated normalized pro-

files can be directly compared with the normalized experimental profiles, and the adjustable

parameters D and α (α for multi-layered systems) can be extracted.

The first step was to adjust our model to the experimental results derived from the non-

coated lenses to obtain the diffusivity values of the studied drugs in the studied material. Fig 5

shows two examples of theoretical curves fitted to experimental points for two different lens/

drug systems: a HEMA/PVP-levofloxacin system (Fig 5a) and a HEMA/PVP-chlorhexidine

system (Fig 5b).

For each drug, two different concentrations of soaking solution were used. The lenses that

were soaked in more concentrated solutions had released higher amounts of drug by t =1.

However, the normalized experimental curves for the two soaking conditions did not present

significantly different release kinetics for the studied drugs, as was expected because the diffu-

sivity of the drug is independent of its concentration.

This finding is illustrated in Fig 5, where the experimental data points refer to the normal-

ized mass release of levofloxacin and chlorhexidine loaded from solutions of different

Fig 5. Adjustment of the numerically fit models to experimental points obtained from the release assays for infinite sink

conditions. (A) levofloxacin and (B) chlorhexidine from HEMA/PVP hydrogels. The concentrations are given in the inserts.

doi:10.1371/journal.pone.0167728.g005
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concentrations. As a result, it can be concluded that the diffusivity values are independent of

the concentration of the soaking solution.

The diffusivity values of the different studied systems determined by our model were com-

pared with those derived based on an analytical solution to Fick’s second law of diffusion, as

described by Peng et al. [19]. An agreement between the two sets of values was obtained

(Table 1).

The second step in adjusting the mathematical model to experimental results was to obtain

an estimate for α, the parameter related to the mass transfer within the interface between the

loaded and non-loaded lens in the multi-layered system. Experimental data were obtained for

a levofloxacin-loaded HEMA/PVP lens compressed between two non-loaded HEMA/PVP

lenses with the same thickness as the loaded lens (0.4 mm/layer). The diffusivity of 7.5x10-13

m2s-1 corresponded to the value previously obtained for this drug in the HEMA/PVP system.

The adjustment to the experimental release data, as shown in Fig 6 (doted gray curve),

revealed that an α = 0.07 resulted in an almost perfect adjustment between the experimental

points and the model trend line, indicating that the interfacial resistance to mass transport in

the multi-layered OLs systems is a key factor in drug release control. In fact, in this example,

the introduction of the discontinuity across the interface between the loaded and non-loaded

layers showed that the multi-layered system resulted in an increase in the total release time

from 20 hours to more than 150 hours.

Fitting of the experimental data to a general analytic solution of Fick’s law described by

Siepmann and Siepmann (Equation (3) in Reference [18]) is also presented in Fig 6 (dashed

blue curve). The same diffusivity was used and the fitting was optimized by adjusting the parti-

tion coefficient, k. An optimized k = 0.043 (which somehow compares with the α of the

numerical model) was obtained. Though both fits are acceptably good (although slightly worst

with the analytical model) it should be noted that:

1. the analytic solution, for the sake of simplicity, only accounts for the diffusivity through the

external layer;

2. conversely, the numerical solution accounts for both the external and inner layer diffusivi-

ties which can be dissimilar and determined a priori for the design of optimized systems

(treated in the final section of the present paper);

3. finally, the analytic model does not predict the delay time of the drug crossing the outer lay-

ers, which, in a more realistic manner, is predicted by the numerical model.

Application of the design of the multi-layered drug-loaded lens

In this section, we utilize the previously presented approach in two example applications. In

the first example, we establish as target objective multi-layered HEMA/PVP lenses that could

release levofloxacin and chlorhexidine over the course of one week at a nearly zero-order

release rate. To simulate these model lenses, we used the diffusional and interfacial parameters

determined in the previous section. Then, we manufactured the lenses (as described in section

Hydrogel preparation and drug loading and release experiments) and compared the predicted

Table 1. Drug diffusivity (D) of chlorhexidine and levofloxacin in HEMA/PVP hydrogels.

D (m2s-1) D [Peng et al. [19]] (m2s-1)

Chlorhexidine 5.0x10-13 4.0x10-13

Levofloxacin 7.5x10-13 6.7x10-13

doi:10.1371/journal.pone.0167728.t001
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release results with the experimental release results. In the second example application of the

model, we used the approach in a general manner to analyze the influence of the drug/lens

parameters of the obtained release profiles.

Slow-release multi-layered HEMA/PVP lens loaded with levofloxacin

and chlorhexidine: Simulation and experimental results of the model

systems

As shown in the previous section, by using the calibrated drug diffusivity parameters and after

gauging the α interface parameter, it is possible to numerically simulate different systems to

obtain optimal multi-layered lenses for desired applications. Preliminary calculations showed

that, for the HEMA/PVP system and for a typical lens thickness of 1.2–1.6 mm, if the loaded

core is approximately the same thickness as the un-coated layers, a slow drug release that can

release the drug at nearly a constant release rate with minimal drug bursts over the course of a

week can be achieved. The first system (#1) that we modeled and tested consisted of a lens

formed by a drug-loaded core of 400 μm and coated un-loaded layers of the same size

(400 μm), such that the total thickness of the model lens was 1.2 mm. A α factor of 0.07 was

obtained previously from fitting system #1 experimental data to the numerical model and was

used for the following simulation. The second system (#2) consisted of a drug-loaded core of

Fig 6. Predicted fractional release mass profiles given by numerical simulation. Single HEMA/PVP lens (“single inner”)

and coated HEMA/PVP lens with α = 1 (“coated lens, continuous interface”); comparison of experimental results of

levofloxacin release from a HEMA/PVP multi-layered system (“Exp. data”) fitting through a numeric solution (“coated lens,

numeric fitting”) and a analytic solution (Equation (3) in Reference [18]) (“coated lens, analytic fitting”) of Fick’s second law of

diffusion.

doi:10.1371/journal.pone.0167728.g006
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400 μm and coated un-loaded layers of 600 μm, such that the total thickness of the model lens

was 1.6 mm. For both model systems, we used levofloxacin (diffusivity of 7.5x10-13 m2s-1) and

chlorhexidine (diffusivity of 5x10-13 m2s-1) as the release drugs in the experimental validation.

Fig 7 shows a numerical simulation of the drug release from these systems (the first and sec-

ond systems are designated as #1 and #2, respectively, in the figure) compared with the experi-

mental points measured after 6, 24, 48, 72, 120 and 144 h of release. For system #2, numerical

predictions for both levofloxacin and chlorhexidine slightly overestimate the release profiles

when compared to the experimentally obtained curves. We observed that the increase in the

coating thickness by a factor of 1.5 significantly affected the absolute value of the drug release

with time but not the release kinetics. In fact, for both of these model lenses and for both drugs

tested, we observed that, theoretically and experimentally, after the first day, essentially a zero-

order release rate was obtained up to at least 150 h of release. Predictions for coatings with half

of the thickness of system #1 are also presented and are designated as system #3.

The results presented in this section support the hypothesis that the experimental release

profile of a coated lens can be tailored by the parameters of the overall system. In the next sec-

tion, we assume this premise to provide a general overview of the influence of the control

parameters (diffusion coefficient, interfacial transfer coefficient and thickness of the lens) on

the drug release profiles.

Design of multi-layered drug-loaded lens: A generalist approach

Next, we present illustrative cases for which the thickness of the coating, the diffusivity of the

drug in the coating, and the interface mass transport resistance parameter are varied. In addi-

tion to the predicted fractional mass release profiles, the predicted normalized drug concentra-

tion profiles if the systems were placed, as intraocular lenses, in the eye aqueous humor

(volume of 0.250 mL) and assuming a physiological renovation rate of 1% per minute were

also considered [20]. The predicted drug concentrations were estimated from the theoretical

fractional mass release profiles based on a mathematical model described in Paradiso el al. [5].

Fig 7. Predicted fractional release mass profiles given by the numerical simulation for coated HEMA/PVP lens systems. Inner

and outer lens thicknesses of 0.4 mm/layer (coated lens #1), inner lens thickness of 0.4 mm and an outer lens thickness of 0.6 mm/lens

(coated lens #2), and inner lens thickness of 0.4 mm and an outer lens thickness of 0.2 mm/lens (coated lens #3). Experimental release

experiments data (black and gray dots) for (A) levofloxacin and (B) chlorhexidine.

doi:10.1371/journal.pone.0167728.g007
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Here, the thickness of the inner loaded lens was maintained at 0.5 mm, and the drug diffusivity

in that material was maintained at 7.5x10-13 m2s-1.

Fig 8 shows the influence of the coating thickness on the release profile of the lens, keeping

the drug diffusivity (Dinner lens = Dcoating = 7.5x10-13 m2s-1) and the mass transfer related

parameter (α = 0.07) constant. It can be observed that by increasing the thickness of the coat-

ing, the total time to release the drug increases because the drug must traverse a greater dis-

tance. More interesting is the decrease in the initial burst of drug (Fig 8b) with increased

coating thicknesses.

Next, the effect of resistance to the mass transfer at the coating interface was estimated by

altering the parameter α. Drug diffusivity in the coating was maintained equal to the diffusivity

in the inner lens (Dinner lens = Dcoating = 7.5x10-13 m2s-1). The coating thickness was set at a

fixed value of 0.2 mm on each side. Fig 9 shows the dependence of the resulting mass release

profile and concentration burst on this adjustable parameter.

Note that by decreasing the parameter α by one order of magnitude, a significant change

occurs in the release kinetics. With α = 0.01, an almost zero-order release is achieved. In addi-

tion, the time lag for drug release increases (abscissa axis; Fig 9a) due to the resistance to drug

transport in the interface. This lag time must be accounted for very carefully in drug delivery

ophthalmic lenses because, during this time period, no drug would be available in the eye. The

initial drug burst can be significantly decreased if the mass transfer in the interface is precisely

calibrated.

The role of the drug diffusivity in the coating was also assessed by maintaining its thickness

at a fixed value of 0.2 mm on each side and considering α = 0.01. As shown in Fig 10, by decreas-

ing the drug diffusivity in the coating to one-third of the diffusivity in the drug-loaded lens, the

kinetics of the mass release are greatly altered, and the mass is released at lower rate. Note that

the burst and the time lag are also markedly affected by this variation. In contrast, if the drug dif-

fusivity of the coating is superior to that of the lens, the total mass release occurs more quickly.

Considering the above results and the requirements for efficient drug release, a theoretical

optimized multi-layered intraocular lens can be designed based on the input values given in

Table 2.

Fig 8. Influence of the coating thickness in the drug release. (A) predicted fractional release mass profiles given by numerical

simulation; (B) estimated normalized concentration of drug in the aqueous humor volume taking into account its renovation rate for

coated lenses. Coating thickness values (in mm/coating layer) are shown in the figure (full black line: single lens; dashed lines: coated

lenses).

doi:10.1371/journal.pone.0167728.g008
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The fractional mass release profile and expected normalized drug concentration in the

aqueous humor for use of this theoretically designed lens are depicted in Fig 10. A theoretical

optimal ophthalmic lens depends on multiple factors (physiological, pharmacokinetics, etc.)

and on the desired application (treatment requirements). Here, we aimed to achieve an effec-

tive intraocular lens that could be used during the critical period after cataract removal surgery

to prevent the development of postoperative endophthalmitis.

The initial time lag of this multi-layered system was estimated to be approximately 24

hours, corresponding to the time period during which antibiotic intracameral injections that

are commonly applied following this type of surgery are estimated to be effective [21]. After

this time lag, the release of drug from the multi-layered system is sustained for a period of at

Fig 10. Influence of the coating drug diffusivity in the drug release. (A) predicted fractional release mass profiles given by numerical

simulation; (B) estimated normalized concentration of drug in the aqueous humor volume taking into account the renovation rate of

coated lenses. Coating diffusivity values are shown in the figure (full black line: single lens; dashed lines: coated lenses).

doi:10.1371/journal.pone.0167728.g010

Fig 9. Influence of the resistance to the mass transport through the interfaces in the drug release. (A) predicted fractional release

mass profiles given by numerical simulation; (B) estimated normalized concentration of drug in the aqueous humor volume taking into

account its renovation rate in coated lenses. The values of α are shown in the figure (full black line: single lens; dashed lines: coated

lenses).

doi:10.1371/journal.pone.0167728.g009
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least 12 days and is likely sufficient to prevent acute endophthalmitis, which most likely devel-

ops within 1–2 weeks after surgery [22].

It must be taken into account that the concentration values presented in Figs 8–10 are esti-

mated from a fractional release mass curve and are, therefore, normalized. As mentioned

above, the total mass released and, consequently, the in vivo drug concentration are dependent

on the drug-soaking solution concentration, which determines the total mass of drug uptake.

A lens loaded with a solution of a higher drug concentration will release greater amounts of

mass while not affecting the kinetics of release, as demonstrated in Fig 5.

Conclusions

As previously described, the primary aim of ocular drug release studies is to minimize the ini-

tial burst of drug release and to achieve a constant target release rate over an adequate time

interval. Coating the drug-loaded lenses is a common strategy adopted to achieve these aims.

Here, a mathematical model based on a numerical solution of Fick’s second law of diffusion is

proposed to predict how a certain coating influences the drug release profile from a given

material. The model predictions were compared with experimentally obtained results to vali-

date the model and were then used to predict the behavior of the drug-loaded multi-layered

lens. This work shows that by properly controlling the materials of a multi-layered lens and the

interfacial mass flux properties, controlled drug delivery can be achieved. Additionally, by

manipulation of the system characteristics (e.g., thickness of the layers, diffusivity of the

drugs), a tailored drug release profile can be designed to achieve the desired therapy.

Supporting Information

S1 Data. Experimental results obtained from drug release experiments.

(XLSX)
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