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ABSTRACT 

The present work pretends to study the operation and behavior of the LLC resonant converter 

topology considering a battery charging application, using the traditional switching frequency 

control and a new control variable, the variable inductance, provided by a current controlled 

device, the Variable Inductor (VI). 

During this work, a brief state of the art regarding general types of power converters and 

resonant power converters is presented. The LLC resonant converter topology and its 

advantages and disadvantages are described. The VI principle of operation and structure is 

presented and discussed and, in the end some information about batteries and its behavior 

under charging and discharging conditions is presented. The considered batteries 

characteristics for the studied battery charger are shown and the adopted charging profile is 

presented. 

In the following chapters, a theoretical analysis of the LLC resonant converter operation and 

behavior under switching frequency or VI control is performed and presented. A design 

methodology is proposed for the converter considering both switching frequency and VI 

control, separately or simultaneously. Simulations of the converter operation under open-loop 

condition were made, and simulation results were obtained and discussed. 

A prototype was built and test results were obtained. The prototype uses a SiC MOSFET 

(Silicon Carbide Metal Oxide-Semiconductor Field Effect Transistor) based inverter working 

at 100 kHz controlled with fiber optic drivers. To build the prototype, Printed Circuit Boards 

(PCB) were designed, manufactured and built. An high-frequency transformer and a VI were 

also design and built. Finally, theoretical, simulation and experimental results are confronted 

in order to reach conclusions regarding to the proposed design methodology and the prototype 

operation. This final analysis allows validating the LLC-VI resonant converter as a good 

option for a battery charger. 

 

 

 

Keywords: LLC Resonant Converter; Variable Inductor; DC-DC Power Converters; 

Resonant Inverters; Battery Chargers. 
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RESUMO 

O presente trabalho apresenta um estudo sobre o comportamento e operação do conversor 

ressonante LLC considerando uma aplicação de carregamento de baterias. Esta análise 

considera o tradicional método de controlo usando a frequência de comutação e, 

implementando uma nova variável de controlo para este tipo de conversores de potência, a 

Bobina de Indutância Variável (BIV) – Variable Inductor (VI). 

Os conversores de potência baseados em topologias ressonantes têm vantagens relativamente 

aos tradicionais conversores controlados usando técnicas de PWM (Pulse-Width Modulation). 

Algumas das vantagens são: a possibilidade de trabalhar a frequências de comutação mais 

elevadas, reduzindo assim o tamanho dos conversores; operação em modo ZVS (Zero Voltage 

Switching), reduzindo as perdas por comutação. A topologia utilizada, o conversor ressonante 

LLC tem vindo a ser estudada nos últimos anos devido a estas vantagens quando comparada a 

outras topologias ressonantes, como o conversor ressonante série ou o conversor ressonante 

paralelo. 

A Bobina de Indutância Variável é um elemento magnético que permite, de forma controlada, 

variar o valor da indutância da bobina através da regulação do nível de saturação do núcleo. 

Este elemento magnético tem tido aplicações variadas no que respeita ao controlo de 

conversores de eletrónica de potência, nomeadamente em aplicações de energias renováveis, 

controlo de lâmpadas LED (Light Emitting Diode) e, em particular, em conversores 

ressonantes.  

Neste trabalho é apresentado um breve estado da arte sobre os tipos de conversores de 

potência assim como os tipos de conversores ressonantes, introduzindo a topologia em estudo, 

o conversor ressonante LLC, bem como as suas vantagens e desvantagens. O princípio de 

funcionamento e estrutura da BIV são apresentados. Por fim, informação adicional sobre o 

funcionamento e comportamento das baterias durante os processos de carga e descarga é 

apresentada e discutida. São ainda apresentadas as características das baterias consideradas 

para a aplicação em estudo bem como os perfis de carregamento adoptados. 

De seguida, a topologia típica do conversor ressonante LLC é descrita, bem como as 

alterações efectuadas por forma a obter a topologia proposta, o conversor ressonante LLC 

controlado com BIV. É apresentada a análise teórica do conversor através de expressões 

matemáticas e de gráficos que permitem compreender o comportamento e funcionamento do 
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conversor. Por fim, o impacto da frequência de comutação e da BIV no funcionamento do 

conversor ressonante LLC é analisado. 

A análise teórica efectuada permite compreender o funcionamento e comportamento do 

conversor ressonante LLC quando controlado através da frequência de comutação ou, 

utilizando o método de controlo proposto, utilizando uma BIV. Uma metodologia de cálculo é 

proposta, a qual permite dimensionar o conversor para ser controlado usando a frequência de 

comutação ou a BIV, separadamente ou em simultâneo. Desta análise resultou um ficheiro em 

Mathcad que implementa a metodologia de cálculo proposta, permitindo assim projetar o 

conversor ressonante LLC para uma determinada aplicação. Os principais parâmetros para 

projetar o conversor ressonante LLC são: o nível de tensão do barramento DC que alimenta o 

conversor, a frequência de comutação do inversor de meia-ponte e, os valores de tensão e 

corrente de saída. Através dos resultados teóricos e de gráficos obtidos, é possível analisar o 

comportamento e operação do conversor em função das variáveis de controlo (frequência de 

comutação e BIV) e da carga. Durante a análise teórica considera-se que a carga é uma carga 

resistiva com valor equivalente que permite emular o comportamento, neste caso, da bateria 

num determinado ponto de operação específico, equivalente a um estado de carga. 

Simulações são então conduzidas utilizando o software PSIM (Power Electronics Simulation 

Software), que permite obter formas de onda e medidas de valores de tensão e de corrente em 

diversos pontos do circuito, que permitem comprovar o seu funcionamento. Os resultados 

foram obtidos com controlo em malha aberta. 

Relativamente aos resultados experimentais, foi inicialmente construído um protótipo a operar 

a cerca de 10 kHz. Este protótipo inicial integrava um inversor de meia-ponte comercial da 

SEMIKRON baseado em IGBTs (Insulated Gate Bipolar Transistor), estando limitado a uma 

frequência de comutação máxima de 20 kHz. Este primeiro protótipo foi utilizado apenas para 

testar e comprovar a resposta do conversor ressonante LLC quando controlado com uma BIV. 

Durante os testes laboratoriais, os resultados foram obtidos igualmente com controlo em 

malha aberta. Os resultados deste protótipo não são apresentados neste trabalho mas foram 

publicados num artigo para a conferência IEEE IECON 2016. Mais tarde, um novo protótipo 

foi desenvolvido, usando um inversor de meia-ponte baseado em transístores SiC MOSFET 

(Silicon Carbide Metal Oxide-Semiconductor Field Effect Transistor) a comutar a 100 kHz 

controlados por drivers comandados por impulsos por fibra ótica. O setup experimental é 

composto por várias Placas de Circuito Impresso (PCI) – Printed Circuit Boards (PCB). As 

PCBs foram projetadas, construídas e testadas em ambiente laboratorial. Para completar o 

protótipo, foi ainda necessário projetar e construir: um transformador de alta frequência que 
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faz parte do circuito ressonante, permitindo o isolamento galvânico entre a entrada e a saída 

do conversor; e o protótipo de uma BIV, que permite efetuar o controlo do conversor 

mantendo a frequência de comutação constante. Após montagem do setup experimental, foi 

possível realizar testes experimentais e obter resultados relativamente à operação e 

comportamento do conversor ressonante LLC. 

Resultados teóricos, de simulação e experimentais são confrontados ao longo do trabalho por 

forma a comprovar a veracidade do método de cálculo proposto, bem como a operação do 

protótipo do conversor ressonante LLC controlado usando a BIV. Os resultados teóricos e 

simulados são muito similares o que prova a veracidade da metodologia de projeto proposta. 

Os objetivos inicialmente previstos foram atingidos no que diz respeito à validação da 

topologia proposta, com este parâmetro de controlo alternativo, com a finalidade de aplicação 

em carregadores de baterias. No entanto, visto que o protótipo ainda se encontra em fase de 

otimização, os testes foram apenas efetuados a um nível de potência mais baixo quando 

comparado com o valor nominal. Pretende-se como trabalho de continuação, a implementação 

do controlo em malha fechada, e do teste com o banco de baterias de acordo com as 

especificações escolhidas. A eficiência obtida nessas condições deverá melhorar no que diz 

respeito ao registo obtido na fase experimental. 

O trabalho foi desenvolvido no Laboratório de Sistemas Energéticos (LSE) do Instituto de 

Telecomunicações – Coimbra (IT-Coimbra), onde foi possível realizar a análise teórica e de 

simulação, bem como, proceder ao projeto e construção do protótipo e do setup experimental 

necessário para obtenção dos resultados experimentais. As PCBs projetadas foram fabricadas 

no Gabinete Técnico de Electrotecnia (GTE) do Instituto Superior de Engenharia de Coimbra 

(ISEC) – Instituto Politécnico de Coimbra (IPC). As PCBs foram então montadas e testadas 

no LSE. 

A realização deste trabalho permitiu algumas contribuições para o grupo de investigação do 

IT-Coimbra e não teria sido possível sem o apoio de ambas as instituições envolvidas, o ISEC 

e o IT. 

A realização deste trabalho permitiu ainda a publicação de dois artigos em duas conferências 

internacionais, um na conferência UPEC 2016 intitulado “Analysis and Simulation of the LLC 

Resonant Converter under Different Control Methods”, e outro na conferência IECON 2016, 

intitulado “Evaluation of a Variable-Inductor-Controlled LLC Resonant Converter for 

Battery Charging Applications”. Um terceiro artigo está ainda a ser preparado para submissão 

a uma revista do IEEE. 
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GLOSSARY 

Duty Cycle   In a period of time, corresponds to the percentage in which the signal is 

at logic level ‘1’, being at ‘0’ in the rest of the period. 

Ripple    Is the AC component that adds to the mean value in a DC signal. It 

appears normally due to the rectifiers in the electronic circuit. 

Resonance  Tt’s a phenomenon that occurs in a electronic circuit that is as 

capacitive (capacitive reactance, _>) as inductive (inductive reactance, _G) in such way that 

both capacitive and inductive reactance’s are equal (_> = _G) and, in this case the current is 

not lagging or in advance to the voltage (what would happen normally in electronic circuits 

with capacitors and inductors). To the power source, at resonance the electronic circuit 

behaves like a resistive load. 

ZVS   Zero Voltage Switching is a converter operating mode where a 

transistor stops conducting when the current crosses through zero and inverts its value 

becoming to flow through the anti-parallel diode. In this case, the transistor gets out of 

conduction naturally when the current crosses zero leading to almost no switching losses. 

ZCS   Zero Current Switching is a converter operating mode where a 

transistor is turned on the anti-parallel diode is conducting which causes a very small voltage 

variation leading to almost no switching losses. 

LCR Meter  Equipment used to measure inductance, capacitance and resistance. 

Dead-time  Time between the turn-off and turn-on of two switches in one of the 

arms of a half-bridge or full-bridge inverter, for example, to guarantee that there will not 

happen short-circuit to the input source. 
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 Introduction 1.

 Chapter 1 1.

The growing demand for transportation vehicles and for a more sustainable world leads to 

search for less pollutant and more reliable energy sources in order to reduce emissions to the 

atmosphere, which degrade the ozone layer. Therefore, instead of the typical vehicles with 

internal combustion engines with fossil based fuels, researchers across the world have been 

trying to explore new types of vehicles, such as Electric Vehicles (EV), Hybrid Electric 

Vehicles (HEV), Plug-In Hybrid Electric Vehicles (PHEV) and others. An HEV is a vehicle 

that has two engines, typically a gasoline powered internal combustion engine and an electric 

motor that allows reducing the effort of the combustion engine, resulting in a lower fuel 

consumption and emission reductions [1]. An EV is a vehicle that is entirely powered by 

electric motors (one or more) [2]. Because HEVs and EVs have electric motors they also 

require some kind of electricity storage unit, for instance fuel cells, batteries, and others. 

Existent battery charging systems are based on converters that provide a variable DC output 

to charge the batteries. In order to have output regulation typically these converters can be 

controlled using different control variables such as switching frequency, phase-shift, Pulse-

With Modulation (PWM), among others. There are very complex battery charging algorithms, 

which also depend of the battery technology. However, the purpose of this work is to 

investigate a new converter topology with a new control technique by considering very simple 

battery charging scheme, based on constant current, Current Charging Stage (CCS), and 

constant voltage, Voltage Charging Stage (VCS). 

Therefore, the main focus will be on the converter selection, design and implementation. The 

selected converter is an LLC resonant converter. Rather than focusing on the charging 

technique, the purpose of this work is to study the behaviour of the converter using a different 

control parameter, a variable inductance – �HE – and its ability to provide a controllable output 

for charging applications. A current-controlled magnetic device called Variable Inductor (VI) 

provides this variable inductance �HE that corresponds to the VI inductance value. Typically 

the operating principle of resonant converters is based on the variation of the switching 

frequency �7, and consequently regulate the voltage gain of the converter. In this work, using 

the VI, the switching frequency of the converter can be kept constant and the variable 

inductance is used to change the resonant frequency allowing output voltage regulation. 
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Thus, the main goal of this work will be the study and the design of a LLC resonant converter, 

comparing the typical switching frequency control and the proposed control technique using a 

VI. Applied to a battery charger, the purpose of the system to be developed is to control the 

charging process, ensuring that battery requirements are met. In order to do this, a simple 

charging profile is considered, where the voltage varies linearly during the charging process 

in order to simplify the theoretical analysis. Although complex algorithms can be used to 

charge the batteries, the selected charging profile, thought simple, is sufficient to test the 

viability and operation of the converter. Therefore this work does not focus on the charging 

algorithm but only on the converter response. 

 Motivation and Main Objectives 1.1.

Nowadays there are many commercial battery technologies (Lead-Acid, Niquel-Metal 

Hydride (Ni-MH), Lithium Ion (Li-Ion)) and consequently various types of battery chargers 

[3],[4]. Converters based on the LLC resonant topology have recently become very popular 

and have also been selected to implement battery chargers, using the classical topology or 

with few adjustments to improve its operation and efficiency [5]-[7]. In the LLC resonant 

converter the voltage gain can be changed by acting either on the switching frequency, on the 

resonant tank, or both. These two control methods will be further discussed and compared. An 

LLC-VI based converter will be presented as a viable battery charger. The general diagram of 

the system is presented in Figure 1.1 and will be briefly discussed. 

DC-DC LLC-VI

AC

DC

DC

AC

Resonant 
Tank

AC

DC

Grid
Power

Battery

VI Controlfs Control

Rectifier Inverter Transformer
High-frequency 

rectifier

~

DC 
Bus

 
Figure 1.1 – General configuration of the battery charger 

The charger is fed by the AC grid. In a first stage a rectifier converts the grid power into DC 

power creating a DC Bus (a Power Factor Correction (PFC) stage can be implemented in the 

future to try to improve the converter operation). The DC Bus feeds the DC-DC converter 

(gray block) to charge the batteries. The DC-DC converter can be divided into four blocks. 

� The inverter, which is powered by the DC Bus, feeds the resonant tank. The inverter 

allows controlling the converter output power by acting on the switching frequency. 
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� The resonant tank allows resonant operation and, if a VI is introduced, the converter 

output power can also be controlled using the variable inductance.  

� The transformer allows galvanic isolation from the input to the output. The 

transformer can also be part of the resonant tank. 

� A high-frequency rectifier, which rectifies the output voltage of the transformer, feeds 

the batteries with low ripple voltage and current. 

As previously mentioned, researchers across the world have been using the LLC resonant 

converter for various applications. Nevertheless the LLC-VI converter topology has not yet 

been studied for battery charging applications. This option is now discussed and its further 

potential will be investigated. The LLC-VI converter has inherent advantages: lower 

switching losses, due to resonant operation, constant switching frequency operation with low 

power losses in the magnetic device. 

In a previous work, a different DC-DC resonant converter topology was studied considering 

VI based control (the DC-DC series-parallel resonant converter class D [8]). During that 

work, a VI prototype was built and tested. That application allowed selecting the battery 

output voltage and current levels.  However, this topology was abandoned, an LLC resonant 

converter, which has become a hot topic in the last few years [9], was then selected, studied 

and analyzed. 

The main goal of the present work is to study and develop a design methodology for building 

an LLC resonant converter for a battery charging application, considering both control 

techniques: the typical switching frequency control and the VI based control technique. A 

comprehensive simulation study of the converter operation is performed and a prototype is 

built and tested. The theoretical, simulation and experimental results are presented and 

discussed considering the viability of the converter as a battery charger. 

The work was developed in the Laboratório de Sistemas Energéticos (LSE) from the Instituto 

de Telecomunicações – Coimbra (IT-Coimbra). In the LSE it was possible to develop the 

theoretical and simulation analysis, to design and build the prototype and perform 

experimental tests. The designed Printed Circuit Boards (PCB) were manufactured in the 

Gabinete Técnico de Electrotecnia (GTE) from the Instituto Superior de Engenharia de 

Coimbra (ISEC) – Instituto Politécnico de Coimbra (IPC). The PCBs were then assembled 

and tested in the LSE. 

The work can be divided in the following steps: 
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� Firstly, a design methodology is proposed that allows understanding the LLC resonant 

converter behavior and operation. It will also allow designing the converter for the 

desired battery charger application considering the typical �7 control and the proposed 

controlled technique using a VI. 

� Secondly, simulation studies will be performed and simulation results will be 

presented and analyzed. This analysis is made considering both �7 and VI control. 

Theoretical and simulation results are used to compare both control techniques for the 

LLC resonant converter. The possibility of using simultaneously both �7 and VI 

control techniques is also introduced. 

� Thirdly, a prototype of the proposed converter will be implemented. The prototype 

will have a SiC MOSFET (Silicon Carbide Metal Oxide-Semiconductor Field Effect 

Transistor) half-bridge based inverter, working at 100 kHz, controlled with fiber optic 

based drivers. The prototype is designed to charge two sets of 8 serially connected 

lead-acid batteries in parallel with a 96 V nominal voltage that can vary between 

approximately 84 V and 116 V and that will be charged with a maximum 10 A DC 

current. The charging operation is controlled through the VI. Experimental results will 

be confronted with the theoretical and simulation results to reach conclusions 

regarding the validity of the design methodology and proposed converter topology. 

During this work, different software programs were used: 

� PTC Mathcad Prime 3.1 – Software for computing mathematical equations used in 

the design of the converter and VI. The software also allows designing graphics to 

understand the behavior and operation of the converter. 

� PSIM version 9 – Software used to perform simulations of the converter and obtain 

results in the form of graphics and values (mean, rms (Root Mean Square), etc.). 

� Matlab R2012b – Software used to perform auxiliary calculations for the design. 

� Matlab R2012b / Simulink library and Embedded Coder Support Package for 

Texas Instruments C2000 Processors Library – Libraries from Matlab used to 

perform additional simulations of the converter, and to generate the code to program 

the DSP (Digital Signal Processors) control board – C2000 Peripheral Explorer Kit 

with a TMS320F28335 microprocessor from Texas Instruments – using CCS (Code 

Composer Studio). 

� Code Composer Studio 5.5 – Software used to program the DSP control board. 

� EAGLE 7.5.0 Light Edition – Software used to draw the PCB schematics, the design 

of the boards and to generate the files to manufacture the PCBs. 
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� LabVIEW 2015 – Software used to design the VI. 

 Outline of this Work 1.2.

This work report is divided in 6 chapters. The overall structure and a brief introduction of 

each chapter is described as follows: 

Chapter 1 - Introduction, gives a brief introduction to the developed work. The 

motivation and main goals are presented and the overall structure of this document is 

introduced. 

Chapter 2 – State of the Art, presents the general types of power converters, 

followed by a summarized discussion on resonant power converter topologies. The Variable 

Inductor (VI) structure and principle of operation are presented. Batteries characteristics and 

the adopted battery charging profiles are presented. 

In Chapter 3 – LLC-VI Resonant Converter for a Battery Charger, the LLC 

resonant converter topology is presented followed by the description of its operating principle, 

theoretical analysis and operation modes. The design methodology is performed considering 

the battery charging requirements.  Finally the control variables impact on the converter 

output is presented. 

Chapter 4 – Simulation Results, shows the simulation results of the LLC Resonant 

Converter considering both frequency and VI control methods. 

In Chapter 5 – Prototype and Experimental Results the experimental results are 

shown considering the implemented prototype. Experimental results are confronted with 

simulation and theoretical results. 

In Chapter 6 – Conclusions, Contributions and Future Work, the conclusions are 

presented and the main contributions and future work are identified. 

The work described in the following chapters can be complemented with information 

provided in the Appendix. 
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 State of the Art 2.

 Chapter 2 2.

In this chapter, general types of power converters are presented followed by classical resonant 

power converters topologies. The Variable Inductor (VI) structure and principle of operation 

are described. A brief state of the art describing batteries main characteristics and charging 

profile is also presented. The chapter ends with a brief description of general battery profiles. 

This analysis guides the options regarding the adopted charging scheme. 

 Types of Power Converters 2.1.

Power converters are electronic circuits that are used to convert a type of energy (DC or AC) 

into another type of energy (DC or AC) that can be equal or different from the original with or 

without isolation from the input to the output. There are four main types of converters [8]: 

� AC-DC converter or Rectifier – Converts an AC input into a DC output. The most 

common topologies are the half-bridge rectifier, full-bridge rectifier with center-

tapped transformer and, full-bridge rectifier. 

� DC-DC converter or Chopper – Converts a DC input into a DC output that can be 

smaller, equal or higher than the input and can be constant or variable. This converter 

can also be isolated if a high-frequency transformer is used. 

� DC-AC converter or Inverter – Converts a DC input into an AC output, without a 

DC bus, that can have a fixed or variable amplitude and frequency. Some examples 

are half-bridge or full-bridge inverters. 

� AC-AC converter – Converts an AC input into an AC output that can have a smaller, 

equal or higher amplitude and frequency. 

Figure 2.1, presents the basic block diagrams corresponding to the four types of converter 

configurations described above. 
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Figure 2.1 – Four basic converter configurations: a) AC-DC converter; b) DC-DC converterwith 

isolation; c) DC-AC converter; d) AC-AC converter [8] 
A rectifier, shown in Figure 2.1 a), converts an AC voltage or current into a DC voltage. An 

inverter, shown in Figure 2.1 c), converts a DC voltage or current into an AC voltage or 

current output. A DC-DC converter Figure 2.1 b), converts a DC input into a DC output. An 

AC-AC converter Figure 2.1 d), converts an AC input into an AC output. 

A DC-DC converter Figure 2.1 b), converts a DC input into a DC output. It can be an isolated 

or non-isolated topology. For example, Buck, Boost or Buck-Boost converters are simple 

non-isolated DC-DC converters topologies. In isolated topologies, there is an isolation high-

frequency transformer and, in such case, the converter can be implemented by cascading an 

inverter followed by a rectifier, with a high-frequency transformer placed in between. An AC-

AC converter Figure 2.1 d), converts an AC input into an AC output. It can be simply 

implemented using a cycloconverter, which converts directly an AC input into an AC output 

or, it can be composed by cascading a rectifier and an inverter. In such case, there is a DC Bus 

between both converters. 

For many low and medium power applications, the converters are controlled using Pulse-With 

Modulation (PWM). The simplest PWM technique consists in having the converter switches 

commutating at constant frequency and, by controlling the duty cycle, the converter output is 

varied. These commutations interrupt the converter power flow, resulting in abrupt voltage or 

current changes (voltage/current square waveforms).This hard-switching results in high 

switching losses. The rectangular waveforms have high harmonics components which can 

potentially cause electromagnetic interferences (EMI). Hence, the PWM technique has some 

limitations in terms of operating frequencies, and can compromise the system efficiency due 

to switching losses. Because of the PWM technique limitations and because in many 

applications it is required a sinusoidal output of voltage/current, new converter topologies 

have been studied that allow generating sinusoidal shaped waveforms instead of rectangular 

shaped waveforms. In order to achieve sinusoidal voltage/current waveforms, a resonant 

circuit can be used in power converters. These types of converters are called resonant 
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converters. In resonant converters the switches (transistors and diodes) are softly-switched 

allowing either Zero-Voltage Switching (ZVS) or Zero-Current Switching (ZCS). Sinusoidal 

shaped waveforms are generated reducing significantly switching losses and EMI levels [8], 

[10]. 

 Types of Resonant Converters 2.2.

When compared to PWM based converter topologies (described before), resonance operation 

is advantageous because it allows resonant converters to have lower switching losses and 

lower electromagnetic interference levels (EMI) leading to higher efficiency and reliability. 

Increasing the operation frequency leads also to circuit miniaturization and improved EMC 

(Electromagnetic Compatibility) [11]. 

A resonant converter is a particular kind of converter which operation is based on the 

resonant principle. The resonant circuit, resonant tank or resonant network is an electric 

circuit composed by passive elements, capacitors and inductors (and can also have 

transformers incorporated) that are connected and designed in such way that allow operating 

at resonance achieving sinusoidal voltage/current waveforms. 

The resonant tank can have various configurations. The main four configurations are: 

� Series-Series (SS); 

� Series-Parallel (SP); 

� Parallel-Parallel (PP); 

� Parallel-Series (PS). 

These configurations depend on the way that the passive elements of the resonant tank are 

connected. The basic resonant circuit topologies are presented in Figure 2.2. 

L1 C1 C2 L2 L1 C1

C2

L2

L1 L2 L1 C2 L2

(a) (b)

(c) (d)

C1 C1C2

 
Figure 2.2 – Four basic resonant circuit configurations: a) SS topology; b) SP topology; c) PP 

topology; d) PS topology 
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These topologies allow galvanic isolation from the input to the output due to the existence of 

the transformer. Figure 2.2 a) shows the Series-Series topology where in the primary side the 

inductor �B is connected in series with capacitor %B and in the secondary side, the inductor �3 

is connected in series with capacitor %3. Figure 2.2 b) shows the Series-Parallel topology 

where in the primary side the inductor �B is connected in series with capacitor %B and in the 

secondary side, the inductor �3 is connected in parallel with the capacitor %3. Figure 2.2 c) 

shows the Parallel-Parallel topology where in the primary side the inductor �B is connected in 

parallel with the capacitor %B and in the secondary side, the inductor �3 is connected in 

parallel with the capacitor %3. Figure 2.2 d) shows the Parallel-Series topology where in the 

primary side the inductor �B is connected in parallel with capacitor %B and in the secondary 

side, the inductor �3 is connected in series with capacitor %3. 

Resonant converters can also allow AC-DC, DC-DC, DC-AC or AC-AC conversion 

depending on the design of the topology. For example, the DC-DC resonant converter can be 

obtained by cascading two converters, a resonant inverter (DC-AC converter) connected to a 

high-frequency rectifier (AC-DC converter). In this case, the DC input power is first 

converted into AC power by the resonant inverter and then, the AC power is converted back 

to DC power at the output by the rectifier. To allow isolation, a transformer can be inserted in 

the converter between the inverter output and the rectifier input. If the converter operates at 

high-frequency, the overall size of the converter can be reduced (note that a high-frequency 

transformer is much smaller than a low-frequency transformer) [8]. 

From this point on, the DC-DC resonant converter is analyzed. Representing the DC-DC 

resonant converter as the cascade of two converters is convenient because it allows a simpler 

analytical analysis. If the input of the rectifier is a sinusoidal voltage/current, it means that 

only the fundamental component is converted from AC to DC power. Having sinusoidal 

waveforms means that the rectifier can be replaced by its input impedance defined as the ratio 

between the fundamental components of the rectifier input voltage and current. This 

impedance will be called further in this work as �;A and, it can be seen as an AC load for the 

inverter. This facilitates the project of the converter because the inverter and the rectifier can 

be analyzed and designed separately. If the resonant circuit load quality factor (-) is high 

enough and if it is working near resonance (switching frequency �7 close to the resonant 

frequency �8) the resonant inverter operates usually in continuous conduction mode (CCM) 

and forces either a near sinusoidal output current or voltage, depending on the resonant circuit 

topology. This means that the entire inverter can be replaced by a sinusoidal current or 

voltage source at the input of the rectifier. Therefore, the project of the converter can be made 



   STATE OF THE ART 

Válter de Sousa Costa  11 

in two steps, analyzing and designing the rectifier and the inverter separately and, after this, 

they can be cascaded as in other electronic systems cells/modules. 

The cascaded inverter and rectifier need to be compatible with each other. This means that a 

rectifier requiring an input voltage source (voltage-driven rectifier or voltage-source rectifier) 

needs to be connected to an inverter whose output behaves like a voltage source (for example, 

inverters with a parallel-resonant circuit, forcing at the output a sinusoidal voltage). Similarly 

if the rectifier requires an input current source (current-driven rectifier or current-source 

rectifier), the inverter output should behave like a current source (for example, inverters with 

a series-resonant circuit, forcing at the output a sinusoidal current). Finally, to characterize the 

DC-DC converter, for example, the efficiency or the voltage transfer function, can be both 

obtained in a simple way as the product of the characteristics of the inverter and the rectifier 

[8]. 

Considering this, and in order to be able to design the converter it is considered that the 

converter will operate at or near resonance. The current and/or voltages are near sinusoidal so, 

the fundamental-frequency approach or first harmonic approximation (FHA) can be used. 

This approach considers only the fundamental components of voltage and/or currents (with no 

harmonic components) [9]. The FHA allows studying and characterizing the behavior of the 

converter. Nevertheless, note that if the resonant circuit load quality factor (-) is very low 

and/or the converter is operating far from the resonance (switching frequency �7 much lower 

or higher than the resonant frequency �8), the current waveforms may differ from sinusoidal 

waves (current has harmonic components) and the converter may operate in discontinuous 

conduction mode (DCM). In such cases, if FHA is used, it can lead to inaccurate design of the 

converter due to non-consideration of the harmonic components. In this case, other design 

approaches should be considered [8]. 

In order to design the converter, some considerations need to be accounted for. For example, 

for higher power density and smaller size power converters the switching frequency needs to 

be higher. Increasing the switching frequency allows reducing considerably the size of passive 

elements in the converter circuit, such as transformers, inductors and capacitors. Increasing 

the switching frequency in typical power converters means higher switching losses. However, 

using resonant converter topologies allows operating at higher frequencies with low switching 

losses [9]. In resonant converters, power is transferred in a sinusoidal manner and the 

switches are softly commutated reducing considerably these losses and noise. 

Two basic resonant converters topologies are typically used: the series resonant converter 

(SRC) where the resonant tank is composed by an inductor in series with a capacitor and, the 
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parallel resonant converter (PRC) where the resonant tank is composed by an inductor in 

parallel with a capacitor. In the SRC shown in Figure 2.3 a), the circuit with the output 

rectifier and the load is connected in series with the LC resonant tank. In this case, the load 

behaves as a voltage divider. Acting on the switching frequency of half-bridge inverter 

changes the impedance of the resonant tank, which in turn changes the converter gain and 

allows controlling the converter output. Because the load behaves as a voltage divider, the 

output gain is always equal or lower than 1. At light load (no-load or open-circuit condition), 

the impedance of the load is very large when compared to the impedance of the resonant tank 

which makes it difficult to regulate the output of the converter. Theoretically, to regulate the 

output in light load conditions, the switching frequency should be infinite [9]. 

 
Figure 2.3 – Two basic topologies for resonant converters: a) Half-bridge series resonant 

converter; b) Half-bridge parallel resonant converter [9] 
In the PRC shown in Figure 2.3 b), the circuit with the output rectifier and the load is 

connected in parallel with the resonant circuit. Because the load is connected in parallel, large 

amounts of circulating current appear. Because of the higher currents it is difficult to use this 

topology in high power applications [9]. 

In order to solve these limitations of the typical topologies SRC and PRC, the LLC resonant 

converter has been proposed in previous literature [9]. This topology has many advantages 

when compared with typical resonant converter topologies. For example, it allows output 

regulation, even when variations in the supply or load systems occur, with a small switching 

frequency variation of the inverter (typical control variable). Because of these advantages, the 

LLC resonant converter has been used in a high number of applications, from high-density 

DC-DC converters to low power LED (Light Emitting Diode) drivers [12], [13], or classical 

48 V telecom power sources [14]. 

Due to the inherent resonant operation, resonant converters can also be used for battery 

charging applications. As batteries are charged with a DC current, a converter with a DC 

output is required. There are many possible configurations and topologies of resonant 

converters that can be used [5]-[7]. In the particular case of this work, the LLC resonant 
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converter will be considered. More detailed information about batteries will be presented 

below in this chapter. 

 Variable Inductor (VI) 2.3.

The proposed converter will be controlled using a new control variable, based on the variable 

inductance concept. In order to control the converter the operating principle of the VI needs 

study, especially how the inductance can be regulated in order to control the charging process. 

In brief this section presents an introduction of the VI, its operating principle for an ETD 

shaped ferrite core and an explanation of how to regulate the inductance value. In mid-power 

applications, variable inductors have been researched and used to control the output current of 

high-frequency resonant circuits [15]. In [16] and [17], a LED driver based on a Resonant 

Switched Capacitor Converter (RSCC) controlled with a VI is proposed. Some of the previous 

knowledge presented in the RSCC converter served as reference for this work [18]. 

 VI Principle of Operation 2.3.1.

To understand the operating principle of the VI is necessary to know some basic concepts 

about inductors. In an inductor the inductance value can be calculated using (2.1). 

 
2N

L =
ℜ

  (2.1) 

where, � is the inductance [H], � is the number of turns and ℜ  is the core reluctance [A/Wb], 

which can be calculated as: 

 
0r e

l

Aµ µ
ℜ =

⋅ ⋅
  (2.2) 

where, N is the length of the core [m], �5 is the magnetic permeability of the core material 

[H/m], �8 is the magnetic permeability in the vacuum [H/m] (�8 = � � � � 1
����) and 12 

is the area of the core cross section [�3]. 

The voltage across an inductor can be calculated as: 

 ( )
( )L

L

di t
v t L

dt
= ⋅   (2.3) 

According to (2.1), the inductance value depends on the number of turns and the reluctance 

value. The number of turns is defined by the number of turns in the winding and the 

reluctance depends on the core material and size (length (N) and cross-section area (12)). In 

the VI if an auxiliary winding is inserted and if a DC current, !@A, is injected in it, it allows 
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regulating the core saturation. By controlling this saturation, the magnetic permeability of the 

core (�5) will change, which causes variation of the core reluctance (ℜ) changing the 

inductance value according to (2.1). By changing the DC current on the auxiliary winding, it 

is possible to control the inductance value on the VI. 

The VI used in this work is based on an E shaped core, in particular an ETD ferrite core, as 

shown in Figure 2.4 a). To build the VI core, two ETD half cores are used which are 

assembled as in Figure 2.4 b). In the two external arms there is no air gap and, in the middle 

arm an air gap exists. 

 

Figure 2.� – VI core: a) ETD shaped core [19]; b) ETD core for VI construction 

In VIs based on E-shaped cores there are three windings: two DC control windings and a 

main AC winding. Figure 2.5 shows the electrical connections of the VI windings and the 

magnetic flux contributions. 

 

Figure 2.5 – Assembly and Magnetic contribution of the different windings in the VI: a) DC 

windings assembly and magnetic flux contribution; b) Main winding assembly and magnetic 

contribution; c) Complete VI model with DC and main windings assembled [16] 

In Figure 2.5 a) the electric connections of the DC winding and its magnetic flux contribution 

is presented. The DC winding is composed by to windings placed in the external arms of the 

core and connected in anti-parallel as shown. In order to vary the main AC winding 

inductance, it is necessary to regulate the level of the core saturation. By injecting a DC 

current in the DC winding, a constant magnetic flux will flow around the external path of the 
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core as shown in Figure 2.5 a) by the black line. Because there is no air gap in the external 

arms it is easier to saturate this section of the core. By controlling the DC current in the DC 

windings, !?>, the level of saturation of the core can be controlled which allows control the 

main AC winding inductance, �HE. The yellow area represents the area that is most likely to be 

saturated by the DC windings. 

In Figure 2.5 b) the electric connections of the main AC winding and its magnetic flux 

contribution is presented. The main AC winding is placed in the middle arm of the core which 

contains an air-gap in the middle. The air-gap allows decreasing the effective permeability of 

the core which reduces drastically the magnetic flux density. 

In Figure 2.5 c) the general electric connections of the VI is presented as well as the flux 

directions created by the AC and DC windings. As can be observed there is a common path to 

both the main and DC flux path that is key for the VI operation [16]. 

In summary, as response to a DC control current, the global reluctance of the magnetic core is 

varied, and therefore the differential inductance of the inductor is controlled. Thus, the role of 

the �HE is to change the characteristics of the resonant tank in order to have a controllable 

output in a similar manner to the classical �7 control. Adding the VI in series with the LLC 

resonant tank allows changing the resonant frequency and the converter gain. Changing the 

converter gain in a controlled way allows output regulation. 

In this case, the �7 will be kept constant. However, if necessary both control variables might 

be use simultaneously in order to try to improve the performance and operation of the 

converter. 

Although the VI concept is relatively simple, the equations that are used to explain its 

behavior and design are quite complex. 

The design methodology used for the VI design is presented in the Appendix B. Further 

information about the VI design methodology, operation and behavior can be found in 

previous literature [16], [20], [21]. 

 Batteries 2.4.

Nowadays several battery technologies exist and new technologies are being investigated. In 

HEVs and EVs, the most common technologies are Lead-Acid, Ni-MH and Li-Ion. The 

batteries are commonly characterized by its nominal voltage $ [V] and its capacitance % [Ah] 

which gives information about the current it can feed during a certain period of time. In other 

words, these parameters allow determining how long the battery can supply a circuit until it is 
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discharged. Although one of the battery characteristics is the output voltage, it depends on the 

battery State of Charge (SOC). Figure 2.6 shows the typical discharge curve for a battery as 

function of the capacity. 
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Figure 2.6 – Typical discharge characteristics for batteries [22] 

The curve can be divided into three sections. As can be seen, in the first section, if the battery 

is fully charged the voltage is at its maximum value. When it starts to discharge, the voltage 

decreases exponentially as represented by the yellow area. This area is more or less wider 

depending on the battery type. In the second section, the grey area represents the available 

energy that can be used until the battery voltage reaches its nominal value. In the third 

section, the battery voltage is below the nominal value and if it continues to be discharged, the 

voltage drops very quickly. 

To charge the battery, a current needs to be injected into the battery which implies that the 

battery current is negative and the charging follows the characteristics shown in Figure 2.7. 

 
Figure 2.7 – Typical charging characteristics for batteries: a) Lead Acid and Li-Ion batteries; b) 

Ni-MH and Ni-CD batteries [22] 
When discharging, the batteries feed energy to the system acting as a power supply. When 

charging, the batteries act like a load, harvesting energy from a power source and storing it in 

the battery. To charge the batteries, the corresponding charger needs to feed the batteries with 

either a current or voltage. Figure 2.7 shows the typical charging characteristics for Lead 

Acid, Li-Ion (Figure 2.7 a)), and Ni-MH and Ni-Cd (Niquel-Cadmium Battery) (Figure 2.7 

b)) batteries. As can be seen, during the charging process the battery voltage increases from 
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the starting value, which depends on the SOC, until it reaches the maximum value at which 

the battery is fully charged. Figure 2.8 shows the problems that can appear during battery 

charging. 

 
Figure 2.8 – Problems during charging: a) Constant voltage charging; b) Constant current 

charging [23] 
If the charger imposes a constant voltage to charge the batteries, Figure 2.8 a), at the 

beginning of the charging, the voltage imposed by the charger is higher than the battery 

voltage. This imposes a very high starting current to feed the batteries, eventually decreasing 

as the battery charges. Therefore, there is a problem of current spikes in the beginning of the 

charging process. 

If the charger imposes a constant current during the charging process, Figure 2.8 b), the 

battery will start charging with a controlled current and its voltage increases. When the battery 

is almost fully charged, if the current is maintained constant the battery voltage will keep 

increasing achieving possible very high values. Therefore, there is a problem of over-voltages 

at the end of the charging process. 

In conclusion, the ideal charging procedure would start with a constant current and as the 

battery voltage increases from its initial value (when charging starts) to a value close to the 

maximum voltage, the charger needs to keep this voltage value under control. From this point 

on, the battery voltage will increase slowly until reaching its maximum voltage value. This 

implies that the charging current will decrease naturally to its minimum value, !4_JK4;< (float 

value). Figure 2.9 shows the current and voltage in a battery during charging. 
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Figure 2.9 – Current and voltage of a battery during the charging process [23] 

It can be seen that if the charging is controlled as described before there will be no current 

spikes or over-voltages which contributes to increase the battery life time. In this work, the 

first charging step with a constant current will be called as the Current Charging Stage (CCS) 

and the final charging step, which keeps a constant voltage, will be called as the Voltage 

Charging Stage (VCS). Because the battery voltage is not constant, either during charging or 

discharging, the battery charger needs to provide a variable DC output. 

In the previous paragraphs, the behavior of the batteries during charging and discharging was 

analyzed. Now it is necessary to address the problem of how much time it takes to fully 

charge a battery. There are different types of commercial battery chargers for electric vehicles 

(EV and PHEV), which can be divided in three types [24]: 

� Normal charging: The charging process is slow, takes about 8 hours. It is used in 

domestic applications and the charger is fed by the grid (230 V, 50 Hz, 16 A). The 

charger is an AC-DC converter that is placed on the vehicle and converts the AC grid 

power into DC power to charge the batteries. 

� Fast charging: It is limited by the battery technology and by the power supply. Part of 

the converter is outside of the vehicle in the charging station and it is necessary 

communication between both to have safe charging. The system’s power can go up to 

45 kW, which can decrease the charging time to about 30 minutes. In fast charging, 

the charging station feeds DC power directly to the batteries in the vehicle. 

� Semi-fast charging: It is similar to the fast-charging but with lower power capacity, 

about 22 kW, which increases the charging time but reduces the cost of the charging 

station. 

So, the battery charger is composed by two main blocks as can be seen in Figure 2.10, the 

charging station and an on-board module in the vehicle. The charging station is fed by the grid 

and feeds the batteries in the vehicle. 
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Figure 2.10 – Battery charger for EV block diagram [25] 

The charging system and the converters can be built in three different ways. 

� Placed in the vehicle (Figure 2.11 a)). In this case, the charging station feeds the on-

board converter from the AC power grid. The charging is controlled in the vehicle by 

the converter control system. This is used in normal charging systems, with lower 

power capacities and higher charging times. In this case, the volume of the on-board 

charger is higher due to the existence of the low-frequency rectifier. 

� Placed part in the vehicle and part in the charging station (Figure 2.11 b)). This allows 

faster charging and higher power levels are involved. In this case, the charging station 

feeds directly the on-board DC-DC converter with DC power and, the on-board 

module does not need a rectifier as in Figure 2.11 b). 

� Placed on the charging station. In this case, the on-board charger is not used and the 

batteries are directly fed by DC power from the charging station. This allows faster 

charging due to the higher power involved. In this case, communication between the 

charging station and the vehicle is needed to have a safe charging, because the 

charging is controlled directly by the charging station as in Figure 2.11 c). 
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Figure 2.11 – Types of charging systems: a) On-board charger fed by AC power from the grid; 

b) On-board charger fed by DC power; c) Charger divided between the charging station and the 
vehicle; d) Battery charger on the charging station 

In this chapter a brief state of the art regarding general topologies of resonant and non-

resonant power converters, the VI principle of operation and batteries main characteristics 

were presented. The LLC resonant converter topology was selected due to its inherent 

resonant operation and advantages. Although this state of the art is necessary to introduce the 

theme of this work, the main goal is to study the behavior and design the LLC resonant 

converter for a battery charging application. This topology is studied in detail in the next 

chapter. 
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 LLC Resonant Converter for a Battery Charger 3.

 Chapter 3 3.

In this chapter the LLC resonant converter topology is presented. The electrical scheme is 

shown; its components and principle of operation are addressed. A theoretical analysis is 

made and control variables are discussed.  

 Proposed Battery Charger Application 3.1.

For battery charging applications different converter topologies can be used from simple non-

controlled rectifiers to more complex converter topologies with complex control algorithms to 

improve the converter efficiency and prolong the batteries life time. For the present work, as 

referred before, a LLC resonant converter will be used to build the battery charger as shown 

in Figure 3.1: 
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Figure 3.1 – Battery charger based on the LLC resonant converter block diagram: a) Simple 

block diagram; b) Block diagram with the block of the LLC resonant converter 
The charger presented in Figure 3.1 a), is composed by a cascade of three converters, a 

rectifier (AC-DC conversion) fed by an AC power supply, followed by a resonant inverter 

(DC-AC conversion) followed by a high-frequency rectifier (AC-DC conversion) which in 

turn feeds the batteries. For this case study the AC power supply will be the national grid (230 

V, 50 Hz in Portugal). Figure 3.1 b) presents a more detailed block diagram of the battery 

charger analyzed in this work. The focus will be on the DC-DC LLC resonant converter 

consisting of the resonant inverter, resonant tank, high-frequency transformer and the high-

frequency rectifier (gray area). A 400 V DC bus created by a simple low-frequency rectifier 
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followed by a filter capacitor feeds the resonant inverter which works at a constant frequency 

of 100 kHz. The VI is introduced in the resonant tank. The resonant tank is followed by a 

high-frequency transformer connected to a high-frequency rectifier. Finally, the batteries are 

connected at the output of the rectifier. The converter can be controlled using two variables: 

the switching frequency of the inverter or the VI inductance value. In order to prove the 

design methodology presented in this work considering both control techniques a simple 

battery charger application is considered. 

For the proposed charger application, Lead-Acid batteries are considered. The battery bank is 

composed by 16 individual 12 V Lead-Acid batteries, two sets of 8 serially connected 

batteries in parallel. The nominal voltage of the battery bank is 96 V and can vary between 84 

V and 116 V depending on the SOC. The maximum charging current is of 10 A. Each 

individual battery has a 12 V nominal voltage that can vary between 10.5 V and 14.5 V and 

the maximum value for the charging current is 5 A. 

As described previously (Figure 2.7), the battery voltage does not vary linearly during the 

charging process. Although this behavior happens in real batteries (Figure 2.9), for the present 

case study, to simplify the analysis, it will be considered a charging profile where the voltage 

increases linearly as function of the SOC. Figure 3.2 shows the simplified battery voltage and 

current profiles and Table 3.1 shows the main design specifications considered for the project 

of the LLC resonant converter based charger and the characteristics of the battery bank. 

Table 3.1 – Design Specifications 

Description Specification 

Main parameters $EF = 400$; �7 = 100��; � = 0.5 

Battery bank 84$ ≤ $4 ≤ 116$ ; 0 ≤ !4 ≤ 101 

The voltage and current are dependent on the state-of-charge (SOC) of the battery or battery 

bank. For this reason, during charging, the battery voltage $4=< is not constant. The converter 

must cope with these changes and therefore must be capable of providing a wide output 

voltage range and safe-operation from no-load to short-circuit conditions [26], [27]. The LLC 

isolated converter is capable of dealing with these requirements, since ZVS is guaranteed in 

the primary side and ZCS is assured in the secondary [28]. These requirements will also be 

kept with the LLC-VI [29]. 
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Figure 3.2 – Battery voltage and current profiles and, behavior of �HE  and �7 values along the 

charging process: (a) �7 control and, (b) �HE  control [29] 
Figure 3.2 a) and Figure 3.2 b) show the voltage and current profiles. It is also shown the 

expected behavior of the control variables, inductance and switching frequency, �HE and �7, 

respectively. 

Using the VI control method, the goal is to have a constant charging current, starting with an 

initial value for �HE. Since the battery voltage is not constant, the controller needs to act on the 

inductance value to compensate the effect of the voltage variation. In this case, as the voltage 

increases from a minimum value, �HE needs to decrease from �HE_8 (SOC ~0%), to maintain a 

constant charging current until an acceptable SOC is achieved (SOC~90% at �HE_�8). This 

mode is identified as current charging stage, CCS. In the next stage, identified as VCS 

(voltage charging stage), when the battery is almost fully charged, the voltage needs to be 

maintained at a constant maximum value as the charging current tends to decrease naturally to 

its floating level !4_JK4;<. At this point, �HE tends to its minimum value �HE_B88 (SOC→
100%). During the whole process �7 is kept constant. This simple approach is sufficient to 

prove the converter performance, however more complex charge control algorithms can be 

implemented to improve the efficiency of the application itself [29]. 

Using the frequency control method, the charging profile is similar to the previous one but, in 

this case, the variable inductor �HE is not considered in the circuit and, the resonant inductor 

role is done by the leakage inductance of the transformer. The control variable is �7. During 

CCS, �7 varies from �7_8 (SOC ~0%) to, �7_�8 (SOC ~90%), to maintain a constant charging 

current as the battery voltage increases. During VCS, �7 tends to its minimum value �7_B88 

(SOC → 100%) maintaining the voltage at is maximum value as the charging current tends do 

its floating level !4_JK4;<. 

This simple approach presented in Figure 3.2 as described above is sufficient to prove the 

converter performance and validate the proposal; however, more complex charge control 

algorithms can be implemented to improve the efficiency of the application itself. 
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Having a battery bank as load, inductive operation is needed, therefore the converter will 

operate only at or above resonance. Above resonance, ZVS operation appears but the 

waveforms have more distortion [29]. 

Although the LLC resonant converter is studied considering a battery charger application, the 

theoretical analysis, simulation and experimental results were made considering a resistive 

load with an equivalent resistive value to emulate the battery at a specific operation point. The 

implemented prototype is not optimized. Therefore, the tests were conducted at a lower power 

level. 

 Converter Topology 3.2.

Figure 3.3 shows the typical topology of a DC-DC LLC Resonant Converter. 

Square wave 
generator

Resonant tank Rectifier network

Lr

n:1

RLCo

Cr

Lm

Vin

S1

S2

VS2

Ir

IS1

 
Figure 3.3 – LLC Resonant Converter – Typical Topology [10]  

The typical LLC resonant topology can be divided in three modules as shown in Figure 3.3, 

[9]. 

� Square wave generator: The square wave generator is fed by a DC input voltage and 

is composed by two switches �B and �3. By turning the switches �B and �3 with 50% 

duty cycle and complementary to each other a square voltage wave �?L3 is created at 

the input of the resonant tank. In the present case study, a half-bridge inverter is used 

but a full-bridge inverter could also be an option. 

� Resonant tank: The resonant tank is fed by a square wave voltage �?L3 and is 

composed by three components, a resonant inductor �5, the magnetizing inductance of 

the transformer �I and a resonant capacitor %5. The relation between the values of the 

inductances and capacitances of these three elements will allow to work at, below or 

above resonance allowing ZVS or ZCS operation. At the output of the resonant tank, 
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an AC current is created. The goal of the resonant tank is to filter the higher harmonic 

currents in order to allow only the fundamental component of the current to flow 

through the resonant tank even when a square wave voltage is applied at the input. 

� Rectifier network: The rectifier network is fed by an AC current which is rectified and 

transformed in a DC voltage applied to the load. This is done by a full-bridge rectifier 

with a output capacitor %4, to filter the output voltage (a half-bridge or center-tapped 

rectifier could also be used) [9], [10]. 

The typical LLC resonant topology from Figure 3.3 as a disadvantageous of having two 

magnetic components, the resonant inductor �5 and the transformer (which is considered, in 

some cases, an ideal transformer for simplification) with a magnetizing inductance, �I. In 

order to reduce the number of the magnetizing components (reducing the size of the 

converter) the role of the resonant inductor �5 can be made by considering the leakage 

inductance �KM6 of the primary-side of the transformer. Considering the leakage inductance of 

the transformer not only reduces the number of magnetic elements in the circuit but also, 

because the leakage will affect the gain equation, ignoring it leads to an incorrect design [10]. 

In this case, the topology scheme is shown in Figure 3.4. In Figure 3.4, �I is the magnetizing 

inductance of the transformer; �KM6 and �KM7 are respectively the primary and secondary-side 

leakage inductances of the transformer. 

 
Figure 3.4 – LLC Resonant Converter – Simplified Topology [9] 
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Figure 3.5 – Typical waveforms of the Half-bridge LLC Resonant Converter [9] 

The operation of the converter can be depicted from the waveforms shown in Figure 3.5. 

Although the converter topology is slightly different from the SRC, its operation is similar. 

The difference is that, in this case, the magnetizing inductance of the transformer is relatively 

small and therefore a resonance appears between �I + �KM6 and %5 which affects the 

converter operation. From Figure 3.5 waveforms, it can be seen that, while switches 1 and 2 

operate at constant frequency with 50% duty cycle a square voltage, �?L3 appears at the 

output of the square wave generator. Because �?L3 switches between 0 and $EF (half-bridge 

inverter) there is only input current, !EF = !@73 when �?L3 = $EF and, when �?L3 = 0, !EF = 0. 

Depending on the values of the resonant tank parameters, resonant operation can be achieved 

and, in this case, the current in the resonant tank, !5 = !6 (resonant current) is sinusoidal as 

shown. Because �I is small there exists considerable amount of magnetizing current, !I. This 

current is triangular shaped and it is in phase with !5. At this point, !5 flows in the primary 

side of the transformer and a sinusoidal voltage appears at the terminals of the secondary side 

of the transformer �72A. This voltage is rectified and the rectified current, !? is just the 

rectified input current. Because there is an output capacitor in parallel with the load, %4 the 

voltage ripple will be reduced and a constant voltage and current can be achieved at the output 

for a resistive load. Note that if the output is open-circuited, the resonant current is equal to 

the magnetizing current, !5 = !I because there is no load. 

The typical topology from Figure 3.3 can be simplified as shown in Figure 3.4. Although this 

simplification can be made in order to reduce the number of magnetizing components, the 
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design can be also improved because of considering the leakage inductances of the 

transformer which makes the design results more accurate. As the proposed technique is 

based on a variable resonant tank by using a Variable Inductor (VI), in the form of an inductor 

�HE, an extra magnetizing component is introduced in series with the primary-side leakage 

inductance of the transformer as shown in Figure 3.6. So, the LLC resonant converter with VI 

(LLC-VI) is the proposed topology. In this case, the VI inductance �HE, is connected in series 

with the transformer primary side, but the rest of the topology is kept. 
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Figure 3.6 – LLC-VI Resonant Converter – Proposed Topology 

In this case, adding the VI, allows operating the converter at constant switching frequency �7 

or even using both control variables, �7 and �HE, to regulate the converter output. 

The converter generally provides galvanic isolation due to the transformer. For the purpose of 

this work, the load will be a battery bank but in the theoretical analysis, a simple resistor will 

be used to analyze the converter operation and behavior. 

 Behavior of the LLC Resonant Converter 3.3.

The LLC resonant converter is known to be capable of providing a wide output voltage range 

and safe-operation from no-load to short-circuit conditions [26], [27]. When �7 is the control 

variable, it is natural to operate the converter around the resonant frequency, �8 = B
3����G�>� 

associated to the series elements of the resonant tank, �5 and %5. Around this frequency, the 

gain characteristics are almost independent of the load, as seen in Figure 3.7. Traditionally, 

the control is made by varying �7. The required �7 range will be relatively small to guarantee 

enough controllability of the output gain (depending on the application) [27]. Therefore, 

narrow �8 range with light load and ZVS capability with even no load are commonly 

described as key benefits. It can also be seen that the gain changes with the load when �7 is 
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different from �8. The border between ZVS and ZCS operation is given by the peak gain, i.e. 

ZCS to the left and ZVS to the right, respectively. In case of no-load, the peak gain is 

maximum and it occurs when �7 = �6 = B
3����G�>�    associated to the series-parallel elements 

of the resonant tank, �6 and %5, where �6 is defined as the sum of the primary leakage 

inductance and the magnetizing inductance. 
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Figure 3.7 – Typical gain curves of LLC resonant converter for various loads and capacitive and 

inductive region waveforms [26] 
It is also noticed that operating above �8 the resonant tank is inductive and the input 

current, �5 (�5 = �GHE) lags the voltage applied to the resonant tank, �?L3. The converter 

operates similar to a series resonant converter and therefore at �8 the converter has only one 

operating point, which means no output regulation. Above �8, switching losses will be 

minimized, due to ZVS. Working near resonance has the advantage of near sinusoidal 

waveforms. Below �8 and above the boundary between ZVS/ZCS, formed by the peak of the 

family load vs. gain curves, the converter still operates in ZVS. This will not be the case if the 

converter is operated below the boundary leading to a capacitive operation [26]. 

 Operating Modes 3.3.1.

Figure 3.8 shows the steady-state equivalent circuit of the proposed converter and the 

correspondent operation modes for �7   �8 [30]. Four operation modes were identified (dead-

time is not considered). The analysis of the circuit operation assumes the following: all 

switching devices are ideal (no on-state voltage drop or resistance), all capacitors are ideal (no 
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Equivalent Series Resistance – ESR), the output capacitor, %4 is large enough to consider the 

output voltage ripple small, the input voltage, $EF is also considered ideal; �7 is constant and 

the switches are turned on with ZVS. 

 
Figure 3.8 – Steady-state equivalent circuit and corresponding operating modes of the LLC-VI: 

(a) Mode 1 [t1~t2]; (b) Mode 2 [t2~t3]; (c) Mode 3 [t3~t4]; (d) Mode 4 [t4~t5]; and (e) 
Operating waveforms of the LLC-VI 

During Modes 1 and 3 %4 is charged and, during Modes 2 and 4 %4 is discharged to the load. 

The main theoretical waveforms of the converter are also shown in Figure 3.8. Each operation 

mode can be described as follows [30]: 

� Mode 1 [t1~t2]: �B turns on and current �GHE flows through the resonant tank. The 

magnetizing current �GI increases linearly in �I. During this mode, ¢!GHE¢ > ¢!GI¢ so, 

there is current flowing through the primary side of the transformer which creates a 
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voltage at the secondary side of the transformer �72A, at the input of the full-bridge 

rectifier. Diodes �B and �C are forward-biased and %4 charges. When �GI = �GHE, this 

mode finishes. 

� Mode 2 [t2~t3]: In this mode �B is still on, �GI = �GHE so, there is no energy 

transferred to the secondary side, the output voltage $4, is higher than �72A, the rectifier 

diodes are reverse-biased and there is no current flowing from the source to the load. 

Capacitor %4 discharges to the load. When �B is turned off this mode ends. 

� Mode 3 [t3~t4]: This mode is similar to mode 1. In this case, �3 turns on and current 

�GHE flows through the resonant tank. The magnetizing current �GI decreases linearly in 

�I. During this mode, ¢!GHE¢ > ¢!GI¢ so, there is current flowing through the primary 

side of the transformer which creates a voltage �72A, at the input of the full-bridge 

rectifier. Diodes �3 and �D are forward-biased and %4 charges. When �GI = �GHE, this 

mode finishes. 

� Mode 4 [t4~t5]: This mode is similar to mode 2, �3 is still on, �GI = �GHE so, there is 

no energy transferred to the secondary side, the output voltage $4, is higher than �72A, 

the rectifier diodes are reverse-biased and there is no current flowing from the source 

to the load. Capacitor %4 discharges to the load. When �3 is turned off this mode ends. 

 LLC Analysis using FHA 3.4.

In this section, the analysis and design of the converter will be discussed considering the 

proposed VI control method. The approach will be based on the evaluation of the converter 

using the fundamental harmonic approximation (FHA). Figure 3.9 presents the adopted 

current and voltage definitions. The battery bank is represented by a load resistance �4. 
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Figure 3.9 – Voltages and currents definitions 
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Typically, �7 is the control variable used for the LLC resonant converter and the design 

methodology can be found in previous literature [27]. In this work, since one of the goals is to 

control the converter operation using a VI, the design methodology needs to be adapted to this 

control technique. Moreover, to be able to compare both control techniques and even to 

analyze the behavior when both are used simultaneously a design methodology will be 

presented in order to do that. 

In order to use the first harmonic approximation (FHA) it is assumed that the filtering action 

of the resonant tank is enough so that only the fundamental component of the square wave 

voltage �?L3 contributes to the power transfer to the output.  

Considering the FHA the rectifier circuit at the output of the resonant tank acts as an 

impedance to the transformer [27], so the load resistance at the output of the resonant tank 

(equivalent load resistance, �;A) is different from the actual load resistance �4. In Figure 3.10 

can be seen the principle used to derivate the equivalent load resistance. Using FHA only the 

fundamental component of �?L3 is considered. With this, at the transformer output almost 

sinusoidal current appears so, the resonant tank and square wave generator can be replaced by 

a sinusoidal current source, !;A and a square wave of voltage, $¤;A appears at the rectifier 

input. Since the output current !4 is the average of !;A, !;A can be obtain as 

 ( )sin
2

o
ac

I
I t

π
ω

⋅
= ⋅   (3.1) 

And $¤;A is given by 
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Where $4 is the output voltage. With this, the fundamental component of the $¤;A voltage is 
given by 

 ( ),1

4
sino

Rac

V
V tω

π

⋅
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Figure 3.10 – Derivation of equivalent load resistance �;A  [27] 

Using FHA, only the fundamental components of currents and voltages are considered so the 

harmonic components of $¤;A are not involved in the power transfer. Therefore, the AC 

equivalent load resistance can be obtained by dividing directly $¤;A,B (3.3) by !;A (3.1) 

obtaining: 
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  (3.4) 

Considering the transformer turns ratio (" = �6/�7), the equivalent load resistance �;A 

shown in the primary side is obtained as: 

 
2

2

8
ac o

n
R R

π

⋅
= ⋅   (3.5) 

Where �4 = $4/!4 is the load resistance (that represents the battery bank). The equivalent 

load resistance includes the effect of the output rectifier and load resistance. 

Using the equivalent load resistance, the circuit from Figure 3.9 can be simplified to do the 

theoretical analysis using the AC equivalent circuit shown in Figure 3.11, where $?L3,B is the 

fundamental component of the square voltage wave $?L3 and, $¤;A,B is the reflected output 

voltage. 
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Figure 3.11 – AC equivalent circuit for LLC-VI resonant converter [29] 

With the equivalent load resistance from (3.5) the voltage gain �, expression can be derived 

in order to characterize the LLC resonant converter. From the AC equivalent circuit from 

Figure 3.11, � can be obtained as [27]: 
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  (3.6) 

 Design Methodology and Converter Parameters Design 3.4.1.

The design methodology starts by determining the resonant tank parameters (�5, �6 and %5) 

assuming the traditional FHA method followed by [27], considering the nominal operating 

point as reference. 

The following condition is considered at the nominal operating point: �HE = 0. As previously 

mentioned, the LLC converter has two resonant frequencies: [8 = 2��8 determined by �5 

and %5 and [6 = 2��6, determined by �6 and %5, where �I = �6 ¥ �KM6 and �5 = �KM6 +
�I//("3�KM7). In a transformer if the secondary side winding is open or short-circuited, �6 

and �5 can be measured, respectively. Following the procedure presented in [27] and 

assuming that �KM6 = "3�KM7 the voltage gain for this converter can be expressed as [10]: 
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  (3.7) 

Where - = ¦G� >�§
¤¨©  and � = Gª

G«¬�
 and is typically �  [5; 10] according to [9]. An analysis of 

the impact of the parameter � in the converter design is presented in the Appendix A.2. With 

this simplification, a minimum voltage gain at [8 can be obtained as �®→®¯ = �IEF = M°B
M . 
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Finally, Figure 3.11 may be redesigned in terms of �6 and �5 as shown in Figure 3.12, where 

an ideal transformer is included and �5 = �KM6 + �I//�KM6  and �6 = �KM6 + �I. In this case, 

�HE is kept at zero as referred before in order to determine the converter parameters for the 

nominal point of operation. 

 
Figure 3.12 – Simplified AC equivalent circuit for LLC resonant converter [29] 

Assuming an input voltage variation of 10% to 15%, the maximum gain can be calculated as: 

 _ max
max min

_ min

in

in

V
M M

V
= ⋅   (3.8) 

In order to identify the value of - (for the calculation of the resonant parameters), it is 

necessary to find the peak gain curves as function of - and intersect them with the specified 

maximum gain (assuming a variable range for $EF). These curves for different � values are 

shown in Figure 3.13 and were obtained using (3.7). For a selected - range the voltage gain is 

determined and the peak gain value is identified. This is repeated for different values of �. 

 
Figure 3.13 – Simplified AC equivalent circuit for LLC resonant converter [26] 

The final value of - is obtained from the intersection of the maximum gain, considering a 

margin of 10% (�I;±I;± = 1.1 � �I;±), and the peak gain curve for the selected � as 

shown in Figure 3.13. Knowing the value of -, considering �7 and �8, the resonant parameters 

can be calculated as [26]: 
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Considering an output voltage ripple of 1%, the output capacitor %4 can be calculated as: 
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Finally, the transformer turns ratio is determined. Considering the rectifier diode voltage drop 

$Q, the transformer turns ratio can be determined as: 
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 VI Control Impact on the Design Methodology 3.4.2.

In order to analyze the impact of the VI on the LLC converter operation, the voltage gain 

must be obtained as a function of this variable inductance parameter. 
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Figure 3.14 – AC equivalent circuit for LLC-VI resonant converter [29] 

By analyzing the AC equivalent circuit from Figure 3.14 the input impedance of the resonant 

tank can be obtained as: 
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Where, ²¤;A = �;A, ²GI = ³[�I, ²GKM6 = ³[�KM6, ²GKM7 = ³[�KM7, ²GHE = ³[�KHE and 

²>5 = B
´®>�. So, replacing this in (3.14) we have  
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And the phase angle of the input current is 
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Applying Kirchhoff’s Laws to mesh 1 of Figure 3.14. 
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  (3.17) 

And, in mesh 2 
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Rewriting (3.18) it turns into 
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From (3.17) and (3.19) we obtain 
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Considering the output voltage $U = �;A ∗ !3, and !3 (3.20), the output voltage can be written 

as: 
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  (3.21) 

Or as a ratio between voltages: 
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So, the voltage gain � can be obtained as: 
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  (3.23) 

In order to calculate the limits of variation to the control variables range, the output power 

expression is needed. 
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From (3.6), the output voltage can also be written as 
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So, the output power can be obtained as: 
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Which leads to the final output power expression, using (3.23) and (3.26) shown in (3.27). 
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  (3.27) 

At this point, the equations that allow designing the resonant circuit, understanding its 

behavior and operation and finally obtaining the range of the control variables to have the 

desire output variation were determined. The next section will present an analysis describing 

the impact of the control variables in use. 

 Control Variables Impact on the Design Methodology 3.5.

In order to perform the control of the converter two control variables will be considered, �7 

and �HE. This section will analyze both their impact on the design methodology and converter 

operation. 

 VI Control Method 3.5.1.

Using the VI principle as control method, �HE is the control variable so, in (3.23) �HE is 

variable and �7 is kept constant at the design value. Figure 3.15 presents the gain curves as 

function of �HE, ���HE) at 10 kHz and 100 kHz using (3.23). Figure 3.15 a) presents these 

curves for different load values. It is possible to observe that a higher frequency leads to a 

narrower voltage gain peak. The previous resonance point considered in the design 

methodology, for �7 = �8, occurs now when �HE is zero. At this point, the voltage gain is 

independent of load and frequency variations. In this case since the value of �HE changes, so 

does the resonance frequency. Mathematically, resonance may occur for negative values of 

�HE. Since a negative value of �HE is not possible, it implies that the real operating region will 

always be a ZVS inductive region. From Figure 3.15 b) it can be seen that for a given voltage 

gain variation, X�, when the frequency is higher (100 kHz) the variation of inductance 

needed to obtain that gain variation �X�HE) is smaller when compared to a lower frequency 

(10 kHz) gain curve. Therefore, for the same inductance range, a higher value of �7 will lead 
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to a higher controllable range of the output. Increasing �7 enables circuit miniaturization and 

operating at constant �7 facilitates the design of the EMI filter [29]. 

 

Figure 3.15 – Gain curves as function of �HE  at 10 �� and 100 ��: a) ���HE) at different load 
levels; b) ���HE) at full-load [29] 

This converter has inherent no-load and short-circuit protection. For short-circuit conditions, 

the resonant current would be limited by �HE. For no-load, this current is equal to the 

magnetizing current of the transformer. Therefore, using the variable inductance concept, the 

converter can provide a controllable output and be operated at constant switching 

frequency �7, advantageous regarding EMC (electromagnetic compatibility) and 

miniaturization issues, without compromising reliability and performance [29]. Using VI 

control, and, since �HE value cannot be negative, for the real implementation, the range of the 

VI as always values greater than zero with possibility of the minimum value being �HE = 0. 

In order to identify the required inductance range for the application, the output power must 

be calculated using (3.27). 

Considering the voltage and current profiles presented in Figure 3.2 a), the output power for 

the three levels of SOC corresponding to �HE_8, �HE_�8 and, �HE_B88 can be obtained by using 

(3.27). The results are shown in Figure 3.16. 

By intersecting the gain curves of Figure 3.16 with the defined power levels, �HE_8, �HE_�8 and, 

�HE_B88 are obtained. The inductance range is defined with �HE_8 and �HE_B88. The procedure for 

the construction of the VI can be found in previous literature [15], [21] and is presented in the 

Appendix B attached to this work. 
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Figure 3.16 – Output power as function of of �HE , �4��HE) for the operating points corresponding 

to �HE_8, �HE_�8 and �HE_B88 [29] 

 Switching Frequency Control Method 3.5.2.

In order to analyze the impact of the switching frequency on the LLC resonant converter 

operation, the voltage gain must be obtained as a function of the switching frequency, �7.  

Similar to the VI control method, (3.23) can be used to obtain the gain curves as function of 

�7. In this case, �HE is not considered and is set to be zero in (3.23). The variation of �7 is made 

by knowing that [ = 2 ∗ � ∗ �7. Figure 3.17 presents the gain curves as function of �7, ���7) 

considering a design for 10 kHz and 100 kHz. Figure 3.17 a) presents these curves for 

different load values. In this case, unlike the previous one, it is possible to observe that 

considering the design for a lower frequency leads to a narrower voltage gain peak. At and 

around resonance, the voltage gain is independent of the load and frequency variation (this is 

one of the advantageous of this LLC frequency controlled resonant converter). As the 

resonant filter components are constant, �8 is always constant even with �7 variation. Since the 

converter is designed initially to operate at resonance considering the maximum power in the 

output at this point, and that in normal operation, it will only operate at or above �8 to regulate 

the output, ZVS is always guaranteed. From Figure 3.17 b) it can be seen that for a given 

voltage gain variation, X�, when the design frequency is higher (100 kHz) the variation of �7 

needed to obtain that gain variation �X�7) is higher when compared to a lower frequency 

design (10 kHz) gain curve. Therefore, for the same �7 range, when the design is for a lower 

value of �7 it will lead to a higher controllable range of the output. Nevertheless, from Figure 

3.17 a) above resonance, if the frequency of design is higher, the operation is less load 

dependent although it allows less output regulation with the same variation of �7. Another 

advantage of increasing the design frequency is that enables circuit miniaturization. 
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Figure 3.17 – Gain curves as function of �7 for 10 kHz and 100 kHz design: a) ���7) at different 
load levels; b) ���7) at full-load [29] 

Using �7 control, the minimum and maximum values need to be limited because if �7 becomes 

lower, for a certain value the converter changes from ZVS to ZCS operation or vice-versa and 

depending on the application this may be critical. So, the controller must be able to limit the 

limits for �7 variation. 

Similar to the previous case, in order to identify the required frequency range for the 

application, the output power must be calculated. In this case, the output power is calculated 

using (3.27) where [ = 2 ∗ � ∗ �7 and, �HE is kept at zero (�HE = 0). In this case, �7 is the 

control variable. 

Considering the voltage and current profiles presented in Figure 3.2 b), the output power for 

the three levels of SOC corresponding to �7_8, �7_�8 and, �7_B88 can be obtained using (3.27). 

The results are shown in Figure 3.18.  

By intersecting the gain curves of Figure 3.18 with the defined power levels, �7_8, �7_�8 and, 

�7_B88 are obtained. The frequency range is defined with �7_8 and �7_B88. 
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Figure 3.18 – Output power as function of of �7, �4��7) for the operating points corresponding to 

�7_8, �7_�8 and �7_B88 [29] 

 Simultaneous use of Both Control Methods 3.5.3.

Figure 3.19 presents the gain curves as function of �7, ���7) considering a design for 100 

kHz. From Figure 3.19, it can be seen that using both control methods simultaneously can be 

advantageous. It is possible to obtain the same gain � with a smaller value of �7 by increasing 

the �HE value. This would imply pushing the operating point from A to B or C as shown in 

Figure 3.19. 
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Figure 3.19 – Gain curves as function of �7 for 1

 ��� design for three different values of �HE  at 

full-load �1

% load) [29] 

As can be seen, using either one of the control techniques the converter is able to have the 

needed output regulation to charge the batteries. Also, if the two control variables are used 

simultaneously, the converter as enough output regulation to control the charging of the 

batteries. The possibility of using both control variables simultaneously can be further studied 

in order to try to improve the converter efficiency and operation and possibly be more 

advantageous. 
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 Simulation Results 4.

 Chapter 4 4.

In order to validate the proposed converter topology, simulations in PSIM (Power Electronics 

Simulation Software) were carried out. This chapter presents the simulation results obtained 

considering both control variables separately and also considering a particular case of mixing 

both control variables. 

 Converter Parameters 4.1.

Considering the design methodology and equations presented in section 3.4 and considering 

the design specifications from Table 3.1 the design parameters were obtained and the results 

are present in Table 4.. The design procedure and results are presented with more detail in the 

Appendix A.1 attached to this work. 

The converter parameters used in the simulation are presented in Table 4. which were 

obtained by applying the proposed design methodology presented above. 

Table 4.1 – Converter parameters for simulation 
Description Specification 

Main parameters $EF = 4

$; �7 ( 1

��; � ( 
.� 

Magnetic 

devices 

�HE  �HE�IEF ( 
.�}� ; �HE�I;± ( �1.1� 

Transformer 
� ( . ; " ( 1.�� 

�KM6 ( 1�.11� ; �KM7 ( /.�.� ; �I ( 1
�..�� 

Cµ , C¶ , Load  }�.4�"\ ; 4/�\ ; �4   }.4] 

 Simulation Results 4.2.

The simulation results presented below were obtained under open-loop control condition and 

are referred to VI and frequency control methods, in sub-sections 3.5.1 and 3.5.2, 

respectively. Figure 4.1 shows the simulation schematic in PSIM software used to obtain the 

simulation results. 
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Figure 4.1 – PSIM circuit for obtaining the simulation results 

 VI Control Method 4.2.1.

The simulation results referred to the VI control method are shown in Figure 4.2 and are 

referred to operating points �HE�8, �HE��8 and �HE�B88 (red, green and blue, respectively) 

obtained from Figure 3.2 b). Figure 4.2 a) and Figure 4.2 b) show respectively the driver 

signals for �B and �3, �·LB and �·L3 and the resonant filter input voltage, �?L3. Figure 4.2 c), 

Figure 4.2 d), Figure 4.2 f) and Figure 4.2 g) show respectively the input current, �LB, the 

current in the resonant tank, �GHE, the current in the rectifier diodes, �? and the output current, 

�4=<. Finally, Figure 4.2 e) and Figure 4.2 h) show respectively the voltage at the VI terminals, 

�GHE and the output voltage, �4=<. 

During the CCS the range of the VI is |�HE�89 �HE��8~. When charging begins, �HE ( �HE�8, 

!4=< ( 1
1 and $4=< ( }4$ which corresponds to its minimum value. When CCS ends, 

�HE ( �HE��8, !4=< ( 1
1 and $4=< ( 11��}$ (SOC ¸ �
^). The controller switches from 

CCS to VCS, and the battery voltage increases to its maximum value, $4=< ( 110$ and the 

charging current tends naturally to its float value. At this point, �HE � �HE�B88. 

The converter operates always above resonance with ZVS. When the charging process begins 

the rectifier diodes operate in CCM (continuous conduction mode). The analysis of �? shows 

however that the converter enters in DCM (discontinuous conduction mode). When the 

batteries are almost fully charged the behavior of the converters tends to an open circuit and 
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the current through the VI, �GHE�B88 exhibits a triangular shape waveform similar to what 

would be expected for the magnetizing current, �GI.  
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Figure 4.� – Waveforms from simulation which represent the three points of operation 

correspondent to �HE�8� �HE��8 and �HE�B88� in red� green and blue� respectively: (a) �·LBand �·L39 

(b) �?L3 9 (c) �LB9 (d) �GHE9 (e) �GHE9 (f) �?9 (g) �4=<9 (h) �4=<  |��~ 

 Switching Frequency Control Method 4.2.2.

The simulation results referred to the frequency control method are shown in Figure 4.3 and 

are referred to operating points �7�8, �7��8 and �7�B88 (red, green and blue, respectively) 

obtained from Figure 3.2 a). Figure 4.3 a) to Figure 4.3 c) show respectively the driver signals 

for �B and �3, �·LB and �·L3, for  �7�8, �7��8 and �7�B88 respectively. Figure 35 d) shows the 

resonant filter input voltage, �?L3. Figure 4.3 e), Figure 4.3 f), Figure 4.3 g) and Figure 4.3 h) 

show respectively the input current, �LB, the current in the resonant tank, �GHE, the current in 

the rectifier diodes, �? and the output current, �4=<. Finally, Figure 4.3 i) shows the output 

voltage, �4=<. 

Similar to the previous case, during the CCS the range of the �7 is |�7�89 �7��8~. When charging 

begins, �7 ( �7�8, !4=< ( 1
1 and $4=< ( }4$ which corresponds to its minimum value. 
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When CCS ends, �7 ( �º��8, !4=< ( 1
1 and $4=< ( 11��}$ (SOC ¸ �
^). The controller 

switches from CCS to VCS, and the battery voltage increases to its maximum value, $4=< (

110$ and the charging current tends naturally to its float value. At this point, �7 � �º�B88. The 

converter operates always above resonance with ZVS. When the charging process begins the 

rectifier diodes operate in CCM (continuous conduction mode). The analysis of �? shows 

however that the converter enters in DCM (discontinuous conduction mode). When the 

batteries are almost fully charged the behavior of the converters tends to an open circuit and 

the current through the VI, �GHE�B88 exhibits a triangular shape waveform similar to what 

would be expected for the magnetizing current, �GI. 

 

Figure 4./ – Waveforms from simulation which represent the three points of operation 

correspondent to �HE�8� �HE��8 and �HE�B88� in red� green and blue� respectively: (a) �·LB and �·L3 for 

�7�89 (b) �·LB and �·L3 for �7��89 (c) �·LBand �·L3 for �7�B889 (d) �?L3 9 (e) �LB9 (f) �GHE9 (g) �?9 (h) �4=<9 

(i) �4=<  |��~ 

Table 4. shows the theoretical and simulation results considering VI and frequency control 

methods for the converter design parameters defined in Table 4.. As can be seen, the 

simulation results are similar to the expected theoretical results and the results for VI control 

are very similar to the results for frequency control. 
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Table 4.� – Theoretical and simulation results 

Theoretical Simulation 

SOC 

[%] 

�HE 

[μH] 

�7 

[kHz] 

$4=< 

[V] 

!4=<  

[A] 

�4=<  

[W] 

$4=< 

[V] 

!4=<  

[A] 

�4=<  

[W] 

¸ 
 �1.1 1

 }4 1
 }4
 }..�/ 1
./} �
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¸ �
 /./ 1

 11�.} 1
 11�} 114.41 1
.14 1101 

¸ 1

 
.�} 1
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.� �} 11}.�� 
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 }4
 ��.� 11.
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1� 
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 − 1
0./ 11�.} 1
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.14 1101 

¸ 1

 − 1
1.0� 110 
.� �} 11}.�� 
.�1 01 
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 1
 1�
 }4 1
 }4
 }�./} 1
.04 ��1 

From Table 4. the necessary range to regulate the output is about 20 � considering only VI 

control, 50 kHz considering only �7 control and, 10 � and 20 kHz considering VI and �7 

control simultaneously. In conclusion, using both control techniques simultaneously allows 

the range of each control variable to be smaller when compared to the case of using only one 

control method. 
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 Prototype and Experimental Results 5.

 Chapter 5 5.

In order to validate the proposed topology an experimental prototype was built. This chapter 

presents the details about the prototype design and experimental implementation and 

validation. Although the simulation results presented considered both control variables, �HE 

and �7, the experimental results are referred only to VI control and in open-loop condition. 

During this work, two prototypes of the LLC resonant converter were built and tested. The 

first one using an IGBT (Insulated Gate Bipolar Transistor) based inverter operating at around 

10 kHz controlled by a commercial driver from SEMIKRON. The transformer was already 

existent in the laboratory and the rest of the parameters were calculated and a VI prototype 

was built. This first prototype served only as proof of concept. The experimental results are 

not presented in this work but they were published at the IEEE IECON 2016 conference as 

can be seen in [26]. The paper can be found in the Appendix D. This prototype was built in 

order to verify the concept of controlling the converter using a variable resonant tank with a 

VI. Having validated the control method using a VI, a new prototype was built. The new 

prototype is presented in this chapter. 

The prototype uses a SiC MOSFET based inverter operating at 100 kHz (constant frequency) 

controlled by a fiber optic based driver. For this prototype all of the PCB boards were 

designed and built in the laboratory with exception of the fiber optic drivers for the SiC 

MOSFET and the DSP control board. In addition, a simple rectifier was built to create the DC 

Bus to feed the LLC resonant converter. To simulate the load, instead of using the battery 

bank, a resistive load via a Programmable DC Electronic Load (BK PRECISION 8522 2400 

W) with an equivalent value of the battery bank was used. The global block diagram of the 

build prototype is shown in Figure 5.1, as follows: 
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Figure 5.1 – Block diagram of the built prototype 

Figure 5.1 is divided in 12 blocks, and each one corresponds to one PCB/equipment of the 
prototype: 
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� The orange blocks represent the power supply to generate the DC Bus to feed the LLC 

resonant converter: A corresponds to the grid; B corresponds to a full-bridge rectifier; 

C corresponds to the rectifier filter capacitor or DC bus. Block C generates the input 

voltage for the LLC resonant converter $EF. 

� The blue blocks represent the PCBs designed to build the LLC-VI resonant converter: 

PCB D has two SiC MOSFET that constitute the half-bridge inverter; E has the VI, 

�HE, and the resonant capacitor %5; F has the transformer and finally G corresponds to 

the high-frequency full-bridge rectifier with filter capacitor to feed the load. 

� The red block H corresponds to the load that is connected at the output of the LLC-VI 

resonant converter. During the experimental tests, the load was considered to be a 

programmable resistive load. 

� The computer L is used to program the DSP control board K that generates the 

electrical signals to the fiber optic emitter J that converts them to fiber optic signals. 

The fiber optics are connected to the SiC MOSFET drivers I that are then connected to 

the SiC MOSFET in block D. 

Experimental results will be confronted with the theoretical and simulation results to validate 

the design methodology and the proposed converter topology. 

 Converter Parameters 5.1.

This work started by considering the specifications shown in Table 3.1. These specifications 

were used in the theoretical analysis and in the simulation to analyze the converter operation 

under �7 and �HE control: 400 V DC Bus and 100 kHz switching frequency. When the first 

prototype was tested, the half-bridge inverter was built using IGBTs with commercial drivers 

from SEMIKRON which were limited to a 20 kHz maximum switching frequency. Therefore, 

a lower value, around 10 kHz was used. The converter design was adapted to obtain the 

converter resonant parameters. The second prototype was built using a SiC MOSFET half-

bridge inverter that allows working at the initially specified 100 kHz switching frequency. 

Using a full-bridge rectifier to create the DC Bus from the monophasic national grid voltage, 

the DC Bus voltage level had to be decreased from 400 V to 320 V. Considering these 

changes, the converter design was done under the new system specifications and the new 

converter parameters are shown in Table 5.. 
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Table 5.1 – Converter parameters for simulation and experimental prototype 

Description Specification 

Main parameters $EF = /�
$; �7 ( 1

 ��; � ( 
.5 

SiC MOSFET (�B and �3) MOSFET Channel N – SPW24N60C3; 05
$ ; ��./1 ; 
.10] 

�B , �3, �D and �C 80EPF12 ; $Q ( 1.�$  ;  �
1  ;  1�

$ 

Theoretical design 

Magnetic 

devices 

�HE  �HE�IEF ( /.5� 9  �HE�I;± ( 1}.5� 

Transformer 
� ( . ; " ( 1.0 

�KM6 ( 1/.
0� ; �KM7 ( 5.��� ; �I ( �1.�1� 

%5 , %4 , Load  �
"\ ; �/�\ ; �4   }.�] 

Simulation and experimental parameters 

Magnetic 

devices 

�HE  

�HE ( 5.50� � 1..00� 

�;A ( }  ;  �@A ( 1.
 �� »v 

ETD44/22/15 core  ;  N87 material  ;  
.5�� air-gap 

Transformer 

" ( 1.0  ;  �6 ( 1�  ; �7 ( 1� 

ETD 44/22/15 core  ; N87 material  ;  1�� air-gap 

�KM6 ( 1/.
0� ; �KM7 ( 5.��� ; �I ( �1.�1�  

%5 , %4 , Load  �
"\ ; 0}
�\ ; �4 ( 5.0] � �/�] 

The VI was designed and built considering the LabVIEW software presented in the Appendix 

B and using a Mathcad file also presented in Appendix B. The LabVIEW software was the 

result of a previous work done by Samuel Ferreira during his Master Thesis [16] and, the 

Mathcad file was adapted from a file used by Marco Martins during his Master Thesis [17]. 

The parameters for the construction of the VI are presented in Table 5.. 

 Prototype Construction 5.2.

In order to build the prototype different components and PCB boards were designed. The 

details of the PCBs design and construction are shown in the Appendix C. The full LLC-VI 

resonant converter assembly is shown in Figure 5.2. 
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Figure 5.� – LLC-VI resonant converter full assembly: av Top view �5�
 x �

 mmv9 bv Front 

view 

The full experimental setup for testing the LLC-VI resonant converter and for obtaining the 

experimental results is shown in Figure 5.3. 

 

Figure 5./ – Full experimental setup for the LLC-VI resonant converter 

av 

bv 
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 Experimental Results 5.3.

The prototype assembly, shown in Figure 5.3 was tested in the laboratory and the 

experimental results are shown in this section. Since the prototype is not yet optimized, the 

experimental results were obtained at 1/4 of the input voltage nominal level ($EF ( }
 $ 

instead of $EF ( /�
 $). The proper design of snubber circuits for the half-bridge inverter is 

still under development as well as the optimization of the transformer design. In addition 

closed loop control is being studied, which will enable attending higher voltage values. 

Nevertheless, it is possible to compare both theoretical, simulation and experimental results 

and validate the converter. 

The theoretical results expected for $EF ( }
 $ are shown and the simulation was also 

adapted and performed with a DC bus of $EF ( }
 $. A snubber capacitor of 2.2 �\ was 

inserted in parallel between the drain of �B and the source of �3 in order to decrease the spikes 

of the square wave voltage �?L3. The pulses for controlling the switching of the SiC 

MOSFET drivers are created by the DSP control board and converted to optic signals using 

the fiber optic emitter PCB built. The SiC MOSFET operate at 100 kHz with 100 ns dead-

time as shown in Figure 5.4. 

 

Figure 5.� – Driver signals for �B and �3. �I47B�@76, �I473�@76 in blue and red respectively 

��V/divv and, �R7B and �R73 in green and orange respectively �5V/divv: av At 5us/div9 bv At 

1

ns/div 

As can be seen from Figure 5.4 b) the dead-time is about 100 ns, which corresponds to the 

time between the switching of �I473�@76 and �I47B�@76. As can be seen, the delay between the 

command from the DSP control board �I473�@76 and the signal of the driver to switch the SiC 

MOSFET transistor is about 350 ns (this delay is caused by the interface board of the fiber 

optic emitter, the fiber optic light propagation and the SiC MOSFET drivers operation). 

The experimental tests to the prototype were made in two parts: 

a) b) 
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� Firstly, to evaluate the impact of the VI inductance variation in the converter operation 

� Secondly, to simulate a charging cycle. 

 VI Impact in the Converter Operation 5.3.1.

In this case, the load value was kept constant at 5.6 Ω (resistor load from Fig. C.13) and the 

VI inductance level was varied between two limit values, which correspond to !@A�I;± (

	f�1 and !@A�IEF ( 
1. Note that the level of the DC Bus used was of $EF ( }
$. Figure 5.5 

shows the small-signal characteristic curve of the VI, �HE�!@Av obtained with a LCR meter. 

L vi_max = 17.66uH

Idc = 0A

Lvi_min = 5.56uH

Idc = 1.5A

 

Figure �f� – �HE�!@Av curve 

By changing the �HE value between its maximum and minimum values, which correspond to a 

DC control current variation from 0 to 1.5 A it was possible to obtain the results shown in 

Figure 5.6. In Figure 5.6, the LLC-VI resonant converter voltage and current waveforms are 

presented. These waveforms allow understanding the converter operation. The load value was 

kept constant. 
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Figure �f6 – Experimental results for �HEIEF and �HEI;± , left and right, respectively: �av and �bv 

�?L3 and, $EF , 2�V/div; �cv and �dv �GHE , �?L3 and, �GI, �
V/div, 2A/div; �ev and �fv �GHE  and, �>5 , 

�
V/div, 2A/div; �gv and �hv �72A  and, �65E , �
V/div; �iv and �jv �72A  and, �65E ( �GHE ,, 2A/div; �kv 

and �lv �72A , �?  and, !4=< , 2A/div; �mv and �nv !4=<  and, $4=< , �V/div, 	A/div; With 2f�us/div 
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The experimental waveforms obtained for the converter operation at the two VI prototype 

limits, �HE�IEF and �HE�I;± are shown in Figure 5.6. In the left side, the results correspond to 

�HE�IEF  for !@A ( 	f� A and, in the right side, they correspond to �HE�I;±   for !@A ( 
 A. 

Figure 5.6 a) and b) show the DC Bus voltage and the square wave voltage created by the 

half-bridge inverter, $EF and �?L3 respectively for �HE�IEF and �HE�I;±. It can be seen that 

changing the inductance value, the voltage level at the input and the square wave voltage 

maximum value is about the same with a slightly higher ripple and spikes in the commutation 

for �HE�IEF. 

Figure 5.6 c) and d) show �?L3 and the resonant current �GHE when the load is connected, in 

red, and when the load is disconnected (no-load), in green. At no-load, �GHE corresponds only 

to the magnetizing inductance of the transformer, �GI and is triangular shaped (�GHE ( �GI for 

�HE�IEF and �HE�I;±). As can be seen, the current �GHE leads the voltage �?L3 which means that 

between these two limits the converter operates always in ZVS. 

Figure 5.6 e) and f) show �GHE and �>5 for �HE�IEF and �HE�I;±. As can be seen for �HE�IEF the 

waveforms are more sinusoidal shaped which means that the converter is near resonance and, 

as the inductance level increases the converter goes away from the resonance and the 

waveforms are less sinusoidal shaped. 

Figure 5.6 g) and h) show �65E and �72A for �HE�IEF and �HE�I;± and, Figure 5.6 i) and j) show 

�65E ( �GHE and �72A for �HEIEF and �HEI;±. As can be seen, as the turns ratio is higher than 1, 

the secondary-side voltage, �72A amplitude is higher than the primary-side voltage, �65E and, 

�65E < �72A. 

Figure 5.6 k) and l) show �72A, �? and !4=<, for �HE�IEF and �HE�I;±. As the inductance level 

increases the output current decreases. It can also be seen that there is a small period of time, 

for which the rectifier diodes current �? is negative. Theoretically, this value should be zero 

and it means that the converter is working in DCM. This is more noticeable for �HE�IEF and, 

for �HE�I;± the converter is close to CCM operation. From the results, �? has negative values 

which is most likely due to the diodes recovery time. This means that when the current 

crosses zero they do not stop conducting immediately. 

Figure 5.6 m) and n) show !4=< and $4=<, for �HE�IEF and �HE�I;±. As can be seen, increasing 

the inductance level, the current and voltage levels decrease, which means that the output 

power decreases, as expected. The current is almost constant with no ripple and the voltage 

has a ripple of about 15 V for �HE�IEF and 8 V for �HE�I;±.  
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Simulations were also carried out in order to obtain similar results. These simulation results 

are presented in Figure 5.7. 

 

Figure �f7 – Simulation results for �HEIEF and �HEI;± , left and right, respectively:  �av and �bv 

�?L3 and, $EF; �cv and �dv �GHE  and, �GI; �ev and �fv �>5; �gv and �hv �72A  and, �65E; �iv and �jv �72A  

and, �65E ( �GHE ; �kv and �lv �72A , �?  and, !4=<; �mv and �nv $4=<; �ov and �pv !4=<  

As can be seen from Figure 5.7, the waveforms shapes are similar to the obtained 

experimental results. In this case, the behavior is as expected, by increasing the inductance 

level, the output current and voltage levels decreases which mean lower output power. When 

comparing the simulation and experimental waveforms it can be seen that in simulation, ZVS 

operation is more identifiable as well as DCM operation. In simulation the components are 

more ideal; the magnetic losses in the transformer and in the VI are not accounted for. The 

currents waveforms are more sinusoidal shaped then in the experimental results, because in 

the simulation, the magnetic behavior of the magnetic devices is not considered. The 

simulation allows analyzing only the electrical behavior of the converter. 

In summary, the experimental and simulation results from Figure 5.6 and Figure 5.7, 

respectively allow seeing that for �HE�IEF the circuit operates in DCM because there is a time 
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period where the diodes current is zero which means that no current is being fed by the 

converter and all the current going from the input is stored in the output capacitor. For �HE�I;± 

the circuit operates in CCM and the output is always fed by the converter. When comparing 

�GHE with �GI (�GI ( �GHE at no-load) it is clearly possible to see the difference between DCM 

and CCM. For the case of �HE�IEF when �GI ( �GHE, the output diodes are not conducting 

(!? ( 
v and the circuit is operating in DCM. In the other side, for the case of �HE�I;± the 

circuit is operating in CCM. 

During the experimental tests as well as obtaining the waveforms of the voltages and currents, 

some measurements were acquired and the results are shown in Figure 5.8. 

 

Figure �f} – �HE�!@Av measured curved with experimental results 

From the results shown in Figure 5.8 it can be seen that by increasing the !@A value 

(decreasing the inductance value of the VI) the output voltage and current increases from 8.64 

V to 19.7 V and from 1.39 A to 3.31 A, respectively. Because the input voltage is kept 

constant the input current also increases to feed the load at the required power level. The 

power increases with the increase of !@A, from 11.6 VA to 64.8 VA and, the test results 

allowed achieving a maximum efficiency around 66.3% when �HE ( �HE�IEF. This low 

efficiency value is expected since the prototype is not operating at the nominal power level. 

Simulation and theoretical results were adapted in order to obtain the same operating 

conditions as in experimental tests. The results are shown in Table 5. and allow comparing the 

theoretical, simulation and experimental results. As expected, the simulation results are close 

to the theoretical results. The experimental values exhibit some variation essentially due to 

coupling losses in the power transformer and due to the prototype efficiency. 

 

 

 



CHAPTER 5 

60  Válter de Sousa Costa 

Table �f2 – Converter parameters for simulation and experimental prototype 

VI prototype 

range 

Theoretical 

results 

Simulation 

Results 

Experimental 

Results 

!@A  

[A] 

�HE 

[PH] 

$4=< 

[V] 

!4=<  

[A] 

�4=<  

[W] 

$4=< 

[V] 

!4=<  

[A] 

�4=<  

[W] 

$4=< 

[V] 

!4=<  

[A] 

�4=<  

[W] 

	 �f77 27f� �f�} 	/� 2}f�� �f
} 	��f� 	�f7 /f/	 6�f} 


 	7f66 	}f6/ /f// 62 2	f7/ /f}} }�f/
 }f6� 	f/� 		f6 

For the current and voltage values the error between the experimental and simulation results is 

around 30% and 65%, respectively. Nevertheless at this point, it was only intended to prove 

the capability of this topology regarding output regulation. 

 Simulation of a Charging Cycle 5.3.2.

A charging cycle of the batteries was simulated and the results are now presented. The load 

resistance value was varied between 5.6 Ω, 11.28 Ω and 232 Ω (resistor load from Fig. C.13) 

and the VI inductance level adjusted to simulate the respective operating point through the !@A 

current level. In this case, the level of the DC Bus used was also of $EF = }
$. In this case, 

four points of operation were analyzed: 

� �)% ¸ 
^,  !@A ( 
1, �HE ¾ 	.f00P, �G ( �f0]; 

� �)% ( �
^,  !@A ( 	f��1, �HE ¾ �f0P,  �G ( 		f�}]; 

� �)% ( 	

^, !@A ( 	f�1, �HE ¾ �f�0P, �G ( �/�]; 

The minimum possible inductance VI value is 5.56 µH. Theoretically, this value should be 

zero. Therefore, a fourth case is analyzed, where the VI is short-circuited: 

� �)% ( 	

^, !@A ( 
1, �HE ¾ 
�,  �G ( �/�] � VI short-

circuited. 

Figure 5.9 a) presents the charging profile with the �HE expected variation as function of the 

SOC for the experimental points to be tested. Figure 5.9 b) shows the correlation between 

these �HE values and the !@A value according to the �HE�!@Av measured small-signal curve. 
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Figure �f� – av Charging profile SOC expected points; bv �HE�!@Av curve 

In Figure 5.9 b) the four cases described before are shown, including the case when the VI is 

short-circuited, in order to obtain the minimum possible value. The first point considered, 

corresponds to SOC ≈ 
^ where the load is at the minimum value, the VI inductance is 

maximum and, therefore, minimum !@A current value. The second point corresponds to 

SOC ( �
^. The load increases because the battery voltage has increased, although the same 

charging current is maintained. In this point, the �HE value should drop to 5.6 � and therefore 

!@A increases to 1.45 A. In the last case, SOC ( 	

^, the !@A is at the maximum value (1.5 

A). So the VI inductance value should be at its minimum (5.56 �). If the VI is short-

circuited, the minimum theoretical value for the VI inductance (≈ 
PH)) can be obtained. In 

this case the load is maximum and corresponds to the equivalent resistive load of when the 

batteries are fully charged. 

The obtained experimental waveforms are presented in Figure 5.10, and show the operation of 

the converter at the previous presented points. 
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Figure �f	
 – Experimental results for the simulated charging cycle: �av, �bv, �cv and �dv $EF ,  

�?L3 and, �GHE , �
V/div, �A/div; �ev, �fv, �gv and �hv �4=<  and �4=< ,	
V/div, 	A/div; With �f�us/div 

Figure 5.10 in the top shows $EF, �?L3 and, �GHE for the four cases considered and, in the 

bottom, it shows �4=< and �4=<. From left to right, the waveforms correspond to all of the 

considered SOCs. As can be seen, the current �GHE leads the voltage �?L3 which means, that 

during the simulated charging cycle, the converter operates always in ZVS. For �)% ( �
^ 

the circuit is near resonance (sinusoidal shaped current �GHE) and this operating point 

corresponds to the highest output power level. Figure 5.10 bottom shows !4=< and $4=<, for 

the same SOCs. It can be seen that from the first to the second point of operation, the output 

voltage and current increase therefore, the output power increases. Then, for the third and 

fourth cases, clearly, the output power decreases. In the third case, �)% ( 	

^, the voltage 

increases and the current is almost zero (!4_JK4;<v. When the VI is short-circuited, in the last 

case, the �HE value drops to almost zero and the output voltage increases to it maximum value. 

The output current decreases to its minimum possible, !4_JK4;<. !4_JK4;< corresponds to the 

current that will feed the battery when it is almost 100% charged. 

During the experimental tests as well as obtaining the waveforms of the voltages and currents, 

also some measurements were acquired and the results are shown in Figure 5.11. 
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Figure �f		 – Simulation of a charging cycle with experimental measured results 

From the results shown in Figure 5.11 it can be seen that by increasing the !@A value (which 

means decreasing the inductance value of the VI) the output power increases from �)% ( 
^ 

to �)% ( �
^, from 11.7 VA to 44.6 VA, and then decreases to 2.4 VA when �)% (

	

^, and 3.1 VA if the VI is short-circuited. The test results allowed achieving a maximum 

efficiency of around 73.6% when !@A ( 	f�� A that corresponds to the highest output power 

level obtained. 

The simulation and theoretical results were adapted in order to allow obtaining results for the 

same operation conditions as in experimental tests and perform a comparison between them. 

The results are shown in Table 5.. As expected, the simulation results are close to the 

theoretical results. The experimental values exhibit some variation essentially due to coupling 

losses in the power transformer and due to the prototype efficiency. It should be noticed 

again, that the converter was operating at 1/4 of the nominal power with a DC bus voltage of 

$EF ( }
 V. In practice, it means that the output of the converter will feed the load with the 

enough power to charge 2 batteries in series (24 V nominal voltage) and with a maximum 

current of almost 2 A as shown in Table 5.. 

Table �f/ – Theoretical vsf Simulation vsf Experimental Results 

  
Theoretical Simulation Experimental 

�HE  �4 $4=<  !4=<  �4=<  $4=<  !4=<  �4=<  $4=<  !4=<  �4=<  
[µH] [Ω] [V] [A] [VA] [V] [A] [VA] [V] [A] [VA] 

17.66 5.6 18.63 3.33 62.0 21.73 3.88 84.3 8.65 1.37 11.7 
5.6 11.28 28.2 2.50 70.5 28.58 2.53 72.4 23.6 1.91 44.6 

5.56 232 28.29 0.12 3.45 28.88 0.12 3.60 29.1 0.09 2.44 
0 232 30.35 0.13 3.97 31.32 0.13 4.23 31.6 0.10 3.07 

Such values of efficiency – 66.3% in section 5.3.1 and, 73.6% in section 5.3.2 – can be 

justified because the prototype was non-optimized and still working under open-loop 
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condition. The snubber circuit for the half-bridge inverter is yet to be optimized and therefore 

high spikes in the input voltage and �?L3 voltage appear, contributing to losses increase. It 

was seen that the VI core was sustaining an increase of temperature, mainly due to the higher 

levels of !?> current, contributing also for the losses and consequently for a lower efficiency. 

However, the lower efficiency level is also due to the fact that the converter is still working at 

a lower power level. Once the closed loop operation is implemented the efficiency is expected 

to increase. 

Considering the adopted charging profiles from Figure 3.2 b), and the results from Table 5., it 

is possible to conclude that the charging profile is followed. Initially $4=< is minimum and 

increases from �)% = 0% to �)% = 90% from 8.65 V to 23.6 V. The output current level 

!4=< increases slightly, from 1.37A to 1.91A, which is not constant due to open-loop 

operation. From �)% = 90% on, the voltage still increases to $4=< = 29.1 V and !4=< 

decreases to its !4_JK4;< value of 0.09 A for �)% = 100%. If the VI is short-circuited, the 

minimum value of �HE is obtained and because of that if the load is the same, the output 

voltage increases to its maximum allowed value of 31.6 V and the output current is almost 

equal at 0.10 A. In terms of output power, at the beginning of the charging cycle, the output 

power is 11.7 VA. As the SOC increases, so does the output power to 44.6 VA (�)% =
90%). When �)% = 100%, the output power deceases drastically to 2.44 VA due to the low 

level of output current !4=< = !4_JK4;<. When the VI is short-circuited, the output power 

increases slightly to 3.07 VA due to the increase of the output voltage inherent to the lower 

�HE inductance value. 

Although this behavior validates the use of a constant-frequency, LLC-VI resonant converter 

for the proposed application, it will be necessary to optimize the converter (snubber circuit, 

transformer, VI) in order to be able to test it at the nominal power. Close-loop operation needs 

to be implemented which will allow increasing the converter efficiency. As last step the load 

needs to be changed from the resistive load to the real batteries in order to see the converter 

operation and behavior as battery charger. 
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 Conclusions, Contributions and Future Work 6.

 Chapter 6 6.

The main goal of designing and implementing a constant-frequency LLC resonant converter 

with VI control for a battery charger was achieved. 

 Conclusions 6.1.

Theoretical and simulation analysis were made considering both �7 and VI control techniques. 

Mathcad software was used to design and calculate the converter parameters. This allowed 

designing the converter considering either switching frequency and/or VI control methods. 

Then simulations were performed using PSIM software. The simulations results were 

obtained in open-loop condition. Theoretically, both control parameters can be used to control 

the output of the LLC resonant converter achieving always ZVS: using a VI while keeping �7 

constant or using �7 while the resonant parameters are kept constant. A higher �7 leads to 

converter miniaturization and the range of the VI needed to obtain a specific output regulation 

will be smaller. However, if �7 is the control variable, the range is higher. It was concluded 

that a mix between both controls methods may lead to an improved performance. In the end, a 

prototype was built, working at 1/4 of the nominal power, and test results were obtained, the 

PCBs for the prototype were designed and built according to the specifications. Considering 

the obtained results, the proposed topology is validated although the converter was not tested 

at nominal power and close-loop control has not yet been implemented. 

  Contributions 6.2.

With the conclusion of this work, the contributions for the research group are as follows: 

� A Mathcad file that allows understanding the behavior of the LLC resonant converter 

as well as analyzing the converter operation under different operating conditions. This 

file allows designing the LLC resonant converter considering as main design 

parameters the switching frequency (�7) design value, the input voltage value at the 

DC Bus ($EF) and, the output voltage and current ($4 and !4 respectively), for different 

applications. 
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� Simulation files in Mathcad and PSIM that allow, not only, understanding the 

behavior of the converter under �7 and/or VI control but also allow a comparative 

study between both methods (open-loop control). 

� Project and PCB boards for half-bridge configurations controlled with fiber optic 

based drivers (fiber optic emitter and the SiC MOSFETs drivers for half or full-bridge 

inverters for different projects). 

� A complete LLC-VI resonant converter hardware has been implemented, including a 

Variable Inductor and High-frequency transformer. 

� Two articles were published in international conferences (UPEC 2016 and IECON 

2016) and a third article is being prepared for submission to an IEEE journal. 

  Future Work 6.3.

To expand this work, future changes can be made to improve the prototype operation and 

efficiency. It will be necessary to implement close-loop control, which means introducing 

voltage and current sensors in the prototype, design a PI controller and implement it using the 

DSP control board to control the !@A current level and the converter voltage gain. In order to 

improve the converter efficiency it is mandatory to work at the nominal power level, which 

means that is necessary to improve the snubber circuit of the half-bridge inverter. 

Moreover, a mix of both �7 and VI control techniques can be further investigated trying to 

improve the converter operation, efficiency and reliability. 

Furthermore, a way to integrate both the VI and the transformer in only one magnetic element 

(variable transformer) shall be studied. This new magnetic device allows reducing the number 

of magnetic elements and simplifies the prototype. 

It can also be studied different resonant topologies in order to evaluate their performance and 

compare them with the LLC resonant converter studied in this work. 

Finally, instead of using a simple low-frequency rectifier to create the DC Bus to feed the 

resonant inverter, a Power Factor Correction (PFC) stage can be used to improve the circuit 

operation. 

 Published Articles 6.4.

This work allowed two articles to be written, submitted and accepted for publication in two 

different conferences, UPEC 2016, 51st International Universities Power Engineering 
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Conference, 2016 (Coimbra – Portugal) and one in IECON 2016, 42nd Annual Conference of 

IEEE Industrial Electronics Society Conference (Florence – Italy) as follows: 

� Valter S. Costa, M. S. Perdigão, A. S. Mendes, J. M. Alonso, “Analysis and 

Simulation of the LLC Resonant Converter under Different Control Methods”, 

51st International Universities Power Engineering Conference, 2016. 

� Valter S. Costa, M. S. Perdigão, A. S. Mendes, J. M. Alonso, “Evaluation of a 

Variable-Inductor-Controlled LLC Resonant Converter for Battery Charging 

Applications”, 42nd Annual Conference of IEEE Industrial Electronics Society 

Conference, 2016. 
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A. Theoretical Analysis of the LLC Resonant Converter 

 Appendix A A.

A.1. LLC Resonant Converter Design 

This section of the appendix presents the calculation performed using Mathcad Prime 3.1 

software that allows designing the LLC resonant converter. This file allows understanding the 

behavior of the converter under VI and switching frequency control (curves of the gain and 

the output power as function of the VI inductance and switching frequency, ���HE), �4��HE), 

���7) and ���7)). It also presents the auxiliary Matlab Code used to determine the - 

parameter value for the converter design. 

At the end of this section an analysis of the influence of the � parameter in the converter 

design is presented, in particular the impact of the value of � in the gain of the converter, and 

the resonant frequencies behavior, ���HE), �8��HE) and �6��HE). 
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Design of the LCC Resonant Converter: 
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Tab. A.1 – Theoretical and simulation results for the output voltage, current and power as 
function of the SOC and the VI inductance value 

�7 100 ��       
         

Theoretical Simulation 
�)% 
[%] 

�HE  
[�] 

$4=<_< 
[$] 

!4=<_<  
[1] 

�4 
[Ω] 

�4=<_< 
[¿] 

$4=<_7EI  
[$] 

!4=<_7EI 
[1] 

�4=<_7EI 
[¿] 

0 21,1 84 10 8,4 840 87,23 10,38 905,82 
25 16,65 92 10 9,2 920 95,09 10,34 982,91 
50 11,9 100 10 10 1000 102,87 10,29 1058,32 
75 6,7 108 10 10,8 1080 109,91 10,18 1118,61 
90 3,3 112,8 10 11,28 1128 114,41 10,14 1160,495 

90.1 0,95 116 10,284 11,28 1192,944 117,51 10,42 1224,26 
92 0,95 116 8 14,5 928 117,65 8,11 954,52 
95 0,95 116 5 23,2 580 117,95 5,08 599,69 
98 0,95 116 2 58 232 118,27 2,04 241,18 
99 0,95 116 1 116 116 118,47 1,02 120,996 

99.5 0,95 116 0,5 232 58 118,99 0,513 61,03 
100 0,95 116 0,01 11600 1,16 139,13 0,01199 1,67 

 

 
Fig. A.1 – �HE(�)%) theoretical values 
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Fig. A.2 –Voltages, currents and Output Power as function of the SOC and �HE , for theoretical 
and simulation at blue and red, respectively: a) $4=<�SOC); b) !4=<�SOC); c) �4=<��)%) and d) 

�4=<��HE) 
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Auxiliary Matlab Code for the Determination of the Q Parameter: 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% Auxiliar calculations for the converter design - Parameters Q 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

clear all 

clc 

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% Parameters 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

k=7; 

Mg_min = 1.143; 

margin = 0.1; 

Mg_max2 = 1.154; 

Mg_maxmax2 = (1+margin)*Mg_max2 

f = 100e3; 

f0 = 100e3; 

fp = 48.412e3; 
w = 2*pi*f; 

w0 = 2*pi*f0; 

wp = 2*pi*fp; 

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% Plot of the maximum gain curves as function of Q for various values of k 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

fs = [0.1:100:100e3]; 

Qv = [0.01:0.05:2]; 

Qv2 = [0.01:0.0005:2]; 

Qp = 0.6315; 

  

k5=5; 

k6=6; 

k7=7; 

k8=8; 

k9=9; 

k10=10; 

  

M5=zeros(length(fs),length(Qv)); 

M6=zeros(length(fs),length(Qv)); 

M7=zeros(length(fs),length(Qv)); 

M8=zeros(length(fs),length(Qv)); 

M9=zeros(length(fs),length(Qv)); 

M10=zeros(length(fs),length(Qv)); 

  
for y=1:length(Qv) 

    for x=1:length(fs) 

        M5(x,y) = 

abs(((((2*pi*fs(x))^2)/wp^2)*(k5/(k5+1)))/((i*(((2*pi*fs(x))/w0)*(1-

(((2*pi*fs(x))^2)/w0^2))*Qv(y)*(((k5+1)^2)/(2*k5+1))))+(1-

(((2*pi*fs(x))^2)/wp^2)))); 

        M6(x,y) = 

abs(((((2*pi*fs(x))^2)/wp^2)*(k6/(k6+1)))/((i*(((2*pi*fs(x))/w0)*(1-

(((2*pi*fs(x))^2)/w0^2))*Qv(y)*(((k6+1)^2)/(2*k6+1))))+(1-

(((2*pi*fs(x))^2)/wp^2)))); 

        M7(x,y) = 

abs(((((2*pi*fs(x))^2)/wp^2)*(k7/(k7+1)))/((i*(((2*pi*fs(x))/w0)*(1-

(((2*pi*fs(x))^2)/w0^2))*Qv(y)*(((k7+1)^2)/(2*k7+1))))+(1-

(((2*pi*fs(x))^2)/wp^2)))); 

        M8(x,y) = 

abs(((((2*pi*fs(x))^2)/wp^2)*(k8/(k8+1)))/((i*(((2*pi*fs(x))/w0)*(1-

(((2*pi*fs(x))^2)/w0^2))*Qv(y)*(((k8+1)^2)/(2*k8+1))))+(1-

(((2*pi*fs(x))^2)/wp^2)))); 

        M9(x,y) = 

abs(((((2*pi*fs(x))^2)/wp^2)*(k9/(k9+1)))/((i*(((2*pi*fs(x))/w0)*(1-

(((2*pi*fs(x))^2)/w0^2))*Qv(y)*(((k9+1)^2)/(2*k9+1))))+(1-

(((2*pi*fs(x))^2)/wp^2)))); 

        M10(x,y) = 

abs(((((2*pi*fs(x))^2)/wp^2)*(k10/(k10+1)))/((i*(((2*pi*fs(x))/w0)*(1-

(((2*pi*fs(x))^2)/w0^2))*Qv(y)*(((k10+1)^2)/(2*k10+1))))+(1-
(((2*pi*fs(x))^2)/wp^2)))); 
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    end 

end 

  

for y=1:length(Qv) 

    m5(y)=max(M5(:,y)); 

    m6(y)=max(M6(:,y)); 

    m7(y)=max(M7(:,y)); 

    m8(y)=max(M8(:,y)); 

    m9(y)=max(M9(:,y)); 

    m10(y)=max(M10(:,y)); 

end 
  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% Plot of the maximum gain curves as function of Q for various values of k 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

figure(1) 

plot(Qv,m5,'k-^') 

hold on 

plot(Qv,m6,'k-o') 

hold on 

plot(Qv,m7,'k-s',... 

    'LineWidth',2,... 

    'MarkerSize',5,... 

    'MarkerEdgeColor','k',... 

    'MarkerFaceColor','w') 

hold on 

plot(Qv,m8,'k-+') 

hold on 

plot(Qv,m9,'k-*') 

hold on 

plot(Qv,m10,'k-x') 

hold on 

  

plot(Qv2,Mg_maxmax2,'k') 

hold on; 

legend('k = 5','k = 6','k = 7','k = 8','k = 9','k = 10','M_m_a_x_m_a_x') 

plot(Qp,Mg_maxmax2,'ko',... 
    'LineWidth',1,... 

    'MarkerSize',10,... 

    'MarkerEdgeColor','k',... 

    'MarkerFaceColor','k') 

plot(Qp,1.1,'k') 

plot(Qp,1.125,'k') 

plot(Qp,1.15,'k') 

plot(Qp,1.175,'k') 

plot(Qp,1.2,'k') 

plot(Qp,1.225,'k') 

plot(Qp,1.25,'k') 

hold on; 

title({'Peak gain curve for various k values'}); 

xlabel('Q'); 

ylabel('M_p_e_a_k'); 

grid on; 

axis([0.3 1 1.1 1.8]); 

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% Plot of the maximum gain curve as function of Q for k = 7 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

figure(2) 

% Plot M(Q) for k = 7 

plot(Qv,m7,'k-s',... 

    'LineWidth',2,... 
    'MarkerSize',5,... 

    'MarkerEdgeColor','k',... 

    'MarkerFaceColor','w') 

hold on 

  

% Trace of Mmaxmax gain curve 

plot(Qv2,Mg_maxmax2,'k') 

hold on; 
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% % Traces of Mmin, Mmax e Mmaxmax gains 

% plot(Qv2,Mg_min,'r') 

% hold on; 

% plot(Qv2,Mg_max2,'r') 

% hold on; 

% plot(Qv2,Mg_maxmax2,'r') 

% hold on; 

  

% % Plot of the crossing point between M(Q) curve with Mmaxmax trace 

% plot(0.63,Mg_maxmax2,'m-o') 

% plot(0.63,Mg_maxmax2,'m-+') 
% plot(0.6315,Mg_maxmax2,'y-o') 

% plot(0.6315,Mg_maxmax2,'y-+') 

% plot(0.635,Mg_maxmax2,'k-o') 

% plot(0.635,Mg_maxmax2,'k-+') 

% plot(Qp,Mg_maxmax2,'g-o') 

% plot(Qp,Mg_maxmax2,'g-+') 

  

% Plot of the crossing point between M(Q) curve with Mmaxmax trace 

plot(Qp,Mg_maxmax2,'ko',... 

    'LineWidth',1,... 

    'MarkerSize',10,... 

    'MarkerEdgeColor','k',... 

    'MarkerFaceColor','k') 

plot(Qp,1.1,'k') 

plot(Qp,1.125,'k') 

plot(Qp,1.15,'k') 

plot(Qp,1.175,'k') 

plot(Qp,1.2,'k') 

plot(Qp,1.225,'k') 

plot(Qp,1.25,'k') 

hold on; 

  

% Figure legends 

legend('k = 7','M_m_a_x_m_a_x') 

  

% Plot titule and axis informations 
title({'Peak gain curve for k = 7'}); 

xlabel('Q'); 

ylabel('M_p_e_a_k'); 

grid on; 

axis([0.3 1 1.1 1.8]); 

  

fprintf('\n\n###############################################\n'); 

fprintf('\tMmaxmax = %1.3f \n',Mg_maxmax2); 

fprintf('\tQ = %1.5f \n',Qp); 

fprintf('###############################################\n\n'); 
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Fig. A.3 shows the peak gain curves as function of the - value for different � values obtained 
using the code above. 

 
Fig. A.3 – Peak gain curves as function of the Q parameter: a) �62;M�-) for different � values; b) 

�62;M�-) for different � = 7 
 

 

a) b) 
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A.2. Analysis of the k Parameter Impact in the Converter Design 

At this point, an analysis of the � parameter impact in the converter design Á� = Gª
G«¬�

Â is 

shown as well as an analysis of the behavior of the two resonant frequencies, �8 and �6 as 

function of the VI inductance value. 

This analysis is made considering the same design used to obtain the curves from Figure 3.15 

but, in this case, the design was made four times with four different values of the � parameter 

as shown in Fig. A.4. 

 
Fig. A.4 – Gain curves as function of �HE  at 10 �� and 100 �� at different load values and for 4 
values of � for design: a) �(�HE) for � = 1; b) �(�HE) for � = 7, c) �(�HE) for � = 30; d) �(�HE) for 

� = 60 
From the curves in Fig. A.4, it can be seen that the value of �IEF depends of the � value: 

Tab. A.2 – Gain as function of the k parameter 
�    �IEF     
1    2    
7    1.143    

30    1.033    
60    1.017    

From the results shown in Fig. A.4 and Tab. A.2 it can be seen that: 
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� The gain decreases with the increase of the VI inductance value.  

� The gain for �HE = 0, �IEF decreases with the increase of the � value. 

� For lower values of � the gain �(�HE), is less load dependent. 

� For lower values of � is possible to have a higher output regulation with the same range of 

variation of �HE, which means more gain variation leading to higher output regulation. 

� For higher frequencies (design frequency �7) it is possible to have higher output regulation 

(higher gain variation) with the same variation of the VI inductance �HE. 

Now, a similar analysis, for the same four values of the � parameter is shown but, in this case, 

the goal is to see the behavior of both resonant frequencies �6 and �8 of the LLC resonant 

converter as function of the �HE inductance as shown in Fig. A.5. 

 
Fig. A.5 – Resonant frequency curves as function of �HE  at 10 �� and 100 �� for 4 values of � 

for design: a) �7(�HE) and �8(�HE) for � = 1; b) �7(�HE) and �8(�HE) for � = 7, c) �7(�HE) and �8(�HE) for 
� = 30; d) �7(�HE) and �8(�HE) for � = 60 

From the curves shown in Fig. A.5, it can be seen that the value of �8 and �6 depend of the � 

value: 
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Tab. A.3 – Resonant frequency as function of the k parameter 
�7     

[��]    �    �8    
[��]    

�6     
[��]    

10    
1    10    8.66    
7    10    4.841    

30    10    2.519    
60    10    1.803    

100    
1    100    86.603    
7    100    48.412    

30    100    25.194    
60    100    18.033    

From the results shown in Fig. A.5 and Tab. A.3 it can be seen that: 

� The resonant frequencies �8 and �6 decrease as the VI inductance value increases.  

� For �HE = 0, the resonant frequency �8 is equal to the design switching frequency �7, which 

means that, at this point, the circuit is operating at resonance. 

� The resonant frequency �6 for �HE = 0, decreases with the increase of the � value. 

� For �HE = 0, the �6 value is closer to the �8 frequency value for lower values of �. As � 

increases, �6 value decreases and goes away from the �8 value. For low values of � the 

variation between the maximum and minimum values of �6 is higher when compare to higher 

values of �. 

� For lower design frequencies value �7, the resonant frequencies are not so variable with the 

VI inductance �HE. As the design frequency value increases, the resonant frequencies values 

are more variable with the variation of the �HE value. 
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B. Variable Inductor Design 

 Appendix B B.

This section of the appendix presents the calculation performed using Mathcad Prime 3.1 and 

in LabVIEW software to obtain the VI construction parameters. 

 

Mathcad Prime 3.1 Design Procedure for the VI Project: 

The Mathcad file used for design the VI was adopted from a previous file used by another 

student Marco Martins, during his Master Thesis [17]. 
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LabVIEW Software Application for the VI Project and Design: 

The software in LabVIEW used for design the VI was previously made by another student 
Samuel Ferreira, during his Master Thesis [16]. 
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C. Prototype Construction Details 

 Appendix C C.

In this section of the appendix, the details of the designed PCBs are shown. The schematics 

and board drawings in EAGLE 7.5.0 Light Edition Software, as well as the necessary 

components list, for the construction of the LLC resonant converter prototype are presented. 

The design of the PCBs is briefly presented below using the schematics, board drawings and 

the picture of the boards with and without the components. In addition, the transformer and 

the VI construction is shown by pictures and finally the global assembly of the converter 

prototype is shown. 
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Fig. C.1 – Block diagram of the built prototype 
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C.1. DC Bus generator 

To generate the DC Bus used to feed the LLC-VI resonant converter ($EF) the circuit shown in 

Fig. C.2 a) is used. Block A corresponds to the national grid power. Block B corresponds to 

full-bridge rectifier and is implemented by the white box shown in the right picture. Block C 

corresponds to the filter capacitor and is implemented by the black capacitors in the right 

picture. 

 
Fig. C.2 – Schematic of the DC bus generator [ref] 

C.2. LLC-VI Resonant Converter 

The LLC-VI resonant converter is composed by: half-bridge inverter, resonant filter, high-

frequency transformer, and high-frequency full-bridge rectifier. The following figures present 

the schematics of the electrical circuits and PCB project and pictures of the build PCBs. 

 

Half-Bridge Inverter: 

Fig. C.3 shows the schematic for the half-bridge inverter PCB and, Fig. C.4 shows the board 

design, the PCB prototype top and bottom layer and, the PCB full-assembly. 
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Fig. C.3 – Half-bridge inverter schematic 

 
Fig. C.4 – Half-bridge inverter PCB prototype (100 x 80 mm), Board design; PCB Top and 

Bottom Layer and PCB full assembly 
The Block D in Fig. C.4 shows the half-bridge inverter schematic. The top picture in the 

middle shows the board design in the Eagle software. In the bottom, the pictures show the top 
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and bottom layer of the manufactured PCB. Finally, the top right picture is the PCB full-

assembly. Tab. C.1 shows the components list for the PCB board. 

Tab. C.1 – Half-bridge inverter components list 
 

Board 

 
Name Half-bridge inverter Rev.1 

 
Dimension 100 x 80 mm 

 
Number of layers 2 - Top + Bottom 

 
Observation Half-bridge inverter board 

     

 
Schematic description Value Component Observation 

1 PWR_IN 15V / - / GND   Power in +15V 

2 PWR_OUT 15V / - / GND   Power out +15V 

3 C15V1 100u Electrolitic capacitor   

4 C15V2 0,1u Ceramic capacitor   

5 R15V 1k Resistor   

6 15V   LED 15V 

7 R_FAN 22 Resistor   

8 FAN_OUT  - / 12V / GND   Fan power +12V 

9 IC1 7805 Voltage regulator 5V   

10 C5V1 100u Electrolitic capacitor   

11 C5V2 0,1u Ceramic capacitor   

12 R5V 1k Resistor   

13 5V   LED 5V 

14 MOS1  +5V / GND   Power for MOSFET Drivers 

15 MOS2  +5V / GND   Power for MOSFET Drivers 

16 Input +      + from DC Bus 

17 Input -      - from DC Bus 

18 VGS1   Jumper Measure Vgs1 

19 VGS2   Jumper Measure Vgs2 

20 SiC Gate Driver 9A MOS1 PCB board - Driver for the Silicon Carbide Power MOSFETs 

21 SiC Gate Driver 9A MOS1 PCB board - Driver for the Silicon Carbide Power MOSFETs 

22 MOSFET 1 C2M0025120 MOSFET N-Channel   

23 MOSFET 2 C2M0025120 MOSFET N-Channel   

24 Output Output of the MOSFET arm 

25 Heatsink MOS1, MOS2 3 x 63 x 55 (exp x comp x alt) 

26 FAN DC 12V 0,21A 

 

Resonant Filter: 

Fig. C.5 shows the schematic for the resonant filter PCB and, Fig. C.6 shows the board 

design, the PCB prototype top and bottom layer and, the PCB full-assembly. The resonant 

filter PCB includes the VI and the resonant capacitor and also a buck converter to control, in 

close-loop operation, the DC current for controlling the inductance value of the VI. 
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Fig. C.5 –Resonant filter schematic 

 
Fig. C.6 – Resonant filter PCB prototype �100 x 80 mm), Board design; PCB Top and Bottom 

Layer and PCB full assembly 
Block E in Fig. C.6 shows the resonant filter schematic. The top picture in the middle shows 

the board design in the Eagle software. In the bottom, the pictures show the top and bottom 

layer of the manufactured PCB. Finally, the top right picture is the PCB full-assembly. Tab. 

C.2 shows the components list for the PCB board. 
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Tab. C.2 – Resonant filter components list 
 

Board 

 
Name Resonant Filter Rev.1 

 
Dimension 100 x 80 mm 

 
Number of layers 2 - Top + Bottom 

 
Observation Resonant Filter board 

     

 
Schematic description Value Component Observation 

1 PWR_IN 15V / - / GND   Power in +15V 

2 PWR_OUT 15V / - / GND   Power out +15V 

3 C15V1 100u Electrolitic capacitor   

4 C15V2 100u Electrolitic capacitor   

5 C15V3 0,1u Ceramic capacitor   

6 R15V 1k Resistor   

7 LED15V     15V 

8 R_FAN 22 Resistor   

9 FAN_OUT  - / 12V / GND   Fan power +12V 

10 IC1 7805 Voltage regulator 5V   

11 C5V1 100u Electrolitic capacitor   

12 C5V2 0,1u Ceramic capacitor   

13 C5V3 0,1u Ceramic capacitor 

14 R5V 1k Resistor   

15 5V   LED 5V 

16 DSP 6 pins (2x3) Male conector   

17 R15V 470 Resistor   

18 OK1 HCPL2630 Optocoupler   

19 R2 100 Resistor   

20 R3 100 Resistor   

21 MOS1 BS108 MOSFET N-Channel   

22 RZ   Resistor   

23 DZ   Zener Diode   

24 IC2 INA193 Current Shunt monitor -16V to +80V Common-Mode Range 

25 C_SENS 0,1u Ceramic capacitor   

26 R_SHUNT   Resistor 

Buck Converter 

27 MOS_BUCK IRFZ44N MOSFET N-Channel 

28 D1 80SQ040 Schottky Rectifier Diode 

29 L   Inductor 

30 C   Ceramic Capacitor 

31 IDC+   Jumper IDC from PCB or EXT 

32 IDC-   Jumper IDC from PCB or EXT 

33 EPCOS ETD44   Variable Inductor ETD 44/22/15 ferrite core 

34 VC_PP Measure VC_PP Jumper 
Integrator circuit used to obtain 
the values for the Lac 
characteristic curve 

35 IAC_PP Measure IAC_PP Jumper 

36 R_LAC 100k Resistor 

37 C_LAC 2,2n Ceramic capacitor 

38 CR-     Holes for Cr capacitor 
connection 39 CR+     

40 IN   Terminal block 2x5mm   

41 Cr   Terminal block 2x5mm   

42 OUT   Terminal block 2x5mm   

43 FAN DC 12V 0,21A 

Fig. C.7 shows the VI components and assembly. Fig. C.7 b) shows the coiling machine used 

to make the VI coils (this machine was already existent in the laboratory and was previously 

built by other students for coiling the windings for VIs and transformers). 
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Fig. C.7 – VI parts, assembly and tests: a) ETD 44/22/15 ferrite core; b) Coiling machine; c) VI 

parts; d) VI full assembly; e) Tests of the VI 
Fig. C.7 e) shows a picture during the experimental tests to the VI. Using a current source – 

YOKOGAWA GS610 Source Measure Unit –  (top left) and a LCR meter – ISO-TECH LCR 

Meter LCR821 – (top right) it was possible to measure the inductance values as function of 

the DC control current �(!@A) to characterize the VI – Small-Signal Analysis. The �(!@A) 

curve (Small-signal characteristics), shown in Fig. C.8, was obtained for a !@A variation 

between 0 and 1.5A and the range obtained (measured with the LCR meter) for a frequency of 

100 kHz was from 5.56 � to 17.66 �, corresponding to the maximum and minimum values 

of !@A, respectively as in Tab. C.3. 

a) b) 

c) d) 

e) 
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Tab. C.3 – �HE(!@A) measured values 
!@A  
[A] 

�HE  
[�] 

0.00 17.66 
0.05 15.97 
0.10 13.21 
0.15 10.87 
0.20 9.22 
0.25 8.21 
0.30 7.58 
0.35 7.16 
0.40 6.87 
0.45 6.65 
0.50 6.47 
0.60 6.22 
0.70 6.05 
0.80 5.93 
0.90 5.84 
1.00 5.77 
1.10 5.71 
1.25 5.65 
1.50 5.56 

 

 
Fig. C.8 – �HE(!@A) measured curved 

 

Transformer: 

Fig. C.9 shows the schematic for the transformer PCB and, Fig. C.10 shows the board design, 

the PCB prototype top and bottom layer, the PCB full-assembly and the transformer prototype 

during some experimental tests. 
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Fig. C.9 – Transformer PCB schematic 

 
Fig. C.10 – Transformer PCB prototype �100 x 80 mm), Board design; PCB Top and Bottom 

Layer and PCB full assembly and transformer prototype during experimental tests 
Block F in Fig. C.10 shows the transformer schematic. The top picture in the middle left 

shows the board design in the Eagle software. In the bottom, the pictures show the top and 

bottom layer of the manufactured PCB. The top middle picture in the right is the PCB full-

assembly and finally, the left picture shows the transformer during some experimental tests. 

Using a LCR meter – BK PRECISION Model 889B Bench LCR/ESR Meter – it was possible 

to measure the inductance values for �5 and �6 used in the calculations for the converter 

design. The transformer characteristics were previously presented in Table 5..Tab. C.4 shows 

the components list for the PCB board. 
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Tab. C.4 – Transformer PCB components list 
 

Board 

 
Name Transformer Rev.1 

 
Dimension 100 x 80 mm 

 
Number of layers 1 - Bottom 

 
Observation Transformer board 

     

 
Schematic description Value Component Observation 

1 PWR_IN 15V / - / GND   Power in +15V 

2 PWR_OUT 15V / - / GND   Power out +15V 

3 C15V1 100u Electrolitic capacitor   

4 C15V2 100u Electrolitic capacitor   

5 C15V3 0,1u Ceramic capacitor   

6 R15V 1k Resistor   

7 LED15V     15V 

8 R_FAN 22 Resistor   

9 FAN_OUT  - / 12V / GND   Fan power +12V 

10 Primary   Terminal block 2x5mm   

11 Secondary   Terminal block 2x5mm   

12 EPCOS ETD44 ETD 44/22/15 ferrite core 

13 FAN DC 12V 0,21A 

 

Full-bridge rectifier: 

Fig. C.11 shows the schematic for the full-bridge rectifier PCB and, Fig. C.12 shows the 

board design, the PCB prototype top and bottom layer, and the PCB full-assembly. 

 
Fig. C.11 – Full-bridge rectifier board schematic 
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Fig. C.12 – High-frequency Full-Bridge rectifier PCB prototype �100 x 80 mm), Board design; 

PCB Top and Bottom Layer and PCB full assembly 

Block G in Fig. C.12 shows the high-frequency full-bridge rectifier schematic. The top picture 

in the middle shows the board design in the Eagle software. In the bottom, the pictures show 

the top and bottom layer of the manufactured PCB. Finally, the top right picture is the PCB 

full-assembly. Tab. C.5 shows the components list for the PCB board. 

Tab. C.5 – Full-bridge rectifier components list 
 

Board 

 
Name Full-bridge Rectifier Rev.1 

 
Dimension 100 x 80 mm 

 
Number of layers 2 - Top + Bottom 

 
Observation Full-bridge rectifier 

     

 
Schematic description Value Component Observation 

1 PWR_IN 15V / - / GND   Power in +15V 

2 PWR_OUT 15V / - / GND   Power out +15V 

3 C15V1 100u Electrolitic capacitor   

4 C15V2 100u Electrolitic capacitor   

5 C15V3 0,1u Ceramic capacitor   

6 R15V 1k Resistor   

7 LED15V     15V 

8 R_FAN 22 Resistor   

9 FAN_OUT  - / 12V / GND   Fan power +12V 

10 IN   Terminal block 2x5mm   

11 ID1_D4   Terminal block 2x5mm   

12 Co +   Terminal block 2x5mm   

13 Co -   Terminal block 2x5mm   

14 ID2_D3   Terminal block 2x5mm   

15 ICo   Terminal block 2x5mm   

16 Io   Terminal block 2x5mm   

17 OUT   Terminal block 2x5mm   

18 D1 80EPF12 Rectifier Diode   

19 D2 80EPF12 Rectifier Diode   

20 D3 80EPF12 Rectifier Diode   

21 D4 80EPF12 Rectifier Diode   

22 FAN DC 12V 0,21A     

23 Heatsink D1, D3 3 x 63 x 55 (exp x comp x alt) 

24 Heatsink D2, D4 3 x 63 x 55 (exp x comp x alt) 
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C.3. Load 

To emulate the load behavior two resistors were used as shown in Fig. C.13. 

 
Fig. C.13 – Converter load: a) Resistive 5.6 Ω load; b) Programmable DC Electronic Load – BK 

PRECISION 8522 2400W 
Block H in Fig. C.13 shows the load schematic. Theoretical, simulation and experimental 

analysis was made using a resistive load to simulate the battery behavior. 

The top picture in the left, shows the variable resistor used – 5.6 Ω / 6A. In the bottom left, is 

shown a Programmable DC Electronic Load – BK PRECISION 8522 2400W. 

C.4. Controller 

Fig. C.14 shows the block diagram of the controller used to control the switching of the SiC 

MOSFET switches in the half-bridge inverter. 

 
Fig. C.14 – Block diagram of the controller 

The controller is composed by four blocks: 

� I represents the SiC MOSFET Drivers to generate the electric signals to drive SiC 

MOSFET switches. 

� J represents the Fiber Optic Emitter PCB; 

� K represents the DSP control board; 

� L represents a computer used to program the DSP control board; 
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SiC MOSFET Drivers: 

The SiC MOSFET from the half-bridge inverter are driven each one, by a fiber optic driver. 

The PCB board of the drivers is shown in Fig. C.15. The SiC MOSFET Drivers were already 

existent in the Laboratory and were used in this work because they allow controlling the SiC 

MOSFET switches with a frequency limited to 100 kHz. 

 
Fig. C.15 – Fiber optic drivers PCB, Top and Bottom view and, the assembled drivers in the half-

bridge inverter PCB 
The SiC MOSFET Drivers are assembled in the half-bridge inverter PCB as shown in Fig. 

C.15 in the right. The drivers convert the electric signals from the DSP control board to optic 

signals to the input of the SiC MOSFET drivers. 

 

Fiber optic emitter: 

Fig. C.16 shows the schematic for the Fiber Optic Emitter PCB and, Fig. C.17 shows the 

board design, the PCB prototype top and bottom layer, the PCB full-assembly and the 

transformer prototype during some experimental tests. 
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Fig. C.16 – Fiber optic emitter board schematic 
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Fig. C.17 – Fiber Optic Emitter PCB prototype �62x52 mm), Board design; PCB Top and Bottom 

Layer and PCB full assembly 

 

Block J in Fig. C.17 shows the Fiber Optic Emitter board schematic. The top picture in the 

middle shows the board design in the Eagle software. In the bottom, the pictures show the top 

and bottom layer of the manufactured PCB. Finally, the top right picture is the PCB full-

assembly. Tab. C.6 shows the components list for the PCB board. 
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Tab. C.6 – Fiber optic emitter components list 
 

Board 

 
Name Fiber Optic Emitter Rev.1 

 
Dimension 62 x 52 mm 

 
Number of layers 2 - Top + Bottom 

 
Observation 4 Channels fiber optic emitter with enable pin 

     

 
Schematic description Value Component Observation 

1 PWR_IN 15V / - / GND   Power in +15V 

2 PWR_OUT 15V / - / GND   Power out +15V 

3 C15V 100u Electrolitic capacitor   

4 C15V1 100u Electrolitic capacitor   

5 C15V3 0,1u Ceramic capacitor   

6 R15V 1k Resistor   

7 LED15V     15V 

8 IC2 7805 Voltage regulator 5V   

9 C5V2 100u Electrolitic capacitor   

10 C5V1 100u Electrolitic capacitor   

11 C5V 0,1u Ceramic capacitor   

12 R5V 1k Resistor   

13 LED5V     5V 

14 R1 100 Resistor   

15 R2 100 Resistor   

16 R3 100 Resistor   

17 R4 100 Resistor   

18 CH1 HFBR1527Z Fiber Optic Transmitter   

19 CH2 HFBR1527Z Fiber Optic Transmitter   

20 CH3 HFBR1527Z Fiber Optic Transmitter   

21 CH4 HFBR1527Z Fiber Optic Transmitter   

22 JP1     header 6 pins (3x2) 

23 RN1 7x470 CI resistor   

24 OK1 HCPL2630 Optocoupler   

25 OK2 HCPL2631 Optocoupler   

26 OK3 HCPL2632 Optocoupler   

27 R2_1 1k Resistor   

28 R2_2 1k Resistor   

29 R2_3 1k Resistor   

30 R2_4 1k Resistor   

31 R2_5 1k Resistor   

32 IC1 CD4071 CI Logic Ports OR (4x)   

 

Before the full assembly of the half-bridge inverter some experimental tests were perform to 

verify the drivers and the fiber emitter board operation as shown in Fig. C.18. 
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Fig. C.18 – Fiber optic emitter and SiC MOSFET drivers experimental test prototype: a) Driver 

testing; b) Half-bridge inverter testing 
 

DSP Control Board: 

In order to control the converter, a DSP control board from Texas Instruments, shown in Fig. 

C.19, was used. 

 
Fig. C.19 – DSP board from Texas Instruments �150 x 65 mm) 

The DSP control board is used to generate the electric signals to the Fiber Optic Emitter PCB 

to control the SiC MOSFET switching. The DSP generates two square wave electric signals 

with 100 kHz frequency and 50% duty cycle. The signals are then used to control the 

switching of the SiC MOSFET switches. The SiC MOSFET drivers receive fiber optic 

signals. An interface board was design and built – Fiber Optic Emitter. The block diagram in 

Matlab/Simulink used to create the PWM signal at 100 kHz and 50% duty cycle is shown in 

Fig. C.21. 

 

Computer: 

In order to program the DSP control board (Fig. C.19) a computer existent in the laboratory 

was used. Matlab software and Matlab/Simulink library were used to build a block program 

for the SiC MOSFET transistors and it was compiled for C language and transfer to the DSP 

control board using Code Composer Studio (CCS) software shown in Fig. C.20. 

a) b) 
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Fig. C.20 – Print screen of the computer monitor. CCS workspace �left), Matlab workspace �Top 

right) and, Matlab/Simulink block program �Bottom right) 
 

 
Fig. C.21 – Block diagram in Matlab/Simulink 

In order to choose the switching frequency and the dead-time of the square waves for 

controlling the SiC MOSFET switching, an auxiliary code in Matlab was used as shown 

below: 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% DSP - Controlador conversor LLC 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% Sample time 
Ts=1e-5; 

% Frequência 

f=100e3; 

% Período 

T=1/f; 

% Deadtime 

deadtime = 100e-9; 

% Percentagem de deadtime relativamente 

% a um período 

percent=(deadtime/T)*100; 

% Cálculos auxiliares 

Tdeadband = round((deadtime/T)*1023*2); 
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This section of the appendix presents the articles published in the 51st International 

Universities’ Power Engineering Conference (UPEC 2016, Coimbra, Portugal) entitled 

“Analysis and Simulation of the LLC Resonant Converter under Different Control 

Methods” and the article published in the 42nd Annual Conference of the IEEE Industrial 

Electronics Society (IECON 2016, Florence, Italy) entitled “Evaluation of a Variable-

Inductor-Controlled LLC Resonant Converter for Battery Charging Applications”. 
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Abstract — This paper presents the analysis and design 

methodology for a LLC resonant converter controlled using two 

different control methods, switching frequency and  VI (Variable 

Inductor). In order to compare both control techniques a battery 

charger is analyzed and simulation results are presented. In 

order to control the converter gain, the converter is regulated in 

the first case by varying the switching frequency and, in the 

second case, is regulated through a variable resonant tank. The 

design methodology is presented and simulation results were 

obtained and compared with the theoretical ones considering a 

simple battery charger application.  

Keywords—DC-DC power converters, Resonant inverters, 

Battery chargers 

I. INTRODUCTION 

The number of researchers reporting or analyzing the 
performance of the LLC resonant converter has increased 
drastically in recent years. A high number of applications have 
demonstrated that the LLC resonant converter is highly 
performing. From high-density dc-dc converters to mid to low 
power LED drivers [1],[2], or classical 48 V telecom power 
sources [3], the resonant mode of operation is pointed out as a 
main advantage for its high efficiency at the resonant frequency 
and its inherent capability of reducing switching losses due to 
ZVS (Zero Voltage Switching) characteristics. Battery chargers 
are also referred as benefiting from the inherent LLC 
characteristics. In addition, high reliability, high efficiency and 
low component cost can all be provided by choosing this 
topology [4]-[6]. This paper analysis the classical LLC 
converter topology controlled by the switching frequency, �� 
and controlled with a variable resonant tank, using a VI as 
shown in Fig. 1. Depending on the operating conditions, the 
paper will analyze the performance, ZVS and ZCS, full-load 
and no-load operation. Another explored condition is to mix 
both control variables, frequency and variable resonant tank in 
order to verify the impact on the output regulation.  

II. LLC RESONANT CONVERTER 

The proposed converter topology is based on the half-
bridge inverter feeding an LLC resonant tank. The converter 
generally provides galvanic isolation by using an isolation 
transformer, which is followed by a rectifier stage. For the 
purpose of this work, the load will be a battery bank. 

 
Fig. 1. Proposed LLC resonant converter 

 The typical LLC resonant converter can be divided in three 
modules as shown in Fig. 1 [7]. Fig. 1 presents the adopted 
current and voltage definitions.  By turning the switches �� and 
�� with 50% duty cycle and complementary to each other a 
square voltage wave ���� is created at the input of the resonant 
network. In the present case a half-bridge inverter is used, but a 
full-bridge inverter could also be used. Typically the resonant 
tank has three components: a resonant inductor, 	
, the 
magnetizing inductance of the transformer, 	� and a resonant 
capacitor, �
. In the case of the VI control, the role of the 
resonant inductor is done by the variable inductor 	�, as 
opposed to the classical topology where the leakage inductance 

of the transformer 	��� is used. In the classic topology this is 

done to avoid using two magnetic components. In this case, 
adding a new magnetic device allows the converter to operate 
at constant switching frequency (��) or even to use both control 
variables �� and 	� to regulate the ouput. The goal of the 
resonant tank is to filter the higher harmonic currents in order 
to allow only the fundamental component of the current to flow 
through the resonant tank, even when a square wave voltage is 
applied to the input. 

A. Behaviour of the LLC Resonant Converter 

The LLC resonant converter is known to be capable of 
providing a wide output voltage range and safe-operation from 
no-load to short-circuit conditions [7]. When �� is the control 
variable, it is natural to operate the converter around the 

resonant frequency, �� = �

�∗�∗�����
 associated to the series 

elements of the resonant tank, 	
 and �
. Around this 
frequency, the gain characteristics are almost independent of 



the load [7]. Traditionally, the control is made by varying ��. 
The required �� range will be relatively small to guarantee 
enough controllability of the output gain (depending on the 
application) [7]. Therefore narrow �� range with light load and 
ZVS capability with even no load are commonly described as 
key benefits. It can also be seen that the gain changes with the 
load when �� is different from ��. The border between ZVS 
and ZCS operation is given by the peak gain, i.e. ZCS to the 
left and ZVS to the right, respectively. In case of no-load, the 

peak gain is maximum and it occurs when �� = �� =
�

�∗�∗�����   
 associated to the series-parallel elements of the 

resonant tank, 	� and �
. Operating above �� the resonant tank 

is inductive and the input current, �
  lags the voltage applied to 
the resonant tank, ����. The converter operates similar to a 
series resonant converter and therefore at �� the converter has 
only one operating point, which means no output regulation. 
Above ��, switching losses will be minimized, due to ZVS. 
Working near resonance has the advantage of near sinusoidal 
waveforms. Below �� and above the boundary between 
ZVS/ZCS, formed by the peak of the family load vs. gain 
curves, the converter still operates in ZVS. This will not be the 
case if the converter is operated below the boundary leading to 
a capacitive operation [8]. 

B. General Analysis using FHA and Design Methodology 

In order to use the first harmonic approximation (FHA) it 
is assumed that the filtering action of the resonant network is 
enough so that only the fundamental component of the square 
wave voltage ���� contributes to the power transfer to the 
output. Fig. 2a) shows the AC equivalent circuit for the LLC-
VI and, Fig. 2b) shows the simplified AC equivalent circuit 
for the LLC resonant converter [11]. If �� is adopted as control 
variable, 	� is assumed to be zero. 

 
Fig. 2. LLC resonant converter: a) AC equivalent circuit; b) Simplified AC 

eqivalent circuit 

Following the design procedure from [11], the converter 
equations needed for the design using FHA are shown in 

TABLE I. � is a ratio between 	� and 	��� and is typically 

� ∈ [5; 10] according to [11]. From (2), a minimum voltage 

gain at %� can be obtained as &'→') = &��* = �+�

�
 and, 

considering an allowed voltage variation at the input, a 
maximum gain can be obtained and depends on the input 

voltage and the minimum gain, &�,- = ./0_2/0

./0_234
∗ &��*. 

Finally, Fig. 2a) may be redesigned in terms of 	� and 	
 as 

shown in Fig. 2b), where an ideal transformer is included and 
	
 = 	��� + 	�//	���  and 	� = 	��� + 	�.  

The next section will analyse the impact of the �� and the 
VI on the design methodology and converter operation. 
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III. CONTROL VARIABLES IMPACT ON THE LLC RESONANT 

CONVERTER 

A. LLC Resonant Converter for Battery Charger Application 

In order to prove the design methodology presented in this 
paper and considering both control techniques a simple battery 
charger application is considered. Fig. 3 shows the battery 
voltage and current profiles. The voltage and current are 
dependent on the state-of-charge (SOC) of the battery or 
battery bank. For this reason, during charging, the battery 
voltage �789 is not constant. The converter must cope with 
these changes and therefore must be capable of providing a 
wide output voltage range and safe-operation from no-load to 
short-circuit conditions [7]. The LLC isolated converter is 
capable of dealing with these requirements, since ZVS is 
guaranteed in the primary side and ZCS is assured in the 
secondary [4]. These requirements will also be kept with the 
LLC-VI. 

 
Fig. 3. Battery voltage and current profiles and, behavior of 	� and �� values 

along the charging process: (a) �� control and, (b) 	� control 

 Fig. 3a) and Fig. 3b) show the voltage and current profiles 
and, behavior of 	� and �� considering frequency and VI 
control, respectively.  
 Using the VI control method, in the charging stage the goal 
is to have a constant charging current, starting with an initial 
value for 	�. Since the battery voltage is not constant, the 
controller needs to act on the inductance value to compensate 
the effect of the voltage variation. In this case, as the voltage 
increases from a minimum value, 	� needs to decrease from 

	�_� (SOC ~0%), to maintain a constant charging current until 

an acceptable SOC is achieved (SOC~90% at 	�_=�). This 

mode is identified as current charging stage, CCS. In the next 
stage, identified as VCS (voltage charging stage), when the 
battery is almost fully charged, the voltage needs to be 
maintained at a constant maximum value as the charging 

current tends to decrease naturally to its floating level >7_?�7,9 . 

At this point, 	� tends to its minimum value 	�_��� (SOC →
100%). During the whole process �� is kept constant. This 
simple approach is sufficient to prove the converter 
performance, however more complex charge control 
algorithms can be implemented to improve the efficiency of the 
application itself.  
 Using the frequency control method, the charging profile is 
similar to the previous case but, in this case, the resonant 
inductor 	� from Fig. 1 is not considered in the circuit and, the 
resonant inductor paper is done using the leakage inductance of 
the transformer.  

 The control variable is ��. During CCS, �� varies from ��_� 

(SOC ~0%) to, ��_=� (SOC ~90%), to maintain a constant 

charging current as the battery voltage increases. During VCS, 

 �� tends to its minimum value ��_��� (SOC → 100%) 

maintaining the voltage at is maximum value as the charging 

current tends do its floating level >7_?�7,9 . 

 The simple approach presented in Fig. 3 is sufficient to 
prove the converter performance; however more complex 
charge control algorithms can be implemented to improve the 
efficiency of the application itself.  
 Having a battery bank as load, inductive operation is 
needed, therefore the converter will operate only at or above 
resonance. Above resonance, ZVS operation appears but the 
waveforms have more distortion. 

B. VI Control Method 

Fig. 4 presents the gain curves as function of 	�, &@	�A 
at 10 kHz and 100 kHz using (1) from TABLE I.  Fig. 4a) 
presents these curves for different load values. It is possible to 
observe that a higher frequency leads to a narrower voltage 
gain peak. The previous resonance point considered in the 
design methodology, for �� = ��, occurs now when 	� is zero. 
At this point, the voltage gain is independent of load and 
frequency variation. In this case since the value of 	� changes, 
so does the resonance frequency. Mathematically, resonance 
may occur for negative values of 	�. Since a negative value of 
	� is not possible, it implies that the real operating region will 
always be a ZVS inductive region. From Fig. 4b) it can be seen 
that for a given voltage gain variation, ∆&, when the frequency 
is higher @100 �FGA the variation of inductance needed to 
obtain that gain variation @∆	�A is smaller when compared to a 
lower frequency @10 �FGA gain curve. Therefore, for the same 
inductance range, a higher value of �� will lead to a higher 
controllable range of the output. Increasing �� enables circuit 
miniaturization and operating at constant �� facilitates the 
design of the EMI filter.  

 
Fig. 4. Gain curves as function of 	� at 10 �FG and 100 �FG: a) &@	�A at 

different load levels; b) &@	�A at full-load 

This converter has inherent no-load and short-circuit 
protection. For short-circuit conditions, the resonant current 
would be limited by 	�. For no-load, this current is equal to 
the magnetizing current of the transformer. Therefore, using 
the variable inductance concept, the converter can provide a 
controllable output and be operated at constant switching 
frequency ��, advantageous in EMC (electromagnetic 



compatibility) and miniaturization issues, without 
compromising reliability and performance [9]. 

C. Switching Frequency Control Method 

In order to analyse the impact of the switching frequency 
on the LLC converter operation, the voltage gain must be 
obtained as a function of the switching frequency. 

Similar to the VI control method, (1) can be used to obtain 
the gain curves as function of ��. In this case, 	� is not 
considered and is set to be zero in (1). The variation of �� is 
made by knowing that % = 2 ∗ I ∗ ��. Fig. 5 presents the gain 
curves as function of ��, &@��A considering a design for 
10 �FG and 100 �FG. Fig. 5a) presents these curves for 
different load values. In this case unlike the previous case it is 
possible to observe that considering the design for a lower 
frequency leads to a narrower voltage gain peak. At and around 
resonance, the voltage gain is independent of the load and 
frequency variation. As the resonant filter components are 
constant, �� is always constant even with �� variation. Since the 
converter is designed initially to operate at resonance 
considering the maximum power in the output at this point, and 
that in normal operation, it will only operate at or above �� to 
regulate the output, ZVS is always guaranteed. From Fig. 5b) it 
can be seen that for a given voltage gain variation, ∆&, when 
the design frequency is higher @100 �FGA the variation of �� 
needed to obtain that gain variation @∆��A is higher when 
compared to a lower frequency design @10 �FGA gain curve. 
Therefore, for the same �� range, when the design is for a lower 
value of �� it will lead to a higher controllable range of the 
output. Nevertheless, from Fig. 5a) above resonance, if the 
frequency of design is higher, the operation is less load 
dependent although it allows less output regulation with the 
same variation of ��. Another advantage of increasing the 
design frequency is that enables circuit miniaturization. 
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Fig. 5. Gain curves as function of �� for 10 �FG and 100 �FG design: a) 
&@��A at different load levels; b) &@��A at full-load 

D. Control Variables Range 

In order to identify the required inductance and frequency 
range for the application, the output power must be calculated. 

Using (1) and knowing that & = �∗*∗.J

./0
 from [7] the output 

converter power can be obtained as: 

 ( )

2

2
22

in

o
o

o o

V

V n
P M j

R R
ω

� �
� �
� �

= = ⋅   (3) 

1) VI control range 

 Considering the voltage and current profiles presented in 
Fig. 3a), the output power for the three levels of SOC 

corresponding to 	�_�, 	�_=� and, 	�_��� can be obtained by 

using (3). The results are shown in Fig. 6.  
 By intersecting the gain curves of Fig. 6 with the defined 

power levels, 	�_�, 	�_=� and, 	�_��� are obtained. The 

inductance range is defined with 	�_� and 	�_���. The 

procedure for the construction of the VI can be find in previous 
literature [9]. 

2) Frequency Control Range  

Similar to the previous case, in order to identify the 
required frequency range for the application, the output power 
must be calculated. In this case, the output power is calculated 
using (3) and the gain &@K%A is also obtained using (1) where 
% = 2 ∗ I ∗ �� and, 	� is kept at zero (	� = 0). In this case, 
�� is the control variable. 
 Considering the voltage and current profiles presented in 
Fig. 3b), the output power for the three levels of SOC 

corresponding to ��_�, ��_=� and, ��_��� can be obtained using 

(3). The results are shown in Fig. 7.  
 By intersecting the gain curves of Fig. 7 with the defined 

power levels, ��_�, ��_=� and, ��_��� are obtained. The frequency 

range is defined with ��_� and ��_���. 

3) VI and Frequency Control 

Fig. 8 presents the gain curves as function of ��, &@��A 
considering a design for 100 �FG. From Fig. 8, it can be seen 
that using both control methods simultaneously can be 
advantageous. It is possible to obtain the same gain & with a 
smaller value of �� by increasing the 	� value. This would 
imply pushing the operating point from A to B or C as shown 
in Fig. 8.  

 
Fig. 6. Output power as function of of 	�, L7@	�A for the operating points 

corresponding to 	�_�, 	�_=� and 	�_��� 



 
Fig. 7. Output power as function of of ��, L7@��A for the operating points 

corresponding to ��_�, ��_=� and ��_��� 
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Fig. 8. Gain curves as function of �� for 100 �FG design for three different 

values of 	� at full-load (100% load) 

 

IV. SIMULATION RESULTS 

In order to validate the proposed topology, simulations in 
PSIM were carried out considering the converter parameters 
shown in TABLE II. , which were obtained by applying the 
proposed methodology. The simulation results shown in Fig. 9 
and Fig. 10 were obtained under open-loop control and are 
referred to VI and frequency control methods, respectively.  

TABLE II.  CONVERTER PARAMETERS FOR SIMULATION 

Description Specification 

Main parameters M�* = 400M; �� = 100�FG; O = 0.5 

Magnetic 
devices 

	� 	�_��* = 0.8RF ; 	�_�,- = 21.1RF 

Transformer 

� = 7 ; T = 1.95 
	��� = 15.11RF ; 	��� = 3.97RF 

	� = 105.75RF 
�
 , �7 , Load  89.42TV ; 43RV ; W7 ≥ 8.4Ω 

 The simulation results referred to the VI control method are 

shown in Fig. 9 and are referred to operating points 	�_�, 

	�_=� and 	�_��� (red, green and blue, respectively) obtained 

from Fig. 3b). Fig. 9a) and Fig. 9b) show respectively the 
driver signals for S1 and S2, �Z��and �Z�� and the resonant 
filter input voltage, ����. Fig. 9c), Fig. 9d), Fig. 9f) and Fig. 
9g) show respectively the input current, ���, the current in the 
resonant tank, ���, the current in the rectifier diodes, �� and the 
output current, �789. Finally, Fig. 9e) and Fig. 9h) show 
respectively the voltage at the VI terminals, ��� and the output 
voltage, �789.  

 During the CCS the range of the VI is [	�_�; 	�_=�]. When 

charging begins, 	� = 	�_�, >789 = 10[ and M789 = 84M 

which corresponds to its minimum value. 
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Fig. 9. Waveforms from simulation which represent the three points of 

operation correspondent to 	�_�, 	�_=� and 	�_���, in red, green and 

blue, respectively: (a) �Z��and �Z��; (b) ���� ; (c) ���; (d) ���; (e) ���; 
(f) ��; (g) �789; (h) �789 

 When CCS ends, 	� = 	�_=�, >789 = 10[ and M789 =
112,8M (SOC ≈ 90%). The controller switches from CCS to 
VCS, and the battery voltage increases to its maximum value, 
M789 = 116M and the charging current tends naturally to its 

float value. At this point, 	� → 	�_���. The converter operates 

always above resonance with ZVS. When the charging process 
begins the rectifier diodes operate in CCM (continuous 
conduction mode). The analysis of �� shows however that the 
converter enters in DCM (discontinuous conduction mode). 
When the batteries are almost fully charged the behavior of the 
converters tends to an open circuit and the current through the 

VI, ���_��� exhibits a triangular shape waveform similar to 

what would be expected for the magnetizing current, ���.  
 The simulation results referred to the frequency control 
method are shown in Fig. 10 and are referred to operating 

points ��_�, ��_=� and ��_��� (red, green and blue, respectively) 

obtained from Fig. 3a). Fig. 10a) to Fig. 10c) show respectively 

the driver signals for S1 and S2, �Z��and �Z��, for  ��_�, ��_=� 

and ��_��� respectively. Fig. 10d) shows the resonant filter 

input voltage, ����. Fig. 10e), Fig. 10f), Fig. 10g) and Fig. 10h) 
show respectively the input current, ���, the current in the 
resonant tank, ���, the current in the rectifier diodes, �� and the 
output current, �789. Finally, Fig. 10i) shows the output voltage, 
�789. 



 
Fig. 10. Waveforms from simulation which represent the three points of 

operation correspondent to 	�_�, 	�_=� and 	�_���, in red, green and 

blue, respectively: (a) �Z��and �Z�� for ��_�; (b) �Z��and �Z�� for ��_=�; 

(c) �Z��and �Z�� for ��_���; (d) ���� ; (e) ���; (f) ���; (g) ��; (h) �789; (i) 

�789 

 TABLE III.  show the theoretical and simulation results 
considering VI and frequency control methods for the 
converter design parameters defined in TABLE II.  As can be 
seen the simulation results are similar to the expected 
theoretical results and the results for VI control are very similar 
to the results for frequency control.  

TABLE III.  THEORETICAL AND SIMULATION RESULTS 

Theoretical Simulation 

SOC 
[%] 

	� 
[RH] 

�� 
[kHz] 

M789 
[V] 

>789 
[A] 

L789 
[W] 

M789 
[V] 

>789 
[A] 

L789 
[W] 

≈ 0 21.1 100 84 10 840 87.23 10.38 906 
≈ 90 3.3 100 112.8 10 1128 114.41 10.14 1161 
≈ 100 0.98 100 116 0.5 58 118.99 0.51 61 

≈ 0 − 151 84 10 840 92.5 11.01 1019 
≈ 90 − 106.3 112.8 10 1128 114.41 10.14 1161 
≈ 100 − 101.65 116 0.5 58 118.99 0.51 61 

≈ 0 10 120 84 10 840 89.38 10.64 951 

 From TABLE III.  the necessary range to regulate the 
output is about 20RF considering only VI control, 50�FG 
considering only �� control and, 10RF and 20�FG considering 
VI and �� control simultaneously. In conclusion, using both 
control techniques simultaneously allows the range of each 

control variable to be smaller when compared to the case of 
using only one control method. 

V. CONCLUSIONS 

The goal of this paper is to analyze the LLC resonant 
converter and compare its behavior when using either the 
traditional frequency control or, using a variable resonant tank 
through a VI. The advantages of using simultaneously both 
control techniques were discussed. The converter parameters 
are first determined considering the traditional design 
methodology (used for frequency control) and then, depending 
on the chosen control method, the output power expression is 
used to determine either the necessary VI or �� range to control 
the converter output. A simple charging profile was followed. 
A careful theoretical and simulation analysis of the converter is 
presented for different switching frequencies, including the 
analysis of the converter output power as function of both 
control variables. Theoretical results were confronted with 
simulation and a good agreement was found. In conclusion 
both control parameters can be used to control the output of the 
LLC resonant converter achieving always ZVS: using a VI 
while keeping �� constant or using �� while the resonant 
parameters are kept constant. A higher �� leads to converter 
miniaturization and the range of the VI needed to obtain a 
specific output regulation will be smaller. However, if �� is the 
control variable, the range is higher. A mix between both 
controls methods leads to an improved performance 
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Abstract — Based on the respective merits of the LLC 

resonant converter and the VI (Variable Inductor), a new battery 

charger topology is proposed. This paper presents a design 

methodology for the LLC resonant converter controlled with a 

VI. The output of the converter is regulated through a variable 

resonant tank in order to control the charging process. A small-

scale prototype fed by a 50V DC input, with an IGBT based 

inverter working at 11.3 kHz was built in order to test the 

proposed control method. Experimental results are presented. 

Keywords—LLC resonant converter, variable inductor, battery 

charger. 

I. INTRODUCTION 

The number of researchers reporting or analyzing the 

performance of the LLC resonant converter has increased 

drastically in recent years. A high number of applications have 

demonstrated that the LLC resonant converter is highly 

performing. From high-density dc-dc converters to mid to low 

power LED drivers [1],[2], or classical 48 V telecom power 

sources [3], the resonant mode of operation is pointed out as a 

main advantage for its high efficiency at the resonant frequency 

and its inherent capability of reducing switching losses due to 

ZVS (Zero Voltage Switching) characteristics. Battery chargers 

are also referred as benefiting from the inherent LLC 

characteristics. Battery chargers requirements are somehow 

different from other applications since the converter must 

provide low high-frequency current ripple to maximize the 

battery life, a wide output voltage to cope with typical battery 

voltage profiles and a flexible control in order to design 

appropriate charging algorithms. In addition, high reliability, 

high efficiency and low component cost can all be provided by 

choosing this topology [4]-[6].  

This paper is inspired in the classical LLC converter 

topology by exploring a new control method, based on a 

variable resonant tank as shown in Fig. 1. Fig. 1 presents also 

the adopted current and voltage definitions.  

Using the variable inductance concept, the converter can 

provide a controllable output and be operated at constant 

switching frequency � , advantageous in EMC (electromagnetic 

compatibility) and miniaturization issues, without 

compromising reliability and performance. ZVS is guaranteed 

and the whole strategy is demonstrated by a simple charging 

concept. 

II. LLC RESONANT CONVERTER 

The proposed converter topology is based on the half-

bridge inverter feeding an LLC resonant tank. The converter 

generally provides galvanic isolation by using an isolation 

transformer, which is followed by a rectifier stage. For the 

purpose of this work, the load will be a battery bank. 
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Fig. 1. Proposed LLC resonant converter 

 The typical LLC resonant converter can be divided in three 

modules as shown in Fig. 1 [7]. By turning the switches  and 

 with 50% duty cycle and complementary to each other a 

square voltage wave  is created at the input of the resonant 

network. In the present case a half-bridge inverter is used, but a 

full-bridge inverter could also be used. Typically the resonant 

tank has three components: a resonant inductor, , the 

magnetizing inductance of the transformer,  and a resonant 

capacitor, . In this case, the role of the resonant inductor is 

done by the variable inductor �, as opposed to the classical 

topology where the leakage inductance of the transformer  

is used. In the classic topology this is done to avoid using two 

magnetic components. In this case, adding a new magnetic 

device allows the converter to operate at constant switching 

frequency (� ) or even to use both control variables �  and � 
to regulate the ouput. The goal of the resonant tank is to filter 

the higher harmonic currents in order to allow only the 

fundamental component of the current to flow through the 

resonant tank, even when a square wave voltage is applied to 

the input. 
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A. Advantages and Behaviour of the LLC Resonant Converter 

The LLC resonant converter is known to be capable of 

providing a wide output voltage range and safe-operation from 

no-load to short-circuit conditions [7]. When �  is the control 

variable, it is natural to operate the converter around the 

resonant frequency, � = ∗�∗√�� � associated to the series 

elements of the resonant tank,  and . Around this 

frequency, the gain characteristics are almost independent of 

the load, as seen in Fig. 2. Traditionally, the control is made 

by varying � . The required �  range will be relatively small to 

guarantee enough controllability of the output gain (depending 

on the application) [7]. Therefore narrow �  range with light 

load and ZVS capability with even no load are commonly 

described as key benefits. It can also be seen that the gain 

changes with the load when �  is different from � . The border 

between ZVS and ZCS operation is given by the peak gain, 

i.e. ZCS to the left and ZVS to the right, respectively. In case 

of no load, the peak gain is maximum and it occurs when � = � = ∗�∗√� �    associated to the series-parallel elements 

of the resonant tank,  and , where  is defined as the sum 

of the primary leakage inductance and the magnetizing 

inductance. 
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Fig. 2. Typical gain curves of LLC resonant converter for various loads and 

capacitive and inductive region waveforms 

It is also noticed that operating above �  the resonant tank 

is inductive and the input current, �  lags the voltage applied to 

the resonant tank, . The converter operates similar to a 

series resonant converter and therefore at �  the converter has 

only one operating point, which means no output regulation. 

Above � , switching losses will be minimized, due to ZVS. 

Working near resonance has the advantage of near sinusoidal 

waveforms. Below �  and above the boundary between 

ZVS/ZCS, formed by the peak of the family load vs. gain 

curves, the converter still operates in ZVS. This will not be the 

case if the converter is operated below the boundary leading to 

a capacitive operation [8]. 

B. LLC Resonant Converter with VI Control 

In the present case study an LLC resonant converter with 

Variable Inductor (LLC-VI) control is described. The � is 

connected in series with the transformer primary side, but the 

rest of the topology is kept. As response to a dc control current, 

the global reluctance of the magnetic � core is varied, and 

therefore the differential inductance of the inductor is 

controlled. Thus, the role of the � is to change the 

characteristics of the resonant tank in order to have a 

controllable output in a similar manner to the classical �  

control. The � principle of operation may be found in prior 

literature and will not be further addressed in this paper [9]. In 

this case, the �  will be kept constant, which benefits the 

converter design (EMC and control design). However, if 

necessary these two control variables might act together to 

improve the performance of the converter. 

 Besides small size, low component cost and high reliability, 

charging applications have specific requirements that are 

directly related to the battery voltage and current profile as 

exemplified in Fig. 3. These characteristics are strongly 

dependent on the state-of-charge (SOC) of the battery or 

battery bank. For this reason, during charging, the battery 

voltage  is not constant. The converter must cope with 

these changes and therefore must be capable of providing a 

wide output voltage range and safe-operation from no-load to 

short-circuit conditions [7]. The LLC isolated converter is 

capable of dealing with these requirements, since ZVS is 

guaranteed in the primary side and ZCS is assured in the 

secondary [4]. These requirements will also be kept with the 

LLC-VI. In the charging stage the goal is to have a constant 

charging current, starting with an initial value for �. Since the 

battery voltage is not constant, the controller needs to act on the 

inductance value to compensate the effect of the voltage 

variation. In this case, as the voltage increases from a minimum 

value, � needs to decrease from �_  (SOC ~ %), to 

maintain a constant charging current until an acceptable SOC is 

achieved (SOC~ % at �_9 ). This mode is identified as 

current charging stage, CCS. In the next stage, identified as 

VCS (voltage charging stage), when the battery is almost fully 

charged, the voltage needs to be maintained at a constant 

maximum value as the charging current tends to decrease 

naturally to its floating level _� � . At this point, � tends to 

its minimum value �_  (SOC → %). During the whole 

process �  is kept constant. This simple approach is sufficient 

to prove the converter performance, however more complex 

charge control algorithms can be implemented to improve the 

efficiency of the application itself.  
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Fig. 3. Battery voltage and current profiles and, behavior of � and �  values 

along the charging process 

 Having a battery bank as load, inductive operation is 

needed, therefore the converter will operate only at or above 

resonance. Above resonance, ZVS operation appears but the 

waveforms have more distortion. 

III. ANALYSIS AND DESIGN OF THE LLC-VI 

In this section the analysis and design of the converter will 

be discussed considering the proposed VI control method. The 

approach will be based on the evaluation of the converter 

using the fundamental harmonic approximation (FHA). 
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A. General Analysis using FHA and Design Methodology 

In order to use the first harmonic approximation (FHA) it 

is assumed that the filtering action of the resonant network is 

enough so that only the fundamental component of the square 

wave voltage  contributes to the power transfer to the 

output. Fig. 4 shows the AC equivalent circuit for the LLC-VI.  
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Fig. 4. AC equivalent circuit for LLC resonant converter 

Considering the transformer turns ratio = ⁄ , the 

rectifier and the load, an equivalent resistance �  is defined 

that includes the effect of the output rectifier and load 

resistance: 
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2

8
ac o

n
R R


   (1) 

where = � /  is the load resistance (that represents the 

battery bank).  

 The design methodology starts by determining the resonant 

tank parameters ( ,  and ) assuming the traditional FHA 

method followed by [11], considering the nominal operating 

point as reference. The following condition is considered at the 

nominal operating point: � = . As previously mentioned, 

the LLC converter has two resonant frequencies: � = ��  

determined by  and  and  � = �� , determined by  

and , where = −  and = + //
. In a transformer, if the secondary side winding is 

open or short-circuited,  and  can be measured, 

respectively. Following the procedure presented in [11] and 

assuming that =  the voltage gain for this converter 

can be expressed as: 
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Where = √�� �⁄��  and � = ��  and is typically � ∈ [ ; ] 
according to [11]. With this simplification, a minimum voltage 

gain at �  can be obtained as �→�0 = � = +
.  Finally, 

Fig. 4 may be redesigned in terms of  and  as shown in 

Fig. 5, where an ideal transformer is included and = +//   and = +  . 
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Fig. 5. Simplified AC eqivalent circuit for LLC resonant converter 

 Assuming an input voltage variation of 10% to 15%, the 

maximum gain can be calculated as: 

 _ max

max min

_ min

in

in

V
M M

V
    (3) 

 In order to identify the value of  (for the calculation of the 

resonant parameters), it is necessary to find the peak gain 

curves as function of  and intersect them with the specified 

maximum gain (assuming a variable range for �� ). These 

curves for different � values are shown in Fig. 6, as obtained 

from (2). For a selected  range the voltage gain is determined 

and the peak gain value is identified. This is repeated for 

different values of �. 

 
Fig. 6. Peak gain (maximum attainable gain) versus  for different � values 

 The final value of  is obtained from the intersection of the 

maximum gain, considering a margin of 10% ( �� �� =. ∗ ��), and the peak gain curve for the selected � as 

shown in Fig. 6. Knowing the value of , considering �  

and � , the resonant parameters can be calculated as: 
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 Considering an output voltage ripple of 1%, the output 

capacitor  can be calculated as: 
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Finally, the transformer turns ratio is determined. 

Considering the diode rectifier voltage drop � , the transformer 

turns ratio can be determined as: 
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The next section will analyse the impact of the VI on the 

design methodology and converter operation.  

B. VI Control Impact on the Design Methodology 

In order to analyse the impact of the VI on the LLC 

converter operation, the voltage gain must be obtained as a 

function of this new control parameter.  

Applying Kirchhoff’s Laws to mesh 1 and mesh 2, referred 

previously in Fig. 4, (9) and (10) can be written. Considering 

the output voltage �� = ∗ � , and the two mesh equations, 

the voltage gain is obtained as in (11). 
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Fig. 7 presents the gain curves as function of �, �  

at  kHz and  kHz. Fig. 7a) presents these curves for 

different load values. It is possible to observe that a higher 

frequency leads to a narrower voltage gain peak. The previous 

resonance point considered in the design methodology, for � = � , occurs now when � is zero. At this point, the voltage 

gain is independent of load and frequency variation. In this 

case since the value of � changes, so does the resonance 

frequency. Mathematically, resonance may occur for negative 

values of �. Since a negative value of � is not possible, it 

implies that the real operating region will always be a ZVS 

inductive region. From Fig. 7b) it can be seen that for a given 

voltage gain variation, ∆ , when the frequency is higher  � �  the variation of inductance needed to obtain that 

gain variation ∆ �  is smaller when compared to a lower 

frequency  � �  gain curve. Therefore, for the same 

inductance range, a higher value of �  will lead to a higher 

controllable range of the output. Increasing �  enables circuit 

miniaturization and operating at constant �  facilitates the 

design of the EMI filter.  
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Fig. 7. Gain curves as function of � at  � � and  � �: a) �  at 

different load levels; b) �  at full-load 

However, this converter has inherent no-load and short-

circuit protection. For short-circuit conditions, the resonant 

current would be limited by �. For no-load, this current is 

equal to the magnetizing current of the transformer. 

C. VI Control Range  

In order to identify the required inductance range for the 

application, the output power must be calculated. Using (11) 

and knowing that = ∗ ∗���  from [7] the output converter 

power can be obtained as: 
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 For the LLC battery charger and considering the voltage 

and current profiles presented in Fig. 3, the output power for 

the three levels of SOC corresponding to �_ , �_9  and, �_  can be obtained by using (12). The results are shown in 

Fig. 8.  
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Fig. 8. Output power as function of of �, �  for the operating points 

corresponding to �_ , �_9  and �_  

 By intersecting the gain curves of Fig. 8 with the defined 

power levels, �_ , �_9  and, �_  are obtained. The 

inductance range is defined with �_  and �_ . The 

procedure for the construction of the VI can be find in previous 

literature [9]. 

IV. SIMULATION RESULTS 

In order to validate the proposed topology, simulations in 

PSIM were carried out considering the converter parameters 

shown in Table I, which were obtained by applying the 

proposed methodology. The simulation results shown in Fig. 9 

were obtained under open-loop control.  

TABLE I.  CONVERTER PARAMETERS FOR SIMULATION 

Description Specification 

Main parameters �� = �; � = � �; � = .  

Magnetic 

devices 

� �_ � = . �  ; �_ �� = . �  

Transformer 

� =  ; = .  = . �  ; = . �  = . �  

 ,  , Load  .  ; �  ; ≥ . Ω 

 The simulation results are referred to operating points �_ , �_9  and �_  (red, green and blue, respectively) obtained 

from Fig. 3. Fig. 9a) and Fig. 9b) show respectively the driver 

signals for S1 and S2, and  and the resonant filter 

input voltage, . Fig. 9c), Fig. 9d), Fig. 9f) and Fig. 9g) 

show respectively the input current, � , the current in the 

resonant tank, �� �, the current in the rectifier diodes, �  and the 

output current, � . Finally, Fig. 9e) and Fig. 9h) show 
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respectively the voltage at the VI terminals, � � and the output 

voltage, . 
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Fig. 9. Waveforms from simulation which represent the three points of 

operation correspondent to �_ , �_9  and �_ , in red, green and 

blue, respectively: (a) and ; (b)  ; (c) � ; (d) �� �; (e) � �; 
(f) � ; (g) � ; (h)  

 During the CCS the range of the VI is [ �_ ; �_9 ]. When 

charging begins, � = �_ , =  and � = � 

which corresponds to its minimum value. When CCS ends, � = �_9 , =  and � = , � (SOC ≈ %). 

The controller switches from CCS to VCS, and the battery 

voltage increases to its maximum value, � = � and the 

charging current tends naturally to its float value. At this point, � → �_ . The converter operates always above resonance 

with ZVS. When the charging process begins the rectifier 

diodes operate in CCM (continuous conduction mode). The 

analysis of �  shows however that the converter enters in DCM 

(discontinuous conduction mode). When the batteries are 

almost fully charged the behavior of the converters tends to an 

open circuit and the current through the VI, �� �_  exhibits a 

triangular shape waveform similar to what would be expected 

for the magnetizing current, �� . 

 Table II shows the theoretical and simulation results for the 

converter design parameters defined in Table I. As can be seen 

the simulation results are similar to the expected theoretical 

results. 

TABLE II.  THEORETICAL AND SIMULATION RESULTS 

Theoretical Simulation 

SOC 
[%] 

� 
[�H] 

�  
[V] 

 
[A] 

 
[W] 

�  
[V] 

 
[A] 

 
[W] ≈  .     .  .   ≈  .  .    .  .   ≈  .   .   .  .   

V. SMALL-SCALE LLC CONVERTER TEST RESULTS 

In order to validate the proposed topology an experimental 

small-scale prototype was built using a half-bridge IGBT based 

inverter. The results were obtained without closed-loop control. 

The converter input was fed by a DC voltage source 

(YOKOGAWA GS610) at constant � . To simulate the load a 

Programmable DC Electronic Load was used (BK PRECISION 

8522 2400W). The system specifications and converter 

parameters are shown in Table III. The purpose was to verify 

experimentally the ability to control the output of the LLC-VI. 

The design methodology was followed but only two operating 

points were considered.  

TABLE III.  CONVERTER PARAMETERS FOR SIMULATION AND 

EXPERIMENTAL PROTOTYPE 

Description Specification 

Main parameters �� = �; � = . � �; � = .  

 and  SEMiX202GB066HDs ; � ;  ; Ω 

 , ,  and  80EPF12 ; � = , �  ;    ;  � 

Theoretical design 

Magnetic 
devices 

� �_ � = �  ; �_ �� = �  

Transformer 

� =  ; =  = . �  ; = . �  = �  

 ,  , Load  .  ; �  ; = . Ω 

Simulation and experimental parameters 

Magnetic 

devices 

� � = . �  → . �  � =   ;  =  ×  

ETD44/22/15 core  ;   .  gap 

Transformer 

=   ;  =   ; =  = , �  ; = , �  = �  

 ,  , Load  �  ; �  ; = . Ω 

 The obtained simulation and experimental waveforms 

presented in Fig. 10 and Fig. 11, show the operation of the 

converter at the two VI prototype limits, � �  and � ��. 

For this test the load was kept constant. Fig. 10 shows  

and, �� � for � �  and � ��. Between these two limits the 

converter operates at ZVS. 

 Fig. 11 shows � , , �� � and � , for � �  and � ��. It can be seen that by adjusting the VI control current 

 and regulating the inductance value it is possible to control 

the converter output. In Fig. 11e) the converter operates in 

DCM (when �� � = ��  the rectifier diodes are not conducting), 

and in Fig. 11f) operates in CCM. For � �� the converter 

operates closer to resonance since the �� � is closer to a 

sinusoidal. Table IV shows the theoretical, simulation and 

experimental results for the small-scale prototype. As expected 

the simulation results are very close to the theoretical results. 

The experimental values exhibit some variation essentially due 

to coupling losses in the power transformer and due to the 

prototype efficiency. For current and voltage values the error 

between the experimental and simulation results is around  % and  %, respectively. Nevertheless at this point, it was 

only intended to prove the capability of this topology regarding 

output regulation. 
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Fig. 10.  and, �� �, red and blue respectively: (a) and (c) for � � ; (b) 

and (d) for � ��, simulation and experimental tests, respectively.  

Experimental results, 25V/div, 0,5A/div, 25us/div 
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Fig. 11. � ,  (red and blue, respectively), �� � and �  (red and blue, 

respectively): (a), (c) and (e) for � �  and (b), (d) and (f) for � ��. 

Experimental results �  and , 10V/div, 2.5V/div, respectively. �� � 
and � , 0.5A/div, 0.5A/div respectively, 25us/div 

TABLE IV.  CONVERTER PARAMETERS FOR SIMULATION AND 

EXPERIMENTAL PROTOTYPE 

VI 

prototype 

 range 

Theoretical 

results 

Simulation 

Results 

Experimental 

Results 

� 
[�H] 

 
[W] 

�  
[V] 

 
[A] 

 
[W] 

�  
[V] 

 
[A] 

 
[W] .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  

VI. CONCLUSIONS 

This paper proposes an LLC resonant converter for battery 

charging with VI control. Two main goals were identified: the 

first was to explore the possibility to regulate the LLC 

converter output with a variable resonant tank and the second 

one, to apply this control technique to a battery charger. It was 

demonstrated that a variable inductance based LLC converter 

provides output power regulation and allows controlling the 

charging process. Taking as reference the traditional design 

methodology (used for frequency control) it was possible to 

determine the converter parameters and the required inductance 

range. A simple charging profile was followed, during CCS a 

constant output current was maintained while the �  

increases (with increasing SOC) and, during VCS,  tends 

naturally to its float value as �  reaches its maximum value. 

In this case the inductance is used to keep a constant output 

voltage (as SOC reaches its maximum). A careful analysis of 

the methodology is presented for different switching 

frequencies, including the analysis of the converter output 

power as function of the control variable. Theoretical results 

were confronted with simulation and a good agreement was 

found. The experimental tests of the small-scale LLC-VI 

allowed verifying the proposed approach. Experimental 

waveforms are very close to the simulation ones. An output 

range of variation from % to % was obtained at constant 

frequency. In this case, a relatively small output regulation was 

obtained, due to poor coupling in the transformer and 

efficiency losses in the converter. This is the main reason why 

there is some distance between the experimental values (in 

terms of voltage and current levels) and the simulation ones. If �  increases, the converter will be miniaturized and the range of 

the VI needed to obtain a specific output regulation will be 

smaller. A proper design of the magnetic components and the 

converter parameters (seeking efficiency) will lead to the 

expected values (according to the design methodology). In 

conclusion, the VI can be used to control the output of the LLC 

resonant converter achieving always ZVS while �  is kept 

constant. 
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