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Abstract

Rilpivirine is a second-generation nonnucleoside reverse-transcriptase inhibitor (NNRTI) currently indicated for first-line therapy, but its

clinical benefit for HIV-1 infected patients failing first-generation NNRTIs is largely undefined. This study quantified the extent of

genotypic rilpivirine resistance in viral isolates from 1212 patients upon failure of efavirenz- or nevirapine-containing antiretroviral

treatment, of whom more than respectively 80% and 90% showed high-level genotypic resistance to the failing NNRTI. Of all study

patients, 47% showed a rilpivirine resistance-associated mutation (RPV-RAM), whereas preserved residual rilpivirine activity was predicted

in half of the patients by three genotypic drug resistance interpretation algorithms. An NNRTI-dependent impact on rilpivirine resistance

was detected. Compared with the use of nevirapine, the use of efavirenz was associated with a 32% lower risk of having a RPV-RAM and

a 50% lower risk of predicted reduced rilpivirine susceptibility. Most prevalent RPV-RAMs after nevirapine experience were Y181C and

H221Y, whereas L100I+K103N, Y188L and K101E occurred most in efavirenz-experienced patients. Predicted rilpivirine activity was not

affected by HIV-1 subtype, although frequency of individual mutations differed across subtypes. In conclusion, this genotypic resistance

analysis strongly suggests that the latest NNRTI, rilpivirine, may retain activity in a large proportion of HIV-1 patients in whom resistance

failed while they were on an efavirenz- or nevirapine-containing regimen, and may present an attractive option for second-line treatment

given its good safety profile and dosing convenience. However, prospective clinical studies assessing the effectiveness of rilpivirine for

NNRTI-experienced patients are warranted to validate knowledge derived from genotypic and phenotypic drug resistance studies.
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Introduction
In the last 25 years, treatment options for HIV type 1 infection
strongly expanded in response to a persistent need for viral

inhibitors demonstrating higher potency, better tolerability and
more favourable resistance profiles. The first-generation non-
nucleoside reverse-transcriptase (RT) inhibitors (NNRTIs)
Clinical Microbiology and Infection © 2015 The Authors. Published by El
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efavirenz and nevirapine are confronted with adverse events
and a low genetic barrier to resistance development, and

second-generation NNRTIs etravirine and the latest approved,
rilpivirine, have become available for use in clinical practice.

Based on phase III clinical trials ECHO and THRIVE that
demonstrated noninferiority compared with standard-care

recommended efavirenz in treatment-naive patients with a
viral load of <100 000 copies/mL, rilpivirine is currently rec-

ommended for first-line therapy [1–4].
Viral escape from drug pressure through resistance devel-

opment is a major challenge for durable HIV-1 treatment suc-

cess, and particularly an issue for the NNRTI class due to
largely overlapping resistance profiles within and between
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different generations. Phenotypic analyses of the rilpivirine trials

showed that 90% of patients experiencing rilpivirine resistance-
associated virological failure were resistant to etravirine, 87%

to efavirenz and 45% to nevirapine, indicating that rilpivirine
resistance precludes further NNRTI use [5]. Patients experi-

encing efavirenz resistance-associated virological failure largely
remained susceptible to etravirine and rilpivirine [5]. Rilpivirine
was designed to overcome viral variants resistant to first-

generation NNRTIs [6], and in vitro sensitivity to rilpivirine
was shown in 62% of first-generation NNRTI resistant isolates

[7].
To date, a benefit of rilpivirine in clinical settings for patients

who acquired NNRTI resistance is largely undefined, although
supported by reports of in vivo activity [8,9] and a low preva-

lence of rilpivirine resistance–associated mutations (RAMs)
reported in treatment- and NNRTI-experienced patients [10].
NNRTI sequencing strategies are also of relevance for the

current treatment-experienced patient population as efavirenz
and nevirapine constitute historically widely used components

of cART. The resistance profile of rilpivirine recently has been
refined, and clinically widely used resistance interpretation al-

gorithms have incorporated rilpivirine resistance scores
[5,7,11]. Considering this updated information, we estimated

the expected reduced susceptibility to rilpivirine in HIV-1 pa-
tients who failed cART including first-generation NNRTIs, and

evaluated a differential impact of efavirenz or nevirapine
experience.
Methods
Clinical data were retrieved from a drug resistance database of
HIV-1 patients followed up in 22 hospitals located in Portugal
and undergoing routine genotypic resistance testing in case of

NNRTI-containing therapy failure [12,13]. Eligible patients were
naive to second-generation NNRTIs, experienced with either

only efavirenz or only nevirapine and on an NNRTI regimen at
least 24 weeks in length to avoid failing therapies due to reasons

other than antiviral resistance. The most recent viral isolate of
each patient spanning RT was collected.

We evaluated the prevalence of the following mutations as
markers of (potential) rilpivirine resistance. 1) Sixteen individual
mutations K101E/P, E138A/G/K/Q/R, V179L, Y181C/I/V,

Y188L, H221Y, F227C, M230I/L were defined as rilpivirine
RAMs (RPV-RAMs), based on the ECHO and THRIVE trials and

phenotypic analyses of rilpivirine resistance [4–7]. 2) The
combination L100I+K103N confers high-level resistance to

rilpivirine and was counted as a 17th RPV-RAM [6,7]. 3) Four
mutational patterns of K101E+M184I/V or E138K+M184I/V

also were monitored, because NRTI RAMs M184I/V decrease
Clinical Microbiology and Infection © 2015 The Authors. Published by Elsevier Ltd on behalf of E
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rilpivirine susceptibility compared with the RPV-RAM alone [5].

4) Individual mutations V90I, K101T, V106I/A, V108I, E138S,
V179D/I/F, V189I, G190A/E/S and M230V were considered

potential rilpivirine RAMs (pRPV-RAM), according to in vitro or
in vivo selection studies or genotypic resistance interpretation

algorithms [5,7,8,10,14–17].
Residual activity of rilpivirine was estimated on the distri-

bution of rilpivirine RAMs and the genotypic susceptibility

predicted by three interpretation algorithms (ANRS V22, Rega
9.1.0 and HIVdb V6.3.1) [15–17]. Viral isolates were classified

as susceptible, intermediate resistant or high-level resistant by
Rega and HIVdb, and susceptible or resistant by ANRS. An

NNRTI- or subtype-dependent impact was evaluated by
comparing mutation prevalence and predicted susceptibility

between patient groups. A zero-inflated negative binomial
regression model, taking into account the presence of dispersed
count data and excess of zero values, was used to model mu-

tation count data in the different groups. Pearson χ2 test with
Yates continuity correction was used to identify different

proportions of patients displaying �1 rilpivirine mutations.
Logistic regression was used to compare mutation prevalence

according to HIV-1 subtype [18]. Data were analysed using the
statistical package R with a significance level of 5% [19].
Results
The study included 1212 HIV-1 infected patients failing cART
containing a first-generation NNRTI, of which 813 patients

(67%) received efavirenz-containing cART and 399 patients
(33%) received nevirapine-containing cART. At the start of the

current failing regimen, 37% of the 813 efavirenz-experienced
patients were treatment-naïve, 40% were NNRTI-naïve and
23% received the same NNRTI previously. Of the 399

nevirapine-experienced patients, these proportions were 31%,
45% and 24%, respectively. The median time on an NNRTI-

containing regimen was 27.3 months (interquartile range: 12.0
to 49.7) for the nevirapine group and 22.3 months (inter-

quartile range: 12.2 to 42.6) for the efavirenz group (p 0.04,
Mann-Whitney test). The mean viral load (log) was 4.13 RNA

copies/mL, with a viral load lower than 1000 copies/mL in 91
patients (7.5%) and above 100 000 copies/mL in 201 patients
(16.6%), with comparable proportions in the efavirenz and

nevirapine groups (data not shown). A majority of patients
accumulated NNRTI resistance at failure, with interpretation

algorithms scoring high-level genotypic efavirenz resistance in
83.9% (HIVdb) to 84.5% (ANRS) of efavirenz-experienced pa-

tients and high-level nevirapine resistance in 91.0% (HIVdb,
Rega) to 94.5% (ANRS) of nevirapine-experienced patients.
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At least 1 of 17 defined RPV-RAMs was present in 574

(47.3%) patients: 424 (35.0%) had one RPV-RAM, 141 (11.6%)
had two RPV-RAMs and 9 (0.7%) had three or more RPV-

RAMs. With a total count of 734 RPV-RAM occurrences, the
NNRTI-experienced patient population was characterized by a

mean number and variance of 0.61 ± 0.52 RPV-RAMs. Most
prevalent RPV-RAMs were Y181C (n = 223, 18.4%), H221Y
(n = 121, 9.9%), L100I+K103N (n = 111, 9.2%) and K101E

(n = 95, 7.8%) (Fig. 1). L100I was largely (n = 111, 93%) found in
the presence of K103N. Most frequent combinations, irre-

spective of accompanying RPV-RAMs, were Y181C+H221Y
(n = 67, 5.5%), K101E+M184V (n = 67, 5.5%), Y181C+K101E

(n = 29, 2.4%), H221Y+L100I+K103N (n = 15, 1.3%) and
K101E+E138A (n = 14, 1.2%). Common pRPV-RAMs were

G190A (n = 169, 13.9%), V106I (n = 103, 8.5%) and V108I
(n = 103, 8.5%). Mutations E138R/S, V179F and M230I/V were
not detected. The mean and variance of pRPV-RAMs was

0.55 ± 0.54, with 42% of study patients harbouring one or more
pRPV-RAMs. A pRPV-RAM was more frequent in patients with

RPV-RAMs (49.8%) than without any RPV-RAM (34.3%,
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FIG. 1. Prevalence of mutational

patterns affecting rilpivirine suscep-

tibility. RAM, resistance associated

mutation (left); mutations affecting

rilpivirine susceptibility only when in

the specified combination (middle);

pRAM, potential resistance associ-

ated mutation (right). Prevalence in

efavirenz-experienced patients (dark

grey), in nevirapine-experienced pa-

tients (light grey) and in all patients

(horizontal bars).
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p < 0.01). Overall, 793 patients (65.4%) carried at least one

RPV-RAM or pRPV-RAM.
An RPV-RAM was present in 60% of the 399 nevirapine-

experienced patients compared with 41% of the 813
efavirenz-experienced patients (relative risk [RR] = 1.46,

p < 0.001). Taken together, with respective counts of 323 and
411 RPV-RAMs, the mean number of RPV-RAMs per patient
was higher in the nevirapine-experienced population

(0.81 ± 0.61 per patient) than in the efavirenz-experienced
population (0.51 ± 0.45, p < 0.001). Most common RPV-

RAMs after efavirenz use were L100I+K103N (13.4%), Y188L
(7.6%), K101E (7.1%), H221Y (6.6%) and Y181C (5.6%), ac-

counting for 26.5%, 15.1%, 14.1%, 13.1% and 11.2% of RPV-
RAMs detected in efavirenz-experienced patients. H221Y with

L100I+K103N was the most frequent RPV-RAM combination
(1.8%). Most prevalent RPV-RAMs after nevirapine use were
Y181C (44.4%), H221Y (16.8%) and K101E (9.3%), accounting

for respectively 54.8%, 20.7%, and 11.5% of RPV-RAMs
detected in this population. RPV-RAMs co-occurring most

frequently were Y181C+H221Y (14.2%) and K101E+Y181C
(4.0%). Similarly, nevirapine-experienced patients had a higher
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FIG. 2. Genotypic resistance scores for ril-

pivirine in different patient populations. ALL,

all patients (n = 1212); EFV, efavirenz-

experienced (n = 813); NVP, nevirapine-

experienced (n = 399). For each interpreta-

tion algorithm, proportion of patients scored

as high-level resistant (dark grey), intermedi-

ate resistant (grey) and susceptible (light

grey).
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mean number of pRPV-RAMs (0.64 ± 0.57 vs. 0.50 ± 0.52,

p < 0.001) and a higher proportion of patients with pRPV-RAMs
than efavirenz-experienced patients (48% vs. 38%, p < 0.001,

RR = 1.2). RPV-RAMs Y181C/I and H221Y and pRAMs V106A,
V179I and G190A were more prevalent after nevirapine failure,

whereas RPV-RAMs K101P, Y188L and L100I+K103N, and
pRPV-RAMs V179D and G190E/S were more common after

efavirenz failure (Fig. 1). When considering viremia levels of
<1000, 1000 to 100 000 or >100 000 copies/mL, the propor-
tion of patients with at least one RPV-RAM was 24.6%, 42.2%

and 43.8% respectively for the efavirenz group, and 50.0%,
60.9% and 61.1% respectively for the nevirapine group.

Patients were mainly infected with subtype B (40.6%) and G
(35.4%) viruses, followed by CRF02_AG (4.6%) and subtype C

(3.0%) viruses. The subtype B infected group showed a similar
mean number of RPV-RAMs per patient and proportion of

patients with RPV-RAMs (0.58, 47.0%) compared with the
subtype G group (0.65, 50.8%) or all pooled patients infected

with non-B subtypes (0.63, 47.6%). This was due in part to
E138A with a prevalence of 1.6% in subtype B, 2.6% in subtype
G and 8.3% in subtype C viruses. However, pRPV-RAM prev-

alence was higher in subtype B infected patients (0.74, 54.8%)
than in subtype G (0.28, 23.8%) or non-B subtype infected
Clinical Microbiology and Infection © 2015 The Authors. Published by Elsevier Ltd on behalf of E
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patients (0.42, 32.6%, p < 0.01). Specifically, V106I, V108I,

V179D/I and G190A occurred significantly more often in sub-
type B patients, even after correction for a higher use of ne-

virapine in subtype B infected patients (35%) than in non-B
subtype patients (32%).

The proportion of patients fully susceptible to rilpivirine was
52.6% (638 of 1212) by ANRS, 52.2% (633 of 1212) by Rega and

51.9% (629 of 1212) by HIVdb (Fig. 2), with a concordance of
49.7% among all three systems. Efavirenz-experienced patients
were significantly more susceptible than nevirapine-

experienced patients by Rega (58.3% vs. 39.8%) (Table 1),
HIVdb (58.3% vs. 38.8%) and ANRS (58.7% vs. 40.1%), with

concordant estimates of respectively 55.7% and 37.3%.
Although high-level resistance was predicted more often by

Rega than by HIVdb, the proportion of high-level resistance by
each algorithm was comparable between efavirenz-experienced

and nevirapine-experienced patients (Fig. 2). Concordant esti-
mates of rilpivirine susceptibility across the viremia groups

were 72.2%, 55.1% and 51.7% for efavirenz-experienced pa-
tients, and 50.0%, 35.5% and 38.9% for nevirapine-experienced
patients. HIV-1 subtype did not impact proportions of suscep-

tible patients for any of the algorithms (data not shown).
uropean Society of Clinical Microbiology and Infectious Diseases, CMI, 21, 607.e1–607.e8
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TABLE 1. Rilpivirine RAM patterns and predicted impact on rilpivirine susceptibility

RPV-RAM patterns* Sequences,% (n)†

NVP-experienced patients‡ EFV-experienced patients§

% (n) Rǁ Iǁ Sǁ % (n) Rǁ Iǁ Sǁ

No RPV-RAMS 52.6 (638) 40.1 (160) — 0.3 (1) 39.8 (159) 58.8 (478) — 0.5 (4) 58.3 (474)
181C 10.3 (125) 25.6 (102) 1.5 (6) 24.1 (96) — 2.8 (23) 0.4 (3) 2.5 (20) —
100I1003N 7.3 (88) 0.5 (2) 0.5 (2) — — 10.6 (86) 10.6 (86) — —
181C, 221Y 5.3 (64) 13.8 (55) 13.8 (55) — — 1.1 (9) 1.1 (9) — —
188L 5 (61) 2 (8) 2 (8) — — 6.5 (53) 6.5 (53) — —
101E184V 3 (36) 4.3 (17) 4.3 (17) — — 2.3 (19) 2.3 (19) — —
221Y 2.6 (32) 2.3 (9) 0.5 (2) 1.8 (7) — 2.8 (23) 0.5 (4) 2.3 (19) —
230L 1.8 (22) 1 (4) — 1 (4) — 2.2 (18) 0.4 (3) 1.8 (15) —
101P 1.5 (18) 0.5 (2) 0.5 (2) — — 2 (16) 2 (16) — —
181C, 101E184V 1.2 (15) 1.8 (7) 1.8 (7) — — 1 (8) 1 (8) — —
221Y, 100I1003N 1.2 (15) — — — — 1.8 (15) 1.8 (15) — —
138A 1.1 (13) 1 (4) — 1 (4) — 1.1 (9) — 1.1 (9) —
101E 0.8 (10) 0.3 (1) — 0.3 (1) — 1.1 (9) — 1.1 (9) —
101E, 181C 0.7 (8) 1.5 (6) 1.5 (6) — — 0.2 (2) 0.2 (2) — —
138Q 0.6 (7) 1 (4) — 1 (4) — 0.4 (3) — 0.4 (3) —
101E, 138A 0.4 (5) — — — — 0.6 (5) 0.6 (5) — —
138A, 101E184V 0.4 (5) 0.5 (2) 0.5 (2) — — 0.4 (3) 0.4 (3) — —
181I 0.4 (5) 1.3 (5) 1.3 (5) — — — — — —
138G 0.2 (3) — — — — 0.4 (3) — 0.4 (3) —
221Y, 230L 0.2 (3) — — — — 0.4 (3) 0.4 (3) — —
138A, 100I1003N 0.2 (2) — — — — 0.2 (2) 0.2 (2) — —
181C, 230L 0.2 (2) 0.5 (2) 0.5 (2) — — — — — —
181V 0.2 (2) 0.3 (1) 0.3 (1) — — 0.1 (1) 0.1 (1) — —
188L, 100I1003N 0.2 (2) — — — — 0.2 (2) 0.2 (2) — —
188L, 101E184V 0.2 (2) — — — — 0.2 (2) 0.2 (2) — —

RAM, resistance-associated mutation; RPV, rilpivirine.
*Rilpivirine RAMs were defined as K101E/P, E138A/G/K/Q/R, V179L, Y181C/I/V, Y188L, H221Y, F227C, M230I/L, L100I with K103N, K101E with M184I/V and E138K with M184I/V;
23 rilpivirine RAM patterns that occurred in �2 patients are shown.
†1212.
‡399.
§813.
ǁProportion (%, n) of sequences predicted as resistance (R), intermediate resistance (I) and susceptible (S) to rilpivirine by Rega interpretation algorithm.

CMI Theys et al. Rilpivirine resistance upon therapy failure with EFV or NVP 607.e5
Fifty-three unique RPV-RAMs patterns were detected.

Table 1 shows 23 mutational patterns that occurred in two or
more patients, accounting for a cumulative 95% of all patients

displaying RPV-RAMs, and the impact on rilpivirine suscepti-
bility by Rega. In nevirapine-experienced patients, Y181C
occurred at a rate of 25% and was predominantly associated

with intermediate resistance to rilpivirine. Mutation Y181C
combined with H221Y (13.5%) was the second most prevalent

mutational pattern and associated with high-level resistance. In
efavirenz-experienced patients, the most common patterns

L100I + K103N (10.6%) and Y188L (6.5%) resulted in high-level
resistance to rilpivirine. RPV-RAMs E138A/Q/G, associated

with intermediate resistance, were observed at a low preva-
lence while E138K/R were absent. Respectively in combination
or as a single RPV-RAM, E138A was present in 2.8% or 1.1%,

E138Q in 0.8% or 0.6% and E138G in 0.5% or 0.2% of study
patients. All 53 patterns and activity estimates by HIVdb and

ANRS are available as supplementary material.
Discussion
The management of HIV-1 infection often is confronted with

the administration of consecutive drug regimens due to selec-
tion of drug resistance, emphasizing the importance of optimal
Clinical Microbiology and Infection © 2015 The Authors. Published by Elsevier Ltd on behalf of E
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treatment-sequencing strategies. In this study, we evaluated the

potential clinical benefit of the latest approved NNRTI rilpi-
virine upon virological failure of nevirapine- or efavirenz-

containing cART. The therapeutic indication for rilpivirine is
currently limited to treatment-naive patients, but its use in
second-line or salvage regimens could be clinically relevant

given that the rilpivirine trials indicated extensive loss of future
NNRTI options after resistance-associated virological failure of

rilpivirine [4,5]. Rilpivirine is a second-generation NNRTI with
some activity against first-generation NNRTI-resistant isolates,

and can address the need for fully active regimens for the
treated patient population widely experienced with efavirenz or

nevirapine. Although overlapping mutation profiles between all
NNRTIs have been reported [4,10,11], it is not well defined to
what extent rilpivirine mutations are selected by first-

generation NNRTIs and whether susceptibility to rilpivirine
would be retained upon treatment failure.

Routine resistance testing of a large representative popula-
tion revealed that 50% of NNRTI-experienced patients har-

boured a RPV-RAM, mostly one (74%) or two (25%) mutations,
and up to 65% of these patients harboured any mutation

associated with rilpivirine use. Three expert-based algorithms
estimated preserved rilpivirine activity in approximately 50% of

patients. Nevirapine-experienced patients were 46%
(RR = 1.46) more at risk of having an RPV-RAM and on average
uropean Society of Clinical Microbiology and Infectious Diseases, CMI, 21, 607.e1–607.e8
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less susceptible to rilpivirine than efavirenz-experienced pa-

tients. This discrepancy is largely explained by the efavirenz
signature mutation K103N (67%), which only reduces rilpivirine

susceptibility in the presence of L100I (13.4%), whereas nevi-
rapine signature mutation Y181C (44.4%) confers partial rilpi-

virine resistance [20]. HIV-1 subtype did not impact estimated
activity, but pRPV-RAMs at positions 106, 108, 179 and 190
were more common in subtype B patients, suggesting a subtype

influence for these mutations [21,22]. A longer duration of
exposure to NNRTIs in the nevirapine group than in the efa-

virenz group (27.6 vs. 22.3 months) could have affected the
estimates of residual rilpivirine activity, especially if duration of

treatment failure under NNRTI selection pressure were
different [23]. Additionally, other factors such as the potency of

the entire regimen and presence of baseline TDR could influ-
ence the genetic barrier to and the development of NNRTI
resistance.

Anta et al. previously described a varying rilpivirine RAM
prevalence and expected activity according to NNRTI use in

1006 patients upon first-generation NNRTI-including therapy
failure [10]. This Spanish study predicted that 81% of the pa-

tients retained rilpivirine activity, which strongly contrasts with
the 50% estimated in our study. However, 27% of the Spanish

patients did not have any NNRTI RAM, whereas around 90% of
our patient population were scored high-level resistant to ne-

virapine or efavirenz, which stresses the importance of ana-
lysing the extent of rilpivirine RAMs in patients failing with
resistance to first-generation NNRTIs. Intrinsic differences in

patient populations, mutation lists and interpretation algorithms
affect predicted proportions of rilpivirine resistance. Notably,

Y188L was not included in the Spanish study but severely im-
pairs rilpivirine activity and occurred at a frequency of 5.7% in

our study. More consistent with our results, Lambert-Niclot
et al. reported 58.5% of NNRTI-experienced patients having

one or more rilpivirine RAMs and being scored rilpivirine
resistant [24].

Substitutions at position 138 have been associated with ril-

pivirine use and reduced viral susceptibility to rilpivirine, and
are therefore included in resistance interpretation algorithms

[4,5,7,15–17]. E138A occurs naturally in treatment-naive pa-
tients, ranging from 1.8% in subtype B to 5.9% in subtype C

[22], and any evidence of NNRTI selection at this position
should be carefully considered in the context of its polymorphic

nature [25]. At baseline, E138A is likely to decrease rilpivirine
antiviral activity [3]. In our patient population, E138A was

prevalent in 1.6% of subtype B, 2.6% of subtype G and 8.3% of
subtype C viruses. Studies have described varying rates of
E138A upon NNRTI failure depending on the subtype distri-

bution [24–26], and a higher frequency of E138A in specific
non-B subtypes could have implications for rilpivirine use. In the
Clinical Microbiology and Infection © 2015 The Authors. Published by Elsevier Ltd on behalf of E
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study by Lambert-Niclot et al., a significantly higher proportion

of non-B subtype infected patients (60%) were scored rilpivir-
ine resistant compared with subtype B infected patients (57%)

[24], with a higher prevalence of E138A in non-B viruses (18%
vs. 11%). Nonpolymorphic mutations E138G/K/Q/R were

either absent or rare in our study, consistent with other studies
[10,24].

Despite the limited number of studies investigating a clinical

benefit of rilpivirine for patients failing first-generation NNRTI-
including therapy, our findings and other findings suggest re-

sidual viral susceptibility to rilpivirine in a large subset of pa-
tients [10,14]. In vivo virological efficacy of rilpivirine use in

second-line regimens has been demonstrated in two pilot
studies. After 7 days, a significant decline in HIV-1 RNA levels

was observed in patients failing an NNRTI-containing regimen
or harbouring NNRTI-resistant virus [8]. Long-term treatment
success was achieved in patients who acquired an isolated

K103N mutation during prior NNRTI treatment and switched
from a boosted protease inhibitor–containing second-line

regimen to a rilpivirine-containing regimen [9]. Furthermore,
its availability as a single component, its once-daily use and a

good safety profile make rilpivirine an attractive option to
combine into a second-line regimen.

To date, however, clinical studies on rilpivirine efficacy have
been limited to HIV-1 viremic patients without NNRTI resis-

tance mutations [1–4], and knowledge on in vivo activity after
treatment failure with NNRTI resistance is largely lacking.
Although expert-based interpretation systems also incorporate

resistance information obtained from in vitro susceptibility an-
alyses, inferences on residual rilpivirine activity based on

existing rules should be clinically validated. Discordances be-
tween genotypic and phenotypic resistance testing may exist

due to past treatment history, minority resistant variants or the
presence of unidentified resistance mutations [27]. Further-

more, rilpivirine should be administered in a fully active
regimen, but it is not clear how the presence of rilpivirine
RAMs would impact a second- or third-line regimen containing

rilpivirine in the presence of other HIV-1 drugs including
boosted-protease or integrase inhibitors. Rilpivirine should also

be used with caution when HIV RNA levels are above 100 000
copies/mL due to increased risk for virological failure [1–4].

However, only 16% of our patients showed HIV RNA levels
above this threshold at failure. Finally, a clinical evaluation of a

possible benefit for rilpivirine beyond first-line therapy should
acknowledge the availability of etravirine, a second-generation

NNRTI already approved for treatment-experienced patients,
thereby considering differences in potency, tolerability, cross-
resistance, genetic barrier to resistance and dosing conve-

nience in the context of an active regimen [23,28,29].
uropean Society of Clinical Microbiology and Infectious Diseases, CMI, 21, 607.e1–607.e8
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In the end, prospective clinical studies assessing rilpivirine

effectiveness for NNRTI-experienced patients are warranted to
validate knowledge derived from genotypic and phenotypic

drug resistance studies and to support a more expanded use of
rilpivirine in clinical practice.
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