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ABSTRACT 
This doctoral thesis presents results on proteomic and metabolomic profiling of two distinct 

inflammatory lung diseases: sarcoidosis and chronic obstructive pulmonary disease (COPD). 

Chronic inflammatory lung diseases are debilitating conditions representing a major health 

problem throughout the world. However, up to this date disease pathobiology is not fully 

understood and clinical practise is lacking early diagnostic tools. The overall aim of the work 

has been the investigation of disease specific biomarkers as well as underlying molecular 

pathways. In addition, the characterization of clinical sub-phenotypes will provide deeper 

insights into the molecular mechanisms involved in disease pathophysiology. Moreover, for 

the purpose of profiling the immunopeptidome in sarcoidosis, an approach was developed 

to identify immunopeptides presented on antigen presenting cells with high sensitivity.  

The first part of this thesis focuses on sarcoidosis, an inflammatory T cell driven disease that 

mainly manifests in the lungs. It is hypothesised that specific antigenic substances trigger 

onset of sarcoidosis. Because lung samples from healthy non-smokers typically contains 10–

15×106 cells, there was a need for a sensitive approach to identify immunopeptides. Project I 
describes the optimization of an approach designed specifically to investigate the 

immunopeptidome on human leukocyte allele antigens (HLA)-DR from scarce clinical 

material. Epstein-Barr Virus immortalized B cells and antigen presenting cells obtained from 

bronchoalveolar lavage of sarcoidosis patients were utilised for investigating the HLA-DR 

immunopeptidome. The approach presents a valuable tool to profile and compare peptide 

repertoires in health and disease in order to reveal disease specific antigenic peptide(s) in 

sarcoidosis.  

Project II is based on the hypothesis that sarcoidosis patients potentially exhibit an 

expansion of certain antibody clones, supporting the concept of induced activation against a 

disease specific antigen. Specific features of polyclonal antibodies could be utilized for 

disease characterization via blood testing. The IgG Fc-galactosylation status in matched 

bronchoalveolar lavage fluid and serum samples was very well correlating. In particular, the 

ratio between the main agalactosylated (FA2) and main di-galactosylated Fc-glycans 

(FA2G2) of IgG4 could successfully distinguish both sarcoidosis phenotypes and controls. 

The second part of this thesis concerns investigations of early stage COPD with a particular 

focus on identifying molecular gender differences related to distinct disease characteristics 

and clinical phenotypes between women and men. Disease related alterations in the airway 

epithelial proteome were characterised using two complementary proteomic platforms 

(project III); two-dimensional difference gel electrophoresis (2D-DIGE) and tandem mass 

tag-based shotgun proteomics (TMT-MS). Additionally, serum metabolites from the same 



study cohort were analysed with non-targeted liquid chromatography-high resolution mass 

spectrometry (project IV). Both molecular investigations revealed specific alterations 

between early stage COPD patients and smokers with normal lung function mainly driven by 

the female population in the cohort. Gender-enhanced alterations in xenobiotic metabolism 

were revealed in the airway epithelium as well as changes in oxidative phosphorylation and 

protein processing in the endoplasmic reticulum. Non-targeted metabolomics and 

downstream-targeted metabolomic validations confirmed enhanced metabolic 

dysregulation in women with COPD, which was linked to oxidative stress. Together, this 

suggests metabolic activation and detoxification in the airway epithelium, as well as 

dysregulation in the delicate balance between oxidative stress and the anti-oxidative 

defence system, influence homeostasis and tissue damage in early stage COPD. 

This work provides an optimized methodology that enables the investigation of the human 

immunopeptidome to reveal disease specific immunogenic peptides. Furthermore, 

proteomic and metabolomics approaches strive to add novel insights into biomarker 

discovery and disease mechanisms of inflammatory pulmonary diseases. The presented 

findings have the potential to provide clinical biomarkers and pharmaceutical targets to be 

used for early diagnosis and individualised treatment. 

 

 

  



 

 

POPULAR SCIENCE SUMMARY 
Between Two Lungs presents a doctoral thesis studying two inflammatory lung diseases, 

sarcoidosis and COPD. Both diseases are chronic, however they show highly distinct clinical 

characteristics and therefore were studied separately. What brings the investigation in this 

thesis together are methodologies to identify and characterize proteins and metabolites and 

their alterations due to disease. The causes of both diseases are not completely understood, 

but genetic predisposition, gender and environmental factors present main risk factors in 

both cases. Symptoms for patients can be severe and life threatening in both instances. 

Therefore, markers that can be used for early diagnosis, as well as improved therapeutic 

strategies are in high demand to improve disease outcome and the life quality of patients.  

Disease symptoms in sarcoidosis and COPD are distinct and their prevalence throughout 

the world also differs. Sarcoidosis is a rather rare disease, with the highest incidences in 

Scandinavian countries with approximately 1,200 new cases in Sweden every year. It is a 

disease which presents with acute inflammation and granuloma formation in the affected 

organs, most commonly the lungs. Breathing complications constitute a major issue for 

these patients and occur due to tissue scaring, which decreases the elasticity of the lung.  

Certain features of sarcoidosis resemble autoimmune diseases, such as rheumatoid arthritis 

and multiple sclerosis. Autoimmunity is triggered by molecules (known as antigens) which 

cause the immune system to react against its own tissue, and it has been suggested that 

sarcoidosis is induced by exposure peptides that resembles the body’s own proteins (auto 

antigens). In this thesis, a sensitive method was developed to identify such antigenic 

molecules in the lungs of individuals, both healthy controls as well as patients. This provides 

a platform for individual antigen profiling and comparison of peptide repertoires in heath 

and disease, and may reveal disease specific antigens and potential disease-specific 

triggers. This methodology can also be applied to other disease with unknown antigenic 

triggers and therefore presents a valuable tool in the hunt for specific antigens in complex, 

multifactorial diseases.  

Further, within the scope of biomarker discovery for the diagnosis of sarcoidosis, we studied 

the antibody repertoire in blood and lung fluid. A marker that could be measured by a 

simple blood test that reflects the inflammatory status in the lungs, would be of great value 

in clinical practice. Emphasis was put on attached sugar moieties on antibodies 

(glycosylation), a specific modification that is known to change with inflammation. A ratio 

between two different glycosylation stages was identified as a potential marker for 

successfully distinguishing sarcoidosis patients from healthy controls, while simultaneously 

reflecting the degree of inflammation in the lung. 



COPD, the second disease studied in this thesis, is characterized by lung inflammation and 

the narrowing of the airways, with obstructions resulting in difficulties in complete exhalation 

and therefore small amounts of air remaining in the lungs. COPD is the most common lung 

disease in the world and smoking presents the main risk factor for disease development.  

Focus of this part of the thesis was the discovery of disease-specific biomarkers for early 

diagnosis and the identification of biological mechanisms that could be relevant for COPD 

development. In general, women are more susceptible to developing the disease and also 

present with different clinical features compared to men. Therefore, we specifically focused 

on gender differences while comparing healthy controls with COPD patients.  

In order to study molecular changes attributed to disease, we characterized proteins in the 

airway epithelium, which presents the top cell layer in the airways and the first line of 

defence against any inhaled particles such as tobacco smoke. Additionally, we analysed 

metabolites in blood, which reflect all chemical processes that occur throughout the body. 

Distinct alterations in protein and metabolite profiles were observed in both female and 

male patients compared to healthy smokers. Discovered proteins and metabolites could 

therefore have potential as diagnostic marker for COPD.  

We were also able to link the observed changes to processes related to oxidative stress in 

women. Oxidative stress essentially indicates an imbalance between the production of 

reactive toxic compounds (free radicals) and the ability of the body to counteract or detoxify 

their harmful effects. Disturbance of this balance may result in tissue damage. This 

dysregulation could play a key role in the destruction of lung tissue in COPD. Our data 

indicates that men and women react differently to tobacco smoke, and are not equal in their 

ability to tolerate inhaled toxicants. This might also explain why males and females show 

different symptoms upon clinical investigation. 

This thesis presents different methods to study sarcoidosis and COPD, striving to identify 

disease-specific markers and reveal mechanisms that are of importance in the course of 

disease. We were able to provide tools developed to study specific antigens in inflammatory 

diseases, identify potential biomarkers and increase our knowledge of disease mechanisms 

in sarcoidosis and COPD. This might eventually contribute to improved diagnostic 

procedures, the development of new drugs, and eventually an improved quality of life for 

patients.  
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INTRODUCTION 

Chronic inflammatory lung diseases represent a major health problem throughout the world 

and disease pathobiology is yet not fully understood. Within the frame of this doctoral 

thesis, two pulmonary diseases with unknown etiology were studied: sarcoidosis and chronic 

obstructive pulmonary disease (COPD). Particular focus was put on investigating molecular 

biomarkers and the underlying disease mechanisms via the application of established 

proteomic and metabolomics approaches, as well as the development of an optimized 

methodology for the identification of immunopeptides. 

Sarcoidosis is a disease that is most prevalent in Northern European countries, with 

approximately 1,200 new cases diagnosed in Sweden every year [1]. It is characterized by 

granuloma formation in the affected organs that mainly manifests in the lungs. The majority 

of patients experience a resolving disease but some progress to chronic sarcoidosis, which 

has a higher risk of developing fibrosis and eventually respiratory failure. Mortality rates are 

between 1 and 5%, and mainly result from severe fibrosis and/or myocardial or central 

nervous system failure [2]. The well-established hypothesis that sarcoidosis develops as a 

result of genetically predisposed individuals that are exposed to specific antigens or 

inorganic particulates, which promote inflammation has potential to reveal the etiology of 

this disease [3].  

COPD is a leading cause of morbidity and mortality worldwide [4], and the World Health 

Organization (WHO) estimates it will become the 3rd leading cause of death by the year 2020 

[5]. It presents as a heterogeneous disease comprising of several distinct clinical phenotypes, 

which are characterized by an airflow obstruction which is not fully reversible [6]. Exposure to 

tobacco smoke represents a major risk factor for developing the disease. However, only 15-

44% of life-long smokers develop COPD, and smoking alone cannot fully explain the disease 

origin [7, 8]. In addition, up to 25% of COPD patients have never smoked. Under-diagnosis 

and a failure to detect the disease early are major concerns in the clinical management of 

patients.  

In order to grasp the complexity of disease etiology in chronic inflammatory lung diseases, 

molecular screening approaches and targeted methods were used to comprehensively 

characterize different molecular levels and compartments. Depending on the scientific 

question being addressed, specific molecules that are suspected to have an impact on 

diseases, such as immunopeptides and post-translational modifications on immunoglobulins 

(IgGs) in sarcoidosis were investigated. In COPD, where tobacco smoke is a major risk factor 

but further pathophysiological mechanisms are unknown, wide molecular screening and 
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integration of multiple “omics” platforms is the approaches of choice. The combination of 

unique and well characterized clinical material, state of the art analytical techniques, and 

novel bioinformatic and biostatistical tools represent the cornerstone of this work which 

strives to reveal the disease mechanisms in pulmonary inflammation. The results may 

eventually be formatted for the diagnostic of patients suffering from sarcoidosis or the initial 

stages of COPD, enabling clinicians to intervene at an earlier stage of the disease, thereby 

greatly reducing both the cost to society and more importantly improving the quality of life 

of patients. 
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BACKGROUND 

THE IMMUNE SYSTEM 
The Nobel Prize in Physiology or Medicine 1908: Ilya Ilyich Mechnikov & Paul Ehrlich 

Recognition of their work on immunity 

The immune system is a complex and tightly regulated network involving several organs, 

cells, tissues and signalling processes that serve to protect an organism against invasion by 

constantly evolving pathogens. Innate and adaptive immune mechanisms act in conjunction 

to recognize and eliminate foreign intruders that are harmful to the host. This summary 

presents a simplified tutorial of a classic immune response in humans, highlighting the major 

components, which are illustrated in Figure 1. 

Innate immunity 
The Nobel Prize in Physiology or Medicine 2011: Bruce A. Beutler & Jules A. Hoffmann 

Discoveries concerning the activation of innate immunity 

Innate immunity is a highly conserved mechanism that exists in all multicellular organisms, 

and it provides one of the first lines of defence against invading microbes [9, 10]. Defence 

mechanisms are composed of chemical, physical and microbiological barriers, as well as a 

number of specific immune cells, which initiate an acute inflammatory response. Cells of the 

innate immune system are present in all tissues and include granulocytes, mast cells, natural 

killer (NK) cells, dendritic cells (DCs), monocytes and macrophages [11] and they can 

immediate detect infiltration of a foreign pathogen. Tissue-resident macrophages and DCs, 

followed by circulating phagocytes (neutrophils and monocytes) recognize pathogenic 

surface molecules, so-called pathogen-associated molecular patterns (PAMPs) with their 

pattern-recognition receptors (PRRs) [12]. The best studied PRRs are the Toll-like receptors 

(TLRs) [13, 14]. Additionally, PRRs can also recognise similar structures known as damage-

associated molecular patterns (DAMPs), which are released by stressed or necrotic cells and 

detected by phagocytes [15]. The interaction of these ligands with PRRs activates the 

transcription factor NF-kB, which further initiates the release of certain pro-inflammatory 

cytokines especially interleukin (IL)-1β, IL-6, IL-8 and tumour necrosis factor (TNF)-a to further 

activate and recruit cells to the site of inflammation [16]. Macrophages and neutrophils are 

able to directly ingest and eliminate pathogens and thereby prevent the release of harmful 

substances into the surrounding tissue. Eosinophils, basophils and mast cells, on the 

contrary, release antimicrobial substances and immune activating molecules that directly 

inactivate the pathogen.  
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Figure 1| Illustration of the major components of the tightly regulated immune response. (A) First line 
of defence in innate immunity. (B) Schematic showing the major reactions in the complement cascade 
which are closely regulating innate immunity. (C) Humoral response of adaptive immunity involving B 
cells. (D) Cell mediated adaptive immunity activating cytotoxic T cells. 
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An additional part of the innate immune response is the onset of the complement cascade, 

which includes three pathways: namely the classical pathway, the lectin pathway and the 

alternative pathway [10]. These pathways induce the release of further pro-inflammatory 

mediators through the complement proteins C3a and C5a. Furthermore, complement 

protein C3b coats pathogens for enhanced recognition and uptake by macrophages and 

neutrophils (opsonisation). Alternatively, complement proteins C5b-C9 trigger the assembly 

of a membrane attack complex (MAC), which induces osmotic lysis of the pathogen [17]. The 

activation of the complement system also acts on mast cells inducing histamine release, 

which causes vascular dilatation to aid the recruitment of circulating immune cells to the site 

of infection [11]. Some pathogens invade human cells directly after entering the body. 

Natural killer (NK) cells are able to identify and target virus-infected cells and they release 

perforins that increase cellular membrane permeability thereby orchestrating the disruption 

of the infected target [18]. Eventually, the innate immune system recruits antigen-presenting 

cells (APCs), which together with NK cells, establish a link with the more advanced adaptive 

immune response. 

Adaptive immunity 
The Nobel Prize in Physiology or Medicine 2011: Ralph M. Steinman 

Discovery of the dendritic cell and its role in adaptive immunity 

Professional antigen presenting cells (APCs) such as macrophages, B cells and particularly 

DCs, have the unique ability to actively uptake antigen, process it and then present it on 

their surface, which is the key mechanism found in innate immunity that bridges the gap with 

the more specific adaptive immune response. Adaptive immunity is the second line of 

defence against invading pathogens and is more sophisticated than innate immunity. It can 

be subdivided into T cell-mediated (cellular) and antibody (humoral)/ B cell-mediated 

immunity. 

Cellular response 

Naïve T cells interact by their T cell receptor (TCR) with the surface of APCs through the 

major histocompatibility complex (MHC), consisting of the MHC molecule loaded with an 

antigenic peptide (antigen) of either endogenous (MHC class I) or exogenous (MHC class II) 

origin. After antigen uptake by DCs, the cells move to the local draining lymph node where 

T cell activation of CD4+ and CD8+ T cells occurs [19]. The requirement for the interaction of 

the TCR and the T cell surface protein CD8 or CD4 with the antigenic peptide together with 

the MHC molecule, prevents activation through free circulating antigenic  peptides  [11]. 

This step specifically requires the binding of co-stimulatory receptors for the complete 
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activation of naïve T cells. APCs express the co-stimulatory proteins CD80/CD86, which are 

recognized by the activating CD28 co-receptor on the T cell [20]. These co-stimulatory 

molecules are promoted during inflammation to fully activate T cells. Activated T cells 

produce interleukin (IL)-2, which induces clonal expansion and T cell proliferation [17]. CD4+ 

T cells (T helper cells, Th) are capable of recognising peptides presented by MHC class II, 

whereas CD8+ T cells (T cytotoxic cells, Tc) recognise antigens on MHC class I molecules 

(intracellular peptides, typically virus-derived). However, this mode of detection is not always 

systematic as cross-presentation often occurs [21]. The concept of presentation and 

recognition will be further described below.  

The CD8+ T cell-mediated response is specialized for intracellular infections and is set in 

motion by the recognition of a cell that has been invaded by a pathogen [9]. This interplay 

activates the phagocyte to eliminate the pathogen and promotes a response against 

infections [17]. Infected cells are eliminated by direct induction of cell death, which is 

particularly effective in virus infections to prevent viral dissemination. The release of perforin 

at the immunological synapse enables the further release of granzymes and granulysin into 

the infected cell, which destroys the cell through triggering apoptosis [22]. Another pathway, 

which causes apoptosis is the so-called death-inducing signalling complex (DISC), which is 

activated by Fas-Fas ligand interactions [9]. CD8+ activation also releases cytokines that can 

directly affect infected cells, e.g. by intervening with pathogen replication.  

CD4+ T cells play a central role in the adaptive immune response. The release of specific 

cytokines by activated CD4+ T cells supports macrophages in eliminating pathogens, 

activates cytotoxic T cells, and boosts the antibody producing ability of B cells, which is part 

of the antibody (humoral) B cell-mediated response (described below). T cells can generally 

be divided in different T cell subsets depending on the functional cytokines they produce. 

Traditionally, they are classified as Th1/ Tc1 and Th2/ Tc2 T cells but additional Th subsets 

were revealed adding Th17, Th22, Th9 and T regulatory cells [23]. 

Antigen presentation  

The Nobel Prize in Physiology or Medicine 1996: Peter C. Doherty and Rolf M. Zinkernagel 

Discoveries concerning the specificity of the cell mediated immune defence 

The Nobel Prize in Physiology or Medicine 1980: Baruj Benacerraf, Jean Dausset and George D. Snell 

Discoveries concerning genetically determined structures on the cell surface that regulate immunological 

reactions. 

Processing and presentation of pathogenic derivatives occurs through different pathways 

depending on the origin of the pathogenic substance. Cytosolic pathogenic proteins are 

transported to the proteasome and degraded into small peptides. These peptides are then 

loaded onto the endoplasmic reticulum (ER) membrane bound protein transporter 
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associated with antigen processing (TAP). TAP actively pumps the associated peptides into 

the ER, where MHC I molecules attach to TAP through a protein called tapsin, and are 

subsequently loaded with peptides that fit into the binding grove. Next, MHC I peptide 

complexes are transported through the Golgi apparatus in an exocytic vesicle to the cell 

membrane and are expressed on the cell surface [9, 24].  

Extracellular pathogens are engulfed by professional APCs into endocytic vesicles. These 

vesicles fuse with the lysosomal compartment containing enzymes that initiate the 

degradation of the pathogen into peptides. At the same time, MHC II molecules are 

synthesized in the ER and consist of an alpha (23kDa) and beta chain (35 kDa), and a binding 

cleft is formed in the interface between the two [9]. This cleft is loaded with the CLIP peptide 

of the Invariant chain protein (Ii) during synthesis, to prevent any unspecific peptide loading 

and promote transport in the endosomal vesicle [24, 25]. The MHC II complex is transported 

through the Golgi apparatus where the li protein is cleaved and the CLIP peptide remains in 

the binding cleft [10]. Endosomes containing the MHC II complex fuse with the endocytic 

vesicle to load the binding cleft with specific pathogenic peptides. CLIP peptide release 

from the binding cleft is initiated by the binding of the HLA-DM protein [10, 24]. MHC II 

molecules loaded with foreign peptide are subsequently transported to the cell membrane 

and expressed on the cell surface, where peptides are presented to circulating CD4+ T cells.  

Peptides presented on MHC class II complexes are longer around 17 around amino acids in 

size [26] compared to peptides presented on MHC class I that are commonly around 8-10 

amino acids in length [25]. MHC II peptides were specifically studied in this work in the 

context of investigating immunogenic peptides specific to sarcoidosis (project I). MHC II 

complexes have certain binding pockets at positions P1, P4, P6, P7 and P9 where peptides 

fit, and P1 appears to be the most important one for peptide binding [27]. 

T cell receptors (TCRs) are membrane-bound heterodimers composed of an a and b chain, 

each containing one constant (C) one variable (V) segment. The antigen binding site is 

formed by the Va and the Vb segments. The TCR complex also contains the invariant 

signalling proteins CD3 g and d, as well as the e and z chains [9, 17]. TCRs only recognise as 

few as one to three residues of the displayed peptide, as shown by x-ray crystallography [28], 

however the flanking residues of the peptide determine binding strength and  specificity 

[29]. In order to detect a myriad of constantly evolving pathogens, an enormous variety of 

specific TCRs are required. During T cell development, germline-encoded gene segments 

(V, D and J segments) are randomly recombined to generate vast receptor diversity [30]. An 

illustration of both MHC II molecule, TCR receptor and the interactive complex is given in 

Figure 2.  

 



 

18 

 
Figure 2| Illustration of the three components of antigen presentation and recognition. (A) Simplified 
structure of the MHC class II molecule composed of an a and b chain. (B) Model of an antigenic 
peptide presented by the MHC II molecule and recognized by the TCR. The amino acid sequence of 
the antigenic peptide presents certain side chains pointing towards the MHC II molecule and TCR, 
interacting with binding anchors in the complexes (indicated by the dotted lines) (C) Schematic 
structure of the TCR, constructed of an a and b chain, each with a constant and a variable region. The 
antigen binding site is composed of the Va and Vb segment. 

MHC in humans 

The major histocompatibility complexes are called human leukocyte antigens (HLA) in 

humans. HLA and non-HLA genes are located on chromosome 6 and make up the largest 

polymorphic region in the human genome [31]. HLA class I molecules are encoded by the 

gene loci A, B and C (HLA-A, -B and -C), whereas class II molecules are encoded by DR, DQ 

and DP (HLA-DR, -DQ and -DP) [32]. Most HLA genes exist in hundreds of allelic variants, 

one is inherited from each parent (e.g. HLA-DRB1*03,04). Therefore, a person can be 

homozygous or heterozygous for any given HLA gene. HLA typing is annotated by the 

inclusion of gene locus, allele group, and up to eight digits for the specific alleles. The first 

two digits specify a group of alleles, and the final digits the specific allelic variants inherited 

(e.g., if a person has the HLA configuration HLA-DRB1*03,04, allele 03 is derived from one 

parent and 04 from the other. A schematic overview of HLA alleles and nomenclature of HLA 

types is shown in Figure 3. 
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Figure 3| HLA nomenclature. (A) Schematic overview of HLA class I and class II alleles on chromosome 
6 in the human genome. (B) Nomenclature of HLA types with an example of both allele variants in a 
heterozygous individual.  

Humoral response 

Parallel to cell-mediated immunity, humoral immunity occurs when mature B cells detect 

pathogenic particles through their B cell receptor (BCR). As with APCs, B cells get activated 

by phagocytosing pathogens and presenting peptides on their MHC class II molecules on 

the cell surface. The peptide, together with the MHC II molecule, is recognised by a CD4+ 

cell via the TCR together with a secondary signal initiated via the binding of CD40L on the T 

cell with the co-stimulatory molecule CD40 on the B cell [10]. The CD4+ cell releases specific 

cytokines inducing B cell proliferation and maturation into antibody producing plasma cells 

and eventually memory cells. The plasma cell subsequently releases antibodies upon 

antigen detection through their B cell receptor. Memory B cells are long-lasting cells and 

upon encountering a pathogen which has previously infected the host, they immediately 

proliferate and secrete high-affinity antibodies [9]. 

Antibodies 

The Nobel Prize in Physiology or Medicine 1972: Gerald M. Edelman and Rodney R. Porter 

Discoveries concerning the chemical structure of antibodies 

The Nobel Prize in Physiology or Medicine 1987: Susumu Tonegawa 

Discovery of the genetic principle for generation of antibody diversity 

The Nobel Prize in Physiology or Medicine 1984: Niels K. Jerne, Georges J.F. Köhler & César Milstein 

Theories concerning the specificity in development and control of the immune system and the discovery of the 

principle for production of monoclonal antibodies  

Immunoglobulins are commonly referred to as antibodies and depending on their isotype 

(IgA, IgD, IgE, IgG, IgM), they have specific functions in the immune response. IgG is the 

most prominent isotype in circulation (75%) and can be subdivided into IgG1 (60-70%), IgG2 

(20-30%), IgG3 (5-8%) and IgG4 (1-3%) [33]. The IgG molecule is composed of four 

polypeptide chains (2 heavy and 2 light chains) that form a Y-shaped molecule. Each of these 
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chains have a constant (C) region and a variable (V) region. The heavy chain is composed of 

three constant and one variable segment, whereas the light chain contains one of each 

segment. The variable segment together with the first following constant region constitutes 

the antigen binding (Fab) region. The second and third constant segments make the Fc 

region [9]. A simplified illustration of an IgG monomer is given in Figure 4A.  

Fc-glycans 

Most immune cells have a surface molecule (Fc receptor) with the ability to bind the Fc 

region of antibodies and communicate with the adaptive and innate parts of the immune 

response. Modifications in the Fc region of immunoglobulins by glycosylation have a strong 

impact on their interaction with Fc receptors, activation of the complement cascade and 

other effector functions [34, 35]. The IgG Fc-glycosylation profile is altered in autoimmune 

and inflammatory disorders [36-38]. The more complex the Fc-glycan is (particularly if the 

glycan is substituted with galactose and sialic acid), the less likely the IgG is to have a pro-

inflammatory effect [35, 39-41]. The amount of galactosylated and/or sialylated Fc-glycans 

(or the ratio between agalactosylated and galactosylated glycans) is a potential marker for 

inflammation and/or activation of the immune system [42]. Glycosylation structure and 

nomenclature by Royle et al. [43] is summarized in Figure 4B and C.  

 
Figure 4| Schematic structure of the IgG protein and Fc-glycans. (A) Simplified structure of the IgG 
protein composed of a Fab- and Fc- region and indicated glycosylation sites. (B) Chemical structure of 
FA2G2, indicating the core heptasaccharide moiety (A2), in grey, linked to Asparagine (Asn) 297. F at 
the start of the abbreviation (FA2) indicates a fucose (Fuc) linked to the inner N-acetyl-glucosamine 
(GlcNAc). G2 indicates 2 galactoses (Gal) linked to the antenna N-acetyl-glucosamines. (C) Examples 
of the structural diversity and glycan nomenclature described by Royle et al. [43]. Adapted from [44]. 
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Autoimmunity 
The Nobel Prize in Physiology or Medicine 1960: Sir Frank Macfarlane Burnet & Peter Brian Medawar 

Discovery of acquired immunological tolerance 

The German immunologist Paul Ehrlich first described the concept of autoimmunity as 

“horror autotoxicus” [45]. The immune system is educated to react with foreign substances 

(non-self) and to protect own (self) cells. When this inbuilt tolerance is lost, benign 

autoimmunity progresses to pathogenic autoimmunity. The prevalence of such disorders is 

approximately five percent in Europe and North America, and they constitute the 10th 

leading cause of death worldwide [46, 47]. Furthermore, women are more frequently 

affected than men [48]. Molecular mimicry is one mechanism by which infectious agents (or 

other exogenous substances) may trigger an immune response against autoantigens [49]. 

Genetic studies have shown that most autoimmune diseases have a strong HLA association 

and there is a further contribution of certain HLA haplotypes to disease susceptibility, 

symptomatic presentation and prognosis [50, 51]. Beyond genetic susceptibility, as shown in 

twins [52, 53] and genome-wide association studies (GWAS) [54, 55], other risk factors 

contributing to development of autoimmunity include environmental factors [56], gender 

[57], smoking [58] and infections [59].  

THE RESPIRATORY SYSTEM 
Nobel Prize in Physiology of Medicine 1938: Corneille Jean François Heymans 

Discovery of the role played by the sinus and aortic mechanisms in the regulation of respiration. 

The airways 

The main function of the respiratory tract is to enable gas exchange in the alveoli by 

oxygenising (O2) the circulating blood, as well as removing carbon dioxide (CO2). The 

respiratory system can be divided into the proximal conducting part and the distal 

respiratory tract [60]. The human lung has an asymmetric anatomy with two lobes on the left 

and three lobes on the right side. The main bronchus divides into branches (primary, 

secondary and tertiary bifurcations) in each lobe. The conductive zone of the lungs is 

composed of the nasal cavities, oropharynx, trachea, bronchi and bronchioles. The 

segmental bronchi branches into several generations, the intersegmental bronchi, the 

bronchiole and the terminal bronchiole, Figure 5A) [61]. The terminal bronchiole subdivides 

numerous times and evolves into the respiratory zone, which consists in total of seven 

generations (bifurcations), where the first three are respiratory bronchioles, followed by three 

generations of alveolar ducts, which then terminate in the alveolar sacs; ~23rd generation 
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(Figure 5B) The alveoli are surrounded by a filigree net of pulmonary capillaries providing 

the interface for gas exchange.  

Airway epithelium 

The airways have a continuous pseudostratified columnar epithelial lining from the nasal 

passages down to the alveolar sacs. The epithelium is coated with epithelial lining fluid, 

which forms a thin fluid layer that covers the mucosa of the alveoli, the small airways, and the 

large airways. The airway epithelium and epithelial lining fluid constitutes the interface with 

the environment and represents the first line of defence against harmful airborne agents 

such as microbial pathogens, toxicants and air pollutants [62, 63]. The airway epithelium is 

anchored to the basement membrane, which is the structural scaffold between the 

mesenchymal compartment and the surface epithelium. The main constituents of the 

basement membrane are Type IV collagens, intertwined with proteoglycans, laminins, 

integrins, entacins and other constituents of the lamina lucida. The extracellular spaces of 

the basement membrane are thought to be unique signal input devices that are likely to fine 

tune cellular function [64, 65]. Throughout the conductive and respiratory zones, the cellular 

composition and morphology of the epithelium changes. The large airways of the proximal 

region including nasal cavity, trachea, bronchi and bronchioles are mainly composed of 

basal cells forming the basal membrane, ciliated epithelial cells and mucous secreting 

goblet cells (Figure 5C-D). Ciliated cells are the most abundant cell type in the lung 

epithelial lining, and are covered with cilia, which together with mucus producing goblet 

cells are essential for mucociliary clearance [63]. The cuboidal epithelium in the bronchioles 

consists primarily of ciliated epithelial cells and secretory club cells, which are fewer in 

number and also smaller in height.  

In response to exposure, secretory cells in the mesenchyme are activated and enable the 

clearance of inhaled substances. In addition, epithelial cells can trigger innate and adaptive 

immunity by releasing antimicrobial substances as well as pro-inflammatory mediators [66, 

67]. 
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Figure 5| Anatomical structure of the airways and cellular composition of the airway epithelial lining 
along the respiratory tract. (A) Conducting zone of the lungs composed of trachea, bronchi, 
bronchioles until the terminal bronchioles. (B) Respiratory zone composed of total 7 bifurcations 
containing respiratory bronchioles, alveolar ducts and alveolar sacs. (C) The bronchial epithelium is 
present in the trachea and bronchi and contains ciliated epithelium (a), mucus (b) secreting goblet 
cells (c), basal cells (d) forming the basal membrane (e), smooth muscle cells (f). Additional cartilages 
(g) and submucosal glands (h) are present in this section of the airways. (D) The bronchiolar epithelium 
contains smaller ciliated epithelial cells (i) and club cells (j). (E) The alveolar epithelium contains type I 
pneumocyte (k) and surfactant (l) producing type II pneumocyte (m). 

Lung toxicology 

The airways are constantly exposed to a variety of harmful foreign substances such as air 

pollutants, chemical compounds, nanoparticles, vapours and aerosols. Any chemicals which 

an organism is exposed to that are extrinsic to the normal metabolism of that organism are 

defined as xenobiotics [68]. Cigarette smoke, which is a main exposure and risk factor in 

COPD has been estimated to consist of >7,000 chemical compounds from many different 

chemical classes with a variety of toxic mechanisms [69]. Xenobiotic metabolism plays a key 

role in both the activation and detoxification of several noxious stimuli, including polycyclic 

aromatic hydrocarbons and their nitro-derivatives, to maintain homeostasis in the  
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Figure 6| Xenobiotic metabolism reaction. Biotransformation can be divided into three phases: Phase 
I reactions including the activation of xenobiotics, generally through oxidation. Phase II reaction 
involves conjugation of activated compounds, and Phase III involves the potentially further 
conjugation and excretion of hydrophilic components. Epoxide hydrolase (©), Glutathione transferase 
(GST), Glutathione (GS), Mercapturic acid (MA). 

Lung. Xenobiotic metabolism can be divided into phase I (activation) and phase II 

(conjugation) reactions. Cytochrome P450 oxygenases are the main family of enzymes 

responsible for catalysing the activating oxidation of polycyclic aromatic hydrocarbons into 

epoxide intermediates, which can then be converted by epoxide hydrolase to highly 

carcinogenic diol-epoxides [70]. After the initial activation, the conjugation (phase II) occurs 

through attachment of glutathione, sulfate, glycine, or glucuronic acid. After conjugation, 

xenobiotic compounds may be further transformed by the processing of glutathione 

conjugates to mercapturic acid conjugates to increase the solubility of the compound [71], 

and thereby increase the extractability of the toxicant. Simplified reactions are summarised 

in Figure 6. 

INFLAMMATORY LUNG DISEASES 
The presented thesis includes studies on two inflammatory pulmonary diseases: sarcoidosis 

and COPD. Both disorders exhibit an inflammatory, chiefly Th1-mediated immune response 

in the lungs with unknown causes and disease mechanisms Clinical manifestations of both 

diseases represent a large spectrum of various disease entities with a range or yet to be 

defined clinical phenotypes.  
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Sarcoidosis 

Sarcoidosis is an inflammatory disease of unknown etiology mainly affecting the lungs, but it 

may also involve several other organs such as the eyes, heart, skin and central nervous 

system. The histological hallmark is the formation of non-caseating epithelioid cell 

granulomas in affected organs. Other causes of granuloma formation, e.g. mycobacterial or 

fungal infections, have to be excluded before confirming a sarcoidosis diagnosis. In the 

lungs, an accumulation of CD4+ T cells is often observed. The incidence and presentation of 

sarcoidosis varies between different ethnic groups and the highest prevalence has been 

observed in northern European countries [2]. In Sweden approximately 1,200 new cases are 

diagnosed every year and more than half of all patients will have a disease course lasting 

more than two years, which by definition is regarded as chronic [1]. While the main clinical 

symptoms are a non-productive cough and dyspnoea, fatigue and arthralgia are common 

features with major influence on the patient’s quality of everyday life [72, 73]. Approximately 

one third of Swedish patients with sarcoidosis will have acute disease onset with high-grade 

fever, erythema nodosum and/or ankle arthritis or periarticular inflammation in combination 

with bilateral hilar lymphadenopathy (BHL) with or without concomitant parenchymal 

infiltrates on chest radiographs [74, 75]. This subgroup is defined as having Löfgren´s 

syndrome (LS), first described by the Swedish physician Sven Löfgren [76]. These patients 

usually have a favourable prognosis, with spontaneous resolution of disease symptoms, 

characteristically without permanent tissue scaring. LS is strongly linked to HLA-DRB1*03, 

which is in turn associated with a good prognosis. Ninety-five percent of LS patients with 

HLA-DRB1*03 will resolve within two years after onset, as opposed to DRB1*03 negative LS 

patients who only have a 50% chance of resolving within this time [75]. HLA-DR3+ sarcoidosis 

patients show the unique feature of an accumulations of T cells in the lungs with the specific 

T cell receptor segments Va2.3 , [77] and Vb22 [78]. This finding suggests the presentation of 

a disease specific antigen that might be responsible for the disease onset in sarcoidosis [79]. 

The subgroup with an insidious onset and higher risk of developing a chronic disease course 

is referred to as non-Löfgren (nLS) sarcoidosis. NLS patients who develop chronic disease 

have a higher prevalence of the HLA-haplotypes DRB1*14 or DRB1*15 [80, 81]. Other HLA 

types have been associated with specific clinical phenotypes, e.g. DRB1*04 which can be 

linked to ocular sarcoidosis [82]. Recent genetic studies have revealed distinct differences 

between LS and non-LS, with LS patients being genetically more homogenous, and showing 

gene associations not present in non-LS, and vice versa [83]. 

The diagnosis of sarcoidosis is based on the combined detection of non-caseating 

epithelioid cell granulomas in biopsy specimens from affected organs, typical from chest X-

rays, and clinical symptoms compatible with sarcoidosis. The diagnosis may be supported by 

findings with spirometry and analysis of the diffusion capacity of carbon monoxide (DLCO), as 
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well as with an accumulation of CD4+ T-lymphocytes in the BAL fluid resulting in a 

CD4+/CD8+ T-cell ratio >3.5 [84]. Also, some biomarkers in blood, such as elevated serum 

angiotensin converting enzyme activity and increased serum calcium levels, may strengthen 

the diagnosis. Based on the findings seen in chest X-rays, the stage of sarcoidosis can be 

defined as follows: Stage 0 – normal findings; stage I – BHL, stage II – BHL and pulmonary 

infiltrates; stage III – pulmonary infiltrates without BHL; stage IV – signs of fibrosis and 

volume reduction [85]. 

Chronic obstructive pulmonary disease 

Chronic Obstructive Pulmonary Disease (COPD) is a heterogeneous disease characterized 

by persistent respiratory symptoms and airflow limitation that is due to airway and/or 

alveolar abnormalities. Causes traditionally considered to induce disease include the 

significant exposure to noxious particles or gases [86] and emerging evidence also 

implicates developmental factors and early life events. COPD presents as a multifaceted 

condition comprising chronic bronchitis, bronchiolitis and emphysema of varying degrees. 

The disease is a leading cause of mortality and morbidity worldwide [4], and the WHO 

predicts it will become the 3rd leading cause of death by the year 2020 [5]. Major symptoms 

include dyspnea, coughing and exercise limitations, whereas clinical manifestations vary 

widely between individuals and genders. Smoking is a major risk factor for disease 

development, however not all smokers develop COPD, and smoking alone cannot therefore 

fully explain disease etiology. Other risk factors are genetics, environmental exposures, 

asthma, premature birth and persistent respiratory infections in early childhood [87, 88]. 

Traditionally, COPD has been considered a disease primarily affecting male smokers, 

however the mortality rate in females has increased [89, 90]. Additionally, differences in 

molecular and clinical phenotypes have been reported. Men appear to experience a higher 

degree of emphysema relative to smoking history [91-94], whereas female smokers exhibit a 

significantly faster annual decline in lung function after the menopause [89, 95], even after 

correction for smoking habits. Diagnosis of COPD is based on the presence of airflow 

obstruction, which is assessed by spirometry. The essential spirometry values required for a 

COPD diagnosis are the ratio between forced expiratory volume in 1 second (FEV1) and 

forced vital capacity (FVC), i.e. FEV1/FVC, as described above. According to the Global 

Initiative for Chronic Obstructive Lung Disease (GOLD), COPD is staged on severity based 

on spirometry values for FEV1 (% of predicted). In recent years, the symptoms and frequency 

of exacerbations (e.g., acute worsening of respiratory symptoms) have also been considered 

in the GOLD criteria signified as disease severity A-D [96, 97]. The most significant changes 

in the latest update have been the separation of spirometry assessment and evaluation of 

symptoms and exacerbations. A simplified overview of the staging is given in Figure 7. 
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Figure 7| GOLD standards for staging of COPD. (A) GOLD standards defining severity of COPD 
based on airflow limitation assessed by FEV1 (% of predicted). (B) Refined assessment tool ([96, 97]) 
using four categorical groups based on number of exacerbations and the modified British Medical 
Research Council (mMRC) questionnaire and COPD Assessment Test (CAT). 

CLINICAL PROTEOMICS & METABOLOMICS 
The investigations presented in this thesis work are based on proteomic and metabolomics 

approaches, both of which were performed using mass spectrometry (MS) with preceding 

sample preparation and chromatographic approaches. This makes MS a key methodology 

throughout the projects. The following sections will give an overview of “omics” and their 

application in medical science, utilising workflows as well as an introduction to MS.  

The omics concept  

Omics represents a scientific field comprising of analytical methods (suffix –omics) that are 

used for the comprehensive characterization of specific molecule classes (suffix –ome) in a 

biological system (e.g., cells, fluid etc.). The main omics approaches include studies of 

genes, RNA, proteins and metabolites, which together present the omics cascade (Figure 8). 

Different techniques are applied depending on which part of the omics cascade is the focus 

of the scientific question. Genomics represents the investigation of the DNA content of a 

system, which contains information on “what can happen”. Transcriptomics in contrast gives 

in insight into “what might happen” due to the encoded RNA. Protein synthesis 

subsequently occurs and proteomics describes a field that focuses on the functional role of 

proteins and “what currently happens”. One step further down in the omics cascade is 

metabolomics, which involves the analysis of small metabolites that indicate “what has 
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happened” in biological processes. Finally, all these molecular processes come together in a 

biological phenotype (phenome), which can be either unaltered (healthy) or modified 

(disease) [98, 99]. 

 
Figure 8| The integration of the omics cascade using computational and statistical tools represent the 
core in systems biology. The cascade includes, but is not limited to, the genome (DNA), transcriptome 
(RNA), proteome (proteins), metabolome (metabolites). The status of the molecular composition 
results in a phenotype (phenome), which after alteration may turn from healthy to a diseased status.  

Clinical omics  

Clinical omics comprises of many analytical methodologies used in medical research to 

answer a variety of questions using patient material. These approaches have the ability to 

evolve basic science towards clinical applications with the aim to reveal markers of disease 

and disease mechanisms which can be used to identify new targets for pharmaceutical drug 

development. Continuous improvements in mass spectrometry instrumentation, 

computational data analysis and bioinformatics as well as complete sequence databases for 

many species, drives omics research towards large-scale analysis and systems biology.  

Systems biology often refers to analyses where the whole system (organism) is considered. 

The Seattle Institute for Systems Biology, one of the pioneering institutes in the field, 

describes it as follows: “Systems biology is based on the understanding that the whole is 

greater than the sum of the parts”. It presents an interdisciplinary field between biology, the 

life sciences and computational methodologies that strive to investigate the complexity and 

interplay of biological processes. In omics research, the integration of multiple omics 

platforms has become more evident, and it offers a powerful tool with which to investigate 

biological questions at multiple molecular levels together with clinical parameters to gain 

deeper and broader insights into diseases pathologies [99]. 
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Proteomics  

The strategies employed in a proteomic experiment to identify and characterise proteins 

can be fundamentally different. Top-down approaches describe the analysis of intact 

proteins or large protein fragments. Alternatively, proteins can also be digested into small 

peptides prior to analysis, which is referred to as bottom-up proteomics. Proteomic 

experiments can include multiple, individual technologies depending on the objective. 

Generally, proteomic approaches can be classified as gel based and shotgun (gel free) 

proteomics (Figure 9). Proteomic workflows commonly start with protein 

enrichment/purification of the sample material (cells, tissues, fluids, etc.) using extraction, 

fractionation or separation, or depletion approaches.  

Gel based proteomics include gel electrophoresis for protein separation in either a one- or 

two-dimensional design. The separation of proteins with traditional sodium dodecyl sulfate 

polyacryl gel electrophoresis (SDS-PAGE) is based electrophoretic mobility of charged 

proteins through a porous gel matrix, under a simultaneously applied electrical field, which 

separates by the total molecular weight. By introducing isoelectric focusing (IEF) prior to gel 

electrophoresis, proteins are separated in two dimensions: the isoelectric point and the 

molecular weight [100]. During isoelectric focusing, proteins migrate along an electrical field 

to their isoelectric point (netto charge 0) [101]. A breakthrough in gel electrophoresis was 

achieved with the introduction of commercially available immobilized pH gradients for 

enhanced reproducibility [102] and by mass and charge matched fluorescent minimal 

labelling [103]. Together, this resulted in a method called two-dimensional difference gel 

electrophoresis (2D-DIGE), which has the capability to normalize for technical variation by 

separating reference samples in every experimental run. Two-dimensional gel 

electrophoresis (2D-PAGE) multifluorescence analysis profits from two major advantages: 

high sensitivity and broad dynamic range [104]. Image analysis is performed on fluorescent 

scanners with matching lasers for excitation and filters for emission spectra of the 

corresponding fluorescent label. Software based image analysis can reveal altered protein 

spots of interest, which can subsequently be excised, digested with trypsin and identified 

using modern mass spectrometry approaches like LC-MS/MS, which will be described in 

more detail below. Novel methodologies like cumulative time-resolved emission two-

dimensional electrophoresis (CuTEDGE) technology, facilitate in-depth proteomics 

characterization of very scarce samples using gel based proteomics [105]. However, 

limitations in the sensitivity and dynamic range of 2D-PAGE drive proteomics towards more 

gel free methods. 
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Figure 9| General concepts of different proteomic approaches prior to mass spectrometry (LC-MS). 
(A) Gel based label free proteomics represented in a one-dimensional gel electrophoresis (SDS-
PAGE). (B) Semi-quantitative proteomics using 2D-DIGE. Quantification is enabled by measuring the 
emission intensity of fluorescent tags attached to the protein (Cy2, 3 and 5). (C) Shot gun proteomics 
using a label free approach with protein digestion and straight measurement with mass spectrometry. 
(D) Shot gun proteomics using isobaric labelling illustrated for two samples. 

Proteins can also be directly applied to mass spectrometry methods without separation by 

gel electrophoresis, which is referred to as shotgun proteomics. Proteins obtained from a 

gel or in solution are most commonly digested with trypsin, which generates tryptic 

peptides. Shotgun proteomics almost invariably involves the enzymatic degradation of 

proteins to peptides by trypsin [106]. The cleavage of the C-terminal at arginine or lysine 

residues leads to the generation of peptides in the preferred mass range for effective 

fragmentation by tandem mass spectrometry (MS/MS) and places highly basic residues at 

the C termini of the peptides. This generally leads to an informative high mass y-ion series 

and it makes tandem mass spectra easier to interpret [107]. Concentration steps and further 

purification might be added before separation by liquid chromatography and analysis with 

mass spectrometry.  

One research area within proteomics focuses on the characterisation of post-translational 

modifications (PTMs). PTMs include the covalent linkage of a functional group to a protein 

by enzymatic or chemical reactions or as a result of proteolytic activity. These modifications 

can occur during or after protein biosynthesis and are known to have essential functions in in 
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protein and signalling networks in cells. PTMs have been linked to numerous developmental 

disorders and human diseases, highlighting the importance of PTMs in maintaining normal 

cellular homeostasis [108]. In project II, we specifically studied glycosylation, which 

represents the linkage of sugar moieties, and has a large variety of possible glycosidic 

linkages (described in more detail in the section “Fc-glycans”)  

Metabolomics 

Metabolomics describes the analysis of metabolites (e.g., enzymes, amino acids, organic 

acids, fatty acid etc.) in cells, tissue or body fluids. Sample preparation commonly includes 

enrichment and cleaning steps prior to analysis. Approaches can be divided into targeted 

and non-targeted methodologies [109]. Non-targeted metabolomics using mass 

spectrometry are commonly coupled online to gas chromatography (GC) or liquid 

chromatography (LC) systems for separation of complex mixtures prior to analysis. In 

targeted metabolomics, the investigated metabolites are known prior to analysis and are 

used to answer a specific scientific hypothesis. This means targeted metabolomics have a 

greater analytical depth compared to non-targeted. Metabolomic approaches used in the 

frame of this thesis (project IV) were performed with LC-MS based non-targeted methods for 

universal detection of metabolic analytes in clinical samples, with subsequent validation of 

selected candidates by targeted approaches. 

Chromatography 
The Nobel Prize in Chemistry 1952: Archer John Porter Martin and Richard Laurence Millington Synge 

Invention of partition chromatography 

Mass spectrometry used in metabolomics and proteomics is commonly coupled to online 

chromatography systems for separation of complex mixtures prior to analysis. 

Chromatography is a technique used to separate complex mixtures based on different 

strong interactions with analytes in a mobile phase and in a stationary phase. 

Chromatography approaches can be classified into gas chromatography (GC) and liquid 

chromatography (LC). GC is based on the different boiling points of molecules which are 

dependent on volatility and polarity. High-performance LC (HPLC) is a widely used analytical 

platform for non-targeted metabolomics and shotgun proteomics [109, 110]. Specifically, 

micro capillary and nano-LC (nl/min flowrates) are common components of MS 

instrumentation. Additionally, ultra-performance liquid chromatography (UPLC) can be used 

instead of conventional HPLC.  

Liquid chromatographic techniques can be distinguished based on the binding of the 

compounds that are to be separated. Reversed phase (RP) is the most common application 
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in liquid chromatography used in proteomics and metabolomics, and it is based on the 

hydrophobic interactions between analyte and the stationary phase (C18) [111]. During 

loading, the mobile phase contains low organic components to enable binding, while a 

gradual increase of the organic concentration induces the elution of compounds from the 

stationary phase. Metabolites that are analysed using RP separation are mainly medium 

sized polar and non-polar metabolites, such as organic acids including amino acids, fatty 

acids and phospholipids.  

A complementary chromatography method used specifically in metabolomics for separation 

is hydrophilic interaction liquid chromatography (HILIC), which is commonly used for the 

identification of hydrophilic metabolites such as organic acids with a greater polarity, amino 

acids, nucleotides and intermediates of central energy metabolism [112, 113]. The 

separation is based on hydrophilic interactions. Highly organic mobile phases enable the 

binding of polar metabolites with a higher affinity for the stationary phase than hydrophobic 

compounds. The concentration of organic solvent is slowly reduced, thereby eluting polar 

metabolites from the column.  

Mass spectrometry 
Nobel Prize in Physiology in Chemistry 2002: John B. Fenn and Koichi Tanaka 

Development of soft desorption ionisation methods for mass spectrometric analyses of biological 

macromolecules 

Mass spectrometry is indispensable in proteomics and metabolomics research due to its 

sensitivity and analytical speed. The introduction of soft ionization techniques further 

enabled the analysis of thermal instable molecules such as proteins and metabolites, which 

makes MS a preferred analytical tool in this area. The general components of a mass 

spectrometer include ion source, mass analyser (m/z) and detector [101]. Electron spray 

ionization (ESI) is the most common form used for the ionization of analytes directly from a 

solution, and can therefore be coupled online to a liquid chromatographic system (LC) of 

choice (RP, HILIC etc.). ESI enables the analysis of complex sample mixtures since 

chromatographic separation of molecules with different retention times increases the 

number of components that can be selected and fragmented. After ionization, analytes 

enter the mass analyser where they are separated and recorded by the detector, which is 

often an electron multiplier. The mass analyser is essential for the instrumental performance 

regarding mass resolution, mass accuracy, mass range, sensitivity and the capability for 

tandem MS [114]. The most common mass analysers for proteomics are: quadrupole (Q) and 

ion trap (quadrupole ion trap [QIT], linear ion trap [LIT] or linear trap quadrupole [LTQ]) [115].  



 

33 

The fast evolution of mass spectrometry based omics increasingly demands instrumentation 

with better performance characteristics including resolution and mass accuracy, in order to 

analyse samples and mixtures with a greater complexity. Makarov et al. [116] introduced the 

Orbitrap mass analyser, which has become standard in high resolution mass spectrometry 

instrumentation, with higher sensitivity and faster data acquisition than alternative machines 

[117]. Combined with an electrospray ionization and LC system it presents the most common 

instrumental set up in shotgun proteomics (Figure 10A). 

MS data is normally acquired using data-dependent acquisition, where the most intense ions 

(precursors) in every MS cycle that have not been previously selected are used for 

fragmentation (Figure 10B). Fragmentation occurs by collision energy, which breaks the 

peptide into amino acid fragments from which the sequence can be deduced, either by 

matching the fragmentation pattern to those found in existing databases with regards to 

observed and expected fragmentation ions or manually by de novo sequencing. Tandem 

mass spectrometry presents a powerful tool for identification and furthermore, it can provide 

information about PTMs. Different fragmentation techniques are available and commonly 

used examples include collision-induced dissociation (CID), electron-capture 

dissociation (ECD), electron-transfer dissociation (ETD), and Higher-energy C-trap 

dissociation (HCD).  

 
Figure 10| Steps in a classical mass spectrometry work flow. (A) Peptides are separated by liquid 
chromatography (LC) and ionized with electro spray ionization (ESI) before they enter the mass 
spectrometer. Peptide ions are measured at high resolution in data dependent mode. After each full 
scan (MS1), the most intense peptide ions (precursor ions) that have not yet been selected are 
fragmented for identification by MS2 spectra. (B) Nomenclature of fragment ions of a tryptic peptide 
(Roepstorff and Fohlman et al. [118]). (C) Quantification of peptides and proteins based on signal 
intensity between runs (label free, left) or of report ion intensities of stable isotope labels in MS2 (right). 
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Quantification 

In contrast to purely qualitative identification, proteomics and metabolomics can also be 

quantitative and used to investigate differences in the abundances of biomolecules when 

comparing study groups, which is essential in clinical omics where alterations can occur due 

to disease. Relative or absolute quantification has increasingly become the focus of 

proteomics experiments and has largely replaced the initial goal to only generate accurate 

and complete lists of identified proteins [119]. Relative quantification can be label free or 

based on labelling techniques that employ either metabolic, conjugated, colorimetric, or 

enzymatic labels [117].  

Quantification using labels also enables the inclusion of a reference pool to normalise 

against technical variation by multiplexed experimental designs. DIGE (gel-based) and 

tandem TMT (MS-based) are two labelling techniques used in parts of this thesis. The 

underlying chemistry is described in more detail in the methodology section. In 2D-DIGE, 

CyDye fluorochromes are covalently linked to lysine amino acids found in the protein 

sequence and quantification is performed through the detection of the relevant emission 

wavelength. For compatibility with MS-based identification of selected protein spots, 

minimal labelling strategies are commonly used where limited amounts of dyes are 

appointed [120]. TMT mass spectrometry uses isobaric labels for quantification followed by 

shot gun proteomics. Currently, a maximum of 10-plex experimental designs are feasible. 

TMT labels are indistinguishable in the MS full scan due to mass matched isobaric labels. 

Fragmentation yields reporter ions of different masses enabling quantification based on 

different intensities of every reporter ion (Figure 10C) [121].  

MULTIVARIATE DATA ANALYSIS 
Proteomic and metabolomics experiments acquire large data volumes, and traditional 

univariate statistics (e.g., t-tests) where each variable is analysed in isolation do not account 

for the co-variance of the multi-dimensional data sets. A multidimensional dataset can be 

viewed as a matrix containing N rows (study subjects as observations) and K columns 

(measured analytes as variables) and is referred to as an X-matrix. Multivariate statistical 

modelling reduces the dimensionality of the complex data structures by projections of the 

dominating trends in the multidimensional dataset onto a few representative latent variables 

called principal components (Figure 11A) [122]. Major modelling techniques can be divided 

into unsupervised and supervised methods. The need for multivariate data analysis becomes 

increasingly apparent in omics based research, which generates large data sets. There is a 

need for in depth studies that may facilitate the elucidation of the etiology of complex trait 
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diseases. However, multivariate data analyses are not widely used in the medical community. 

Terminology and model statistics need scrutinizing in order to evaluate the quality of the 

resulting models. The following section will give a basic overview of the major components 

of multivariate modelling within the scope of this work.  

Data processing: Mean-centering and scaling 

In order to adjust the different dynamic concentration ranges of analytes and to avoid the 

modelling being driven by single variables with high individual variance, imported data is 

processed before the actual modelling. Two common methods are mean-centering and 

scaling. Mean-centering subtracts the average value across all individuals from every data 

point. Scaling to unit variance involves dividing every data point by the standard deviation 

(SD) across all subjects (Figure 11B). 

Modelling: PCA & OPLS-DA 

Observations and variables are displayed in separate plots, with the scores plot visualising 

the group separation of the subjects and the loadings plot visualising the relationship of the 

original variables (e.g., proteins and metabolites) to the scores (i.e., subjects). The starting 

point of any multivariate data workflow is principal component analysis (PCA). The most 

important readouts in PCA are the provision of an overview of the data quality (e.g., batch 

effects) and the identification of outliers (Hoteling’s Square T2 presenting 95% confidence 

interval, Figure 11C) [123].  

In order to extract meaningful biological information from complex clinical omics data sets, 

more advanced models are usually required. In contrast to PCA modelling, orthogonal 

projections to latent structures (OPLS) analysis is a supervised method [124]. In a supervised 

analysis, the group labels are defined, as opposed to the unsupervised PCA analysis, which 

is completely data driven. A Y-matrix is linked to the initial X-matrix, which includes 

information defining the groups that will be compared in the analysis, e.g. information about 

gender, health vs. disease, etc. (Figure 11D). This form of analysis is designed to extract 

intra- and inter-group variance by separating structured noise unrelated (orthogonal) to the 

predictive variance of interest [124]. Discriminant analysis OPLS (OPLS-DA) is a form of OPLS, 

which utilizes the classification of subject groups (e.g. group A versus B or male versus 

female). Additional OPLS-DA regression analysis can also be included in the modelling. In 

this case the initial data matrix is modelled against a quantitative data Y-matrix, for example 

through the inclusion of clinical information. This way of modelling is used to investigate the 

inner correlation of the data with another data block.  
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Figure 11| Fundamental steps in multivariate data analysis. (A) Principle of reduction of dimensionality 
by projecting a multi-dimensional space onto a two-dimensional space defined by two principle 
components (p[1] and p[2]). (B) Prior to analysis, the data containing X-matrix is processed by mean-
centering and univariate scaling. (C) Principle component analysis (PCA) showing the scores plot (t[1] 
and t[2]) and corresponding loadings plot (p[1] and p[2]). (D) Orthogonal projections to latent 
structures discriminant analysis (OPLS-DA) model displaying one predictive (t[1]) and one orthogonal 
(to[1]) component for classification analyses (group A versus B) by including additional class 
information (Y-matrix) into the modelling. (E) Permutation to validate robustness of an OPLS model. 
(F) SUS analysis displaying the shared (grey) and unique features (orange and blue) of two models 
(Model M1and Model M2). 

 

Variable selection 

Variable selection is an essential step in multivariate modelling in order to extract 

biologically relevant information regarding biomarkers and dysregulated pathways from 

proteomic and metabolomic screenings. The variable selection step is based on the 

importance of a marker that drives the group separation, however, generally applicable cut 

offs are yet been established. Methods used for variable selection in this thesis include 

Variable Influence on Projection (VIP>1.0) [124] and the scaled loadings |p(corr)| equal to a p-

value of <0.05 [125]. A combination of both is also commonly used and can be displayed in a 

so-called volcano plot.  
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Model statistics 

Multivariate models are evaluated based on their model statistics, which represent the 

quality of the model and its value for data interpretation. Generally, two major values are 

reported in this context: the goodness of fit (R2) and the goodness of prediction (Q2). The 

goodness of fit reports the proportion of variance in the data set that can be described by 

the generated model. Additionally, the goodness of prediction value is created based on 

cross validation and reflects the predictive power of the model, which can reveal if the 

model is dependent on individual subjects. Cross validation is an iterative process where a 

proportion of the data is removed (e.g., 1/7th of the subjects in 7-fold cross validation). A new 

model is created based on the remaining data (here, 6/7th of the subjects), and the 

performance of the model in correctly classifying the subjects included in the removed part 

of the data is predicted by the new model. The Q2 value represents the average 

performance over a large number of iterations. Finally, the statistical significance of the 

group separation of supervised models is reported as cross validated ANOVA (CV-ANOVA) 

p-values [126]. Validation and evaluation of multivariate models based on model statistics is 

essential for the quality of data analysis since visual interpretation can be misleading. 

Overfitting is a risk in OPLS modelling and the determination of a correct number of 

predictive components is essential. Overfitting by adding more components to describe the 

data can be detected by a large discrepancy between R2 and Q2 values. An over fitted 

model may result in well discriminated score plots, but a model lacking predictive power.  

Permutation 

Permutation tests estimate the statistical significance of an OPLS model and constitute a 

further validation step for assessing model quality. This validation is based on comparing the 

goodness of fit (R2) and the predictive power (Q2) of the original model with several new 

models in which the order of the Y-observation (class information) is randomly permutated, 

while the X-matrix remains unchanged. A common way to present the permutation results is 

to plot matched R2 and Q2 values for the original, un-permutated model as a function of the 

number of correctly assigned subject labels for every permutated model. Common criteria 

for evaluating the permutation experiment require that all permutated R2 and Q2 values are 

below the un-permuted R2 and Q2 values, and moreover, that the regression line of Q2 

intersects below the origin (Figure 11E). Failure to do so indicates strong influences of a 

limited number of subjects on the original model, and presents an over fitted or false 

positive analysis. 
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Shared and unique structures 

Shared and unique structures (SUS) analysis is a tool within multivariate modelling to further 

investigate similarities and differences in the variables driving different classification models. 

By plotting the scaled loadings (p[corr]) for two OPLS-DA models (e.g., models following 

gender stratification) each classifying two groups (e.g. health and disease), a SUS plot is 

generated (Figure 11F). The information that can be extracted includes unique features for 

each model or shared characteristics. Variables that are unique for either of the models 

cluster at high p(corr) values along the axes of the plot. Shared features between the models 

can be found clustering along the positive diagonal, while opposing features are found 

along the negative diagonal.  
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PRESENT INVESTIGATIONS 

OBJECTIVES 

Overall objective of the thesis 

The presented doctoral thesis includes work on two chronic inflammatory lung diseases: 

sarcoidosis and COPD. The overall objective of the work has been the discovery of disease 

specific biomarkers and antigenic peptides as well as the investigation of underlying 

molecular disease mechanisms and dysregulated biological pathways. Furthermore, the 

development of a sensitive methodology for the successful identification of 

immunopeptides was also part of the overall objective. By applying a specifically designed 

immunopeptidomic approach, as well as state of the art proteomic and metabolimic 

techniques, we aimed to contribute novel knowledge to disease pathophysiology in both 

diseases. 

Specific research objectives 

I. To optimize the approach to identify HLA-DR bound peptides to a sensitive 

methodology that enables the personalized profiling of immunopeptides from as 

little as 10×106 BAL cells, which corresponding to the minimum number of BAL 

cells obtained from healthy individuals 

II. To reveal disease specific serum biomarkers for sarcoidosis that are able to 

target the inflammation in the lungs and have the potential to be formatted for 

use as non-invasive clinical test for sarcoidosis.  

III. To investigate alterations in the airway epithelial proteome in smoking-induced 

COPD, with emphasis on gender differences to reveal disease specific 

biomarkers and underlying molecular pathways linked to COPD pathobiology.  

IV. To investigate systemic metabolic shifts in serum in early stage COPD, with a 

specific focus on gender differences to identify diseases specific serum markers 

and molecular pathways involved in disease pathology.  
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METHODOLOGICAL CONSIDERATIONS  
The specific methodology used in the four projects is described in detail in each original 

scientific article. The current section is intended to expand on these methods sections, 

providing more in depth information and motivations regarding the choice of methodology.   

Clinical sampling 

Ethical approvals 

All studies are based on human material from clinically well characterized healthy controls 

and patients. The following ethical permits provide the legal foundation of the investigation 

presented in this doctoral thesis. The use of human BAL cells as well as BAL fluid in projects I 

and II for the analysis of HLA-DR peptides, as well as the investigation of the IgGome, was 

approved by the Stockholm Regional Ethical Board (no. 2005/1031-31, 2009/20-32, 2011/35-

32). Projects III and IV present parts of a multi-omics systems biology approach investigating 

early stage COPD, by examining the airways epithelial proteome and serum metabolome. 

This work was approved by the Stockholm Regional Ethical Board (no. 2006/959-31/1, 

2007/743-32, 2008/600-32, 2009/1353-32). All subjects provided their informed written 

consent.  

The Karolinska COSMIC cohort 

The proteomic and metabolomic investigation in project III and IV were performed on 

subjects from the Karolinska COSMIC (Chronic obstructive pulmonary disease and smoking 

from an omics perspective) cohort (www.clinicaltrials.gov/ct2/show/NCT02627872). The 

Karolinska COSMIC study is a three-group cross-sectional study including healthy never-

smokers (Healthy), smokers with normal lung function (Smokers) and COPD patients (GOLD 

stage I-II/ A-B; FEV1, 50- 100% of predicted; and FEV1/FVC <0.7). A focus was put on early 

stage COPD patients regarding the aim to investigate molecular alterations related to 

disease onset, and early diagnostic markers. The age span of 45-65 years of age was chosen 

based on the apparent gender differences in disease onset, decline in lung function, and 

frequency of COPD in this age group [89, 95]. COPD patients were further divided into 

current-smokers (COPD) and ex-smokers (COPDxS; >2 years since smoke cessation). 

Smokers were matched for smoking history (>10 pack years, >10 cigarettes/day past 6 

months) and subjects refrained from smoking >8 hrs prior bronchoscopy to control for acute 

smoking effects, as confirmed by exhaled carbon monoxide monitoring [127]. Further criteria 

for subjects included in the study was the absence of neither inhaled nor oral 

corticosteroids, no history of allergic asthma and no exacerbations for at least 3 months 
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before bronchoscopy. Information about menopause and hormonal replacement therapy 

was also recorded to investigate hormonal affect in the female subgroup. All comparisons 

were performed on either smoking or non-smoking groups to correct for smoking as a 

confounding factor. Extensive clinical characterisations were performed, including lung 

density measured by computed tomography, lung function (FEV1, FVC) measured by 

spirometry, the percentage of goblet cells in the airway epithelium determined by AB-PAS+ 

staining, cell differentials of lung immune cells, T cell phenotyping (CD4+, CD8+, CD69+) 

identified by FACS analysis, smoking history (pack years), current smoking (cigarettes/ day) 

as well as general life style information and medication information collected through 

questionnaires.  

Sampling by bronchoscopy 

Bronchoscopy presents a central clinical procedure for the sampling of human material from 

the lungs used in this work. Bronchoscopy is a medical procedure that enables the visual 

inspection of the conducting airways. A flexible fiberoptic bronchoscope is introduced 

through the nose or mouth into the lower airways under local anaesthesia. In addition, it 

provides possibilities to collect various types of specimens from the proximal and distal parts 

of the lung. Thus, mucus can be retrieved as well as cells collected from the bronchi by brush 

biopsies. Tissue specimens may be taken with forceps from the airways and/or lung 

parenchyma. By performing bronchoalveolar lavage (BAL), cells and soluble components 

from the bronchial- and alveolar lumen can be sampled. In spite of its invasive nature, 

bronchoscopy is a very safe technique and can be performed on an out-patient basis also for 

research purposes on moderately sedated patients or healthy volunteers. Bronchoscopy and 

BAL were performed according protocol at our clinic as previously published [128, 129].  

In this thesis, a number of specimens were collected during bronchoscopy to facilitate 

investigation of molecular alterations between healthy individuals and patients diagnosed 

with sarcoidosis or early stage COPD. BAL fluid (BALF) was collected after instillation of 5 

aliquots of 50 ml phosphate buffered saline (PBS) into a segment of the right middle lobe. 

The fluid was immediately recollected by aspiration. BALF consists of a cellular and a soluble 

fraction. The dominating cells in healthy volunteers, both in number and percentage, are 

usually alveolar macrophages, and these are most pronounced in smokers. The BALF in 

healthy individuals also contains lymphocytes, a small percentage of neutrophils, and 

occasionally basophils and eosinophils [129]. In the soluble fraction, many different solutes 

reside such as proteins, lipids, and peptides and it is an interesting matrix to analyse when 

studying the effects of smoking and inflammatory lung diseases. Additionally, bronchial 

brushings were collected with serological brushed during each bronchoscopy from up to six 

distinct sites in the conducting airways, to sample the airway epithelium. 
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Lung measurements: Spirometry and DLco 

Spirometry is a method used to measure lung function and represents an easily accessible 

tool to detect airway restriction and obstruction [130]. By spirometry, lung volumes are 

determined. A schematic figure of recorded values during spirometry is given in Figure 12A. 

Patients with restrictive lung diseases including fibrotic diseases (e.g., sarcoidosis) have a 

reduced total lung capacity due to scarring and therefore loss in flexibility and the ability to 

expand the lungs [131] (Figure 12B). Lung obstruction as in COPD is characterized by the 

inability to exhale air in a normal fashion, and COPD is currently defined as the inability to 

exhale 70% of the vital capacity in the first second of exhalation (FEV1/ FVC< 0.7) [132, 133]. 

(Figure 12C).  

Another tool to detect lung restriction and obstruction is diffusing capacity for carbon 

monoxide (DLCO). This measurement determines how much oxygen is transmitted from the 

alveoli into the blood stream and based on the ratio of the partial pressure between inspired 

and expired carbon monoxide.  

 
Figure 12| Spirometry measurements. (A) Demonstrating a flow-volume curve from a dynamic 
spirometry measurement from a healthy individual (black), a patient with lung restriction (dark grey) 
and a patient with lung obstruction (light grey). (B) Lung volumes recorded during static spirometry: 
total lung capacity (TLC), forced vital capacity (FVC), inspiratory capacity (IC), tidal volume (TV), 
expiratory reserve volume (ERV), inspiratory reserve volume (IRV) and residual volume (RV). (C) Forced 
expiratory volume in 1 second (FEV1) in healthy, obstructed and restricted situations. 
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Meeting the analytical goal 

The complexity and depth of the human proteome and metabolome is yet not fully 

understood. Dynamic ranges of the human proteome span over 10 orders of magnitude 

[134], whereas the human metabolome spans up to 11 orders of magnitude [135]. Modern 

mass spectrometry barely reaches 5 orders, which leaves an undiscovered “dark corner” of 

the proteome and metabolome consisting of low abundant molecules, which might present 

the most interesting targets for biomarker discovery [135, 136]. To intervene with such 

limitations and meet the analytical goals, specific sample preparation and protocol 

adjustments throughout the four projects were required. An overview of the investigated 

material, target molecules and analytical methodologies is presented in Figure 13. 

 
Figure 13| Overview of the approaches used in projects I-IV. The projects differ regarding the sample 
material investigated, target molecules in the centre of the analysis, labelling methods (exclusively 
used in project III), enrichment steps (immunoprecipitation [IP] and Melon gel depletion) prior to 
analysis, separation and the mass spectrometry instrumentation.  
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Affinity approaches: Protein G and melon gel 

Project I and II comprise of enrichment and depletion steps which remove highly abundant 

proteins and isolate target molecules respectively. The more a sample can be enriched with 

respect to a particular molecular preference, the more likely it is that the analytical methods 

succeed in identifying low abundance proteins. Project I included two consecutive steps to 

reduce the sample complexity: (1) enrichment of crude membranes by two solubilizing and 

ultracentrifugation steps and (2) immunoprecipitation to isolate HLA-DR complexes. Both of 

these steps were major adjustments required to access the low abundant immunopeptides. 

Furthermore, these steps reduce interfering contaminants, which preponderate when 

working with small sample sizes and scaled down protocols. This study presents a qualitative 

proteomic approach with the primary aim to identify immunopeptides in order to generate 

personalized immunopeptide maps in health and disease. Immunoprecipitation experiments 

that enrich for HLA-DR bound peptides were performed using the Thermo Scientific Protein 

G UltraLink Resins. HLA-DR complexes were incubated with anti HLA-DR (L243) [137] 

antibody and subsequently captured using protein G resin in a stationary phase. Peptides 

are commonly eluted from the complexes using acetic conditions. In project I, additional 

washing steps with 150 mM NaCl, 50 mM ammonium bicarbonate followed by 150 mM 

NaCl, 50mM ammonium bicarbonate, 5% acetonitrile removed nonspecific bound 

molecules. Elution yield were improved by using high organic buffers in addition to acetic 

conditions (50% acetonitrile and 5% formic acid) [138].  

In contrast to the protein G affinity purification of HLA-DR complexes, the enrichment of 

total IgG from serum and BALF in project II was performed by depletion using the Thermo 

Scientific Melon Gel IgG Purification System. Human serum especially contains highly 

abundant proteins like albumin, which can mask any low abundant proteins which may be of 

interest in the analysis (i.e., herein IgG4 and the corresponding Fc-glycans on IgG4). Melon 

Gel Resin contains a ligand that retains highly abundant proteins in serum, ascites and 

culture supernatants, while collecting total IgG in the flow-through fraction in mild buffer 

conditions without the need of elution steps. This makes the approach directly applicable for 

any further downstream processes. Melon gel overcomes the drawbacks of protein A or G 

based affinity purification, which required elution and is selective for certain IgG isotypes. 

This makes the approach highly suitable for the characterization of total IgG by mass 

spectrometry. Due to high saline (NaCl, 0,9%) concentrations in the BALF, isolation of IgGs 

from the fluid had to be adjusted. After an initial melon gel enrichment, samples were 

desalted using the Thermo Fisher Scientific Zeba™ Spin Columns (7K MWCO, 2 ml) 

followed by a second melon gel treatment, which gave the best, most reproducible results 

in the optimisation experiments.  
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Quantification in gel based and liquid based proteomics 

Quantification of the IgG Fc-glycopeptides in project II was performed via label free 

proteomics and using a profiling approach [44, 139]. Thus, glycopeptides were identified by 

their characteristic retention times in the ion chromatograms of the monoisotopic ions (<10 

ppm deviation from the theoretical mass values). Sixty-three glycopeptide variants of Fc-

glycans N-linked to tryptic peptides were screened. Glycopeptide ion abundances were 

integrated using the ion intensities in the ion chromatograms and normalized to total 

content of Fc-glycosylated IgG from IgG1, IgG2/(3) and IgG4 peptides, respectively  

Project III focused on the investigation of the airway epithelial proteome in early stage 

COPD by two complementary proteomic approaches: 2D-DIGE and TMT mass 

spectrometry. Both approaches aim to universally characterise the proteome. Protein 

separation, denaturation, reduction, alkylation and digestion were either performed in gel 

(2D-DIGE) or in solution (TMT-MS). Quantification of proteins in both methods was relative 

based on specific labelling techniques. 

Quantitative intact proteomics by 2D-DIGE was performed using the GE healthcare 

Amersham™ CyDye minimal DIGE fluorochrome labelling before protein separation. There 

are three available CyDye labels (Cy2-blue, Cy3-green and Cy5-red). The triplex is matched 

with regards to charge and size (~500 Da). This is essential to facilitate a superimposable 

separation pattern in the 2-dimensional separation based on charge and size, in order to 

allow quantification and identification of the same protein spot during co-separation of 

three samples in the same gel (triplex experimental design). Designating one label to an 

internal reference pool enables correction of technical variation between 2D-gels [140]. 

CyDye fluors have NHS ester reactive groups, and are covalently bound to the epsilon 

amino group of lysine in proteins via an amide linkage [104] (Figure 14A). The quantity of 400 

pmol CyDye fluors recommended for 50 µg of protein is limiting the reaction. Hence, this 

method is referred to as minimal labelling. Only 1-2% of the total number of lysine residues 

are labelled, guaranteeing labelling with a single flour chrome per protein moiety. The 

single labelling strategy thereby prevents smearing or spot trains due to variable numbers of 

Cy-labels on the same protein species. Due to the limited amounts of clinical material in 

project III, we compared the dynamic range by working with half the amounts of samples (25 

µg protein). The loss in sensitivity was around 20% in our adapted workflow. 2D-DIGE 

quantifies the intact protein based on fluorescent intensities and therefore allows the 

detection of PTMs and isoforms. Altered protein spots, however, generally result in the 

identification of multiple proteins and careful selection based on pH, MW range and protein 

sequence coverage is required for true positive identification in this approach. 
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Figure 14| Labelling reactions of (A) CyDye Fluors attached to a protein and (B) the general structure 
of labels used in TMT-MS.  

Labelled shotgun proteomics in project III were performed using the Thermo Scientific TMT 

10plex™ mass tags. As in DIGE, TMT-MS is also based on multiplexing samples with distinct 

labels and thereby providing the possibility to include an internal reference pool to 

normalize for technical variation between experiments. Each label within one set has the 

same mass (i.e., isobaric) and the general chemical structure is illustrated in Figure 14B. 

Based on the same total mass, the same peptide throughout all samples in one set appears 

in the same peak in the MS full scan. After fragmentation, the distinct reporter ions for each 

sample (i.e., 126-131Da) in the low mass region of the MS/MS spectrum can be used for 

relative quantification. TMT-MS based proteomics have a higher sample through put 

compared to DIGE. PTMs and protein isoforms are difficult to detect with TMT-MS, however 

membrane associated proteins are captured instead.  

ClusterMHCII software 

Most MS/MS search engines, such as Mascot, are “protein oriented”, i.e. are based on 

determining whether the protein is present in the sample or not and not designed for the 

identification of intact peptides, where only a few peptides per proteins are identified. This 

results in lower and sometimes sub-threshold scores compared with “normal” proteomics 

experiments. Therefore, scores of identified HLA-DR bound peptides in project I were  
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Figure 15| Flowchart of the ClusterMHCII algorithm showing two input directories for sample and 
negative control, filtering criteria and results generated in the out directory consisting of a HLA-DR 
peptide list and peptides of the negative control passing the filter. 

recalculated using Percolator and filtered using the ClusterMHCII software an algorithm 

written in Perl to remove false positive identifications and nonspecific peptides. The 

Percolator score is an adjusted Mascot score with a threshold of 13 and corresponds to a 

false discovery rate (FDR) of 5%. The filtering only keeps peptides that belonged to proteins 

identified with significance scores (Percolator and MudPIT) in at least one sample, with either 

a peptide score higher than 13 or at least four consecutive b- or y-ions. Additionally, 

peptides are required to form clustering nests with groups of at least two peptides with an 

overlap of at least four amino acids. As a final filter, all peptides identified in the flow 

through of IP are subtracted. A simplified workflow of the main filter criteria of the software is 

illustrated in Figure 15 The software is available online (http://pkki.mbb.ki.se/tiki/tiki-

index.php?page=ClusterMHCII).  

Missing values 

High throughput methods in proteomics and metabolomics produce large scale datasets. 

However, due to technical limitations such as imperfect identification of proteins or 

metabolites and the limited sensitivity of peptide detection technologies, missing values is a 

commonly occurring issue in mass-spectrometry based methods [141, 142]. Current 

technologies allow for the detection of only one-third to one-half of all coded proteins and 

thus leave a significant number of proteins left below the limit of detection (LOD) or lowest 

limit of quantification (LLOQ) [143]. However, missing values remain problematic in 

multivariate data modelling. In order to overcome this limitation in projects III and IV, 

imputation by k-nearest neighbours were used (k=10), which is described as a routine 

approach in metabolomics [144]. Proteins detected in ≥75% of the samples in all sub-groups 
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were included. The algorithm used estimations of missing values sequentially from k nearest 

neighbour values with the least missing rate.  

Methods of choice 

Overall, numerous quantitative proteomic approaches are available. It is, after all, a matter of 

analytical goals and scientific questions that are being addressed which decide the optimal 

method of choice. Pre-processing of samples by enrichment or depletion mainly depends 

on the abundancies of target analytes. Fewer experimental steps generally achieve higher 

reproducibility and keep technical variation to a minimum. 2D-DIGE was considered the 

“gold standard”, since it was first popularized for the simultaneously quantification of large 

numbers of proteins. However, large scale studies are labour-intensive and time-consuming. 

Continuous improvements in liquid chromatographic separation methods with higher 

resolution exceed 2D gel electrophoresis [121]. Labelling techniques demand expensive 

fluorescent or isobaric tags and intensive sample preparation, which increases technical 

variability. Doubts about quantitative accuracy of labelling techniques have been raised [145, 

146]. However, multiplexing provides high sample throughput and the ability to normalize 

for technical variation with internal standards is beneficial. Recently, there has been a 

movement towards label free quantification. MS spectra peak areas do not correlate with 

the quantity of distinct peptides in samples but correlate with chemically identical peptides. 

Thus, the relative quantification of the same peptides between runs can be utilized. 

However, no internal reference pool can be included in the same approach when compared 

to shotgun proteomics based on labelling techniques. The aforementioned improvements 

in chromatography further enable separation with very low run-to-run variation [121]. All 

methods bring advantages and disadvantages and need to be tailored to the goal of the 

analytical experiment together with the research funding available. A combination of several 

approaches as described in projects III and IV might give studies more depth and statistical 

power to forward the scientific questions at hand. 

The benefit of multi-omics investigations 

Project III and IV were carried out using mass spectrometry-based methodologies to 

investigate the same study cohort, but targeted very distinct molecules and anatomical 

compartments. Proteomic analysis of the airway epithelium (project III) gives insight into 

ongoing processes in the first line of defence against inhaled toxicants, such as tobacco 

smoke. Investigations of the serum metabolome (project IV) represents the molecular down-

stream of the proteome in the omics cascade and a picture of the final systemic events. The 

non-invasive nature of serum metabolomics analyses has the advantage of being more 

applicable to the clinical setting, potentially providing the clinical phenotype that defines the 

disease, and can be particularly revealing regarding clinical sub-phenotypes. Non-targeted 

metabolomics was the main approach used in project IV to perform a broad molecular 
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screening of serum metabolites. Targeted metabolomics were further applied to confirm the 

markers of interest revealed by the non-targeted metabolomics. Complementary screening 

at multiple molecular levels in multiple anatomical locations represents a powerful tool in 

systems medicine, and correlation between molecular events at the site of inflammation in 

the lung, and systemic events may be useful in the development of diagnostic or prognostic 

tools. Biomarker discovery in diseases which lack broad understanding of the mechanisms 

that trigger disease onset and progression, such as COPD, may especially profit from multi 

omics approaches and system biology investigations.  

Comments on statistical methods 

A range of univariate statistical analyses were used throughout the different projects based 

on the different hypothesis tests and statistical requirements of the data sets. The tests 

utilised included T-test (normal distributed data), Mann Whitney (skewed distribution), and 

the Kolmogorov-Smirnov test (non-parametric test). Correction for multiple hypothesis 

testing was performed using FDR according to Benjamini and Hochberg [147], or according 

to Storey (q) [148].  

In addition, receiver operating characteristic (ROC) curves were employed, to determine the 

threshold laboratory value that separates a clinical diagnosis from healthy controls. In a ROC 

curve, the true positive rate (sensitivity) is plotted as a function of the false positive rate (100-

specificity) for different cut-off points of a parameter. Each point on the ROC curve 

represents a sensitivity/specificity pair corresponding to a particular decision threshold. The 

area under the ROC curve (AUC) is a measure of how well a parameter can distinguish and 

indicates the overall diagnostic accuracy of a technique and/or biomarker.  

Multivariate analyses were performed with SIMCA software version 14 (Umetrics AB, Umeå, 

Sweden) applying both unsupervised principal component analysis (PCA) and supervised 

orthogonal projections to latent structures (OPLS) discrimination analysis, as well as inner 

correlation analyses using partial least squares regression (PLS). Clinical datasets can be 

difficult to analyse due to a high heterogeneity in the protein and metabolite profiles and 

variable selection in order to optimize models can be challenging. In projects III and IV, we 

performed a new approach for variable selection based on absolute p(corr) values [125]. 

P(corr) represents a scaling of the loadings from a multivariate model to a correlation 

coefficient between the model and the original data matrix. Models providing maximum 

group separation were generated and variables with a specific p(corr) cut off corresponding 

to p<0.05 were selected for subsequent models. This method provides efficient variable 

selection of all relevant analytes. More stringent variable selection can then be performed in 

an iterative manner until a final biomarker model is revealed. For pathway analysis, the 
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former, more inclusive variable selection method was utilized in order to maintain all 

proteins and metabolites of interest for pathway enrichment analysis. 

RESULTS AND DISCUSSION 

Project I. Approach for identifying HLA-DR bound peptides  

Main results 

The optimized approach (Figure 16) used to identify HLA-DR peptides from low cell 

numbers was composed of cell lysis, immunoprecipitation (IP) of HLA-DR complexes, elution 

of immunopeptides, desalting and peptide concentration, identification with mass 

spectrometry and eventually peptide filtering using the in house developed ClusterMHCII 

software. Additionally, negative controls in the analysis (peptide presented in the flow 

through after IP) were added to the protocol.  

 
Figure 16| Schematic overview of the optimized approach to identify HLA-DR bound peptides from 
scarce material composed of: (A) EBV B cells and BAL cells, (B) crude membrane extraction, (C) 
immunoprecipitation (IP), (D) purification of eluted peptides (HLA-DR bound peptides) and peptides 
in the flow through of IP followed by strong cationic exchange (SCX) purification, (E) analysis using 
nanoLC-MS/MS, (F) peptide identification and (G) filtering using the ClusterMHCII software.   
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Specifically, changing the solubilizing detergent from the commonly used CHAPS [149-153] 

to the more MS compatible n-dodecyl –D-maltoside (DM) [154] increased spray stability 

during analysis. Improved washing steps of protein G reduced contamination as observed in 

lower polymer peaks in the MS spectra. In order to minimize non-specific binding, crude 

membranes were isolated prior to IP. IP was further improved and simplified by working with 

smaller volumes and elution yields were increased using acetonitrile at high concentrations. 

Mass spectrometry identification was enhanced by recalculation of peptide scores using 

Percolator and filtering results using the ClusterMHCII software, an algorithm written in Perl. 

Steps of the final procedure were evaluated by analysing HLA-DR peptides from an EBV B 

cell line (sets of 4 replicates of 10×106 cells) comparing different conditions: the final 

protocol using crude membranes (M), isolation from total cell lysate (T), a freezing step in the 

procedure (M*) and an incubation time with antibody to capture the HLA-DR complexes 

(M2h). Negative controls using an irrelevant as well as no antibody were also included in the 

evaluation. Additionally, peptides identified in the flow through of IP were subtracted from 

the results. In order to compare the different conditions, both the number of unique peptide 

sequences per million cells and the number of identified scans per million cells (spectral 

counting) were calculated.  

Isolating HLA-DR bound peptides from crude membranes obtained a median of 11.95 

scans/million cells (9.85 unique sequences/million cells) compared to a median of 4.50 scans 

/million cells (3.75 unique sequences/million cells) in the cases when working with total cell 

lysates (Figure 17A). Additionally, both freezing and a shorter incubation time (2h) with anti 

HLA-DR antibody reduced the yields of HLA-DR bound peptides from 11.95 scans/million 

cells to 2.00 and 2.80 scans/million cells respectively (Figure 17B). Furthermore, the overlap 

of proteins and peptides identified from total cell lysate and crude membranes with 

negative controls (proteins and peptides in the flow through of IP) was investigated. At the 

protein level, the overlap between both conditions was similar, however at the peptide level, 

the overlap was 7.5% using crude membranes compared to 15.5% from total lysate (Figure 

17C). To take the reduced complexity of crude membranes into account we estimated 

relative protein abundancies and compared the protein ranks between the two conditions 

with the five highest ranked proteins in the negative control (flow through) shown in Figure 

17D. 
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Figure 17| Evaluation of specific steps during the isolation of HLA-DR peptides from EBV B cells. (A) 
Identified scans per million cells comparing freeze-thawing membrane complexes (M*), short 
incubation time with anti-HLA-DR antibody (M2h) and purifying peptides from membrane complexes 
(M) compared with a total cell lysate (T). The different symbols in M indicate 3 different sets of 4 
replicates. (B) Number of unique peptide sequences per million cells for all conditions. (C) Overlap of 
peptides and source proteins between HLA-DR peptides and flow through peptides in purifying 
peptides from a total cell lysate and crude membranes. (D) Top 5 ranked proteins in flow through 
peptides and the corresponding ranks of the same protein in the HLA-DR peptide data set, identified 
from total cell lysate and crude membranes. Adapted from [138]. 

 

The optimized approach using crude membranes and an overnight incubation with anti-

HLA-DR antibody was applied to human material in the form of alveolar macrophages 

obtained from bronchoalveolar lavage. In total, 1,434 unique peptide sequences belonging 

to 384 core sequences from 215 proteins were identified from seven patients. In three 

patients (PAT5–7), immunopeptides were investigated by multiple technical replicates: two 

replicates of 10×106 cells (PAT5), two replicates of 10×106 cells and one with 50×106 cells 

(PAT6) and four replicates of 10×106 cells (PAT7). On average, we identified 9.4 

peptides/million BAL cells (Figure 18A, B). The overlap of peptides between the 

experimental replicates was 36.8% for PAT5 and 42.0% for PAT6. In PAT7 21.6% of the 

peptides were identified in all fractions, 40.8% were identified in at least three replicates, 

and 65.6% were identified in at least two replicates (Figure 18C). 
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Figure 18| Identification of HLA-DR peptides from BAL cells of seven patients including technical 
replicates for PAT5-7. (A) Number of identified scans per million BAL cells for the seven patients 
(PAT1–7). Technical replicates were analysed for PAT5-7. (B) Number of unique sequences per million 
of BAL cells for the same set. (C) Overlap of identified peptides between two to four technical 
replicates (PAT5-7). Panel A and B adapted from [138]. 

 
Figure 19| Peptide length distributions. (A) Peptide length distributions of identified HLA-DR bound 
peptides from EBV-B cells (condition M) compared with flow through peptides (from EBV-B cells) and 
tryptic peptides from a THP-1 cell line. (B) Peptide length distributions for the BAL data set (PAT7) 
including HLA-DR binding peptides, flow through peptides (from BAL cells) and the tryptic data set. 
Adapted from [138].  

Finally, the chances of the identified peptides being HLA-DR derived was investigated by 

comparing distinct characteristics such as peptide length distribution and peptide binding 

motifs. Peptide length distributions of HLA-DR peptide identified from EBV B cells 

(condition M; Figure 19A) and BAL cells (PAT7; Figure 19B) were compared against the 

length of distributions of tryptic peptides and peptides identified in the IP flow through. 

HLA-DR bound peptides from EBV B cells and BAL cells showed a much narrower 

distribution around 16 amino acids for EBV B cells (SD 2.7) and 15 amino acids (SD 2.6) for 

BAL cells compared to peptides identified in the matching flow through and tryptic 

peptides.  
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Binding motifs of HLA-DR peptides of EBV B cells and BAL cells as well as peptides from the 

IP flow through were generated using the NNAlign prediction algorithm v1.4 

(www.cbs.dtu.dk/services/NNAlign/) [155]. Predicted motifs were largely consistent with 

reference motifs for single alleles published from Nielsen et al. [156] (Figure 20). PAT7, which 

presents a heterogeneous subject regarding HLA-DR variant (DRB1*03,15), showed a 

binding motif consistent with a combination of the reference motifs of the single alleles. In 

order to compare our results to previously published studies and strengthen the results, we 

compared yields to two studies on similar cell types. The number of identified HLA-DR 

bound peptides compared to studies on DCs [149] and BAL cells [153] and was increased 

100- and 13-fold respectively. 

 
Figure 20| Predicted binding motifs for HLA-DR derived peptides using the NNAlign prediction 
server. (A) HLA-DR peptides from EBV-B cells (condition M), (B) flow through peptides from EBV-B 
cells, (C) HLA-DR peptides from BAL cells (PAT7), and (D) flow through peptides from PAT7. Panels to 
the left show reference motifs available at (www.cbs.dtu.dk/biotools/MHCMotifViewer-1.0/Home.html; 
[156]): (E) HLA-DRB1*04:01, (F) HLA-DRB1*03:01, and (G) HLA-DRB1*15:01. Adapted from [138]. 

Reflection and Discussion 

With the introduction of specific changes to previously published methodologies [151-153] 

for the investigation of HLA-DR bound peptides, we were able to increase sensitivity and 

thereby enable the investigation of the immuno peptidome in low sample amounts. This is 

essential for the successful access of the HLA-DR peptide profiles in the lungs of individual 

healthy subjects. Investigations into healthy individuals are a unique opportunity when 

working with BAL fluid to enable comparisons of peptide repertoires in health and disease in 
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order to identify disease specific antigen(s). Ethically, access to healthy tissue in most 

diseases is not allowed therefore only comparisons between diseased phenotypes is 

possible [151].  

Enrichment of crude membranes prior to IP originated from initial problems working with 

clinical material and polymer contamination made MS analysis impossible. Isolating 

membranes added a purification and enrichment step, which was able to reduce polymers 

to an acceptable degree. Previous studies performed investigations into the HLA-DR 

peptides in total cell lysates from large amounts of starting material (in the range of grams) 

[151, 152]. However, working with small amounts gives interfering contamination more 

opportunities to mask low abundance peptides of interest or even make the analysis 

impossible. 

By experiments using an EBV B cell line, we validated different parameters throughout the 

protocol and the best results were achieved by isolating crude membranes and incubating 

the samples with antibodies for IP overnight. Working with method development highlights 

the importance of experimental design and validation of every step throughout the 

procedure. Every continuous decision of experimental readouts and subsequent 

adjustments are essential for successfully developing a solid protocol. In the first developing 

steps, technical replicates to ensure reproducibility and the control of conditions changes 

are key. Working with cell lines for example, and having adequate access to material 

(biological replicates) is not always possible but it enables the reduction of biological 

variance. However, parallel validations in target material (i.e., BAL cells in this project) should 

not be disregarded, since conditions might also be tailored to every type of material. 

The optimized approach presents an experimental method with a degree of variability in 

peptide recoveries from technical replicates. Isolation of HLA-DR peptides, especially from 

low numbers of cells, include a number pre-analytical steps required to access HLA-DR 

peptides. Higher reproducibility could be achieved by further improvements using more 

automated steps and continuous modes (e.g., spin columns for IP and SCX). This would 

furthermore increase sample throughput, which is especially interesting for clinical studies in 

larger cohorts. In this context, quantification of the HLA-DR peptides could also be 

considered, however to date, this has been difficult to implement. A final comment in this 

section of reflection and discussion concerns the sample availability of BAL fluid. All patients 

included in this work were heterozygous patients meaning the expression of two variants of 

HLA-DR molecules in a ratio of 1:1 are present. This might indicate that the results from 

10×106 cells of heterozygous patients rather reflect peptide repertoires of 5×106 cells of 

homozygous patients, which would present an even more sensitive approach than initially 

claimed for BAL cells.  
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Project II. Fc-galactosylation status of IgG4 in sarcoidosis 

Main results 

A significant correlation between agalactosylated Fc-glycans and disease revealed the 

potential of these post-translational modifications as disease markers (Figure 21A). 

Multivariate modelling was performed to investigate the overall trend and the intra-

individual correlation of BALF and serum profiles. PCA analysis shows a separation (R2=0.46, 

Q2=0.35, two components) between BALF and serum as well as intra-individual differences 

according to disease and/or age (Figure 21B).  

To deeper investigate which Fc-glycans are driving the separations, supervised multivariate 

modelling was performed via OPLS-DA. The resulting analysis which included sample types 

from all groups, significantly separated BALF from serum (R2=0.90, Q2=0.85, p[CV-

ANOVA]=1.3×10-26). From the 64 Fc-glycans we screened for, 31 correlated with 95% 

confidence with serum (ten from IgG1, twelve from IgG2/(3) and ten from IgG4) compared to 

only five Fc-glycans that correlated with the BALF (three from IgG2 and two from IgG4). This 

may indicate a higher complexity of the Fc-glycan composition in serum than in BALF. This 

was further confirmed using univariate statistics with higher ranked low abundant forms like 

the monoantennary (A1) and bisected (B) Fc-glycans in serum. 

 
Figure 21| Overall trends of Fc-glycans in the study cohort (A) SUS plot showing galactosylated Fc-
glycans correlating with a healthy state (H), whereas agalactosylated with sarcoidosis (LS and nLS). (B) 
PCA scores plot of the Fc-glycan profiles measured in the serum and BALF samples. Serum and BALF 
profiles are separated along component 1 (x-axis). Healthy and disease (LS and nLS) separate along 
component 2 (y-axis). 
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Furthermore, the identification of disease specific Fc-glycans to classify healthy controls and 

sarcoidosis patients was investigated. OPLD-DA modelling was able to classify controls from 

sarcoidosis patients (R2=0.28, Q2=0.24, p[CV-ANOVA]=4.4×10-12). Interestingly, the study 

groups align along the predictive component with Löfgren patients clustering between 

healthy subjects and non-Löfgren (nLS) patients (healthy: tcv[1]=2.9±2.4, LS: tcv[1]=-0.9±2.1), 

nLS: tcv[1]=-2.1±2.1). This is particularly striking since nLS present a more severe and chronic 

form of the disease. From uni- and multivariate data analyses, it was evident that the Fc-

glycan ratio between galactosylated and agalactosylated glycans was significantly different 

between patient subgroups and healthy individuals. The log transformed ratio between the 

main agalactosylated form (FA2) and the main digalactosylated form (FA2G2) correlated 

best between matrixes for IgG4 (R2=0.95), Figure 22A. Correlations or the other IgG variants 

were slightly lower (IgG1 [R2=0.87, IgG2/3 [R2=0.76], Figure 22B and C). 

Aging has an effect on glycosylation in the body. In order to compensate for the differences 

in age between healthy and disease cohorts and to target differences due to 

inflammation/disease we applied an age correction (via Glycoage index, [157]) on 

log(FA2/FA2G2) of the IgG isotypes. Following age correction, the classification between 

groups still remained significant particularly for IgG4. At a cut-off of 0.22, the parameter 

could distinguish healthy from sarcoidosis patients with a sensitivity of 87% and specificity of 

67% and had a likelihood ratio of 2.61 (Figure 23A). Healthy subjects and sarcoidosis patients 

were distinguished in the serum with an AUC of 79±8%, or separately nLS: 87±7% and LS: 

71±11% presenting a potential serum biomarker for chronic sarcoidosis (Figure 23B-D). 

 
Figure 22| Intra-individual correlation between log(FA2/FA2G2) in serum versus BALF in (A) IgG4, (B) 
IgG1 and (C) IgG2/(3) respectively. As indicated in the plots with (*), for the correlation analysis we used 
both intra-individual data time points for the LS-patient that was sampled twice, a year between the 
sampling dates.  

A B

C
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Figure 23| The predictability of the age corrected serum galactosylation status of IgG4 for sarcoidosis. 
(A) Age corrected galactosylation status in healthy (H), non-Löfgren syndrome (non-LS) and Löfgren 
syndrome (LS). The data points of the individual sampled at two occasions are indicated with *. For 
significance and ROC-curve analysis the mean between the sampling points for this individual were 
used. At a cut-off of 0.22, the parameter could distinguish healthy from sarcoidosis patients with a 
sensitivity of 87% and specificity of 67% and had a likelihood ratio of 2.61. (B) ROC-curve for 
distinguishing healthy individuals versus the sarcoidosis patients. (C) ROC-curve for distinguishing 
healthy individuals versus non-LS patients. (D) ROC-curve for distinguishing healthy individuals versus 
LS patients. Area under curve ± Standard Error. 

Reflection and Discussion 

Sarcoidosis is an inflammatory lung disorder and it is still challenging to distinguish 

sarcoidosis from other interstitial lung diseases as well as to predict disease course and to 

distinguish sub-phenotypes such as nLS and LS. The fact that the inflammatory status in the 

lung could be captured by a simple blood test has enormous implications for clinical 

practice in sarcoidosis diagnostics. The significant correlations of Fc-glycan profiles of IgG 

isoforms between serum and BALF show that it is possible to capture the inflammatory 

status of the lungs from the blood.  

In order to reveal disease specific markers, Fc-glycan profiles between healthy and the two 

sub-phenotypes of sarcoidosis were compared. The log transformed ratio between the main 

agalactosylated form (FA2) and the main digalactosylated form (FA2G2) were confirmed as 

biomarker candidates to distinguish the study groups. However, age correction in this 

cohort due to different means in the age of healthy individuals and sarcoidosis patients 

limited the marker discovery to isoforms where correction factors have been published. 

Additionally, the disease specificity needs to be compared with other inflammatory diseases 

A B Healthy vs. Sarcoidosis

C Healthy vs. LSDHealthy vs. nLS
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to exclude alterations that are only due to general inflammation and ensure specificity for 

Sarcoidosis. Alterations in IgG Fc-galactosylation have been reported in numerous studies, 

particularly the galactosylation status of IgG1 in rheumatoid arthritis has been extensively 

studied [158-161].  

This work presents a pilot investigation and bigger study cohorts are required to investigate 

the identified marker more carefully. Additionally, gender differences and/ or similarities 

would be of great interest, especially since autoimmunity is more prevalent in women 

compared to men, and sarcoidosis shares autoimmune characteristics. Overall this project 

opened a new area for promising investigations regarding biomarker discovery and 

underlying disease mechanisms in sarcoidosis. 

Project III and IV. Gender-enhanced alterations in the airway 
epithelial proteome and the serum metabolome in early stage 
COPD 

Main results 

Investigations into epithelial proteins using two proteomics approaches (TMT-MS and 2D-

DIGE), as well analysis of serum metabolites using a non-targeted mass spectrometry based 

approach revealed distinct differences between smokers and early stage COPD. Smokers 

classified as significantly different from COPD patients in all platforms (Figure 24). Gender 

stratified models furthermore showed that the classification was mainly driven by the female 

population. Gender enhanced alterations of the epithelial proteome and serum 

metabolome between Smokers and COPD groups were driven by distinct markers.  

 
Figure 24| Overview of multivariate models of shared (grey) and gender specific classifications 
(orange female, blue male). Number of driving proteins and metabolites for the gender model and 
their overlap are shown in the Venn diagrams.  
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Specifically, proteomics using TMT-MS identified a total of 1,244 proteins in the female 

Smoker and COPD groups and 1,215 proteins in corresponding male groups. Univariate 

statistics identified 123 proteins which were significantly altered between female Smoker and 

COPD groups (p<0.05), of which 4 passed FDR correction (q<0.20). In the corresponding 

males, 167 proteins were significantly altered (p<0.05) and 123 proteins with q<0.20. Ten of 

these proteins (p<0.05) were shared between the genders. Multivariate modelling was able 

to significantly classify COPD patients from Smokers with 9 proteins providing 60% 

predictive power (R2=0.64 Q2=0.60; p[CV-ANOVA]=1.0×10-3). Further investigations of the 

enhanced differences between females and males showed multivariate modelling stratified 

by gender. In females, a subset of 10 proteins provided significant (p[CV-ANOVA]=1.5×10-4) 

separation between the Smoker and COPD groups with 55% predictive power (Figure 25A, 

B; R2=0.58, Q2=0.55). In males, a subset of 9 different proteins provided classification (p[CV-

ANOVA]=2.2×10-5) with 62% predictive power (Figure 25C,D; R2=0.64, Q2=0.62). In the 

complementary proteomic analysis using 2D-DIGE, a total of 231 protein spots could be 

quantified. Univariate analysis revealed 26 protein spots (14 identified proteins) significantly 

altered between the Smoker and COPD group in the female cohort (p<0.05, q<0.30) and 23 

(7 identified proteins) protein spots in corresponding males (p<0.05, q<0.30). Only one 

protein spot was shared between genders, however this could not be identified.  

 
Figure 25| Optimized orthogonal projections to latent structure discriminant analysis multivariate 
models of proteins analysed with TMT-MS. (A) Scores plot of female smokers versus females with 
COPD (R2=0.58, Q2=0.55, p[CV-ANOVA]=1.5×10-4). (B) Corresponding loadings of the most prominent 
proteins driving the separation. (B) Scores plot of male smokers versus females with COPD (R2=0.64, 
Q2=0.62, p[CV-ANOVA]=2.2×10-5). (D) Most prominent proteins identified by TMT-MS for driving the 
separation in males. 
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Supervised multivariate modelling furthermore confirmed the female sub-phenotype 

identified in the TMT platform (R2=0.62, Q2=0.56; p[CV-ANOVA]= 1.0×10-4, Figure 26 A-C).  

Profiling of circulating metabolites in the serum of smokers and early stage COPD patients 

identified 1,153 putative metabolites, of which 959 passed quality control. Out of these 

metabolites, 184 passed a significance threshold of p<0.05 and were selected for structural 

validation and 67 were confirmed by MS/MS and/or matching the reference standards.  

Multivariate modelling was performed based on these confirmed metabolites. OPLS-DA 

could significantly distinguish Smokers from COPD patients with 38% prediction (R2=0.45, 

Q2=0.38; p[CV-ANOVA]=2.8×10-7). Gender stratified models revealed a stronger separation 

of COPD patients and Smokers in females (R2=0.73, Q2=0.65; p[CV-ANOVA]=2.4×10-7, 

Figure 27A, B) than in males (R2=0.49, Q2=0.38; p[CV-ANOVA]= 4.0×10-4, , Figure 27C, D). 36 

metabolites were driving the separation in women whereas only 19 were most prominent in 

classifying male Smokers from COPD patients. The gender specific models overlapped with 

12 of the most prominent metabolites driving the classification in females and males.  

 
Figure 26| Optimized orthogonal projections to latent structures discriminant analysis multivariate 
models of proteins analysed with 2D-DIGE. (A) Scores plot of female smokers versus females with 
COPD (R2=0.62, Q2=56, p[CV-ANOVA]=1.0×10-4). (B) Most prominent proteins identified by 2D-DIGE 
for driving the separation. (C) List of proteins from successfully identified protein spots. 
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Figure 27| Optimized orthogonal projections to latent structures discriminant analysis multivariate 
models of confirmed serum metabolites. (A) Scores plot of female smokers versus females with COPD 
(R2=0.73, Q2=0.65, p[CV-ANOVA]=2.4x10-7). (B) Corresponding loadings of confirmed metabolites that 
were the most prominent for driving the separation of female smokers versus females with COPD. (C) 
Scores plot of male smokers versus male COPD patients (R2=0.49, Q2=0.38, p[CV-ANOVA]=4.0x10-7). 
(D) Loadings of confirmed metabolites that were the most prominent for driving the separation of 
smokers versus male with COPD. Adapted from [162]. 
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The observed alterations in the proteome could be linked to dysregulations in specific 

pathways including protein processing in the ER (Female: FDR=6.5×10-5), xenobiotic 

metabolism (Male: 2.1×10-1) and oxidative phosphorylation (Female: FDR=2.5×10-7, Male: 

FDR=5.7×10-2). Pathway enrichment analysis of altered circulating metabolites stratified by 

gender showed the enhancement of the fatty acid (Female: FDR=1.0×10-2) and sphingolipid 

pathways (Female: FDR=3.0×10-2) in females, whereas shifts in cAMP signalling (Male: 

FDR=2.0×10-2) and endocannabinoid (Male: FDR=2.0×10-2) and tryptophan metabolism 

pathways (Male: FDR=5.0×10-2) in males. The altered metabolic changes based upon the 

pathway analysis highlight a strong state of oxidative stress in COPD. 

 
Figure 28| Correlations between the pathway level proteome and metabolome data with clinical 
parameters. (A) Proteins involved in the oxidative phosphorylation pathway correlated with the lung 
density range (-750) – (-900) HU in female COPD group (PLS inner relation: r=0.82, p=0.01). The 
proteins involved in Protein processing in the endoplasmic reticulum (ER) correlated both with the 
density of the lungs at the CT range (-750) – (-900) HU in female COPD patients (PLS inner relation: 
r=0.75, p=0.03) (B), and with the percentage of goblet cells in the airway epithelium, quantified by 
means of AB-PAS staining (C) (PLS inner relation, r=0.72, p=0.03). (D) LysoPA (16:0) and lysoPA (18:2) 
metabolites correlated with lung function (forced expiratory volume in 1 s (FEV1)) in male COPD 
patients (r=0.84, p<0.0001). Panel D adapted from [162].  
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Correlation analysis of clinical parameters with revealed pathways in the proteomic 

approaches and specific metabolites was subsequently performed. Proteins involved in 

oxidative phosphorylation could be correlated to lung density measured by computed 

tomography (CT (-750) – (-900) HU) (r=0.82, p=0.01) in females (Figure 28A). Furthermore, 

protein processing in the ER could be correlated to lung density measured by computed 

tomography in females (r=0.75, p=0.03, Figure 28B), as well as goblet cell density (r=0.72, 

p=0.03, Figure 28C). In the metabolic platform, lysophosphatidic acid (lysoPA) (16:0) and 

lysoPA (18:2) most strongly correlated with FEV1 (%) in male COPD patients (r=0.86, 

p<0.0001, Figure 28D), but not females.  

 

Discussion and reflection 

Proteomic and metabolomics investigations of early stage COPD patients in comparison to 

healthy smokers showed gender specific alterations in both methods primarily driven by the 

female population in the cohort. Selected marker proteins for classification did not overlap 

between the female and male comparisons, presenting very distinct gender protein profiles 

in the airway epithelium in early stage COPD. The metabolomics profiles showed some 

overlap of driving metabolites between gender. These results confirmed our previous 

findings of a female-associated molecular COPD sub-phenotype in several compartments, 

including the alveolar macrophage proteome [163], inflammatory lipid mediators in airway 

exudates and serum [164], the serum metabolome [162], and the chemokine/cytokine axis 

[165] in the same cohort. 

Alterations in the epithelial proteome and serum metabolome were mainly linked to 

dysregulation in oxidative stress pathways. In the airway epithelium, xenobiotic metabolism 

was additionally altered in COPD with differential regulation in women compared to men. 

The lungs are constantly exposed to harmful substances and in the case of COPD, tobacco 

smoke that consists of a variety of toxic compounds is a major risk factor. Oxidative stress 

has been recognized as a predisposing factor in disease pathogenesis [166-168]. Alterations 

in this pathway in COPD have previously been observed in the proteome of primary 

epithelial cells from COPD patients [169], as well as in the alveolar macrophages [163] and 

oxylipins of BAL fluid (BALF) and serum [164] from the same cohort. Constant exposure to 

ROS and polycyclic aromatic hydrocarbons induced an imbalance between the oxidant and 

antioxidant, which results in severe tissue damage. Women seem to have a lower tolerance 

to the accumulation of ROS compared to men. This would furthermore confirm the higher 

susceptibility to COPD seen in women.  

This work presents investigations into early stage COPD using airway epithelial cells and 

serum. The two sample types give an indication of on the one hand, the first line of defence 
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against inhaled toxicants (airway epithelial cells) and on the other hand, a potential 

indication of the molecular downstream processes which are closer to the clinical 

phenotypes and are seen in the circulating blood (serum). Overall the combination of 

approaches present a more thorough investigation. 2D-DIGE was able to confirm our female 

sub phenotype, however the approach was not sensitive enough to grasp the heterogeneity 

of the male population. The trend seen in all platforms used to study this cohort implies a 

more homogenous female population than the male subgroup. This might lead, in this 

context, to less strong classifications and correlations in males. This could result from the 

sampling and selection of patients included in the study, or alternative, a generally more 

heterogeneous male COPD pathology, which may result in multiple male sub-phenotypes of 

COPD.  
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CONCLUDING REMARKS 

This doctoral thesis focused on biomarker and pathway discovery in sarcoidosis and COPD 

as well as the development of a methodology for the identification of HLA-DR bound 

peptides. 

In order to study the HLA-DR peptidome in the human lungs and compare repertoires in 

heath and disease to reveal triggering antigens, a sensitive approach is needed. Samples 

from healthy individuals commonly contain 10×106 BAL cells, which presents as the limit of 

feasible sample amounts and the basis for the optimization performed. The developed 

method enables the identification of HLA-DR bound peptides from scarce clinical material 

[138] and potentially provides a valuable tool to investigate the repertoires of any number of 

immune mediated diseases with a given HLA-DR disease predisposition.  

Additionally, investigation into Fc-glycans in sarcoidosis confirmed a previously established 

approach as suitable for the study of antibody glycosylation in serum and BALF [170]. The 

investigation showed that Fc-glycan abundances correlate between BALF and serum, and 

provide robust classification of sarcoidosis patients versus healthy controls. This work 

presents a promising angle for the discovery of non-invasive biomarkers in inflammatory 

lung diseases and reveals serum markers with the potential to determine the inflammatory 

status in the lungs.  

The multi-omics investigation in early stage COPD presented in this work revealed gender 

specific protein and serum biomarkers in disease, which confirmed previous findings and 

observed gender differences in the same study cohort [162-165]. Molecular investigations of 

the epithelial proteome and serum metabolome revealed distinct alterations between early 

stage COPD patients and smokers with normal lung function, which was mainly driven by the 

female population in the cohort. The lack of observed alterations in males may be due to a 

more homogenous sub-phenotype in female COPD patients than in males. Furthermore, 

these distinct sets of markers could be linked to dysregulation in the maintenance of the 

anti-oxidative defences. This discovery hints toward oxidative stress as a major molecular 

mechanism in tissue damage associated with COPD. 

Through the application of proteomic and metabolomic approaches and the development 

of an optimized methodology for immuopeptidomics, discoveries concerning biomarkers as 

well as insights into the underlying mechanisms were achieved. Taken together, this doctoral 

thesis contributes a few valuable pieces to the overall puzzle of elucidating the complex 

disease mechanisms of specific sub-phenotypes in chronic inflammatory lung diseases.  
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FUTURE PERSPECTIVES 

The work presented here that investigated chronic inflammation in sarcoidosis and COPD 

from an omics perspective, does not terminate with this doctoral thesis. Continuation, as 

well as new research perspectives emerge that will contribute to the big puzzle of 

inflammatory mechanisms in the lungs. 

In order to narrow down the question of whether antigenic peptides are involved in 

sarcoidosis disease onset, we finalized the sample collection of a unique sarcoidosis cohort 

of homozygous HLA-DRB1*15, DRB1*03 and DRB1*04 patients as well as healthy controls. 

This study represents a first investigation into personalized HLA-DR peptide presentation in 

sarcoidosis, and has great potential to reveal disease specific immunogenic peptides. The 

developed approach can be applied to any immune-mediated diseases that strongly 

associate with HLA alleles, and are likely linked to specific antigens which includes most 

autoimmune disorders.  

 The presented investigation of Fc-glycans as inflammatory markers represents a promising 

platform for biomarker discovery. Given the study limitations in the current study on Fc-

glycans in sarcoidosis regarding sex and age matched samples, an expanded study in a 

larger and well matched study cohort would be necessary. Comparison with other 

inflammatory disease would also be of interest to confirm disease specificity versus 

alterations due to general inflammation.  

The Karolinska COSMIC cohort consists of clinically well-characterized COPD patients and 

age matched controls (healthy never smokers and smokers with normal lung function). Since 

COPD represents an etiologically different chronic inflammatory lung disease than 

sarcoidosis, it would be interesting to apply the methodology developed in the first 

segment of the thesis to this cohort as well. In particular, the availability of serum and BALF 

could give interesting insights into the effect of smoking on glycosylation patterns and the 

link with inflammation. This could reveal novel markers other than CRP, which is currently the 

only marker used in clinical practice as a general marker for inflammation.  

Work on the Karolinska COSMIC cohort in this thesis is part of a large-scale systems biology 

study designed to investigate molecular alterations in early stage COPD at multiple 

molecular levels and in multiple anatomical locations, and many platforms have been 

completed so far. We see similar trends between the platforms, and gender specific 

alterations in early stage COPD were also prominent in the specimens investigated in other 

anatomical compartments. The integration of all investigated platforms will be an exciting 

step in this project and will hopefully bring us one step closer to identifying the pathological 
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mechanisms in COPD. Recurrent discussions in the literature present evidence for an 

autoimmune component in certain sub-phenotypes of COPD [171]. Given that the 

proposed approach to investigate the HLA-DR immunopeptidome is tailored for 

investigations in the lungs, it would be highly applicable to the Karolinska COSMIC cohort. 

To my knowledge, no immunopeptidomic study has been previously undertaken to 

investigate autoimmune components in early stage COPD. 

Additionally, a follow up study (COSMIC II) on the same cohort has recently started with 

reassessment and careful clinical characterization of patients, smokers and healthy 

individuals as well as sampling of blood and urine. This continuation will mainly focus on 

metabolomics and lipidomics to study peripheral long term effects of the initial alterations.  
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SAMMANFATTNING 

Sarkoidos och kronisk obstruktiv lungsjukdom (KOL) är två olika kroniska lungsjukdomar, 

båda utan tydligt klarlagd sjukdomsorsak. Det finns ett starkt behov av diagnostiska 

markörer och möjlighet att identifiera patologiska förändringar i ett tidigt skede för att 

begränsa effekterna av sjukdomen. Ännu större är behovet av medicinsk behandling för att 

kunna bromsa eller helt stoppa den kroniska inflammationen och gradvisa nedbrytningen av 

lungvävnad.  

Sarkoidos karakteriseras av akut inflammation som ger upphov till vävnadsknutor (granulom) 

i angripna organ och främst i lungorna. Sarkoidos anses vara en autoimmun sjukdom, det vill 

säga att immunförsvaret vars uppgift är att försvara kroppen mot främmande material och 

infektioner istället attackerar kroppens egna organ. Det har ännu inte kunnat bevisas vad 

som initierar den autoimmuna reaktionen i sarkoidos. Kroppens celler tar upp proteiner, 

(både kroppsegna och främmande) eller hela infektiösa organismer, bryter ned dem i 

kortare fragment, s k peptider, och presenterar dem på cellytan. Immunförsvarets celler läser 

av de presenterade molekylerna och avgör om det är ofarliga (kroppsegna) eller främmande 

(infektion, gifter). Om immuncellerna avgör att peptiderna är främmande startas en 

immunreaktion för att bekämpa hotet de utgör för kroppen. Den metod vi tagit fram för att 

identifiera peptider på cellytan möjliggör detektion av skillnader i peptidrepertoaren hos 

sjuka personer jämfört med friska, och kan därmed ge ledtrådar till vilka ämnen som det 

autoimmuna försvaret riktas mot. 

Sarkoidos kan vara svår att identifiera med dagens medicinska undersökningar, och därför 

behövs mer specifika diagnostiska alternativ. Diagnostiken ska helst kunna utföras enkelt, till 

exempel i ett blodprov, och ge information om nivån av pågående inflammation. Vi mätte 

nivån av immunaktiverande antikroppar i lungan hos sarkoidospatienter jämfört med friska, 

som också de har antikroppar i blodet från tidigare sjukdomar. Vi kunde identifiera 

antikroppar med en modifierad sockermolekyl (glykosylering) i både lungvätska och i blod. 

Denna typ av antikroppar är kopplade till inflammationen vid sarkoidos. Vi kunde visa att 

kvoten mellan två sorters glykosylering (FA2/FA2G2) hos en specifik sorts antikroppar (IgG4) 

kunde särskilja sarkoidospatienters blod från friska individer med 80% säkerhet. Detta 

innebär att vi har identifierat en markör med potential för diagnostik av kronisk sarkoidos. 

Kronisk obstruktiv lungsjukdom är en av de vanligast förekommande lungsjukdomarna 

globalt, och ca 500 000 - 700 000 svenskar lider av denna sjukdom. Patienterna får 

vävnadsskador i luftvägarna och lungblåsorna, vilket påverkar och hämmar 

andningsförmågan. Rökning är en känd riskfaktor för att utveckla KOL, varvid vi riktade in vår 
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forskning på studier av de tidiga molekylära förändringar som uppstår i lungvävnaden vid 

rökning, eventuellt redan innan KOL-symptom har uppstått. Kvinnor är överrepresenterade 

bland KOL-patienter och uppvisar även andra kliniska symptom än män, vilket gjorde att vi 

valde att specifikt fokusera på könsskillnader i våra KOL-studier.  

Proteiner är en stor beståndsdel av alla celler i kroppen, och utgör maskineriet som driver 

cellens alla funktioner och processer. Slemhinnan i luftvägarna utgörs av s k epitelceller. 

Dessa celler utgör en viktig del i det första försvaret mot inandad cigarettrök, och är därför 

av stort intresse vid studier av effekter av rökning. Vi undersökte proteiner från epitelceller 

från lungorna hos rökare med normal lungfunktion, samt rökare med tidiga stadier av KOL. 

Dessutom studerade vi metaboliter i blod, och kunde därigenom identifiera skillnader även 

utanför luftvägarna. Vår forskning visar att de proteiner och metaboliter som påvisas vid KOL 

skiljer sig åt mellan kvinnor och män. Många skyddande proteiner som uppregleras vid 

rökning sågs nedregleras hos kvinnliga rökare med KOL, vilket tyder på att ett nedsatt skydd 

hos kvinnor med KOL. Den här upptäckten kan förklara varför kvinnor och män uppvisar olika 

symptom vid KOL. De förändringar vi kunde se vid KOL kunde kopplas till cellernas försvar 

mot fria radikaler som bildas vid rökning; detta leder till något som kallas oxidativ stress. 

Cellernas förmåga att hantera stressen från de fria radikalerna överbelastas vilket leder till 

vävnadsskada. Den oxidativa stressen vi identifierat kan alltså kopplas direkt till den 

vävnadsskada som finns vid KOL.  

I min avhandling presenteras forskning om nya metoder för att studera sarkoidos och KOL, 

med syftet att undersöka den molekylära bakgrunden till sjukdomarna och bidra till framtida 

diagnostik samt behandlingsmetoder. Vår forskning har påvisat både nya aspekter av 

sjukdomsbilden och identifierat nya markörer som kan ligga till grund för framtida 

diagnostikutveckling och läkemedelsforskning, samt bidragit med nya metoder för att 

studera de molekylära händelseförloppen vid inflammatoriska sjukdomar. 
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ZUSAMMENFASSUNG 

Im Rahmen der vorliegenden Doktorarbeit wurden analytische Untersuchungen zweier 

chronischer Lungenerkrankungen durchgeführt: Chronisch Obstruktive Lungenerkrankung 

(COPD) und die Sarkoidose. Beide Erkrankungen weisen sehr unterschiedliche 

Krankheitsausprägungen auf, deren Auslöser bis dato nicht vollständig bekannt sind. 

Genetische Veranlagung, Geschlecht oder Belastungen durch die Einwirkung von 

Umweltfaktoren stellen eine Verbindung mit dem Ausbrechen der Krankheit dar. Die 

Untersuchung von molekularen Mechanismen, die für diese Krankheiten verantwortlich sind, 

sind Fokus aktueller Forschung und bedeutend für die Entwicklung pharmazeutischer 

Wirkstoffe. Für die diagnostische Früherkennung ist zudem die Bestimmung von Biomarkern 

ausschlaggebend, um Patienten frühmöglichst therapeutisch einzustellen und damit ihr 

Wohlbefinden zu verbessern.  

Sarkoidose ist eine entzündliche Erkrankung, die durch die Bildung von Knötchen 

(Granulomen) gekennzeichnet ist. Diese können überall im Körper auftreten, jedoch sind die 

Lymphknoten der Lungen am häufigsten betroffen. Durch das sich bildende Narbengewebe 

verliert die Lunge an Elastizität und Patienten weisen deutliche Probleme bei der Atmung 

auf. Es gibt Anzeichen dafür, dass es sich bei der Sarkoidose um eine 

Autoimmunerkrankung handeln könnte. Autoimmunkrankheiten weisen eine Fehlfunktion 

des Immunsystems auf, welches beim gesunden Menschen die Bekämpfung von 

eindringenden fremden Substanzen sicherstellt. Im Falle einer Autoimmunkrankheit wird 

jedoch gesundes körpereigenes Gewebe bekämpft, wie im Falle von Sarkoidose das 

Gewebe der Lunge. Zirkulierende Zellen im Körper sind dafür verantwortlich, fremde oder 

abgestorbene Substanzen im Körper zu eliminieren. Dabei werden diese Substanzen 

aufgenommen, abgebaut und Bruchstücke (Immunpeptide) auf der Zelloberfläche dem 

Immunsystem präsentiert. Das Immunsystem erkennt daraufhin diese Strukturen als 

körpereigen oder fremd und löst im letzteren Fall eine Immunantwort aus. Bei 

Autoimmunerkrankungen stellen diese Strukturen potentielle Krankheitsauslöser dar, und es 

gibt Anhaltspunkte dafür, dass solche Strukturen für den Ausbruch von Sarkoidose 

verantwortlich sind. Die Identifizierung dieser Immunpeptide ist daher von großer 

Bedeutung bei der Erforschung krankheitsauslösender Mechanismen.  

Im Rahmen dieser Arbeit wurde eine sensitive Methode entwickelt, die es ermöglicht, diese 

Moleküle, die das Immunsystem fehlleiten, in der Lunge einzelner Individuen zu 

identifizieren. Diese Methode erlaubt es, Profile von Patienten und gesunden Probanden zu 

erstellen, individuelle Repertoires zu vergleichen und somit zu identifizieren, welche 

Moleküle die Krankheit potentiell auslösen. Neben der Erforschung von sarkoidose-
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auslösenden Substanzen ist die Entwicklung von Markern für die Diagnostik ebenfalls von 

großer Relevanz. Marker, die mit einem einfachen Bluttest die Erkrankung in der Lunge 

feststellen könnten, sind dabei von besonderem Interesse. Im Rahmen dieser Arbeit wurden 

Antikörper in Lungenfluid und Blut analysiert. Dabei wurde der Fokus auf eine spezielle 

Modifizierung in deren Struktur, die Glycosylierung, gelegt. Diese Modifizierung ist dafür 

bekannt, dass sie den Entzündungsstatus im Körper wiederspiegelt. Insbesondere das 

Verhältnis zweier Glykosylierungsformen von Antikörpern in Lungenfluid und Blut hat es uns 

ermöglicht, Sarkoidose Patienten von gesunden Probanden zu unterscheiden.  

Der zweite Teil dieser Doktorarbeit konzentriert sich auf eine weitere chronische 

Lungenerkrankung. Die COPD ist weltweit die am weitesten verbreitete Lungenerkrankung. 

Patienten weisen geschädigtes Lungengewebe und damit verbundene Probleme in der 

Atmung auf. Rauchen stellt einen der größten Risikofaktoren für COPD dar. Das Ziel dieser 

Studie war es, molekulare Veränderungen durch das Rauchen von Tabak und den damit 

potentiell verbundenen Krankheitsausbruch zu untersuchen. Frauen weisen im Vergleich zu 

Männern ein höheres Risiko auf, an COPD zu erkranken. Daher wurde der Fokus speziell auf 

geschlechtsspezifische Unterschiede gelegt. Es wurden Proteine aus Zellen der 

Lungenoberflächen (Epithelzellen) und Metabolite im zirkulierenden Blut von rauchenden 

COPD Patienten analysiert. Dabei zeigte sich, dass Frauen und Männer sehr 

unterschiedliche Protein- und Metabolitprofile aufweisen, sobald Individuen Tabakrauch 

ausgesetzt sind und speziell bei Ausbruch der Krankheit. Dies könnte erklären, warum COPD 

geschlechterspezifische Symptome aufweist. Im Rahmen dieser Arbeit ist es gelungen 

Gruppen von Proteinen und Metaboliten zu identifizieren, die diese spezifischen 

molekularen Veränderungen widerspiegeln und Potential als Biomarker aufweisen. Zudem 

ist es gelungen, die identifizierten Profile bestimmten biologischen Mechanismen 

zuzuordnen, die vor allem mit oxidativem Stress in Verbindung stehen. Oxidativer Stress 

beschreibt ein Phänomen, das durch die Entstehung, die erhöhte Bildung bzw. das 

unzureichende Abfangen reaktiver Sauerstoffspezies gekennzeichnet ist. Oxidativer Stress 

kann zu schweren Schädigungen führen, wie im Falle der Degenerierung von 

Lungengewebe bei COPD-Patienten. Des Weiteren, wurde ein Fokus darauf gelegt, die 

Ergebnisse mit klinischen Untersuchungen in Verbindung zu bringen, um damit die 

Veränderung klinisch messbar zu machen. Speziell Lungenfunktionstest und Computer-

Tomografie konnten einige der beschriebenen Veränderungen feststellen. 

Diese Arbeit zeigt etablierte Methoden der Protein- und Metabolitanalytik auf, mit deren 

Hilfe chronische Lungenerkrankungen untersucht wurden. Zudem wurde eine Methode 

speziell für die individuelle Bestimmung von Immunpeptiden entwickelt. Diese Ergebnisse 

liefern Erkenntnisse sowohl über krankheitsspezifische Biomarker als auch 

Krankheitsmechanismen, die schlussendlich das Potential haben die Diagnostik von 

Lungenerkrankungen sowie die Entwicklung von Pharmazeutika zu voranzutreiben.   
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