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ABSTRACT  

Malaria remains one of the most significant global public health challenges. Nearly half of the world’s 

population remains at risk, largely in African Region. In the past decade, considerable progress has 

been made in the global fight to control and eliminate malaria. In some endemic countries, aggressive 

malaria control has reduced the malaria burden to a point where malaria elimination is becoming 

feasible. Nevertheless, sustained malaria control is crucial to prolong this downward trend for endemic 

countries. Understanding the contribution of local transmission, parasites movement, asymptomatic 

and sub-microscopic reservoirs can shape how active surveillances are used to pursue malaria 

elimination. Furthermore, a better understanding of the epidemiological effects of naturally acquired 

immunity against malaria is warranted to guide efforts to control or potentially eliminate the disease. 

In five cross-sectional surveys in Kenya conducted between 2012 and 2014 (N = 10,430), malaria 

prevalence (i.e. microscopy and PCR) and clinical assessments were evaluated to investigate the 

distribution and extent of malaria infections on islands (Mfangano, Takawiri, Kibuogi, and Ngodhe) 

and a mainland area (Ungoye) in Lake Victoria. Malaria prevalence varied significantly among 

setting; highest in the mainland, moderate in the large island, and lowest in small islands. More than 

90% of infected populations were asymptomatic, and 50% of them were sub-microscopic with age-

dependency for both proportions. These observations provide support for the inclusion of MDA in the 

area. Using the two surveys in 2012 (N = 4,112), antibody responses to P. falciparum PfAMA-1, 

PfMSP-119 and PfCSP were measured in order to describe transmission patterns and heterogeneity in 

Lake Victoria. The overall seroprevalence in Lake Victoria was 64% for PfAMA-1, 40% for PfMSP-

119 and 13% for PfCSP. A clear relation between serological outcomes of PfAMA-1 and PfMSP-119 

was observed with parasite prevalence and serology-derived EIR in heterogeneity in transmission. 

These observations collectively suggest that malaria serological measure could be an effective adjunct 

tool for assessing differences in transmission as well as for monitoring control and elimination in the 

high endemic area. 

Using msp1 and csp data from samples collected from 1996 to 2002, patterns of gene flow and 

population genetic structure of P. falciparum (N = 316) and P. vivax (N = 314) from seven sites on 

five islands (Gaua, Santo, Pentecost, Malakula, and Tanna) were analysed in order to understand the 

transmission and movement of Plasmodium parasites in Vanuatu. In general, genetic diversity was 

higher in P. vivax than P. falciparum from the same site. In P. vivax, high genetic diversity was likely 

maintained by a greater extent of gene flow among sites and islands. The results suggest that the 

current malaria control strategy in Vanuatu might need to be bolstered in order to control P. vivax 

movements across islands. To understand the impact of vector control interventions (i.e. ITNs) in 

Vanuatu, samples collected in 2003 (N = 231) and 2007 (N = 282) on Ambae Island were assessed for 

parasite infection (i.e. microscopy) and measured for antibody responses against three P. falciparum, 

three P. vivax and Anopheles-specific salivary gSG6 antigens. Decreases in seroprevalence were 

observed to all P. falciparum antigens but two of three P. vivax antigens, consistent with the 

pronounced decrease in parasite prevalence from 19% in 2003 to 3% in 2007. Seroprevalence to gSG6 

also reduced significantly, suggesting that reduced exposure to vector bites was important to decrease 

in parasite prevalence. Together, decrease in both parasitological and seroepidemiological malaria 

metrics from 2003, and 2007 implied that reinforced vector control played a major role in the 

reduction of malaria transmission on Ambae Island. 

 



 

 

POPULÄRVETENSKAPLIG SAMMANFATTNING 
Malaria är fortfarande en av de mest betydande globala utmaningarna för folkhälsan. Nästan hälften 

av världens befolkning lever fortfarande i malariaendemiska områden, till stor del i Subsahariska 

Afrika. Under det senaste årtiondet, har betydande framsteg gjorts i den globala kampen för att 

kontrollera och eliminera malaria. I vissa endemiska länder, har aggressiv malariakontroll minskat 

bördan till en punkt där malariaeliminering blir genomförbart. Trots detta, är upprätthållet av 

malariakontroll avgörande för att fortsätta i den nedåtgående trend för endemiska länder som har 

präglat 2000-talet. Genom att öka förståelsen för den lokala transmissionen, överföring av 

parasitpopulationer mellan öar samt asymtomatiska och submikroskopiska reservoarer kan man bidra 

till att forma hur malariaövervakningen ska utformas för att uppnå eliminering av malaria. Dessutom 

är en bättre förståelse av de epidemiologiska effekterna av naturligt förvärvad immunitet mot malaria 

befogad för att vägleda åtgärder för att kontrollera eller potentiellt eliminera sjukdomen. 

 

I fem tvärsnittsstudier i Kenya, genomförda mellan 2012 och 2014 (N = 10,430), utvärderades 

malariaprevalensen (d.v.s. mikroskopi och PCR) och kliniska bedömningar för att undersöka 

fördelningen och omfattningen av malariainfektioner på öarna (Mfangano, Takawiri, Kibuogi och 

Ngodhe) och ett fastlandsområde (Ungoye) i Victoriasjön. Malariaprevalensen varierade avsevärt 

mellan de olika förhållandena; högst på fastlandet, måttlig på den största ön och lägst på de mindre 

öarna. Mer än 90 % av den infekterade populationen var asymtomatisk och 50% av dem var 

submikroskopiska med åldersberoendet i båda grupperna. Dessa observationer ger stöd för införandet 

av MDA i området. Med hjälp av insamlat provmaterial från de två undersökningarna år 2012 (N = 

4,112), mättes antikroppssvaret mot P. falciparum PfAMA-1, PfMSP-119 och PfCSP för att beskriva 

spridningsmönster och heterogenitet i Victoriasjön. Den övergripande seroprevalensen i Victoriasjön 

var 64% för PfAMA-1, 40% för PfMSP-119 och 13% för PfCSP. En tydlig koppling mellan 

serologiska resultat från PfAMA-1 och PfMSP-119 observerades med parasitprevalensen och 

serologiskt erhållna EIR för transmissionsheterogeniteten. Dessa observationer föreslår att 

malariasserologiska åtgärder kan vara ett effektivt verktyg för att bedöma skillnader i transmission 

såväl som för övervakningskontroll och eliminering i detta högendemiska område. 

 

Med hjälp av msp1 och csp data från prover som samlats in från 1996 till 2002, analyserades mönster 

av genflöde och den populationsgenetiska strukturen hos P. falciparum (N = 316) och P. vivax (N = 

314) från sju platser på fem öar (Gaua, Santo, Pentecost, Malakula och Tanna) för att förstå överföring 

och rörelse av Plasmodiumparasiter på Vanuatu. Generellt var den genetiska mångfalden högre i P. 

vivax än P. falciparum från samma plats. I P. vivax bibehölls troligen hög genetisk mångfald av en 

större grad genom genflöde mellan platser och öar. Resultaten tyder på att den nuvarande 

malariakontrollstrategin på Vanuatu kan behöva kompletteras för att kontrollera rörelser av P. vivax-

populationer över öarna. För att förstå effekterna av vektorkontrollinterventioner (d.v.s. ITNs) på 

Vanuatu, utvärderades prover som samlats från 2003 (N = 231) och 2007 (N = 282) på Ambaeön för 

parasitinfektion (d.v.s. mikroskopi) och antikroppssvar mot tre P. falciparum-antigen, tre P. vivax-

antigen och Anopheles-specifika salivära antigenen gSG6. Minskningen i seroprevalens observerades 

för alla P. falciparum antigener men enbart två av tre för P. vivax antigen, vilket stämmer överens 

med den uttalade minskning av parasitprevalens från 19% 2003 till 3%  2007. Seroprevalensen för 

gSG6 minskade också betydligt, vilket indikerar att minskad exponering för vektorbett har spelat en 

viktig roll i minskningen av parasitprevalensen.   



 

 

ABSTRAK  

Malaria merupakan salah satu penyakit berjangkit utama dunia. Hampir separuh populasi dunia 

berdepan dengan risiko jangkitan malaria terutamanya di benua Afrika. Sejak sedekad lalu, kemajuan 

besar telah dicapai oleh komuniti global dalam kawalan dan eliminisasi malaria. Kawalan yang 

berkesan oleh beberapa negara endemik telah berjaya mengurangkan penyakit malaria dan 

membolehkan program eliminisasi dilaksanakan. Walaubagaimanapun, kawalan yang mampan perlu 

untuk memanjangkan trend pengurangan ini. Pemahaman berkaitan dengan transmisi lokal penyakit, 

mobiliti parasit serta jenis penyakit yang bersifat asimptomatik dan submikroskopik mampu 

mendorong pengawasan yang lebih berkesan dalam mencapai status eliminisasi. Selain itu, 

pemahaman berkaitan kesan epidemiologi terhadap immuniti semulajadi terhadap malaria adalah 

penting dalam usaha kawalan mahupun eliminisasi penyakit malaria.  

Dalam kaji selidik di Kenya pada tahun 2012 sehingga 2014 (10,430 orang), prevalen penyakit 

malaria dan penilaian klinikal telah dilaksanakan di lima pulau (Mfangano, Takawiri, kibuogi dan 

Ngodhe) dan sebuah penempatan di tanah besar (Ungoye) di kawasan Tasik Victoria. Prevalen 

malaria didapati berbeza iaitu berkeadaan tinggi di tanah besar, sederhana di pulau besar (Mfangano) 

dan rendah di pulau-pulau kecil. Lebih 90% pesakit malaria bersifat asimptomatik (tiada simptom) 

dan 50% dikalangan mereka dalam keadaan submikroskopik. Dapatan ini mengesahkan lagi bahawa 

MDA perlu dijalankan di kawasan Tasik Victoria. Dengan menggunakan dua kaji selidik pada tahun 

2012 (4,112 orang), kesan antibodi terhadap antigen P. falciparum iaitu PfAMA-1, PfMSP-119 dan 

PfCSP telah dinilai untuk melihat kelainan bentuk transmisi malaria di kawasan Tasik Victoria. Pada 

keseluruhannya, seroprevalen di kawasan Tasik Victoria ialah 64% untuk PfAMA-1, 40% untuk 

PfMSP-119 dan 13% untuk PfCSP. Hubungan diantara hasil penilaian serologi ke atas PfAMA-1 dan 

PfMSP-119 dapat dilihat dengan ketara dengan prevalen penyakit dan juga EIR. Dengan mengambil 

kira semua dapatan ini, penggunaan kajian serologi didapati mampu membolehkan perbezaan yang 

ketara transmisi penyakit dinilai terutamanya di kawasan-kawasan dengan endemik malaria yang 

tinggi. 

Dengan menggunakan data msp1 dan csp dari sampel yang dikumpulkan pada tahun 1996 sehingga 

2002, bentuk aliran gen dan struktur genetik populasi P. falciparum (316 sampel) dan P. vivax (314 

sampel) dinilai melibatkan tujuh kawasan dalam lima pulau (Gaua, Santo, Pentecost, Malakula dan 

Tanna) untuk memahami bentuk transmisi dan mobiliti parasit Plasmodium di Vanuatu. Pada 

keseluruhannya, kepelbagaian genetik dalam kawasan yang sama adalah lebih tinggi dalam P. vivax 

berbanding P. falciparum. Kepelbagaian genetik yang tinggi di dalam P. vivax mungkin disebabkan 

oleh darjah aliran gen yang besar di dalam pulau-pulau itu sendiri. Oleh itu, strategi kawalan malaria 

di Vanuatu perlu dipertingkatkan terutamanya di dalam kawalan penyebaran P. vivax diantara pulau-

pulau terlibat. Untuk memahami impak kawalan vektor (ITN) di Vanuatu, sampel yang dikumpulan di 

Pulau Ambae pada tahun 2003 (231 orang) dan 2007 (282 orang) di nilai untuk prevalen infeksi dan 

kesan antibodi terhadap tiga antigen bagi P. falciparum dan P. vivax beserta satu antigen untuk 

nyamuk Anopheles iaitu gSG6. Penurunan sekata prevalen infeksi dari 19% pada 2003 kepada 3% 

pada 2007 dapat juga dilihat pada semua antigen P. falciparum dan hanya dua dari tiga antigen P. 

vivax. Seroprevalen untuk gSG6 juga menurun dan ini menggambarkan bahawa pengurangan dedahan 

terhadap gigitan vektor adalah penting untuk pengurangan prevalen penyakit itu sendiri. Pada 

kesuluruhannya, penurunan aras parasit dan seroepidemiologi dari tahun 2003 sehingga 2007 

memperlihatkan bahawa peningkatan kawalan vektor memainkan peranan penting dalam penurunan 

transmisi malaria di Pulau Ambae. 
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 1 

1 INTRODUCTION 

 

MALARIA 

 

1.1 The disease burden 

Malaria is a protozoan disease transmitted by Anopheles mosquito. It remains one of the most 

prevalent infectious diseases in the world with an estimated 3.2 billion people at risk of being 

infected. In 2015, approximately 214 million cases (range: 149 – 303 million) of malaria 

occurred worldwide with 438,000 malaria deaths (range: 236,000 – 635,000), most of which 

were children aged less than five years. The African region remains the highest disease 

burden and accounts for 88 and 90% of the global clinical cases and deaths, respectively (1). 

At the beginning of 2016, malaria was considered endemic in 91 countries and territories, 

reduce from 108 in 2000 (2).  

Malaria imposes an enormous socio-economic burden with high costs, both for individuals 

and governments (3). The costs for individuals are associated with the household health 

expenditures and productivity which include the purchase of antimalarial drugs, preventive 

measures, doctor fees and absence from school or lost days of work. For example, in Malawi, 

more than 50% of adults reported that their malaria illness affected their daily work (4) and 

time lost per adults Ghana varies between 1 and 5 days (5). The most direct economic impact 

for the governments is to reduce malaria prevalence where direct costs of treating malaria fall 

on governments. These include providing and maintain staffing of health facilities, purchase 

and supply antimalarial drugs as well as public interventions against malaria. These 

macroeconomic impacts, particularly in low-income countries, can lead to catastrophic health 

expenditures and more financial impoverishment. 

Substantial progress has been made in fighting malaria. A concerted campaign with current 

interventions against malaria by the international community for the last 15 year have 

considerably reduced malaria disease incidence across the African continent (Fig. 1). Despite 

this progress, significant challenge remains, and many countries are still far from reaching 

universal coverage with life-saving malaria interventions (2). Even more than half (41) of the 

world’s 91 endemic countries are on track to achieve 40% reduction in malaria cases and 

deaths by 2020, progress in low-income countries with high malaria burden has been 

particularly slow (6). Therapeutic and insecticide resistances to some key components of 

tools to fight malaria such as the highly effective first-line treatment artemisinin-based 

combination therapies (ACTs) and vector control of long lasting insecticide treated nets 

(LLINs) and indoor residual spraying (IRS) also pose a threat in public health challenges for 

malaria control and elimination (7). 
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Figure 1 Change in infection prevalence 2000 – 2015. a, PfPR2-10 for 2000. b, PfPR2-10 for 2015. c, absolute 

reduction in PfPR2-10 from 2000 to 2015. d, smoothed density plot showing the relative distribution of endemic 

populations by PfPR2-10 in years 2000 (red line) and 2015 (blue line). Reproduced from Bhatt et al. 2015 with 

permission from the Nature Publishing Group. 

1.2 The parasite 

Malaria is caused by protozoan parasites belonging to Plasmodium spp. (phylum 

Apicomplexa).  Plasmodium spp. are indeed global pathogens and have complex life cycle 

alternating between vertebrate hosts and female Anopheles mosquitoes. Five plasmodial 

parasite species cause malaria in humans; Plasmodium falciparum, Plasmodium vivax, 

Plasmodium ovale, Plasmodium malariae, and Plasmodium knowlesi. The two species 

namely P. falciparum and P. vivax are accountable for most malaria-attributed morbidity, but 

P. falciparum responsible for most-attributed mortality (2). The epidemiology of malaria 

varies geographically depending on seasonality and local transmission intensity. 

P. falciparum is widespread in nearly all malaria endemic countries (tropical and 

subtropical), particularly predominant in sub-Saharan Africa and responsible for the majority 

of deaths due to malaria mainly in children under the age of 5 years (2). It is also prevalent in 

Asia and Latin America together with P. vivax in both mono and mixed infection (8, 9). More 

than 75% of P. falciparum infections that are detected during community surveys are without 

symptoms (i.e. asymptomatic) (10) and are associated with submicroscopic parasite densities 

(11). These asymptomatic infections can become symptomatic within days or weeks of initial 

detection (10, 12), or can remain asymptomatic for many months at variable parasite densities 

(11, 13).  



 

 3 

P. vivax can be found mostly in Asia, Latin America and in small parts of Africa. Unlike P. 

falciparum, P. vivax infections include a dormant hypnozoites-liver stage that can lead to 

clinical relapse episodes (14, 15). In Asia, P. vivax and P. falciparum are the co-dominant 

species, albeit the distributions between the two species are different between countries (9, 

16, 17). In South and Central America, P. vivax is the predominant species accounting for 71 

– 81% of all malaria species (8). In eastern and southern Africa only 5% of total malaria 

infections are attributable to P. vivax (18). A major drive of the global P. vivax distribution is 

the influence inherited blood condition of Duffy negativity phenotype (19), which present at 

high frequencies in the majority of African populations (20). This genetic disorder will be 

described and discussed in more details in section 1.3.2. 

P. malariae and P. ovale are much less prevalence compared to the two aforementioned 

species. In term of distribution, P. malariae is more or less sympatric with P. falciparum 

which mainly found in the region of sub-Saharan Africa and south-west Pacific (21, 22). 

Whereas, P. ovale spp. have a much more limited distribution to the area of tropical Africa 

and some islands in the West Pacific such as New Guinea, Indonesia and the Philippines (21, 

23). Both species was observed as infrequent infections with prevalent detected by light 

microscopy rarely exceeding 1 – 2% for P. malariae and 3 – 5% for P. ovale (21). In West 

African population, P. malariae and P. ovale prevalence have been reported to peak at ages 

similar to those of P. falciparum (i.e. most common in children under 10 years old) and 

maximum parasitaemia rarely reached levels that were sufficient to introduce clinical attacks 

(24, 25). Furthermore, like P. vivax, P. ovale has long been thought to have a dormant stage 

(hypnozoites) that can cause relapses, but the evidence of the stage existence have never been 

demonstrated by biological experiments (26).  

P. knowlesi, naturally occurs in long- and pig-tailed macaques, has recently been shown to 

cause primary human malaria in Sarawak, a state in Malaysia (27). It is now the most 

common cause of malaria in the country (28, 29) and has been increasingly observed 

elsewhere in Southeast Asia region (30-32). In this region, limited evidence suggests that 

asexual stages of P. kowlesi diagnosed by light microscopy are misidentified as P. malariae 

(27, 32-34), thus underestimate its true incidence. Unlike P. malariae, which multiplies every 

72 h in blood and never results in severe infections, P. knowlesi multiplies within 24 h with 

high parasitaemia that can lead to death in humans (33, 35). Nevertheless, there is no 

evidence that sexual forms of P. knowlesi can develop in humans for human-to-human 

transmission (36).  

1.2.1 The parasite life cycle 

Plasmodium malaria is transmitted to the human host by female anopheline mosquitoes by 

inoculating microscopic motile sporozoites during a blood feed (Fig. 2). The sporozoites 

migrate rapidly through the dermis into the bloodstream which seek out and invade 

hepatocytes and the multiply. Nevertheless, of the about 100 sporozoites injected by a 

mosquito, only a few of those leaving the injection site to liver hepatocyte while the majority 

may enter lymphatics and drain to the regional lymph nodes where the adaptive immune  
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Figure 2 The life cycle of P. falciparum parasite. Reproduced from Pierce & Miller, 2015 with permission from 

the publisher. Copyright 2009.The American Association of Immunologists, Inc. 

response is initiated (37, 38). Within a hepatocyte, a successful invasion of sporozoite can 

produce as many as 30,000 uninucleate-daughter merozoites in 5.5 to 8 days (39). When the 

exoerythrocytic schizonts rupture, the liberated merozoites release into the bloodstream 

where they quickly invade erythrocytes, commencing the erythrocytic stage (i.e. asexual 

cycle). An asexual cycle in the host’s blood takes roughly 24 h for P. knowlesi, 48 h for P. 

falciparum, P. vivax, and P. ovale and 72 h only for P. malariae. The exponential expansion 

of parasite populations in the erythrocytic stage is responsible for the clinical symptoms of 

malaria. 

The invading merozoite inside the erythrocyte (i.e. intraerythrocytic parasite) develops and 

mature from the ring stage to trophozoite and then to the final schizont stage. The infected 

erythrocyte eventually releases new merozoites (16 – 32 merozoites depending on species) 

(40) into the circulation that will, in turn, invade uninfected erythrocytes and repeat the cycle 

of blood schizogony. In a susceptible individual, the expansions of parasite populations have 

been shown to be between six times and 20 times per cycle (41). 

After several erythrocytic generations, a small subset of merozoites undergoes sexual 

commitment and differentiates into male and female gametocytes (i.e. gametocytogenesis) 

that circulate independently in the peripheral blood. This differentiation is the next major 

stage of the parasite life cycle that involves in transmission by the mosquito vector. The exact 

timing of commitment and the triggers of parasite’s sexual development involved are unclear 

(42, 43). Nonetheless, parasite exposure to different environmental stressors in vitro such as 

high host parasitaemia and drug treatment is correlated with an increase in the rate of 
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gametocytes (44). To complete the sexual cycle, these gametocytes need to be ingested when 

mosquito bites and infected host.  Following ingestion by the mosquito, gametocytes form of 

Plasmodium experience a change in pH and a drop of temperature which together activate 

their maturation into gametes within the mosquito mid-gut (45). Sexually competent male 

gametes then fuse with female gametes to form a zygote which later develops into an 

ookinete. Ookinetes burrow from the mosquito midgut epithelial cell wall and form oocysts, 

which ultimately rupture releasing the sporozoites inside the mosquito. The sporozoites 

migrate within the mosquito body to the salivary glands where they stay until the mosquito 

takes a blood meal, at the same time delivers sporozoites to the next human host thus 

completing the life cycle (46). 

1.3 The host 

1.3.1 Naturally acquired immunity 

Immunity against malaria parasite is complex, stage-specific and can be classified into natural 

(innate) and acquired (adaptive) immunities. Natural immunity to malaria is a rapid inhibitory 

response or an inherent refractoriness of the host against the introduction of the parasite and 

establishment of the infection. It is not dependent on any previous infections (47). Upon 

infection into human, the parasite induce a specific immune response, stimulating the 

cytokines and further activating host’s various immune-dominant cells (i.e. monocytes, 

neutrophils, T-cells, natural killer cells) to react to the subsequent liver as well as blood stage 

parasite (48). Whereas, acquired immunity against malaria develops after infection. The 

protective efficacy of malaria acquire immunity varies depending on the characteristic of the 

host including the effect of exposure and age as well as transmission intensity (47).  

Naturally acquired immunity against malaria is not sterile. Individuals living in malaria 

endemic areas acquired protective immunity to clinical symptoms only after years of repeated 

infections (49) (Fig. 3). After a few symptomatic infections, children particularly under 5 

years of age, become immune to the most severe forms of malaria disease but remain 

susceptible to febrile illness (50). With cumulative parasite exposure over time, partial 

immunity to clinical disease is eventually acquired by the ability to control parasite density 

(47, 51). In adults, despite rarely suffering from clinical malaria episodes, sterilising 

immunity against infection is never fully achieved and they continue to be prone to re-

infection and typically experience asymptomatic infections. In the case of naïve individuals, 

Plasmodium infection is almost symptomatic regardless of age, and clinical symptoms can 

easily be observed even at very low parasite density (47).  

Long-standing evidences suggest that acquired immunity and protection from malaria 

exposure to Plasmodium parasites in endemic areas is largely mediated by Immunoglobulin 

G (IgG) (53, 54). This has been supported by many immune-epidemiological studies in 

endemic areas where antibody to parasite-specific antigens are significantly associated with 

protection in malaria clinical episodes (55-58). Several known mechanisms have been shown 

the ability of antibodies to limit the growth of blood-stages parasites as well as the 
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progression of clinical symptoms. These include opsonizing infected erythrocytes for 

phagocytic clearance (59) and blocking erythrocyte invasion (60).  

 

Figure 3 Changes over time of various indices of malaria in a population living in an endemic area. Adapted 

from Langhorne et al. 2008 (52) and reproduced with permission from the Nature Publishing Group. 

Nonetheless, antibody responses to malaria infection as evidence seen in children and young 

adults are inefficiently generated, short-lived and waning rapidly in the absence of continued 

parasite exposure. In endemic areas, parasite-specific antibody levels appear to increase with 

age in stepwise manner and decay at a slower rate in young adults compared with young 

children in the same endemic area (61, 62). This phenomenon is ascribed to the defect in 

generating and maintaining long-lived memory compartment of B cells (63), probably due to 

the overwhelm of host’s immune system to commit a sufficient number of antigen-specific B 

cells (64).  

1.3.2 Human genetics 

High mortality and widespread impact of Plasmodium parasite have played a crucial part in 

selective evolutionary force in current and past human demography and genetics (65, 66). In 

regions where malaria is prevalent especially in sub-Saharan Africa, naturally occurring 

genetics defence mechanisms have thought to evolve during the course of human evolution 

for resisting infection by Plasmodium. Human genetic resistance to malaria involved many 

genes and varied across populations (65). These genetic factors include enzymopathies (i.e. 

glucose-6-phosphate dehydrogenase (G6PD) deficiency), haemoglobin mutants (i.e. sickle 

haemoglobin), and red blood cell surface loci (i.e. Duffy antigen); to name a few. 

G6PD is an important enzyme in glycolysis that catalyses the first reaction in the pentose 

phosphate pathway which plays and active role in the survival of erythrocytes. The G6PD 

gene is found on the X chromosome with more than 150 variants have been characterised 

causing different kinds of clinical deficiencies from mild to severe hemolysis  (67). Given the 



 

 7 

hemizygous states of males, in G6PD mutant-males all enzyme copies are deficient, as 

similar seen in homozygous females (66). Previous epidemiological studies have shown that 

the prevalence of malaria between endemic and non-endemic regions was significantly 

related to the distribution of G6PD deficiency (68, 69). This relationship reveals two 

important facts. While the G6PD deficiency provides excellent protections against malaria in 

particular for falciparum infection (69-71), it also can cause life-threatening hemolytic 

anaemia by using antimalarial drug (i.e. primaquine) and may even lead to death (72, 73). 

Sickle haemoglobin (S) is a structural variant of normal adult haemoglobin. It is a result of as 

singles point mutation in the sixth codon of the beta globin gene (74). Sickle cell anaemia is 

an inherited disorder of homozygotes (SS) in which erythrocyte reveal an abnormal crescent 

shape (or sickle) containing abbarent haemoglobin. On the other hand, the sickle cell allele 

variant of AS heterozygotes, in which A indicates of the non-mutant form of beta globin gene, 

provide protection against malaria in sub-Saharan Africa and some other tropical areas (75-

78). Cohort and case-control studies in many African countries have constantly found that 70 

– 90% of AS heterozygotes protective against severe malaria (79-81). Parasite growth 

inhibition, impaired rosette formation and reduced cytoadherence of infected red blood cells 

are some of the hypothesised molecular mechanisms of protective sickle cell trait (AS) 

against malaria (82). 

The Duffy antigen or Duffy antigen receptor for chemokines (DARC), also recently known 

as atypical chemokine receptor 1 (ACKR1), is a transmembrane receptor used by P. vivax to 

infect human red blood cells (83). The DARC gene has three major alleles types namely 

FY*A, FY*B, and FY*O (Duffy null) where FY*A and FY*B are the common allelic typed 

observed in non-African populations (84). FY*A is the most prevalence worldwide with the 

highest frequency in Asia than in Europe and relatively small frequency in southern Africa 

(20). The lack of expression of DARC in erythrocyte due to FY*O mutations has been shown 

to halt P. vivax infections (84, 85) and thus exhibit extreme geographic segregation with near 

fixation in equatorial Africa and nearly absence in both Asia and Europe (20). 

1.4 The vector 

Malaria is transmitted exclusively through the infective bites of female mosquitoes of genus 

the Anopheles. Among the 512 Anopheles species recognised worldwide, 70 species are able 

to transmit Plasmodium parasite to human hosts and 41 of which are the dominant malaria 

vector species (86, 87). Common characteristics of dominant vector species are their 

inclination to humans feeding, abundance, and longevity as well as elevate vectorial capacity 

(87).  

The most efficient and effective dominant vector species of human malaria in Africa is the 

Anopheles gambiae sinsu stricto (88). It is a member of An. gambiae complex, which also 

contains Anopheles arabiensis, Anopheles merus and Anopheles melas (88-90). Also found in 

Africa are widespread of highly anthropophilic (i.e. preferring human beings to other 

animals) vector species namely Anopheles funestus, Anopheles moucheti and Anopheles nili 
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that have proved to be highly competent in malaria transmission and equally difficult to 

control (91).  

The Asian-Pacific region has a greater number of dominant vector species than any other 

parts with at least nine out of 19 dominant species found are considered as species complex 

(89). For example, the Dirus and Minimus complexes both contain species considered 

particularly efficient in transmitting malaria in Southeast Asia region. Whereas in Asia-

Pacific region, dominant vector species are dominated by three of the 12 members of the 

Punctulatus group; Anopheles farauti complex, Anopheles koliensis and Anopheles 

punctulatus complex (87). Among these, only the An. farauti complex expands eastward to 

the Solomon Islands and also found on the northern coast of Australia (87).   

Environmental factors such as climate seasonality, temperature, rainfall patterns, humidity, 

the presence of vegetation and surface water play important roles in vector distribution and 

malaria biodiversity (86). Furthermore, human intervention and activities such as agriculture, 

urbanisation, deforestation and irrigation are also directly related to vector distribution and 

malaria transmission levels (92).  

1.5 Clinical features of disease 

The initial symptoms of malaria, typical to all different malaria species are non-specific and 

mimic a flu-like syndrome. Clinical findings in malaria are diverse and may range in severity 

from a headache to more serious complications. Based on severity, clinical features of 

malaria can be classified into uncomplicated malaria and severe malaria which differ in their 

treatment and prognosis.  

1.5.1 Uncomplicated malaria 

All signs and symptoms of uncomplicated malaria are non-specific and caused by the asexual 

or blood stage parasites. The hallmark of the malaria symptom is a fever. Following the 

infective bite of mosquito, infected individuals are generally asymptomatic for 10 to 30 days 

(i.e. incubation period; interval between infection and the onset of symptoms), but depending 

on parasite species can commence symptoms as early as 7 days, until parasite become 

detectable in blood (i.e. prepatent period) (93). In most P. falciparum and P. vivax cases, the 

incubation period is approximately two week and longest for P. malariae. Up to three days 

before the onset of fever, non-specific prodromal symptoms such as malaise, headache, 

myalgias, nausea, dizziness, sense of dizziness and vomiting may be experienced (94). Fever 

is often high, spiking up to 40
o
C in children and naïve individuals, and can be associated with 

rigours in P. vivax infection (95). The classic malaria paroxysm consists of intermittent fever 

with chills and rigours occurring at the periodic interval of 24, 48 or 72 hours depending on 

the malaria species. It corresponds to the release of Plasmodium merozoites from schizont 

rupture during the blood-stage cycle. Thus, macrophages and monocytes are activated and 

further induces the release of proinflammatory cytokines (95). If uncomplicated malaria 
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treated with appropriate drugs, the symptoms remit over a few days, though often with 

considerable exhaustions. 

1.5.2 Severe malaria 

If the initial infection is not controlled either due to untreated or partially treated, the rapid 

progression to complicated or severe malaria can lead to death, particularly in falciparum 

malaria. The manifestations of severe malaria vary with both age and transmission level, 

which reflect the immune status of the populations (96). In Africa, three dominant syndromes 

namely cerebral malaria, severe anaemia, and respiratory distress are more associated with 

malaria deaths in children (97). Clinical features of severe malaria (i.e. in the absence of 

alternative cause), may include the presence of one or more of the features presented below, 

adapted from the WHO Guideline for the Treatment of Malaria (98). 

a. Impaired consciousness: Coma Score < 11 in adults or < 3 in children. 

b. Prostration:  Generalised weakness; unable to sit, stand or walk 

c. Multiple convulsion:  More than two episodes within 24 hours 

d. Shock:   Compensated and decompensated shocks 

e. Pulmonary oedema:  Radiologically confirmed 

f. Significant bleeding:  Recurrent or prolonged bleeding from nose or gums. 

g. Severe malaria anaemia: Hb ≤5 g/dL in children <12 years of age 

   Hb ≤7 g/dL in adults (parasite >10,000/µL) 

h. Jaundice:  Plasma bilirubin >50 µmol/L (parasite >100,000/µL) 

i. Renal impairment:  Plasma bilirubin >265 µmol/L (blood urea >20 mmol/L) 

j. Acidosis:  Plasma bicarbonate <15 mmol/L or plasma lactate ≥5 mmol/L 

k. Hypoglycemia:  Blood or plasma glucose <2.2 mmol/L (<40 mg/L) 

l. Hyperglycemia:  P. falciparum parasitaemia >10% 

 

1.6 Endemicity and transmission 

Malaria endemicity is a proxy to indicate the malaria disease prevalence in a population. 

Malariologists have been long graded malaria endemicity according to the risk of infections 

as reflected in the proportion of the population having enlarged spleen (i.e. spleen rate; the 

percentage of sampled population with palpable enlargement of the spleen due to chronic 

exposure to malaria). 1951 WHO report on malaria conference in Equatorial Africa has 

classified endemicity as weighed by spleen rate surveys measured in the 2 – 10-year-old age 

group as follows: hypoendemic less than 10%, mesoendemic 11 – 50%, hyperendemic 51 – 

75% (spleen rate in adults, high), and holoendemic more than 75% (spleen rate in adults, 

low). The similar report also classified endemicity as hypo-, meso-, hyper-, and holo-endemic 

based on parasite prevalence in children 2 – 10 years of age (99). Furthermore, a dynamic 

mathematical model using entomological determinant of malaria can further classified 

malaria endemicity into stable and unstable. This classification is taking into consideration 

that the stability of malaria is determined by the average number of feeds that a mosquito 

takes on human being during its life (100, 101). Nevertheless, the stable-unstable concept is 

rarely implemented. The reasons for this mostly due to the technical difficulties of obtaining 
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entomological-based metrics, issues related to measurement error and ethical concern of 

exposing human beings to malaria infection (102-104).  

Malaria transmission can be defined as the process by which a malaria parasite completes its 

life cycle, involves parasites being uptake from a female anopheline mosquito through the 

skin, via the liver into human blood, and later from the infected blood back into the mosquito, 

leading to parasite development within a mosquito (105). The intensity of malaria 

transmission, a general concept describing the potential frequency of malaria transmission, 

varies enormously within endemic areas depending on the vectorial capacity of local 

mosquito populations, host immunity and malaria interventions (106). Measuring malaria 

transmission intensity is important in order to determine of the burden of malarial disease. 

Increases in the incidence of severe malaria disease and death have been shown to be 

associated with increasing malaria transmission intensity (107-109). Several points during the 

parasite life cycle can be used to measure the intensity of transmission using various metrics 

(110, 111). Each metric represents a quantity that is a major step in the transmission process. 

1.6.1 Entomological inoculation rate (EIR) 

The annual EIR (aEIR) is the number of infectious bites received per person per unit time, 

typically in year (ib/p/yr). It is the product of two components namely the human biting rate 

(i.e. Ma, the number of vectors biting and individual over a fixed period of time) and the 

sporozoite rate (i.e. SR, the fraction of mosquito with sporozoites in their salivary gland) 

(112). Catch and counting of mosquitoes by indoor or outdoor human landing catches, 

pyrethroid spray catches, and light traps can be used for measuring human biting rates. 

Whereas, dissection of mosquito salivary gland, serology and molecular method can be 

utilised to examining the caught mosquito for sporozoite. The gold standard method for 

estimating EIR is to measure SR and Ma directly (EIR = (total sporozoite positive tests/total 

mosquito tested) x (total mosquito collected/total catches)) (105). Another method of 

calculation has been proposed assuming that sporozoite data are available for all mosquito 

caught (EIR = total sporozoite positive mosquitoes/total catches) (102). Biases in different 

methods of catching mosquitoes (113) and interindividual differences in mosquitoes 

attractiveness (114), may contribute to the accuracy of EIR estimate, especially in the low 

transmission levels. 

1.6.2 Parasite rate 

Malaria parasite rate or prevalence (PR) is the proportion of the individuals in a given locale 

with detectable parasites in blood at given point in time. Since PR remains relatively constant 

in children aged 2 – 10 years (115), it has been widely used as a metric of transmission 

intensity particularly during the era of the Global Malaria Eradication Programme (i.e. PR 

exceeded 1 – 3%) (111). Examining blood sample for malaria parasite from a cross-sectional 

survey of a representative sample of the population such as school survey or the whole 

community can be rapidly measured PR. However, although PR can be estimated rapidly in 

populations, the accuracy and precision of PR are affected by many factors. The varying 
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distribution of parasite densities in a population (115), the recent used anti-malarial 

treatments, the method used for parasite detection (116, 117), and the seasonal variation of 

transmission (118, 119) were known to limit its utility for accurately measuring transmission 

intensity.  

1.6.3 Annual parasite incidence( API) 

The number of new parasitologically confirmed malaria cases per 1000 population per year is 

called the annual parasite incidence (API). Most countries have information on the API from 

routine surveillance and/or on the parasite prevalence from surveys. The WHO classifies 

geographical units according to local malaria transmission intensity based on API (2): 

Very low transmission: areas have <100 cases per 1000 population; prevalence of P. 

falciparum/P.vivax malaria >0 but <1%. 

Low Transmission: areas have 100 – 250 cases per 1000 population; prevalence of P. 

falciparum/P. vivax of 1 – 10% 

Moderate transmission: areas have 250 – 450 cases per 1000 populations; prevalence of 

P. falciparum/P. vivax of 10 – 35%. 

High transmission: areas have ≥450 cases per 1000 population; P. falciparum 

prevalence rate of ≥35%. 

In moderate to high transmission settings, the relationship between API and transmission 

intensity is confounded by the relationship between exposure and acquired immunity. 

Whereas, in low transmission settings, the majority of the population are likely to have little 

clinical immunity against symptomatic disease (120, 121). Several factors affect the accuracy 

of API reflects transmission intensity. First, routine case data often do not discriminate 

between confirmed by diagnostic tests and those clinically diagnosed cases (121). 

Fortunately, since the launch of WHO’s Test Treat Track (T3) campaign in 2012 (122), the 

proportion of cases that are correctly confirmed is increasing. Second, often information on 

whether identified cases are acquired locally or imported is not available, particularly in very 

low transmission areas where the proportion of imported cases may be substantial (123, 124).  

1.6.4 Serology 

Serological data offer an alternative means to estimate malaria transmission intensity under 

various malaria endemic settings (125-128). It is an ideal tool for rapid assessment of malaria 

transmission intensity and provided a theoretical advantage over EIR, and parasite prevalence 

in that single measurements reflect malaria exposure (i.e. infection) over an extended period 

(127). As exposed individuals can remain seropositive for antimalarial antibodies for a long 

period after infection (129, 130), integrating malaria exposure over time for assessing malaria 

endemicity can overcome the sampling biases associated with entomological and 

parasitological metrics such as seasonality and short-term fluctuations in transmission (131, 

132). Also, the longevity of antibodies (i.e. reflect cumulative exposure to infection) means 
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that history of exposure can be constructed in situation of missing baseline data and 

predictions can be made even in the absence of active transmission (125). Age-specific 

serological data have also been used as evidence of reduction in malaria transmission and 

malaria elimination (131, 133, 134). Serological data (e.g. ELISA) are typically analysed 

using reversible catalytic models to estimate the antibody seroconversion rate (SCR; λ) -  a 

function of antimalarial antibodies in the population or a rate at which seronegative 

individuals become seropositive (127, 135). The parameter of SCR (λ) is considered as a 

proxy to the ‘force of infection’ of malaria, as deflected through the immune responses of 

exposed malaria (136).  

1.6.4.1 Antigen selection for sero-surveillance 

Of more than 5,000 proteins expressed by the Plasmodium species, few have been examined 

in detail (137), and very few have been investigated as potential antigens for sero-

surveillance. Properties of the different antigens could influence their selection for application 

in sero-surveillance assays, including immunogenicity, polymorphism, and antibody 

longevity (138).  Antibodies to different malaria antigens are acquired at different rates 

relative to exposure (64, 139); thus, the selection also needs to consider according to the 

application and setting. Fast acquisition of malaria antibodies in early life for highly 

immunogenic and stable (i.e. long-lived) antigens will be essential for monitoring changes in 

transmission in low endemic settings, whereas those with shorter-lived responses will be 

more useful to reflect recent changes in exposure in moderate-to-high endemic settings. In 

addition, potential cross-reactivity of antigens from different malaria species (140, 141) and 

both sensitivity and specificity of surveillance assays are important in the context of 

elimination programs (142), to ensure high-risk subpopulations and geographical hotspots are 

correctly identified. 

A panel of antigens, which are most studied as markers of exposure, observed 

immunogenicity and/or currently under development as vaccine candidate antigens were 

selected and included in the studies presented in this thesis. These selected antigens are 

described in brief below. 

1.6.4.1.1 Antigens for Plasmodium sero-surveillance 

AMA-1: Antibody responses to the merozoite antigens have been most studied as markers of 

exposure to Plasmodium (57, 138). One of them is apical membrane antigen 1 (AMA-1), a 

structurally conserved 83 kD type I integral membrane protein varying between 556 to 563 

amino acids in most Plasmodium species (143). The protein made up of three domains and 

stabilised by eight disulphide bonds (144). It is expressed on the parasite’s surface in the late 

schizont stage and long thought to be involved in red blood cell (145) and liver cell (146) 

invasion by Plasmodium merozoites. The surface location also makes the protein more 

exposed to human immune system and thus exhibit high antigenic diversity (147). There is 

extensive polymorphism among the sequence of genes coding for AMA-1. Most AMA-1 

polymorphisms are dimorphic and either high or low in incidence (148). In a study in Papua 
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New Guinea showed that certain polymorphism frequencies differed between asymptomatic 

and symptomatic cases, suggested PfAMA-1 might be one determinant of malaria morbidity 

(149). Polymorphisms also occurred in PvAMA-1, although the regions under selective 

pressure might differ from those in PfAMA-1 (150). Natural immune responses (both 

humoral and cellular) to AMA-1 are found in most people exposed to malaria, with antibody 

prevalence positively increased with age (151-154). 

MSP-1: Merozoite surface protein 1 (MSP-1) is a high molecular mass protein (~180 kDa) 

that is proteolytically processed into fragments of 83, 30, 38, and C-terminal 42 kDa (MSP-

142) (155, 156). During merozoite invasion, MSP-142 is further processed into MSP-119 and 

MSP-133 which later remaining attached to the merozoite surface and present on ring forms in 

newly invaded red blood cells (157). MSP-1 is essentially dimorphic, albeit some parts of this 

large molecule are much more variable (158). Nonetheless, MSP-119 gene is relatively 

conserved, and variability is restricted to 4 – 6 amino acid residues (159). Naturally acquired 

antibodies to MSP-119 can impede erythrocyte invasion of merozoite by preventing the 

secondary processing that released this fragment from the rest of the MSP-1 complex (160). 

Antibody responses both AMA-1 and MSP-119 antibodies have been most studied as markers 

for exposure to P. falciparum. SCR for both P. falciparum merozoite antigens (i.e. PfAMA-1 

and PfMSP-119) have been strongly correlated with other indication of transmission 

intensities such as EIR (based on the model of EIR upon altitude in Tanzania), parasite rate, 

and altitude (125-127, 161, 162).  Immunological surveillance based on merozoite antigen 

SCRs has facilitated the identification of transmission host spots (161), changes in 

transmission intensity over time (126, 163-166), and seasonal variations in transmission (132, 

167). Availability of P. vivax merozoite antigens (i.e. PvAMA-1 and PvMSP-119) have also 

been successfully demonstrated in regions where parasite prevalence was low (131, 168-171). 

Furthermore, the sensitivity of the serological assay can be tailored depending on 

transmission level. A highly immunogenic antigen such as AMA-1, or a combination of 

antigens such as AMA-1/MSP-119 can be used in areas of low transmission (172). Whereas, 

less immunogenic antigens suitably used in high transmission areas, where seroprevalence to 

high immunogenic antigens approachers 100% very early in life (125).  

CSP: Circumsporozoite (CSP) is the major surface protein of the sporozoite and forms a 

dense coat on the parasite’s surface. The CSP protein from all species of Plasmodium are 

similar in overall size (400 amino acids) and is divided into three regions; NH2-terminal 

region, central repeat region and COOH-terminus (173). The repeat motifs in the central 

region of CSP protein comprise 37 tandem repeats of the tetrapeptide Asn-Ala-Asn-Pro 

(NANP) interspersed with four copies of Asn-Val-Asp-Pro (NVDP). Long thought that 

NANP repeat motifs of the CSP were identified as the target of protective antibodies (174, 

175).   

Unlike merozoite antigens, Plasmodium sporozoite antigen is exposed to the immune system 

for only short periods after mosquito inoculation, and anti-CSP antibodies would generally be 

detected in individuals with frequent or recent exposure (176). Some sporozoite rapidly 
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develops into liver stage, but others are taken up by macrophage, processed, and later be 

presented to the immune system (177). The small amount of antigenic materials and short 

time of contact with immune cells may underestimate the use of CSP antigen for malaria 

exposure in low transmission settings. It has been shown that CSP is not a reliable marker of 

malaria endemicity when the total EIR in the areas is <10 ib/p/yr (178). However, in 

hyperendemic areas, immunological surveillance based on PfCSP has been reported to give 

reliable estimates of malaria endemicity and reflects the dynamic in seasonal transmission 

(177, 179). Also, PvCSP has been associated with other measures of transmission intensity in 

Asia (180-182).  

1.6.4.1.2 Anti-salivary antibodies as biomarkers of exposure 

A measurement of human antibodies to Anopheles mosquito antigens is an alternative tool for 

describing exposure to malaria vectors. During a blood meal, mosquitoes inject saliva into the 

host’s skin. This saliva contains a cocktail of active components that facilitate mosquito 

blood-feeding activity and counteract with host haemostasis and modulate immune responses 

(183, 184). Human produces IgG-, IgM-, and/or IgE-specific to injected mosquito salivary 

molecules (i.e. protein) following mosquito bites (infecting or non-infecting bites) (185-187). 

Such humoral responses towards salivary protein have proven to be a useful marker of human 

exposure to Anopheles vector bites (188-191) and could be performed in parallel with other 

serological measures of exposure. 

gSG6: Recent transcriptomic studies on salivary glands of An. gambiae-females mosquitoes 

have identified over 70 putative secreted salivary proteins, and one of them is gambiae 

salivary gland protein 6 (gSG6) (192-194). The gSG6 protein is a small immunogenic protein 

(11 – 13 kDa) that is restricted to anopheline mosquitos and well conserved in the three major 

Afrotropical malaria vectors (i.e. An. gambiae, An. arabiensis and An. funestus) (195). Total 

IgG antibody responses to gSG6 peptides described Anopheles mosquito exposure in low 

vector density areas (196), in response to ITN-based vector control programs (197-199), and 

to reflect Anopheles heterogeneity in urban areas (185). Together with parasite antigens, 

gSG6 assays have shown to be sensitive to micro-epidemiological variations in mosquito 

exposure and provide a correlate of malaria risk as well as transmission (200-204). The short-

lived nature of gSG6 appears to correlate with seasonal changes in Anopheles abundance with 

strong immunogenicity among rural populations in Burkina Faso (191, 204-206).  

1.7 Diagnosis 

Prompt and accurate diagnosis of malaria is crucial to the effective disease management and 

surveillance. Malaria diagnosis involves identifying malaria parasites or antigens/products in 

patient blood. For all patients suspected of malaria, WHO recommended prompt parasite-

based diagnosis before any treatments are administrated (98).  
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1.7.1 Microscopy 

Conventionally, malaria is diagnosed by light microscopy examination of stained blood 

smears, most commonly with Giemsa stain. Microscopic detection and identification of 

Plasmodium species in Giemsa remain the gold standard for laboratory diagnosis (207, 208), 

and remains relatively widespread as a point-of-care diagnostic in clinical and 

epidemiological settings (209). Malaria is diagnosed microscopically by preparing of thick 

and thin blood smears on a glass slide for the detection of parasites in the peripheral blood. 

Thick smears are useful for screening the presenting malaria parasite, parasite density and 

detecting of low-density malaria, whereas thin smears provide confirmation for malaria 

species. To prepare a thick blood smear, a blood spot is stirred in a circular motion with the 

corner of the slide, taking care not make the preparation too thick, and allowed to dry without 

fixative (208). Whereas, a thin blood smear is prepared by immediately placing the smooth 

edge of a spreader in a drop of blood, adjusting the angle between slide and spreader to 45
o
 

and the smearing the blood with a swift and steady sweep along the surface (208). Parasites 

density (in parasites/µL) are estimated in thick blood smears by counting the number of 

asexual parasites against in 200 white blood cells (WBCs), where the average WBCs count of 

8,000 cells/µL was assumed. 

Microscopy technique is widely used in the management of malaria due to its simplicity, low 

cost, its ability to identify the presence of the parasites, the infecting species and assess 

parasite density. Despite proved to be a tremendously resilient and useful diagnostic tool, it is 

not without problems. There are still few limitations in the efficacy of microscopical 

diagnosis. The most obvious shortcoming is its relatively low sensitivity, particularly at 

detecting low parasite levels and resulted in underestimating malaria infection rates. Under 

optimal condition, an expert microscopist can detect up to 5 parasites/µL, whereas the 

average microscopist detects only 50-100 parasites/µL (210). Furthermore, the staining and 

interpretation process of microscopy slides are labour intensive, time-consuming, and require 

considerable expertise and trained health workers. Fatigue and the pressure to return results 

among the technicians (i.e. microscopists) may also lead to significant loss of efficiency and 

accuracy of the microscopy reading. Thus, constant monitoring of the workload of each 

technician may be required. Concerning the microscope, high-quality microscopes are 

expensive and often beyond the means of local health outposts, particularly in low-income 

countries. Access to portable and sturdy microscopes required for the field use are usually 

limited to only a few peripheral health facilities. 

1.7.2 Rapid diagnostic test (RDT) 

Unlike conventional microscopy, rapid diagnostic tests (RDTs) are all based on the same 

principle and detect malaria antigen, which uses antibody capture to detect soluble malaria 

antigens in blood flowing by immunochromatography i.e. migration of liquid across the 

surface of a nitrocellulose membrane. It is a simple lateral flow device, used a small amount 

of blood (5 – 15 µL), and does not require operation by laboratory equipment. RDTs 

commonly come in nitrocellulose strip and usually packaged in a plastic cassette or on a card. 
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Coloured test line result of RDTs have revolutionised malaria diagnosis by providing 

convenience and rapid turn-around time of only 15-20 min. 

Most RDT products target a P. falciparum-specific antigen namely histidine-rich protein 2 

(HRP-2), lactate dehydrogenase (LDH) or Plasmodium aldolase. Some tests detect P. 

falciparum-specific and pan-specific antigens (i.e. aldolase or lactate dehydrogenase (pLDH)) 

to distinguish non-P. falciparum infections from mixed malaria infections. HRP-2 is a water-

soluble protein produced by asexual stages and young gametocyte of P. falciparum and 

expressed in abundance on the membrane surface of infected RBC (211, 212). On the other 

hand, both LDH and aldolase are enzymes found in the glycolytic pathway of the malaria 

parasite and produce by asexual and sexual stages of the parasite (213).  

Currently, tests targeting HRP-2 contribute to more than 90% of malaria RDTs used 

worldwide, but the performance among different tests varied considerably. Several possible 

reasons including the specificities, sensitivities, numbers of false positives, numbers of false 

negative and temperature tolerances (214). The main problem associated with variability in 

both specificity and sensitivity of HRP-2 based RDTs is manufacturing process of the kits 

(215). Malaria transmission intensity, patient age,  and lack of symptoms have also been 

demonstrated to influence specificity and sensitivity of RDTs, which can turn result in under- 

or overdiagnosis of the disease (216-218). Furthermore, the genetic variation in PfHRP-2 

amino acid sequence among parasite isolates from different geographical areas may lead to 

false-negative results from RDTs. Deletion (219) and a number of repeats and combinations 

(220) of PfHRP-2 gene may contribute to the cause of diagnostic failure if the test. False-

negative in results can also be explained by the absence of bands on an RDT either from 

excess antibodies or antigens (i.e. the prozone effect) (221). The HRP-2 antigen persists for 

weeks in the blood after an infection is cleared resulting in false positive results, thus limits 

the usefulness of PfHRP-2 RDTs in high transmission settings (212, 214). Given that HRP-2 

is indirect measures of parasite biomass (222) and the prolong presence after parasite 

clearance, results based on RDTs can also indicate a range of possible infection states, albeit 

less comparable than microscopy or molecular methods (i.e. parasite density as biological 

endpoint).  

Even with those caveats, RDTs have proof to be a valuable tool for point-of-care diagnosis, 

particularly for use at the community level, in low-resource settings. Their use in field 

conditions allows prompt diagnosis of malaria in any febrile patients, reducing dependent on 

the presumptive treatment of confirmed cases as well as lessen the risk that patient will get 

sicker before a correct diagnosis is conducted. 

1.7.3 Molecular-based diagnosis 

Recent developments in molecular biological technologies have permitted extensive 

characterization of the malaria parasite and generating new strategies for malaria diagnosis. 

Molecular diagnostic platforms display high sensitivity, high specificity and their ability to 

detect extremely low-level infections. Nevertheless, the significant barrier of these methods 
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including required specially trained technician, relatively high operational cost, prone to 

contamination, complex methodologies, and the amount of infrastructure needed in the form 

of equipment, stable power and reagent storage (223).  

1.7.3.1 Polymerase chain reaction (PCR) 

PCR-based techniques have proven to be one of the most specific and sensitive diagnostic 

methods, particularly for malaria cases with low parasitaemia or mixed infections (224). PCR 

involves primer-directed amplification of a specific fragment of DNA by using thermostable 

Taq polymerase, under a specific set of alternating temperature cycling conditions. Most 

nucleic acid tests for malaria focus on the 18S ribosomal RNA (rRNA) (225-227),  

cytochrome b (cytb) (228), and recently cytochrome c oxidase III (cox3) (229, 230), which 

contains regions conserved across all malaria species and regions unique to each species. 

PCR is highly effective at identifying low-level infections that often missed by conventional 

techniques with a limit of detection of 0.5-5 parasites/µL (231-233). However, detection 

based on RNA which is much more abundant than DNA (up to 1000 copies of the 18 S gene 

per parasite) (234), can be even more sensitive (11), providing a more accurate detection of 

gametocytes (235, 236). To mention but a few, many of nested PCR (nPCR) (207, 231, 237, 

238) and real-time PCR quantitative PCR (qPCR) (239, 240) have been previously developed 

for malaria detection, quantification and determination of malaria species. Moreover, PCR-

based methods are now used routinely to help detect drug-resistant parasites (241-243) and 

evaluating other diagnostic tools (244-246). 

1.7.3.2 Loop-mediated isothermal amplification (LAMP) 

Unlike PCR, LAMP amplifies nucleic acids at a constant temperature (i.e. isothermal), 

without alternating temperature conditions. It is less time consuming than can be performed 

with a simple water bath or heating blocks, with results read by eye under UV light. The 

visual detection avoids the need for opening the reaction tube post-amplification, thus reduce 

the risk of contamination (247). In brief, a set of four to six specifically designed primers to 

recognise six distinct regions of the target DNA, as well as Bst DNA polymerase, are used for 

auto-cycling strand-displacement DNA synthesis. The unique design of primers results in 

DNA stem-and-loop formations in the amplification steps, which leaves a binding site 

constantly open for new primers to anneal (223). As little as one hour, the amplified products 

capable of achieving 10
8
 fold (248), thus reduces the time-to-result (249). LAMP has been 

successfully developed to detect malaria in a field-stable format (123, 250) and the 

Loopamp
TM

 MALARIA Pan/Pf Detection Kit has been evaluated in both laboratory (251) 

and field settings (252-254).  

1.7.4 Antibody assays 

Antimalarial antibodies can be detected using serological methods but cannot determine 

whether the antibodies result from current or past infection. The methods most commonly 

used to measure antibodies titres against malaria parasites are the indirect 
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immunofluorescence (IFA), and enzyme-linked immunosorbent assay (ELISA), which rely 

on detection of asexual blood stages antigens. Detection of antimalarial antibody is definitely 

not a substitute for the diagnosis of an acute attack of malaria (i.e. by microscopy and PCR) 

but rather used mainly in the screening of prospective blood donors to avoid transfusion-

transmitted malaria (255, 256). Serological methods also can be used to diagnose of fever of 

unknown origin, especially in patients with tropical splenomegaly or inadequately treated for 

malaria, where the measured antibody titres reflect the intensity of contact with the parasite 

(257). The principle of serological assays is to rely on the delay antibodies development 

following infection of any Plasmodium species where specific antibodies are produced within 

two weeks of initial infection and remain three to six months after parasite clearance (208, 

257). In endemic countries where reinfection is frequent, these antibodies may persist for 

months or year in semi-immune patients (127). Nevertheless, the utility of serological 

methods particularly for IFA is limited. IFA is time-consuming and difficult to automate. It 

requires fluorescence (UV) microscope and trained technician, making it operator-dependent 

and subjective particularly when dealing with serum samples with low antibody titres (257). 

Serological methods can provide retrospective confirmation of malaria infection or history of 

infection and are currently used in many epidemiological surveys (128, 131, 163-165, 258-

261). Despite being able to demonstrate exposure to infection in endemic populations, no 

serological methods reliably assess the extent of exposure in individuals. However, 

serological analyses can be used to a assess the risk of exposure among groups. Detection of 

anti-CSP antibodies in European travellers returning from malarious regions suggests that 

serology data can serve as indicators of the relative risk of infection in travellers to specific 

regions (262, 263). 

1.8 Treatment 

Malaria is an entirely curable disease if adequately treated. The main objective of malaria 

treatment is to establish a complete clearance of any forms of Plasmodium parasite in 

patients’s blood thus eventually stop the progression of malaria complications or death. 

Malaria treatment should be governed by three main factors namely the infecting 

Plasmodium species, the clinical status of the patient and the drug susceptibility of the 

infecting parasites. 

1.8.1 Treatment of uncomplicated malaria 

The WHO recommended first-line treatment of artemisinin-based combination therapies 

(ACTs) for uncomplicated P. falciparum malaria in all endemic countries (98) due to its 

reliability, rapid action and few adverse effects (264). ACTs are composed of a fast acting 

drug derivatives (i.e. artemether, artesunate, or dihydroartemisinin) is given for 3 days with a 

slowly eliminating partner drugs (or longer eliminating half-lives), preferably in a fixed-doses 

combination(39). This combination results in the artemisinin component being protected 

from development of antimalarial drugs by the partner drug and vice versa (98). Currently, 

there are five ACTs for the first-line treatment; artemether-lumefantrine (AL), artesunate-
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amodiaquine (AS-AQ), artesunate-mefloquine (AS-MQ), artesunate plus sulfadoxine-

pyrimethamine (AS-SP), and dihydroartemisinin-piperaquine (DHA-PPQ) (98). In low 

transmission areas, WHO also recommend to include a single gametocytocidal dose of 

primaquine (0.25 mg/kg) for the treatment of uncomplicated malaria to prevent onward 

transmission (98). First-line treatment with ACTs has played and important role in reducing 

the malaria burden in Rwanda (265), São Tomé and Príncipe (266) as well as Zanzibar (267). 

For most P. vivax and all P. ovale infections, the drugs of choice are a combination of 

chloroquine (total dose 25 mg/kg) with daily primaquine (0.25 mg/kg) for 14 days. For P. 

malariae and P. knowlesi, the drug of choice is chloroquine at standard dose and do not 

require radical cure with primaquine. Nonetheless, any ACTs can be given to non-falciparum 

infection together with primaquine accordingly, except for AS+SP where P. vivax is resistant 

(39). Other non-ACT treatments (i.e. second-line treatments) available include atovaquone 

plus proguanil (AQ/PG, Malarone), amodiaquine plus SP, and artesunate and/or quinine plus 

antibiotics such as tetracycline, doxycycline or clindamycin. Tetracycline and doxycycline 

are not suitable for pregnant women or children younger than 8 years (39). 

1.8.2 Treatment of severe malaria 

The main objective of antimalarial treatment for severe malaria is to save life. Severe malaria 

is a medical emergency and requires intensive care and careful management (39). Parenteral 

artesunate by intravenous or intramuscular is the treatment of choice for severe malaria 

worldwide (98), but artemether can be used if only artesunate is not available. In the case of 

both artemisinin derivatives are not available, quinine dihydrochloride can be given. 

Parenteral artesunate therapies have significantly reduced mortality compared to quinine both 

in Asia (22.4 to 14.7%) (268) and in Africa (10.9 to 8.5%) (269). 

1.8.3 Drug resistance 

The emergence of artemisinin-resistance P. falciparum in Western Cambodia and the 

Thailand-Myanmar border currently poses a great concern in malaria control and elimination 

(270-272). These artemisinin-resistance parasite populations are cleared slowly from the 

blood after ACT and treatment failure occur more often. Very recently, mutations in the 

Kelch propeller domain of P. falciparum (Pfkelch13) were discovered as a putative 

responsible for artemisinin resistance (273). Furthermore, resistance of P. falciparum to 

chloroquine and SP now occurs throughout most of the tropical world, but worsening across 

Africa. Nevertheless, chloroquine sensitivity is still retained in some part of Central America, 

North Africa, Middle East and Asia such as Peninsular Malaysia and part of the Philippines. 

Mefloquine resistance is still relatively unusual and has been shown to be associated with 

reduced susceptibility to quinine (274). Similar to artemisinin, high-level mefloquine 

resistance has also developed on the borders of Thailand and the adjacent countries (275-

277).  
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1.9 Control and elimination 

The WHO uses the following terminology to refer the hierarchy of potential public health 

efforts in dealing with malaria (278):  

Malaria control: reduction of the disease incidence, prevalence, morbidity or mortality to a 

locally manageable level as a result of deliberate efforts; continued intervention efforts are 

required to sustain control. 

Malaria elimination: interruption of local transmission (i.e. reducing the rate of malaria cases 

to zero) of a specified malaria parasite in a defined geographic area; continued measures are 

required to prevent re-establishment of transmission. 

Malaria eradication: permanent reduction to zero of the worldwide incidence of infection 

caused by human malaria parasites as a result of deliberate efforts. Intervention measures are 

no longer needed once eradication has been achieved. 

Unprecedented efforts of malaria community for the last decade to control malaria has 

witnessed a reduction in malaria cases globally, including renewed financial and political 

commitments thus reinviting the possibility of malaria elimination in some countries. 

1.8.1 Cornerstones in malaria control and elimination 

1.9.1.1 Vector control 

Vector control is an essential component of malaria prevention. Personal protection measure 

namely insecticide-treated nets (ITNs), which comprise conventional (cITNs) and long-

lasting insecticidal nets (LLINs) have become the most widely used form of vector control. In 

Africa, this method proved to significantly reduce morbidity and mortality via direct 

protection as well as in community-wide reduction in transmission (279-281). Only 

pyrethroid insecticides are approved for use on ITNs, and the nets require frequent 

retreatment, usually every 6 to 12 months. Whereas, insecticides such as deltamethrin or 

permethrin are used for LLINs which require no further treatment and have an expected 

lifespan of 3 to 4 years (282). The emergence and spread of insecticide resistance mosquito 

have threatened the effectiveness of ITNs. Currently, 27 countries in sub-Saharan Africa have 

reported pyrethroid resistance in Anopheles vectors (283).  

Indoor residual spray (IRS) is a method against adult mosquitoes that involves applying a 

long-lasting insecticide to the interior walls and surfaces of the houses (e.g. ceilings) which 

serve as resting places for mosquitoes (i.e. endophilic). The most common insecticide used is 

pyrethroids. In sub-Saharan Africa, 7% of the population at risk were protected by IRS as 

vector control (2). Previously, IRS has been shown to disrupt malaria transmission 

significantly, reduce malaria incidence, and eliminate malaria vectors (284-286). 

Nevertheless, the use of IRS has declined in recent years due to lack of long-term effort from 

government, concern about insecticide resistance, and fear of its harmful effect on human 

health and environment (7). 
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Agents for biological control of malaria have been mainly developed against aquatic 

mosquitoes stages (i.e. larva and pupa) by introduction or manipulation of organisms to 

suppress vectors population. Larvivorous fish Gambusia (guppy fish) have been used for over 

a decade in mosquito control (287). The benefits of larvivorous fish are the fish relatively 

inexpensive; fish populations are self-sustaining even without the presence of mosquito 

larvae (288). Certain types of Gram-positive bacteria such as Bacillus spp. have also been 

found to be effective as bio-larvicides for control mosquito larvae (289).  

1.9.1.2 Improved diagnostics 

Improved diagnostics are crucial to monitor and measure changes in infections rates. The 

WHO in 2010 recommends parasitological confirmation by either microscopy or RDT to 

those who suspected malaria regardless of age and epidemiological settings (290). Current-

generation RDTs are excellent for diagnosing individuals with symptomatic malaria who 

have relatively high parasite densities. In the African region, RDTs accounting for 40% if all 

cases tested in the region in 2011 (7). However, the current test cannot detect either the 

dormant liver stages (P. vivax and P. ovale) or the very low-levels blood-stage infections of 

any malaria species (291). With regard to primaquine (or unregistered tafenoquine drug), 

rapid testing of individuals deficient in the G6PD enzyme will enable the scale-up of 

effective P. vivax treatments. 

1.9.1.3 Effective treatment 

Timely access to effective treatment is fundamental to prevent rapid progression of malaria 

disease, particularly in children. Except in areas where chloroquine remains fully efficient, 

uncomplicated P. falciparum infections are recommended to be treated by ACTs as first-line 

treatment (7). The WHO recommends prompt treatment with recommended antimalarial 

medicines within 24 hours of the onset of fever, after confirmation of malaria through 

appropriate diagnostic tests (2). Most African countries are far below this target, with an only 

minority of fevers being treated promptly and efficiently (292-294). Nevertheless, 

tremendous increase globally have seen in the proportion of ACTs given to children with 

both a fever in the previous two weeks and a positive RDT at the time of survey from a 

median of 29% in 2010 – 2012 to 80% in 2013 – 2015 (2).  

1.9.1.4 Chemoprophylaxis 

Planned and intermittent administrations of antimalarial medicines with the consequent 

chemoprophylaxis effect is being used in high transmission areas to prevent infection and/or 

disease in several high-risk groups. Currently, sulfadoxine-pyrimethamine (SP) is the 

recommended chemoprophylaxis drug for both pregnant women and infants. Intermittent 

preventive treatment for pregnant women (IPTp) by SP has been endorsed as national policy 

in 35 sub-Saharan countries (7). In 2015, WHO reported that 31% of eligible pregnant 

women received three or more doses of IPTp among 20 countries (with sufficient data); a 

major increase from 6% in 2010 (2). In African nations with moderate-to-high malaria 
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transmission, WHO recommended that all infants at risk of P. falciparum infections should 

receive three doses of SP (IPTi) through immunisation services (295). The WHO also 

recommended the implementation of seasonal malaria chemoprevention (i.e. SP plus 

amodiaquine, AQ) for children under the age of five in areas of intense transmission season 

(i.e. sub-Sahel West African countries) (296). 

1.9.1.5 Vaccines 

The complexity of malaria parasite’s life cycles have severely hampered vaccine 

development strategies since an immune response targeting one stage of malaria may not 

offer protection against a later stage (297). Significant progress has been made in the last few 

years, and this is yielding the most advanced malaria candidate vaccine RTS, S/AS01 which 

has completed Phase 3 trial.  The vaccine consists of hepatitis B surface antigens virus-like 

particle incorporating a portion of P. falciparum-derived CSP protein and a liposome-based 

adjuvant (298). Interim results of the large phase 3 trials showed that vaccine efficacy 

estimates in preventing both infection and uncomplicated malaria fell by 55% among young 

children and 30% among infants, while efficacy against severe malaria was around 39% and 

31.5%, respectively (299, 300). This falls short of the traditional goals of a vaccine but might 

give infants and small children a better chance of surviving when most vulnerable. 

Substantial progress has also been made with P. falciparum-derived vaccine namely P. 

falciparum sporozoite (PfSPZ) vaccine. It is composed of aseptic, purified, cryopreserved, 

attenuated (i.e. weakened) and metabolically active P. falciparum sporozoites (301), to 

generate an immune response to protect against malaria infection. Clinical trials have been 

promising (302-304), but short-term challenges include the feasibility with regard to large-

scale of the manufacturing process, the potency of the vaccine and logistic delivering to those 

who need it most. Nevertheless, the PfSPZ vaccine is a very promising malaria vaccine 

candidate that is likely to be deployed first in the military and perhaps in travellers (305).  

1.10 Malaria elimination 

The WHO classifies countries according to their malaria programme phase as follow (278):  

Pre-elimination: test positivity rate <5% among suspected malaria cases throughout the year 

and API <5%. 

Elimination: API <1; malaria is a notifiable disease with a manageable number of reported 

malaria cases nationwide. 

Prevention of reintroduction: recently endemic countries with zero local transmission for at 

least three years; case management of imported malaria and maintaining the capacity to 

detect malaria infection and manage the clinical disease is required. 

Malaria-free: certified malaria-free with last five years. 

Most national malaria programmes considered malaria elimination is an attainable goal. 

Nevertheless, the decision to convert a malaria control programme that has successfully 



 

 23 

achieved a high level of control, into an elimination is complex and should take into account 

technical and operational feasibilities as well as financial capacity (306, 307). Between 2000 

and 2015, 17 countries eliminated malaria (i.e. attained zero indigenous cases for three years 

or more), where six of this countries have been certified as malaria-free by WHO (2). To 

date, there were 35 countries that met the malaria-eliminating criteria (i.e. countries that have 

a national or subnational evidence-based elimination goal and/or is actively pursuing 

elimination within its borders) (308) (Fig. 4) with most national or regional goals to achieve 

elimination by 2030 (278, 309). It is remarkable that among these countries, six belong to 

African region and its peripheries (Algeria, Botswana, Cape Verde, Comoros, South Africa, 

and Swaziland) with the potential to eliminate local transmission of malaria by 2020 (278). 

The transition from sustaining control to elimination demands effective program management 

and additional activities. Although the aim of malaria control is to reduce morbidity and 

mortality in general population through access to prevention, diagnosis and treatment, 

elimination requires case-by-case focus, finding and treating symptomatic and asymptomatic 

infections, and taking action in specific foci to immediately prevent onward transmission 

(306). These aspects require enhanced laboratory support that cradle high sensitivity such 

PCR and serology. Furthermore, rigorous case investigation and reactive case detection 

activities are necessary for elimination settings to track secondary cases that arise in these 

specific foci. Unlike in control settings where universal coverage of vector control 

interventions is often the goal, elimination effort narrows the focus to high-risk groups based 

on malaria high-risk micro-foci based on geography and high-risk malaria groups based on 

demographic where cases and ongoing transmission are concentrated. 

 

 

 

Figure 4 Categorisation of countries as malaria free, eliminating malaria, or controlling malaria, 2015. 

Reproduced from Newby et al. 2016 with permission from the Elsevier Ltd. 
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Nevertheless, major epidemiological shifts have occurred in malaria-eliminating countries. 

There are still important issues and challenges that need to be confronted in order to achieve 

malaria elimination. The following factors might contribute to a delayed success in malaria 

elimination program. 

1.10.1 Clustered reservoirs 

A noticeable epidemiological shift in areas approaching malaria elimination is where 

remaining parasites reservoirs are increasingly clustered in defined geographical areas 

(hotspots) (161, 310, 311). These hotspots may consist of several households or groups of 

households, maintain higher transmission of malaria with consistent of parasite reservoirs 

through the year (142). Factors determining hotspots are not entirely defined but include the 

proximity to mosquito breedings sites, household structural features, and human behaviour as 

well as genetic determinants (312). Meanwhile, malaria cases that are more clustered 

demographically into subpopulations with shared social, behavioural and geographical risk 

characteristics, referred as hotpops (161, 310, 311, 313). These hot populations are connected 

to the increasing importance of occupational and behavioural factors outside the home that 

put them in contact with infective bites (307). They may also act as parasite reservoirs, with 

many infections carried asymptomatically and with low parasites densities (142, 216, 314). 

Also, residual malaria transmission is some eliminating countries is concentrated in a few 

hard-to-reach populations. These populations include ethnic or political minority groups that 

typically mobile and impoverished, often driven to more remote areas by marginalisation, 

safety concern or economic opportunities (313, 315).  

1.10.2 Malaria importation 

Imported malaria is the main threat for malaria-eliminating settings to maintain elimination 

with the far greatest risk for countries neighbouring high-endemic areas (313, 315). The 

reintroduction of malaria to receptive malaria-free areas due to ever increasing movement of 

people around the world have been documented (316, 317), thus strengthen the notion that 

malaria is an international threat to health system worldwide. With regards to island 

countries, importation of malaria between islands such as in Solomon Islands and Vanuatu is 

a constant threat as these countries pursue island-by-island method of malaria elimination 

(318). Knowledge of the dynamics of population migration and cross-border malaria 

transmission is vital for developments of appropriate surveillance and response systems. 

1.10.3 Non-falciparum infections 

In many countries where P. falciparum has been successfully eliminated (i.e. countries in 

Europe and Central Asia), the relative burden to non-falciparum species increases and 

different challenges arise (123). In areas with both P. falciparum and P. vivax, the final 

challenge for elimination will be P. vivax (278, 307). P. vivax is less responsive to control 

interventions than P falciparum infections because of its unique characteristics such has the 

capability of become dormant in liver stage and often has parasite density lower than the level 
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of detection by diagnostic tests (319). Similar to P. vivax, detection of P. ovale infection is 

also a challenge because of it has a dormant liver stage. In Borneo Malaysia, P. knowlesi 

which has a macaque monkey reservoir can cause severe disease in human (33) and 

frequently misdiagnosed by microscopy by other species, often P. malariae (320). Targeting 

the reservoirs of infection in monkeys and possibilities of human-to-human transmission is 

still unclear. Therefore, malaria-eliminating countries may need new strategies to diagnose, 

treat and interrupt the transmission of these non-falciparum species. 

1.10.4 Asymptomatic and sub-microscopic infections 

Most infections for both P. falciparum and P. vivax in a population are likely to be 

asymptomatic (321-323), thus provide challenges for identification and treatment of 

infections in malaria elimination programmes. Typically, passive malaria surveillance will 

miss these asymptomatic individuals, but they remain infectious to mosquitoes (i.e. 

gametocyte carriers) (324). Without identification and targeting of this asymptomatic 

infectious pool, interruption of malaria transmission might not be attainable. A substantial 

proportion of malaria infections has parasite density lower that the threshold needed either 

microscopy or RDT detections i.e. sub-microscopic. Relative to all infections, the percentage 

of sub-microscopic is higher in areas with the recent decline in transmission (325). Although 

microscopic infections remain the cause of most malaria transmission, sub-microscopic 

infections have been estimated to result in 20 – 50% of all transmission episodes, particularly 

in low endemic settings (117, 325).  

1.10.5 Passive and active surveillances 

Passive detection systems are the cornerstone of detection in countries where malaria is 

controlled by enabling rapid case investigation and appropriate response (326). It relies on the 

health-seeking behaviour of symptomatic individuals to reporting health facilities and 

considered as the front line of detection of importation and local transmission. However, 

public health workers need continual training and guidance to maintain high clinical 

suspicion of malaria particularly for high-risk groups or patients who recently travelled to 

malaria-endemic areas (123).  

Targeting asymptomatic parasite reservoirs by active case detection are crucial during the 

elimination phase (327), particularly in high-risk groups such as in hotspots and hotpops 

(142). It is recommended intervention in low malaria transmission settings (278) and is 

widely used, yet evidence for its cost-effectiveness is sparse. Methods with standard metrics 

to address the operational challenges of active case detection that includes high sensitivity of 

field diagnostic, parasite importation as well as achieving high coverage need to be developed 

(123, 142). Nevertheless, modified versions of active case detection have also been adopted 

in malaria-eliminating settings which include reactive and proactive case detection (306). 

Reactive case detection also called as focal screening and treatment, takes advantage of the 

fact that parasite carriages are more likely to be spatially or temporally clustered (328). It is 

triggered when a case is identified by passive case detection. Despite the widespread 
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operational implications (306), the most efficient radius for screening and standardised 

guidelines have not been established. For proactive case detection, geographical areas and 

high-risk groups are screened and treated at the same time without the trigger of the passively 

identified case for example mass screen and treat campaign (329). For this method to be 

successful, high coverage of the target population is crucial. To increase coverage of 

detection, whole communities should be screened, and those not at home during the visit 

should be recorded and revisited where possible (142).  

1.10.6 Mass drug administration 

Malaria mass drug administration (MDA) is a strategy whereby antimalarial drugs are given 

to the whole population in a defined geographical area without prior testing for parasitaemia 

and irrespective of the present of symptoms (330). MDA has been used as the main method 

for control and elimination of many neglected parasitic diseases (331) and with regard to 

malaria, it has overcome the issues of missed malaria infections due to insensitive malaria 

diagnostics (11). In one of MDA success story, high degree of community participation in 

Vanuatu is the key factor for the successful MDA campaign where weekly MDA of 

chloroquine, pyrimethamine/sulfadoxine, and primaquine for 9 weeks in 1991, before the 

onset of the rainy season, eliminated malaria from Aneityum Island (718 inhabitants) (332). 

Nevertheless, several fundamental challenges need to be addressed for MDA. The optimum 

combination of drugs, timing and total duration (i.e. rounds per year) of MDA need to be 

defined (123). Furthermore, the effectiveness of an MDA also depends on the therapeutic 

adequacy of the drug regimen, the coverage, and the chance of malaria reintroduction (333). 

The fear of accelerating drug resistance without a proper diagnosis of malaria in MDA is also 

a concern (98, 290). To reduce the risk of resistance emerging, one idea is to use different 

classes of antimalarial drugs with transmission-reducing effect (e.g. ACTs and primaquine). 

Political commitment should be in place in order to support the multiple rounds of MDA over 

several years with adequate resources of control measures (334). In general, a review by 

Newby et al. in 13 studies that interrupted transmission for over 6 months after the end of 

MDA conclude that implementing MDA in higher endemicity settings will reduce 

transmission, but in combination with other malaria interventions there is a much better 

chance of interrupting transmission when MDA is implemented in areas of low endemicity 

(335). 
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2 RATIONALE FOR THESIS 

 

Islands can provide natural experiment models for complex biological process and a great 

potential for intervention studies. To our knowledge, Aneityum in Vanuatu is the only island 

in recent times where the cessation of malaria transmission has been successfully maintained 

for more than two decades. On Aneityum Island, malaria was eliminated with the combined 

package of mass drug administration, vector control and high community participation (332). 

Thus, observations from Aneityum can offer valuable insights into the concerns surrounding 

the feasibility of malaria elimination on island in high endemic area and the loss of anti-

malarial immunity following elimination. 

Our study sites are islands in Vanuatu, Oceania and Lake Victoria, Western Kenya. Both P. 

falciparum and P. vivax are prevalent in the formers islands, while mainly P. falciparum in 

the latter. Strong negative correlation between within-population genetic diversity of P. 

falciparum and geographic distance from sub-Saharan Africa over Africa, Asian and 

Oceania. The striking geographic patterns of isolation by distance overserved in P. 

falciparum mirror the ones previously documented in human and support the modern humans 

were infected prior to their exit out of Africa and carried the parasite along during their 

colonisation of the new world (336). In this scenario, the islands in Lake Victoria were the 

starting station, and those islands in Vanuatu were the last one. 

In Vanuatu, a key to success of malaria control and elimination has been widespread 

community engagement and support through the involvement of various parties. Different 

approaches will be needed as systems and effort move from conditions for control and 

elimination to those surveillance and containment. New approaches to malaria monitoring 

systems such as genetic population and modelling transmission might help to monitor the 

incidence of the disease and improve management of resurgence in malaria elimination 

programs. 

In Kenya, although malaria prevalence in on the downward trend in many areas, it remains 

high particularly around Lake Victoria basin despite similar tools for malaria control being 

deployed. There is an ongoing plan to test the feasibility of malaria elimination on the islands 

in Lake Victoria by applying the intervention strategy of Aneityum Island in Vanuatu. Large 

cross-sectional and seroepidemiological surveys conducted in this PhD programme will 

contribute to the establishment of baseline distribution of malaria to guide the implementation 

of elimination activities. 
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3 SCOPE OF THE THESIS 

 

3.1 OVERALL AIM OF THE THESIS 

To gain insight into malaria epidemiological characteristic and age-dependent immunity of 

endemic island populations in Kenya and Vanuatu. 

3.2 SPECIFIC OBJECTIVES 

I. To observe the patterns of gene flow and population genetic structures in malaria 

species on islands in Vanuatu. 

 

II. To investigate the prevalence and geographical distribution of malaria infections 

on islands in Kenya. 

 

III. To assessed the heterogeneity in malaria transmission on islands in Kenya by age-

dependent antibody responses to P. falciparum-specific antigens. 

 

IV. To evaluate the use of antibody response to Plasmodium infection and exposure to 

vector mosquito bites on the effect of vector control on island in Vanuatu. 
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4 MATERIALS AND METHODS 

 

All material and methods used in this thesis are described in more detailed in Paper I-IV. 

Below are the general descriptions of the methodologies utilised in all four papers. 

4.1 Study location and population 

  A           B 

   

Figure 5 Maps of study settings in Kenya and Vanuatu. (A) Homa Bay County in western Kenya; three main 

areas involved namely mainland coast (Ungoye, red dot), large island (Mfangano Island) and small islands 

(Takawiri, Kibuogi, and Ngodhe). In Mfangano Island, eight catchment points were sampled (yellow dots) and 

grouped into three study sites i.e. east coast (Ramba, Wakinga, and Mrongo), highland (Kagungu and Gulwe) 

and west coast (Wakula, Ugina and Ringiti Island). Purple dots are the nearby town in the County. (B) Map of 

Vanuatu. The names of the six provinces in Vanuatu are capitalized and underlined, and approximate provincial 

boundaries are indicated by dash lines. Red circles are the two studied islands in Study IV. The maps were 

created with ArcGIS software version 10.4. 

4.1.1 Kenya 

All studies in Kenya (Study II and Study III) were conducted in Homa Bay County, located 

on the south shore of Lake Victoria, in western Kenya (Fig. 5A). The County covers an area 

of 3,183.3 km
2
 with a population about 963,794 persons. The studies involved one large 

island (Mfangano) and three small islands (Takawiri, Kibuogi and Ngodhe) in Lake Victoria, 

and one coastal village (Ungoye) on the mainland. The dominant ethnic group in the study 

areas is Luo; Dholuo is primarily spoken, as well as the national language of Kiswahili. 

Detail information about the study settings in Kenya can be found in Paper I. 
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4.1.2 Vanuatu 

Vanuatu is an archipelago of more than 80 islands in the South Pacific Ocean. Malaria is 

endemic on most of the nation’s 68 inhabited islands (337). Nevertheless, a comprehensive 

elimination program initiated in 1991 on Aneityum Island (i.e. the southernmost island in 

Vanuatu) has achieved malaria elimination with a high degree of commitment from the local 

in 1999 (332). The country covers an area of 12,189 km
2
 with a population about 243,304 

persons and divided into six provinces. Five islands from five difference provinces were 

involved in Study I namely Gaua, Santo, Pentecost, Malakula and Tanna. Whereas, Study IV 

was involved two islands i.e. Ambae and Futuna (Fig. 5B). The inhabitants of Vanuatu (Ni-

Vanuatu) are primarily of Melanesian descent and speak the official language of Bislama, 

although more than 100 indigenous languages are still actively spoken. 

4.2 Sampling strategy 

Island and village leaders were sensitised to study by trained field health workers and 

together provided information to community members at community meetings. Convenience 

sampling strategy was used in all surveys, both in Kenya and Vanuatu. In Kenya, five cross-

sectional surveys were conducted between 2012 and 2014. Residents of the island or 

mainland village were asked to come to selected survey points such as beach management 

unit (BMU) community meeting hall, school or marketplace. In Vanuatu, cross-sectional 

surveys were conducted in different years; 1996 to 2002 (islands in Study I) and 2003 to 2011 

(islands in Study IV). Islanders were asked to come to a central meeting point such as school 

or church, and families were invited from surrounding villages to be part of the survey. 

4.3 Clinical assessments 

Axillary body temperature was determined using a digital thermometer. Fever was defined as 

a temperature exceeding 37.5
o
C. Haemoglobin level was measured with the HemoCue Hb 

201 analyzer automated device. A measurement below 11 g/dL was classified as anaemic. 

Children aged 12 years and below were examined for enlarged spleen according to Hackett’s 

method, regardless of fever or malaria status. 

4.4 Blood collection 

A blood sample was obtained by finger prick for thick and thin blood smears (5 ul each), 

microcuvette for haemoglobin measurement, and two spots of blood (70 µl each) were 

collected from 75 mm Micro-hematocrit capillary tube on Whatman ET31 Chr filter paper. 

Blood spots on filter paper were air-dried and stored in plastic bags. 

4.5 Ethical considerations 

All field studies were conducted in accordance with the Declaration of Helsinki (338). Study 

participants were informed by local interpreters of the purpose and procedures of the study. 

Informed consent was obtained from all the study participants, or from parent/guardians of 

children, prior to study enrolment. Ethical approvals were obtained from the Kenyatta 
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National Hospital/University of Nairobi-Ethics and Research Committee in Kenya, Ministry 

of Health in Vanuatu, and by the Committee on the Ethics of Human Research of Karolinska 

Institutet in Sweden. 

4.6 Laboratory methods 

4.6.1 Blood slide microscopy 

Thin and thick blood smears were prepared on site, stored in slide boxes and transported daily 

to the main laboratory. Thin blood smears were stained with methanol, and all smears were 

stained with 3% Giemsa solution for 30 min and examined under oil emersion (1000x 

magnification) by local experienced microscopists. Blood smears were defined as negative if 

no parasites were found after examining with 100 high power microscopy fields. For all 

positives samples, malaria species were identified, and asexual parasites forms were counted 

against 100 (Vanuatu) or 200 (Kenya) leukocytes. P. falciparum gametocytes were separately 

recorded. Parasite density was estimated from parasite counts, assuming that there were 8,000 

leukocytes per µL of blood. All slides were independently re-examined by two experienced 

microscopists blinded to first microscopy reading results. Discrepancies between the two 

readings were resolved by a third experienced microscopist. 

4.6.2 Polymerase chain reaction (PCR) 

The nested PCR protocol to detect Plasmodium DNA was used as described previously 

(229). Briefly, total DNA was extracted from three discs (6 mm) of blood spot using 

commercialised DNA extraction kit and was eluted in 150 uL of the provided buffer. A 

nested PCR using primers targeting the Plasmodium mitochondrial cytochrome c oxidase III 

(cox3) gene was used that include genus-specific (one set) and species-specific (four sets) 

primers. The primary PCR was carried out in 20 µL reaction, and the amplification product 

was analysed by 0.8% agarose gel electrophoresis, with an expected band of 940 bp. The 

secondary PCR was performed individually for each of the four Plasmodium species and was 

carried out in a 20 µL reaction containing 2 µL of the diluted primary PCR product. PCR 

products were analysed by 2% agarose gel electrophoresis, with expected band in the range 

of 87 and 233 bp.  

4.6.3 Genotyping 

Genotyping analysis for both msp1 and csp genes have been described previously for P. 

falciparum (339, 340) and P. vivax (341, 342). Briefly, a subset of microscopy-positive 

samples from each site in Study 1 was randomly selected, extracted for genomic DNA and 

amplified by PCR. Direct sequencing of the PCR product was performed using 

commercialized sequencing kit where sequence primers were designed for coverage of target 

regions in both directions; 25 primers for msp1 (chromosome 9) and 7 primers for csp 

(chromosome 3). DNA sequences were aligned using Clustal X software.  
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4.6.4 Enzyme-linked immunosorbent assay (ELISA) 

Antibody response to malaria in serum samples against crude schizont extract (SE), 

recombinant proteins, and peptide were measured as described previously (343). A 3 mm disc 

was punched from each blood spot and serum was eluted in reconstitution buffer to the 

equivalent of 1/200 dilution (equal to 2.1 µL of blood). All sera from Kenya samples were 

tested for IgG antibodies to two recombinant blood-stages P. falciparum antigens namely 

PfAMA-1, PfMSP-119, and NANP5 repeat peptide of CSP. Whereas, all sera from Vanuatu 

samples were tested for antibodies to three P. falciparum (PfSE, PfAMA-1, and PfMSP-119) 

and three P. vivax (PvSE, PvAMA-1, and PvMSP-119) antigens, as well as gSG6. Briefly, 

antigens were coated on ELISA plates and incubated overnight at 4
o
C. Plates were washed 

three times and the blocked with 1% skimmed milk solution for 3 h. After washing, 50 µl of 

reconstituted blood spot solution were added in duplicate and incubated overnight at 4
o
C. A 

positive control consisting of a pool of hyper-immune sera was included on each plate. The 

plates were washed five times and 50 µl of horse-radish peroxidase (HRP)-conjugated rabbit 

anti-human IgG antibody were added to all wells and incubated for 3 h. After further series of 

washes, 100 µl of substrate solution were added, and reactions were stopped after 15 min. 

The optical density (OD) was measured at 450 nm in an ELISA reader. The duplicate sample 

OD values were examined, and values that differed more than 20% (ODs >0.2 which differ 

by more than a factor of 1.5) were dropped, and possibly repeated.  

4.7 Statistical analyses 

Statistical analyses were performed using STATA/SE version 13.1 and GraphPad Prism 

version 5.03. Differences in proportions were tested two-sided using the Chi-squared test or 

the Fisher’s exact test together with the corresponding exact binomial 95% confidence 

intervals (95% CIs). The average enlarged spleen (AES) index was calculated as the sum of 

the number of children in each spleen size class multiplied by the class number (0 – 4), 

divided by the total number of palpable spleen. For serological data, duplicate OD values 

were corrected by subtracting the appropriate blank value and averaged. Averaged OD values 

were transformed into titres against a standard control curve generated from hyperimmune 

sera to normalised between plates as previously described to adjust background reactivity 

(343). The titres of antibody responses were estimated using the equation dilution/[maximum 

OD/(OD test serum – minimum OD) – 1], where results were presented as median titre and 

together with interquartile range (IQR). Differences in antibody responses (i.e. continues 

data) in were assessed either by age-adjusted linear regression or the Mann-Whitney U test or 

the Kruskall-Wallis with Dunn’s multiple comparisons post-hoc tests. The finite mixture 

model to determine seropositivity and the reverse catalytic model for age-seroprevalence data 

are described in detail in section 4.5. Univariate and multivariate logistic regressions were 

used to identify factors associated with Plasmodium infections or seropositivity. Statistical 

significance was determined as P <0.05 in all studies. 
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4.8 Modelling 

Seropositivity was determined by fitting a finite mixture model to normalised OD values 

assuming two Gaussian distributions, one for seronegative individuals and another for 

seropositive individuals as described previously (126). The mean OD values plus three 

standard deviations associated with the seronegative groups was used as the cut-off value for 

seropositivity. Finite mixture models were fitted to the dataset by STATA/SE’s fmm 

command. For example: 

Syntax: fmm depvar [indepvars] [if] [in] [weight], component (#) mixtureof (density) 

Command: fmm ‘normOD’, component (2) mix (normal) 

Seroprevalence data was stratified into yearly age groups and analysed using a reverse 

catalytic modelling approach under a binomial sampling assumption, as described elsewhere 

(125, 127). This method provides estimates of the mean annual rates of conversion to 

seropositive (i.e. seroconversion rate, SCR [λ]) and reversion to seronegative (seroreversion 

rate, SRR [ρ]) status, averaged over the population. The common SRR was estimated from 

the model using maximum likelihood as described previously (127). Reverse catalytic models 

were fitted to the dataset by STATA/SE revcat command. For example: 

Syntax: revcat depvar agevar [datevar] [weight] [if] [in] [, minage [#) change (numlist) age smooth rr 

lambda (varlist) init (matname) level (#) maximize_option] 

Command: revcat ‘anypos’ ‘ageyears’ if ‘ageyears’>1 & ‘island’= =1 & ‘survey’= =1, plot 

**Fixed SRR** 

Command: revcat ‘anypos’ ‘ageyears’, lambda (island) 

constraint 1 [log_rho]_b[_cons]= ‘common rho’ 

revcat ‘anypos’ ‘ageyears’ if ‘island’= =1 & ‘survey’= =1, constraint (1) pred (anypos1) 

revcat ‘anypos’ ‘ageyears’ if ‘island’= =1 & ‘survey’= =2, constraint (1) pred (anypos2) 

twoway (line anypos1 anypos2 ageyears, sort) if ‘ageyears’<=80 

The serological derived EIR was estimated using PfAMA-1 and PfMSP-119 seroconversion 

rates and a calibration curve derived from determined values as described previously (125). 

The log-log regression equations are as follows: 

PfAMA-1: 10e((log10(SCR) + 1.1058) / 0.3838) 

PfMSP-119: 10e((log10(SCR) + 1.507) / 0.4745) 
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5 RESULTS AND DISCUSSION 

 

5.1 PAPER I 

Plasmodium vivax and Plasmodium falciparum at the crossroads to exchange among 

islands in Vanuatu: Implications for malaria elimination strategies 

Chim W Chan, Naoko Sakihama, Shin-Ichiro Tachibana, Zulkarnain Md Idris, J Koji Lum, 

Kazuyuki Tanabe, Akira Kaneko 

As mentioned in the introduction, island provides a unique opportunity to interrupt malaria 

transmission due to the relative geographical isolation and confined population. In Vanuatu, a 

nation with 68 inhabited islands, malaria transmission has decreased since the 1990s as a 

result of malaria control measures and general improvement in the health of the community 

(318). Identifying routes of parasite transmission and gene flow by population genetic study 

may provide information particularly in understanding the sustainability of some of the 

approaches taken in malaria control and elimination. The aim of this study was to compared 

the patterns of gene flows and population genetics structures in P. falciparum and P. vivax on 

islands in Vanuatu. P. falciparum and P. vivax isolates were collected during malariometric 

surveys conducted at seven sited on five islands (Gaua, Santo, Pentecost, Malakula, and 

Tanna) from five provinces in Vanuatu between 1996 and 2002. Molecular analyses involved 

genotyping and/or sequencing of msp1 and csp genes of both parasite species. Specific 

calculations were used to examined the haplotype diversity and genetic variations within 

populations and studied islands. 

We found that P. vivax was more genetically diverse than P. falciparum in Vanuatu. The 

observed difference in genetic diversity may be partially due to the structural difference in 

orthologous gene between these two species (344, 345). High frequencies of P. vivax 

multiple-genotype infections than P. falciparum were also observed in the current study. It 

has been shown that high frequencies of multiple-genotype infections facilitate meiotic 

recombination in the Anopheles mosquito vectors, leading to the generation of novel 

genotypes (346).  

The extent of parasite genetic diversity in Vanuatu was further analysed to determined pattern 

of gene flow between P. falciparum and P. vivax in the population. Our finding revealed that 

gene flow among P. falciparum in seven study sites was restricted, in contrast to the higher 

degree of gene flow among P. vivax populations. Consistent with our observation in seven-

site analyses, gene flow among P. falciparum populations was very minimal but more 

widespread among P. vivax populations on different islands. The higher degree of inter-island 

gene flow in P. vivax populations might be expedited by its ability to form dormant 

hypnozoites together with rapid development and emergence of gametocytes. Furthermore, 

unlike those with blood-stage parasites, P. vivax-hypnozoite carriers are typically 

asymptomatic and might, therefore, be less averse to long-distance travel (e.g. between 
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islands). The shorter period of extrinsic development of P. vivax compared to P. falciparum 

may also facilitate the P. vivax transmission in the area. 

5.2 PAPER II 

High and heterogeneous prevalence of asymptomatic and sub-microscopic malaria 

infections on islands in Lake Victoria, Kenya 

Zulkarnain Md Idris, Chim W Chan, James Kongere, Jesse Gitaka, John Logedi, Ahmeddin 

Omar, Charles Obonyo, Beatrice Kemunto Machini, Rie Isozumi, Isao Teramoto, Masatsugu 

Kimura, Akira Kaneko 

There is an ongoing plan to test the feasibility of malaria elimination on the island in Lake 

Victoria by applying the interventions strategy of Vanuatu. It is crucial to understand the 

extent of malaria infections in Lake Victoria before similar tools for malaria control and 

elimination being deployed. For this, five cross-sectional surveys were conducted between 

2012 and 2014 in Lake Victoria basin covering a large population of one large island 

(Mfangano), three small islands (Ngodhe, Takawiri, Kibuogi) and one coastal village 

(Ungoye) on the mainland. Individuals provided a finger-pricked blood samples to assess 

malaria infection by microscopy, RDT and PCR. Physical assessments including body 

temperature, anaemia, and splenomegaly test were also performed in all surveys. 

We found that malaria prevalence in Lake Victoria was high (mesoendemic) and varied 

among the studied areas. By PCR, parasite prevalence was highest in Ungoye (54.5 – 79.3%), 

moderate in Mfangano (29.7 – 55.5%), and lowest on small islands (8.2 – 26.5%). This 

varying observation may due to the relative abundance of vector species on the island and 

mainland (347) areas as well as human activities such as man-made holes and roadside 

ditches that contribute to the availability of vector larval habitats found in the late rainy 

season in Lake Victoria (348). We also found that intra-island variability in malaria 

prevalence in eight catchment areas in Mfangano Island indicating micro-geographical factor 

may also lead to the variation in malaria endemicity. 

We then stratified malaria prevalence into categorical depending on the exact malaria species 

detected by both microscopy and PCR. As expected, P. falciparum was the predominant 

species, consistent with previous studies in other part of Lake Victoria (349-351). P. malariae 

and P. ovale were less common, and no P. vivax infections were observed. With regard to 

mixed-species infections, the majority of P. malariae infections were double co-infections 

with P. falciparum (n = 760 by PCR). Triple co-infections accounted for 22.3% (95%CI: 19.9 

– 24.8) of all mixed-species infections. 

When malaria prevalence and parasitaemia were stratified into age group, we found that both 

outcomes were strongly age-dependent. Parasitaemia was highest among children aged ≤5 

years and decreased with age, but in contrast, malaria prevalence was highest in older 

children (6 – 10 and/or 11 – 15 groups) and decreasing in adolescents and adults. Similar to 

parasitaemia, the proportion of gametocytaemic malaria carriers was highest in children aged 
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≤5 years and decreasing significantly with age. We expect the proportion of gametocyte in 

children to be much higher than the reported prevalence due to the low sensitivity of 

microscopy for detecting all relevant densities of gametocytes (352). Age was also a 

contributing factor for Plasmodium spp. infections in the study areas. P. falciparum-specific 

prevalence was highest in the 11 – 15 group, whereas P. malariae- and P. ovale-specific 

prevalence highest in 6 – 10 group. 

One of the highlights of this study is the uncovering of the breadth of asymptomatic malaria 

in the Lake Victoria basin. We found that the vast majority (89.7% by microscopy and 91.8% 

by PCR) of malaria infections in the study areas were asymptomatic i.e. malaria positive but 

not accompanied by febrile symptoms. Among these asymptomatic individuals, 10.2% (95% 

CI: 8.8 – 11.6) of them were also carrying gametocytes, and they may play a major role as a 

source for malaria transmission (11, 353, 354). Furthermore, most asymptomatic infections 

were observed in children 15 years and under and were not uncommon in the adult 

population (Fig. 6A). As potential gametocytes carriers, this asymptomatic adult population 

represents an important reservoir for malaria transmission.  

By using sensitive molecular methods (i.e. PCR), we have the advantage to assess sub-

microscopic infections (PCR positive but microscopy negative) in the population to further 

understand the true infection burden in the study areas. Our observation found that the 

proportion of sub-microscopic infections increase with age from 40.1% (95% CI: 36.9 – 43.4) 

in children ≤5 years to 75.5% (95% CI: 69.7 – 80.1) in adult ≥30 years. This observation was  

 

Figure 6 (A) Age trends of febrile illness, asymptomatic and symptomatic malaria infection by microscopy and 

PCR. (B) The relationship between the proportion of sub-microscopic and parasite density among infected 

individuals. Error bars represent 95% confidence intervals. 

in contrast by the decreases in parasite prevalence as well as parasite densities in the studied 

population (Fig. 6B). Inverse correlation between the proportion of sub-microscopic 

infections and in both parasite prevalence and density has been well established in previous 
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meta-analysis study (325). Furthermore, the majority of sub-microscopic individuals were 

also asymptomatic (94%, 95% CI: 92.8 – 95.0). This pool of sub-microscopic asymptomatic 

individuals may yet be another factor of malaria transmission in Lake Victoria, although the 

minimum parasite density necessary for transmission is unknown. 

5.3 PAPER III 

Naturally acquired antibody response to Plasmodium falciparum describes 

heterogeneity in transmission on islands in Lake Victoria 

Zulkarnain Md Idris, Chim W Chan, James Kongere, Tom Hall, John Logedi, Jesse Gitaka, 

Chris Drakeley, Akira Kaneko 

Based on the observation made in Paper II, we decided to study with more attention on 

serological aspects of P. falciparum infections; the predominant species in Lake Victoria. The 

main aim of this study was to use age-dependent antibody responses to P. falciparum AMA-

1, MSP-119 and CSP to look for evidence of heterogeneity in transmission intensity in an area 

of high endemicity in Lake Victoria. In recent years, antibody response to one or more P. 

falciparum-specific antigens have been explored as alternative means to estimate malaria 

transmission intensity (125, 127). In this study, malaria prevalence data from previously 

conducted surveys in 2012 were compiled. Antibody responses to aforementioned antigens 

were measured in 4,112 samples; data were normalised and expressed as seroprevalence and 

SCR using a mathematical model. 

Our finding demonstrates a clear relation of serological outcomes for P. falciparum-

merozoite antigens (AMA-1 and MSP-119) with parasite prevalence and serology-derived 

aEIR in the heterogeneity of malaria transmission in Lake Victoria. For example, across the 

study sites, SCRs correlated significantly with parasite prevalence by PCR with R
2
: 0.96 and 

R
2
: 0.94 for AMA-1 and MSP-119, respectively. Furthermore, the aEIR equivalents estimated 

from merozoite antigens corresponded well with different levels of parasite prevalence by 

PCR: 7 – 12 ib/p/yr Ungoye and Mfangano (40.8 – 57.3%) and 2 – 4 ib/p/yr in small islands 

(11.3 – 16.2%). These results were in concordant with previous observations on the utility of 

seroprevalence to P. falciparum-merozoite antigens and the annual rate of SCR  as a reliable 

estimate of the level of transmission (126, 128, 165, 168, 355, 356). Nevertheless, antibody 

responses to CSP did not follow the same pattern as in merozoite antigens. The reason for this 

contrary pattern may lie on the dynamic of CSP and merozoite antigens subjecting on the 

stage at which they are expressed. The availability of CSP to the immune system is of much 

shorter duration and relatively short life expectancy in the blood (357), than is that of 

merozoite antigens which are produced continuously in large number.  

We further assessed the relationship between the intensity of malaria exposure and 

development of antibody response over time. We observed an early rate of antibody 

acquisition, with relative prominent responses among children, was seen towards particular 

antigens, such as AMA-1, and to lesser extend toward MSP-119 (Fig. 7). Our data suggested 

that three patterns of antibody acquisition occurred with age in our study sites: rapid (AMA-
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1; >75% seropositive by 20 years of age), moderate (MSP-119; >40%), and slow (CSP; 

<20%). Differential recognition of these antigens by the immune system or differing 

antibody-specific half-lives may be contributing to the variations in antibody response 

patterns. Nevertheless, we believed that antibody responses directed towards these early 

response-type antigens might appear to provide a more sensitive marker of recent previous 

exposure among young children. 

To determine factors that may contribute to P. falciparum seropositivity in our study sites, we 

used multivariate logistic analysis adjusting for correlation between observations from the 

same explanatory variables. Except for age, we found that the associations between measured 

antibody response to P. falciparum antigens and the risk of malaria were inconsistent. For 

example, only antibody responses to AMA-1 were negatively associated with anaemia in 

Mfangano, Takawiri and Kibuogi. In contrast, when analysis was restricted to children ≤12 

years, antibody responses to MSP-119 were positively associated with anaemia (Ungoye and 

Mfangano) and splenomegaly (all study sites). Potential reasons for these risk inconsistencies 

in our study areas include differences in the intensity and stability of transmission, allelic 

variations of specific antigens and IgG subclass switching (51). 

 

Figure 7 Annual probability of seroconversion rate for P.falciparum-specific antigen by age in each area. 

Maximum-likelihood fits from reversible catalytic equilibrium model from each setting are shown. λ, the area-

specific annual rate of seroconversion. (A) AMA-1, (B) MSP-119, and (C) CSP. The model was constrained to fit 

a single value for the annual probability of common seroreversion rate (ρ). Point indicated observed 

seroprevalence and solid lines show model-predicted seroprevalence. Broken lines are 96% confidence intervals. 
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5.4 PAPER IV 

Serological measures to assess the efficacy of malaria control programme on Ambae 

Island, Vanuatu 

Zulkarnain Md Idris, Chim W Chan, Mubasher Mohammed, Morris Kalkoa, George Taleo, 

Klara Junker, Bruno Arcà, Chris Drakeley, Akira Kaneko 

As mentioned above in Paper III, we found that malaria transmission intensity can distinctly 

be estimated by cumulative malaria exposure in a population. We hypothesised that 

modelling changes in age seroprevalence could be used to evaluate specific interventions in a 

particular area. The aim of this study was to assess the naturally acquired antibody responses 

to two malaria species namely P. falciparum and P. vivax as well as exposure to vector 

mosquito bites, on the effect of vector control intervention i.e. ITN. Filter-paper blood 

samples from 2003 and 2007 in Ambae Island were used in this study. At the time of the 

surveys, parasite prevalence was solely determined by microscopy. Antibody responses to P. 

falciparum (PfSE, PfMSP-119, and PfAMA-1), P. vivax (PvSE, PvMSP-119, and PvAMA-1), 

and An. gambiae (gSG6) antigens were measured in both surveys. Age-specific 

seroprevalence was analysed as previously mentioned in Paper III.  

We observed a significant decrease in parasite prevalence together with significant decreases 

in seropositivity to most antigens tested between 2003 and 2007 (Fig. 8). This observation 

suggested that reinforced vector control intervention played a major role in the reduction of 

malaria transmission on the island. Based on the seroprevalence profiles, we found that 

serological responses generally increased with age and malaria transmission intensity 

decreased dramatically between the two years. SCRs estimated for P. falciparum antigens 

were higher than ones for P. vivax antigens, reflecting the more intense transmission and the 

predominance of the former species on the island, particularly in 2003. Changes in P. 

falciparum transmission were readily detected, and the estimated decreases in transmission 

intensity were consistent across the three antigens tested. Whereas, the decreases in P. vivax 

transmission over the two survey years were more variables across the antigens.  

We demonstrated for the first time the use of gSG6 antigen to evaluate exposure to Anopheles 

vector bites in the Pacific setting. Antibody responses to gSG6 antigen have been previously 

described to be a reliable indicator of human Afrotropical malaria vectors (191, 200, 205, 

358, 359). We found that the exposure to Anopheles mosquito bites was greatly reduced: 39% 

(95% CI: 32.6 – 45.6) in 2003 to 0.7% (95% CI: 0.1 – 2.5) in 2007 (Fig. 8B). This reduction 

in vector exposure suggested the positive impact of ITN distribution after 2003 on vector 

population density and/or changes in vector behaviour e.g. preference and aggressiveness 

towards humans. Furthermore, as the standard aEIR becomes harder to determine area 

accurately at low transmission settings (197), serological tools to measure exposure to vectors 

may be made more relevant.   
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Figure 8 Age-specific parasite prevalence by microscopy and antibody response in Ambae Island and Futuna 

Island. Graphs are divided by year of sampling and in four age groups for (A) Microscopy, (B) An. gambiae 

salivary gland gSG6 antigen, (C) P. falciparum antigens and, (D) P. vivax antigens. Serological analyses for P. 

falciparum and P. vivax antigens were performed for samples from Ambae Island only. Numbers above bars 

show the numbers of positive individuals. 

Some limitation of this study include: 

 The relatively small numbers of individuals sampled for each year may lead to poor 

estimation precision of current SCR and limit the likelihood of identifying significant 

changes point in malaria transmission over time. 

 The convenience sampling method used can result in an overestimation of malaria 

incidence in the area. 

 While the recombinant An. gambiae gSG6 antigen could be used to measure exposure 

to An. farauti bites in Vanuatu, the limited conservation between SG6 protein from 

the two species likely result in lower detection sensitivity. 

 Parasite prevalence was determined solely by microscopy which likely to 

underestimated the true prevalence in the low endemic area. Incorporating molecular-

based detection method to assess sub-microscopic infections will be critical in 

monitoring malaria control measures. 
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6 CONCLUDING REMARKS AND FUTURE 
PERSPECTIVES 

 

A few concluding aspects and future directions are discussed below based on the paper 

included in the thesis: 

I. In Vanuatu, both P. falciparum and P. vivax showed different levels of genetic 

structure as well as different patterns of gene flow and population structures. P. vivax 

showed a high level of genetic diversity and a greater degree of inter-island gene flow 

than P. falciparum, suggesting the more centrally integrated measures to control P. 

vivax movement across islands in Vanuatu. In co-endemic areas, P. vivax tends to be 

more resilient than P. falciparum due to its low-density parasitaemia and unique 

biological features of hypnozoite, thus able to propagate further transmission. 

Hypnozoite can be destroyed by primaquine but the drug must be given as a 14 days 

treatment course, which might deter many patients from complying and without 

adequate G6PD test can cause severe hemolysis. While the elimination strategy in 

Vanuatu may adequate for P. falciparum, elimination programmes need increasingly 

new diagnostic and therapeutic tools that are adapted to particular properties of the P. 

vivax species. Reducing malaria transmission further to achieve malaria elimination in 

Vanuatu requires new strategies including reorientation of the current malaria control 

activities with greater need of financial supports. 

II. Malariometric studies revealed that areas in Lake Victoria had high local 

heterogeneity in malaria prevalence; lowest in small islands, moderate in large island, 

and highest in the mainland. Importantly, high proportion of asymptomatic and sub-

microscopic infections in the area justified the plan on future implementation of the 

MDA packages. Also, high asymptomatic individuals and low detection of 

gametocyte carriers by microscopy warrant the integration of molecular detection 

tools into all epidemiological studies to better understanding local malaria 

epidemiology. Effective and efficient malaria interventions require a good 

understanding of transmission dynamic in time and space. Refine spatial and temporal 

analyses to identify geospatial clustering patterns must be intensified for targeting 

interventions. In the relatively mobile community in Lake Victoria, the interplay 

between malaria importation and subsequent local transmission required strategic 

planning to understand the relationship between vulnerability, receptivity and local 

malaria dynamics for the future of malaria elimination efforts in Lake Victoria. 

III. Naturally acquired immunity against P. falciparum malaria antigens can be a proxy 

measure of malaria transmission in a high endemic area in Lake Victoria. SCR of 

different immunogenicity of blood-stage falciparum antigens showed a consistent 

correlation with infection prevalence and able to marked distinct variation in 

transmission intensity. Recent changes in exposure and to smaller and more short-

term trends in high transmission settings are possibly due to the quick acquisition of 
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antibody responses to the long half-life of many other blood-stage antigens. 

Longitudinal investigation to study more in depth the repertoire of immune responses 

to various antigens in populations and how it is related to protection against infection 

could be employed in particular if involved changes in transmission after malaria 

elimination.  

IV. The implementation of vector control of ITNs was clearly effective in suppressing 

malaria transmission on Ambae Island. Amid this success, both P. falciparum and P. 

vivax are still lingered on the island, although in very low prevalence with a slight 

predominant of the former species. In the context of malaria control, sustaining high 

coverage of vector control interventions is critical in reaching malaria elimination in 

Vanuatu. Existing tools need to be optimised and should be adapted to human and 

vector behaviour in future intervention efforts. The only malaria vector in Vanuatu, 

An. farauti s.s mosquitoes are known to be exhibit early and outdoor biting behaviour, 

thus probably less liable to conventional interventions. Development and 

implementation of integrated vector control interventions targeting outdoor and early 

biting transmission before sleeping time is of high priority to protect vulnerable 

populations. 
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