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“In theory there is no difference between theory and practice. In practice there is.”  
 

Yogi Berra, (1925 –2015)    

American professional baseball catcher, manager, and coach. 

  



 

 



 

 

ABSTRACT 

The nested case-control design is widely used in epidemiology for its efficiency, as it 

combines the advantages of both cohort and case-control designs. This design is an 

extension of the matched case-control design, where the matching variable is the time of 

occurrence of the outcome. Consequently, the nested case-control data are usually analysed 

with conditional logistic regression; however, this analysis suffers from various limitations.  

Several authors have developed novel statistical methods for alternative analyses of nested 

case-control data using basic information from the underlying cohort. Among these 

methods, one approach consists of ignoring the matching, weighting the sampled 

individuals to recover a representation of the underlying cohort and analysing the data by 

maximising a weighted partial likelihood. This method can be considered when two 

conditions are fulfilled: 1) the sampling was performed in a well-defined underlying cohort 

for which basic information is available, and 2) the exact sampling procedure is known. 

This thesis aimed to refine and extend the scope of the weighted likelihood approach in 

nested case-control data analysis by investigating the advantages of this method as an 

alternative to the traditional conditional logistic regression in several situations. The reuse 

of nested case-control data to address a research question regarding a new outcome, the 

calculation of absolute risk, the mitigation of the problem of overmatching, the 

maximisation of the data exploitation in case of clustered data and the analysis of 

subgroups of nested case-control data were addressed in this thesis. While Studies I and III 

were motivated by an actual epidemiological question for which data were available, 

simulation studies were the main approach used in Studies II and IV.  

Reusing nested case-control data to address a research question regarding another outcome 

was the central point of interest in Study I. Addressing an epidemiological question 

regarding the risk factors for contralateral breast cancer, for which data on contralateral 

breast cancer case patients were available, the feasibility of reusing nested case-control data 

from a previous study as the control dataset was studied. Practical aspects of the approach 

were highlighted, such as the consequences of reusing data which have narrow inclusion 

criteria, the restriction in the choice of the type of weights which can be calculated and the 

importance of having information on censoring dates for controls. In addition, we found 

that an imperfect reconstruction of the study base led to similar estimates in the analysis 

compared to an appropriate study base reconstruction; moreover, we confirmed that using 

unstratified weights (in cases of stratified sampling) provided similar exposure estimates 

than stratified weights, provided that adjustments were made on the confounder variables 

which drove the sampling. We also confirmed that using a naïve unweighted method 

instead of an appropriate method led to biased estimates. 

Absolute risk estimation was studied in Study II. Two methods were compared with both 

simulation studies and a real data application. The ability of each method to provide valid 

absolute risk estimates was investigated, in particular in cases of matched study designs. 



Both the Langholz-Borgan and weighted methods provided valid estimates in most 

situations, the latter showing slightly higher levels of precision than the former. In case of 

fine matching, the Langholz-Borgan method was more prone to be biased than the weighted 

method and had larger standard errors. 

In Study III, we handled nested case-control data, which had been collected to address an 

epidemiological question regarding how radiation therapy and smoking interact in their 

association with lung cancer in female breast cancer patients. Data on paired organs (breast 

and lungs) were collected for exposure and outcome variables, which provided clustered 

data at the individual level. The collected data was also characterised by the problem of 

overmatching which arose at the design stage. Using weighted partial likelihood allowed 

mitigation of the problem of overmatching and better exploited the collected data, 

compared to conditional logistic regression. In addition, a further advantage of the weighted 

approach was to enable calculating the absolute risk for a lung to develop cancer given the 

radiation therapy dose received for breast cancer treatment and the smoking habits of the 

patient. 

In Study IV, we compared the conditional logistic regression and weighted likelihood 

methods in terms of validity and efficiency of nested case-control data subgroup analyses, 

with subgroups defined by different variables measured at baseline. All investigated 

subgroup analyses provided valid estimates with both analyses. The advantages of weighted 

likelihood compared to conditional logistic regression were highlighted for the estimate’s 

precision. In addition, we showed that the weighting system enabled, on average, the 

reconstruction of the correct number of individuals at risk over time, for the whole cohort 

and in subgroups. 

In conclusion, the weighted likelihood approach showed several advantages compared to 

the traditional conditional logistic regression in nested case-control data analysis, which 

reinforces, refines and extends what has been previously shown in the literature. 
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1 INTRODUCTION 

Choosing the best observational study design in epidemiology is driven by both the 

research question and ethical and practical considerations, including the resources and time 

available for data collection. Two classical study designs are the cohort studies, the 

paradigmatic gold standard, and case-control studies, which have advantages in cost-

efficiency, and are preferred when the outcome under investigation is rare. To improve 

these study designs, alternative sampling methods have been suggested. This thesis 

examines one of them: the nested case-control design, which combines the benefit from the 

time aspect of cohort studies and the significant savings in cost and time of case-control 

studies.  

Conditional logistic regression is the traditional statistical approach used to analyse nested 

case-control data. This approach, however, has several limitations. For example, the data 

cannot be reused to address a new research question regarding another outcome, or to 

estimate the absolute risk of developing the outcome of interest. Since the late 1990s, 

alternative statistical methods have been developed to analyse nested case-control data. 

These non-traditional methods ignore the matching between cases and controls, and use 

limited information from the underlying cohort.  

Among these methods, the Inverse Probability Weighting (IPW) method consists of 

weighting the individuals and analysing the data by maximising a weighted partial 

likelihood. The weights are the inverse of the probability for each individual to be sampled 

into the nested case-control study and aim to reconstruct the number of individuals at risk in 

the full cohort. Simulation studies have validated the IPW method and have consistently 

shown that it provides more precise exposure estimates, compared to the conditional 

logistic regression method. Although the method has long been available, it is still largely 

ignored by medical researchers and is uncommonly used by biostatisticians and 

epidemiologists. 

The main goal of this thesis is to refine and extend the scope of this weighted partial 

likelihood method and make it more accessible to the research community by providing 

guidelines illustrated with applications to clinical datasets. The contribution of this study 

may encourage a shifting of the standard of statistical analysis of nested case-control 

studies from conditional logistic regression to the more powerful and versatile weighted 

partial likelihood method. 
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2 BACKGROUND 

2.1 Cohort and case-control studies 

In epidemiology, for ethical and practical reasons, observational studies are far more often 

conducted than randomised control trials. The most popular observational designs have long 

been and still are cohort and case-control study designs, with the former considered as the 

gold standard when randomisation is not possible.1,2  

A cohort is a well-defined group of study individuals who are followed from inclusion in the 

study until the time of occurrence of an event of interest (i.e. outcome) or censoring. Some 

cohort members will be exposed to the risk (or protective) factor under investigation, while 

other will remain unexposed. How exposure is related to time until outcome is analysed by 

contrasting the unexposed subjects with the exposed subjects. In contrast, the classical case-

control design consists of sampling a subset from a larger population, which can be a cohort. 

Individuals experiencing the outcome, i.e. cases, and controls, who do not experience the 

event, are sampled separately. Usually all cases are selected, and controls randomly sampled 

among the non-cases. The sampling of controls can be a simple random sampling, but more 

often involves stratification (i.e. matching). How the outcome is related to the exposure is 

analysed by contrasting the case and control individuals. 

Beyond the difference in the way the participants of the study are selected, the cohort design 

enables the modelling of the time aspect of the occurrence of an outcome, while the case-

control study design is far more cost-effective but usually does not take the time into 

account.1,2  

2.2 Time-to-event analysis of cohort studies 

2.2.1 Basic concepts 

To set up a cohort of individuals who are followed over time requires a precise definition of 

the outcome/event of interest, a precise definition of the start and the end of follow-up time 

period, a relevant choice for the time scale and precise inclusion/exclusion criteria for the 

individuals who enter the cohort. Subjects who do not experience the event during follow-up 

are censored. The censoring time is usually either end of follow-up, or the time when the 

individual was lost to follow-up for other reasons (such as death, emigration or withdrawal 

from the study). The observed follow-up time is the minimum between censoring time and 

event time. Moreover, the individuals are not always followed from time zero, but can 

sometimes be observed from some later time. This often happens, for example, when age is 

used as time scale. When individuals enter the cohort after time zero is referred to as delayed 

entry.  

The time-to-event or survival time T is the central variable in cohort analysis and the 

probability density function f(t) describes how the variable T is distributed. This function is 

used to further express the distribution function of T:  
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 F(t) = P(T < t) = ∫ 𝑓(𝑢)𝑑𝑢
𝑡

0
  (2.1) 

which in turn is related to one of the central functions of interest in survival analysis: the 

survivor function  

 S(t) = 1 - F(t) (2.2) 

which expresses the probability to have survived until time t.  

Another central function in survival analysis is the hazard function h(t) which expresses the 

risk of experiencing the event of interest at time t, provided one has survived until that time. 

The two central functions h(t) and S(t) are related to each other by means of the cumulative 

hazard function 

 H(t) = ∫ ℎ(𝑢)𝑑𝑢
𝑡

0
  (2.3) 

The relationship between these central concepts are derived with simple algebra 3:  

 H(t) = –log S(t) (2.4) 

The cohort design is illustrated in Figure 2.1. The members of this small cohort enter the 

study from the beginning (i.e. no delayed entry) and are followed over time.  

 

 

 

 

 

 

 

 

 

Figure 2.1: Cohort of 15 individuals with ordered event and censoring times. 

2.2.2 Modelling survival data with Cox proportional hazards model 

The most usual way to describe the hazard function for an individual i at time t, is to express 

this hazard as a product of two functions: a baseline hazard (h0(t)), which is multiplied by 

another function which includes the variables which characterise individual i. In the Cox 

proportional hazards model, this expression is  

 hi (t|Xi, Zi, β, γ) = h0(t) exp(β´Xi + γ’Zi) (2.5) 
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where Xi and Zi are the vectors of covariate(s) and confounder(s) for individual i, and β and γ 

are the vectors of the corresponding coefficients. The baseline hazard function h0(t) can vary 

over time but this function does not need to be specified in the Cox proportional hazards 

model, which is the reason why this model is referred to as a semi-parametric model. As the 

ratio of the hazard function of two individuals does not include the baseline hazard (which is 

cancelled out in the ratio), the hazard ratio is constant over time: a feature which gives its 

name to the model, i.e. the proportional hazards model.  

Ordering the event times ti, the vectors of coefficients β and γ are estimated by maximising 

the following partial likelihood 4:  

 

  (2.6) 

 

where Ri is the group of individuals who are still at risk just before time ti and is called the 

risk set at time ti.  

2.2.3 Comments on the risk set concept 

The central concept in the Cox regression analysis is the concept of risk set. The data which 

is used in each contribution of the product (2.6) is represented in Figure 2.2. The figure 

highlights the concept of risk set as well as related features. 

 

 

 

 

 

 

 

 

Figure 2.2: Cohort of 15 individuals with ordered event and censoring times and the risk set Ri at each 

event time. 

 In a Cox regression the only interest lies in the number of individuals who are present 

in the risk sets at the exact event times, disregarding what could have happened just 

before or after;  

 The ranking of the time is only used to identify who is in the risk sets, but even this 

ranking is not formally used in Equation 2.6;  

𝐿(𝛽, 𝛾) = ∏
exp[𝛽′𝑋𝑖 +  𝛾′𝑍𝑘)]

∑ exp[𝛽′𝑋𝑘 +  𝛾′𝑍𝑘)]𝑘𝜖𝑅𝑖𝑡
𝑖
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 For case i, the number of terms in the denominator of Equation 2.6 is as large as the 

number of individuals in the risk set Ri, decreasing thus with time.   

 

This last feature may give some clue to a possible sampling strategy within the risk sets, 

which could reduce the volume of data to be collected and used for analysis.  

2.3 Case-control studies and logistic regression analysis 

2.3.1 Basic concepts 

When the outcome of interest is rare, the cohort is not the most efficient way to address an 

etiologic question as it will require collecting data on a high number of individuals over a 

long period of time in order to obtain a sufficient number of cases. When an exposure is 

expensive to collect (as with biomarkers), collecting data for all of the individuals in a cohort 

is very costly. In these two situations, the case-control design would be much more efficient.   

In addition to defining the outcome/event of interest with precision, the sampling procedure 

of the control individuals requires careful consideration in order to enable valid inference. 

Cases and controls have to be representative of one single population (i.e. the study base) but 

are not required to be sampled within a cohort. Indeed, most of them are not, but are rather 

sampled within a dynamic underlying population in which the members may vary over 

time.5,6 

In contrast to the cohort design, time (to event) is not the main area of focus in the case-

control design. Time is however considered in the sampling: the source population is 

followed over a particular period of time and, in addition, the sampling of the controls can be 

chosen to be performed at different time points. It can be performed at the beginning of the 

study period, concurrently (by matching on time with the cases), at the end of the study 

period, or during the entire study period.6-8 When the sampling is done within a cohort (the 

situation of interest in this thesis), the three first choices are respectively referred to as 

inclusive sampling, incidence density sampling and exclusive sampling.6,7 

2.3.2 Modelling and analysing case-control data 

Case-control data are usually described using a logistic model, and analysed using logistic 

regression. Confounding is adjusted for by including the confounders as covariates in the 

regression model. Such analyses provide odds ratios which measure the association between 

the case/control status and the exposure. The odds ratio estimates either a risk ratio, a rate 

ratio or an odds ratio, depending on the sampling design used for selecting controls and the 

source population (cohort or dynamic).7 

Case-control studies have long been, and still are, criticized as being less reliable than studies 

utilising a cohort approach, despite numerous developments and scientific papers 

demonstrating the strong links between the two designs as well as similarities of the 

parameters which are estimated from both designs.6-7,9-11 
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2.3.3 Individually matched case-control studies  

Matching on factors which are possible confounders is commonly used in case-control 

studies. The purpose of matching is to improve efficiency by achieving a better balance in the 

number of cases and controls in the confounder strata. On the other hand, as the cases and 

controls are (artificially) made more similar for both the matching factor and the exposure, 

the process of matching introduces a bias which has to be controlled for in the analysis.12 

When individual matching is performed on Z, matched sets are obtained in which one case is 

associated with m controls and the individuals in a set share the same value of the matching 

variable Z. Such data is analysed by conditional logistic regression characterised by the 

following likelihood 13:  

 

   (2.7) 

 

where Si is the set including case i and the m matched controls. The form of this likelihood is 

reminiscent of the partial likelihood (2.6) used for analysing cohort data, but γ is not 

estimated in the likelihood as the confounder Z is used as matching factor. The link between 

the analysis of cohort data and the analysis of matched case-control data can be highlighted 

with the likelihoods 2.6 and 2.7. Each contribution in both likelihoods includes one single 

‘set’ (an entire risk set Ri for the cohort; a matched risk set Si for the matched case-control). 

Time is not formally included in any of the analyses. 

2.4 Nested case-control design and its traditional analysis 

Optimising the efficiency of epidemiological research is a continuous challenge, leading to 

the development of new designs and new statistical methods to analyze the collected data. 

The nested case-control design was proposed by Thomas in 1977 14 and aims to combine the 

benefit from the time aspect of the cohort design and the significant savings in cost and time 

of the case-control design.2,15-17 

2.4.1 Basic concept 

Within a well-defined cohort, the nested case-control design includes all cases but only a 

random sample of controls: at each failure time among all individuals who are at risk at that 

time, a defined number m of controls is randomly sampled. This incidence density sampling 

is also called ‘risk-set sampling’ as indeed, the sampling is performed within each risk set as 

illustrated in Figure 2.3.2,6,17  

 

 

𝐿(β) = ∏
exp[𝛽′𝑋𝑖]

∑ exp[𝛽′𝑋𝑘]𝑘𝜖𝑆𝑖𝑖
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Figure 2.3: Risk set sampling of nested case-control data with a single control per case (m=1) in a 

cohort of 15 individuals.  

2.4.2 Different ways to consider the nested case-control design 

The nested case-control design is an extension of the case-control design, in particular the 

individually matched case-control design, where the matching variable is the time of 

occurrence of the outcome. Hence, statistical methods developed to analyse matched case-

control data can be used.  

As the sampling is performed within the risk sets, it emphasises the link between the nested 

case-control and the cohort designs. Instead of including the whole risk set at each event time, 

only a few individuals are included. As for the cohort design, the same individuals can 

participate in several sampled risk sets (since individuals are randomly sampled, they can be 

sampled several times), and controls included in a sampled risk set can later become cases 

during their follow-up. These two features are typical of cohort design. 

As the design associates aspects of both cohort and case-control designs, it is interesting to 

see that some authors 1,6-8 present this as an extension of case-control design and others 15,17,18 

as a cohort sampling method. These two points of view emphasise once more the links 

between cohort and case-control designs, which are still too often presented as two radically 

different approaches when performing epidemiological research. This observation was made 

by Miettinen in 1982 9 and is still valid today. 

2.4.3 Nested case-control design in epidemiological research 

Nested case-control design is regularly used in epidemiology but a simple literature search on 

PubMed shows that this design is still far less used than cohort and case-control designs. 

There are, however, numerous published cohort studies which might have been more cost and 

time efficient if they had sampled a nested case-control study within their cohort.  

On the other hand, it seems that the concept of nested case-control sampling is poorly 

understood in the research community: in a PubMed search with the only search criterion 



 

 9 

‘nested case-control[Title]’, at least three hits among the first 10 were misusing the term 

‘nested case-control’.19-21 When a study claims to use a nested case-control design, it 

regularly means that the case-control study was sampled within a cohort without using the 

risk set sampling strategy.19-22 Unfortunately, such confusion does not help to promote the 

correct use of the design.    

2.4.4 Traditional statistical analysis: the conditional logistic regression 

Nested case-control data, considered as a sample within the cohort, can be described in the 

proportional hazards framework. Using the proportional hazards model (Equation 2.5) to 

express the association between the time-to-event and the covariates, the classical approach 

for estimating β and γ with nested case-control data is to maximise a partial likelihood similar 

to (2.6) where the sampled risk sets R’i are used instead of the complete risk sets Ri, or, 

similar to (2.7) where R’i are the matched risk sets 14: 

 

  (2.8) 

 

where R’i is the sampled risk set for case i. If, in addition to time, the nested case-control 

sampling included the confounder(s) as matching factor(s), the likelihood (2.8) will not 

include the vector γ as in the likelihood (2.7). In practice, this is handled in statistical software 

by either using a conditional logistic regression or a Cox regression stratified on the sets 

which include the case and its sampled controls.  

To ensure valid inference, the nested case-control design requires that the incomplete data 

arising from the subsampling of the cohort must be missing at random. This means not only 

that controls have been randomly selected within the strata defined by the matching variables 

but also that, conditional on the complete covariates, any missing exposure information does 

not depend on the unobserved value.17,18,23 If the condition of ‘missing at random’ is fulfilled, 

the analysis will provide cost-efficient unbiased estimates of hazard ratios for measured risk 

factors under the proportional hazards model.2  

As the nested case-control data analysis is performed with fewer data, a loss in power is 

expected. Defining the relative efficiency as the ratio of the variance of the parameter 

estimated from the full cohort to the variance estimated from the nested case-control design, 

it has been shown that, in the case of one covariate, this ratio follows the m/(m+1) rule under 

the null hypothesis, with m the number of controls in a matched set. If only one control is 

sampled for each case, the relative efficiency is ½, implying that the variance obtained with 

the nested case-control design is twice as large as the one obtained from the cohort.17 When 

the regression coefficients depart from zero (i.e. under the alternative hypothesis), or when 

multiple covariates are included in the model, this rule does not strictly apply any more and 

efficiency can be either reduced 17 or increased.24  

𝐿(β, 𝛾) = ∏
exp [𝛽′𝑋𝑖 + 𝛾′𝑍𝑖]

∑ exp [𝛽′𝑋𝑘 +  𝛾′𝑍𝑘]𝑘𝜖𝑅´𝑖𝑡
𝑖
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2.4.5 Limitations of the nested case-control design and its analysis 

While conditional logistic regression provides unbiased results and is easily conducted for a 

nested case-control study, the matching on time of cases and controls implies that: 

• the analysis is valid for this particular time scale; 

• the controls cannot be readily reused to address another outcome; 

• the design is not optimal for estimating absolute quantities such as baseline hazard 

and absolute risk; 

• analysis of data collected on paired organs (e.g., eyes, lungs, breasts) has to be 

restricted to reduced data. 

These limitations have long been regarded as weaknesses of the nested case-control 

design,2,16,17,25 but have also stimulated the development of other statistical approaches. In 

addition to these limitations, which are mainly related to the use of conditional logistic 

regression, other issues arise from the sampling strategy and would be avoided with a cohort 

design. These issues include the problem of overmatching at the design stage and the use of 

post-hoc subgroup analyses.  

As the work presented in this thesis was motivated by the need to overcome these limitations 

and issues, they are described in more detail in the next section. 

2.4.6 Limitations and issues in nested case-control studies 

2.4.6.1 Re-using nested case-control data 

2.4.6.1.1 Motivation 

Large and well-defined cohorts are regularly used to address research questions: 

national/regional health and population registers (Swedish Registers 26) are used to select 

cases for a specified outcome and subsequently sample relevant controls using sampling 

methods (risk sets or others), before collecting more expensive data such as those retrieved by 

review of medical charts or administering questionnaires. There is an interest in reusing these 

valuable data to answer other research questions. In other types of large cohorts including 

biobank initiatives (UK Biobank,27 Life Gene 28), large amount of data, often expensive to 

gather (especially molecular and genetic information), are stored. There is now an increasing 

interest in utilising these data efficiently as well as for several purposes. 

When data are not reused, researchers miss the opportunity to make more efficient use of 

their data resources. For example, a study in which a series of nested case-control studies 

were designed to address several research questions in the same underlying cohort,29,30 would 

have been more cost- and time- efficient if collecting less control data and reusing the data to 

address the different research questions. 

On the other hand, when previously collected data are reused to address new research 

questions, they are often analysed with naïve statistical methods.31,32 Lin et al. 33 showed that 

case-control association studies often misuse statistical methods when utilising data to 
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analyse secondary phenotypes. In nested case-control studies, as in any regular matched case-

control study, the control data is a biased subset of the population and cannot be readily 

reused to address a new research question. Special attention is needed in order to correct for 

the sampling bias. Yung and Lin 34 showed in case-control studies that naïve methods, 

including the following, can lead to severe bias: analysis of the combined sample of cases and 

controls ignoring the case-control ascertainment, or adjusted for the case-control status as an 

additional variable, as well as the case-only or control-only analyses.  

2.4.6.1.2 Weighting the observations to reuse case-control data 

As the cases are overrepresented compared to the non-cases, any case-control sample is 

biased by definition. Depending on the strategy used to sample the controls, the control data 

in an unmatched design, may or may not be a biased sample of the population, while the 

sample of controls in a matched design will be biased. As the nested case-control sample is 

matched design on time, the same consequence applies.  

Reusing (matched) case-control data is feasible provided the sampling bias is corrected for. 

Reilly et al.35 addressed such reuse of case-control data using a weighted approach. From the 

survey literature, it is known that using the sampling probabilities which lead to the available 

data is the key to compensating for biased sampling schemes.36,37 Reilly et al 35 showed how 

control or case-control data can be reused to address a new research question by weighting 

the individuals by the inverse of their sampling probabilities and, therefore, making them 

representative of the study population.35 This inverse probability weighting (IPW) approach 

can easily be conducted with a straightforward weighted analysis implemented with any 

standard statistical software.  

2.4.6.1.3 Line of thought 

In the approach of Reilly et al.,35 as the case and control observations were essentially 

reweighted to construct an unbiased cross-sectional representation of the population, the 

results apply to cross-sectional data only, and not to nested case-control studies. However, the 

simplicity of the IPW approach is appealing and inspired the same 38 and other authors 39 to 

develop such an approach for nested case-control data. 

2.4.6.2 Absolute risk estimation  

2.4.6.2.1 Motivation  

Risk prediction is currently used by practitioners and public health authorities to make 

decisions on medical treatments, patient follow-up and healthcare regulations. Risk prediction 

models are usually constructed from data collected in cohort studies such as the famous 

Framingham Heart study of cardiovascular risk factors.40-43 
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2.4.6.2.2 The Breslow estimator in cohort studies 

When using a cohort design and analysing the data in the framework of the Cox model, the 

Breslow estimator is the key estimator which allows calculating the cumulative baseline 

hazard H0, and hence calculating absolute risk 3,44: 

 (3.1) 

 

 

Using H0(t) obtained above together with an estimate of the vectors β and γ and the equations 

2.2 and 2.4, the absolute risk (Fi) for an individual i to develop the outcome at time t is given 

by  

 Fi(t) = 1 - exp (−𝐻0(𝑡) exp[𝛽′𝑋𝑖 + 𝛾′𝑍𝑖  
]) (3.2) 

where Xi and Zi are the vector of the individual’s covariates. 

2.4.6.2.3 Adapted Breslow estimator for nested case-control data 

As cases are over-represented in nested case-control data, the Breslow estimator can not be 

readily used to estimate the cumulative baseline hazard H0(t).  

Langholz and Borgan 45 proposed a method to estimate absolute risk from nested case-control 

data and developed an estimator for the cumulative hazard in the context of the proportional 

hazards model. Their estimator of the cumulative baseline hazard is similar to the Breslow 

estimator with an additional time-dependent weight w(ti) in the denominator:   

 

 

  (3.3) 

 

with R’i the sampled risk set at time ti, w(ti) a time dependent weight which is the inverse of 

the sampling fraction in the cohort’s risk set Ri: w(ti) = Ri/(m+1), and 𝛽 and γ the estimated 

coefficients in the traditional conditional logistic regression analysis. 

Despite the availability of the Langholz-Borgan 45 method developed almost two decades 

ago, few epidemiological nested case-control studies have used their estimator.46 Studies 

which have used population-based nested case-control data to construct their absolute risk 

model are nevertheless not uncommon 47-49; however, the nested case-control data in these 

studies provided the estimates for the risk factors (i.e. the vectors β and γ) while absolute 

measures were derived by combining the risk estimates with incidence rates from population 

register data.  

The Langholz-Borgan 45 approach uses basic information from the cohort to supplement the 

nested case-control data. The denominator contribution of the estimator is upweighted, 

correcting for the over-representation of cases in the nested case-control data set. However, in 

𝐻0(t) = ∑
𝐼 (𝑡𝑖 ≤ 𝑡)  

∑ exp[𝛽′𝑋𝑖 + 𝛾′𝑍𝑘] 𝑤(𝑡𝑖)𝑘∈𝑅´𝑖

 

𝑖

     

𝐻0(𝑡) = ∑
𝐼 (𝑡𝑖 ≤ 𝑡)  

∑ exp[𝛽′𝑋𝑘 +  𝛾′𝑍𝑘]𝑘∈𝑅 𝑖

 

𝑖
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case of additional matching (on another variable than time), it remains unclear how the 

Langholz-Borgan method can be accommodated, as it uses conditional logistic regression to 

estimate the regression coefficients. In such a matched situation, it will not be possible to 

estimate the coefficients γ of the matching factors. The authors argued that the method could 

easily be extended to nested case-control sampling involving matching factors, but they did 

not explain it in detail. Ganna et al. 50 used this method and showed that it did not give 

reasonable estimates when the nested case-control sampling involved matching factors other 

than time. 

2.4.6.2.4 Line of thought 

If part of the limitation in estimating absolute risk with nested case-control data is overcome 

with the Langholz-Borgan estimator, the use of conditional logistic regression remains an 

obstacle to achieving reliable estimates for the matching variables and hence an absolute risk 

estimate for matched design. How this estimator can be accommodated in case of matching is 

worth addressing.  

2.4.6.3 Clustered data  

2.4.6.3.1 Motivation 

When the research question concerns paired organs (e.g., lungs, breasts, eyes) for each of 

which exposure and outcome measurements are available, the statistical analysis has to take 

care of the clustering. This can be addressed with a cohort design by using a frailty model 

approach, which is an extension of the Cox model.51 In this approach, the survival model 

includes both fixed and random effect terms, where the fixed effect term comprises the 

observed portion of the model and the random effect term, or frailty term, accounts for the 

unexplained heterogeneity in the model: in other words, it accounts for the correlation within 

the clusters. 

For nested case-control designs, however, the clustered data cannot readily be handled by 

conditional logistic regression, as there are two levels of clustering: the set which comprises 

(at least) two individuals (case and control(s)) and then the individual who has a pair of 

organs. Facing such situation, researchers usually solve the problem by using the cases and 

their ipsilateral control 52 or adopt a case-only design 53 in which the healthy organ in the pair 

is used as the control for the unhealthy one.  

2.4.6.3.2 Breaking the matching in (usual) case-control studies 

As the issue of this double level of clustering arises due to the matching of cases and controls, 

tackling the question of how/if it is possible to perform valid unconditional analysis with 

matched data is worth considering. 

Performing valid analysis of matched data requires the matching variables to be considered in 

the analysis, but does not strictly require matched analysis (such as conditional logistic 

regression).12 This implies that ignoring (or ‘breaking’) the matching can be considered, i.e. 
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ignoring the formal link between the case and the matched controls in the analysis. When the 

matching is ignored, valid analysis must include the factors which were used for the matched 

sampling as additional variables in the unconditional logistic regression model.12,54 Using 

such an approach can lead to more efficient analysis than the matched analysis, for example, 

when sets are suffering from missing data 12,55; however, the method works well if the 

matching factor included in the model does not have too many strata (i.e. fine matching), 

otherwise the unconditional logistic regression would lead to biased results.56 

2.4.6.3.3 Line of thought 

If this could be an approach for the usual case-control studies, the situation, however, seems 

more complicated for nested case-control data: the number of strata is the same as the number 

of cases and will lead to the problem of numerous strata mentioned above. However, the fact 

that breaking the matching will remove the clustering at the set level and would allow the 

information gathered for the two organs to be used will retain interest in this approach. 

2.4.6.4 Overmatching 

2.4.6.4.1 Matching versus overmatching 

When the distributions of the potential confounders are substantially different in cases and 

controls, the matching aims to balance cases and controls within the strata defined by 

confounders and, in this way, to improve the efficiency of the stratified analysis.1,12,54,57 

However, if the cases and the controls are matched on a variable which is correlated to the 

risk factor under study, and this risk factor is not an independent risk factor or part of the 

causal mechanism, the problem known as ‘overmatching’ can be encountered. In such a 

situation, the efficiency of the analysis can be much reduced due to cases and controls being 

too similar for their exposure and many sets not contributing in the stratified analysis.1,54,58-60  

2.4.6.4.2 Mitigating overmatching 

It has been argued that for case-control studies suffering from overmatching, pooling the data 

in several strata will improve the efficiency.58 The gain from this approach will be more 

important if the odds ratio is expected to be large and also depends on the exposure 

prevalence among the controls.58  

2.4.6.4.3 Line of thought 

To my knowledge, this topic has never been addressed in studies using the nested case-

control design. However, it can be hypothesised that breaking the matching in nested case-

control data could provide some advantages when overmatching is present as it would also 

benefit from making use of all individuals included in the study.  
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2.4.6.5 Subgroup analyses  

2.4.6.5.1 Motivation 

While a research study is designed to answer a specific research question, it is common for 

investigators to conduct subsequent analyses of subgroups in order to investigate associations 

in more detail. Some recent examples for the nested case-control design are the studies 

conducted by Devore et al.,61 Kim et al., 62 Boursi et al. 63 and Liu et al.64 

There is an abundant literature on subgroup analyses for randomised clinical trials.65-70 The 

general advice, however, is to restrict subgroup analyses as much as possible, as the main 

issue is their overuse and over interpretation, in addition to the underuse of appropriate 

statistical tests for interaction. 

There is little doubt that the situation is similar with observational studies. While this study is 

in line with the advice given above and does not wish to promote an excessive use of 

subgroup analyses, the main objective was to investigate whether such subgroup analyses are 

valid per se when they are performed with nested case-control data.   

The subgroups can be defined by the outcome (for example, when studying breast cancer, a 

subgroup could be defined by the histology of the breast cancer (e.g., ductal breast cancer, 

lobular breast cancer), or the TNM stage (e.g., breast cancer with TNM stage <4)), and by a 

covariate which could be an independent risk factor, a confounder or an effect modifier (for 

example, in studying menopaused women, or BRCA1/2 carriers, or smokers, etc.).  

In cohort studies, defining a subgroup by the outcome is equivalent to addressing a new 

research question in the same cohort. Defining a subgroup by a covariate is not a problem 

either, as it involves a redefinition of the inclusion/exclusion criteria. In nested case-control 

studies, since the sampling of the participants is related to the outcome of interest (and 

perhaps also to matching variables), the data at hand is not a representative sample of the 

population of interest. A subgroup selected from this sample will also be a non-representative 

sample of the sub-population of interest and, therefore, could generate invalid estimates.  

Likewise, defining a nested case-control subgroup by the outcome is also equivalent to 

addressing a new research question. This should not raise any problems: any set where the 

case does not correspond to the new definition will be removed, reducing the data at hand to 

answer the new question (unless the removed subjects are reused, which can be an option). 

Defining a nested case-control subgroup by a covariate which was used for the sampling (i.e. 

which was a matching factor) should not raise any problems either, as the sampling was 

stratified on the variable defining the subgroup. But if the covariate used to define the 

subgroup was not a matching factor, it is unclear to what extent such sub-group analyses 

could be valid. 



 

16 

2.4.6.5.2 Line of thought 

To the best of my knowledge the validity of subgroup analyses of nested case-control data 

has not been addressed. Moreover, the main concern facing such subgroup analysis was that 

it is not known who is being analysed and who these analysed individuals represent. 

A second concern is about the efficiency of the analyses. Should subgroup analysis be valid 

with nested case-control data, it is clear that conditional logistic regression will be inefficient: 

the definition of a subgroup will restrict the analysis to sets that, by chance, have a case and at 

least one control in the defined subgroup. The number of sets which will be excluded from 

the analysis will depend on the prevalence of the subgroup but also on how this variable 

correlates with all others, including the outcome.  

Once again, an analysis that ignores the matching and allows using all individuals belonging 

to the defined subgroup should have advantages over the conditional logistic regression.  

2.4.6.6 In conclusion 

Two main ideas guided the search for potential solutions for the mentioned limitations: 

breaking/ignoring the matching, which enables using more data because cases and controls 

are no longer tied in sets, and weighting the individuals, which permits the recovery of the 

study population.  

In this thesis, a weighted partial likelihood method was used, which resulted from statistical 

developments inspired by these ideas. The method, also called Inverse Probability Weighting 

(IPW) method, started to be developed in the 1990s and is presented in the Methods section 

(Chapter 5). 
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3 AIMS 

The overall aim of the thesis was to refine and extend the scope of the weighted partial 

likelihood method in nested case-control data analysis by investigating the advantages of 

the method as an alternative to the traditional conditional logistic regression. We addressed 

the following themes: reusing data (Studies I, III and IV), estimating absolute risk (Studies 

II and III), solving a problem of overmatching at the design stage (Study III), analysing 

clustered data (Study III) and analysing subgroups (Study IV). 

The specific methodological and statistical aims included: 

1. To appropriately reuse nested case-control data to investigate a new outcome within 

the same underlying cohort (Study I).  

 

2. Compare two methods of estimating absolute risk with nested case-control data, and 

investigate the ability of each method to provide valid estimates for matched study 

designs (Study II).  

 

3. Investigate the advantages of weighted partial likelihood methods compared to 

conditional logistic regression for analysing overmatched and clustered nested case-

control data (Study III).  

 

4. Compare conditional logistic regression and weighted partial likelihood methods in 

terms of validity and efficiency of subgroup analyses of nested case-control data 

(Study IV).  

 

Two of these studies (Studies I and III) were motivated by epidemiological questions for 

which the collected data gave the opportunity to address additional 

methodological/statistical questions. The choice was made to focus on these latter 

questions. 
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4 MATERIALS AND CONTEXT OF THE STUDIES 

The methodological work in Studies I and III was motivated by epidemiological research 

questions for which data were available, and for which both the epidemiological questions 

and the methodological/statistical questions were of interest. In this section, it is proposed to 

present the epidemiological context, questions and data for these two studies.  

Studies II and IV were simulations studies. To simulate the data in Study II, realistic values 

were used for generating the cohort from which nested case-control studies were further 

sampled. These values came from an epidemiological study and the description of the data is 

part of this section. In addition to the simulation data, a real cohort was used to illustrate how 

the results applied in a real setting, both in Studies II and IV. The cohort used for this purpose 

is also presented in this section. 

4.1 Collected real-world data  

4.1.1 The CBC study (Study I) 

4.1.1.1 Investigating risk factors for contralateral breast cancer 

Contralateral breast cancer (CBC) is defined as a second primary breast cancer in the 

contralateral side, detected at least three months after the first breast malignancy.71,72 Of all 

women with breast cancer, approximately 10 to 15% will develop an invasive contralateral 

breast cancer during the 20 years after initial diagnosis.72 Risk factors for contralateral breast 

cancer have been investigated and studies have identified that ‘family history’ (i.e. up to third 

degree relatives who had a breast cancer),73-76 a ‘non-ductal histological type’ of the initial 

breast cancer 71,77 and a young age at diagnosis of the initial breast cancer 76,78,79 are 

associated with an increased risk of developing contralateral breast cancer, while parity is 

often reported as a non-significant protective factor.73,80,81 Multifocality of the initial breast 

cancer tumour has, to our knowledge, never been investigated. Since multifocality is reported 

to be associated with the higher-risk lobular histological type,82,83 it could be a factor of 

interest to investigate. The epidemiological question which Study I aimed to answer was: Is 

multifocality of the initial breast cancer tumour a risk factor for contralateral breast cancer, 

and is parity confirmed as a protective factor for contralateral breast cancer? 

4.1.1.2 The available data  

4.1.1.2.1 Case data: contralateral breast cancer cases  

Eight hundred and fifty three (853) patient cases of contralateral breast cancer, diagnosed 

between 1976 and 2005, were identified in the Stockholm-Gotland Cancer Register, which 

includes all patients diagnosed with cancer in this region since 1976. Patients’ medical charts 

were collected in order to retrieve additional variables of interest: known risk factors (‘family 

history’, ‘histological type’ and age at diagnosis date), potential confounders (chemo- and 

hormonal therapy) and the two potential risk factors to be investigated (multifocality of the 
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breast tumour and parity).72 All cases had their contralateral breast cancer three months or 

more after their first breast cancer and cases who had any other malignancy (except breast 

cancer) at any time before the contralateral breast cancer diagnosis date were excluded. 

4.1.1.2.2 Potential control data: the ‘Metastases study’ 

As data was collected for case patients within a well-defined cohort, the first idea about how 

to answer the epidemiological question was to collect controls in a nested case-control 

design, but it would be time and cost demanding.  

It was thus suggested to reuse control data from another nested case-control study. A good 

candidate for that purpose was the ‘Metastases study’ which was a nested case-control study 

which also collected data for breast cancer patients registered in the Stockholm-Gotland 

Cancer Register. In this study, cases (191) were breast cancer patients who had metastases 

subsequent to breast cancer and controls (615) were sampled in a nested case-control design 

and remained free of metastases until their date of sampling. The same variables as for the 

contralateral breast cancer cases were retrieved from the medical charts as well as dates of 

diagnoses (including breast cancer, contralateral breast cancer and metastases). However, 

several additional inclusion/exclusion criteria had been used in the ‘Metastases study’: 

patients had to be younger than 76 years old at breast cancer diagnosis, had their breast 

cancer diagnosis in the restricted calendar period of 1997-2005 and had to be treated for their 

breast cancer with chemo- or hormonal therapy. An additional complexity was that the nested 

case-control sampling in this study was stratified on three factors: intended treatment (chemo-

, hormonal therapy, or a combination of these), age category (<45, 45-54, >54 years), and 

period of breast cancer treatment (1997-2000 or 2001-2005).  

Reusing this data set as the control data set for the contralateral breast cancer cases requires 

some attention, as the control data are a biased control sample. On the one hand, there is an 

overrepresentation of patients with metastasis, and on the other hand, as control patients were 

matched on time and on three other variables to the metastases cases, they cannot be readily 

reused to address a research question about a new outcome. The solution chosen was to have 

an IPW approach. 

4.1.1.2.3 The underlying cohort 

The condition enabling the use of these data sets to answer the epidemiological question 

using an IPW approach is to retrieve the correct study base, i.e. the underlying cohort from 

which the study patients (both cases and controls) were sampled. The different inclusion 

criteria for the two data sets described above, as well as the use of matching variables in the 

nested case-control sampling of the ‘Metastases study’, render the data situation complex. 

However as patients from both studies were included in the same register, and as dates of 

events (any malignancy and death) were available for all patients, both in the register data and 

in the two data sets, it was possible to align these data sets in order to use a weighted 

approach.  
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The data set retrieved from the Stockholm Breast Cancer Register comprised 32,153 breast 

cancer patients from 1976 to 2008 who were followed up for any other malignancy. The date 

of the patient’s death, if this happened, was also available. This data set included patients 

with wider inclusion criteria than the two other data sets, which made it a worthy candidate to 

reconstruct an appropriate study base for the aligned set of case and control patients. An 

important part of the work, was to reconstruct a coherent study base in parallel to align and 

assemble the cases and controls data sets. This is represented in Figure 4.1. 

 

Figure 4.1: Alignment of the three data sets. As the inclusion criteria were different, they are called A 

(for the contralateral breast cancer cases), B (for the ‘Metastases study’) and C for the underlying 

cohort. 

 

4.1.2 The SAMBAL study (Study III) 

4.1.2.1 Investigating radiation therapy as a risk factor for subsequent lung cancer in 

female breast cancer patients 

The effect of radiation therapy as a potential risk factor for subsequent cancer diagnosis has 

been investigated in several studies.84,85 For women who have had postoperative breast cancer 

radiation treatment, an increased risk of lung cancer has been shown for at least 5 years, even 

decades in some cases, after the adjuvant treatment.85,86 However, the main risk factor for 

developing lung cancer is smoking, and the risk of developing lung cancer after radiotherapy 

was shown to be particularly increased among smokers.53,85,87 How these two carcinogens 
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interact with each other is not fully understood, and the aim of the SAMBAL (i.e. molecular 

epidemiology of secondary lung cancer) study was to address the question: How does 

radiotherapy after breast cancer interact with smoking regarding the risk for lung cancer? 

4.1.2.2 The nested case-control data 

To address this question, participants were selected using a nested case-control design within 

the Swedish Cancer Register which includes all patients diagnosed with cancer in Sweden 

since 1958.88 Cases were breast cancer patients, diagnosed between 1958 and the end of 2001 

and subsequently diagnosed with lung cancer. Incidence density sampling was used to select 

matched controls (1 control per case) from breast cancer patients without any subsequent 

cancer diagnosis before their date of selection.  

Seven hundred thirty (730) lung cancer cases and 726 controls were included in the study 

sample. As 5 years is estimated as a reasonable latency period for observing a radiation-

induced solid tumour,85,89,90 analysis was restricted to cases whose lung cancer occurred at 

least 5 years after the breast cancer diagnosis and their matched controls. Analysis was also 

restricted to patients who had information available on radiation therapy for breast cancer 

treatment, which led to a data set with 538 cases and 513 controls. 

The data included the radiation dose received at each lung as well as the laterality of the 

breast and lung cancers, which means that each patient had a pair of dose measurements. In 

each of the case-control pairs of this nested case-control design, two levels of clustering were 

thus identified which will be of interest in the methodological approach of the present study.  

In addition, the data were suspected to be overmatched as cases and controls were matched 

on decade of the breast cancer diagnosis and the treatment and radiation therapy protocols are 

strongly associated with time. The breast cancer patients entered the cohort from 1958 and at 

that time and until the mid-seventies, 80% of the patients received radiation therapy. As a 

consequence, patients in a matched set were more likely to share the same radiation therapy 

exposure, which in turn makes the set unused in any conditional analysis.   

4.2 Study data in simulations studies 

4.2.1 Simulation coefficients value in Study II 

In the simulation settings in Study II, data was generated from a proportional hazards model 

using realistic values for the baseline hazard and the covariates regression coefficients. The 

chosen values of the variables were mimicking the observed values of a nested case-control 

study of coronary heart disease conducted within the Singapore Chinese Health Study.91 The 

variance-covariance matrix and the means of the observed variables were used to first 

generate a multivariate normal distribution for gender, age, cholesterol, High-Density 

Lipoprotein (HDL), Systolic Blood Pressure (SBP), smoking status and antihypertensive 

treatment status, that were further rounded to the nearest integer (age), or dichotomised 

(gender, smoking status and antihypertensive treatment status). The correlation coefficients 
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between the variables, together with the variables’ mean value and variance are presented in 

Table 4.1. 

Table 4.1: Variables means and variance-correlation matrix of Singapore Chinese Health Study 

nested case-control data 

 Age 

(years) 

Gender Cholesterol 

(mg/dL) 

HDLa 

(mg/dL) 

SBPb 

(mm Hg) 

Treatment  

statusc 

Smoking  

status 

mean 63.1 0.51 203 53.8 136 0.27 0.18 

Variance-correlation matrix 

Age  59.3 -0.158 0.049 0.148 0.267 0.130 -0.056 

Gender   0.229 -0.201 -0.315 0.002 -0.001 0.273 

Chol    1278 0.362 0.103 -0.096 -0.026 

HDL    159 -0.054 -0.158 -0.130 

SBP     488 0.187 0.039 

Treatment      0.218 -0.128 

Smoking status       0.190 

a HDL: High-Density Lipoprotein;  

b SBP: Systolic Blood Pressure;   

c Treatment status: antihypertensive treatment status. 

4.2.2 Data for illustration in Studies II and IV 

In Studies II and IV, in addition to the simulation studies, how the methods work was 

illustrated in a real situation. In both studies, a real cohort of 75,856 brothers, sisters and 

children of all non-Hodgkin’s lymphoma patients (probands) registered in the Swedish 

Cancer Register from 1958 to 2007 was used. In this cohort, the family members were 

followed on the age time-scale, from birth until emigration, death, or the end of the study (31 

December 2007), whichever occurred first. The included variables were: gender of the family 

member, gender of the patient, type of relationship between the family member and the 

patient (sibling or child) and year of birth of the family member. The cohort was described 

and otherwise studied in detail by Lee et al.92  
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5 METHODS 

The issues and limitations presented in the background section (Chapter 2) can be divided 

into two groups: issues due to the sampling design which would not arise within a cohort 

design (overmatching and subgroup analyses) and limitations due to the use of conditional 

logistic regression for analysing nested case-control data (reusing data, absolute risk 

estimation and analysis of clustered data).  

To overcome the limitations of the conditional logistic regression in nested case-control data 

analysis, researchers have been developing novel statistical methods since the nineties. Their 

approaches can differ significantly, but a common point is that the matching between the 

cases and their controls is broken so that the controls are no longer tied to their matched 

case.18,23,39,93-95 

Once the matching between cases and controls is broken, several authors have considered a 

weighted approach for the analysis in which the individuals are upweighted by their sampling 

probability.23,39,93 This appealing approach, which originally comes from the survey literature, 
36,37 and is also applied to case-control design 35 is used in this thesis as presented in this 

chapter. 

5.1 Study base reconstruction and weighted partial likelihood  

5.1.1 Study base reconstruction 

The main idea when individuals from a sample are upweighted is to recover the study base, 

i.e. the underlying study population. Compared to the situation of Reilly et al. 35 with regular 

(matched) case-control studies, the particularity of the study base in a nested case-control 

study is the time aspect because the aim is to recover the cohort with the correct pattern of 

time at risk for the entire follow-up. This is illustrated in Figure 5.1, where Figure 2.3 is re-

organised to present the nested case-control sample on the upper part of the graph and the 

remaining non-sampled individuals of the cohort on the lower part. In order to recover a valid 

representation of the study base by using the nested case-control data (in the dashed frame), 

only the non-cases need to be weighted as all cases from the cohort are usually part of the 

nested case-control sample. 

Another question which needs to be answered before proceeding further is: Which study base 

needs to be reconstructed? Indeed, as presented in the former chapter, one may deal with two 

data sets which must be combined but have been sampled from two overlapping cohorts 

rather than from the same one. The challenge then is first to identify the correct study base 

which needs to be reconstructed. 

A third aspect to be considered is the availability of information on the whole study base. As 

the idea is to up-weight individuals with the inverse of their sampling probabilities, 

information is needed on the exact sampling procedure, and on the study base from which the 

sampling was performed. This means that a well-defined cohort is needed for which basic 
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information should be available, i.e. all relevant dates and variables used for the sampling. 

Once the study base has been identified and basic information is available, sampling 

probabilities and weights can be calculated. 

 

 

 

 

 

 

 

 

Figure 5.1: The nested case-control sample (in the dashed frame) versus the non-sampled individuals 

from the cohort in the lower part of the graph. 

 

5.1.2 Kaplan-Meier weights 

Samuelsen 39 suggested calculating the probability for an individual to be sampled in the 

nested case-control data with an expression which mimics the risk set sampling strategy. In a 

nested case-control design, all cases are usually included in the data, so that their sampling 

probability and hence their weight is equal to one. In contrast, the probability for an 

individual to be sampled as a control increases with the duration of his/her follow-up time 

and with the number of sampled controls at each event time, and decreases for an increasing 

number of individuals at risk at each event time (i.e. the size of the risk set Ri, which is itself 

evolving with time).  

At each event time ti, an individual k with starting time Sk (Sk ≤ ti ) and censoring or event 

time Tk (Tk ≥ ti) is available to be sampled. Assuming mi controls were sampled for case i 

from a risk set of Ri individuals, the probability pki that k is sampled at time ti for case i is 

given by mi/(Ri - 1). Multiplying the probabilities of not being sampled (1 - pki) during the 

entire follow-up (i.e. between Sk and Tk), and subtracting this product from one, gives the 

probability pk for individual k to be sampled at least once during his/her follow-up time. In 

short 39:  

 (5.1) 

 

 

where Yk(ti) is an indicator of the case-control status of individual k at time ti.  

𝑝𝑘 =  1 − ∏ [1 −
𝑚𝑖

𝑅𝑖 − 1
 ]

𝑖, 𝑆𝑘 ≤𝑡𝑖≤𝑇𝑘

 [1 −  𝑌𝑘(𝑡𝑖)]  
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The weight wk is the inverse of this probability. The weights aim to ‘reconstruct’ the number 

of individuals at risk in the full cohort, idea which is similar to that which is done in survey 

inference.37 

In our small cohort in Figure 5.1, applying Equation 5.1, the weights are 6.7 for individual 5, 

and 2.5 for individuals 11 and 14. All other individuals are cases and get a weight of 1. 

Exploring how these weights reconstruct the pattern of time at risk in the cohort gives the 

following results: At time t1, where 15 individuals were included in the risk set, Samuelsen 

weights recover 16 (15.7, rounded) individuals, and at time t2, t3 and t4, the weights recover 

15, 7 and 6 individuals for numbers that were actually 13, 9 and 6, respectively. It can be 

noted that this weighting system appears to be effective, even with such a small cohort. 

On a practical level, the weights can be calculated by using simple readily available software 

commands: a Kaplan-Meier analysis of the cohort provides the number of individuals in the 

risk sets at each event time. From these numbers, with simple algebra only including 

subtraction, division and cumulative products, the probabilities and thus the weights are 

computed. As the Kaplan-Meier analysis is the central tool used for calculating these weights, 

this name is usually given to the weights developed by Samuelsen.96,97 

5.1.2.1 Stratified Kaplan-Meier weights  

In case of stratified sampling, i.e. sampling involving additional matching on a confounder Z, 

the expression 5.1 can be generalized 38,98: 

 (5.2) 

 

where Ri
Z is the number of individuals at risk at ti who have the same value for the 

confounder as the case and I(zk = zi) is the indicator that case i and individual k have the same 

value for the confounder Z.  

Regarding the implication in the computing aspect, the only difference is that Equation 5.1 

has to be applied in each of the strata defined by the matching factor. However, in cases of 

fine matching, the Kaplan-Meier weights could fail to provide a correct representation of the 

cohort, as high sampling probabilities could lead to weights which are too light.97 

5.1.3 glm/gam weights 

Another type of weights which is also easy to implement was proposed by Kim and De 

Gruttola.93 The weights are obtained by modelling the sampling probability of the controls 

with a parametric model (such as logistic regression (glm) or generalised additive models 

(gam)) which includes the available covariates which drove the sampling and the time span 

during which the individual was available for sampling. The model is run on the whole cohort 

from which the cases are excluded. As the time is included in the model, the increasing 

probability of selection with time at risk is accommodated by the model. These weights are 

referred to as the glm/gam weights.96,97,99  

𝑝𝑘 =  1 −  ∏ [1 −
𝑚𝑖

𝑅
𝑖
𝑍

 − 1
 𝐼(𝑧𝑘 = 𝑧𝑖)]  [1 −  𝑌𝑘(𝑡𝑖)]𝑖, 𝑆𝑘 ≤𝑡𝑖≤𝑇𝑘
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The calculation of the glm/gam weights requires all cohort members to have a variable which 

indicates whether they have been sampled for the nested case-control study. In contrast, the 

Kaplan–Meier type of weights does not need this sampling indicator to calculate the risk set 

sizes involved in the weights calculation. This is an advantage when working with data which 

were anonymised to ensure individuals’ data protection after the sampling has been 

performed within the study base. Another feature of the glm/gam weights is that they require 

some modelling which is not needed with the Kaplan-Meier method. 

5.1.4 Weighted partial likelihood statistical method 

Analysing weighted data in order to obtain the coefficients estimate β is done by maximising 

a weighted partial likelihood (pseudo-likelihood) whose expression is 39:  

 

 (5.3) 

 

where R*i is the collection of all cases and sampled controls at risk at time ti, and wk is the 

weight for individual k. Any individual in the pooled data is a subject who is followed from 

starting time until the outcome or censoring date. Figure 5.2 represents risk sets R*i which 

include all individuals who are pooled together, weighted and followed up.  

 

 

 

 

 

 

 

 

Figure 5.2: Pooled individuals of the nested case-control sample and risk sets Ri*. The data are re-

organised as in Figure 5.1. The three sampled controls represent the non-cases in the whole cohort and 

are weighted. 

In practice, the analysis is performed in statistical software by using a weighted Cox 

regression with the pooled data and unique individuals who are characterised by a time-to-

event or time-to-censoring, as in the (usual) Cox analysis of an entire cohort.100 Samuelsen 

derived an asymptotic variance for β that accounts for the Kaplan-Meier weights, 39 and Kim, 
101,102 using the same weights proposed an approximate jackknife standard error. However, 

using a robust variance estimator is usually considered as a reasonable choice for the 

weighted analysis.96,97 

𝐿(β, γ) = ∏
exp [𝛽′𝑋𝑖 + 𝛾′𝑍𝑖 ]

∑ exp[𝛽′𝑋𝑘 +  𝛾′𝑍𝑘] . 𝑤𝑘𝑘𝜖𝑅∗𝑖𝑡
𝑖
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In this approach, as all cases and sampled controls are pooled together, an initial benefit 

appears: while each contribution in the likelihood (2.8) only included the case and the mi 

sampled controls, the likelihood (5.1) uses all cases and sampled controls who are still at risk. 

By using more individuals in each contribution of the likelihood, a gain in statistical power is 

expected compared to the conditional logistic regression analysis.  

5.1.5 Achievements with the weighted approach 

5.1.5.1 Hazard ratio estimates 

The way in which the weighted method performs in data analyses has been studied through 

simulation studies.18,93,96,97,99-103 Whatever the type of weights used, the weighted method 

provides valid estimates of the hazard ratio β with a slightly better precision than the 

conditional logistic regression analysis. Comparing the use of Kaplan-Meier and glm/gam 

weights, they give comparable estimates and show similar empirical variances,96,97,99 but 

when censoring time is linearly correlated with a covariate, the glm/gam weights method is 

slightly more efficient than the Kaplan-Meier method,99 and in case of fine matching, the 

glm/gam weights perform better than the Kaplan-Meier weights.97 

5.1.5.1.1 Hazard ratio estimates in case of stratification 

Considering the expression 2.5 (i.e. hi (t|Xi, Zi, β, γ) = h0(t) exp(β´Xi + γ’Zi,)), an important 

achievement of the weighted method is the ability to estimate regression coefficients for 

covariates which were matching factors, i.e. it enables estimating the γ’s. 

As the matching is broken, the estimation of the regression coefficients are no longer 

performed within the risk sets R’i as in the conditional logistic regression but on pooled data, 

i.e. the risk sets R*i. As the cohort is reconstructed thanks to the weights, the γ’s can be 

estimated in the same way as can be done in a cohort analysis, provided the weights have 

been correctly calculated using the stratified expression 5.2.   

If estimating the β’s while analysing a stratified nested case-control sample is the only area of 

interest, Støer et al.97 showed that the accuracy of the estimates of the exposure’s hazard ratio 

was similar for unstratified weights (Equation 5.1) and stratified weights (Equation 5.2) 

provided one adjusted in the analysis for the confounder(s) which were used as matching 

variable(s). If this unexpected result could be demonstrated to be true in general, it would 

represent a useful simplification when using the method and would also mean that, in the case 

of fine matching, the reconstruction of fine strata is unnecessary, avoiding a problem which 

arises with these weights, as mentioned above.97  

5.1.5.2 Absolute risk estimation with weighted partial likelihood 

The ability to validly estimate both β’s and γ’s gives the opportunity to revisit the Breslow 

estimator and develop an expression which exploits the weighted approach. It seems that this 

idea was being investigated in 2012, as just previous to the approach outlined in Study II, Cai 

et al. 104 developed an estimator for prognostic accuracy of biomarkers from nested case-
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control data using the weighted approach of Samuelsen to estimate the coefficients of the risk 

factors (𝛽) and adapting the Breslow estimator to the weighted situation. The adapted 

cumulative baseline hazard Breslow estimator is:  

 

  (5.4) 

 

with R*i, the collection of all cases and sampled controls at risk at time ti, and wk the weight 

of control k, as in the likelihood (5.3). This development provides a new way to consider 

absolute risk estimation with nested case-control data.  

5.2 Other likelihood approaches 

In parallel with the approaches using a weighted partial likelihood, other methods have been 

developed. Scheike and Juul 94 and Saarela et al. 18,103 suggested a complete cohort likelihood 

approach in which the cohort sampling design is treated as a missing data problem, and which 

requires modelling of the distribution of the partially observed covariates. Another approach 

was explored by Keogh and White 95 in which multiple imputation techniques using the fully 

observed data to fit the imputation models are used, addressing thus the nested case control 

data analysis as a missing data problem as well. All these methods have been investigated and 

compared in several studies, and all of them present advantages and disadvantages.18,96,103,105  

The approaches just mentioned above, as well as the weighted approach, require data to be 

available on basic information regarding time-to-event(s) or censoring for all participants of a 

well-defined cohort. In cases of stratified sampling the cohort should also contain information 

on the matching variables for all of its members. The full likelihood and multiple imputation 

methods will benefit from having access to more information in the cohort, should this 

information be available.105 Other variables than the times to event(s) or censoring and 

matching variables which would be available in the full cohort are not used to compute the 

weights in the weighted approach (with Kaplan-Meier weights), but can be used to improve 

the imputation model or the model that describes the covariates distribution in the full 

likelihood method. As both methods also require some modelling, they are vulnerable to 

model misspecification and they also require more programming.18,96,103 In addition, these 

approaches need an indicator telling which individuals were sampled and which were not, 

among all cohort’s members, an information which is not always available. 

Last but not least, as the nested case-control design is sometimes chosen in order to reduce 

the computing burden, when for example, mega data-bases involving large cohorts with 

multiple time-varying exposures or covariates are handled 106, the methods involving full 

likelihood or multiple imputation would definitely show some drawback in such cases. 

𝐻0(𝑡) = ∑
𝐼 (𝑡𝑖 ≤ 𝑡)  

∑ exp[𝛽′𝑋𝑘 +  𝛾′𝑍𝑘] 𝑤𝑘𝑘∈𝑅∗𝑖

 

𝑖
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5.3 Simulation methods 

Simulating is an effective tool to explore a hypothesis or asses the performance of statistical 

methods in relation to the known truth. Simulation methods were the main tool used in 

Studies II and IV. Following the guidelines outlined by Burton et al.,107 the simulation 

settings were decided according to the aims of the simulation. Cohorts were simulated whose 

estimates served as reference for all subsequent analyses of the nested case-control data 

which were further sampled in these cohorts and analysed with various methods (i.e. we 

adopted what Burton et al, called ‘moderately independent simulations’ 107). For the different 

scenarios (i.e. different types of cohorts), however, fully independent simulated data were 

generated.  

5.3.1 Generating the data set 

In order to generate the data set, the use of realistic scenarios was aimed for reflecting 

plausible epidemiological situations; however, settings were also challenged with more 

extreme (unrealistic) values.   

5.3.1.1 Time-to-event 

The distribution of the time-to-event was generated using the method described by Bender et 

al. and Crowther et al. 108,109: 

Simulating time-to-event starts from Equation (3.2) i.e. F(t) = 1- exp (-H0(t) exp (β’X + γ’Z)). 

As the values taken by this distribution are included in the interval [0, 1], as well as the values 

taken by (1 – F), simulated values can be generated from a uniform distribution (U [0, 1]). 

Using U = exp (-H0(T) exp (β’X + γ’Z)), (with T the time-to-event variable), time-to-event 

values can be generated, provided H0 can be inverted: T = H0
-1[-log(U) exp(-β’x) ].108,109 

When T cannot be solved analytically, iterative root finding methods are used. 

5.3.1.2 X’s and Z’s distribution 

In Study II, the data used were generated from the covariates mean and the variance-

covariance matrix retrieved from a study of coronary heart disease nested in the Singapore 

Chinese Health Study.91 The correlation structure between the variables from one scenario to 

another was not modified.   

In contrast, in Study IV, data were generated from normal and binomial distributions, using 

mean values which were retrieved or inspired by the epidemiological data analysed in Study 

III, but in the different scenarios explored, some variation was made in the way the Z 

variables were correlated to the exposure variable. This way of generating data gave a huge 

freedom to simulate variables which were defined according to their role relative to the 

exposure. Beside the exposure, variables were generated which were either independent risk 

factors, confounders or effect modifiers. Table 5.1 describes the variables used in the main 

simulation scenario of Study IV. 
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5.3.1.3 Vectors of coefficients β and γ 

The same differences between Studies II and IV apply for the vector of coefficients β and γ. 

In study II, the values were retrieved from the same, already mentioned, study of coronary 

heart disease. In some scenarios though, these values were modified. In Study IV, the 

coefficients were inspired by the epidemiological data of Study III, but different values were 

explored for the β’s and γ’s in the scenarios which were considered. The chosen values for 

the β’s and γ’s in our main scenario are presented in Table 5.1. 

5.3.1.4 Baseline hazard 

In Study II, the baseline hazard which best described the time-to-event distribution in the 

study of coronary heart disease was found to be a Weibull distribution and this was used in 

the final setting. In Study IV, a constant baseline hazard was used in the main setting (Table 

5.1) and a Weibull baseline hazard in additional settings. 

Table 5.1: Variables distribution and parameters’ value in the main simulation setting of Study IV 

Variable Distribution  Coefficient Hazard ratio 

Exposure Xe Binomial (N, p*) βe = 0.405 1.5 

Independent risk factor Xirf Normal (μ = 0, σ = 10) βirf = 0.020 1.02 

Confounder Xc Binomial (N, 0.5) βc = 0.953 2.6 

Effect modifier Xem Binomial (N, 0.3) βem = 1.386 4 

Interaction coefficient between Xe and Xem: βinteract βinteract = 0.69 2 

*p is defined by the association between Xe and Xc: P(Xe | Xc) = exp(
log(4)+log(1/4)∗Xc

    1+exp(log(4)+log(1/4)∗Xc
) 

Baseline hazard Constant h0 = 0.0005  

 

5.3.1.5 Censoring time 

In both Studies II and IV, the censoring time was generated with an exponential function, and 

a maximum follow-up period length was also included. In addition, in some of the explored 

scenarios in Study IV, censoring distribution was made depending on the effect modifier. 

5.3.2 Sampling of nested case-control studies in the simulated cohorts 

Once the cohort data were set up, nested case-control sampling was simulated in Studies II 

and IV. For each scenario, 500 cohorts of N individuals (N varying between 50,000 and 

100,000) were simulated, and in each of them, one nested case-control study was sampled 

before various analyses were performed on the nested case-control sample and the cohort. 

The nested case-control sampling involved the choice of the number of controls per case, and 

the choice of whether or not to perform a stratified sampling. Different scenarios 

corresponded to different choices. The number of controls per case was either two or five, 

and the sampling did not involve matching for several scenarios, while for other scenarios, 

matching was performed on one or two confounders. Fine matching was also performed. 
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5.3.3 Assessment of the performance of the statistical methods  

In both studies, the performance of the statistical methods used to analyse the nested case-

control data set in comparison to the estimates obtained from the cohort was assessed. The 

bias and the accuracy of the estimates were evaluated. 

5.4 Statistical software  

All simulation studies and analyses of the generated data and the real data sets were 

performed in R. Codes used in Study II were developed by Salim and collaborators. Unique 

codes were developed to generate the data in Study IV. To perform the nested case-control 

sampling within the created cohort, codes were used which had already been developed 

within the team. Unique codes were also created to calculate the Kaplan-Meier weights which 

form the central part of the weighted partial likelihood method presented above. Part of this 

development is available at: http://www.meb.ki.se/~biostat/. These pieces of codes show how 

a cohort can be generated, and a nested case-control study be further sampled, how weights 

can be calculated, and how they can be assigned to the controls. The R packages which are 

needed to calculate the Kaplan-Meier weights are the survival and plyr packages. 

Støer et al. developed the multipleNCC package, implemented in R and available on CRAN 

since autumn 2014.110,111 This package fits Cox proportional hazard models with a weighted 

partial likelihood, including different types of weights (among which the Kaplan-Meier and 

glm/gam weights), and accommodates the reuse of controls for several endpoints. However, 

the package requires all data to be in a single data set, which is not always possible in real 

research situations, such as in Studies I and III.  

 

 

http://www.meb.ki.se/~biostat/
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6 OVERVIEW OF THE FOUR STUDIES  
(RATIONALE AND OBJECTIVES) 

Each of the issues presented in Chapter 2 was tackled in the thesis. Reusing nested case-

control data to address a research question regarding another outcome (first issue) was the 

central point of interest in Study I. However, as breaking the matching (which was done in all 

four studies) is similar to reusing cases and controls 39, the theme ‘reusing the data’ was 

somehow explored in all studies.  

The absolute risk estimation (second issue) was studied in detail in Study II with simulation 

studies, and performed in Study III on a real-world data set. Breaking the matching to 

overcome problems due to overmatching (third issue) and clustering (fourth issue) was 

addressed in Study III, and subgroup analyses (fifth issue) were investigated in Study IV by 

means of simulation studies.  

In this latter still unpublished study, we also investigated in detail how well the Kaplan-Meier 

weights were able to reconstruct the number of individuals at risk over time in the cohort and 

in subgroups. Study IV shed new light on the results which were previously obtained in the 

first three studies. 

As previously stated, in Studies I and III, we worked with real data sets, to investigate 

epidemiological questions, in addition to the methodological/statistical questions which were 

the main interest. Studies II and IV were mainly simulations studies where the real data set 

analysis served as illustration.  

This chapter aims to present the rationale and the specific objectives of each study. As several 

research questions were addressed in several studies, Table 6.1, at the end of this chapter, 

summarises questions and studies in which they were explored. 

6.1 Study I: Reusing nested case-control data to address a 
research question regarding a new outcome  

6.1.1 Why a methodological question was addressed in Study I 

While Study I was motivated by the epidemiological question regarding the risk factors for 

contralateral breast cancer, we focused our interest on the methodological and statistical 

questions. The reason lies below.  

All published studies using the IPW approach to reuse nested case-control data aimed to 

validate the method and used various approaches to compare the estimates.38,96,97,100,112 The 

authors had either access to the full cohort from which the nested case-control was sampled 

(simulation studies), 96,97,100 or controls sampled for the new outcome which could be used in 

the validation step.38,100,112 The advantages of the method were demonstrated in these ideal 

illustrative data analyses. All reported an increased efficiency of the nested case-control 

design when additional controls are used which were previously sampled to study another 
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outcome in the same underlying cohort. However, the method has been largely ignored by 

medical researchers and has not found its way into routine use by biostatisticians and 

epidemiologists.29,101 To the best of my knowledge, there is no published work of an 

application of the method to a setting where the data have features typical of real research 

situation, such as cases and available controls being sampled from different, but overlapping, 

cohorts and with different inclusion and sampling criteria.  

In this application, beyond the work of Salim et al. 38,100 and Støer et al. 96,97,112 we wanted to 

assess the advantages and limitations of reusing nested case-control data in a real situation 

where the second study did not gather any controls, so that the only option would be to reuse 

prior control data. We wanted also to clarify the conclusion of Støer and Samuelsen 96,97 

concerning the choice of weights, highlighting how the feasibility of calculating several types 

of weights may depend on the data at hand. 

6.1.2 The methodological questions  

To assess the advantages and limitations of reusing nested case-control data in a real and 

complex situation includes assessing different items which are listed below:  

 What is the impact of using an appropriate method rather than a naïve statistical 

analysis when reusing nested case-control data? 

 Is there a difference in the estimates when reusing a whole nested case-control data set 

or when only the sampled controls of this data set are reused? 

 What is the impact of the accuracy of the reconstruction of the underlying cohort from 

which the weights are calculated? 

 What is the impact of using unstratified weights instead of stratified weights to estimate 

covariates coefficients in a matched design? 

 What is the impact of the choice of data which are reused to analyse the new outcome 

(when a choice is possible) on the final data set and for the interpretation of the 

estimates? 

 What is the impact of using selection dates of the controls when the censoring date in 

the nested case-control data set is ignored? 

 Is there a practical advantage to using Kaplan-Meier or glm/gam weights? 

6.2 Study II: Estimating absolute risk with nested case-control 
data 

6.2.1 Why Study II was performed 

Langholz and Borgan 45 developed an estimator for the cumulative baseline hazard (Chapter 

2). However, it remained unclear how to accommodate the approach to estimate absolute risk 

with nested case-control data in case of stratified sampling, because the conditional logistic 

regression which is used to retrieve the estimates will not be able to estimate the coefficients 

for the matching factors, while they are needed in the absolute risk estimation.50 
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The weighted method developed by Cai et al. 104 (Chapter 4) for estimating absolute risk with 

nested case-control data was used by Zhou et al. 113 who analysed data collected in a nested 

case-control design to estimate the absolute risk of developing rheumatoid arthritis. Although 

they reported results obtained with the weighted method, the article did not provide details on 

how they implemented the method.  

While both the Langholz-Borgan and the weighted methods are not new, the implementation 

of these methods using standard statistical software is still lacking, as well as a complete 

comparison of the absolute risk estimations with the two methods, especially in case of 

stratification.  

6.2.2 Research questions  

The study thus aimed to compare the two methods for estimating absolute risk from nested 

case-control data, in both simulations studies and real-world data, to examine their 

performance and discuss the relative merits of each. Specifically, the questions which the 

study aimed to answer were: 

 Are these methods suitable to estimate absolute risk from matched nested case-control 

data?  

 Are the Langholz-Borgan and weighted methods comparable in terms of accuracy and 

efficiency? 

6.3 Study III: Advantages of weighted partial likelihood over 
conditional logistic regression in analysing clustered and 
overmatched nested case-control data 

6.3.1 Why a methodological question was addressed in Study III 

While addressing an epidemiological question regarding how smoking and radiation therapy 

interact in the risk of developing lung cancer in female breast cancer patients, we however 

focused our interest on the methodological and statistical aspects. The reason lies below.  

The collected data included information on paired organs: radiation doses assessment for both 

lungs and laterality of the cancers (breast and lung). The data were gathered in a nested case-

control design which was also overmatched, due to the matching on breast cancer decade of 

diagnosis (Chapter 4). The overmatching and clustering of the data rendered the weighted 

partial likelihood approach attractive compared to conditional logistic regression analysis. 

Furthermore, as the sample was performed within the Swedish Cancer Register, the weighted 

partial likelihood method could be used. 

As overmatching problems result in losing matched sets in the analysis (the sets where case 

and controls share the same exposure value), breaking the matching was thought to be a 

potential solution worth exploring. The idea was inspired by Samuelsen 99 who suggested 

pooling nested case-control data to reduce the efficiency loss due to missing covariates 

(another unrelated topic but with some similar consequences to overmatching) and by 
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Brookmeyer 58 who, for case-control studies, showed that pooling the data from several strata 

could help solving or mitigating a problem due to overmatching.  

Regarding the clustering feature, the weighted approach will allow reducing the two levels of 

clustering (set and individual levels) to a single level (individual level) and when using robust 

standard error in the analysis, the clustering at the individual level will be accounted for. 

In addition to mitigating this problem of overmatching and handling the paired data, the 

weighted partial likelihood will enable the estimation of cumulative risk studied in detail in 

Study II, which was considered a further advantage.  

The specific statistical question which the study aimed to answer was: 

 What are the advantages of using weighted Cox regression compared to conditional 

logistic regression in analysing overmatched and clustered nested case-control data? 

6.4 Study IV: Analysing subgroups with nested case-control data 

6.4.1 Why Study IV was performed 

As subgroup analyses are regularly performed in nested case-control studies 61-64 and as it 

remains unclear if these analyses can provide valid estimates, simulation studies were 

performed, which aimed to answer the following specific questions: 

 Are subgroups analyses with nested case-control data valid when a subgroup is 

defined by a covariate measured at baseline? 

 Is one method to be preferred among weighted likelihood method and conditional 

logistic regression for subgroup analyses of nested case-control data? 

 How well does the weighting system reconstruct the cohort and each subgroup? 

 How well does the weighted likelihood method with unstratified weights in 

recovering the exposure coefficient in each subgroup in case of matched design? 
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Table 6.1: Specific methodological research questions and studies where these were addressed. 

Theme, context and questions: Addressed in 

Reusing data: Breaking the matching to address a research question regarding a new outcome 

Question 1 

Question 2 

 

Question 3 

What is the impact of the accuracy of the reconstruction of the underlying cohort from which the weights are calculated? 

Is there a difference in the estimates when reusing a whole nested case-control data set or when only the sampled controls of this 

data set are reused? 

What is the impact of the choice of data which are reused to analyse the new outcome (when a choice is possible) on the final data 

set and for the interpretation of the estimates? 

Study I 

Study I 

 

Study I 

Breaking the matching and weighting individuals  

Question 4 

Question 5 

 

Question 6 

Question 7 

Question 8 

How well does the weighting system reconstruct the cohort and each subgroup of the cohort?  

What is the impact of using unstratified weights instead of stratified weights to estimate covariates coefficients in matched 

designs? 

What is the impact of using an appropriate method rather than a naïve statistical analysis when reusing nested case-control data?  

What is the impact of using selection dates of the controls when the censoring date in the nested case-control data set is ignored?  

Is there a practical advantage to using Kaplan-Meier or glm/gam weights? 

Studies III, IV 

Studies I, III, IV 

 

Study I 

Study I 

Studies I, III 

Estimating absolute risk  

Question 9 

Question 10 

Are the Langholz-Borgan and weighted methods suitable for estimating absolute risk from matched nested case-control data?  

Are the Langholz-Borgan and weighted methods comparable in terms of accuracy and efficiency?  

Study II 

Study II 

Overmatching  

Question 11 Does weighted partial likelihood help overcome overmatching? Study III 

Clustered data   

Question 12 What are the advantages of using a weighted Cox regression with clustered data? Study III 

Subgroup analyses  

Question 13 

Question 14 

Are subgroups analyses of nested case-control data valid when a subgroup is defined by a covariate measured at baseline? 

Is one method to be preferred among weighted Cox regression and conditional logistic regression for subgroup analyses of nested 

case-control data? 

Study IV 

Study IV 
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7 RESULTS AND DISCUSSION 

In this thesis, both epidemiological and methodological/statistical questions were addressed, 

but the choice was made to focus on the latter type of questions. In addition, as summarised 

in Table 6.1, several questions were explored in different studies. The structure of Chapter 7 

will reflect these features.  

The results for all methodological/statistical questions are first considered where the same 

order as in Table 6.1 is followed. The epidemiological results (Studies I and III only) are 

presented in the last part of the chapter. 

7.1 Results regarding the methodological/statistical questions 

7.1.1 Reusing nested case-control data to address a research question 
regarding a new outcome 

For this theme (reusing nested case-control data) and context (answering a question regarding 

a new outcome), Study I gave the opportunity to answer several specific questions. Reusing 

nested case-control data which were sampled from an overlapping cohort to study another 

outcome, risk factors were investigated for contralateral breast cancer (our new outcome of 

interest).  

Table 7.1 presents the estimates obtained in several analyses. In the first column of the table 

are the results from our published article.114 This main analysis uses cases and controls from 

the reused data set as control data, together with the contralateral breast cancer cases; this 

combined data set is then analysed with a weighted Cox regression (i.e. weighted likelihood 

method). The weights are stratified on the matching factors used to sample the controls and 

calculated with a Kaplan-Meier analysis of the appropriate study base for the current study. 

The covariates which are included in the model are the four risk factors (multifocality of the 

breast cancer tumour, parity, histological type of the tumour and ‘family history’), in addition 

to the potential confounders (adjuvant treatment and age). All terms highlighted in bold style 

in the text above are features of the main analysis. All subsequent analyses involve a change 

regarding these features.  

The other columns of Table 7.1 present the results from analyses which were performed by 

making some variation of the first analysis. In the text which follows, the terms which are 

written in bold emphasise the feature under interest, i.e. the element which is modified 

compared to the first analysis. 

The estimates in column 2 were obtained when adding a covariate (the size of the breast 

cancer tumour). This variable could have indirectly influenced the sampling of the patients in 

the ‘Metastases study’ (and hence the current analysis) as this study included patients who 

had freshly frozen tumour material available for genetic analysis, which could be related to 

the size of the tumour. The analyses reported in all subsequent columns of Table 7.1 also 

included this covariate. The estimates in column 3 were obtained with weights which were 
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calculated from a Kaplan-Meier analysis of the study base relevant to the ‘Metastases 

study’ which included more patients than the study bas used in the main analysis. To obtain 

the estimates in column 4, only the sampled controls from the ‘Metastases study’ were 

reused to prepare the control data, instead of both metastases cases and controls. In column 5, 

the results are given where unstratified weights were used in the weighted Cox regression 

analysis, and in column 6, a naïve unweighted analysis was performed. Each of the columns 

3 to 6 will be compared with column 2, while the latter will be compared to the first column.  

7.1.1.1 Question 1  

What is the impact of the accuracy of the reconstruction of the underlying cohort from 

which the weights are calculated? (Study I) 

In parallel with the correct study base (relevant to the current study), the study base relevant 

to the ‘Metastases study’ was also reconstructed, and the weights with both study bases were 

computed. The study base relevant to the ‘Metastases study’ was not completely irrelevant to 

the current study, as most of the criteria to align the data sets were imposed by the 

‘Metastases study’. This latter study base was larger than the appropriate one as it included 

patients with several malignancies, representing around 13% of the patients. The estimates 

were, however, very similar, when using either study base to calculate the weights (Table 7.1, 

column 2 and 3). This can be expected when a large study base is used (both study bases 

were large), so that the risk sets were large at any event time and the impact on the weights is 

limited as shown in Figure 7.1. That could, however, be problematic for small study bases. 

 

 

 

 

 

 

 

 

 

Figure 7.1: Correlation between the stratified weights computed with the study base relevant to the 

current study and the study base relevant to the ‘Metastases study’. 
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Table 7.1: Adjusted risk estimates: hazard ratios and (95% confidence intervals) from weighted Cox regression analyses (five first columns) and unweighted Cox 

regression analysis (last column). 

Risk factors Main analysisa 
Additional 

covariateb 

Study base 

for metac 
Sampled controlsd 

Unstratified 

weightse 
Unweightedf 

Non-multifocal tumour (ref.) 1 1 1 1 1 1 

Multifocal tumour 
1.99 

(1.07, 3.70) 

1.94 

(1.03, 3.68) 

1.94 

(1.02, 3.69) 

1.97 

(1.03, 3.77) 

1.91 

(1.04, 3.51) 

1.56 

(1.03, 2.39) 

Nulliparous (reference) 1 1 1 1 1 1 

Parity 
0.40 

(0.18, 0.89) 

0.42 

(0.18, 0.95) 

0.41 

(0.18, 0.92) 

0.39 

(0.17, 0.91) 

0.50 

(0.24, 1.02) 

0.82 

(0.48, 1.39) 

Ductal histological type (ref.) 1 1 1 1 1 1 

Non-ductal histological type 
2.09 

(1.21, 3.59) 

2.11 

(1.20, 3.70) 

2.14 

(1.22, 3.77) 

2.14 

(1.21, 3.77) 

2.10 

(1.24, 3.55) 

1.79 

(1.23, 2.60) 

No family history (reference) 1 1 1 1 1 1 

Positive family history 
1.91 

(1.11, 3.28) 

2.04 

(1.17, 3.55) 

2.06 

(1.18, 3.59) 

2.06 

(1.18, 3.62) 

2.13 

(1.29, 3.54) 

1.59 

(1.11, 2.27) 

Chemotherapy (reference) 1 1 1 1 1 1 

Hormonal therapy 
0.71 

(0.39, 1.26) 

0.70 

(0.37, 1.31) 

0.64 

(0.34, 1.19) 

0.72 

(0.38, 1.37) 

2.81 

(1.55, 5.11) 

1.95 

(1.17, 3.26) 

Chemo + Hormonal therapy 
0.57 

(0.30, 1.07) 

0.59 

(0.30, 1.17) 

0.59 

(0.30, 1.17) 

0.60 

(0.30, 1.20) 

0.82 

(0.42, 1.62) 

0.77 

(0.43, 1.38) 

Age <45 (reference) 1 1 1 1 1 1 

Age 45-54 
1.23 

(0.62, 2.44) 

1.29 

(0.63, 2.64) 

1.22 

(0.60, 2.51) 

1.31 

(0.63, 2.69) 

2.07 

(1.063, 4.02) 

1.69 

(0.98, 2.93) 

Age >54 
0.96 

(0.49, 1.88) 

0.97 

(0.48, 1.96) 

0.95 

(0.47, 1.89) 

0.96 

(0.47, 1.93) 

1.09 

(0.55, 2.14) 

1.18 

(0.69, 2.03) 

Tumour size (mm) -- 
0.99 

(0.96, 1.02) 

0.99 

(0.96, 1.02) 

0.99 

(0.96, 1.02) 

0.99 

(0.96, 1.02) 

0.99 

(0.97, 1.02) 
a Results obtained from a weighted Cox analysis, adjusted for confounders, with weights computed by stratified Kaplan–Meier analysis of the relevant 

study base. 
b Same as the main analysis when adding the tumour size of the breast cancer as an additional covariate. 
c Same as the analysis in the 2nd column with weights computed with the imperfectly reconstructed study base, i.e. study base relevant to the ‘Metastases 

study’. 
d Same as the analysis in the 2nd column with the 398 sampled controls only instead of the whole ‘Metastases study’ case-control dataset  
e Same as the analysis in the 2nd column with unstratified weights.  
f Naïve unweighted analysis adjusted for assumed confounders. 
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Relating to the question of the study base reconstruction, there were also some concerns 

about the role of the tumour size in the sampling of the ‘Metastases study’. It was not 

possible to include this variable in the weights, because the sampling was not stratified on this 

variable, but the variable was included in the analysis to take into account the possible bias 

due to this variable (Table 7.1, column 2). In the published paper, this variable was removed 

as it did not have any impact on the results (Table 7.1, column 1).114  

7.1.1.2 Question 2  

Is there a difference in the estimates when reusing a whole nested case-control data 

set or when only the sampled controls of this data set are reused? (Study I) 

The results presented in table 7.1, in the second and fourth columns, show that the estimates 

were similar when reusing the 528 patients (148 metastasis cases and 380 controls of the 

‘Metastases study’) or when reusing only the 398 sampled controls of the ‘Metastases study’ 

among whom 18 patients developed a metastasis after being sampled (i.e. they became cases 

later during their follow up time).  

This is not surprising. The 398 patients, including the 18, were weighted, and with their 

weights, these patients were representative of the study base. In particular, the 18 were 

representative of the special subgroup of patients who developed metastases and became 

cases during their follow-ups (i.e. the 148 case patients in the ‘Metastases study’). Figure 7.2 

compares the actual number of individuals in this subgroup who remain in the nested case-

control data set over time and the corresponding number recovered with the weights when 

retaining only the patients who had been sampled as controls and who are weighted.  

 

 

 

 

 

 

 

 

 

Figure 7.2: Number of case patients in the ‘Metastases study’ over time and corresponding numbers 

recovered with the weights. 
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For example, when the follow-up started, the actual number of patients in this subgroup was 

148 and this number is compared to the recovered number from the 18 weighted patients. At 

the start of the follow-up, this recovered number was 265, clearly overestimating the actual 

number. The figure shows how these two numbers (the actual and the recovered) evolve 

during the entire follow-up time. With the exception for the first year, the recovered and 

actual  numbers are quite close to each other. 

7.1.1.3 Question 3  

What is the impact of the choice of data which are reused to analyse the new outcome 

(when a choice is possible) on the final data set and for the interpretation of the 

estimates? (Study I) 

The answer to question 3 is based on the number of patients which could be included in our 

final analysis (see Figure 4.1). The consequence of the alignment procedure in Study I was 

that the data used for analysis was reduced drastically: from 853 contralateral breast cancer 

cases, only 106 remained eligible, mainly due to the restriction of the study period. The 

maximum follow-up time period of the ‘Metastases study’ was nine years while the 

contralateral breast cancer cases were followed up during 30 years from breast cancer 

diagnosis date. This significant difference in follow-up length was the main reason why the 

cases data set was reduced so dramatically. However, as the criteria for both studies had 

further differences, the number of patients retained in the analysis was further reduced. As 

another consequence, the interpretation of the analyses results is limited to the population 

represented by the study base relevant to the current study, i.e. restricted to the same common 

criteria. 

The main lesson which results from this observation is that, should there be the possibility to 

choose among several candidates for data sets to be reused, the best candidate will be 

characterised with larger criteria, if no other feature influences the choice.  

7.1.2 Breaking the matching and weighting individuals 

In general terms, breaking the matching and reusing data are similar. As in all studies, the 

matching was ignored, several questions were addressed in different studies and can be 

answered in a more general context than the context of the former section.  

7.1.2.1 Question 4  

How well does the weighting system reconstruct the cohort and each subgroup of the 

cohort? (Studies III and IV) 

Question 4 was addressed in detail in Study IV, and illustrated in Study III. We showed in 

Study IV that the Kaplan-Meir weighting system was able to reconstruct, on average, the 

correct number of individuals at risk over time. This was shown for the whole cohort, but also 

for all subgroups of the cohort. In cases of stratified sampling, the same results were obtained 

with stratified weights, while unstratified weights were not able to reconstruct the cohort 



 

46 

appropriately. This is shown in Figure 7.3 obtained in simulation studies. Figure 7.4 shows 

how this did apply in Study III.  

 

 
Figure 7.3: Ratio (with two standard deviations) of the numbers of individuals at risk over time 

recovered with stratified weights (left panel) and unstratified weights (right panel) from nested case-

control data that was matched on the confounder, to the actual numbers of individuals at risk in the 

cohort 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.4: Ratio of the numbers of individuals at risk over time recovered with stratified weights in 

Study III, to the actual numbers of individuals at risk in the study base 

 

In Figure 7.4, the recovered numbers over-estimated the actual numbers of individuals during 

the first third of the follow-up time. Several hypotheses can help to understand the reason for 

this. 1) Caliper matching was performed on age with an interval around the case’s age of 5 
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years, while to compute the weights ten-year fixed age categories were used. The choice of 

ten-year categories broadened the risk sets to sample in, lowering the sampling probabilities, 

and hence increasing the weights. 2) The sampling, which was stratified on decade of breast 

cancer diagnosis dates could have been performed in a somewhat more convenient way than 

was planned, and could have been tighter that described. For example, if patients with 

diagnosis dates closest to the case’s diagnosis date were more likely to be sampled; if this 

happened, it would have the same result as for the age variable above.  

More important though, is the question regarding the impact of a poor reconstruction of the 

cohort on the estimates in the analysis. As the variables which could have led to the 

inaccurate reconstruction (age and decade of breast cancer diagnosis) were included in the 

analysis, and in the weights, we do not think that a bias is to be expected. This will further be 

illustrated in addressing the question which follows. 

7.1.2.2 Question 5  

What is the impact of using unstratified weights instead of stratified weights to 

estimate covariates coefficients in matched designs? (Studies I, III and IV) 

In Studies I, III and IV, the findings of Støer et al. 97 were challenged, according to which, 

stratified and unstratified weights provide similar estimates for the exposure of interest. In the 

fifth column of Table 7.1 the results from the analysis with unstratified weights are presented. 

The estimates for the exposures are similar to the estimates with stratified weights, provided 

that the potential confounders which were matching variables were included in the weighted 

Cox model. The main advantage of using stratified weights, is that we expect recovering 

correct estimates for all variables, including the matching factors used in the ‘Metastases 

study’ (Table 7.1, column 2), while using unstratified weights led to incorrect coefficient 

estimates for these latter coefficients (Table 7.1, column 5). This was further illustrated in 

Study IV, where we showed that unstratified weights yielded a correct estimate of the main 

exposure but were not correctly estimating the matching factor, whereas, with stratified 

weights, coefficients for both exposure and matching factors were correctly estimated (Figure 

7.5). 

The accuracy of exposure estimates with unstratified weights was also apparent in the results 

provided in Study III. They are presented in Table 7.2 and discussed later in the text. 
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Figure 7.5: Estimates (± 1 standard error) for the exposure and the matching factor (confounder) 

obtained with the cohort analysed with Cox regression and the nested case control (NCC) data 

analysed with weighted Cox regression, using either stratified (strat.) or unstratified (unstrat.) weights. 

 

7.1.2.3 Question 6  

What is the impact of using an appropriate method rather than a naïve statistical 

analysis when reusing nested case-control data? (Study I) 

The sixth column of Table 7.1 provides an answer to this question. The estimates were biased 

when using a naïve unweighted analysis, compared to the weighted analysis in the second 

column of Table 7.1. It is difficult to judge in advance the extent of the bias for the main 

exposure(s), but serious bias in the matching factors could be expected. In this study, while 

the risk factor estimates were only slightly biased to the null, the estimates for age and 

adjuvant treatment (the matching factors in the prior study) were more seriously biased, as 

expected. 

7.1.2.4 Question 7  

What is the impact of using selection dates of the controls when the censoring date in 

the nested case-control data set is ignored? (Study I) 

Ignoring the last date of follow-up for the controls and using their selection date instead leads 

to important biases in the estimates, as the chosen date influences both the weight (through 

Equation 5.1 or 5.2) and the likelihood (through Equation 5.3) (data not shown). This 

highlights the care that has to be taken when collecting dates in nested case-control studies, 

should the collected data be intended for use in another study, or the IPW approach be used 

for the analysis. 
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7.1.2.5 Question 8  

Is there a practical advantage to using Kaplan-Meier or glm/gam weights?   

(Studies I and III) 

This question could be re-written as: Was it possible to choose the type of weights between 

Kaplan-Meier and glm/gam type of weights? Using the glm/gam type of weights was not 

possible with the anonymised data sets (Study I and III). Indeed, as the calculation of the 

glm/gam weights requires having a variable in the cohort data set indicating who was 

sampled for the nested case-control study, and as such indicators did not exist for ethical 

reasons, these weights could not be used. In order to highlight this statement, Figure 7.6 

(inspired from Figure 4.1) illustrates the difference between the two possible situations. On 

the left hand side of the graph is a situation where the available data is not anonymised, 

which allows considering the available data as part of the study base, and having access to a 

broader choice for the type of weights, the statistical analyses and the software programs. On 

the right hand side is the situation of the data in Study I, where the data had been anonymised 

so that we can no longer link the available data to the study base and the choices are 

restricted, for weights calculation, statistical analyses and software programs. 

A finding in this study was that the Kaplan-Meier weights are more flexible than the glm/gam 

weights as they can adapt to any situation. This advantage had never been mentioned before. 

Unfortunately, dealing with anonymised data hinders the (straightforward) use of the 

multipleNCC package developed in R, which means that the codes posted on 

http://www.meb.ki.se/~biostat/ are still useful.   

 

 

http://www.meb.ki.se/~biostat/


 

50 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.6: Difference between data which are included in the study base (with an identifier) (left panel) and data which do not have such identifier due to 

anonymisation (right panel). The figure is inspired from Figure 4.1 which applied to Study I. 
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7.1.3 Estimating absolute risk with case-control data 

7.1.3.1 Questions 9 and 10  

Are the Langholz-Borgan and weighted methods suitable for estimating absolute risk 

from matched nested case-control data? (Study II) 

Are the Langholz-Borgan and weighted methods comparable in terms of accuracy and 

efficiency? (Study II) 

These two questions were addressed in Study II and the results are shown in Figure 7.7. The 

Langholz-Borgan and weighted approaches both yielded unbiased absolute risk estimates at 

various time points (up to 20 years in the simulation studies) in the three following settings: 

(a) no additional matching, (b) matching on one confounder (gender), and (c) matching on 

two confounders (gender and age-group). The standard error of the Langholz-Borgan method 

was slightly larger than the standard error of the weighted method when matching was 

involved. We can thus confirm that the nested case-control design is an alternative to the 

cohort design for absolute risk estimation, and that it is possible to accommodate the 

Langholz-Borgan method in a matched nested case-control study. In addition, we found that 

there was no advantage of any of the two approaches in term of precision in case of no 

matching. In cases of matching, the weighted method was more precise than the Langholz-

Borgan method.  

In cases of fine matching (d), the weighted method should be preferred but, depending on 

how fine the matching is and how small the initial cohort is, there could be some bias with 

this latter method as well. In the simulation studies, the Langholz-Borgan approach gave 

biased absolute risk estimates at various time points and larger standard errors (especially for 

long-term prediction), while the weighted approach provided unbiased absolute risk estimates 

unless the initial cohort was small (10,000 individuals).  

 

 

 

 

 

 

 

Figure 7.7: The average of absolute risk estimates for females across 500 realisations and their 95% 

confidence intervals in scenarios (a) no-matching and (d) fine matching. Cohort estimates  (solid 

lines), Langholz–Borgan (L-B) estimates (dashed lines) and weighted estimates (dotted lines). 
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In the real data application, the weighted method performed better than the Langholz-Borgan 

method which provided biased estimates of absolute risk for long term prediction. The reason 

for this is not fully understood.  

7.1.4 Overmatching 

7.1.4.1 Question 11  

Does weighted partial likelihood help overcome overmatching? (Study III) 

This question was tackled in Study III. The estimates obtained in the analyses of the 1051 

patients were similar in magnitude for both the conditional logistic regression and the 

weighted Cox regression, but the standard errors of the latter analysis were smaller (or equal) 

for all analyses (Table 7.2, two first columns). The overmatching was mitigated but the gain 

in power was quite modest by using weighted Cox regression instead of conditional logistic 

regression. As mentioned earlier, using stratified or unstratified weights led to similar 

estimates for the exposure coefficients (Table 7.2, columns 2 and 3). 

Table 7.2: Adjusted coefficients (log hazard ratio) with standard errors for developing lung cancer 

five years or more after breast cancer. The conditional logistic regression was performed with 1018 

patients in 509 matched sets and the weighted Cox regression is performed with 1051 unique patients.  

 

Risk factors Conditional logistic 
regression 

Weighted Cox regressiona 

Stratified weights                   Unstratified weights 

 Log hazard ratio (standar error) 

 Univariate 

No radiotherapy 1 1 1 
Radiotherapy 0.19 (0.16) 0.20 (0.16) 0.17 (0.15) 
No smoking 1 1 1 
Smoking 1.73 (0.19)  1.94 (0.16) 1.86 (0.16) 

   

 Multivariable  +  interaction 

No radiotherapy 
and no smoking 

1 1 1 

Radiotherapy -0.003 (0.29)  -0.26 (0.25)  -0.23 (0.24) 
Smoking 1.37 (0.32)  1.38 (0.29) 1.37 (0.28) 
interaction 0.54 (0.39)  0.78 (0.34)  0.68 (0.33) 

a 
all weighted analyses included adjustment for the matching variables used in the sampling i.e. age (continuous), 

region and decade of diagnosis. 
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7.1.5 Clustered data 

7.1.5.1 Question 12  

What are the advantages of using a weighted Cox regression with clustered data? 

(Study III) 

In study III, using a weighted Cox regression, we were able to use all the information which 

had been gathered for the two lungs in each patient, thereby doubling the number of data 

observations and increasing the power of the statistical analysis. The approach used showed 

how to best exploit data which were collected on cases and controls, treated and non-treated 

with radiation therapy and with all doses reconstruction carried out for both lungs. 

Some alternative to our approach exist. To use a conditional logistic regression analysis, 

while keeping the same outcome definition and retaining as much as data as possible, the data 

could have been been used as follows: the affected lung of a patient case is selected as case 

and analysed in sets with the ipsilateral lung of the control patient. This means that half of the 

data would be ignored, which would decrease the power as compared with our approach.  

Another possibility is the approach used by Prochazka et al.53 In their study, only women 

who were lung cancer cases treated with radiation therapy were selected, and the unaffected 

lung was considered as the control for the affected one. While this approach will avoid any 

problem of unmeasured confounding at the patient level and is definitely cost-efficient, it 

does not use the information from non-irradiated cases or control patients, and thus loses 

power. 

7.1.6 Subgroup analyses 

7.1.6.1 Questions 13 and 14 

Are subgroup analyses of nested case-control data valid when a subgroup is defined 

by a covariate measured at baseline? (Study IV) 

Is one method to be preferred among weighted Cox regression and conditional 

logistic regression for subgroup analyses of nested case-control data? (Study IV) 

The results of Study IV provided clear answers to these two questions. As shown in Figure 

7.8, both conditional logistic regression and weighted Cox regression provided on average an 

unbiased exposure estimate in subgroup analyses, disregarding the type of covariate used to 

define the subgroup (independent risk factor, matched or unmatched confounder, or effect 

modifier). The same conclusion applied in all tested simulation settings.  

However, the conditional logistic regression presented such a variability compared to the 

weighted Cox regression, that the latter should be preferred. This is not surprising because, in 

weighted Cox regression, all individuals belonging to a subgroup are participating in the 

analysis, while, for the conditional logistic regression, only sets which, by chance, include a 

case and a control belonging to the same subgroup are used in the analysis. The number of 
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sets which are lost will depend on the association between the outcome and the covariate and 

the prevalence of the various levels of the covariate as well as the prevalence of the exposure.  

 

 

Figure 7.8: Adjusted exposure coefficient with 95% confidence intervals (calculated with model 

based standard errors), provided by the analysis of the cohort (Cox regression), the nested case-control 

data (conditional logistic regression and weighted Cox regression), the eight cohort subgroups (Cox 

regression) and the eight subgroups of nested case-control data (conditional logistic regression and 

weighted Cox regression). 

 

7.2 Results regarding the epidemiological questions 

7.2.1 Study I 

The results regarding the epidemiological question of Study I (risk factors for contralateral 

breast cancer) are presented in the first column of Table 7.1. We found that the multifocality 

of the breast cancer tumour was a risk factor for contralateral breast cancer with a hazard ratio 

(95% confidence intervals) of 1.99 (1.07, 3.70). This is the first time that this factor is 

highlighted. This result is not surprising as multifocality has been shown to be associated 

with the lobular histological type of breast cancer, a known risk factor for contralateral breast 

cancer.82,83 

Parity was found to be protective against contralateral breast cancer (with a hazard ratio (95% 

confidence intervals) of 0.40 (0.18, 0.89)), which is in line with the literature where parity is 

often reported as a protective factor but usually with a non-statistically significant hazard 

ratio.73,80,81 

In addition, the main weighted Cox regression analysis confirmed that the known risk factors 

‘family history’ and ‘non-ductal histological type’ were associated with an increased risk of 

developing contralateral breast cancer with hazard ratios (95% confidence intervals) of 1.91 

(1.11, 3.28) and 2.09 (1.21, 3.59), respectively, in line with the literature.71,73-77 

In the analysis, cases of contralateral breast cancer whose breast cancer was diagnosed 

between 1992 and 1997 were included in order to reduce the drastic loss of available case 
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patients resulting from the study period alignment procedure (see Figure 4.1), or in other 

words to gain power. The same risk and protective factors were found when the time period 

for including contralateral breast cancer cases was 1992-2005 or 1997-2005, but the estimates 

were not statistically significant for the latter period. In our situation, there was no reason to 

suspect a problem by extending the study period to include contralateral breast cancer cases 

from 1992 (instead of 1997), as there were no major changes in this period for breast cancer 

diagnosis or treatment. This kind of choice is highly dependent on the clinical context and 

should be considered carefully. 

7.2.2 Study III 

In analysing how the risk of developing lung cancer after breast cancer is related to the dose 

of radiation therapy received for breast cancer treatment and the smoking habits of the 

patient, the following results were obtained. 

An interaction was found between the two carcinogens (radiation therapy and smoking), 

meaning that the hazard ratio of developing lung cancer increased (doubled) in smokers 

receiving radiotherapy compared to smokers who were not treated with radiotherapy. If this 

had already been mentioned,52,53,87 it is the first time that the interaction between smoking and 

breast cancer radiation therapy is characterised with a numerical value: the interaction 

coefficient was 0.78 (standard error = 0.34) leading to a hazard ratio of 2.19 (Table 7.2, 

second column). 

The analysis of the 2102 lungs was performed with weighted Cox regression, which can 

handle the clustered data in a simple way by using a robust variance. Both hazard ratio and 

absolute risk for a lung to develop cancer were estimated. The results show that the risk of 

developing lung cancer among smokers increased with increasing radiotherapy dose (P for 

trend = 0.026), with a hazard ratio of 8.63 (95% confidence interval: 5.04, 14.79) for smokers 

who received a radiation dose higher than 13 Gy compared to a hazard ratio of 4.09 for 

smokers who did not have radiotherapy. In contrast, no such relationship was found among 

non-smokers.  

The same observation applies when drawing the estimated curves of absolute cumulative risk 

for a lung cancer over the period from 5 to 25 years after breast cancer diagnosis (Figure 7.9) 

The main findings from the study are the interaction between the two carcinogenic factors 

and the trend of increasing risk with increasing radiation dose in smokers. However, the 

clinical relevance is limited by features of the data: the individual dose reconstruction 

procedure was subject to inaccuracies,53 the information on smoking was a simple binary 

variable,115,116 and the confidence intervals in the analysis were rather wide. In addition, the 

risk of lung cancer was likely overestimated because death was treated as a censoring event 

and not as a competing outcome.  
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Figure 7.9: The estimated absolute risk (i.e., probability) of cancer in a lung exposed to various 

radiation doses, estimated at various time points from 5 to 25 years after breast cancer for patients 

aged 54 years at breast cancer diagnosis, assuming no competing risk of death. 
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8 CONCLUSIONS AND PERSPECTIVES 

8.1 Achievements  

Using both real data sets and simulation studies, we challenged the weighted partial 

likelihood approach in analysing nested case-control data, in order to better identify its 

advantages and limitations. In doing so, the scope of this approach was both refined and 

extended.  

We showed that the weighting system using Kaplan-Meier weights enabled the 

reconstruction of the cohort, with, on average, the correct number of individuals at risk over 

time, both for the whole cohort, and in subgroups defined by a covariate measured at 

baseline. This result applied even for stratified design (i.e. when additional matching was 

performed on other covariates than time), provided that stratified weights were calculated. To 

our knowledge, this had never been shown before. This result suggests that any analysis or 

development made for cohort data could be applied to nested case-control data when using 

the IPW approach, but this would require confirmation studies. 

We showed also how this result applied with some limitations to real situations, which 

highlights the importance of recovering the exact sampling scheme of the available data as 

well as the correct identification of the study base from which the nested case-control 

sampling was performed. 

In case of stratified sampling, Støer et al. 97 already showed that unstratified or stratified 

weights provided similar exposure estimates if adjustments on the matching factors were 

made in the analysis. These results were confirmed in all the studies included in this thesis. In 

addition, when stratified weights were used, correct estimates for the matching factors were 

retrieved from the weighted partial likelihood, which is a further advantage of the IPW 

approach.  

Regarding absolute risk estimation, we showed that both the Langholz-Borgan and the 

weighted methods provided valid estimates in most situations, the latter showing slightly 

higher levels of precision than the former. In case of fine matching, the Langholz-Borgan 

method was more prone to be biased than the weighted method and had larger standard 

errors, so that our recommendation would be to give preference to the weighted method for 

calculating absolute risk. 

When overmatching is mentioned in the literature, it is often to try to prevent the issue from 

arising 54,57 and less frequently to explain how to mitigate the problem once it has arisen.58 

Using weighted partial likelihood to mitigate the problem of overmatching at the design stage 

is also part of the contribution of this thesis to the field, although results did only partially live 

up to the expectations. 

The importance of using appropriate methods compared to a naïve unweighted approach 

which leads to biased estimates was also highlighted, which was already pointed in case-
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control studies.33,34,54,117-119 We also demonstrated how the collected data on paired organs 

(i.e. clustered data) can be best exploited when using weighted partial likelihood. 

The subgroups analyses shed light on the validity of such analyses and on the advantages of 

weighted partial likelihood compared to conditional logistic regression for the precision of 

the exposure estimate. It is reassuring that these analyses are valid per se, but we agree with 

Pocock 67 that subgroup analyses should not be overused, a topic addressed in the literature 

about randomised clinical trial.65-69 Only subgroups defined by a covariate measured at 

baseline were investigated in our simulation studies, but extension to time-dependent 

covariates should not be an issue.120 

We finally addressed practical aspects related to the reuse of data. The consequences of 

reusing data which have narrow inclusion criteria, the restriction in the choice of type of 

weights which can be calculated when data sets are anonymised, and the importance of 

having information on censoring dates for controls were all pointed out. 

A major obstacle for using novel methods is the lack of software and guidelines. Study I 

provides such guidelines where all steps needed for data preparation and data analysis are 

explained in detail. Regarding software demand, an R package was developed and made 

available on CRAN,110,111 but, due to the features of our available data sets in Studies I and 

III, the multipleNCC package could not be used without some adaptation. The codes which 

we provided (at http://www.meb.ki.se/~biostat/), include weights calculations which are 

performed with unique codes, but also with the multipleNCC package. 

In this thesis, we focused on the IPW approach with Kaplan-Meier weights. The other 

likelihood methods, which were briefly exposed in Chapter 5 and which include a complete 

cohort likelihood approach,18,94 or a multiple imputation approach,95 would not be an option 

with the clinical data which was handled (Sudies I and III), as the nested case-control data set 

had been made independent from the study base. In such a situation the missing data and the 

available data cannot be linked which is a major obstacle for using these methods. The same 

obstacle prevented the use of glm/gam weights for the weighted partial likelihood approach 

as well as the straight utilisation of the multipleNCC package.  

8.2 Nested case-control design and other cohort sampling 
strategies 

In terms of study design, this thesis focused on the nested case-control design. The 

development of this design answered a need to optimise the efficiency of epidemiological 

research, but other designs answer the same need. Among the designs which sample within a 

well-defined cohort, the case-cohort design introduced in 1986 by Prentice 121 is another 

example of successful development. In the case-cohort design, the sampling is performed at 

baseline (inclusive sampling), where a subcohort is randomly sampled from the study base. 

This design and the nested case-control design (incidence density sampling) share aspects not 

only in terms of sampling,5-7 but also in terms of analysis. A similar form of weighted partial 

http://www.meb.ki.se/~biostat/
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likelihood is used for case-cohort data analysis, with the advantage of weights which are 

easier to calculate compared to the weights used in the weighted partial likelihood developed 

for the nested case-control design.2,17,122-126 Vandenbroucke and Pearce 6 presented a third 

way to sample within a cohort, i.e. exclusive sampling. This “extreme” case-control design 

has even been extended to ‘more extreme’ case-control design by Salim et al. 127 who 

developed a weighted partial likelihood approach for analysing the data, with weights which 

also use basic information from the underlying cohort.  

As the common feature of these three designs is the existence of a well-defined cohort, and as 

the weights used in the respective weighted partial likelihoods include basic information from 

the cohort, it gives the opportunity to highlight the value of having access to such cohorts in 

research. 

8.3 The value of population and health registers 

In Sweden, as well as in other countries, national/regional health and population registers are 

used for research purposes: cases for a specific outcome are selected and controls are 

subsequently sampled following a sampling procedure chosen by the research team and 

granted by the Ethical Review Board. The collection of detailed and often expensive data for 

the sample is then performed.  

The value of the registers for this selection and sampling role is well recognised, but there is 

an added value which is less known and which was highlighted in this thesis: the ability to 

use basic information from the register to perform non-traditional analyses. Indeed, the 

weighted method used in the thesis was relevant because we had access to basic information 

available in the well-defined underlying cohort and the applied sampling procedure was 

known. Lacking one of these aforementioned factors can hamper the use of the IPW method 

in nested case-control data analysis.  

On the other hand, while these factors are necessary, they are not sufficient. When analysing 

nested case-control data with conditional logistic regression, it is not necessary to collect any 

information on dates (event or censoring), as this information is useless for the analysis. The 

nested case-control data may thus lack information about dates, which could also hamper the 

use of the IPW approach. It is, therefore, equally crucial that the dates which are registered in 

the cohort are collected in the sample. While these should be easy to retrieve, this represents a 

change in some habits regarding data collection, and this could take some time before 

becoming the standard. 

8.4 Perspectives  

The achievements of this thesis are part of a bigger picture in epidemiology, which could be 

summarised with a key phrase: the need for flexibility. When data collection is expensive, 

there is a crucial need to optimise the cost-efficiency of research projects, which means both 

performing smart sampling and enabling the reuse of the expensive information which was 
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gathered. This is valid for clinical data retrieved from clinical charts, for example, but it is 

even more crucial for genomics with the expensive and large associated molecular data. 

Flexibility already characterises the development of various non-standard designs or 

sampling strategies which occasionally appear in the epidemiological literature. Their 

development is generally driven by a particular need, or a particular data situation. Such 

examples of needs and associated designs include: savings in time, cost or lowering 

computing burden (for example the “Exposure Enriched Case-Control” design 128), the 

targeting of informative individuals (for example, the counter-matching sampling of 

controls,129-131 and the end-point design 132), and designs and analyses which do not need 

access to the underlying cohort.133,134 This list is non-exhaustive. 

In this thesis, flexibility was present in combining data sets and in using weighted partial 

likelihood, as this method of analysis is much more flexible than the conditional logistic 

regression analysis. A possible extension of this work could be to explore how to extract 

more information from a prior nested case-control study. After the end of the original study, 

some of the controls will usually develop the disease. If information was available on when 

these controls developed the disease, it would be valuable to find out how to use this new 

information in order to update the estimates obtained in the prior study. 

One possible area of further development lies in exploring how to gain flexibility by 

combining designs into ‘hybrid’ designs. This kind of idea has already been explored with 

case-control studies.135,136 Given the similarities in the weighted likelihoods used in both 

nested case-control and case-cohort data analyses, possible hybrid designs could be created 

from these two designs. For example, when a subcohort is set up in order to address several 

research questions, it will likely be unnecessarily large to address a specific question. In this 

case, a nested case-control sampling within the case-cohort data could be superimposed, 

capturing a substantial part of the information available in the case-cohort data with a much 

reduced sample size. Another example could be, on the other hand, to augment case-cohort 

data with a nested case-control sampling when the subcohort does not include enough 

individuals (a situation which could happen when the subcohort has been followed up for a 

long time).  

Flexibility will always be needed when data have been collected following a given sampling 

procedure and are planned to be reused to address other research questions. We started a 

collaboration with a research team who had collected data following an extreme case-control 

design in order to answer an initial research question.137 They are now willing to address 

another research question using the same expensive data, but using a subgroup of the patients 

of the first study. In addition to this restriction, the new question involves a different starting 

time in the underlying cohort, and a different outcome and censoring definitions. Being able 

to exploit any information from the underlying cohort, as well as taking advantage of the 

similarities of the designs and of the variety of the potential statistical approaches is the key 

to overcoming design issues in such complex situations.    
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8.5 Concluding remarks 

This thesis has contributed to encourage researchers to use non-traditional approaches in 

analysing data. The wide applicability and potential advantages of the weighted partial 

likelihood approach for nested case-control data analysis has been further documented. We 

hope that this will eventually become standard practice.  

The thesis also contributed to building bridges between epidemiological research and 

statistical methods, as well as highlighting the close links between epidemiological study 

designs, which are too often artificially distinguished. 
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