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ABSTRACT 

 

Mass spectrometry-based shotgun proteomics has become one of the essential techniques for 

comprehensive studies of living systems. Due to the inherent complexity of proteomes and 

the data, bioinformatics plays a critical role to translate mass spectra into biological 

information and knowledge. Adapting to the increased availability of high-resolution mass 

analyzers, computational strategies for processing shotgun proteomics data should have 

some adjustments to utilize the advantages of modern instruments. This thesis presents five 

constituent papers to illustrate the methodological advancements for analyzing shotgun 

proteomics data that are generated from high-resolution mass spectrometry. Paper-I describes 

the DeMix workflow for protein identification, in which we broke down an old paradigm of 

tandem mass spectrometry by converting the unwanted co-fragmentation events into an 

advantage of natural multiplexing. DeMix simplifies the data processing procedure and 

significantly improves protein identification outcomes. Paper-III describes a label-free 

extension of the DeMix workflow, termed DeMix-Q, which makes use of the quantitative 

features of extracted ion chromatograms (XICs) for reliably propagating peptide 

identifications across LC-MS/MS experiments. DeMix-Q improves the reproducibility of 

peptide quantification by addressing the missing value problem that is caused by the data-

dependent acquisition of MS/MS. Based on the results, the concept of quantification-centered 

proteomics has been proposed. In the practice of quantification-centered proteomics, a flexible 

proteome summarizing approach termed Diffacto is described in Paper-V, which utilizes the 

information about covariation of peptides’ abundances to improve the relative quantification 

of proteins. Diffacto offers automatic quality control to remove inconsistent and unreliable 

quantitative data on peptides. The combination of a weighted summarizing method and an 

efficient FDR estimation provides significant enhancement of data utility for large-scale 

comparative proteomics. In Paper-II, an improved pI estimation method has been introduced 

to the novel device for sample fractionation based on isoelectric focusing technique. In Paper-

IV and V, the applications of peptide de novo sequencing have been demonstrated for 

analyzing complex proteomes in the absence of reference databases.  
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ABBREVIATIONS 
 

AA amino acid residue 
AMT accurate-mass-and-time 
AVONA  analysis of variance 
BLAST Basic Local Alignment Search Tool 
BSA bovine serum albumin 
CDR complementary determining region  
CID collision-induced dissociation 
cIEF  capillary isoelectric focusing 
CPTAC  Clinical Proteomic Tumor Analysis Consortium 
CV  coefficient of variation 
Da dalton, the unified atomic mass unit 
DDA data-dependent acquisition 
DIA data-independent acquisition 
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FDR false discovery rate 
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m/z mass-to-charge ratio 
MC Monte Carlo 
MJ-cIEF  multijunction capillary isoelectric focusing 
MPIB  Max Planck Institute of Biochemistry 
MS mass spectrometry 
MS1 survey spectrum, the first stage of tandem mass spectrometry 
MS/MS tandem mass spectrometry 
PCR polymerase chain reaction 
pI isoelectric point 
PIP peptide identity propagation  
PMF peptide mass fingerprint 
ppm part per million 
PQPQ protein quantification by peptide quality control 
PSM peptide-spectrum match 
PTM post-translational modification 
S/N signal-to-noise ratio 
SpC spectral counting 
TMT  Tandem Mass Tag 
XIC extracted ion chromatogram 
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CHAPTER ONE: BACKGROUND 
 

 

 

 

 

 

Figure 1.1 | The central dogma of molecular biology.  
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1.1 Introduction 

 

 

Comprehensively understanding molecular and cellular functions is the key to systems 

biology (Kitano, 2002). Moving towards the ultimate goal of systems biology, revolutionary 

advancements in technology, such as the massive parallel sequencing and high-resolution 

mass spectrometry, have changed almost every aspect of biomedical research. In light of the 

central dogma of molecular biology (Crick, 1970), we started to bravely explore the vast 

territory of systems biology, from DNA through RNA to proteins and beyond.  

Proteomics is the system-scale study of proteins– the functional entities involved in 

almost all the biochemical processes– that is tightly related to systems biology (Weston and 

Hood, 2004). Compared to genomics and transcriptomics, respectively the studies of DNA 

and mRNA, proteomics did not benefit much from the massive sequencing technology. The 

reason is obvious, proteins (chains of amino acids) are fundamentally different from DNA 

and RNA (chains of nucleotides). Unlike in the processes of transcription (DNA to mRNA) 

and reverse-transcription (mRNA back to DNA), the information-flow is “irreversibly” 

encoded by nucleotide triplets (codons) in the process of translation (mRNA to protein). The 

combination of four nucleobases– A, C, G, and U (or T for DNA)– gives as many as 64 possible 

triplets, which causes the degeneracy of genetic code that exhibits redundancy for encoding 

the 20 amino acids. Besides, there is no evidence so far indicating an equivalent of the 

polymerase chain reaction (PCR) for reproducing proteins after the synthesis.  

Many believe that the protein abundances can be determined, to some extent, by the 

expression level of mRNAs (Gygi et al., 1999, Liu et al., 2016). This claim could be supported 

by an apparent correlation between the profiles of transcriptome and the proteome, if given a 

steady cellular state and the factors reflecting protein translation and degradation (Wilhelm 

et al., 2014, Liu et al., 2016). However, proteomes are the snapshots of living systems. Direct 

study of the performers of biological functions should give a higher accuracy of elucidating 

cellular mechanisms, compared to a study via the correlating entities (Wang et al., 2017). A 

complex system, e.g., a mammalian cell, often requires many copies of proteins to maintain 

the biological functions. Fortunately, to proteins in the scope of a cell, the relative scale of 

“many” is several magnitudes larger than that to the genes and transcripts. According to 

previous knowledge (Schwanhausser et al., 2011), the median protein abundance in a 



 Ph.D. Thesis Chapter one: Background 

- 7 - 
 

mammalian cell is 50,000 copies, in contrast to the abundances of mRNAs (median 17 copies) 

and genes (one or two copies). Therefore, when the protein samples are collected, the most 

difficult job of amplifying the analytes has already been done. However, the analytical 

challenge is to capture a clear snapshot of the proteome. 

 

Mass spectrometry-based proteomics 

 

Lacking the equivalent of PCR, the technique of “sequencing by synthesis” is not feasible for 

analyzing proteins, and the traditional protein sequencing method– Edman degradation– could 

be extremely slow and costly for a system-wide analysis. Therefore, the contemporary 

strategy for proteomics is “divide and conquer”, which strives, by all means, to purify, isolate, 

break down, and subsequently measure the analytes.  

Multiple sources of information about the properties of proteins could be used to 

characterize the protein contents in the samples. Among the physiochemical properties of 

proteins, such as isoelectric point (pI), hydrophobicity, and antibody affinity, mass (with the 

symbol m) is perhaps the only intrinsic property that can be precisely measured. Importantly, 

regardless of the structure, the mass of a protein molecule can be determined by summing up 

the masses of all the elements of all its chemical components– amino acids, terminal groups, 

and modifications.  

Mass spectrometry (MS) is the analytic technique for measuring the masses (m), or 

more precisely speaking, the mass-to-charge ratios of the charged particles (Thomson, 1913). 

The principle of MS can be described by the Lorentz force law and the Newton’s second law 

of motion: 

𝑭 = 𝑞(𝑬 + 𝒗 × 𝑩) 

𝑭 = m ∙ 𝐚 

Equating the two expressions gives: 

(
𝑚

𝑞
) ∙ 𝐚 =  𝑬 + 𝒗 × 𝑩 

 

This equation describes the dynamics of charged particles in an electromagnetic field in 

a vacuum (𝑬: electric field, 𝒗 × 𝑩: vector cross product of the velocity and the magnetic field), 

where the change of velocity (𝐚) determines the mass-to-charge ratio (m/q) of the charged 

particle.  
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The standard unit of the physical quantity of m/q is kilograms per coulomb (kg/C). To 

simplify the interpretation of data in mass spectra, the common notation for the mass-to-

charge ratio is m/z. In this notation, mass (m) is related to the unified atomic mass unit, dalton 

(Da), which is defined as one twelfth of the mass of a neutral carbon-12 (~1.6605402 × 10-27 kg); 

and the charge (z) is related to the elementary charge (e), which is the electric charge of a 

proton (~1.60217662×10−19 C). By this definition, the atomic unit of m/z is dimensionless, which 

is the ratio between the mass number and the charge number.  

Although proteomics relies on the different technology than genomics and 

transcriptomics, the field is not without revolutionary advancements. (Aebersold and Mann, 

2003, Aebersold and Mann, 2016). In fact, a comparably fast development of high-resolution 

mass spectrometers, with the increased accessibility, has already transformed proteomics. For 

instance, the Orbitrap mass analyzer (Makarov, 2000) has enabled high-resolution Fourier 

transform MS on a benchtop, which has been well adopted as a powerful technique in various 

protein-related biomedical research (Michalski et al., 2011b, Zubarev and Makarov, 2013). 

Thanks to the Orbitrap, deep profiling of complex proteomes became not only feasible 

(Thakur et al., 2011, Nagaraj et al., 2012) but also time-efficient (Richards et al., 2015), As a 

result, the comprehensive maps of the human proteome were eventually drafted (Kim et al., 

2014, Wilhelm et al., 2014), more than a decade after the availability of the human genome 

sequence (Lander et al., 2001, Venter et al., 2001).  

 

 

Separation prior to MS 

 

Complementary techniques are almost always applied in conjunction with MS, to provide 

extra dimensions for physical separation of proteins. Electrophoresis and liquid 

chromatography (LC) are the most commonly applied techniques.  

Electrophoresis separates proteins by moving the charged molecules in an electric field 

through a matrix or solution. The electrophoretic mobility depends on the net charge and the 

molecular weight of the analyte. Because proteins are zwitterionic molecules that may carry 

both positive and negative charges, each protein has an isoelectric point (pI). Therefore, 

isoelectric focusing (IEF), as one type of electrophoresis, provides a pH gradient to variate the 

net charges of analytes. When the pH of surrounding environment equals the pI of a particular 

protein molecule, the net charge of the zwitterionic molecule becomes zero (neutral), and 

consequently, the protein becomes stationary (focused) in the electric field.  
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LC, or more specifically, the reversed-phase LC separates molecules based on their 

hydrophobic characters, by dissolving and eluting samples from a non-polar stationary phase 

using a polar mobile phase that has a concentration gradient that changes the molecules’ 

affinities to the stationary phase. A high-performance LC uses a pump to force the sample 

solved in the mobile phase through the stationary phase. The instrumental setting of reversed-

phase (ultra)high-performance liquid chromatography coupled with mass spectrometry, 

(U)HPLC-MS for short, has become the most common technology used for in-depth 

proteomic analysis.  

Tandem layouts and combinations of these techniques can provide a multidimensional 

separation for approaching the rather comprehensive analysis of complex proteomes (Zhang 

et al., 2010). For example, the MudPIT approach (Link et al., 1999) combines two types of LC 

(ion-exchange and reversed-phase, IEX/RP-LC) and then connects to MS. For the first time, it 

provided a “comprehensive” analysis of over 100 proteins in a single experiment. With 

modern instruments, compared to its earlier implementations, such a two-dimensional LC-

MS system has become a hundred times more powerful that enabled profiling of over 10,000 

proteins (Geiger et al., 2012). More recently, the HiRIEF approach, which links the state-of-

the-art IEF, LC, and MS technologies, has demonstrated the deep proteome profiling of 

mammalian cells by quantitatively analyzing over 13,000 human proteins in a single 

experiment (Branca et al., 2014).  

 

Tandem mass spectrometry 

 

Although the mass of a protein could be precisely measured by MS, it is far from a unique 

identity of the protein and is not sufficient to infer the corresponding sequence of the protein. 

In a protein sequence, the number of possible combinations of 20 amino acids is enormous, 

which could form as many as 20n different sequences depending on the length (n). 

Consequently, based on a single value of m/z, it is rather difficult to deduce the elementary 

composition of large proteins and is almost impossible to know the order of the amino acids. 

However, the problem can also be solved in the manner of “divide and conquer” by breaking 

down the ion of the analyte to preferably two pieces and subsequently measuring the m/z of 

its fragments.  

The instrumental setting for this method is called tandem mass spectrometry (MS/MS 

or MSn) (McLafferty, 1981). MS/MS generates hierarchical mass information on the precursor-

fragments relations. MS/MS has four basic steps: isolation, activation, fragmentation, and 
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detection. The first mass analyzer (e.g., a quadrupole) isolates the target precursors from other 

ions that have different m/z. After the isolation, precursor ions are stored in a chamber (e.g., 

an ion trap) where certain energy will be given to activate the precursors. Activation will 

eventually break down the amino acid backbones. For fragmenting the peptide ions, the most 

commonly applied method of activation is collision with neutral gas molecules (CID/HCD) 

(Mcluckey, 1992, Wells and McLuckey, 2005); and a less common method is transferring 

electrons to the positively charged molecules (ECD/ETD) (Zubarev et al., 1998, Syka et al., 

2004). Breakages on the amino acid chains will generate fragment ions (𝑚𝑓
+) and/or neutral 

particles (𝑚𝑛) that, in combination, compose the masses from the precursors (𝑚𝑝
+): 

𝑚𝑝
+ = 𝑚𝑓

+ +  𝑚𝑛 

Depending on the locations of backbone breakage, the fragment ions could form a 

ladder of masses that tells the composition and the order of amino acids, which is the sequence 

of the precursor. Detection of ions can be done in a high-resolution mass analyzer, (e.g., 

Orbitrap) for a high mass accuracy at the level of ppm. However, the mechanisms of 

fragmentation are not yet fully understood, and the backbone breakages are only empirically 

predictable (Degroeve and Martens, 2013). When the fragmentation does not follow the 

theoretical or empirical rules, it could be sometimes difficult to interpret the observed spectra 

(Palzs and Suhal, 2005, Zubarev et al., 2008). 

 

Shotgun proteomics 

 

Of the approximately 20,000 protein coding genes embedded in the human genome, the 

canonical human protein sequences have a median length of over 400 amino acids, and a 

median mass of over 45 kDa (UniProt, 2015). Ideally, proteins should be analyzed in their 

native forms that carry the full information about their sequences (Catherman et al., 2014). 

However, proteins often carry a wide variety of posttranslational modifications (PTMs). The 

combination of PTMs, isoforms, and mutations will result in an exponentially increased 

number of the forms of proteins (Cox and Mann, 2011), and many of them will likely have 

distinctive masses. Due to technical limitations, a “top-down” approach for direct 

measurement of all these “proteoforms” is rather difficult (Kelleher, 2004). Therefore, shotgun 

proteomics, an analog to the shotgun sequencing of genomes, has become the formidable 

technique in large-scale studies of complex proteomes, which is also known as the “bottom-

up” approach.  
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Figure 1.2 | Shotgun proteomics and LC-MS/MS. Purified proteins are digested into 

peptides using proteolytic enzymes (typically trypsin). Proteolytic peptides are 

separated by liquid chromatography (LC) according to hydrophobicity. Peptides eluted 

from LC are ionized (protonated) and injected into a mass spectrometer. The m/z values 

of peptide precursor ions are recorded in the survey MS spectra. After isolation, 

activation, and fragmentation, the m/z values of fragment ions are recorded in MS/MS 

spectra. The nomenclature for labeling the fragment ions was suggested by (Roepstorff 

and Fohlman, 1984) and modified by (Biemann, 1988). Collisional dissociation (CID and 

HCD) mainly produces b/y species of fragment ions.  
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Shotgun proteomics involves proteolytic digestion to cleave the intact proteins into 

proteolytic peptides. The digestion makes the analytes less heterogeneous and more friendly 

to MS. Trypsin exclusively cleaves the peptide bonds at the C-termini to lysine (Lys/K) or 

arginine (Arg/R) residue (Olsen et al., 2004), which is the protease of choice for a proteome-

scale digestion. Each of these two amino acids has an approximately 5% occupancy in human 

proteins. By tryptic digestion, the resultant proteolytic peptides have an average length 

around ten amino acids. Compared to that of intact proteins, the relative size of tryptic 

peptides is more amenable to MS.  

In addition, a full-tryptic digestion will yield peptides (most of which) containing only 

one lysine or arginine residue located at the C-termini of the sequences. According to the 

theoretical “mobile proton” model of fragmentation, protonated tryptic peptides are friendly 

to the collisional fragmentation (CID and HCD), because they are less likely to “sequester” the 

attached protons by the basic side chains (Palzs and Suhal, 2005, Swaney et al., 2010). 

 

Data acquisition 

 

Proteolytic digestion generates tens of peptides per protein, which inevitably causes new 

challenges for an MS-based analysis. First of all, MS is currently not fast enough to analyze all 

peptides in a reasonable amount of time. For instance, human cells may typically express 

about 10,000 genes and translate them into proteins. As the median length of human proteins 

is about 400 AA, one could expect to have on average 40 proteolytic peptides per protein, 

assuming a full digestion using trypsin. In this regard, even without considering sequence 

variations and PTMs, one would have at least 400,000 peptides to analyze in a single 

experiment. Given three hours for a single LC-MS/MS experiment, one needs to have an at 

least 40 Hz identification rate to get a full coverage of the expressed proteome. Currently, an 

Orbitrap mass analyzer has a maximum 18 Hz of acquiring high-resolution (15,000 FWHM) 

spectra; which empirically offers ca. 10 Hz identification rate in best scenarios with 50 to 60% 

success rate of MS/MS identification.  

Secondly, the dynamic range of proteins in mammalian cells spans over seven orders of 

magnitude (Schwanhausser et al., 2011), but a modern MS could barely reach five orders of 

magnitude, leaving a “dark corner” of the proteome consisting of mostly the least abundant 

proteins (Zubarev, 2013). The instrumental requirement for a comprehensive proteome-wide 

analysis is considerably high, which could be analogous to using one scale to measure the 
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weights of both a mosquito (~5 mg) and a human adult (~6o kg); or using one ruler to measure 

both the diameter of a human hair (~80 µm) and the height of the Eiffel Tower (300 m). 

In general, proteins with higher abundances give peptide ions that generate stronger 

signals and are easier to analyze. Thus, a strategy called data-dependent acquisition (DDA) 

for MS/MS is commonly applied in shotgun proteomics experiments. By the DDA approach, 

in every cycle of MS analysis, the most abundant precursor ions will be sequentially isolated 

for MS/MS. However, the DDA approach has a critical drawback– it is not entirely 

reproducible. That is to say, repeating the experiment with the same sample and the same 

instrument settings, one would obtain a somewhat different set of peptides derived from the 

MS/MS spectra (Tabb et al. 2010). The under-sampling problem leaves a serious concern 

about the reproducibility in proteomics experiments (Domon & Aebersold 2010). In order to 

avoid the stochasticity introduced by DDA, the targeted data acquisition could be applied, 

which specifies when to acquire an MS/MS spectrum of a specific precursor ion. The latter 

approach relies on the prior knowledge and allows for a limited list of targets, which makes 

it poorly suitable for the proteome-wide discovery. Alternatively, the data-independent 

acquisition (DIA) has been proposed to sequentially acquire MS/MS spectra for a wider m/z 

range (compared to DDA and targeted approaches) of precursors in an unbiased manner 

(Gillet et al., 2012, Egertson et al., 2013). 

The choice of data acquisition method depends on the purpose of a study, and the 

balance between the discovery and validation, as well as between sensitivity and 

reproducibility (Leitner and Aebersold, 2013). 
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Figure 1.3 | Data-dependent vs. data-independent acquisition of MS/MS spectra. 

DDA targets the most intensive precursors that are observed in the survey MS. Narrow 

isolation windows (usually, m/z < 4.0) are often used to separate targeted precursor ions 

for MS/MS. To prevent repetitively analyzing the same targets within a short time, the 

mechanism of dynamic exclusion applied in DDA introduces a stochastic tendency in 

the MS/MS data. In contrast, DIA does not target specific precursors and does not 

necessarily require survey MS for acquiring precursor information. Wide isolation 

windows (typically, m/z > 20) are sequentially used for acquiring MS/MS spectra in an 

unbiased manner. Consequently, DIA-derived MS/MS spectra are often more complex 

and noisy than that of DDA, due to co-fragmentation of the mixture of precursor ions. 
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1.2 Bioinformatics 

 

 

MS-based shotgun proteomics could be categorized as a high-throughput, data-driven 

research field (Cox and Mann, 2007, Cox and Mann, 2011), generating huge amounts of data 

that require highly efficient software for downstream analysis. Proteomics, in this regard, is 

also an interdisciplinary field, in which, bioinformatics plays a critical role in making sense of 

the data, and ultimately transforming mass spectra into the knowledge related to biological 

systems.  

Compared to the rapid instrumental developments, the data analysis paradigms and 

computational methods for shotgun proteomics have not changed much since its early ages. 

Especially, the dramatically improved resolution and mass accuracy have not been fully 

utilized (Olsen et al., 2005, Zubarev and Mann, 2007). Apparently, developments in 

bioinformatics for proteomics are lagging behind other fast-growing ‘omics fields.  

Here, I will briefly introduce the common bioinformatics methods for proteomics, and 

address the current methodological limits in analyzing high-resolution and high-throughput 

data, which can be improved by the studies included in this thesis.  

 

Identification 

 

In shotgun proteomics, the analytes of an LC-MS/MS experiment are ionized proteolytic 

peptides. Unlike DNA sequencing, the typical readout from a mass spectrometer is not the 

processed information about the sequence itself, but the much less intuitive m/z values. Due 

to the inherent complexity, it could be one of the most diverse and challenging tasks in 

shotgun proteomics to associate a set of m/z values to the identity of a certain peptide 

(Marcotte, 2007).  

In order to know the mass (m) of a given peptide, one needs to determine its charge 

state (z). Fortunately, as proteins and peptides are carbon-based macromolecules, multiple 

isotopic peaks may be observed due to the natural abundances of stable isotopes of chemical 

elements, especially the relatively abundant (~1.1%) carbon-13. High-resolution MS (e.g., 

FWHM > 15,000) can well distinguish the m/z difference between peptide ions (m ≪ 100 kDa) 
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with different compositions of stable isotopes, for example, between carbon-12 and carbon-13 

(∆m = 13C - 12C =1.003355 Da ≈ 1 Da). The charge state could be determined by the m/z 

difference between two isotopic peaks, 𝑧 = Δ𝑚
𝑧⁄

−1
. For example, a difference of Δ𝑚

𝑧⁄  = 0.5 

indicates a doubly charged precursor, while a Δ𝑚
𝑧⁄  = 1 3⁄  difference means triply charged 

ions, and so forth.  

In addition, it is important to determine the monoisotopic mass, which is the mass of 

the analyte molecule where each of the chemical elements is from the most abundant isotopes, 

such as 1H, 12C, 14N, 16O, as well as 32S. Because the 1 Da mass difference between the stable 

isotopes of carbon is slightly different from (~ 6.3 mDa heavier than) that between the isotopes 

of nitrogen, the “fine structures” composed of peaks of various (heavier) isotopes are often 

convoluted into a broader peak, whose position is defined less accurately than that of the 

monoisotopic peak. Resolving isotopic fine structures requires ultrahigh resolution (e.g., 

FWHM 500,000 to 1,000,000) that is available exclusively through FTMS. Importantly, the 

monoisotopic mass is additive, while the most abundant isotopic mass is not.  

As mentioned before, the peptide mass alone might not be a unique identity of the 

sequence, but combining extra-dimensional information (RT or pI) with the mass may create 

peptide mass fingerprints (PMFs) that greatly improves the specificity (Smith et al., 2002, Pasa-

Tolic et al., 2004). More detailed and reliable information about the peptide sequence is stored 

in MS/MS spectra. SEQUEST (Eng et al., 1994) and Mascot (Perkins et al., 1999) are the two 

traditional tools that are widely used in proteomics for identification of peptides from MS/MS 

spectra. Both are in the category of MS/MS database search engine that matches the peptide 

fragment fingerprints (PFFs) to the theoretical fragments in silico generated from a database 

of protein sequences. The certainty of a peptide-spectral matching (PSM) is estimated from 

the probability of randomly matching the MS/MS spectra to the theoretical peaks (p-values), 

or the expected number of random matchings in the given database (E-values). However, both 

search engines were developed quite a while before the prevalence of high-resolution 

instruments. Since then, many new algorithms have been proposed to improve the accuracy 

and reliability of peptide identification (Käll et al., 2007, Cox et al., 2011b, Kim and Pevzner, 

2014). 

Instead of matching experimental peaks to the theoretical peaks in a database search, 

spectra that have been previously identified can also be used as a reference library for 

matching (Lam and Aebersold, 2011, Yen et al., 2011). This approach is often applied for 

analyzing DIA data (Schubert et al. 2015). Compared to database searching, this method offers 

higher specificity but is still limited by the empirical knowledge stored in the spectral library. 
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The drawback of using a protein database or a spectral library is the little tolerance to 

any sequence variation or posttranslational modification (PTM). PTMs and mutations will 

accordingly introduce mass shifts to the masses of peptide ions, as well as the related 

fragments. In fact, a large proportion of unidentified spectra might probably be peptides that 

carry sequence variants and PTMs (Savitski et al., 2006b), and the border between mutations 

and PTMs is blurry. For example, a methylated aspartic acid (Asp) is identical to a glutamic 

acid (Glu) from the m/z point of view. Wrong conclusions can be drawn from using an 

inappropriate database (Knudsen and Chalkley, 2011). Therefore, identification and 

localization of PTMs and mutations require either a modification to the theoretical masses or 

a searching strategy that tolerates mass errors (Mann and Wilm, 1994, Chick et al., 2015). 

 

 

Table 1 | Mass increments (∆m) of canonical amino acid residues.  

 

Amino acid Code Monoisotopic mass Amino acid Code Monoisotopic mass 

Glycine G 57.02146 
Glutamine 

Q 
(GA/AG) 

128.05858 
Alanine A 71.03711 

Serine S 87.03203 Lysine K 128.09496 

Proline P 97.05276 Glutamate E 129.04259 

Valine V 99.06841 Methionine M 131.04049 

Threonine T 101.04768 Histidine H 137.05891 

Cysteine C 103.00919 Phenylalanine F 147.06841 

Leucine/Isoleucine L/I 113.08406 Arginine R 156.10111 

Asparagine N (GG) 114.04293 Tyrosine Y 163.06333 

Aspartate D 115.02694 Tryptophan W 186.07931 

 
The mass is identical between leucine (L) and isoleucine (I).  
The mass of asparagine (N) equals the mass two glycine residues (GG), and the mass of glycine-alanine (GA) is 

indistinguishable from that of glutamine (Q).  
Glutamine (Q) is less than 36.4 mDa (0.03%) lighter than lysine (K).  
Carbamidomethylation is a deliberate PTM introduced to cysteine residues during sample preparation, which 

gives a mass shift of +57.02146 Da to the mass of cysteine.  
Oxidation is also a common PTM that introduces a +15.99491 Da mass shift.  

 

 

Nevertheless, it is possible to wholly or partially construct the peptide sequences 

directly from MS/MS spectra. Tools for peptide de novo sequencing (Taylor and Johnson, 1997, 

Frank et al., 2007, Ma and Johnson, 2012) have evolved from the early approach of sequence 

tags (Mann and Wilm, 1994).  The de novo approaches directly infer the sequence of a peptide 

from the mass increments (Table 1) in the ladder of fragment peaks, without any prior 

knowledge of the protein sequences. Peptide de novo sequencing requires almost full backbone 
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coverage from the fragments and works best with short and lower-charged peptides. 

However, amino acids having the same masses (Table 1) can hardly be distinguished, and the 

introduction of sequence variances and PTMs can make the sequencing process even more 

difficult and less accurate. In order to improve the accuracy of peptide de novo sequencing, 

high-resolution spectra with complementary fragmentation techniques (e.g., HCD+ETD) are 

highly recommended (Nielsen et al., 2005, Zubarev et al., 2008, Chi et al., 2013). In practice, 

this approach is mainly used when a reference protein database is not available, for example, 

sequencing of antibodies (Bandeira et al., 2008). 

 

 

Quantification 

 

The changes of protein abundances can reflect the systematic responses to perturbations. In 

various contexts, differentially expressed proteins could reveal the key components of 

biological pathways and interaction networks, thus could be used as biomarkers for disease 

diagnose, or potential therapeutic targets for treatments. Accordingly, many proteomics 

studies have a common design, which is quantitative profiling of the protein contents of in 

different systems (e.g., perturbed vs. unperturbed) followed by comparative analysis (Ong 

and Mann, 2005). 

Fortunately, modern mass spectrometers provide a decent quantitative accuracy and a 

relatively wide dynamic range that is suited for the proteome-wide analysis (Zubarev, 2013). 

Most of the time, protein quantification is done on a relative scale by comparing protein 

abundances between the samples. It is, however, possible to estimate the absolute protein 

abundance (e.g., copy number per cell) by comparing measured abundances to internal 

standards with know absolute concentrations (Gerber et al., 2003, Silva et al., 2006, Wiśniewski 

et al., 2014). 

Quantitative analyses have two main approaches: stable isotopic labeling and the 

alternative, label-free quantification (Bantscheff et al., 2007, Cappadona et al., 2012). The 

labeling techniques, such as iTRAQ (Ross et al., 2004), TMT (Thompson et al., 2003), and 

SILAC (Mann, 2006), provide the power of multiplexing to MS analysis (Rauniyar and Yates, 

2014). By isotopic labeling, as many as ten (or even more) samples can be quantified 

simultaneously in the same LC-MS/MS experiment (McAlister et al., 2012, Werner et al., 

2014). However, the increased multiplexing ability comes at a price. As mentioned before, it 

requires ultrahigh resolving power (> 70,000 FWHM at 200 m/z) to distinguish the densely-
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coded mass tags (Hebert et al., 2013, Rose et al., 2013, Merrill et al., 2014). By the labeling 

approach, the quantitative information is often obtained by comparing the intensities of the 

same ionic species, but with different isotopic compositions. Inevitably, the process of 

quantification is built on top of the identification results that attribute the peptides’ quantities 

to the source proteins; thus, errors in identification will cause imprecise quantification. 

 

 

 

 

 

 

Figure 1.4 | Quantification techniques for shotgun proteomics. Adapted from 

(Bantscheff et al., 2007, Bantscheff et al., 2012). Solid capsules represent samples labeled 

by stable isotopes (e.g., 13C and 15N), while empty capsules represent unlabeled samples. 

Metabolic labeling methods (e.g., SILAC) incorporate heavy isotopes into living 

systems. Chemical labeling introduces post-translational modifications to specific 

amino acid residues or terminal groups using reagents with stable isotopes. Popular 

chemical labeling techniques (e.g., TMT and iTRAQ) are usually applied after protein 

digestion. Spike-in approaches combine a quantitative standard (labeled) into each 

protein sample. For example, in super-SILAC, an isotope-labeled cell mixture can serve 

as the internal standard (Geiger et al., 2010). Isotope labeling (metabolic and chemical) 

enables multiplexing, i.e., quantifying more than one sample in each LC-MS/MS 

experiment. Label-free quantification measures each sample individually. 
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LFQ, on the other hand, is appealing for having less experimental steps and is not 

limited by the size of studies. However, it requires for each sample an individual LC-MS/MS 

experiment (Hein et al., 2012). The very basic method of LFQ is spectral counting (SpC), which 

relies on counting the number of identified MS/MS spectra to approximate the relative 

logarithm of the abundance of the proteins (Liu et al., 2004, Ishihama et al., 2005, Griffin et al., 

2010). However, SpC is often deemed as semi-quantitative and has poor performance for 

lower abundant proteins with few identified peptides (Tabb et al., 2015). The more accurate 

solution is based on extracted-ion chromatograms (XICs) that can be applied to both 

precursors and fragments depending on the data acquisition mode (DDA or DIA). By 

measuring the time-dependent eluting profile of the ions, one can generate a map of 

chromatographic features that contains the quantitative information about the peptides, even 

without being associated with the corresponding sequences.  

Larger variances might be introduced into data analysis while combining multiple 

experiments. Compared to the labeling approaches, LFQ has a greater challenge of controlling 

the run-to-run variances. Especially, as mentioned before, the identification of peptides can be 

more or less different from run to run, due to the stochastic tendency in DDA. If the 

quantification is performed on top of the identification result, many peptides will have 

missing abundances in some of the experiments. The problem with missing values could be 

seen as one of the biggest obstacles in LFQ. For this reason, many sophisticated algorithms 

have been proposed for LFQ to address the issue with significant variances (Clough et al., 

2012, Lyutvinskiy et al., 2013, Cox et al., 2014). Moreover, computational efficiency might also 

be concerned in a large-scale implementation (Khan et al., 2009). Comprehensive reviews of 

LFQ algorithms can be found in recent studies (Matzke et al., 2013, Sandin et al., 2014).  

 

 

Proteome-wide summarization 

 

Shotgun proteomics involves proteolytic digestion, which breaks proteins down to peptides. 

In this scenario, an extra but necessary procedure is to reconstruct proteins based on the 

identified peptides, which is called “protein inference”. Due to sequence homology, the links 

between some of the peptides and the original protein molecules might no longer be unique 

after the digestion. A practical approach to protein inference is to apply the principle of 

parsimony and assembles the entire set of identified peptides into the least possible number 

of distinguishable protein groups (Nesvizhskii et al., 2007, Ma et al., 2009). Alternatively, 
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proteins could also be inferred based on likelihoods (Serang and Noble, 2012) or quantitative 

patterns (Forshed et al., 2011, Lukasse and America, 2014). 

Compared to the already difficult problem of protein inference, quantitative estimation 

of protein concentrations is more complicated, as it is based on multiple measurements of 

individual peptides. A common assumption is that the peptides’ abundances are proportional 

to the concentration of the source proteins (Walther and Mann, 2010). Accordingly, summing 

up peptide abundances is the approach that is well adopted in shotgun proteomics 

(Schwanhausser et al., 2011, Wilhelm et al., 2014). The question is, do all the peptides from the 

same source protein response equally to the concentration change? The answer might likely 

to be negative because multiple factors are involved in the quantitative measurements of 

peptides, many of which can violate the assumption of proportionality. Such factors include 

efficiency of enzymatic cleavage, peptide ionization efficiency, charge distribution, mass 

range of the instrument, sequence variance and homology, and so forth (Bantscheff et al., 

2012). However, the biggest obstacle is still related to missing values, which are frequently 

encountered, especially in LFQ. By aligning the chromatographic features, identities of some 

peptide may be propagated across LC-MS runs even in the absence of an MS/MS evidence 

(Thakur et al., 2011, Bateman et al., 2013, Weisser et al., 2013). Other procedures including 

imputation are often needed for enabling proteome-wide summarization of protein 

abundances and their comparisons (Karpievitch et al., 2012). 

 

 

Integrative workflows 

 

The field of proteomics is diverse, not only in the technological choices but also the analytical 

methods. Practically, no “one-size-fits-all” strategy could be applied universally in proteomic 

studies (Mallick and Kuster, 2010). Consequently, data analysis workflows often need to be 

tailored for specific types of applications and instruments.  

Common procedures in shotgun proteomics processing include MS data format 

conversion, mass peak picking, spectral quality control, chromatographic feature detection, 

retention time alignment, mass calibration, MS/MS database search, FDR estimation, protein 

inference, protein quantification, spectral annotation, visualization, and so forth. Since many 

of these procedures could be standardized, many integrated workflows, such as the 

commercial ProteomeDiscoverer package and the freeware MaxQuant (Cox and Mann, 2008), 

have gained popularity for providing bundles of pre-optimized tools for efficient processing 
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of typical proteomic datasets. However, the source codes of these programs are unavailable 

to general users, which reduces the flexibility of data analysis. In contrast, the OpenMS 

Proteomics Pipeline (Kohlbacher et al., 2007) is an open-source platform that provides greater 

flexibility for building customized analytical pipelines, especially for analyzing non-typical 

datasets.  

Besides the main processes of protein identification and quantification, the pre-

processing and post-processing steps could also affect the analytical performance (Wenger et 

al., 2011). Important pre-processing steps include precursor mass calibration (Cox et al., 

2011a), deconvolution of charges and isotopes, spectral cleaning, as well as demultiplexing of 

chimeric MS/MS spectra (Egertson et al., 2013). One post-processing procedure, which has 

become standard in proteomic analysis, is estimating the FDR of identification based on the 

theory of target-decoy competition (Elias and Gygi, 2007). For a given scoring threshold, the 

proportion of spectra matching to decoy (reversed or shuffled) sequences can reflect the 

fraction of false discoveries in the identification list. Base on the theory, advanced algorithms 

(e.g., Percolator) can be applied to calculate the posterior-error-probabilities (PEPs), giving a 

more accurate approximation of the FDR (Käll et al., 2007, Käll et al., 2008). Different methods 

may have various scoring schemes for peptide-spectral matching. Thus, it is also important to 

generate a consensus result when peptide-spectral matches are divergent (Shteynberg et al., 

2013). A protein group having more than one unique peptides could be considered more 

reliable than the “one-hit wonders” (Ong and Mann, 2005, Huang et al., 2012). Sophisticated 

protein inference approaches are especially useful when the number of identifications is large 

and when the FDR estimation at the protein level is no longer accurate. However, FDR 

estimation at the protein level is always harder and less accurate than for the peptide-spectral 

matches (Nesvizhskii et al., 2003, Serang et al., 2010, Savitski et al., 2015). 

 

 

 

1.3 Comparative proteomics 

 

 

Currently, the most common design in proteomics studies is the comparative analysis of two 

or more sample groups. In this context, the relative quantification approach plays a significant 

role in investigating the similarities and discrepancies at the protein level between the distinct 

functional states of the living systems. Changes of proteins’ concentrations may indicate the 
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cellular responses to perturbations in a biological system. Covariation of the abundance 

changes may provide information about protein interaction and signal transduction 

pathways. Key nodes in the protein networks may serve as biomarkers or therapeutic targets 

for complex diseases. The challenge in comparative analysis is to discriminate signals from 

noises (Matzke et al., 2013). Therefore, advanced statistical methods and large sample sizes 

are often needed (Serang and Käll, 2015). For increasing sample size, highly multiplexed 

techniques, such as neutron-encoded labeling (McAlister et al., 2012, Hebert et al., 2013, 

Savitski et al., 2014), can be applied; LFQ, on the other hand, offers a simpler solution for 

further expanding proteomic studies to larger sample sizes, if only the issue with 

reproducibility could be well-addressed (Tabb et al., 2016).  

 

 

1.4 Aims 

 

 

The general aim of this thesis is to provide a set of advanced bioinformatics methods for 

extracting biologically relevant information from proteomics datasets. The main focus is on 

improving the data utility for high-resolution tandem mass spectrometry that could facilitate 

biomedical research.  

The specific aims in the constituent papers are:  

• to establish a computational workflow for efficient processing of high-resolution 

mass spectrometry data and improving peptides identification results (Paper-I), 

• to illustrate a novel method for predicting the isoelectric point of peptides and 

proteins based on a new cIEF device (Paper-II), 

• to establish a novel workflow for improving the reproducibility of XIC-based 

peptide quantification, and to introduce a quantification-centered analytical 

paradigm for enhancing data utility in proteomics (Paper-III), 

• to propose a novel analytical approach for studying human antibodies in blood as 

disease biomarkers (Paper-IV), 

• to describe an advanced algorithm for protein quantification, and to propose a 

flexible and reliable data analysis strategy for designing and conducting large-scale 

comparative proteomics studies (Paper-V). 
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CHAPTER TWO: PRESENT INVESTIGATIONS 
 

 

 

2.1 Methodological considerations 

 

 

LC-MS/MS 

 

Proteomics experiments performed for this thesis were carried out with high-performance 

reversed-phase LC systems made by Thermo Fisher Scientific: EASY-Spray C18 columns (50 

cm in Papers I and V, 15 cm in Papers II and IV), or in-house packed 10 cm C18 column (Paper-

IV). Positive mode electrospray ionization (ESI) was used for coupling LC to MS. Fourier-

transform mass spectrometry (FTMS) were performed with Orbitrap mass analyzers made by 

Thermo Fisher Scientific: Velos (Paper-II), Q-Exactive (Paper-I), Q-Exactive Plus (Papers IV 

and V) and Fusion (Paper-IV). In Paper-II, an additional dimension of sample separation was 

applied prior to LC-MS/MS, which used the cIEF technique that will be described later.  

The data-dependent acquisition (DDA) was applied. In Paper-I, four different isolation 

windows (±1.0, ±2.0, ±3.0, and ±4.0 m/z) were used for investigating the specificity of precursor 

selection and the effect of multiplexing. Basically, a wider isolation window gives less 

specificity to the precursor ions and generates complexed spectra due to co-fragmentation of 

precursors. Further widening the isolation windows will decrease the specificity of the 

precursor-fragments relations in MS/MS, and will yield noisy chimeric spectra that are 

similar to DIA-MS/MS. However, processing DIA-derived data requires a different strategy 

to deconvolute each of the MS/MS spectra and reconstruct the information on the precursor-

fragments relations (Egertson et al. 2013; Tsou et al. 2015).  

In addition, a segmented DDA strategy (Vincent et al., 2013) was applied in Paper V, by 

limiting the range of precursor m/z in low, mid and high three non-overlapping mass ranges 

for triggering DDA. Such strategy intentionally reduced data redundancy of MS/MS for 
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investigating the quantification quality after implementing peptide identity propagation (PIP) 

across LC-MS/MS runs.  

Higher-energy collisional-induced dissociation (HCD) was the default technique 

applied for fragmentation. Electron-transfer dissociation (ETD) was also implemented in 

Paper-IV, in order to generate complementary fragment ions in the HCD-ETD spectral pairs 

for reliable peptide de novo sequencing.  

 

MJ-cIEF device and pI 

 

In Paper-II, an additional dimension of sample separation was applied using the newly 

developed isoelectric focusing device: pI-Trap (multiple-junction capillary isoelectric focusing 

fractionator, MJ-cIEF). The pI is defined as the point of pH value at which a given peptide 

acquires a net charge of zero. The net charge of peptides could be calculated based on the 

equations derived from the Henderson–Hasselbalch equation, which was described in details 

in the reference of Protein Modification Screening Tool (ProMoST) (Halligan, 2009).  

The negative charge (𝐶−) is determined by the pH of the environment and the pKa value 

of each of the 𝑛 negative groups. 

𝐶− = ∑
−1

1 + 10𝑝𝐾𝑎(𝑖)−𝑝𝐻

𝑛

𝑖=1

 

 

Similarly, the positive charge (𝐶+) is determined by the pH of the environment and the 

pKa value of each of the 𝑚 positive groups. 

𝐶+ = ∑
1

1 + 10𝑝𝐻−𝑝𝐾𝑎(𝑖)

𝑚

𝑖=1

 

 

When setting the net charge (sum of the positive and negative charges) to zero: 

𝐶− + 𝐶+ = 0 

the corresponding pH (i.e., the estimated pI) could be determined by the pKa values of 

the chargeable groups in the chain of amino acids. The pKa values of chargeable groups were 

obtained from the website of ProMoST 1  (Halligan, 2009). 

                                                      

1 http://proteomics.mcw.edu/promost.html 

http://proteomics.mcw.edu/promost.html


 Ph.D. Thesis Chapter two: Present Investigations 

- 27 - 
 

 

 

 

 

Figure 2.1 | Calibration of pI gradient for the MJ-cIEF sample fractionator (pI-Trap). 

Peptides are injected into the cIEF device, focused in the capillary column based on their 

pI properties, and then collected in different fractions depending on the time of flowing 

through the column. Abundant peptides observed in multiple fractions are used as 

markers for connecting the fractional location of the capillary column to the theoretical 

pI values. Center locations of the marker peptides in the cIEF column are estimated by 

fitting skewed Gaussian curves to the relative peptide abundances observed in different 

fractions. Theoretical pI values are predicted by computationally approximating the 

optimal pH that yields the minimal net charge of the peptide molecules. (Colors indicate 

the pH or pI: blue basic, red: acidic).  
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Chargeable groups include side chains of acidic (negative) residuals: glutamic acid (E), 

aspartic acid (D), tyrosine (Y), and basic (positive) residuals histidine (H), lysine (K), and 

arginine (R). However, the Cysteine (C) side chain with the fixed modification 

(carbamidomethylation) was not considered as a chargeable group. Terminal groups (N-

terminus and C-terminus) are also chargeable but were considered individually for the 20 

terminal amino acids. A Python script has been developed for calculating the optimal pH 

value by approximating the minimum net charge for a given sequence of amino acids. 

The information on pI of the peptides was associated with the fractional location of the 

cIEF device. Peptides collected from more than three fractions were chosen as the self-

calibrating markers. Skewed Gaussian curves were fitted to the observed peptide abundances, 

producing the estimated center locations of the marker peptides. Theoretical pI values and the 

center locations of the marker peptides were connected by five-degree polynomial curve-

fitting, which transformed the fractionator to a non-linear pI gradient (Figure 2.1).  

 

 

External datasets 

 

Data generated from different laboratories are especially useful for testing the compatibility 

of the data processing approaches. In Paper-I, the reference dataset produced by researchers 

from University of Texas Southwestern (Guo et al., 2014) was used to validate that the new 

peptide identifications are not artifacts. Paper-III and V used the data of the ABRF-iPRG2015 

study (Choi et al., 2017), to assess the reproducibility of peptide quantification. The iPRG 

study contains 12 single-shot LC-MS/MS (Orbitrap) experiments that measured four samples 

with a common background proteome and six marker proteins spiked in by different 

concentrations. In Paper-V, to demonstrate the consistency of the protein quantification 

results, two datasets were obtained from supplementary materials of two clinical studies of 

breast cancer: 1) The CPTAC breast cancer dataset (Mertins et al., 2016) contains 77 breast 

cancer samples (quality control passed) analyzed by iTRAQ experiments; and 2) The MPIB 

dataset acquired from the study conducted at the Max Planck Institute of Biochemistry, 

Germany (Tyanova et al. 2016), which contains 40 breast cancer samples compared to a spike-

in standard (super-SILAC) of isotopic-labeled mixture of breast cancer cell cultures.  
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Identification 

 

Search engines. Mascot (Perkins et al., 1999) was used in Paper-I to benchmark the 

improvements from other advanced methods. In Paper-I and Paper-III, the “universal” search 

engine MS-GF+ (Granholm et al., 2014, Kim and Pevzner, 2014) was implemented, to achieve 

the deepest proteome coverage. In Papers-I, II, III, and V, the Andromeda search engine (Cox 

et al., 2011b) was used, which is integrated into the popular MaxQuant package (Cox and 

Mann, 2008, Michalski et al., 2011a, Tyanova et al., 2016). With high-resolution MS/MS and 

the target-decoy strategy (Elias and Gygi, 2007), matching MS/MS spectra to the protein 

database can be simplified to counting of observed fragment ions with little tolerance to mass 

errors (< 20 ppm). Applying the fragment counting strategy, the Morpheus search engine 

(Wenger and Coon, 2013) was used in Papers I, IV, and Paper-V. On top of Morpheus-derived 

PSM results, an advanced scoring strategy was proposed in Paper-I with improved usage of 

the mass accuracy (Zubarev and Mann, 2007) and the information on complementary 

fragment pairs (i.e., b/y ion-pairs).  

Precursor information. Reliable peptide identification based on MS/MS requires 

accurate m/z of the precursor ions measured in the survey spectrum (MS1). In Papers-I, II, III, 

and V, the precursor mass information was firstly calibrated by identifications from the first-

pass database search. Systematic mass deviations were automatically corrected by offsetting 

the average mass error for each of the precursors, then search the MS/MS spectra again with 

the calibrated precursor information. The concept used in this approach is called “software 

lock-mass” (Cox et al., 2011a).  

DDA-derived MS/MS usually records one precursor m/z per spectrum, which 

implicates only one peptide identification from the spectrum. However, in a rapid analysis of 

a complex proteomic sample (e.g., human cells), the distribution of precursor ions in a given 

mass range is considerably dense (Michalski et al., 2011a). Consequently, only in rare cases, 

the precursor ions collected within the isolation window could be pure. In this regard, most 

of MS/MS spectra are chimeric, “naturally” containing extra pieces of information about co-

fragmenting precursors. Associating these additional precursors with the MS/MS spectra, a 

set of MS/MS “clones” were generated. Such a strategy for naturally multiplexing of MS/MS 

spectra was applied in Papers-I, III, and V.  

Peptide de novo sequencing. Peptide sequences could be infered directly from mass 

increments of fragment ions in MS/MS. As an alternative to a database search, peptide de novo 

sequencing is especially useful when the protein contents could not be referenced to a 

predefined database. For example, in Paper-IV, the sequence of human antibodies, especially 
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sequences from the complementary determining region (CDR), are of considerable 

uncertainty, due to the enormous possibility ( ~1015  in theory) of recombination and 

hypermutations (Schroeder and Cavacini, 2010). It is not feasible to provide a comprehensive 

reference database for matching all possible CDR sequences. In Paper-IV, pNovo+ (Chi et al., 

2013) was applied to produce reliable full-length peptide sequences directly from high-

resolution HCD/ETD spectral pairs (Savitski et al., 2005, Savitski et al., 2006a). In Paper-V, 

Novor (Ma, 2015) was used to generate de novo peptides from HCD spectra. In the absence of 

the complementary information from ETD, the latter approach (Paper-V) is arguably less 

accurate than the former one (Paper-IV). However, both methods applied stringent criteria for 

quality control, to achieve a reasonable accuracy of connecting the de novo sequences to their 

source proteins. The filtration was made by analysis of sequence similarity using protein 

BLAST (Altschul et al., 1990), with strict limits of sequence identity between de novo peptides 

and the protein sequences in the databases. 

Peptide identity propagation (PIP). To counteract the stochasticity caused by DDA and 

increase the reproducibility of peptide identification, PIP was applied in Paper-III, IV, and V. 

This option is implemented in MaxQuant as a feature of “match-between-runs”, and also in 

OpenMS (Kohlbacher et al., 2007, Weisser et al., 2013) as FeatureLinkerUnlabeledQT. PIP 

relies on reproducible LC chromatogram, calibrated retention time, as well as accurate 

measurements of the precursors’ m/z. Sequence identities of the chromatographic features 

were propagated across multiple LC-MS/MS experiments by the concept similar to the 

accurate-mass-and-time (AMT) tag (Smith et al., 2002) and the peptide mass fingerprint (PMF) 

(Moruz et al., 2013). An alternative to aligning chromatographic features that are detected by 

clustering isotopic peaks, the more sensitive (but less accurate) PIP could be done based on 

XIC, which is implemented by Skyline (Schilling et al., 2012) and OpenMS (EICExtractor). In 

Paper-III, both feature-based and XIC-based PIP approaches were combined, and quantitative 

estimations of FDR were applied.   

Protein inference. After associating MS/MS spectra with peptide sequences, protein 

inference was done by applying the principle of parsimony (Ma et al., 2009), which reports 

the minimum number of proteins covering the entire list of identified peptide sequences. The 

uniqueness of peptide-protein association was determined by whether a peptide could be 

attributed to more than one proteins. However, a protein group may contain more than one 

protein sequence (for example, isoforms) that share the same set of unique peptides. When 

the number of unique peptides is relatively small (often less than three), or the similarities 

between multiple protein sequences are relatively high (e.g., multiple isoforms per gene), the 

reported protein groups may contain multiple entries of the database.   
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Figure 2.2 | Segmented DDA and peptide identity propagation. In Paper-V, the full-

range survey MS spectra were applied in each experiment and were assembled into 

chromatographic feature maps. However, MS/MS was applied to analyze precursors 

in three different m/z ranges (low, mid, and high). MS/MS-derived identifications 

results were assigned to the feature maps and propagated between experiments. A 

consensus feature map was generated by aligning and combining all the individual 

feature maps.  
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The choice of a protein database affects not only the search space for peptide 

identification but also the complexity of protein inference when applying the parsimony 

principle. In Paper-I, the UniProt “Human Complete Proteome” (composed of canonical and 

additional sequences) was used. In Paper-II the Ensembl database derived from the 

Saccharomyces cerevisiae (Yeast) genome was used. In Paper-III, the UniProt (SwissProt) 

database of yeast proteins was provided in the data of iPRG-2015-study. In Paper-IV, the 

UniProt (SwissProt) database of human proteins was used for the first-pass MS/MS 

identification for excluding known sequences, and also used for the BLAST search for 

sequence similarities with de novo peptides. In the final step, the SwissProt database was 

concatenated with the de novo peptide sequences for implementing traditional MS/MS 

identification. In Paper-V, as the 20 mixture contains three proteome components (human, 

yeast, and BSA), a concatenated UniProt “reference proteome” database was generated to 

cover the proteins that are likely to be observed in the samples. Common contaminants such 

as BSA, trypsin, and various keratins (from hair and skin) may hinder the identification 

process if the corresponding sequences are not included in the database. For this reason, an 

additional database that contains such proteins sequences was searched together with the 

main database, but peptides linked to potential contaminations were excluded from 

subsequent analysis.  

 

 

Quantification 

 

Label-free quantification (LFQ) is the primary method that has been investigated in this 

thesis and has been performed at different levels. In Paper-I, quantification was only carried 

out at the level of chromatographic features, for illustrating the abundance distribution of the 

newly identified co-fragmenting precursors. In Papers II, III, and partially in Paper-IV, the 

quantification was done at the peptide-level by summing up abundances of features 

attributed to the same peptide sequences. In Paper-V (and partially in Paper-IV), the 

quantification was investigated at the protein-level. Four traditional protein summarizing 

approaches (MaxLFQ, PQPQ, Top-3, and Median) were compared with the newly proposed 

Diffacto method. MaxLFQ summarizes relative protein abundances by linear regressions 

based on pairwise peptide log-ratios (Cox et al., 2014); PQPQ clusters peptides by measuring 

the linear correlations of log-abundances among multiple runs (Forshed et al., 2011, Zhu et al., 

2014), the abundance of the largest cluster of peptides was summed up; Top-3 sums up the 
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abundances of the most intensive three peptides (Silva et al., 2006); the Median approach uses 

the mid-points of all peptide abundances. In the Diffacto approach, relative protein 

abundances were summarized by weighted geometric means of peptides’ log-ratios. Unlike 

the compared methods that generate per-experiment protein summarization, the abundances 

of proteins were given by sample groups in the Diffacto results.  

Missing values are obstacles in protein quantification, especially, LFQ. In Paper-III, the 

problem of missing values for peptide quantification has been investigated. By performing 

peptide identity propagation (PIP), the identities of the chromatographic features were 

inferred, and the quantitative information was directly extracted from the features. However, 

feature-based PIP only alleviated but did not fully solve the missing value problem. The more 

sensitive XIC-based PIP was applied to further recover the remaining missing values. Quality 

control is important in this process. A target-decoy approach was the applied for estimating 

the reliability of XIC. For each precursor ion, two target peaks (monoisotopic and the first 13C 

isotopic, i.e., M and M+1) and two decoy peaks (by shifting precursor’s m/z and RT) were 

extracted from the MS1 spectra, and were scored based on the mass and RT deviations, as well 

as the CV between replicate experiments. A score threshold corresponding to 5% FDR was 

applied to assess the quality of XIC. This quality threshold was also applied in Paper-V.  

Nevertheless, for the protein-level summarization in Paper-V, the missing value 

problem was further addressed by the proposed Diffacto algorithm. In the calculation of 

weighted geometric means, only the valid (non-missing) measurements were used. If only a 

significantly large proportion of peptide quantities went missing (for a specific sample group), 

the remaining missing values were imputed as bellow the detection limit.  

Factor analysis was applied in Paper-V to measure the covariation of peptide 

abundances from multiple measurements by LC-MS/MS. A Bayesian factor analysis 

algorithm, FARMS (Hochreiter et al., 2006) that was originally developed for summarizing 

gene expression microarray data, was adapted for handling proteomics datasets. Similar to 

the PQPQ approach that measures the correlation of peptide abundances, factor analysis 

estimates the consistency of peptide signals by comparing to the estimated underlying factor 

reflecting the concentration changes of the protein. Peptides with incoherent trends of 

quantities were deemed as unreliable and were down-weighted or excluded from the protein 

summarization. The factor analysis was an unsupervised process, which estimated for each 

protein the proportion of information content (S/N) (Talloen et al., 2007) in the quantitative 

measurements of peptides, without using the information about the identities of samples. 
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False quantification rate (FQR) was investigated in Paper-V. For each protein 

quantified from the 20-mixture data, the ranks of 190 pairwise ratios were correlated, between 

the reference concentrations and the quantification results, using Spearman’s rank correlation. 

Proteins with negative correlation (below the threshold r = 0) were considered as false 

quantifications. 

 

 

Statistics 

 

Peptide and protein identification was filtered at less than 1% FDR by the target-decoy 

approach (Elias and Gygi, 2007), with the assumption that MS/MS spectra could match to 

artificial sequences by chance, which reflect the proportion of random matches to the target 

sequences at a given threshold. In Paper-III and Paper-V, the peptide identity propagation 

(PIP) were controlled at FDR < 5%, using a similar target-decoy approach where the decoy 

features were created by shifting the m/z and RT values of target features.  

For quantification of differentially expressed proteins in comparative analysis, the 

statistical significance was given by FDR < 5%. In Paper-IV, FDR estimated by Bonferroni 

correction of p-values derived from pairwise t-tests. In Paper-V, FDR was calculated as q-

values derived from p-values of either AVONA or Monte Carlo random permutation tests 

(Sandve et al., 2011), with a conservative estimation of the proportion of true null hypotheses 

(Pounds and Cheng, 2006).  
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2.2 Results and Discussions 

 

 

Natural multiplexing of MS/MS data 

 

In Paper-I, we investigated the identification efficiency of high-resolution MS/MS spectra 

from a set of single-dimensional shotgun proteomics experiments. We found that DDA-

derived MS/MS data frequently contain chimeric spectra, which is against the paradigm of 

“one MS/MS spectrum – one peptide identification” in traditional database search 

algorithms. Naturally, chimeric spectra contain the information about other precursors that 

were not initially targeted by DDA but were co-eluted from the LC and co-fragmented in the 

MS/MS. We observed a correlation between the width of precursor isolation window in DDA 

and the rate of acquiring chimeric MS/MS spectra, as well as the negative impact of chimeric 

spectra on the peptide identification. Estimated by the proportion of MS/MS spectra that 

contain both lysine (m/z 147.11280) and arginine (m/z 175.11895) peaks as the C-terminal (y1+) 

ions, we found that a majority of over 98% MS/MS spectra were chimeric.  

By associating precursors’ chromatographic features with the isolation windows of 

MS/MS data acquisition, we generated clonal MS/MS spectra with the same fragment mass 

peaks but newly assigned precursor information. We matched these spectra via database 

search, using a simplified scoring method that did not penalize the existence of unrelated 

peaks. As a result, we obtained significantly more PSMs and peptide identifications at the 1% 

FDR level.  

We demonstrated the power of natural multiplexing from traditional DDA-derived 

MS/MS data, by applying MS/MS spectral cloning that broke down the old paradigm and 

yielded more than one peptide ID per MS/MS spectrum (Figure 2.3). An integrated data 

analysis workflow, DeMix, was developed on top of the OpenMS pipelines. DeMix 

transformed the previously unwanted events, i.e., co-fragmentation of peptides, into an 

advantage of multiplexing. We achieved an overall identification rate of 1.25 PSM per MS/MS 

spectrum, which exceeded the instrumental limit of data acquisition rate and yielded nine 

peptides per second identification efficiency.  
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Figure 2.3 | Multiplexing MS/MS (an example).  The spectrum was associated with 

four peptide precursors and was identified from the DeMix workflow. 

[HGDGTTLDIMLK]2+, m/z 650.8311; [ALVGGAVGGLAGAASK]2+, m/z 649.8724; 

[FVAFSGEGQSLR]2+, m/z 649.3308; and the original precursor, [QMCICADFEK]2+, 

m/z 651.2697.  

 

 

We showed that the identified co-fragmenting peptides mainly came from the middle 

or low abundance range (Figure 2.4), which increased the dynamic range of data analysis and 

improved the reproducibility of peptide identification between experiments.  

In principle, widening the precursor isolation window will associate more 

chromatographic features to the MS/MS spectra, increasing the capability of multiplexing. 

However, we observed a decreasing trend of identification efficacy for spectra acquired from 

isolation windows that are wider than 4.0 m/z. Possible explanations might be that the 

chimeric spectra become too noisy, or the ions of the dominate fragments suppress the signals 

of other ions and decrease the overall S/N of the spectra. This observation may raise a concern 

about the effectiveness of analyzing lower abundant peptides via DIA approaches that use 

much wider (>20 m/z) isolation windows, although the burden of identification is different 

between DDA and DIA data.  
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Figure 2.4| Abundance distributions of chromatographic features. Gray: all peptide-

like features detected in LC-MS; blue: identified peptides targeted in conventional DDA 

strategy; yellow: peptides additionally identified by feature-based deconvolution. 

 

 

Quantification-centered proteomics 

 

It is frequently claimed that DDA has a stochastic tendency that causes the problem with 

missing values in quantification. However, since DDA is a strategy for acquiring MS/MS data 

and serves the purpose of identification, the survey spectra (MS1) that are acquired before 

MS/MS should remain unbiased to all precursors. Therefore, the trouble with DDA-induced 

missing values should not be a fundamental problem for the quantification process that is 

performed at the level of MS1.  

One of the key findings in Paper-I was that the chromatographic features assembled 

from MS1 spectra could provide reliable information about not only the accurate mass of 

precursors but also their quantities (i.e., intensities). In light of the DeMix workflow, we 

looked for a novel strategy that focuses on the quantitative aspect of proteomics data. Thus, 

in Paper-III, we developed an extension to the workflow, named DeMix-Q, that does the job 

of quantification while avoiding some pitfalls in the identification processes.  
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We demonstrated, in Paper-III, that peptides’ identities that are inferred from MS/MS 

could be reliably propagated across multiple LC-MS/MS experiments, by aligning individual 

maps of chromatographic features that create a consensus feature map (see Figure 2.2). 

Although such strategy was already implemented in both MaxQuant and OpenMS, the 

performance was not satisfactory. We still observed significant proportions (ca. 15%) of 

missing values in the quantification outputs, when analyzing the data of iPRG-2015 study that 

repetitively measured, technically, the same proteomic contents. On the contrary, missing 

values composed only less than 2% of the quantitative data (derived from the Skyline 

workflow) provided by the iPRG-2015 study. However, we found, in the Skyline data, the CV 

of the quantities between replicated experiments was significantly larger than that of the 

MaxQuant and OpenMS results. The reason was, Skyline extracted XICs without quality 

control; while MaxQuant and OpenMS, on the other hand, generated chromatographic 

features that are “peptide-like”, based on the isotopic distributions of precursor peaks and the 

shapes of peptides’ eluting profiles.  

 

 

 

 

Figure 2.5 | Comparison of five quantification approaches regarding missing values.  

The fraction of peptides quantified in all runs drops as a function of sample size but 

with different rates for different quantification methods. 
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In the DeMix-Q workflow, we integrated the reliable feature-based PIP with the 

sensitive XIC-based PIP, and also applied FDR estimation in the latter approach for quality 

control. In addition, DeMix-Q implemented a global normalization of abundances, which 

corrects for each LC-MS/MS experiment the time-dependent median abundance shifts of 

features by comparing to the global medians. After normalization, the systematic errors 

caused by the fluctuation of peptide ionization were removed from the peptide quantities. As 

a result, DeMix-Q achieved sensitive and reproducible peptide quantification with less than 

3% missing values when measuring 26,753 peptides in the 12 replicated LC-MS/MS 

experiments. Remarkably, the median CV of peptide quantification in 12 replicated runs 

decreased from 22.7% (Skyline) to 11.6% (DeMix-Q). 

 

 

 

Figure 2.6 | Comparison of CV distributions. DeMix-Q provided lower median CV 

than other methods while quantifying the largest number of peptides across all runs. 

Median CVs: DeMix-Q: 11.6%, OpenMS: 18.6%, MaxQuant: 21.9%, Skyline: 22.7%. 

 

 

As demonstrated in Paper-I and Paper-III, chromatographic features generated from 

MS1 spectra are, in fact, reproducible and quantitative measurements of peptides ions. 

MS/MS-derived identifications were later associated with these quantitative measurements. 

Therefore, the relation between the identification and quantification may be well reversed. 
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The peptide identification result may likely compose a subset, rather than a superset, of the 

quantified chromatographic features.  

We showed that more than a hundred thousand of peptide-like features could be 

detected in single LC-MS/MS experiment, even for a less complexed (yeast) proteome. 

Typical DDA data could merely identify one-third of these features and are biased against the 

lower abundant species. In that sense, with an ever-increasing size of proteomics studies, 

DDA-derived MS/MS spectra become more and more redundant, especially, for the 

abundant peptides and proteins. Thus, we made a hypothesis: repetitively identifying the 

most abundant peptides by MS/MS is unnecessary, then demonstrated that reproducible 

quantification could be achieved in the absence of redundant MS/MS data. With all the 

findings in Paper-I and Paper-III, we proposed the quantification-centered strategy for 

proteome-wide data analysis.  

In Paper-V, we generated a set of LFQ data that consists of 63 experiments to measure 

the mixtures of three proteome components in 20 different concentrations. The DDA strategy 

applied for this dataset was intentionally segmented to three mass ranges in the triplicated 

measurements (see Figure 2.2). Consequently, for each of the experiment, around two-thirds 

of the peptide identifications had to be propagated from other experiments by aligning the 

chromatographic feature maps. Nonetheless, the segmented DDA did not prevent us from 

obtaining reproducible quantification results. The fraction of missing values in peptide 

quantification was only 12%, which was mainly due to the limit of detection. The median CV 

of replicated measurements was 12%, which was in line with our previous findings of LFQ.  

When summarizing peptides’ quantities to the abundances of proteins, the difficulty is 

often underestimated in traditional identification-based approaches. However, the concept 

for the quantitative analysis is similar between shotgun proteomics and the old-style gene 

expression microarrays. With the increased proteome coverage and the improved 

reproducibility of LC-MS/MS experiments, the data structures between MS-based shotgun 

proteomics and microarray-based transcriptomics become more and more similar. Therefore, 

we brought a widely-used summarizing method from transcriptomics to proteomics, which 

applies a Bayesian factor analysis algorithm to measure the covariation of peptides’ signals in 

response to protein concentration changes. The factor analysis enabled the quality assessment 

for quantitative analysis. By this approach, peptides with incoherent trends of abundance 

changes could be detected from the covariation metrics, and the overall signal-to-noise ratio 

(S/N) could be estimated for each group of peptides that are tentatively attributed to the same 

source protein. Factor loadings, reflecting the correlation between the peptide abundances 

underlying factor of the concentration change, provided weights of individual peptides and 
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removal of unreliable quantities; S/N values indicated the overall consistency of peptides’ 

abundances and were used to categorize the protein quantification results as informative or 

non-informative. The distribution of S/N exhibited a strong correlation with the number 

constituent peptides, showing the vital importance of having multiple quantitative 

measurements per each protein (Figure 1 in Paper-V).  

With the two-level quality controls based on the factor analysis, we demonstrated the 

improved quantification accuracy with reduced errors in summarizing the LFQ dataset. 

Compared to the traditional approaches, the false quantification rate dropped from as much 

as 14% to 1.6% (Figure 2.7). In addition, the weighted summarizing approach addressed the 

problem with missing values that further improved quantification accuracy.  

 

 

 

Figure 2.7 | Evaluation of the precision of protein quantification results. Dashed 

lines: quantification based on MaxQuant (M) peptide abundances. Solid lines: 

quantification based on DeMix-Q (D) peptide abundances. Abundances of informative 

proteins summarized by different techniques were correlated to the actual protein 

concentrations. The proportions of quantified proteins (y-axis) at the correlation 

threshold (r = 0) were used to estimate false quantify cation rates: 14.3%, 9.6%, 4.3%, 

1.6%, 0.68%, and 0.13%, respectively in Top3 (D), Median (D), PQPQ (D), Diffacto (D), 

MaxLFQ (M), and Diffacto (M) results.  

 

 

We named the summarizing method Diffacto, for relative quantification of differentially 

expressed proteins based on factor analysis. We applied Diffacto to analyze two sets of data 

generated from clinical breast cancer studies and revealed the persistent proteomic signatures 



ZHANG BO Ph.D. Thesis  

- 42 - 
 

of three subtypes of breast cancer. We improved the consistency of the quantification results 

between the two independent studies.  

In addition to the flexible quantification approach, a reliable FDR estimation method 

was also applied, based on sequential Monte Carlo random permutation tests (Sandve et al., 

2011). Such non-parametric statistical approach provided conservative FDR control for 

proteomics studies with complex designs.  

 

 

 

Figure 2.8 | Expression patterns of the differential proteins. Protein fold-changes 

estimated by Diffacto (weighted geometric means) showed good agreements not only 

in the directions of regulation, but also in the magnitudes of changes between the results 

from CPTAC and MIPB data. Such protein expression patterns clearly clustered into 

three groups that represent the most persistent proteomic signatures of the three 

subtypes of breast cancer. 
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Discovering biomarkers in the hidden proteome 

 

In Paper-II, we developed a novel MJ-cIEF device (named pI-Trap) for sample fractionation. 

By establishing a stable pH gradient and an electric field, the device focuses protein or peptide 

molecules in different regions of the capillary column, according to the pI properties. Sample 

fractionation was done by sequentially collecting the samples flowed through the cIEF column 

(see Figure 2.1 and Figure 1 of Paper-II). 

To calibrate the pI gradient of the sample fractionator, we associated the center locations 

of the eluting profiles of peptides with theoretical pI values. The tight regression curve 

indicated the high precision of the pI estimation. By instrumental optimizations, we decreased 

the standard deviation of the pI prediction from 0.44 to 0.21 for the whole range of peptides. 

The MJ-cIEF device was initially designed for providing an orthogonal dimension of 

sample fractionation prior to LC and MS. With the pI fractionation one can decrease the 

dynamic range in complex proteomes, such as the human blood proteome (dynamic range 

larger than 10 orders of magnitude). In addition, the searching space in the identification 

process could be limited by the pI ranges, which could increase the specificity of PSMs. 

Compared to the gel-based HiRIEF approach that is limited to a narrow (e.g., acidic) range of 

peptides (Branca et al., 2014), our method covered a much wider range of peptides including 

neutral and basic ones, although did not show a comparable resolution.  

As discussed in the paper, our approach can be used to analyze PTMs that modify the 

chargeable groups of proteins. The PTMs that introduce pI changes could be due to protein 

damage. Accordingly, the changes of pI will shift the focusing positions of these molecules, 

moving them out of the shadow of other proteins that have extreme abundances (e.g., serum 

albumins). Therefore, pI shifting PTMs could be used as potential biomarkers of diseases 

related to protein damages, such as the Alzheimer’s disease.  

In Paper-IV, we tried another approach to decrease the dynamic range in the blood 

proteome by enriching polyclonal antibodies (i.e., IgGs). However, sequences of native 

human antibodies are of vast heterogeneity, due to the recombination, hypermutation, and 

PTMs. Consequently, it is practically not feasible to create a comprehensive reference database 

for identification of antibody-derived sequences. Therefore, we made an attempt to analyze 

blood antibodies using peptide de novo sequencing, which did not depend on the a priori 

knowledge about the protein sequences.  

We found that de novo sequences revealed a hidden proteome that has almost the same 

size and similar properties (e.g., abundances) of the typical and searchable proteome. The 
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expansion of IgG-derived sequences rendered a subdomain of “IgGome” in the blood 

proteome. Utilizing the hidden proteome, we gained a high predictive power of 

differentiating blood samples from the patients with Alzheimer’s disease and the patients 

with Dementia with Lewy Bodies.  

In Paper-V, we demonstrated another implementation of de novo sequencing. We made 

a Diffacto analysis based on the iPRG-2015 data, where the chromatographic features were 

associated with de novo peptides and were subsequently attributed to the abstract sources of 

proteins by BLAST search against the universal SwissProt database. Even with such an 

identification procedure, we still obtained the high specificity in detecting all the spike-in 

proteins, as well as the accurate estimation of the relative protein abundances. Our results 

showed the usefulness of the quantification-centered data analysis, which provided a 

“spotlight” for conducting proteomics studies in the absence of “reference” databases. 

 

 

 

 

Open source projects 

 

Source codes and pipelines of the workflows developed for this thesis are freely available via 

GitHub.com.  

 

DeMix: a workflow for identification of co-fragmenting peptides. 

https://github.com/userbz/DeMix 

DeMix-Q: a quantification-centered data analysis workflow. 

https://github.com/userbz/DeMix-Q 

Diffacto: finding differentially expressed protein by factor analysis. 

https://github.com/statisticalbiotechnology/diffacto 

  

 

  

https://github.com/userbz/DeMix
https://github.com/userbz/DeMix-Q
https://github.com/statisticalbiotechnology/diffacto
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CHAPTER THREE: CONCLUDING REMARKS 
 

 

 

In this thesis, I present the analytical methods developed during the four years of my Ph.D. 

study. The DeMix workflow started from improving the identification aspect of shotgun 

proteomics data analysis, which changes the paradigm of processing MS/MS data and uses 

the rich information from chimeric spectra to identify more than one peptide per spectrum. 

The expansion of peptide and protein identification from the co-fragmenting peptides 

increased the proteome coverage and dynamic range of data analysis.  

In light of the successful implementation of DeMix, the quantitative extension of the 

workflow (DeMix-Q) addressed the reproducibility problem in label-free quantification. A 

new procedure for peptide identity propagation (PIP) has been introduced to rescue the 

missing peptide measurements. Based on the results of DeMix-Q, the idea of quantification-

centered proteomics has been proposed for processing high-resolution shotgun proteomics 

data in large-scale. 

In the practice of the quantification-centered proteomics, the Diffacto approach for 

proteome summarization was presented. By applying factor analysis, Diffacto seeks to 

differentiate between signals and noises from the covariation of peptides’ abundances 

measured in multiple experiments. The covariation structure accurately reflects the protein 

concentration differences, which also provides the basis for a reliable quality control for 

quantifying differentially expressed proteins between biological conditions. Therefore, the 

false quantification rate has been reduced. In addition, with the released burden of 

identification, peptide de novo sequencing has been implemented to characterize complex 

proteomes, which is highly flexible in terms of protein identification and is no longer strictly 

limited to the reference sequence database. 

In my opinion, the rapid development of high-resolution mass spectrometry will 

continue, and mass spectrometers will become faster, more sensitive, accurate, and cost-

effective (Eliuk and Makarov, 2015). Accordingly, the scale of quantitative proteomics studies 

will increase significantly, providing the basis for quantification-centered proteomics. MS-
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based shotgun proteomics will soon become a data-intensive research field, where more 

advanced bioinformatics methods can be implemented.  

One the problem that has frequently been mentioned is the reproducibility issue caused 

by DDA. However, since the problem can be well-addressed by the proposed methods in this 

thesis, the boundary between DDA and DIA for MS/MS data acquisition might likely blur. It 

is possible to implement both DDA with DIA within the same experiment, and subsequently 

analyze the data using a universal processing workflow (Tsou et al., 2015). The Diffacto 

approach for proteome-wise summarization is, in principle, applicable to data of DIA data 

and targeted proteomics, which could be an interesting extension to the current study. 

High-resolution MS offers unprecedented specificity for associating complex mass 

spectra with the identities of the analytes and simplifies the identification process. Also, the 

combination of complementary fragmentation techniques has become practical, such as 

EThcD that combines ETD with HCD within one fragmentation process (Frese et al., 2012). 

Such techniques may double the information contents in each MS/MS spectrum, and further 

increase the specificity of peptide-spectral matching. Using the complementary information 

in new algorithms may improve the accuracy of both peptide database search and de novo 

sequencing. 

As shotgun proteomics studies expand in depth and sizes, the quantitative data 

structure resembles that of microarray-based transcriptomics. Therefore, many problems we 

encountered in proteomics, such as the demonstrated summarization problem, might already 

have practical solutions in transcriptomics. Compared to microarrays, modern mass 

spectrometers provide higher dynamic range and better quantitative accuracy, which should 

make transcriptomics-oriented algorithms easy to be implemented in shotgun proteomics.  

While proteomics is becoming a data-driven research field, techniques of data science 

(e.g., machine learning) can be applied to extend our understandings of the complex 

properties and elusive mechanisms in proteomics, such as retention time, isoelectric point, 

enzymic cleavage, isotopic distribution, ionization efficiency, charge distribution, and gas-

phase reactions. Integrating high-dimensional information into the analytical procedures will 

enhance the utility of proteomics data.  
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