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ABSTRACT 

 

Polyoma- and adenoviruses are important human pathogens with worldwide significance. Both are non-enveloped 

DNA viruses, but differ significantly in terms of how they infect humans: Polyomaviruses (PyVs) cause persistent 

and occasionally fatal diseases involving multiple organs, while adenoviruses (HAdVs) are ubiquitous among 

societies worldwide and generally cause self-limiting diseases of mucous epithelial tissues that range from 

common cold symptoms to gastroenteritis and eye infections. The main focus of this dissertation is placed on the 

fundamental processes underlying the earliest steps of the viral life cycles of both viruses: cell attachment and 

entry. Most of the work is dedicated to the unraveling of the attachment and entry strategies of specific strains or 

serotypes, and a comparison of the factors that govern the differences between them.  

The cell entry of polyomaviruses is mediated by the interaction of the major capsid protein VP1 with ubiquitous 

surface glycolipids called gangliosides. I have investigated three well-known strains of the murine polyomavirus 

(MuPyV) that show remarkable differences in terms of pathogenicity and tissue tropism, but only differ by singular 

amino acid exchanges located within their ganglioside binding cavities. This work establishes the ganglioside GT1a 

as a novel functional receptor and discovers minimal changes in the receptor binding affinities among the three 

strains that presumably lead to the drastically altered in vivo behavior.  

Unlike PyVs, HAdVs generally employ a two-step mechanism mediated by distinct sets of capsid proteins to enter 

their target cells. The interaction of the C-terminal knob domain of the so-called fiber with a cellular primary 

attachment factor selects and tethers the viral particles to the host cell and facilitates cell entry mediated by the 

interaction of the viral penton base with a secondary entry receptor. These processes are assumed to contribute to 

the manifestation of viral tropism and host range. Here, the discovery and functional and structural 

characterization of novel primary attachment factors for two unrelated HAdV types is reported. The first type, 

HAdV-G52, is a rare and unique serotype that possesses two distinct fibers, which use completely different 

receptors: the long fiber recognizes the tight junction protein coxsackie- and adenovirus receptor (CAR), while the 

short fiber shows a specific preference for the glycan polysialic acid using a novel binding site on its fiber knob. The 

second type, HAdV-D36, is associated with obesity and has the unique ability to infect animals. This work 

demonstrates that HAdV-D36 uses a yet unidentified protein for attachment, and at the same time possesses a 

specificity for CAR and a sialic acid variant that is presumably only found in animals. Both projects have 

implications for the infectious routes of the two viruses.  

An additional, third project presents the purification of the penton base protein of HAdV-D09 with the aim of 

structurally characterizing the interactions with its receptor counterpart, the integrin αvβ3, and unraveling the 

factors that dominate later phases of cell entry. The fourth part of this study addresses ways to interfere with 

adenoviral infections and to use adenoviruses as vectors for highly specific therapeutic applications. To this end, 

the development and evaluation of a series of second-generation inhibitors for the ocular pathogen HAdV-D37 is 

reported, whose design was inspired by its natural receptor, the sialic acid-containing glycan GD1a. Furthermore, 

this work sets the stage for the development of an HAdV-G52-based viral vector for the oncolytic treatment of 

somatic cancers expressing the tumor antigen polysialic acid. The last part of this dissertation describes ongoing 

work for the structural characterization of the adenoviral early gene product E4ORF1, a viral powerhouse protein 

that deregulates cell metabolism and polarity through various host interactions. 

The findings presented in this dissertation have implications for our general understanding of how the differences 

among virus entry strategies emerge on a structural level, and provide valuable information for the development 

of efficient antiviral strategies and safer virus-based drugs.  
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ZUSAMMENFASSUNG 
 

Polyoma- und Adenoviren sind klinisch relevante Krankheitserreger mit weltweiter Bedeutung. Obgleich es sich bei 

beiden um unbehüllte DNA-Viren handelt, unterscheiden sie sich deutlich im Hinblick darauf, wie sie Menschen 

infizieren: Polyomaviren (PyVs) verursachen typischerweise persistente und potenziell tödliche Krankheiten 

mehrerer Organe, während Adenoviren (HAdVs) weltweit verbreitet sind in der Regel selbstlimitierende 

Infektionen epithelialer Mukosagewebe verursachen, die von gewöhnlichen Erkältungssymptomen über 

Gastroenteritis bis hin zu Augeninfektionen reichen. Der Schwerpunkt dieser Arbeit liegt auf den Prozessen, die 

den frühesten Schritte beider viraler Lebenszyklen zugrunde liegen: der Anheftung an und das letzendliche 

Eindringen in die Wirtszelle. Der größte Teil der Arbeit befasst sich mit der Entdeckung neuer Anheftungsstrategien 

durch spezielle Virusstämme oder –serotypen sowie dem Vergleich der Faktoren, die für diese Unterschiede 

verantwortlich sind. Der Zelleintritt von Polyomaviren wird durch die Wechselwirkung ihres Haupt-Kapsidproteins 

VP1 mit ubiquitären Oberflächen-Glykolipiden, sog. Gangliosiden, vermittelt. Wir haben drei bekannte Stämme des 

murinen Polyomavirus (MuPyV) untersucht, die bemerkenswerte Unterschiede in ihrer Pathogenität und ihrem 

Gewebetropismus aufweisen, sich jedoch nur durch einzelne Mutationen in ihrer Rezeptor-Bindetasche 

unterscheiden. Diese Arbeit etabliert das Gangliosid GT1a als neuartigen funktionellen Rezeptor und zeigt 

minimale Veränderungen in den Bindungsaffinitäten zwischen den drei Stämmen auf, die vermutlich zu dem 

drastisch veränderten Verhalten in vivo führen. Im Gegensatz zu PyVs nutzen HAdVs im Allgemeinen einen 

zweistufigen Mechanismus, um in ihre Zielzellen einzudringen, wobei beide Stufen von unterschiedlichen 

Proteinen vermittelt werden. Die Wechselwirkung der C-terminalen Kopf-Domäne der sogenannten Virus-Faser 

mit einem primären Zielmolekül dient der Selektion und einem initialen Andocken an die Wirtszelle und ermöglicht 

so die Wechselwirkung des viralen Penton-Proteins mit einem sekundären Rezeptor, der den Eintritt in die Zielzelle 

herbeiführt. Diese Prozesse tragen zur Ausprägung des viralen Tropismus und des Wirtsspektrums bei. In dieser 

Arbeit wurden neue primäre Zielmoleküle für zwei unabhängige HAdV-Serotypen entdeckt und sowohl strukturell 

als auch funktionell charakterisiert. Das erste Virus, HAdV-G52, ist ein seltener und einzigartiger humaner Serotyp, 

der zwei unterschiedliche Fasern besitzt. Wir konnten nachweisen, dass beide Fasern völlig unterschiedliche 

Rezeptoren verwenden: die langen Fasern erkennen das Oberflächenprotein CAR, während die kurze Faser eine 

spezifische Präferenz für Poly-Sialinsäure besitzt, welche sie durch eine neuartige Bindungsstelle auf der Kopf-

Domäne erkennt. Das zweite Virus, HAdV-D36, steht im Verdacht, Fettleibigkeit auszulösen und verfügt über die 

einzigartige Fähigkeit, Tiere zu infizieren. Diese Arbeit zeigt, dass HAdV D36 ein noch nicht identifiziertes Protein 

zur Anheftung an Zielzellen verwendet und zugleich eine Spezifität für CAR sowie eine spezielle Sialinsäure-

Variante besitzt, die vermutlich nur in Tieren vorkommt. Beide Entdeckungen haben Auswirkungen auf unser 

Verständnis der Infektionswege beider Viren. In einem weiteren Projekt wird die Reinigung des Penton-Proteins 

von HAdV-D09 beschrieben - mit dem Ziel, seine Interaktionen mit dem Eintritts-Rezeptor Integrin αvβ3 stukturell 

zu charakterisieren und die Faktoren zu entschlüsseln, die während der späteren Phase des Zelleintritts wichtig 

sind. Ein weiterer Teil dieser Arbeit befasst sich mit Möglichkeiten, adenovirale Infektionen zu behandeln und 

Adenoviren als Vektoren für hochspezifische therapeutische Anwendungen zu verwenden. Hier wird die 

Entwicklung einer neuen Generation von Inhibitoren für HAdV-D37 berichtet, dem Erreger einer Augenkrankheit. 

Das Design dieser Inhibitoren wurde inspiriert von dem natürlichen Rezeptor des Virus, dem Sialinsäure-haltigen 

Glykan GD1a. Darüber hinaus legt diese Arbeit den Grundstein für die Entwicklung eines HAdV-G52-basierten 

onkolytischen Vektors für die gezielte Behandlung von somatischen Krebserkrankungen, die das Tumorantigen 

Poly-Sialinsäure exprimieren. Der letzte Teil dieser Dissertation beschreibt Vorarbeiten für die strukturelle 

Charakterisierung des adenoviralen frühen Genprodukts E4ORF1, ein Protein das den Stoffwechsel und die 

Polarität der Wirtszelle durch verschiedene Wechselwirkungen dereguliert. 

Die Ergebnisse die in dieser Dissertation vorgestellt werden haben Auswirkungen auf unser allgemeines 

Verständnis davon wie spezifische Unterschiede zwischen den Eintrittsmechanismen des Virus entstehen, und 

liefert wertvolle Informationen für die Entwicklung effizienter antiviraler Strategien sowie sicherer Virus-basierter 

Medikamente. 
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Intro 

1. INTRODUCTION 
 

1.1. History of Virology and Virus Classification  

Over millions of years, viruses have established a complex and interwoven relationship with their hosts. Some 

viruses have co-evolved with early predecessors of mammals, while many other human viruses emerged from 

contact between humans and animals. Viral infections have accompanied all large waves of human migration and 

adapted to the existence of a worldwide human society [2]. Today, about 8% of the human genome is of retroviral 

origin, and some retroviral gene products carry important physiological functions [3,4]. Despite their indisputable 

importance for mankind, viruses have been recognized as infectious agents for only little more than a century. In 

the 4
th

 century BC, Hippocrates explained the sudden spread of diseases with a so-called miasma (ancient Greek 

for ‘pollution’ or ‘bad air’). Even in the 19
th

 century, this term was still in use [5]. However, the first sophisticated 

antiviral treatments date back to the 11
th

 century: at the time, a procedure called variolation was used to treat 

smallpox in China and India [6]. In this process, healthy individuals were treated with infectious material from pox 

pustules of infected patients. Despite the obvious risks of the treatment, variolation was perceived as a large 

improvement at the time [2]. Consequently, the practice was adopted in Europe and America in the 18
th

 century 

and eventually received a significant refinement when physician Edward Jenner realized that the safety of the 

treatment could be much improved when human samples were replaced with material from cowpox lesions [7,8]. 

About 85 years later, Louis Pasteur coined the term vaccination (Lat. ‘vacca’ = cow) to honor Jenner’s 

achievements [9]. It was Pasteur himself who was the first to design a purposely attenuated vaccine when he 

passaged cow rabies in rabbits in order to create vaccination material that was then less infectious to cows. 

Following Jenner and Pasteur, a series of further safety measures was developed, bare all knowledge about the 

origins of the diseases. Groundbreaking insights into the agents behind the phenomena were only possible after 

the invention of the light microscope, which opened the eyes of mankind to the world of microorganisms. By the 

19
th

 century, their existence was largely accepted, and Pasteur and Robert Koch conducted key experiments to 

establish the rules by which these new organisms spread and replicate. Koch was the first to ascribe specific 

microorganisms to specific processes (reviewed in [10]). At the time, these findings were mostly attributed to 

bacteria and other organisms, as viruses still escaped the human eye. In 1892, however, Dmitri Ivanovsky reported 

that the agent causing tobacco mosaic disease could not be retained by established methods to filter out bacteria, 

and six years later Martinus Beijerinck ascribed this phenomenon to an even smaller agent than bacteria, one so 

small that it could still not be visualized. Friedrich Löffler and Paul Frosch realized that the non-filterable causative 

agent of foot-and-mouth disease replicated only within the host organism. To sum up these features, Beijerinck 

eventually named the agent causing tobacco mosaic disease contagium vivum fluidum. Eventually, the term ‘virus’ 

(Lat. poison) was used to describe all agents of this sort [2].  

The first human virus to be discovered was yellow fever virus in 1901. Following this discovery, many important 

new human viruses were detected, among them the infectious agents causing smallpox, ebola, AIDS, rabies, 

hepatitis, dengue fever, and influenza. Today, viruses are defined as obligate intracellular infectious particles 

whose DNA or RNA genome is replicated within the host cell. Virus particles, called virions, are formed by de novo 

assembly within the host cell and serve to transmit the genomic material between hosts [2]. Usually, viruses lyse 

their host cells upon completion of their life cycle, although some of them establish a persistent infection. Since 

they cannot replicate by themselves, viruses are not considered living creatures. In August 2016, the International 

Committee on Taxonomy of Viruses (ICTV) listed a total of 3704 virus species belonging to 610 genera and 111 

families, and it seems probable that a large portion of viruses are still not discovered [11]. The genomic material of 

viruses can be either single- or double-stranded DNA or RNA. The viral genome can measure 3 to 1200 kbp and 

codes for a number of functional and structural components that serve to initiate and exert the viral life cycle and 

to transport the virus progeny from one host cell to another, respectively. The classification of animal viruses is 

largely based on the identity of the genome and the morphology of the virus particle. The most commonly used 
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features are the identity of nucleic acids, the capsid symmetry and size, the presence or absence of an envelope, 

and the genome type and architecture. In an attempt to emphasize the importance of the host’s translational 

machinery, David Baltimore proposed a classification of viruses according to the way that viral mRNA is produced 

from the original genetic material [12]. Although the evolutionary relationships among viruses are still largely 

unknown, the classification system serves to highlight similarities among viruses that often result in similar 

approaches to a specific step of the life cycle. 

The viruses representing the main topic of this thesis, polyoma- (PyVs) and adenoviruses (AdVs), both possess a 

dsDNA genome and non-enveloped icosahedral capsids. Both viruses are grouped into Baltimore class I. Although 

they differ significantly in some aspects of their life cycles, several similarities exist that will be elaborated on in the 

following introductory chapters. 

 

1.2. Polyomaviruses 

The small, non-enveloped PyVs possess a circular genome of about 5 kbp and a simple genome organization. In 

addition to the three major capsid proteins VP1-3, the viruses encode several non-structural proteins, including 

different splice variants of the so-called T-antigen that act together to orchestrate the viral replication cycle [13]. 

The family Polyomaviridae coevolved with animals for at least half a billion years and currently contains about 100 

members infecting fish, spiders, scorpions, birds, and mammals [14]. The three genera avi-, ortho-, and 

wukipolyomaviruses are classified based on host range, genome sequence, and the genetic content [15]. In 1971, 

the first two human PyVs (HPyVs) were simultaneously discovered and named JCPyV and BKPyV after the initials of 

the two patients they were isolated from [16,17]. For about four decades, these two viruses were thought to be 

the only PyV species to infect humans, the only other PyV of clinical importance being the so-called simian virus 40 

(SV40) that had been found in a contaminated polio vaccine batch in the 1960’s [18,19]. In the course of the last 

decade, however, a total of eleven new PyV species were discovered and named either after the places they were 

found at, the order of their discovery, or the diseases they are associated with. Namely, these viruses include the 

KI and WU polyomaviruses (KIPyV, for Karolinska Institutet [20]; and WUPyV for Washington University [21]), 

Merkel cell polyomavirus (MCPyV) [22], HPyV 6 and 7 [23], trichodysplasia spinulosa-associated polyomavirus 

(TSPyV) [24], HPyV9 [25], HPyV10 (also called MWPyV after the country of its discovery, Malawi) [26], STLPyV (St. 

Louis) [27], HPyV12 [28], and finally NJPyV (New Jersey) [29]. The name ‘polyoma’ (derived from Greek ‘many 

tumors’) was originally selected in order to account for the tumorigenic activity of the first polyomavirus isolates 

that caused a number of different neoplasms [30,31]. However, these effects are generally not seen in healthy, 

immunocompetent individuals, and in fact only a minority of PyVs is known to be tumorigenic. So far, causal 

disease associations have been established for only four HPyV species. BK- and JCPyV Infections frequently occur 

during early childhood, and the majority of cases are subclinical. Depending on the region, the seroprevalence is 

about 50-80%, and there is a frequent establishment of asymptomatic latent infections of the kidney [32]. 

However, both viruses are known to cause life-threatening diseases in immunocompromised hosts. BKPyV is 

known to cause severe nephropathy after kidney transplantations which potentially leads to allograft loss [33], and 

JCPyV is the causative agent of a rare, but very dangerous demyelinating disease called progressive multifocal 

leukoencephalopathy (PML) [34,35]. TSPyV was named after its association with trichodysplasia spinulosa, a very 

rare skin disease associated with immunosuppression after organ transplantations [36]. MCPyV is the causative 

agent of Merkel cell carcinoma (MCC), an uncommon but highly aggressive form of skin cancer that is usually fatal 

within a few months and is frequently associated with the integration of viral DNA into the host genome [37]. In 

contrast, little is known about the pathological profiles and infectious routes of the newly discovered HPyV species 

(reviewed in [38,39]). To date, MCPyV is the only HPyV species linked to cancer, and its aggressiveness is perhaps 

only paralleled by specific strains of the murine polyomavirus (MuPyV) in newborn mice and hamsters. MuPyV, 

one of the viruses of interest to this study, was the first PyV to be discovered. The first MuPyV isolates were 

reported in 1958 [30,31], five years after virologist Ludwik Gross identified a cancer-transmitting factor in leukemic 
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extracts which to his surprise caused bilateral neck tumors when inoculated into healthy mice [40]. These severe 

effects seemed to occur mostly in newborn mice and hamsters, while immunocompetent adult animals 

experienced a much lighter course of disease. In the following decades, a range of different MuPyV strains have 

been isolated that differ greatly in the frequency and severity of tumors they cause [41] (Figure 1). In particular, 

three strains have been the topic of extensive research. A laboratory-derived MuPyV strain called RA causes only 

singular tumors of exclusively mesenchymal origin [42]. Another strain called PTA naturally occurs in feral mice 

[43]. PTA typically displays a broader tissue tropism than RA and causes different tumors of mesenchymal as well 

as epithelial origin [44,45]. Lastly, another laboratory-derived strain called LID produces a highly aggressive 

phenotype that causes a wide range of tumors, and infected mice usually succumb to kidney failure or brain 

hemorrhages within weeks [46-48]. 

 

 

Figure 1 | Phenotypes caused by the three MuPyV strains RA, PTA, and LID. Whole mouse-sections of newborn mice were 

obtained 7 days post infection and stained with an anti-VP1 antibody. A RA caused singular tumors of mesenchymal origin. B 

PTA caused various tumors of mesenchymal and epithelial origin. C LID caused multiple tumors of various origins. Figure 

modified from [49]. © 1999, American Society for Microbiology. 

 

Surprisingly, the genetic differences between these three very different MuPyV strains are limited to only nine 

mutations within the whole genome. While five of these single-base substitutions are silent, two have been 

mapped to the ORF of the T antigen and have been shown to produce no phenotypic differences. Interestingly, 

both laboratory-derived strains differ from PTA by only one residue, and both of these remaining two mutations 

occur in the receptor binding pocket of the major capsid protein VP1 [50]. The PTA strain possesses a glutamate 

residue at VP1 position 91, as opposed to the RA strain that has substituted the glutamic acid with a glycine 

residue. The deadly LID strain, in turn, exhibits an even more subtle change, as it replaced valine 296 with an 

alanine [41,49-53]. These small differences have been unambiguously and causally linked to the differing 

phenotypes, as the respective phenotype can be transferred by simple site-directed mutagenesis of either position 

[52]. Similar observations have been independently obtained for two other MuPyV strains that possess analogous 

residue switches [50].  

 

1.3. Adenoviruses 

In 1953, the year of Gross’ discovery of polyomaviruses, two similar unknown viruses were isolated from human 

patients with acute respiratory infections [54]. These new viruses were named adenoviruses, owing to the fact that 

they were both isolated from adenoid tissue. AdVs are among the largest non-enveloped DNA viruses. The 

common ancestral lineage of modern adenoviruses likely dates back to before the divergence of bony fish from the 

vertebrate branch [55]. Today, the family of Adenoviridae contains four genera, members of which infect every 

major branch of vertebrates. Most mammalian AdVs, including all human AdVs (HAdVs), belong to the genus 

Mastadenovirus [11]. To date, more than 70 HAdV types have been identified and grouped into a total of seven 

species (A-G) [56-58] according to their genome sequence and a number of functional criteria: serology, 

hemagglutination behavior, as well as their oncogenicity in rodents and capability to transform primary human 
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cells. According to a new naming convention, newer HAdVs are now named ‘types’ instead of ‘serotypes’ and 

characterized based on geno- rather than serotyping [54,59-62]. 

HAdVs are important pathogens that cause a wide variety of diseases, generally of mucous epithelial tissues. 

Depending on the specific type and its tropism, these diseases include diverse infections of the eye as well as the 

respiratory, gastroenteric, and urinary tracts. Remarkably, even members of the same species can produce largely 

different pathological outcomes. Infections usually occur via respiratory or oral-fecal routes, without the 

involvement of a vector host [63,64]. While HAdV infections are usually self-limiting in immunocompetent 

individuals, immunosuppressed patients or children can develop chronic and eventually fatal disease courses that 

also spread to other tissues and cause severe cases of pneumonia, hepatitis, myocarditis, or encephalitis (reviewed 

in [65]). HAdVs are typically host-specific, although they are capable of infecting a wide range of mammalian 

species when administered experimentally [66]. The main reason for the reduced permissiveness in animals is 

most likely a poor support of viral replication [67,68]. Many HAdV serotypes are highly contagious, and a dose of 

only five viral particles can already be enough to cause a disease [63]. Since the virus particles are also 

exceptionally stable and can persist on inanimate surfaces for several weeks [69-71], it is not surprising that HAdV 

infections are ubiquitous all around the world and occur throughout the year, with peak infection rates during 

winter and spring [4]. Following the 1962 discovery that HAdV-A12 caused malignant tumors in newborn hamsters, 

HAdVs were found to transform human cell lines and considered tumor virus candidates [72,73]. In fact, HAdVs 

infect both dividing and somatic cells and have the ability to drive resting cells into the S phase of the cell cycle. 

However, no transformative activity has been observed in humans so far [54]. 

 

Table 1 | Key features of selected HAdV types. O = ocular, R = respiratory, GI = gastrointestinal, A = adipose, U = urinary. 

Attachment factors that were discovered in this thesis in italics. Sources: [74-78]. 

 

 

The HAdV types discussed in this study are types C05, D36, D37, and G52. An overview of their most important 

features can be found in Table 1. HAdV-C05 is perhaps the most well-studied of all AdVs, and most of our 

knowledge about the HAdV life cycle is derived from experiments with this type [79]. The virus causes several 

diseases of the respiratory tract and is highly abundant in the human population, with seropositivity rates residing 

between 60% and 98% depending on the region [74]. HAdV-D37, on the other hand, is found in cervical swabs and 

is one of the major causative agents of epidemic keratoconjunctivitis (EKC), along with HAdV types D08, D53, D54, 

D56, and D19 (now retyped as D64 to distinguish it from the non-EKC causing prototype virus HAdV-D19p) [58,80]. 

Some HAdV types of species B and E also display an ocular tropism, but cause other conjunctivital diseases [81-83]. 

The biology of HAdV-D36 is less well understood, despite a seroprevalence of up to about 77% depending on 

region and age of the individuals. The virus is associated with gastroenteritis, since it has been initially isolated 

from the feces of an enteritis patient [84,85]. As a unique feature, it has been associated with animal and human 

obesity in a large body of epidemiological and experimental studies, which paradoxically seems to coincide with 

lowered serum cholesterol and triglyceride levels (reviewed in [75,86]). Although HAdV-C05 and -D37 also increase 
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adiposity in inoculated animals, HAdV-D36 is the only one of these types to be associated with obesity in humans, 

especially children [87]. Moreover, the virus is readily spread from infected to healthy chickens through natural 

routes, and naturally occurring antibody responses have been detected in domesticated rhesus monkeys as well as 

chickens and rats [85,88-90]. The ability to infect such a wide range of vertebrates is highly unusual for HAdVs, 

especially given the fact that HAdV-D36 seems to cause obesity in all of them, despite substantial differences in 

energy metabolism [90]. HAdV-G52 is the only HAdV member of Mastadenovirus species G, which otherwise 

contains only simian AdVs (SAdVs) [91]. HAdV-G52 has so far been isolated from only a handful of individuals 

during a single outbreak of gastroenteritis in a senior residence in California in 2007, and one stool sample 

originating from an unrelated case of gastroenteritis in the US. Since then, no signs of the virus have been found in 

humans, suggesting a very low seroprevalence [77]. Being only distantly related to other HAdVs, HAdV-G52 

exhibits several unique features, among them a reduced binding of coagulation factors by its hexons and the 

presence of two sequentially and functionally distinct fiber molecules (see Chapter 3.2.1).  

 

1.4. Structural Features of Non-Enveloped Viruses 

Viruses are nature’s dedicated minimalists. Each of their components has been streamlined through constant 

evolutionary pressure, and every one of their gene products fulfills one or more crucial tasks. Perhaps the most 

impressive example for this sculpting process is the structure of viral capsids. Their main task is to guarantee 

efficient transmission of the viral genome from the original cell to a different target cell, either within the infected 

host or to a different host. During the transport, the genetic material needs to be shielded from a generally hostile 

environment, be it from the host’s immune system or - in between hosts - to extreme conditions such as chemical 

or physical distress, pH changes, UV radiation, or drought stress [92]. To protect the cargo against these risks, viral 

particles have to be stable and rigid. At the same time, the particles need to uphold a certain degree of flexibility 

during their assembly, and to finally disassemble readily when triggered by a specific stimulus after cell entry. 

Hence, the virus particle needs to be maintained in a resilient, but metastable, non-energy-minimal state [93]. In 

non-enveloped viruses, which lack the additional protection of a lipid envelope, this can only be achieved through 

remarkable protein stability, dense packing, and a minimalistic design that evades as many host immunity factors 

as possible. Evolutionary pressure and genetic economy usually dictate that virus capsids are built from a limited 

number of building blocks, and indeed, most viruses possess only a handful of major capsid proteins [92]. From an 

architectural point of view, this brings about an inherent symmetry that all protein capsids are subject to, and a 

remarkable flexibility in the way interfaces between chemically identical subunits can be arranged. As another 

consequence, common principles apply for all virus capsid structures, as different as they may seem in the first 

place. All viruses contain at least one protein coat, and with only few exceptions, all of them possess either a 

helical or an icosahedral symmetry, and even more complicated capsids often contain elements of these basic 

symmetries. For example, HIV, which possesses one of the most complex viral particles to infect humans, has a 

complex ‘fullerene cone’ capsid that shares certain features with icosahedra [94-96]. Helical capsids are mostly 

found in non-human RNA viruses. These capsids can easily vary in length and only require one type of capsid 

protein. Yet, they are open at the ends, they do not have an optimal surface-to-volume ratio, which limits their 

genome packing capability, and they have limited functional flexibility. For these reasons, helical animal viruses 

usually have an envelope that carries out additional protective functions. 

Non-enveloped viruses, on the other hand, usually impose icosahedral symmetry on their capsids. Icosahedra are 

closed three-dimensional structures with 12 pentameric vertices that are connected by 20 triangular faces. Since 

these faces do not have to be flat, even round virus capsids follow the icosahedral symmetry, allowing for an 

optimal packing ratio. In 1962, Caspar and Klug derived a set of rules for icosahedral viruses that - for the main 

part - still holds up today [97]. As such, three-dimensional closure of an icosahedron requires twelve fivefold 

vertices, and icosahedral particles have to be made up of at least 60 repetitive structural units. Further, icosahedra 

possess inherent two-, three-, and fivefold symmetry elements (Figure 2A), and thus the otherwise identical 
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structural units have to be combined by similar, but not identical contacts. This principle of ‘quasi-equivalence’ is 

circumvented when there is more than one type of capsid protein. To amend the Caspar-Klug theory, particles of 

this sort are generally referred to as ‘pseudo-icosahedral’. If an icosahedral capsid possesses more than 60 

subunits, the additional subunits have to form triangular ‘tiles’ that fill the space between the vertex positions. In 

order to achieve dense packing, these building blocks need to form hexagonal structures. The fivefold and sixfold 

assemblies are called capsomers. An elegant concept to describe the complexity of an icosahedral particle is the 

so-called ‘triangulation number’ T, which essentially describes the ratio between the face area and the area of one 

capsomer. In practice, T is determined by how many capsomers it takes to connect vertex positions following only 

the two axes h and k (Figure 2B). 

 

 

Figure 2 | Icosahedral capsid symmetry. A Symmetry elements of icosahedra. Two- three- and fivefold axes are colored 

accordingly. The two representations are equivalent ways to illustrate icosahedral virus capsids. B Derivatization of triangulation 

numbers. For T=7 and 13, one of two relative orientations is shown, the other one being dextro. C Capsid structures of 

icosahedral viruses relevant to this study: coxsackie- (T=pseudo-3), polyoma- (T=7 dextro), reo- (T=13 laevo), and AdVs 

(T=pseudo-25). Relative sizes are approximated, and icosahedral symmetry operators are depicted schematically. Panel B was 

generated using the Icosahedral Server of the VIPERdb. Capsid figures of panel C were adapted from VIPERdb [98] .  

 

Since the triangular faces have to be equilateral, the triangulation number is then calculated by an altered binomial 

equation: 

𝑇 = ℎ2 + ℎ𝑘 + 𝑘2    (Equation 1) 

The underlying symmetry elements of select non-enveloped viruses relevant to this study are highlighted in 

Figure 2C.  

One common structural feature that can be found in many different virus families is the usage of β-barrel folds in 

their capsid proteins (Figure 3). Possible explanations for this preference might be a common evolutionary history 

or convergent evolution owing to the fact that β-barrels possess excellent stability and a good shape 

complementarity in both hexameric and pentameric arrangements [92,99-101]. 
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1.4.1. The Polyomavirus Capsid 

PyVs possess a T=7 capsid whose outer shell has a diameter of about 45 nm and is made up exclusively from 72 

pentameric copies of the major capsid protein VP1 [102]. The VP1 protein is constituted by a central eight-

stranded jelly roll β-sandwich, whose antiparallel β-sheets named BIDG and CHEF are connected by loops of 

differing lengths that make up the capsid exterior and form the receptor recognition sites of the virus (Figure 3A). 

The pentamers possess extensive monomer interfaces, which give the protein excellent stability and force the 

monomers into to a radial orientation, resulting in distinctive canyons on the capsid surface (Figure 2C). Inter-

pentamer contacts are mediated through a ‘strand-swapping’ β-sheet augmentation of the N- and C-terminal parts 

between pentamers. The VP1 capsomers occupy both penta- and hexameric positions, which results in a 

remarkable bonding pattern with three different types of threefold or twofold clustering [103]. This pattern differs 

remarkably from the otherwise very similar papillomavirus capsid structure, in which the ‘strand swapping’ is 

replaced by an internal loop reaching over to neighboring capsomers in a ‘hanging bridge’ arrangement which is 

then locked by disulfide bridges [104]. Additional stability of the PyV capsid is conferred by disulfide bridges 

between the CD loops and N-termini of neighboring VP1 proteins as well as Ca
2+

-mediated bridging interactions. 

Structural studies of VP1 can be facilitated by using a C- and N-terminally truncated version of VP1 that is unable to 

form virus-like particles (VLPs) and remains pentameric in solution [105].  

 

Figure 3 | Major capsid proteins of polyoma- and adenoviruses. Upper panel: top view of the functional multimers. Middle 

panel: side view of the functional multimers. Bottom panel: detailed side view of the respective monomers. All proteins form 

β-barrels. A PyV VP1 B AdV fiber knob C AdV penton base. The location of the RGD motif is indicated. D AdV hexon. The PDB IDs 

of the individual structures are listed. 
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The two additional PyV capsid proteins, VP2 and VP3, lie on the inside of the capsid, with their C-termini projecting 

into the VP1 fivefold axis [106,107]. While VP2 is important for capsid stability and virus entry, the function of VP3, 

which is essentially a truncated version of VP2, is currently unknown. 

 

1.4.2. The Adenovirus Capsid 

AdVs possess a much more complicated capsid structure than PyVs. AdV capsids range between 70 and 90 nm in 

diameter and exhibit a beautifully visible icosahedral shape (Figure 2C). The capsid is made up of a total of 252 

capsomers [108-112]. There are two types of capsomers, for both of which structural information is available 

(Figure 3B-D). The vertices of the icosahedron are occupied by the pentameric penton base, harboring the 

prominent elongated fiber trimer that projects radially from the capsid. Together, penton base and fiber form the 

penton capsomer. The remaining 240 capsomers are formed by an entirely different protein, the hexon, which 

makes up the bulk of the capsid. Due to this arrangement, the AdV capsid symmetry is commonly described as 

pseudo T=25. Although the hexons occupy the hexameric positions, they are actually homotrimers that possess 

two β-sheets per protein chain (Figure 3D) [113-115]. There are 12 hexon trimers per tile (Figure 2B), occupying 

four distinct positions that engage in different inter-hexon contacts. The most distinct position is the one 

surrounding the penton bases, and hexons of this type are called peripentonal hexons (PPH). The penton base is a 

homopentameric β-barrel that harbors two hypervariable loops at exposed positions: one loop of approx. 40-100 

aa which in almost all types contains an arginine-glycine-aspartic acid (RGD) and is thus called the RGD loop (Figure 

3C), and a shorter loop simply called ‘variable loop’ (see Appendix 6.2.3 for a full sequence alignment) 

[109,116,117]. The penton base structure has been determined both alone and in a capsid context, and the two 

structures differ remarkably in their overall morphology. The most prominent difference is the relative twist of the 

monomers and the resulting cavity along the fivefold axis. The flexibility implied by this discrepancy is coherent 

with the peculiar functions of the penton base in virus entry and disassembly (see Chapter 4.1).  

In addition to the three major capsid proteins, AdVs possess seven minor structural proteins. Four of them are 

called cement proteins and are tightly associated with the capsid either from the inside (proteins VI and VIII) or 

from the outside (IX and presumably IIIa). Protein IX forms flexible triskelions that glue together the inner parts of 

the hexon tile. Although there is still some disagreement about function and location of protein IIIa, based on 

latest structural data it most likely stabilizes inter-tile and PPH interactions from outside the capsid [118]. Proteins 

V, VI, and VIII form a ternary complex that is closely attached to the PPH ring from the inside of the capsid. Apart 

from stabilizing functions, protein VI is the key membrane lysis factor during endosomal escape (see 

Chapter 1.8.3). One probable reason for the presence of the cement proteins is that they may help to stabilize the 

mature capsid while keeping the particle flexible during assembly. In this light, it is not surprising that many of the 

minor capsid proteins undergo a proteolytic maturation mediated by the AdV protease (reviewed in [119]). The 

cleavage of DNA-associated core proteins inside the particle detaches the genome from the protein shell, and the 

increased electrostatic repulsion of the DNA is building up pressure inside the capsid. The result is an increased 

particle stiffness that is believed to facilitate virus uncoating [120-122]. Remarkably, there are no stabilizing 

interactions with the penton base, leaving the vertices the weakest part of the capsid that is most sensitive to the 

increase in capsid pressure. Another intriguing part of the AdV capsid architecture is the match of the trimeric fiber 

to its anchor point, the pentameric penton base. The fiber consists of a shaft region made up from triple-β-spiral 

repeats, forming a super-helix which ends in a rigid C-terminal knob domain [123]. There are three different types 

of fiber proteins among HAdVs (see Appendix 6.2.2) [124,125]. Members of species B and D have short, sturdy 

fibers with a length of about 320-380 amino acids, corresponding to 5-6 triple-β-spiral repeats [126]. In contrast, 

fibers of species A and C HAdVs have much longer, flexible fibers that contain more than 20 triple-β-spiral repeats 

and feature a flexible hinge region [127]. The only member of species E, HAdV-E04, possesses a fiber of 

intermediate length (426 amino acids). The length of the fiber is likely to be one of the determinants of receptor 

usage (see Chapter 1.8.1). The three HAdV types belonging to species F (40/41) and G (52) possess two different 

fibers simultaneously [91,128], and in the course of this thesis it was shown that HAdV-G52 uses both fibers for the 
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recognition of two distinct receptors (see Chapter 3.2.1). Currently, there are two models for how fiber and 

penton base interact (Figure 4). According to a penton base crystal structure of HAdV-C-02 in complex with an 

N-terminal peptide of the HAdV-C-02 fiber as well as electron density reconstructions from a full-capsid cryo-

electron microscopy map, the fiber does not fit into the cavity formed at the fivefold interface of the penton base 

(28 Å in diameter) [117,129]. Instead, the conserved and extended N-terminus of the fiber is bound at the 

outward-facing side of the penton base, at the interface between two monomers. This finding is in agreement with 

numerous electron microscopy images that show the fibers projecting far from the viral capsid [108]. In contrast to 

this, the X-Ray structure of the HAdV-C05 capsid pseudotyped with a short HAdV-D35 fiber showed a highly dilated 

penton cavity (56 Å in diameter), with helical density inside that likely belongs to the fiber shaft [109]. In this 

arrangement, the fiber could possibly be retracted into the penton base. Depending on the length of the fiber, only 

the knob domain might be accessible and sitting right on the capsid surface. Both conformations possibly 

represent physiological states that might occur during different steps of the viral life cycle.  

 

 

Figure 4 | Models for the penton base – fiber interaction. A Fiber electron density as visible in the HAdV-C05 crystal structure 

pseudotyped with HAdV-B35. Pink cartoon: penton base. Figure adapted from [109]. © 2012, Elsevier B. V. B Interaction model 

based on the HAdV-C02 cryo-EM structure, analogous to a HADV-C02 penton base crystal structure in complex with an N-

terminal fiber peptide. Cartoon: penton base; red sticks: fiber. Figure adapted from [117]. © 2005, Elsevier B. V. 

 

The fiber knob is a sturdy trimer of globular, 8-stranded β-barrel domains formed by the C-terminus of the fiber 

protein (Figure 3B) [130]. The β-barrels are held together almost exclusively by hydrophobic interactions, and 

there is an extensive trimer interface featuring hydrophobic and polar contacts alike. The result of this 

arrangement is high rigidity as well as remarkable overall stability and sturdiness at temperatures beyond 80°C. 

Similarly to PyV VP1, the AdV fiber knob is the main point of primary attachment receptor recognition. The 

solvent-accessible surface, including the receptor interfaces, is mainly made up by the loops connecting the β-

strands. While the overall knob architecture is conserved among HAdVs, the differences in attachment receptor 

usage manifest themselves in variable lengths of the main recognition loops (mostly the AB, CD, DG, GH, and IJ 

loops), and a different relative angle of the monomers within the knob. A full sequence alignment of HAdV types 

C01-D70 can be found in Appendix 6.2.1. Interestingly, both PyVs and AdVs form minimal T=1 structures during 

virus assembly [116,131-133]. While there is no known function of PyV T=1 particles, in the case of HAdV-B03 

so-called ‘penton dodecahedra’ made up exclusively of fiber-equipped penton units have been shown to bind 

desmoglein-2 (DSG-2) and destroy tight junctions at the lateral site of epithelial tissues, the main target tissues of 

these viruses (see also Chapter 1.8.1) [134]. Hence, at least for AdVs, these apparently faulty assemblies seem to 

have an important function during infection and cell egress, although they do not carry any genomic material. 
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1.5. Viral Entry Strategies 

Until the late 1970’s, the early stages of the viral life cycle were believed to be subject to purely passive processes. 

However, extensive work starting in the 1980’s made it abundantly clear that all animal viruses specifically attach 

to receptor molecules on the host surface, which then allow the virus to usurp existing cellular uptake processes. 

The series of events unfolding when a virus encounters a suitable host cell can be divided into the processes of 

attachment to the cell surface, passing of the plasma membrane, intracellular trafficking, and ultimately 

membrane penetration and release of the cargo into the cytosol. The later steps are often, but not always, 

combined with full or partial uncoating of the virus particle [135]. The attachment process is dominated by the 

specificity and availability of the receptor molecules that are used as catch-hold hooks to tether the viral particle 

on the host cell surface. Viruses use a wide range of surface molecules for this purpose, including proteins and 

glycans. While the presence of a receptor is necessary to render the target cell susceptible to the virus, the 

permissiveness of the host (i.e. its ability to support virus replication) often depends on additional intracellular 

factors [135]. As an example, the fact that the highly similar HAdV types D37 and D19p have different 

pathogenicity profiles despite using the same receptor remains a mystery [136]. Although the receptor usage of a 

specific virus does not always correlate linearly with tissue tropism and pathogenicity profiles, receptor identity 

and availability are important prerequisites for the process of infection. In some cases, such as the case of MuPyV, 

receptor usage can be directly linked to pathogenicity profiles [49]. 

The way that viruses exploit host receptors can be quite different from virus to virus. Some viruses use only one 

type of receptor that simultaneously fulfills all functions necessary for the different stages of cell entry, while 

others use distinct receptors for each step or several receptors with equivalent roles. The choice of several 

receptors facilitates the timing of the uptake and allows the use of receptors that are not suited to directly trigger 

virus uptake. Additionally, some viruses such as AdVs recognize highly abundant receptors [137,138], while others 

such as HPyVs specialize on a remarkably small set of receptors with a restricted expression profile in order to 

evade the host immune system more efficiently [139]. The processes that govern the attachment step are largely 

probability-driven, and this affects the way viruses choose their receptor molecules. As such, non-enveloped 

viruses have specialized on exploiting avidity effects using the symmetry of their capsids, and as a result the local 

crowding and availability of a receptor can be more important than the strength of the interaction itself [140-142]. 

Some viruses use receptors that are also present on non-permissive cells or positioned in a way that does not 

allow for cell entry (decoy- or pseudoreceptors), and in this case the number of viral particles released is of major 

importance for the efficiency of infection [143]. Moreover, there are examples of viruses that target several 

attachment receptors at the same time, but use them for different purposes at different stages of infections. As 

such, one of the most prominent attachment receptors of HAdVs, CAR, is most likely not present on the site of 

initial encounter. Instead, CAR is located as a homodimer in tight junctions and on the basolateral side of epithelial 

cells, and one of the functions of this receptor targeting is likely the disruption of epithelial integrity to ensure 

efficient cell egress or the uptake of progeny virus after mounting an infection through epithelium-associated 

macrophages (see Chapter 1.8.1) [144]. Some coxsackieviruses, in turn, initially bind to CD55 on the apical face of 

the host cell, only to be transported to tight junctions where they eventually enter through interactions with CAR 

[145]. Regardless of their target tissue, most viruses need to cross epithelial barriers at some point during 

infection, and so they often interact with epithelial cells without infecting them. These sorts of receptor functions 

are fundamentally different, but difficult to distinguish experimentally, and the exposure of a receptor in a tissue 

context can vary from the results obtained in cell-line experiments. The delicate equilibrium established between a 

virus and its host cell range can be radically altered when the virus is administered through non-natural routes of 

infection, especially via injection into the blood as might be the case in vector-based therapeutic applications such 

as gene therapy. In this case, the behavior of the virus is essentially unforeseeable. Therefore, these applications 

usually include a safety switch that either renders the viral particle non- or only conditionally infective. Some 

viruses such as influenza viruses are known to infect multiple species, and their host range can depend on the 

usage of species-specific receptors [146]. Similarly, some human pathogens have evolved to use non-human 

targets as a part of their receptor portfolio [147]. Some viruses, among them noro- and reoviruses, are even known 
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to specifically attach to commensal gut bacteria in order to hijack a bacteria-induced breach of the epithelial 

barrier [148,149]. 

After the initial attachment, the virus has to reach past the plasma membrane and physical host barriers such as 

the actin cortex in order to reach the cytosol. Viruses evolved to use different cellular pathways to accomplish this 

task. Enveloped viruses have the possibility to fuse directly with the plasma or an endosomal membrane through 

the action of a fusion protein and a factor that disassembles the actin cortex. Non-enveloped viruses, on the other 

hand, have to be taken up through endosomal vesicles and then induce membrane disruption and vesicular escape 

upon a specific trigger stimulus found in the new environment [135]. This stimulus might be a specific receptor 

interaction or environmental cues such as the action of endosomal proteases (reoviruses [150] and SARS 

coronavirus [151]), a drop in pH, a specific membrane lipid content (Dengue virus [152]), or a combination of these 

factors. These stimuli usually trigger specific conformational changes that weaken the capsid structure. A range of 

endocytic pathways are possible: phago- or macropinocytosis, clathrin-independent or -dependent endocytosis, 

ending up in the endosomal pathway, or caveolar, cholesterol-dependent, or dynamin-2-dependent endocytosis 

[93]. Caveolae are a specific type of lipid rafts associated with caveolin and cavin. It was previously thought that 

these pathways end up in the so-called caveosome, which later has been demonstrated to be a late endosome 

with increased caveolin-1 levels [153]. Which of these pathways is chosen is usually determined by the size of the 

viral particle and the type of surface receptor. Some viruses remain on the cell surface, passively attached to their 

receptors, while others such as PyVs actively induce endocytosis [154]. In other cases such as Influenza A virus, it is 

the receptor interaction that triggers endocytosis [155]. Viral entry of some viruses, including AdVs, is initiated 

through receptor-mediated signaling processes at the plasma membrane, often involving secondary receptors that 

are recruited and clustered after the initial attachment has taken place [156]. These processes are in some cases 

accompanied by a lateral movement on the cell surface [157]. Once the endosomal vesicles are disrupted, the 

genetic material is released into the cytoplasm and transported to its destination by cellular factors, initiating the 

viral replication cycle. 

 

1.6. Surface Carbohydrate Receptors 

Glycans are among the basic building blocks of life and are found on the cell surface of all living organisms. In 

contrast to proteins and nucleic acids, they are not synthesized from a template, but through the interplay of 

complex synthetic machineries in the ER and Golgi apparatus. Different types of glycans are generally made by 

distincts sets of glycosyltransferases [158,159]. Although mammalian glycans are made up from combinations of as 

little as ten monosaccharides, they are among the most versatile structures of life. Glycans are ubiquitously found 

on cell surfaces, where they can be attached to proteins, glycolipids, or form long structures in the extracellular 

matrix (ECM) (Figure 5A). Therefore, it is not surprising that carbohydrates execute manifold functions in health 

and disease. For one, they exert structural and modulatory functions, e.g. as physical barriers or moisteners 

(glycocalix, mucins) or keepers of growth factor gradients (glycosaminoglycans). In addition, glycans are 

indispensable for many intrinsic recognition functions, e.g. as self-flags (histo-blood group antigens), immune 

modulators (e.g. Siglec-7, a negative regulator of NK cells, or selectins), and even as wound healing factors 

(dermatan/heparan sulfate). Yet, they are exploited by a vast pool of pathogens, either as receptors or by means 

of molecular mimicry (Figure 5B). The interplay of these opposing ‘intrinsic’ and ‘extrinsic’ recognition functions 

likely orchestrates the evolutionary change in an organism’s glycan repertoire. As a consequence of the functional 

diversity and the flexibility of the synthetic machinery, the distribution of many glycans can vary quite significantly 

and is responsive to tissue type, developmental stages, or even environmental influences or metabolic states 

[160]. In mammals, most glycans appearing on the cell surface are capped by 9-carbon pyranose moieties called 

sialic acids. While ‘sialic acid’ is a common term used for different variants of neuraminic and 2-keto-3-

deoxynononic acid, it is also used to describe the most common variant, 5-acetylneuraminic acid (Neu5Ac). With 

few exceptions, sialic acids are only found in deuterostomes, which makes them important ‘self’-markers in these 
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animals and accounts for many of their vital functions. Some human pathogens, among them E. coli K1 and group 

B meningococci, have gained the ability to synthesize sialic acid through convergent evolution (reviewed in 

[161,162]) and use them as a disguise from the host’s immune system (molecular mimicry). Apart from their 

exposed positioning on glycans, sialic acids possess several distinctive features compared to other common 

monosaccharides, namely a carboxyl and a glycerol function, and in most cases also a 5-N-acetyl function. All these 

functional groups point to the same face of the pyranose ring (Figure 5C). The large number of functional groups 

and the simultaneous display of charged, polar, and hydrophobic parts enables sialic acids to participate in a large 

number of hydrogen bonds, salt bridges, and non-polar interactions. 

 

 

Figure 5 | Glycans as virus entry receptors. A The occurrence of sialylated glycans on cell surfaces. Coloring according to the 

legend. B Overview of the exploitation of glycans by different virus families. C Functional groups of Neu5Ac and enzymes 

conferring O-acetylation at various positions. D Binding patterns of Neu5Ac by selected viruses including MuPyV, JCPyV, SV40, 

HAdV-D37, and canine adenovirus 2 (CAV-2). Polar contacts are exclusively mediated by the sugar’s functional groups. 

E Structure of the GM1 ganglioside. Coloring scheme according to [163]. F Structure of the GD1a glycan. G Core structure of 

polysialic acid (PSia). Elongated PSia chains can reach up to ~100 moieties. Panel A based on and panel C taken from 

[164].© 2016, Elsevier B. V. Panel B modified from [165]. © 2014, Annual Reviews. Panel D modified from [139]. ©2011, Elsevier 

B. V. All figures were taken with permission. 
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As terminal parts of glycans, sialic acids are usually connected to the rest of the glycan by either an α-2,3 or an 

α-2,6 linkage. If they occupy internal positions, it is mostly because one or more additional sialic acids are attached 

to their O8 or O9 position via an α-2,8 linkage. This distinctive overall profile makes sialic acids prone to be 

recognized by pathogens. Indeed, they are the major anchor point for an impressive number of viruses, among 

them influenza-, rota-, polyoma-, reo-, and adenoviruses (reviewed in [139,165]). Although receptor interfaces 

with sialic acids are inevitably small and their affinities are rather weak compared to protein interfaces, the 

abundance of sialylated glycans on the host cell surface can compensate for the lack in affinity. Sialic acids are 

ubiquitous in all tissues and occur in high local concentrations as dense clusters on glycoproteins or in membrane 

microdomains. Paired with the fact that viruses usually possess a number of identical binding sites on their capsids, 

this abundance accounts for avidity effects that drastically increase the affinity, often by several orders of 

magnitude [141,142]. For this reason, small changes in glycan recognition can have severe influences on the 

behavior of a virus. Some viruses have developed receptor-cleaving enzymes to ensure effective cell egress and 

spread after the lytic cycle is complete. Other viruses, among them PyVs and AdVs, need to maintain a complex 

equilibrium between efficient attachment and cell egress. As a direct consequence, these viruses usually have very 

shallow binding sites with affinities in the millimolar range that form contacts with only one side of the pyranose 

ring (Figure 5D) [139]. These interactions most commonly feature key polar interactions with the sugar’s 

carboxylate and 5-acetyl amide group. Because they are short-ranged and directional in nature, these contacts 

demand a high shape complementarity between the sugar and its receptor. While directed polar interactions are 

important for orienting the sugar in the pocket, about 50% of the interaction energy is accounted for by van-der-

Waals interactions with the acetyl and glycerol functions of sialic acid. Studies with the bacterial lectin FimH 

showed that other effects are also important for glycan recognition, among them entropic and electrostatic effects 

[139,166]. These effects are usually long-ranged and less directed in nature, which makes them harder to assess, 

and the driving forces behind them are often not well understood.  

To battle infections, deuterostomes have evolved over 50 sialic acid variants differing in their substitution 

patterns, commonly referred to as the sialome. Derivatives of the 4 ‘core’ sialic acid variants Neu5Ac, 

5-Glycolylneuraminic acid (Neu5Gc), 2-Keto-3-deoxynonic acid (Kdn), and neuraminic acid (Neu) can be 

additionally substituted by O-acetyl, O-methyl, O-sulfate, O-lactyl, or O-phosphate groups. Due to high educt 

promiscuity in the synthetic machinery, animals can often incorporate sialic acid variants that they cannot 

synthesize themselves [167]. As an example, humans have lost the ability to synthesize Neu5Gc, but are able to 

incorporate the glycan through dietary uptake and enzymatic transfer. To date, information about the tissue and 

species distribution of most sialic acid variants is still sparse, mostly due to the lack of sophisticated and 

unambiguous in situ detection methods (reviewed in [168]). Currently, profiling is done with combinations of more 

or less variant-specific viral lectins such as the hemagglutinin-esterases (HEs) of infectious salmon anemia virus 

(ISAV) or the coronavirus mouse hepatitis virus strain S (MHV-S) [169,170]. In addition, the synthetic enzymes for 

many variants are often not identified or have been identified only very recently (Figure 5C) [171,172]. Some 

animal viruses, among them corona- and influenzaviruses, have developed binding sites that distinctively bind 

specific sialic acid variants, usually by specific contacts with the additional functional groups [173-175]. For 

example, the most frequent sialic modification, acetylation at the O9 position, is of critical importance for 

Influenza virus C infection [176]. In humans, this modification is conferred by the gene product of CASD1 [171]. 

Acetylation at the O4 position is conferred by a different, still unidentified enzyme that probably acts on already 

assembled glycans. 4-O-acetylated Neu5Ac (Neu4,5Ac2) is considered to be absent from human tissues, but plays 

an inhibitory role for some human Influenza A strains in horse, and is exploited by several animal viruses such as 

MHV-S or ISAV (reviewed in [164]).  

Some carbohydrate-containing molecules occurring on the cell surface have affinities for membrane 

microdomains, caveolae, or lipid rafts, causing the local crowding at cell entry points discussed above [177-181]. 

One example of molecules with raft affinities are so-called gangliosides (Figure 5E), ubiquitous sphingolipids that 

are prominently expressed in the nervous system [182]. Gangliosides consist of glycan structures that are attached 

to ceramide anchors [183]. Depending on the organization of the glycan core, a number of different series exist, 

and most gangliosides are capped by one to three sialic acid moieties that are transferred by one of 5 human sialyl-
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transferase isoforms ([184], a comprehensive overview figure can be found in [163]). Gangliosides are exploited as 

the main attachment and entry receptors for PyVs, as has been shown in knock-out mice lacking one or more 

sialyl-transferases [185]. Quite commonly, glycans are permanently attached to proteins via N- or O-glycosylation 

(Figure 5A,F,G) [186]. These glycosylations have broad implications on protein stability or interactions. Protein 

glycosylation is performed by a different set of glycosyltransferases than that used for ganglioside synthesis 

[158,159]. Nonetheless, some glycan epitopes can appear as patterns on both proteins and gangliosides. One 

example is the glycan portion of the ganglioside GD1a, which is also commonly found on O-linked glycoproteins 

[76]. This coexistence of recognition patterns on several molecule types may in some cases explain the seemingly 

contradictory behavior of viruses, since one or more of them may act as ‘decoy’ receptors that only allow for 

unproductive attachment of virus particles. Some glycans attached to proteins have more specialized functions. As 

an example, polysialic acid (PSia), a highly charged linear homosialic acid polymer of up to 90 moieties (Figure 5G), 

is almost exclusively attached to the neural cell adhesion molecule (NCAM) in the developing brain, and in the 

adult it is mainly found in specific brain locations that need constant reorganization [187-190]. Its primary role is in 

the maintenance of neuronal plasticity, probably by weakening cellular adhesion through the increase of the 

hydrodynamic radius of the underlying protein through water absorption, and through repulsive effects due to its 

highly negative charge. However, several tumors exploit this function and upregulate PSia. PSia-expressing tumors 

can be found even outside the brain, e.g. in small cell lung cancer (SCLC), and PSia expression is associated with 

metastatic tumor activity [191-199]. Several pathogenic bacteria also display PSia on their surface to protect 

themselves from the host immune system [190]. 

 

1.7. MuPyV Cell Attachment and Entry 

The cell entry of MuPyV has been the subject of decades of investigation, and the fact that MuPyV engages sialic-

acid containing glycans as receptors has been established in the 1980s. All MuPyV strains are able to recognize 

sialic acid attached to a galactose moiety via an [α-2,3]-linkage. In contrast, only some strains possess the ability to 

detect glycans with an additional branching [α-2,6]-linked sialic acid [200,201]. In 1997, Stehle and Harrison were 

the first to structurally characterize the receptor interactions between RA VP1 and the branched glycan DSLNT 

[105]. In 2003, Tsai et al. showed that the naturally occurring receptors of MuPyV are in fact the two gangliosides 

GD1a and GT1b [185]. In the course of this thesis, the receptor repertoire was expanded by a similar ganglioside 

called GT1a (see Chapter 3.1). In contrast, glycoproteins that harbor the same glycan structures as the receptor 

gangliosides do not act as infectious receptors. Instead, they seem to act as decoy receptors that promote a non-

productive internalization followed by an immune response of the host [143]. The usage of gangliosides as 

attachment and entry receptors is quite common among PyVs. Examples include BKPyV and SV40, the latter of 

which displays a clear specificity for the GM1 ganglioside [185]. In contrast, JCPyV was shown to use the 

glycoprotein-borne glycan motif LSTc along with the serotonin receptor for cell entry [202-204]. The glycan binding 

site located on the VP1 protein is formed by the BC1, BC2, DE, and HI loops reviewed in [139]). Despite the limited 

number of contacts, the receptor site is remarkably conserved across species (Figure 6). To date, the only known 

exception is TSPyV, whose glycan binding site is located at a different location and is likely the result of convergent 

evolution [205]. The high conservation of the binding details appears to reflect the importance of receptor binding 

for the viral phenotype, as shown by the drastic changes caused by the subtle alterations of MuPyV VP1 

(Chapter 1.2). A second illustrative example is the behavior of several JCPyV variants that show differences in their 

LSTc binding pocket [202]. These mutations appear to abrogate the binding of both the natural receptor and 

neutralizing antibodies, and instead seem to promote an infection of the brain through the action of another, yet 

unknown receptor and may be a key factor for the development of PML [206-209].  
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Figure 6 |Receptor interactions between polyomaviruses and sialic acid. A Location of the glycan binding site on MuPyV VP1. 

Carbohydrates are colored according to Figure 5. PDB-ID: 5CQ0. B Polar interactions of MuPyV VP1 with sialic acid. Modified 

from [139]. © 2011, Elsevier B.V. C Conservation of the sialic acid binding pocket among different PyVs. MuPyV is denoted as 

‘MPyV’ in the figure. Taken from [205]. © 2015, Ströh et al. 

 

The later entry steps of MuPyV are surprisingly unique and versatile in comparison to other PyV species, and can 

occur either through caveolae or clathrin-independent smooth monopinocytotic vesicles [210-212] (Figure 7). 

Although the exact mechanism of internalization is unclear, both mechanisms appear to depend on the local 

crowding of the receptor gangliosides in lipid raft microdomains, which presumably serve to directly induce 

membrane curvature in a manner similar to SV40 [154]. The latter accumulates its receptor GM1 using its large 

number of binding sites, which directly results in lipid phase separation and actively induces membrane tubulation. 

Similarly, MuPyV VLPs induce tubular invaginations in GD1a-containing vesicles. Additionally, MuPyV has been 

reported to engage the α4β1 integrin (VLA-4) in this process [213]. The key factors of vesicular behavior, such as the 

importance of pH and VP2 myristoylation, are still a topic of debate [214-216]. After cell entry, PyVs use an atypical 

transport route. The viral particles are directly transported to the endoplasmic reticulum (ER), presumably 

together with their receptor gangliosides [210,217]. Within the ER, the action of the disulfide isomerase ERp29 

alters the VP1 structure and exposes hydrophobic loops that facilitate attachment to the ER membrane [218]. 

From there, viral particles escape to the cytosol through an unknown mechanism involving parts of the 

ER-associated degradation machinery (ERAD) [219]. Finally, the virus is targeted to the nucleus by a nuclear 

localization signal located at the N-terminus of VP1, and virus replication is initiated [220,221]. Later stages of the 

viral life cycle will not be discussed in this thesis. 
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Figure 7 | Polyomavirus cell entry. PyV particles are colored according to the legend. Regardless of the endocytosis mechanisms 

(1-3), PyVs end up in endosomes (4) and are eventually transported to the endoplasmic reticulum (ER) (5-7). Uncoating may 

occur inside the ER, followed by direct transport into the nucleus (8), or at the nuclear pore complex after ERAD-assisted escape 

into the cytosol (9-10). Figure adapted and modified from [222], with permission. © 2016, University of Tübingen. Original figure 

based on [223]. 

 

 

1.8. Adenovirus Life Cycle 

1.8.1. Entry Receptors 

Generally, HAdVs employ a sequential two-step entry mechanism to enter cells. First, a primary attachment step is 

mediated by interactions between the fiber knob domain and a cellular primary attachment factor. This primary 

attachment is at least partially responsible for the viral tropism by selecting possible target cells [57,137]. In 

addition, the initial attachment serves to tether the virus particle to the target cell, and enables the local crowding 

of secondary receptors that interact with the viral penton base in order to initiate the entry step. While the 

secondary receptor is an integrin, the primary attachment proteins differ even among HAdV types of the same 

species (reviewed in [224,225]; Figure 8).  
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Figure 8 | Analysis of HAdV fiber knob sequences and entry receptors. A phylogenetic alignment based on the fiber knob 

sequences of HAdV types C01-G52. The branches are colored according to the respective species. Two major clusters of species D 

are colored in red and brown, respectively. Types with published knob structures are highlighted in green, types whose 

structures were newly solved in this thesis are highlighted in red. O = ocular; R = respiratory; U = urinary; GE = gastrointestinal; 

L = lymphoid; H = hepatic. B Summary of known HAdV entry receptors. Extracellular portions of receptors are depicted as crystal 

structures if available, while intracellular domains were left out for clarity. PDB IDs: 3O8E (CD46); 3N0I (GD1a glycan); 3JZ7 

(CAR). Parts of the figure were based on [224] and the RCSB PDB-101 ‘Molecule of the Month’ issues of 12/2010 and 02/2011 

[226]. STP=Serine, threonine, and proline rich region. 

 

Initially, CAR was believed to be the only attachment receptor of HAdVs [227,228]. During the last decades, 

however, an increasing amount of other HAdV primary receptors has been identified, demonstrating that the 

earliest step of the life cycle is already much more sophisticated than anticipated and contributes to the 

surprisingly variable tropism and pathogenicity of different HAdV types [137]. Members of each HAdV species 

except species B have been demonstrated to use CAR as a receptor, thereby disrupting the intercellular homotypic 

CAR-CAR interface. The intracellular signaling domain of CAR is not needed for efficient infection. However, this 

domain appears to elicit an immune response upon virus entry [229]. Upon complex formation, the sides of the 

AdV fiber knob form a large interface with the C-terminal domains of up to three CAR molecules per knob (Figure 

9A).  
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Figure 9 | Interactions of HAdV capsid proteins and their entry receptors. A Interactions between the HAdV-A12 fiber knob 

(gray) and CAR (blue) occur through a large interface at the sides of the knob (PDB-ID 1KAC). B The fiber knob of HAdV-B11 

engages the two terminal domains of CD46 at a large, water-filled interface that is formed by two fiber monomers (PDB-ID 

2O39). C HAdV-D37 engages its receptor, the GD1a glycan, using a binding pocket near the trimer interface and the two 

terminal sialic acids of the glycan. The trimeric symmetry of the knob makes it possible to accommodate up to three sialic acid 

moieties at a time (PDB-ID 3N0I). D Possible interaction modes between the αvβ3 integrin (pink and blue) and the distal domain 

of the HAdV-D09 penton base (red) identified by cryo-electron microscopy (cryo-EM). Panel modified from [230]. © 2014, 

National Academy of Sciences. E Cryo-EM model of the interaction between HAdV-A12 penton base (yellow) and αvβ5 integrin 

(red/blue and electron density) based on a complex with the entire viral capsid. Icosahedral symmetry was applied for structure 

solution. Panel modified from [231]. © 2009, American Society for Microbiology. 

 

The resulting avidity effect produces a high binding affinity ranging from 1 nM (HAdV-C02) to 20 nM (HAdV-D37) 

[232,233]. In the course of a natural infection, however, the access to this very potent receptor is usually limited, 

since CAR is mainly expressed at the inaccessible basolateral side of the epithelial target tissue [234]. Several 

mechanisms have been proposed to explain how HAdVs may circumvent this receptor shortage. For one, the virus 

might first infiltrate non-polarized epithelial immune cells and then start a lateral attack on its target cells, or 

require pre-existing epithelial lesions to do so [235]. Upon infection, the virus possibly induces the expression of a 

CAR splice variant with an apical expression profile [236]. Lastly, members of HAdV species B have replaced CAR 

with entirely different receptors. While approximately half of the species B HAdVs evolved to use the ubiquitously 

expressed inhibitory complement receptor CD46 [138,237,238] (Figure 9B), the other half recognizes the 

membrane glycoprotein DSG-2 [239]. The length of the fiber shaft seems to be another prerequisite for receptor 

usage [124,125]. While CD46-binding viruses generally have short and sturdy fibers containing only five to six β-

spiral repeats, CAR-binding fibers are much longer and more flexible. The fiber length presumably determines the 

effective distance of the attached viral particle from the membrane and facilitates subsequent interactions with 

the entry receptor [225]. HAdV type D37 was found to engage CAR, but possesses a relatively short fiber and is 

thus likely not capable of efficiently mounting CAR-dependent infections [124,240]. Instead, the virus was shown 

to rely on sialylated glycoproteins for productive infection. The trimeric fiber knob engages the sialic acid portions 

of the bidentate GD1a-glycan in a positively charged pocket at its central trimer interface (see also Chapter 3.2) 

[76,240-242] (Figure 9C). In the course of this thesis, similar findings were obtained for HAdV-D36 and G52, which 

also engage sialic acid-containing glycans for primary cell attachment. According to several studies, HAdV-C05 is 
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believed to engage heparan sulfate proteoglycans (HSPGs) by a lysine-lysine-threonine-lysine (KKTK) motif located 

on the fiber shaft, leading to increased liver clearance of the virus [243-246]. In addition, binding of the hexon by 

coagulation factors can result in altered tropism and retarget the virus to liver cells [247]. A range of additional 

receptors have been proposed to serve in HAdV infections, among them the immune receptors MHC-1α and 

VCAM-1 as well as CD80/86 (reviewed in [225]). Furthermore, species C HAdVs engage lactoferrin, a soluble 

protein which acts as an adapter for Nucleolin on the cell surface. Newer results indicate that this interaction may 

be common among most HAdVs and is most likely mediated by the hexon protein and therefore fiber-independent 

([248] and Persson D, personal communication). The importance of initial attachment factor recognition for viral 

tropism is still a topic of debate. This correlation might be species-specific, and is still not understood for most 

HAdV types. Interestingly, when grouped according to their fiber knob sequence, the EKC-causing HAdV types D08, 

D37, D53, D54, D56, and D64 appear to form a distinct clade together with HAdV-D09, D10, D19p, D59, and D65, 

none of which causes EKC (Figure 8A). In contrast, the amino acid sequences of the hexon and penton base do not 

seem to correlate with pathogenicity. The knobs of this clade undergo selective pressure at several sites [58]. It is 

currently unclear why some HAdV species have evolved to use several primary attachment receptors 

simultaneously with interactions mediated by the same knob, while others recognize only one attachment factor 

or possess two fibers with distinct binding specificities. 

After successful attachment, the viral particle induces local crowding of its secondary receptor, either αvβ3 or αvβ5 

integrin [249]. This process involves lateral movement of the attached viral particle on the cell surface in order to 

find the best spot for endocytosis and to provide a mechanical force for the initiation of fiber loss and uncoating of 

mature virus particles [250,251]. Integrins are heterodimeric type I membrane proteins that confer signals both 

from the outside to the inside of the cell and vice versa, effectively integrating the cell with its surrounding [252]. 

In humans, there are 24 known combinations of the different α- and β-chains. Integrins containing the α-chains IIb, 

5, 8, and v recognize extracellular ligands bearing a prominent arginine-glycine-aspartate (RGD) tripeptide motif, 

typically found on proteins of the extracellular matrix such as vitronectin or fibrinogen [253]. Except for species F, 

all HAdV types possess such a motif on a surface-exposed loop of the pentameric penton base protein, and all of 

these types use αv integrins as the main entry receptors (Figure 9D+E). Several models have been developed for 

this interaction, however exact information about the stoichiometry and the flexibility of the binding is still lacking 

[230,231]. Upon receptor recognition, integrins transit from an inactive bent state to their active extended 

conformation [254]. The recognition of the penton base has several effects on the virus capsid. For one, it rapidly 

induces the loss of the fiber on the cell surface [255]. Secondly, the interaction seems to alter the conformation of 

the penton base itself, making the whole viral particle more flexible and unstable and preparing the virus for 

uncoating [109,117,122,231]. Thirdly, the clustering induces integrin transmembrane signaling that upregulates 

Rho family GTPases and results in localized actin polymerization. This in turn leads to the formation of clathrin-

coated pits that ultimately endocytose the viral particle [235,256]. In species B HAdVs, endocytosis is performed 

through macropinocytosis, although this process is also mediated by αv integrins [257]. Within the endosome, 

several stimuli act together to promote viral escape. The physical stress induced by the receptors eventually leads 

to a loss of the penton base and peripentonal hexon proteins, along with the proteins that are located underneath 

the icosahedral vertices such as protein VI (reviewed in [56]). Protein VI then lyses the endosome via its 

amphipathic lytic domain and promotes viral escape, about 15 minutes after initial attachment [258]. In species C 

HAdVs, partial disassembly and release of protein VI at the plasma membrane leads to an alteration of the host 

cell’s lipid landscape, increasing the level of the cone-shaped ceramide that further promotes endocytosis [259]. 

Additionally, these lesions seem to appear in early endosomes and prevent endosome acidification, but not 

maturation [260,261]. The reducing environment of the maturing endosome reactivates the AdV protease, which 

promotes endosomal escape and final virus uncoating [262]. The importance of this sequence of events is shown 

by the efficacy of host defensins that stabilize the virion by binding to the icosahedral vertices. The stabilized 

virions are unable to release their lytic factors and eventually end up in lysosomes where they are degraded [263]. 

Following endosomal escape, the subviral particles are transported to the nuclear pore complex (NPC) by dyneins 

that directly bind the viral hexon shell [264]. At the NPC, the genome is completely dismantled and transported 

into the nucleus, where it initiates the viral replication cycle [54]. 



 

- 21 - 
 

Intro 

1.8.2. Genome 

HAdVs possess a linear dsDNA genome of 35-36 kbp in length. The virus hijacks the human RNA polymerase II and 

splicing machinery for transcription of viral mRNAs, but codes for its own DNA polymerase. The AdV genome is 

organized in ‘transcription units’, gene cassettes that are each transcribed from a common promoter element 

(Figure 10). With a few exceptions, this organization is very similar among HAdVs [55]. Our understanding of the 

adenoviral life cycle is largely extrapolated from experiments with only two HAdV types, C02 and C05 [79]. During 

the life cycle, viral gene expression is subject to a minute timing. The transcription units are grouped according to 

their peak expression time point, relative to the onset of viral DNA replication. In total, the viral genome codes for 

five early (E1A, E1B, E2-4), four intermediate, and one late transcription unit. Except for the latter, which harbors 

five different mRNA families, all transcription units code for several gene products that are transcribed from the 

same promoter. With the exception of the E4 unit, the gene products of a respective cassette carry out related and 

synergistic functions. While some gene products of a transcription unit share sequence stretches, others coded 

within the same unit may have a completely different sequence. The bundling into transcription units and the 

extensive use of alternative splicing likely helps the virus with control and timing of the expression of 

simultaneously needed gene products at each given time point in the life cycle. There is currently no naming 

convention for the respective proteins, but naming is usually kept consistent within a transcription unit [54].  

 

 

Figure 10 | Adenovirus genome organization. The genome organization of HAdV-C05 is shown representatively. Early gene 

transcripts are annotated as in Figure 11, late and structural genes in yellow. Different splice variants are indicated by dashed 

lines. E4ORF1 is depicted with a red outline. HAdVs of species F and G possess two fibers that are both coded in the L5 gene 

cassette. Figure based on [265]. 

 

1.8.3. Life Cycle 

Once the viral genome has been delivered to the nucleus, the early phase of viral gene expression is started, 

lasting until the onset of viral DNA replication (Figure 11). The three main goals during early phase are A) to drive 

the host cell into the S phase and to mobilize metabolites for an effective replication; B) to circumvent host 

defense mechanisms, mostly immune reactions and apoptosis; and C) to effectively synthesize the viral gene 

products needed to advance the life cycle [54]. To accomplish these tasks, viral early phase proteins influence key 

players of cell homeostasis such as p53, retinoblastoma (rb), growth factor receptors, NFκB, and Bcl-2 family 

proteins. 

The first proteins to be expressed are the two main gene products of the E1A cassette, large and small E1A, 

through the action of an exceptionally strong enhancer upstream of the E1A promoter. Both proteins act together 

to initiate the S phase of the host cell (i. a. by directly inactivating the rb tumor repressor protein), and they act as 
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transcription factors for other early viral genes such as E1B and E3 [54]. Some of these gene products further help 

to activate the host cell metabolism. As an example, the E4ORF1 gene product (E4ORF1p) influences the host 

metabolism by activation of the protein kinase mTOR through the PI3-kinase pathway, resulting in increased 

nucleotide and protein biosynthesis [266,267]. At the same time, E4ORF1p supplies the building blocks needed for 

replication. It increases anabolic glucose uptake by activating the MYC transcription factor and dysregulating 

several growth factor receptors [268]. Most of these functions are exerted by an association of E4ORF1p with the 

cellular PDZ protein Discs Large 1 (Dlg1), which stimulates both PI3K and growth factor receptors, leading to an 

increased MYC expression [269]. However, E4ORF1p is also believed to directly interact with MYC in the nucleus 

[270,271]. Additionally, E4ORF1p deregulates the host cell polarity by association with several adherens and tight 

junction proteins through its PDZ-domain binding motif (PBM), essentially weakening the epithelial barrier and 

potentially leading to altered signal transduction that deregulates cell growth [272]. 

The entry of the host cell into the S phase and increased metabolic activity inevitably generates several 

proapoptotic stimuli within the host cell. For example, the abnormal stimulation of the cell cycle leads to increased 

levels of the proapoptotic tumor suppressor protein p53, and an increased occurrence of dsDNA ends during the 

viral replication might potentially be perceived as heavy DNA damage and trigger DNA repair and apoptotic 

reactions [273,274]. In response to this, the E1B transcription unit expresses two main gene products that act 

together to block apoptosis of the host cell. The smaller E1B protein, E1B19kDa, is a mimic of an anti-apoptotic 

Bcl-2 family member and directly inhibits the proapoptotic agents BAK and BAX [275,276]. The second gene 

product, E1B55kDa, has various remarkable functions, among them the inhibition of the host checkpoint response 

to apparent DNA damage, and various means of inhibiting the tumor suppressor p53, partially aided by the 

E4-ORF6 gene product [277]. These mechanisms are crucial to the survival of the host cell. Viruses that lack either 

the rb-binding domain of E1A large or have an E1B55kDa knockout can only replicate in cells with deregulated 

apoptotic pathways such as tumor cells. This realization has led to the development of so-called oncolytic AdVs 

that conditionally replicate in rb- or p53-deficient tumor cells, respectively (reviewed in [278-281]). At the same 

time, the host cell activates the transcription factor NFκB, which stimulates innate and acquired host immune 

responses. As a response, the viral E3 transcription unit is activated through an NFκB-driven promoter. Its gene 

products counteract the effect of NFκB-induced immunity, thus serving as a negative feedback loop [54]. The E3 

gene products are mostly species-specific and can be membrane-bound or even secreted, but all of them have 

immunomodulatory functions. As an example, the genus-conserved protein E3/19K directly interacts with newly 

synthesized MHC class I molecules, blocking their transport to the cell surface and thereby preventing antigen 

presentation to CD8+ T cells [282-284]. In addition, E3/19K down-regulates the MHC-like NK cell activators MICA 

and MICB [285]. Species D HAdVs possess a unique E3 protein called E3/49K, which is shed through proteolysis 

from the plasma membrane and acts as a soluble, extracellular NK and CD4+ T cell suppressor by engaging the pan-

leukocyte marker CD45 [286,287]. E2 encodes three proteins that are necessary for DNA replication, among these 

the viral DNA polymerase. As a result, the peak transcription of the three E2 gene products is slightly delayed in 

comparison to the other early genes, setting in when a replication-friendly environment is reached. The onset of 

viral replication triggers the expression of the late gene products which mainly code for structural proteins and the 

AdV protease, which is essential for endosomal escape. Within the host cell, the AdV protease weakens the 

intermediate filament system by cleaving the cellular cytokeratin K18, preparing the host cell for its lysis. 

Additionally, an E3 gene product called adenovirus death protein kills and lyses the host cells as it accumulates 

during the late phase [54]. Before and upon cell lysis, a high amount of fiber-loaded penton dodecahedra and/or 

excess fiber trimers is released to the basolateral side of the epithelium, which presumably aids in the disruption 

of tight junctions in the epithelial environment and CAR- or DSG-2-mediated attachment to neighboring cells 

[134,288].  
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Figure 11 | Major steps of the adenoviral life cycle. The process of replication and steps of minor interest to this study were 

omitted for clarity. Arrows that symbolically represent causal correlations are depicted as dashed lines.  

 

1.9. Viruses in a Clinical Context 

Despite the apparent simplicity of viruses, our understanding of and interference with viral infections is often 

limited to preventive environmental measures or the treatment of symptoms. Viruses harbor the potential to 

enter the highly networked human population in one fell swoop, and one of the most recent examples, the 

emergence of HIV-1, dates back to less than a century ago [289]. Owing to a lacking adaptation phase, newly 

emerging virus mutants tend to be quite aggressive towards their hosts [2]. As a consequence, sudden epidemic 

outbreaks of virus infections can have devastating consequences, as was seen recently for ebola- and zikavirus 

epidemics (current WHO reports: [290,291]). For this reason, it is important to understand the physiology of 

viruses even if they appear to have only a minor impact on public health. In addition, viruses can also be used to 

combat diseases, as their capsids are essentially highly specialized delivery vehicles that can be engineered with 

relative ease. 

 

1.9.1. Strategies of Antiviral Therapy 

Four main approaches are being pursued to combat viral infections: hygiene methods, vaccination, 

immunotherapy, and drug development. The strategies employed for vaccine development include live-attenuated 

viruses, chimeric or recombinant virus particles or proteins, DNA-based vaccines, and the use of viral vectors. 

Vaccination approaches have been developed to treat both HPyV and HAdV infections. JCPyV vaccines for the 

treatment of progressive multifocal leukoencephalopathy are currently being developed based on VLPs and 

pentameric VP1, and both approaches show promise in first human trials [292,293]. Live vaccines of HAdV-E4 and 

B7 were successfully applied in the 1970’s in order to tackle frequent epidemic outbreaks among military recruits. 

Nonetheless, the production of the vaccine was eventually put on hiatus in the 1990’s [294], only to be picked up 

in 2011 after HAdV-related respiratory infections had resurged. The renewed treatment eventually resulted in the 

rapid elimination of the disease [295], but was never adapted to the civilian population. While vaccination has 

shown its enormous potential in the past, e.g. with the demise of the smallpox virus in the 20
th

 century, its success 
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largely depends on the hosts immune response. The processes that orchestrate these responses, in turn, are 

dictated by the behavior of the virus itself. Yet, these processes are generally not well understood, and the 

development of efficient vaccines can be very complicated [296]. As an example, the development of an efficient 

dengue virus vaccine was hampered by a partial cross-reactivity of the antibody response - which enabled other 

serotypes to effectively infect host immune cells. It was only very recently that an efficient chimeric viral vaccine 

was approved in Brazil [297]. In order to obtain a safe and efficient vaccine, immunogenic parts of the target 

viruses had to be incorporated into a non-infectious yellow fever virus used as a vector. In a similar approach, 

HAdV-based vaccines carrying immunogenic HIV antigens have been investigated in a high-profile campaign by 

Merck, but failed to protect patients against HIV [298-301]. 

In cases of acute infection, treatment options are limited to either boosting the immune response through 

immunotherapeutic approaches, or to direct interference using drugs. Immunotherapy strategies against 

adenoviruses such as adoptive T-cell transfer are usually applied for immunocompromised patients that develop 

more severe infections, particularly following hematopoietic stem cell transplantation. Adoptive T cell transfer 

approaches rely on the immunogenicity of HLA-I restricted viral peptide epitopes. In the case of adenoviruses, 

several conserved peptides that are naturally presented on common HLA types have been described [302]. 

Immunocompetent patients, in contrast, should ideally be treated with appropriate drugs, which are generally 

easy to apply and do not require frequent interference by medical personnel. The first requirement for developing 

a drug is the identification of appropriate ‘druggable’ targets that fulfill several criteria. As such, they need to be 

crucial factors for the viral life cycle, function in a way that can be inhibited by a drug, and at the same time be 

sufficiently different from host factors to allow for a certain degree of specificity. While most well-known antivirals 

such as the pro-drug ganciclovir block viral replication, antiviral agents can theoretically interfere with any step of 

the viral life cycle [296]. The selection of a promising approach is a complicated task to begin with, since most 

stages of the viral life cycle are intricately interwoven with the host physiology. Hence, most of the eligible viral 

targets are either expressed within the host cell or are in fact deregulated host proteins, making drug toxicity one 

of the major obstacles in the quest for ‘druggable’ targets. The only available anti-adenovirus drugs to date are 

forms of the nucleoside phosphonate cidofovir, which unfortunately only have a limiting effect on infections and 

can have severe nephropathic side effects [303]. This inherent risk is partially overcome when focusing on the very 

first and last steps of the viral life cycle, cell attachment/entry and post-lytic cell egress, respectively. Since both 

approaches focus on events happening outside the host cell, these drugs are generally less likely to interfere with 

the host metabolism. APD-209, a novel drug for EKC-causing adenoviruses based on their ability to engage sialic 

acid during cell attachment, is currently undergoing phase II clinical trials [304-306]. However, there are also cases 

that warrant caution. For example, Natalizumab, an antibody targeting the glycan binding site of JCPyV, increases 

the risk of PML by promoting recognition of another, yet unknown receptor – further highlighting the importance 

of the full understanding of viral receptor interactions [208,307].  

 

1.9.2. Adenovirus-Based Vectors for Therapeutic Approaches 

Therapeutic vectors based on several viruses are being developed, including AdVs, retroviruses, and adeno-

associated viruses (AAVs). These vectors are versatile tools for the specific delivery of effectors to pathological 

tissues that can be directed against pathogens, cancer cells, or with the aim of addressing genetic disorders. 

Usually, the vectors still carry some of the functions of the viral template, while they have been stripped of 

pathogenesis key factors and/or re-supplemented with other factors that influence their effect on the infected 

cells (presented exemplary in Figure 12). Depending on the task, viral vectors can be apathogenic or conditionally 

pathogenic, integrating or non-integrating, elicit or avoid an immune response, possess a broad or very specific 

target range, etc. HAdVs have been among the first viruses to be used as vectors, since they combine a relatively 

large packing volume and a 36 kbp dsDNA genome with a broad tissue tropism and a modular genomic 

organization that can be engineered with relative ease. To date, about 21% of all vectors that are used in gene 

therapy clinical trials are based on HAdVs (n=526) [308]. One very promising therapeutic approach is the use of 
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conditionally replicating HAdVs which specifically lyse p53- or Rb-deficient (tumor) cells (see Chapter 3.2.1). These 

‘oncolytic’ viruses kill target cells and multiply within the tumor, and in the process they locally increase their 

concentration (Figure 12C) [309]. Interestingly, newer studies suggest that a large part of the efficacy of oncolytic 

viruses can be attributed to an ‘adjuvant effect’: the activation of antigen-presenting cells, mostly dendritic cells 

(DCs), by triggering an interferon response dependent on signaling from pattern recognition receptors, mainly toll-

like receptor 9 (TLR9) [310-312]. The activated DCs can then present tumor-specific antigen epitopes to initiate a 

T cell response.  

On the contrary, other mechanisms of innate and pre-existing adaptive immunity are generally thought to limit 

vector efficacy and to mediate side-effects. Uptake of viral particles by immune cells such as Kupffer cells is 

mediated by scavenger receptors and removes virus particles from the circulatory system. This uptake triggers the 

release of a number of proinflammatory cytokines such as interleukin-1α (IL-1α), IL-1β, IL6, and MIP-1α through 

various pathways [313,314]. Similarly, binding of the hexon by coagulation factor X shields the viral particle from 

the antibodies and the complement system, but increases the cytokine response after uptake by immune cells in 

liver and spleen (reviewed in [315]). In addition, pre-existing antibody responses can rapidly clear the applied 

vector. Lastly, the use of ubiquitously expressed receptor molecules can lead to off-target effects, as e.g. CAR is 

expressed on erythrocytes and platelets [316]. As a result, the adaptive and innate immune response to 

systemically administered HAdVs is much stronger than observed in naturally occurring infections. While being 

beneficial for an antitumor immune response, gene therapy approaches generally rely on systemic delivery and are 

impaired by immune responses triggered by the vector [317]. Even more so, this rapid and heavy immune 

elicitation can lead to hepatic or even systemic toxicity of the vector. In 1999, early clinical studies using Ad-based 

gene therapy for the treatment of ornithine transcarbamylase deficiency resulted in the death of a patient. This 

fatal development was caused by an invasion of multiple organs followed by a massive immune response triggered 

by the vector, ultimately leading to multiple organ failure and brain death [318]. In 2002, another patient 

developed a fatal case of leukemia after being treated with an integrating retrovirus vector in an attempt to cure 

his severe combined immune deficiency (SCID) [319]. Since then, researchers and governmental institutions have 

recognized the need for a profound understanding and control of the processes that influence vector efficacy and 

safety. These processes concern both vector behavior and effector functions, to equal parts. Much progress has 

been made in the development of safe effector systems, culminating in the approval of clinical trials for a CRISPR-

Cas9-based T cell cancer therapy by the NIH in June 2016, an approach that harbors great potential also for in vivo 

therapies [320]. In 2012, Glybera, an AAV-based vector for the treatment of lipoprotein lipase deficiency, was the 

first gene therapy product to be approved for the German market [321], and the herpes simplex virus (HSV)-based 

oncolytic vector Imlygic (talimogene laherparepvec, T-Vec) was approved in 2015 by the US food and drug 

administration for the treatment of melanoma [322]. Newer approaches to improve delivery and safety on the 

HAdV-vector side include local application, the use of ‘gutless’ vectors that lack immunogenic genes, chemical 

shielding of capsid components to minimize antibody and coagulation factor binding, and the use of rare serotypes 

to circumvent pre-existing immune responses [316]. Yet, there is still only a very basic understanding of the 

underlying forces of fundamental processes that govern vector behavior, such as the selection of target tissues and 

host range. For HAdV-based approaches, most currently used vectors are based on the types C02 and C05, which 

have high seroprevalence and immune clearance rates and use highly abundant receptors for cell entry. While 

some applications such as gene therapy require a very broad target tissue range, especially those vectors targeted 

against tumors usually necessitate a highly specific vector tropism. To this end, developing new vectors with a 

more specific and controlled receptor profile is an important and fundamental task. 
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Figure 12 | Different strategies for gene therapy of Glioblastoma multiforme. Four different strategies are graphically 

represented. A A commonly used strategy relies on the tissue-specific delivery of genes that convert a non-toxic prodrug into a 

toxin that kills the target and surrounding cells. A prominent example is the delivery of herpes simplex virus thymidylate kinase 

(HSV-TK), which causes the termination of DNA chain polymerization and cell death in proliferating cells by converting the pro-

drug ganciclovir to its active tri-phoshorylated form. B Another approach relies on the tissue-specific delivery of 

immunostimulatory genes or apoptotic factors that trigger an immune response. C Oncolytic vectors conditionally replicate 

within proliferating cells in a self-proliferative way. This approach also mainly relies on the immune stimulation by cell debris. 

CR = conditionally replicating. D In a classic gene therapy approach, a tumor suppressor gene that may have been mutated by 

the tumor is resupplemented, leading to tumor apoptosis. All these approaches benefit greatly from the selective delivery of the 

cargo to tumor cells. Figure adapted from [323]. © 2013, Multidisciplinary Digital Publishing Institute. 
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2. AIMS OF THIS DISSERTATION 
 

 

The introduction to this dissertation repeatedly highlighted the importance of the precise understanding of basic 

aspects of virus biology with regard to controlling virus outbreaks and the development of safe virus-based vectors 

for therapeutic approaches. The data collected in this dissertation contribute to three major aspects of DNA virus 

biology: 

 

1) General understanding of the key factors and dynamics of virus-host interactions.  

 

- Chapter 3.1 exemplifies how minimal changes in the binding pocket of MuPyV drastically alter its virulence and 

tropism. This study has implications on how viruses establish a complex equilibrium in their receptor profile. 

- Chapter 3.2.1 reveals the attachment receptors of HAdV-G52, a rare HAdV type that is more closely related to 

SAdVs than to HAdVs, and whose two fibers recognize two different receptors.  

- Chapter 3.2.2 investigates the entry receptor profile of HAdV-D36, a virus that possesses a unique tropism and 

host range among HAdVs. We present the first data that correlate this behavior with the usage of a specific sialic 

acid variant that only occurs in animals. Additionally, this study examines the evolutionary processes that govern 

glycan recognition by species D HAdVs. 

- Chapter 4.1 provides groundwork for a structure of the complex between the soluble, pentameric HAdV-D09 

penton base and the αvβ3 integrin. Structural information about this interaction would provide useful data about 

the binding stoichiometry and the weakening of the capsid by induced flexibility of the penton base protein. 

- Chapter 4.2 focuses on the structural basis of the interference of the adenoviral early gene product E4ORF1p with 

host cell proteins. The E4ORF1 protein has been identified as an oncogenic AdV factor and interferes with various 

cellular pathways. Additionally, the E4ORF1 protein is a potential ‘druggable’ target and is itself being tested as an 

anti-diabetes drug. 

 

2) Structure-based development of antiviral drugs. 

 

- Chapter 3.2.3 demonstrates the development of highly efficient second-generation sialic acid-based trivalent 

inhibitors of HAdV-D37. The design of the inhibitors was derived from the crystal structure of the HAdV-D37 fiber 

knob and its physiological receptor, the GD1a glycan. Notably, these inhibitors are also able to bind the HAdV-D36 

fiber knob. 

 

3) Development of sophisticated adenovirus-based vectors. 

 

- Chapter 3.2.1 reports that HAdV-G52 uses the tumor antigen polysialic acid (PSia) as a preferred cell attachment 

receptor, and provides groundwork for the development of HAdV-G52-based vectors for targeting of PSia-

expressing tumors. 
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3. RESULTS AND DISCUSSION 
 

3.1. Changes in the Receptor Binding Pocket Influence Entry 

Receptor Usage of Three Murine Polyomavirus Strains 

MuPyV is a very well-studied DNA virus that causes tumors in newborn mice and hamsters [30,31]. In particular, 

the three MuPyV strains RA, PTA, and LID, which differ significantly in their tissue tropism and pathogenicity due to 

single amino acid exchanges in their receptor binding pocket, have sparked the interest of the field (see Chapter 

1.2) [41-45]. This obvious relation between receptor engagement and both tropism and pathogenicity is very rare, 

and prompted us to structurally characterize the receptor binding properties of all three strains using X-Ray 

crystallography. 

Gangliosides, the main attachment and entry receptors for many polyomaviruses, are usually engaged by the viral 

VP1 proteins at their glycan portions and directly mediate cell entry. In the case of MuPyV, the gangliosides GD1a 

and GT1b were the only established infectious receptors prior to this study [185] – however, other naturally 

occurring glycans are known to be recognized by the virus in vitro and are thought to influence the phenotype in 

yet undiscovered ways. Importantly, all of them possess a common disaccharide ‘core motif’: a Neu5Ac moiety 

that is linked to a galactose by an [α-2,3] glycosidic linkage (Neu5Aca and Gala in Figure 13) [200,201]. This motif is 

crucial for the recognition and engaged at the canonical glycan binding site of PyV VP1 (see Figure 6). The 

structural basis for the recognition of glycans containing the ‘core motif’ by the RA strain has been established 

nearly two decades ago by Stehle and colleagues and led to the current notion on how the phenotypic differences 

between the three strains might emerge [105]. The authors used a synthetic glycan called DSLNT that additionally 

contains a second Neu5Ac moiety (Neu5Acc) which is attached to the core GlcNAc by an [α-2,6] glycosidic linkage 

(Figure 13D). The second Neu5Ac is engaged at an additional binding interface on VP1 that is separated from the 

canonical pocket by the residue at position 91. Based on this finding, the authors hypothesized that the RA strain 

can sustain this branched binding mode due to the presence of a glycine at position 91. In contrast, the two other 

strains would produce clashes as they harbor a more bulky glutamate side chain at this position and consequently 

have no access to this kind of receptor. The resulting narrower receptor repertoire is thought to allow PTA and LID 

to spread more effectively within the host.  

 

 

Figure 13 | Glycan portions of MuPyV receptor ganglioside candidates. The gangliodies GD1a (A), GT1a (B), and GT1b(C) 

belong to the ganglio-series and consist of a Glc-Galb-GalNAc-Gala core decorated with alternating patterns of Neu5Ac. DSLNT 

(D) possesses a GlcNAc moiety instead of a GalNAc. The six-membered pyranoses are numbered counterclockwise starting from 

the bottom (C1, or C2 in Neu5Ac), and the ring oxygen is depicted as black dot. All linkages except those involving Neu5Ac are in 

the β conformation. The common core motif Gala-[α-2,3]-Neu5Acais highlighted in blue. The figure is based on Figure 1 from 

[163]. 
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However, the complex structure of RA VP1 and DSLNT was the only structural information available prior to this 

work. Consequently, how the phenotypic difference between the two strains PTA and LID emerges is still unclear 

at this point, as an extensive structural analysis of their receptor profile has not yet been performed. We employed 

a comprehensive approach by testing the ability of all three strains to engage glycans containing additional, 

differently linked Neu5Ac moieties that are representative for most naturally occurring glycans containing a ‘core 

motif’ using X-Ray crystallography. To this end, we selected the glycan portions of GD1a (mainly containing the 

‘core motif’ and a branching Neu5Acd), GT1a (containing an elongated Neu5Acb-[α-2,8]-Neu5Aca-[α-2,3]-Gala ‘core 

motif’), and DSLNT as probes (Figure 13A,B,D). We chose to work with readily purifiable truncated VP1 constructs 

that do not assemble into VLPs and allow the generation of high-resolution structures that allow for a detailed 

assessment of the binding modes [105]. 

To our surprise, all of the glycans can be engaged by every strain, and all of them in a highly similar fashion. As 

expected, the GD1a glycan is engaged by the ‘core motif’ in a way very similar to that reported by Stehle and 

Harrison [324], and the additional Neu5Acd does not contribute any additional contacts. Only two minor 

differences are observable among the strains: a weak van-der-Waals contact between a second Gal moiety (Galb) 

in the stem region of the glycan and the sidechain of E91 in PTA and LID that cannot form in RA, and a hydrophobic 

contact between V296 and C3 of Neu5Aca that is not found in LID. 

Interestingly, all three strains are capable of recognizing the GT1a glycan (Figure 13B), also by the ‘core motif’. This 

interaction has not been reported to date. Moreover, the additional Neu5Acb moiety of GT1a forms several 

additional polar contacts, for example between its carboxyl and glycerol functions and the key residues Y72 and 

R77. The glycan is stabilized by internal contacts and adopts a horseshoe-like conformation that is highly similar in 

all strains. We reasoned that this augmented binding interface might lead to increased receptor potency. Indeed, 

we were able to establish the GT1a ganglioside as a novel and highly potent physiological MuPyV receptor by 

supplementing ganglioside-deficient mouse embryo fibroblasts (MEFs) with GT1a and showing a significant 

increase in infection. In fact, GT1a seems to be much more effective at rescuing infection than the previously 

known receptors. However, there are virtually no differences in the way the three strains engage the glycan. 

Furthermore, the bulky glutamate at position 91 does not seem to prevent binding of branched glycan motifs, as 

(in contrast to the earlier hypothesis) both LID and PTA are capable of engaging DSLNT in a fashion similar to GD1a. 

The branching [α-2,6]-linked Neu5Acc does not contribute any contacts and is unordered in both complex 

structures. While the ‘core motif’ is positioned in a very similar way in each case, the carbohydrates forming the 

glycan stem and the branching Neu5Acc display some moderate rearrangements. The slightly more spacious 

binding pocket of LID allows for some conformational freedom in DSLNT, which results in less well-ordered 

electron density at the stem. This difference is not visible in the more rigid glycans GD1a and GT1a. However, these 

conformational differences do not manifest themselves through altered binding contacts.  

Although we did not have commercial access to the glycan portion of the established receptor GT1b at the time 

(which contains a disialic acid motif like GT1a, but at a branching position, see Figure 13C), our structures suggest 

that this glycan is engaged in a similar mode as GD1a, although its branching disialic acid motif might be long 

enough to form additional contacts with the protein. Overall, all three strains seem to be capable of engaging all 

tested glycans, and the difference in tropism and tumorigenicity cannot be explained by the use of different 

receptor subsets as was previously thought. 

We reasoned that the differences in receptor usage must stem from different affinities rather than from differing 

receptor binding modes or selectivities. Unfortunately, the affinities between polyomavirus VP1 proteins and their 

glycan receptors typically reside in the low millimolar range, which makes them very hard to assess using standard 

techniques such as surface plasmon resonance (SPR). To overcome these difficulties, we established a method 

based on electron density integration of the ‘core motif’ in highly isomorphous crystals. Similar approaches have 

been successfully employed for adeno-, noro-, and other polyomaviruses before [136] or have been adapted based 

on our developments [204,325]. Using this approach, we were able to assess and compare the relative affinities of 

each strain for the respective glycans. Crystals were soaked with increasing concentrations of the respective 
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glycans for 1h, and the resulting electron density was integrated and plotted against the glycan concentration. In 

concordance with the complex structure, GT1a showed by far the best binding to all three strains. GD1a showed a 

weaker binding, and the relative affinity was slightly higher in PTA and LID than in RA. For the latter, the relative 

affinities for GD1a and DSLNT were comparable. DSLNT bound with the lowest overall affinity in all three strains. 

Surprisingly, there was no difference in DSLNT affinity between the strains, despite the moderate differences in 

DSLNT binding. 

In summary, we observed only very subtle differences in binding affinities between the three strains, which 

seemingly contradicts the very distinct outcomes of infections. However, it appears conceivable that such minor 

alterations in the engagement of individual glycans translate into large differences considering the substantial 

avidity effects occurring in the MuPyV capsid and the dynamic behavior of the glycan receptors. As mentioned in 

Chapter 1.6, gangliosides are able to cluster within lipid rafts and can produce very high local 

concentrations [177,178]. Entry modes of this type are not unprecedented, as e.g. influenza viruses dramatically 

alter their cell binding properties upon small changes of their binding sites, which also display affinities in the mM 

range [140]. In the case of MuPyV, our data do not allow us to quantify how exactly the observed subtle 

differences in receptor engagement translate to the altered behavior of the virus particle, and future studies need 

to address these points in a capsid context. Unfortunately, working with MuPyV VLPs is a complicated task, since 

they result in poor yields and are very labor-intensive to purify and crystallize. In addition, suitable models for 

receptor crowding that also allow quantitative analyses are currently not availbale and very hard to establish. 

As a further complicating factor, additional parameters may influence the viral pathogenicity and tropism. For one, 

the redundancy of glycan motifs on different glycoconjugates (glycoproteins, gangliosides, etc.) suggests the 

presence of non-productive ‘decoy receptors’. Our analyses show that MuPyV is surprisingly versatile when it 

comes to engaging different glycan structures, as long as they harbor the ‘core motif’ and do not produce clashes. 

In this light, it seems plausible that additional glycans found on gangliosides and surface glycoproteins are bound 

by the virus. This is not an entirely new concept – however, in contrast to the original model established in the 

90’s, which suggested the use of different glycan reservoirs, new data imply that the same glycan motifs found on 

different macromolecular entities have differential effects on the viruses: In our companion manuscript, You et al. 

report that even in the absence of gangliosides, MuPyV is internalized by surface glycoproteins through an 

unknown alternative route [143]. However, this uptake route does not lead to an infection of the cell, but instead 

triggers an immune response that manifests itself in the initiation of a mitogenic response and the release of 

interleukin-12, a mediator of innate immunity. Based on these findings, we propose an updated model for the 

determinants of MuPyV cell entry: The ratio between productive and non-productive receptors in the viral 

microenvironment, combined with differential affinities of the virus for specific subsets of the receptor pool, 

balances and determines the productivity of viral entry through different routes. In addition, it cannot be excluded 

that effects occurring later in the life cycle are also mediated by the VP1 binding pocket. Virions are transported to 

the ER in complex with their receptor gangliosides, and these processes are still largely unexplored. 

Altogether, the engagement of entry receptors by MuPyV seems to be much more complex and intricate than 

previously thought, probably involving a dynamic network of different receptor pools and decoy entry receptors, 

the usage of which can be fine-tuned by the virus. The virus needs to control these factors in order to create an 

equilibrium between efficient cell entry and cell egress after the completion of the lytic life cycle, while 

maintaining a sufficient selectivity for its infectious receptors. On a grander scale, there also needs to be an 

equilibrium in the consequences of viral infections for the host population, as frequent lethal infections also impair 

efficient viral spread. The fact that the more extreme strains RA and LID are only found in laboratory settings only 

emphasizes this point [43]. The way MuPyV interacts with its surprisingly big receptor pool critically depends on 

receptor availability in different situations. To date, our understanding of the receptor landscape is hampered by 

our relatively poor knowledge about the spatiotemporal distribution of glycan receptors and decoy receptors that 

does not allow for a stringent analysis.  
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Publication linked to this work: 

Structural and Functional Analysis of Murine Polyomavirus Capsid Proteins Establish the Determinants of Ligand 

Recognition and Pathogenicity 

Michael H.C. Buch*, A. Manuel Liaci*, Samantha D. O'Hara, Robert L. Garcea, Ursula Neu, and Thilo Stehle 

*These authors contributed equally to this work. 

PLoS Pathog. 2015 Oct 16;11(10):e1005104. doi: 10.1371/journal.ppat.  

Contributions: AML cloned LID VP1 by site-directed mutagenesis and purified, crystallized, and solved the native 

and complex structures of PTA and LID VP1. He developed the density integration procedure together with MHCB 

and UN. Furthermore, he wrote the paper together with MHCP, UN, SDO, RLG, and TS. He was involved in the 

planning of all experiments. Parts of this work are described in the Diploma Thesis of AML (Tuebingen, 2012). 
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3.2. Glycans as Primary Attachment Factors for Human 

Adenoviruses 

3.2.1. Human Adenovirus 52 Uses Polysialic Acid and the Coxsackie- and Adenovirus 

Receptor for Binding to Target Cells 

HAdV-G52 is a unique type that is only distantly related to other HAdVs [91]. Instead, its closest relatives are the 

SAdV types G01 and G07. HAdV-G52 is one of only three HAdV types equipped with two fiber proteins of differing 

length that are incorporated into the capsid in equal amounts. In this work, we identified the attachment factors 

for both of the fibers. We show that CHO cell lines that are treated with V. cholera neuraminidase are unable to 

mediate HAdV-G52 virion attachment, unless they heterologously overexpress CAR, suggesting that both CAR and 

sialic acid-containing glycans can act as attachment factors. Pretreatment of cells with different broad-spectrum 

proteases or inhibitors of different glycosylation pathways and ganglioside biosynthesis revealed that the glycans 

are most likely a part of mucin-type O-glycosylated proteins on the cell surface. Cell attachment assays with 

recombinant fiber knob domains of both the long and the short fiber revealed a very clear distribution of receptor 

engagement: The attachment of the long fiber knob (HAdV-G52 LFK, termed 52LFK in the publication) to CHO cells 

was only observed if they overexpress CAR, and was completely insensitive to neuraminidase treatment. SPR 

experiments showed that HAdV-G52 LFK engages the complete extracellular portion and the distal domain of CAR 

with a KD of about 5 nM and 2.6 nM, respectively. With a length of 560 amino acids, the length of the long fiber is 

similar to that of HAdV-C05, which is known to use CAR as a physiological attachment factor. In sharp contrast, the 

short fiber knob (HAdV-G52 SFK, termed 52SFK in the publication) did not bind significantly better to CAR-

expressing CHO cells, and was instead very sensitive to neuraminidase treatment. Furthermore, the HAdV-G52 SFK 

could not bind to sialic acid-deficient Lec2 cells, and it showed significant and selective binding to sialylated 

versions of fetuin in an ELISA assay. Although the binding affinity of soluble sialic acid-containing glycans to 

immobilized HAdV-G52 SFK resides in the low mM range (as shown by SPR), sialylated fetuin showed an affinity of 

37µM, highlighting the importance of avidity for the binding. Thus, the long fiber appears to have an excellent 

specificity for CAR, while the short fiber binds to sialic acid-containing glycans decorating O-linked glycoproteins. 

We assessed the relative importance of CAR and sialic acid in a virus attachment inhibition assay using the human 

lung epithelium cell line A549, which presents both attachment factors on its surface. While the pre-incubation of 

virions with CAR, or of cells with a monoclonal anti-CAR antibody, inhibited virion attachment by 20% and 25%, 

respectively, the incubation of virions with soluble sialic acid or the pretreatment of cells with neuraminidase 

resulted in a respective reduction of 75% and 80%. Thus, sialic acid seems to have a more important role for cell 

attachment than CAR, at least on A549 cells, despite the much lower binding affinity. 

We employed glycan array screening in order to identify the sialic acid-containing attachment factors. 

Interestingly, the array showed a drastically elevated signal for a group of linear [α2,8]-linked oligosialic acids that 

together mimic the naturally occurring glycan PSia (see Chapter 1.6). As already discussed, PSia is mainly expressed 

as a post-translational modification of the neural cell adhesion molecule NCAM-1 during embryogenesis and in 

some regions of the adult brain that need constant remodeling [187-189]. Apart from this, it is close to absent 

from the healthy human body (reviewed in [190]). Instead, the genes conferring polysialylation are upregulated by 

some tumors such as glioblastoma multiforme (GBM) and SCLC [191,194-198]. Therefore, PSia is generally 

considered an excellent tumor marker and currently ranked 31
st

 among the most important cancer vaccine target 

antigens (and as the most important non-protein target) by the National Cancer Institute [326]. Due to the 

physiological functions of PSia in deregulating cell polarity and attachment to neighboring cells, PSia expression is 

correlated with metastasis and a poor prognosis [193,199]. According to the array, a length of more than three 

Neu5Ac moieties was required for a drastically elevated signal. A flow cytometry-based cell attachment inhibition 

assay with PSia of differing degrees of polymerization (DP) showed a more continuous result and indicated that a 

DP of three is already enough to significantly reduce the binding of HAdV-G52 SFK to A549 cells. These slight 

differences can be explained by the steric restrictions in the glycan array that are not present in FACS assays. We 
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tested the physiological relevance of PSia binding by monitoring the attachment of HAdV-G52 SFK binding to 

human neuroblastoma cells that either present or lack PSia on their cell surface. HAdV-G52 SFK bound significantly 

better to the PSia-expressing neuroblastoma cell line SH-SY5Y than to the control cell line, while no such effect was 

observed for the fiber knobs of HAdV-D37, C05, and G52 LFK. The binding could be reduced by pre-incubating 

HAdV-G52 SFK (but not HAdV-D37 FK) with soluble pentasialic acid. 

HAdV-G52 SFK possesses a novel sialic acid binding site that is located at the sides of the knob trimer (Figure 14A). 

The three residues R316, G317, and N318 form a prominent ‘RGN’ motif that mediates the key contacts formed 

with the sugar’s carboxyl, 4-hydroxy, and N-acetyl groups (Figure 14B). As for other viral lectins, these contacts are 

formed with only one side of Neu5Ac. The importance of these interactions was verified by mutational studies that 

completely abrogated HAdV-G52 SFK binding to different cell lines. Interestingly, oligosialic acids of DP3-5 are also 

engaged at this canonical pocket, forming directed polar contacts only with their non-reducing Neu5Ac moiety, as 

was verified by X-ray crystallography and STD-NMR. The three pockets on the trimer are too far apart from each 

other and not optimally oriented to allow for a bridged binding of long PSia chains, and the structures clearly show 

that sialic acids in ‘endo’ positions are not engaged. The contribution of the more distal carbohydrate portions 

stems from long-range electrostatic and transient polar interactions with a prominent electropositive rim located 

around the Neu5Ac binding site of HAdV-G52 SFK (Figure 14C), as became apparent from an MD simulation with 

PSia of DP8. Due to its [α2-8] linkage pattern, the poly-anionic PSia is conformationally flexible and is hovering 

above this ‘steering rim’, forming transient polar interactions with more distal residues such as R321, K349, and 

Q320 (Figure 14D). Again, these findings were verified by mutational studies that showed a sharp reduction in 

binding to SH-SY5Y cells for all selected ‘steering rim’ mutations.  

 

 

Figure 14 | Sialic acid and PSia engagement by HAdV-G52. A The Sialic acid binding site I slocated at the side of the knob. B 

Details of the Sialic acid binding pocket. C The positively charged steering rim (blue) is located around the binding site. The 

electrostatic isosurfaces are shown at ±1; ±0.75; ±0.5 kT/e. D PSia is engaged at the non-reducing end, with the more distal 

Neu5Ac moieties hovering above steering rim residues such as R321, R316, and K349. Panel A and B are taken from [327]. © 

2015, Lenman et al. 

 

Among HAdVs, the ‘RGN’ motif and ‘steering rim’ residues are unique to the HAdV-G52 SFK. Notably, they are also 

not present on the short fiber knobs of HAdV-F40 and F41, the only HAdV types besides HAdV-G52 that also 

possess two fibers. HAdV-D37 FK, which was used as a control for experiments addressing sialic acid engagement, 

was able to bind PSia to a certain extent, but was not sensitive to changes in glycan length. However, both key 

motifs of HAdV-G52 SFK are at least functionally conserved in the short fiber knobs of a range of simian AdVs of 

species G, including SAdVs G01, G02, G07, and G11 as well as SAdV-C19, all of which also possess two fibers. We 

tested the ability of SFKs from all these viruses to attach to SH-SY5Y cells – and with the exception of SAdV-G02, all 

of the knobs bound better to the PSia-expressing neuroblastoma cell line than to the control. However, the 

clearest relative change was observed for HAdV-G52 SFK. Thus, we conclude that PSia binding is a specific feature 

of a small and closely related subset of AdVs.  
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Although HAdV-G52 is associated with gastroenteritis, the low number of isolations does not allow for a stringent 

assessment of viral tropism and pathogenicity. This makes it hard to establish a clear relation between receptor 

availability and the tissues targeted by the virus [77,91]. Yet, apart from the fact that PSia synthesis is transiently 

upregulated in maturing immunogenic DCs [328], possibly aiding in DC migration, the virus is unlikely to come into 

direct contact with PSia-expressing human cells. Why, however, would a virus evolve to specifically recognize a 

receptor that it most likely does not encounter in healthy hosts? To date, the physiological relevance of PSia as 

HAdV-G52 attachment factor is still unclear. Due to its obvious similarity to SAdVs, HAdV-G52 might as well be a 

simian virus that gained the ability to infect humans (Kajon A, personal communication). Whether PSia is more 

prominently expressed in healthy simian tissues is not known, but this might be a possible explanantion for the 

observed PSia-specificity of HAdV-G52. Interestingly, PSia is also synthesized by some pathogenic bacteria such as 

E. coli K1 and N. meningitidis, which have evolved to express PSia through convergent evolution, most probably as 

a molecular mimicry measure that protects these pathogens from the host immune defense (reviewed in [329]). In 

this light, it appears plausible for HAdV-G52 to attach to enteric bacteria of humans and simians and use them for 

transport between hosts or to passively mount an infection, which would also provide a link to the presumed 

gastroenteric tropism of HAdV-G52. Although such a behavior has never been reported for adenoviruses, several 

reports establish a link between noro-, reo-, and poliovirus infections and commensal gut bacteria [148,149]. We 

are currently conducting experiments to show whether HAdV-G52 is capable of attaching to PSia-expressing gut 

bacteria. In addition, it is noteworthy that HAdV-G52 SFK can also use more abundant monosialylated glycans for 

cell attachment, albeit with a much lower efficiency than PSia. The alternative use of mono-and polysialylated 

glycans might explain why the virus has evolved to specifically recognize the non-reducing end of PSia instead of an 

‘internal’ epitope that might produce a higher affinity. Since sialic acids usually are the capping parts of glycans, 

they are scarcely found at ‘internal’ positions in most abundant human glycans. By recognizing the non-reducing 

end and involving more distal Neu5Ac moieties through the ‘steering rim’, however, HAdV-G52 might increase its 

PSia affinity while maintaining the ablity to bind to other glycans. 

Another question raised by our findings is why HAdV-G52 possesses two functionally distinct fibers at the same 

time. Although our results demonstrate that there is a very clear division of tasks between the two fibers, both of 

which recognize different attachment factors, this organization appears to be redundant at first sight. However, 

both fibers might fulfill complementary functions in several ways. For one, the spatiotemporal distribution of CAR, 

sialylated glycans, and PSia is highly divergent, and recognizing different receptors might help the virus to infect 

different tissues. Secondly, HAdVs are known to overexpress CAR- and DSG-2-binding fibers or penton 

dodecahedra that open epithelial junctions and facilitate virus egress and spread [134,288]. In a similar fashion, 

HAdV-G52 might use sialic acid-containing glycans to mount an initial infection from the apical side, and use its 

CAR-binding long fiber to spread within epithelial tissues or to reach beyond the epithelium. Thirdly, the long fiber 

of HAdV-F41, an enteric virus, was shown to not withstand gastric conditions, which led to a sequential model 

suggesting that initial infections in the gut are mediated by the short fiber knob that binds a yet unidentified 

receptor, while the long fiber is used by progeny virus within the infected tissue (Mangroo CS and Brown M, 

personal communication [330]). Additional insight would be gained by monitoring how the two fibers are 

incorporated into the virus capsid. The expression of both fibers is mediated by the same promoter, and both 

share a highly homologous N-terminus including the universal fiber motif FNPVYPY that was shown to mediate 

fiber attachment to the penton base [117]. If the incorporation of the different fibers is not just empirical, but 

regulated by a viral or host factor (e.g. on the translation level), the virus could adapt its capsid to a changing 

environment. 

As discussed in Chapter 1.9.2, HAdVs are widely used as platforms for vector applications. Currently, most HAdV-

based vectors are derived from the most well-studied type, HAdV-C05. However, the applicability of these vectors 

is impaired by increased hepatotoxicity due to coagulation-factor mediated liver tropism or rapid immune 

clearance of the virus by an existing immunological memory [331,332]. To this end, rare HAdV types such as HAdV-

D26 and D48 are currently developed as alternative vectors [333]. In addition, depending on the application, 

vector safety and efficiency can be hampered by the lack of control over the vector’s in vivo tropism, leading to off-

target effects. Especially in the case of oncolytic viruses, therapy would greatly benefit from increased specificity 
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for tumors and metastases. In this light, HAdV-G52 virions with deleted long fibers would be an excellent vector 

candidate, since the virus does not bind coagulation factors and combines low seroprevalence and an expected 

low antibody cross-reactivity with a strong natural preference for the tumor antigen PSia. In fact, several vector 

systems that target PSia are currently under development, either involving bispecific adapters or replacing the 

whole fiber domains with a PSia-specific phage endosialidase called EndoNF ([334], Martin N, Gerardy-Schahn R, 

and Kuehnel F, personal communication). 

We were able to enhance the PSia specificity of HAdV-G52 SFK by mutating residues in the periphery of the 

steering rim. For example, the replacement of K349 with an arginine enhanced HAdV-G52 SFK binding to SH-SY5Y 

cells in comparison to the wild type. We are currently in the process of constructing a PSia-optimized version of 

HAdV-G52 featuring a deletion of the long fiber gene (HAdV-G52v) that could be used as a platform for vector 

development.  

In light of the dual mechanism by which oncolytic viruses fight cancer cells (see Chapter 1.9.2), the oncolytic 

potential of such a vector and the extent to which it inhibits an immune response will have to be addressed 

experimentally. The extent of immune activation appears to be type-specific and is not related to seroprevalence, 

as has been shown for the rare types HAdV-D26 and D48 [335]. A large portion of the immunogenic potential can 

be attributed to the relative frequency of TLR9-stimulating ‘CpG-S’ hexa-deoxynucleotide motifs and inhibitory 

‘CpG-N’ motifs in the viral genome [336]. The relative CpG-S/CpG-N frequency in the HAdV-G52 genome is 

comparable to that of the immunostimulatory type HAdV-A12, and higher than that of e.g. HAdV-C05 (data not 

shown). Furthermore, although HAdV-G52 is genetically distant from other HAdV types and an assessment of the 

in vivo immunogenicity of potential T cell epitopes is difficult due to the low number of infections [77], several 

described HLA epitopes are conserved within its genome [337]. Future experiments with HAdV-G52v will include 

testing of PSia-dependent infection and lysis of our neuroblastoma cell lines and in vivo experiments using 

xenograft mouse models of PSia-expressing cancers such as GBM or SCLC as well as humanized mice with ectopic 

HLA expression [338]. 

In summary, we have discovered the two physiological primary attachment factors of HAdV-G52, sialic acid and 

CAR, both of which are specifically engaged by only one of its two fibers. Although the affinity for sialic acid is 

much lower than that for CAR, the former is the dominant attachment factor on A549 cells. We show that the virus 

uses PSia as a preferred cellular attachment factor using its short fiber knob and provide detailed and sensible 

structural insights into how this preference has emerged. The interaction between HAdV-G52 SFK and PSia is 

unusual and involves transient interactions and long-range electrostatic effects that are combined with 

sophisticated short-range contacts at the non-reducing ende of the glycan. The interaction is not observed in other 

HAdVs, and instead confined to a small subset of non-human species G HAdVs. Based on the various advantages of 

HAdV-G52 over conventional HAdV-based vectors that are combined with its ability to specifically interact with a 

glycan that is selectively expressed in high amounts on cancer various cancer types, we believe that HAdV-G52v is 

an excellent choice as an oncolytic vector basis for the specific treatment of PSia-expressing somatic cancers such 

as SCLC. 
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3.2.2. HAdV-D36 and its Unique Receptor Profile 

HAdV-D36 is a member of species D, the largest HAdV species containing 47 types to date [58]. Despite having 

closer relatives among HAdVs than HAdV-G52, the virus exhibits several surprisingly unique features. As such, it 

possesses a low cross-reactivity to antibodies directed against other HAdV types and a broad pathogenicity profile 

[85]. The virus is associated with gastroenteritis and, most distinctively, is the only human virus to be associated 

with human obesity. In addition, HAdV-D36 DNA is found in non-epithelial adipose tissue samples [86,339,340]. 

Like other HAdV types, HAdV-D36 infects a wide range of animals in experimental settings, in many of which it 

induces signs of adiposity and adipocyte differentiation [85,90,341,342]. However, the virus is also able to spread 

horizontally between chickens through natural routes, and anti-HAdV-D36 antibodies have been found in 

previously unchallenged rats and rhesus monkeys that had come in contact with humans before. While the 

adipogenic potential of the virus has been ascribed to the action of its early gene product E4ORF1p (see 

Chapter 4.2) [343], its tissue- and host tropism are believed to be at least partially controlled by the identity and 

distribution of host factors conferring attachment and entry. In this study, we set out to characterize the 

attachment factors of HAdV-D36.  

In an approach similar to that employed for HAdV-G52, we probed for the chemical nature of possible HAdV-D36 

attachment factors by pretreating suitable cell lines (A549) with different proteases and inhibitors of glycan 

incorporation, and by measuring the ability of HAdV-D36 virions to attach to different CHO cell lines that 

overexpress known or candidate HAdV attachment factors. Unfortunately, HAdV-D36 virions exhibited much less 

clear tendencies than HAdV-G52. As such, virion attachment was sensitive to treatment with the proteases ficin 

and proteinase K, as well as inhibitors of O- and N-linked protein glycosylation – however, comparative attachment 

assays with CHO cells that overexpress the known receptors CAR and CD46 as well as CD21, ICAM-1, and CD55 did 

not point out any specific molecule as a main attachment factor. Clear tendencies emerged only when we 

repeated the assays using recombinant fiber knobs instead of whole virions. These assays pointed out a clear 

preference for cells overexpressing either CAR or sialic acid. Indeed, the attachment of HAdV-D36 virions to A549 

cells could be partially inhibited by soluble CAR, although less efficiently than that of CAR-binding HAdV-C05. 

Similarly, treatment of cells with benzyl-GalNAc (an inhibitor of O-glycosylation) impaired HAdV-D36 attachment to 

A549 cells by about 50%, and tunicamycin (an inhibitor of N-glycosylation) by about 15%. Similarly, pre-incubation 

of virions with soluble sialic acid inhibited virion attachment to A549 cells with an IC50 of about 20-25 mM, albeit 

never to 100%. In comparison, pre-incubation of virions with heparin had a slight enhancing effect for virion 

attachment, and there was no significant loss in binding to GAG-defective CHO cells. Similarly, inhibitors of 

ganglioside and GAG synthesis did not impair virion attachment. These findings suggest that both CAR and sialic 

acid-containing glycoproteins can serve as primary attachment factors for HAdV-D36. In contrast to our findings for 

HAdV-G52, both factors are simultaneously recognized by the HADV-D36 FK. At the moment, we cannot explain 

the differences observed when using the virions and fiber knobs. However, species D HAdVs (especially HAdV-D09) 

are known to efficiently engage αv integrins by their penton base (see Chapter 4.1) - usually the secondary 

receptor - to an extent that they can use them for attachment [344]. The penton bases of HAdV-D09 and D36 have 

RGD- and variable loops of similar length, and it appears conceivable that the differential presence of integrins 

might influence the results obtained for virions. Similarly, it is possible that a yet unidentified novel attachment 

factor is present on the cells. This hypothesis is supported by the finding that blocking virions with both CAR and 

sialic acid at the same time had a synergistic effect, but never increased the binding by more than 80% on both 

human (A549) and rodent (CHO) cells.  

We have analyzed the sequence and solved the crystal structure of the HAdV-D36 FK in order to gain insights into 

the conservation of the receptor binding interfaces. In comparison to the most closely related structurally 

characterized knob, HAdV-D37 FK, the HAdV-D36 FK possesses several distinctive features. For one, the whole 

knob domain possesses a significantly lower electropositive surface charge than HAdV-D37 FK. Further, the trimer 

interface in HAdV-D36 is less spacious due to a slight shift in the orientation of the monomers with respect to each 

other. The (quite literally) most outstanding feature of the knob, however, is a considerably elongated DG loop 

that projects far from the side of the knob. This loop is eight amino acids longer than that of the HAdV-D37 FK and 
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is partially attached to the counterclockwise neighboring monomer through polar and hydrophobic contacts. 

Interestingly, the DG loop is located in the proximity of the canonical binding interfaces of both CAR and CD46 (see 

Chapter 1.8.1). Superposition of the HAdV-D36 FK with the complex structure of HAdV-A12 and the distal domain 

of CAR indicate that this loop would interfere with potential CAR binding, and complex formation would either 

necessitate a rearrangement of the loop or a novel binding mode. We were able to form a stable complex of 

recombinant soluble CAR and HAdV-D36 FK in size exclusion chromatography experiments, however we have not 

yet conducted any structural studies on the interaction. Notably, the short shaft of the HAdV-D36 fiber indicates 

that even if CAR can be engaged, it is likely not able to cooperate with integrins to confer productive 

internalization, similar to HAdV-D37 (see Chapter 1.8.1). 

In contrast to the canonical protein receptor interfaces, the sialic acid binding interface found in HAdV-D37 is 

highly conserved in HAdV-D36. Indeed, the complex structure of the HAdV-D36 FK with α-2-O-methyl-Neu5Ac 

reveals that sialic acid is engaged in the canonical binding site located at the center of the knob near the threefold 

axis, in a way that is highly similar to the HAdV-D37 binding mode (Figure 9C). All polar key contacts are conserved, 

and the main difference lies in the less spacious trimer interface arrangement that allows HAdV-D36 to form direct 

polar interactions with both faces of the sugar. However, cell-based assays, in vitro assays, and co-crystallization 

trials consistently indicate that HAdV-D36 engages Neu5Ac only about half as efficiently as HAdV-D37 does (IC50 

values of 20-25 mM and 12 mM, respectively). The most probable explanation for this discrepancy is the lower 

electropositivity of HAdV-D36 FK, which was shown to be an important factor e.g. for PSia engagement of the 

HAdV-G52 SFK.  

We next sought to identify which Neu5Ac-bearing glycoconjugates support HAdV-D36 binding by means of glycan 

array screening. Interestingly, two independent glycan arrays revealed that HAdV-D36 has a strong preference for 

a 3’sialyllactose variant carrying a 4-O-acetylated Neu5Ac (termed 4-O-Ac-3’SL in the manuscript), and that this 

effect is not seen in HAdV-D37. We solved the co-crystal structure of the HAdV-D36 FK with 4-O-Ac-3’SL and found 

that contacts are only mediated with the Neu4,5Ac2 portion of the glycan (Figure 15A,B). Therefore, we resorted 

to the more readily accessible α-2-O-methyl-Neu4,5Ac2 for further studies. We are currently testing these findings 

in a cellular context. To this end, we are carrying out comparative attachment inhibition assays where we test the 

inhibitory potency of α-2-O-methyl versions of Neu5Ac and Neu4,5Ac2 on virion and FK attachment to various cell 

types. Additionally, we will test the ability of HAdV-D36 to infect several Neu4,5Ac2-positive cell lines (including 

horse and salmon cell lines) and test if the process depends on Neu4,5Ac2 by treating the cells with neuraminidase 

or 4-O-acetylation-specific viral esterases such as ISAV hemagglutinin-esterase (see Chapter 1.6). Furthermore, we 

will specifically screen for Neu4,5Ac2 on cells of the adipose lineage, and test whether HAdV-D36 can infect 

adipose cells.  

 

 

Figure 15 | Neu5Ac, 4-O-Ac-3’SL, and Neu4,5Ac2 engagement by HAdV-D36 (A-C) and D37 (D). A Overview of the HAdV-D36 

binding pocket. The carbohydrate colored by B Factor and well-ordered water molecules are displayed. Waters in the center of 

the cavity are displaced. B 4-O-Ac-3’SL is engaged only by its Neu4,5Ac2 moiety. Fo-Fc omit electron density (3σ, green; 2.5σ, 

yellow) and 2Fo-Fc density (1σ, blue) after refinement are depicted. C Neu5Ac (yellow) and Neu4,5Ac2 (green) binding by HAdV-

D36. D Neu5Ac (yellow) and Neu4,5Ac2 (green) binding by HAdV-D37. 
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Using X-Ray crystallography, we were able to solve the structures of both HAdV-D36 and D37 in complex with 

α-2-O-methyl-Neu5Ac as well as α-2-O-methyl-Neu4,5Ac2 using a large excess of ligand (Figure 15C,D). All 

complexes gave high-resolution structures that allow for an interpretation of the observed differences. The 

HAdV-D36 FK engages Neu4,5Ac2 in a similar orientation as Neu5Ac, but the steric repulsion between the 

4-O-acetyl group and the two binding site residues Y315 and P320 pushes the ligand towards the central threefold 

axis of the knob trimer. This twist is observed in all three sugar binding pockets and causes the three 4-O-acetyl 

functions to approach each other and engage in a triangular hydrophobic contact with an average length of 4.2 Å, 

thereby disposing ordered water molecules from the center of the pocket. Together with residues 313, 315, and 

320, two 4-O-acetyl groups form a hydrophobic binding cavity for the third ligand. It is tempting to speculate that 

this arrangement leads to cooperative binding effects that are able to make up for the lower ab initio affinity of 

the HAdV-D36 FK - especially since the effect is not observable in HAdV-D37, whose wider central cavity does not 

bring the three 4-O-acetyl functions in close enough proximity. When comparing the Neu4,5Ac2 binding modes of 

both viruses, it becomes apparent that the differences originate mainly from the altered dimensions of the central 

cavity. Through close inspection of the fiber knob structures, we identified three residues of the G strand that are 

responsible for a large part of the trimer interface and control the relative inclination of the monomers towards 

the threefold axis. While HAdV-D36 FK possesses a ‘VSN’ tripeptide motif at positions 311-313, HAdV-D37 FK bears 

a ‘YGT’ motif at the analogous positions 308-310. Interestingly, the species D HAdV fiber knobs cluster into two 

distinct phylogenetic clades when aligned, and HAdV-D36 and HAdV-D37 locate in opposing clades (Figure 8A). 

Members of the ‘HAdV-D36-like clade’ possess a DG loop of similar size, and most of them carry a ‘VSN’ trimer 

interface configuration. It is noteworthy that none of the types belonging to this clade has a reported protein 

receptor to date. Members of the ‘HAdV-D37-like’ clade, in turn, possess much shorted DG (or FG) loops and a 

conserved ‘YGT’ or ‘YGN’ interface. This clade contains all EKC-causing HAdVs [58]. Mutating the ‘YGT’ motif in 

HAdV-D37 to ‘VGN’ reduces the size of the central cavity and brings the three Neu4,5Ac2 moieties into a position 

very similar to that of HAdV-D36. The HAdV-D36 ‘YGT’ mutant, in turn, lost the ability to bind Neu4,5Ac2 due to a 

distortion of its N-acetyl binding cavity. Despite this pattern of conservation, engagement of Neu4,5Ac2 in a 

cooperative fashion is most likely not a common feature of HAdVs of the ‘HAdV-D36-like’ clade, as was shown by 

the complex structures of HAdV-D48 (HAdV-D36-like) and D26 (HAdV-D37-like). In these cases, minor mutations 

outside the binding pocket cause a complete or substantial loss of Neu5Ac binding, and none of them is likely to 

support Neu4,5Ac2 binding. Hence, we postulate that Neu4,5Ac2 binding is a unique feature of HAdV-D36 or a 

small number of species D viruses closely related to HAdV-D36. Complex structures and molecular modelling 

experiments with 7-, 8-, and 9-O-acetylated Neu5Ac variants suggest that 4-O-acetylation is the only modification 

of this sort that is able to create the described cooperativity effect.  

Since the high IC50 values strongly indicate a low affinity of the interactions, in vitro affinity studies to compare 

different protein mutants and acetylation patterns are challenging and cost-intensive. The method developed for 

MuPyV is not applicable to HAdV-D36, since the complex changes its space group and there is a low isomorphism 

between crystals. We are currently exploring the possibility to compare the chemical shift perturbations caused by 

ligands in a TROSY-NMR protein spectrum. This method is very sensitive and might allow at least the qualitative 

comparison of different ligand affinities. Despite its size, the trimeric HAdV-D36 FK protein gives a well-

interpretable TROSY spectrum with detectable shift perturbations upon ligand addition in preliminary test runs 

(data not shown). Notably, STD-NMR studies with HAdV-D36 FK and 4-O-Ac-3’SL did not give any detectable spin 

saturation transfer differences, although the interaction has been shown in the various experiments described 

above. One reason for missing STD signals is a very slow off-rate that influences the spin relaxation time of the 

bound ligand. It seems plausible that a cooperative binding mode of Neu4,5Ac2 might also lead to altered binding 

kinetics.  

To date, the physiological relevance of the interaction between the HAdV-D36 FK and Neu4,5Ac2 remains 

enigmatic. Current tissue profiling data suggest that Neu4,5Ac2 is the rarest O-acetylated Neu5Ac variant in 

vertebrates [169,345]. The gene conferring 4-O-acetylation is unknown to date, but Neu4,5Ac2 has never been 

found in healthy human tissue samples and is generally considered to be absent from humans. In contrast to this, 

it frequently occurs in domestic or livestock animals [345], many of which (chickens, mice, rats) have been shown 
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to be susceptible to HAdV-D36 infection. To date, HAdVs are generally believed to be highly species-specific. 

However, the unparalleled preference of HAdV-D36 for an animal carbohydrate, whose species distribution fits 

very well with the virus’ unique ability to infect certain animals, makes it very tempting to speculate that 

HAdV-D36 might possess an animal reservoir. In fact, binding for O-acetylated Neu5Ac variants is a common 

strategy among animal viruses - and even human viruses such as Influenza virus C [176]. One general principle is 

that sialic acid variants often have limited expression profiles and might thus be used by pathogens to populate 

specific evolutionary niches. In particular, several viruses infecting mice, rats, and salmon have evolved to use 

Neu4,5Ac2 as the main attachment factor, and some have evolved a 4-O-esterase function to facilitate viral release 

(reviewed in [164]). Another example is HPyV9, which may use nutritionally acquired Neu5Gc to infect a subset of 

tissues [147]. In this light, it seems plausible that HAdV-D36 adopted a similar strategy in order to expand its host 

range by means of small changes of its sialic acid binding site, and potentially by using a different protein receptor. 

The more restricted expression profile of sialic acid variants might additionally help the viruses to avoid excessive 

binding to non-productive ‘decoy’-receptors and thus increase the efficiency of infection in specific tissues. It 

would be enlightening to screen for HAdV-D36 seropositivity among Neu4,5Ac2-synthesizing livestock animals that 

are in frequent contact with humans, e.g. poultry or horses. At the same time, several enteric bacteria such as N. 

meningitidis also synthesize Neu4,5Ac2 [168], and some bacteria such as S. aureus are in fact found to infect and 

persist in adipose-like 3T3-L1 cells [346]. Thus, another hypothesis would be that HAdV-D36 is able to adsorb to 

bacteria of this sort to mount infections of the gut, and possibly even adipose tissue, in fashion similar to that 

proposed for HAdV-G52. 

In summary, we present initial evidence suggesting that HAdV-D36 uses CAR and Neu4,5Ac2-containing glycotopes, 

presumably on glycoproteins, as preferred attachment factor, and we provide a sensible structural basis for this 

preference. It seems likely that HAdV virions also recognize a third, yet unidentified surface molecule that partially 

contributes to the attachment process, potentially αv integrins. These findings will be evaluated in a cellular 

context and might have broad implications for our understanding of the unique features of HAdV-D36 and species 

D HAdVs in general. 
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3.2.3. Triazole Linker-Based Trivalent Sialic Acid Inhibitors of HAdV-D37 Infection of 

Human Corneal Epithelial Cells and Potential New Inhibitors for HAdV-D36 

Epidemic keratoconjunctivitis (EKC) is a severe and well-defined ocular infectious disease mainly caused by a 

subgroup of species D HAdVs comprised of HAdVs-D37, D08, D53, D54, D56, and D64 (formerly D19) [80,347-350]. 

Millions of cases are reported every year, most commonly in highly populated areas in Asia [351]. Although self-

limiting, EKC is painful, highly contagious, lasts for several weeks and can cause corneal opacities that lead to vision 

impairment for a period of up to two years [352]. Treatment options are currently limited to symptomatic 

measures, as systemic treatment with the acyclc nucleoside analogue cidofovir can cause nephrotoxicicty and 

blockage of the lacrimal canal [353]. As mentioned in Chapter 3.2.2, the EKC-causing HAdVs cluster into a closely 

related ‘EKC clade’ when aligned by the sequences of their fiber knobs [58]. One of the main EKC-causing agents, 

HAdV-D37, has been shown to use the glycan GD1a on cell surface proteins as a physiological attachment factor 

that is found on corneal epithelial cells, and other EKC-causing HAdVs are thought to be able to engage sialic acid-

containing glycans through similar binding sites [76]. Interestingly, sialic acid-binding HAdVs seem to cause more 

severe symptoms than non-binding types, accompanied by a higher incidence of corneal opacities [354]. In the 

case of HAdV-D37, the main factor that distinguishes the high-affinity attachment factor GD1a (IC50 16 µM) from 

sialic acid (12 mM) is the valency of the ligand. As discussed in Chapter 3.1, GD1a contains two terminal [α-2,3]-

linked Neu5Ac moieties, and the topology of the HAdV-D37 FK binding pocket allows for a bidentate binding mode 

that occupies two of the three available Neu5Ac binding sites (Figure 9C). Given the absence of receptor-cleaving 

enzymes in adenoviruses, this finding inspired the development of several antiviral agents exploiting avidity 

effects, e.g. by fusing sialic acid to serum albumin or artificial membranes [304,355,356]. Among these agents was 

a set of novel Neu5Ac-based trivalent small-molecule inhibitors whose distances between terminal Neu5Ac 

compounds mimicked those found in GD1a and that showed excellent inhibitory potential [306]. These 

compounds contained three terminal Neu5Ac moieties that were joined to a trimeric core (e.g. tris(2-

aminoethyl)amine) by means of a linker of varying flexibility (Figure 16A). Although the best compound, ME0322, 

had an in vitro-affinity comparable to GD1a (KD values 14 µM and 19 µM, respectively), ME0332 was about four 

orders of magnitude better than GD1a at inhibiting HAdV-D37-infection of human ocular cells. These findings 

served as a basis for the development of the sialic acid-based antiviral drug APD-209 by Adenovir Pharma AB, 

which is currently evaluated in phase II clinical trials [305]. 

 

 

Figure 16 | Different generations of trivalent HAdV-D37 inhibitors. A Squaric caid-based inhibitor ME0322. B First-generation 

triazole linkers. C Second-generation triazole linkers. Figure modified from [357]. © 2015, Royal Society of Chemistry. 

 

The study presented here describes the development and evaluation of a set of second-generation trivalent 

inhibitors. In contrast to the previously reported inhibitors that were synthesized using squaric acid chemistry, 

these new compounds could be conveniently trimerized using ‘click’ chemistry. We probed for different 

orientations of the resulting triazole ring, different lengths by alternating the methyl and ethyl spacers of the core 

and linker parts, and the replacement of the N-acetyl group of Neu5Ac by an N-propyl function. The compounds 



 

- 44 - 
 

Results 

were evaluated by means of SPR experiments, human corneal epithelium (HCE) cell attachment inhibition, 

inhibition of infection, structural investigations using X-ray crystallography, and ophthalmic toxicity in rabbits. The 

synthesis of the new first- and second-generation triazole compounds could be achieved in eight steps from 

commercially available educts. The two sets of inhibitors differ in the orientation and relative positioning of their 

triazole groups. The first-generation compounds 11a and 11b were prepared with the azide group on the Neu5Ac 

side, and are thus connected to the core by one of their carbon atoms and to the lower part of the linker by a ring 

nitrogen (Figure 16B). Both compounds differ in the length of the alkane linker that connects the rings to the 

Neu5Ac parts. Compound 11a contains an ethyl linker and showed IC50 values of 107 nM and 172 nM for virion 

attachment and infection, respectively. Compound 11b contained a propyl linker and was slightly more effective 

(40 nM and 54 nM, respectively). In contrast, the replacement of the N-acetyl function by an N-propyl group 

resulted in considerably reduced efficacies in the micromolar range. The rationale behind this modification was 

that an increased lipophilicity at this position might be beneficial for the binding. However, crystallographic 

analyses revealed that these compounds are slightly pushed out of the N-acetyl binding pocket, and that this 

altered arrangement leads to a slight distortion of the binding interactions that is pronounced enough to cause a 

loss in engagement efficacy. The second-generation inhibitors contain inverted triazole rings that are moved closer 

towards the Neu5Ac moieties (Figure 16C). The linkers that join these groups to the terminal carbohydrate parts 

are constituted by CH2 or ethyl groups for compounds 17a and 17b, respectively. In this case, the shorter 

compound, 17a, showed an excellent potency as it inhibited virion attachment and infection with IC50 values of 

1.4 nM for attachment and 2.9 nM for infection - and was about 200-fold more effective than the longer 

compound 17b. Also, 17a was about three orders of magnitude more potent at inhibiting cell attachment and two 

orders of magnitude better at inhibiting infection than the squaric acid-based original compound ME0322. 

We tested the ophthalmic toxicity of compound 17a in rabbits in order to test their physiological tolerability. To 

this end, male New Zealand white rabbits were subjected to 48 administrations of 40 µl 1 mg/mL 17a per eye for a 

period of seven days, and relevant values such as weight, intraocular pressure and corneal thickness were 

recorded and compared to a control group. Administration of compound 17a did not cause irritation of ocular 

tissues or changes in the monitored values, giving a pre-clinical basis for the evaluation of the compounds in future 

clinical trials. 

In summary, our triazole-based inhibitors represent a significant improvement of the first generation squaric 

acid-based compounds both in terms of efficacy and synthetic ease. All of the compounds were engaged by the 

HAdV-D37 FK by their Neu5Ac parts in the canonical sialic acid binding pocket, and the best compound, 17a, 

showed an extraordinary inhibitory potential in the low nM range. Although the linkers connecting the three 

Neu5Ac moieties are non-charged, exhibit only small differences in terms of polarity, and do not form any polar 

contacts with the fiber knob, the efficacy of attachment and infection inhibition of the different compounds varied 

considerably (1.4-376 nM for attachment, 2.9-681 nM for inhibition). A linear correlation between linker length 

and inhibitory potential could not be established. Crystallographic analyses showed that compound 17a had a 

more flexible linker than the longer 17b, which possesses a high degree of internal order causing it to adopt a 

relatively rigid bell-like shape with a slight tilt in the Neu5Ac moieties. In fact, 17a seemed to be the most flexible 

of the compounds, and presumably this flexibility accounts for its increased inhibitory potency by reducing the 

entropic cost of the binding. Similar entropic contributions have been demonstrated for the carbohydrate 

engagement of bacterial lectins [166]. Due to their high potency and tolerability, we believe that our compounds 

harbor great potential as drugs for the topical treatment of EKC. 

Using a similar approach as that used for HAdV-D37, we tested the ability of compound 17a to inhibit HAdV-D36 

attachment to A549 cells. As verified by X-Ray crystallography, 17a does indeed bind to HAdV-D36 FK. In contrast, 

HAdV-D26 only bound the inhibitor ME0322 at excessively high concentrations (>100 mM), showing the specificity 

of the interaction. The compound showed a roughly 1000-fold lower efficacy for HAdV-D36 than for HAdV-D37 

binding. This seems plausible given the lower a priori affinity of HAdV-D36 FK for Neu5Ac that is likely multiplied by 

the avidity effect of the trivalent inhibitors. To this end, we are currently synthesizing a new generation of 

inhibitors for HAdV-D36 binding that connect the three sialic acid moieties through the O4 position, mimicking the 
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binding mode of Neu4,5Ac2. Due to stability issues, the ester functions will be replaced with amides, and the three 

carbohydrate moieties will be linked by a minimal trivalent nitrilotripropionic acid core. In contrast to the current 

generation of compounds, this linker will likely contribute additional contacts to the binding. 
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3.3. General Considerations and Implications for the Field  
 

3.3.1. Rules of Engangement 

Our various protein-carbohydrate complex structures confirm and extend existing knowledge about viral glycan 

binding sites. As many other viral sialic acid binding sites, they are mostly shallow and form contacts only with the 

α-face of the sugar [139]. Most of the key contacts involve the distinctive functional groups of sialic acids: the 

carboxyl groups that engage in salt bridges, the N- (and O-) acetyl groups that contribute mostly through 

hydrophobic contacts, and sometimes direct or water-mediated hydrogen bonds formed by the hydroxyl groups of 

the glycerol chain. The presence of several acetyl groups dictates a high level of surface complementarity that is 

easily disturbed by single mutations. In the cases of MuPyV and HAdV-D36 and D37, key amino acids form contacts 

with several amino acids at the same time. From an evolutionary point of view, a restriction of the interaction to 

single residues or short residue stretches might help the viruses to use the interacting residues efficiently and limit 

the need for structural conservation to uphold infectivity. Additionally, residue motifs of this kind might be used 

for efficient receptor switches or differential receptor usage, as was shown for the VSN motif in HAdV-D36 and the 

RGN motif of HAdV-G52 that is only present in species G HAdVs. In the course of our studies, it became clear that 

additional effects have a critical impact on the usefulness of glycans as attachment factors for some viruses. For 

one, transient polar and long-range hydrophobic and electrostatic interactions as well as steric and entropic effects 

and the flexibility of ligands have been demonstrated here to be decisive factors for preferential ligand and drug 

binding in the cases of HAdV-G52 and D37. Similarly, the internal order of the GT1a and GD1a glycans has subtle 

implications for MuPyV receptor binding in comparison to the more flexible DSLNT. Although these are not novel 

principles (see Chapter 1.6), they are difficult to assess experimentally and therefore often neglected when 

analyzing crystal structures. Secondly, small rearrangements of the quaternary structure of lectins can have similar 

effects. These phenomena often go unnoticed when comparing structures to homologues e.g. from related virus 

types, especially when relying on sequence information only while doing so. In the case of HAdV-D36, thorough 

analysis of structural data delivered information that would not have been accessible otherwise. However, the 

analysis of small structural changes warrants caution with respect to over-interpretation, and it is imperative to 

monitor the model quality with respect to coordinate errors or reliability of the electron density, and to validate 

any conclusions in experimental settings.  

We and others have demonstrated that HAdVs G52, D36, and D37 all recognize both CAR and sialic acid-containing 

carbohydrates as attachment factors [232]. However, HAdV-G52 has distributed these two tasks onto two fibers, 

while HAdV-D36 and D37 use only one fiber to recognize both molecules simultaneously. The reasons for this 

discrepancy are currently unknown. Both HAdV-D36 and D37 possess short fibers that are thought to not allow 

using CAR for the infection of cells in combination with integrins, and CAR binding might chiefly serve to dissolve 

tight junctions by excess fibers after the lytic cycle [125,225,316]. In this case, the virus still needs to recognize an 

attachment factor that supports integrin binding. In this light, it would seem more efficient for the viruses to 

possess two different fibers for two different tasks. However, each additional molecule inevitably leads to the 

presence of additional epitopes that might be recognized by the immune system. Additionally, the genome size of 

HAdVs is generally limited by genome packaging into the virus particles, and adding one gene generally comes at 

the cost of deleting another one. Both processes might limit the evolutionary incidence of incorporating more than 

one fiber, which apparently only occurred once within the simian lineage.  

The sialic acid binding side of species G AdVs is much more surface-exposed than the canonical site found in 

species D HAdVs which is hidden in the central cavity of the protein. According to the so-called ‘canyon 

hypothesis’, hiding of the receptor binding site is a mechanism to avoid immune clearance by simple competitive 

receptor blockade [358]. This suggests a clear necessity for species G Advs to bind their receptor at such an 

exposed location. The presence of the ‘steering rim’ in these AdV types explains this necessity, as this binding 

mode is not possible e.g. at the central cavity.   
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3.3.2. Methods of Assessing Virus-Carbohydrate Interactions 

Structural studies with virion particles are usually cumbersome and challenging, and they seldom result in the high-

quality data that are required to assess details of carbohydrate engagement. Therefore, working with recombinant 

isolated capsid proteins has great benefits and has enabled countless insights that would not have been possible 

otherwise. Especially in cases such as reo- or adenovirus fiber head domains that project far from the capsid, these 

insights are likely to hold up in a virion context, as well. However, working with the single, recombinantly 

expressed proteins brings about several intrinsic simplifications that should not be neglected and that potentially 

pose an obstacle to the direct correlation of receptor engagement and physiological effects on cell attachment and 

infection. For one, virions may possess additional epitopes for the same or other attachment factors that 

additionally influence the virus’ behavior. Secondly, the presence of a viral genome is known to alter receptor 

engagement properties, e.g. by establishing a cross-capsid electrostatic potential, or by altering the pressure inside 

the capsid [121,122]. As discussed in the introduction, avidity and cooperativity effects play essential roles in virus 

glycan engagement [141,142]. The list of examples has been extended by MuPyV, HAdV-G52, HAdV-D36, and 

perhaps most impressively by the potency of our trivalent HAdV-D37 inhibitors, whose efficacy was increased by a 

factor of 10
6
 in comparison to monovalent sialic acid. The case of MuPyV VP1 receptor engagement shows how 

minimal alterations of binding affinity (that can hardly be assessed experimentally when investigating single 

interactions of the VP1 binding pocket) translate to large differences in a virion context.  

Dissecting (and correlating) these effects is complicated by a number of inherent methodological difficulties. On a 

technical note, assessing thermodynamic or kinetic data of glycan engagement is often very challenging, since the 

avidity effects result in very weak individual protein-carbohydrate interactions residing in the mM range. Many 

conventional methods such as SPR or grating-coupled interferometry have proven to not be sensitive enough to 

assess minute changes in the course of this work, while others such as ITC require massive protein concentrations 

and ligand amounts that are prohibitively expensive and produce estimated errors that are too high to give reliable 

values (data not shown). Even very sensitive techniques such as TROSY-NMR titration and assessment of chemical 

shift perturbations are limited by the fact that saturation is hardly reached and that the homo-oligomeric capsid 

proteins are comparably large. While being very useful in the detection of potential receptor carbohydrates, glycan 

arrays or ELISA-based methods generally do not allow for quantitative analyses due to steric constraints. We have 

established a crystallography-based technique that allows a qualitative comparison of binding events among 

different MuPyV strains through integrating electron density in differentially soaked crystals. However, this 

method is quite labor-intensive and requires highly isomorphous and well-diffracting crystals. For our studies with 

MuPyV, we have solved more than 50 differentially soaked crystal structures for the process, many of which had to 

be discarded. In the case of HAdV-D36, this strategy was not applicable due to the low isomorphism of the 

different complex crystals. Although working with virus-like particles or even complete viruses might overcome 

these limitations, the absence of robust models for local glycan crowding and mobility make it hard to validate the 

results. The development of more robust techniques for affinity assessment as well as more true-to-life membrane 

models is needed in order to correlate single binding events and their implications for virion attachment. 

 

3.3.3. Physiological Roles of Glycan Binding 

The development of new and more sophisticated glycan arrays continues to reveal new details of glycan 

engagement by HAdVs. The discoveries made in this work implicate that the use of non-human glycans might be 

more frequent than anticipated, and might point at novel survival strategies of HAdVs, including the hijacking of 

bacteria or the use of animal reservoirs. Several newer studies suggest that many RNA and DNA viruses interact 

with the human microbiota, and addressing this topic may add to our understanding of how other HAdV types 

reach and infect epithelial tissues, as well. These findings might substantially impact our understanding of the 

adenoviral life cycle and open new ways to interfere with diseases. 
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Furthermore, although some viruses, especially polyomaviruses, show a remarkable specificity for single glycan 

types, our studies suggest that some viruses are more promiscuous in terms of receptor engagement. It seems 

likely that viruses of this sort also recognize non-productive glycan motifs that may play a role for antiviral immune 

responses and for the epidemiological equilibrium within the host. As such, the presence of a ubiquitous decoy 

receptor would require the production of more virus progeny, and it might lead to virus particles being present in 

tissues that they cannot infect. Consequently, receptor promiscuity might be an explanation for seemingly 

paradoxical results in vivo. In this light, it seems important to correlate the mere presence of a particular virus in 

the respective tissues with clear indicators of infection. 

The use of recombinantly expressed viral lectins to investigate monovalent interactions with glycans is very useful 

to gain detailed insight into glycan recognition and to establish hypotheses of the origins of differential receptor 

usage. However, correlation of glycan binding data collected in vitro with in vivo tropism and selectivity remains 

challenging. The bulk of the experimental difficulties come from a lack of experimental tools to robustly resolve 

the dynamics of specific glycan presentation in tissues or to recreate these effects in vitro. Even the profiling of 

different sialic acid variants is challenging to date. As stated above, primary attachment factors are generally 

necessary for infectability of a cell. However, they are not the only factors that govern virus tropism, and the 

interplay of these factors is still not well-understood. Future developments in the fields of virology and 

glycobiology will therefore be instrumental in obtaining new insights into how the early steps of the viral life cycle 

of glycan-binding viruses influence their tropism and pathogenicity.  

 

3.3.4. Vector and Drug Development  

Currently, the treatment of many viral infections is limited to preventive or symptomatic measures. The process of 

drug development is quite tedious, in part owing to insufficient cell permeability or toxicity of drug candidates. 

Drugs with extracellular targets circumvent this problem in an elegant fashion. Our HAdV-D37 inhibitors can be 

topically administered to the eye, thereby preventing problems of serum clearance or secondary toxicity. With the 

new compounds, we hope to clear spreading virion particles during the acute phase, which typically lasts for two 

to three weeks. Addressing the early phase of the disease might minimize the severe long-term symptoms caused 

by sialic acid-binding HAdV types, and might restrict the disease to only one eye. The functional parts of these 

inhibitors are physiologically occurring carbohydrates, which should further minimize side effects. Similar 

approaches are used in different fields as well, and homoglycoclusters are widely used as antiadhesive agents, 

immune modulators, or diagnostic tools [359]. The development of a trivalent drug based on physiological 

receptor interactions demonstrates once more how naturally occurring principles of receptor recognition can 

inspire the directed and efficient development of new drugs. 

The use of adenoviral vectors based on HAdV-C05 has proven to be beneficial for some applications due to their 

strong elicitation of immune responses and the use of widely distributed receptors that allow an efficient systemic 

application. However, among the manifold applications of viruses as vectors are some that warrant extraordinary 

tissue specificity. The understanding of details in receptor recognition is crucial especially for therapeutically 

administered and (conditionally) replication-incompetent viruses, where receptor usage is expected to be the main 

determinant of cargo delivery. In this light, the observation that some HAdV types can bind several attachment 

factors with the same knob domain is a very important piece of information. Some cancers such as glioma express 

low levels of the most prominent HAdV-C05 primary attachment factor, CAR, while others such as SCLC do not 

show homogeneous CAR profiles and do not permit uniform transduction [360]. Consequently, there have been 

numerous attempts to retarget HAdV knobs to recognize tumor antigens. Redirecting is currently done by 

designing adapters, fusing short peptides into surface loops of the fiber knob, or by replacing knob domains with 

different proteins [334,361-364]. However, these approaches often do not allow for efficient virus replication, 

which would be desirable in some cases. We propose a new vector system that overcomes common problems of 

existing vectors and combines these benefits with the specific ability of targeting to PSia-expressing tumors such as 
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SCLC or, with some restrictions, GBM. The expression of PSia is involved with depolarization and metastasis, which 

can usually not be specifically addressed by surgery. To this end, vectors generated against PSia-expressing cells 

might prove very useful for the treatment of metastases, even in combination with surgery.  
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4. ONGOING RESEARCH 
 

4.1. Interactions between the Adenovirus 9 Penton Base and 

 Human Integrin αvβ3  
 

For most HAdV species, the second step of the entry process is conferred by the interaction of RGD-binding surface 

integrins with the adenoviral penton base protein (see Chapter 1.8.1) [365]. The only HAdV types that do not 

possess an RGD motif are types F40, F41, G52, and - perhaps surprisingly - D60 [366]. As described in the 

introduction, the interaction between penton base and integrin alters the conformation of both proteins. On the 

integrin side, the interaction triggers several signaling processes leading to clathrin-mediated endocytosis, while 

the untwisting of the penton base protein is thought to destabilize the viral particle for later uncoating [122,235]. 

Several structural studies have been conducted on this interaction, mostly using cryo-EM techniques 

[230,231,367,368]. A 2009 structure reporting the interaction of the HAdV-A12 virion with αvβ5 integrin suffered 

from technical difficulties arising from the icosahedral shape of the capsid [231]. Although an exact stoichiometry 

has not been robustly determined, the authors conclude that integrins are too large to bind to the pentameric 

penton base in a 5:5 ratio, which essentially precludes studies with icosahedral particles due to the need to impose 

pentameric symmetry (Figure 9E). Further light has been shed on the plasticity of the interaction in a recent study 

with a monomeric fragment of the HAdV-D09 penton base (HAdV-D09pb) published by our laboratory [230]. Type 

D09 was chosen for two reasons: due to its relatively short RGD loop (Appendix 6.2.3), which is thought to reduce 

the flexibility of the binding and facilitate high-resolution structural analyses, and because it interacts strongly with 

αv integrins [344,369]. The extraordinary strength of the interaction is believed to originate from a triple-threonine 

(TTT) stretch directly N-terminal of the RGD motif that is also found in physiological interaction partners such as 

fibronectin or vitronectin [344]. The authors of the newer EM study discovered four distinct interaction modes 

occurring between the monomeric HAdV-D09pb fragment and αvβ3 integrin (Figure 9D). Interestingly, some of 

these modes suggest additional binding events that are independent of RGD loop recognition. However, it has 

remained unclear whether these interactions occur simultaneously while several integrins are crowding at the 

virus vertices, or if they rather present distinct steps of a sequential mechanism that perhaps leads to structural 

changes in the proteins. A precise description of the binding dynamics and interface would give valuable insights 

into the mechanisms behind virus internalization, the initiation of virus uncoating, and the initiation of integrin-

dependent antiviral signaling. In addition, such a structure would present a platform for the development of novel 

antiviral drugs or adenoviral vectors that do not target integrins. 

While the purification of the extracellular portion of αvβ3 integrin has been reported elsewhere [230], we initially 

aimed at establishing a protocol for the heterologous expression and purification of HAdV-D09pb in E. coli. Usually, 

penton bases are expressed in baculovirus systems, and expression in E. coli would greatly facilitate the 

production. HAdV-D09 is one of several types that has been reported to form minimal T=1 icosahedral penton 

dodecahedra (Chapter 1.4.2) [370]. While dodecahedra might be physiologically relevant and useful for some 

applications [134,371]; they also possess an icosahedral symmetry and are thus obstructive to our cryo-EM 

studies. The structural basis for dodecahedron formation has been extensively studied and pinned to two loops at 

the base part of the penton molecule. Both loops make up the inter-pentamer interface and were shown to be a 

prerequisite for dodecahedron formation of HAdV-B03. While several amino acids contribute to the interface, 

special importance has been ascribed to one conserved residue on each loop, an asparagine and an arginine (D100 

and R425 in HAdV-B03). Two copies of these residues, located on neighboring pentamers, each form salt bridge at 

the interface. Furthermore, a swapping of the N-terminal 63 amino acids between dodecahedra is thought to 

substantially contribute to the formation and integrity of these particles [116]. Several publications have reported 

that the recombinant expression of penton base in E. coli results in insoluble inclusion bodies [372,373]. To this 

end, we have initially designed a dodecahedron-defective variant of the protein with a cleavable N-terminal GST 
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tag, which was reported to facilitate the solubilization of HAdV-B01pb [374]. The construct contains extensive 

deletions of the loops found to mediate dodecahedron formation, and a partially truncated N-terminus. This fusion 

construct is soluble and expressed in large amounts in E. coli. However, it produces a fraction of C-terminally 

truncated proteins that are incorporated into the oligomers. There are two main truncations occurring at discrete 

points, and one of them presumably affects the last β-strand in the sequence. In addition, a small fraction of the 

proteins is proteolytically cleaved within the ligand-binding RGD loop during protein expression, which would likely 

interfere with structural analyses and might lead to some incorrectly assigned subsets in single-particle analyses. 

Unfortunately, extensive trials of expression conditions involving a large set of parameters (e.g. different strains, 

expression times, promotors, induction times, expression temperatures, etc.) did not serve to improve the quality 

of protein expression in E.coli. Negative-stain transmission electron microscopy and dynamic light scattering 

further revealed that the particles are indeed oligomeric and monodisperse, but they are inhomogeneous and co-

purify with GroEL chaperones. Only few particles showed observable pentameric features. The C-terminal 

truncations and co-purification of GroEL have been present in other penton base preparations [374] and are 

generally a sign of poor folding quality. We therefore conclude that - contrary to previous publications and 

although penton bases neither contain disulfide bridges nor glycosylations - E.coli is generally not a suitable 

expression system for HAdV penton bases. In addition, the extensive mutations in two loop regions may impair 

protein folding. 

In order to overcome these limitations, we have designed a less invasive construct of HAdV-D09pb that is 

optimized for heterologous expression in S. frugiperda cells (Sf-9 or High Five). These constructs contain more 

radical truncations of the N-terminus, and only a single point mutation of R369 (corresponding to R425 in HAdV-

B03). Since protein solubility is not expected to be an issue in insect cells, we replaced the GST tag with a cleavable 

N-terminal His-tag. In addition to HAdV-D09pb, we designed a similar construct of HAdV-A12pb, which is not 

known to form dodecahedra and possesses the shortest RGD and variable loops of all HAdVs, although it is 

expected to bind less well to αv integrins [344,375]. We did not include any mutations into this second construct, 

but decided to also shorten the C-terminus which is known to be susceptible to proteolytic cleavage [117]. We are 

currently in the process of cloning these new constructs. Upcoming experiments will assess the feasibility of 

pentamer production and establish a purification protocol based on that established for E.coli expression. Long-

term goals include the formation of a complex between purified HAdV-D09pb and αvβ3 integrin in order to produce 

a homogeneous sample for single particle EM and small-angle X-Ray scattering (SAXS) analysis. Furthermore, size 

exclusion chromatography will provide quantitative information about the preferred stoichiometry of the complex. 

 

 

Unpublished Manuscript linked to this work: 

Purification of pentameric HAdV-D09 penton base 

A. Manuel Liaci, Karolina Cupelli, Paul Bachmann, York Stierhof, and Thilo Stehle 

Contributions: The contributions are described in detail in the manuscript (see Chapter 6).  
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4.2. The Adenoviral E4ORF1 Protein - Structural and Biophysical 

Studies on a Viral Powerhouse Protein 
 

Despite its small size of only about 125 amino acids, the HAdV E4ORF1 protein (E4ORF1p) exerts manifold 

functions that stimulate the host cell metabolism and deregulate cell polarity (see Chapter 1.8.3). The protein is 

distantly related to the homotrimeric human cellular dUTPase with a sequence identity of about 20%. 

Interestingly, E4ORF1p has been reported to carry out its different functions in two different oligomerization 

states: As a monomer, E4ORF1p of HAdV-D09 associates with the PDZ domains of tight-junction associated 

scaffolding proteins such as MAGI-1 and MUPP-1, while the trimeric form of most types forms a ternary complex 

with Dlg-1 and PI3K, which is recruited to the plasma membrane and stimulates PIP3 signaling processes that for 

example stimulate MYC [376]. Although E4ORF1p is a cytosolic protein, the gene product of HAdV-C05 is thought 

to also enter the nucleus and interact directly with MYC [271]. Due to these effects, E4ORF1p is a potential 

druggable target, and it is currently under investigation as a potential diabetes drug itself [377]. However, its 

structure and interaction interfaces are largely unexplored so far. The remarkable functional versatility and its 

potential clinical and therapeutical relevance have prompted us to investigate the biophysical and structural 

properties of E4ORF1p from different HAdV species. 

With the exception of species F, all HAdVs possess E4ORF1 genes. Interestingly, the E4ORF1p sequence is highly 

homologous within each species (83-100% sequence identity), but differs remarkably between different species 

(38-70%) (see Appendix 6.2.4). To investigate species-specific differences, we have selected E4ORF1ps from HAdV 

types A12, B03, C05, D36, E04, and G52 as representatives for each species. Most of the proteins possess a 

remarkably high percentage of hydrophobic residues, and grand average of hydropathy (GRAVY) indices that are 

paralleled only by membrane proteins [378]. Because of the small size of the proteins, we have initially produced 

full-length E4ORF1p constructs with an N-terminal His tag and a TEV cleavage site. These constructs are generally 

poorly expressed by E. coli regardless of the expression strain we tested. The best solubilization was achieved for 

HAdV-C05 E4ORF1p using a high-pH buffer containing 100 mM triethanolamine (pH 8.5) and 50 mM LiCl. 

In order to increase the expression level and solubility of the protein, we designed HAdV-C05 E4ORF1p constructs 

with the larger N-terminal tags SUMO and maltose binding protein (MBP), respectively. Both constructs gave 

significantly higher expression levels after overnight expression, but the recombinantly expressed proteins were 

almost completely insoluble using the established ethanolamine buffer. However, adding low concentrations of N-

lauroylsarcosine (NLS, 0.2% w/v) helped to solubilize about 50% of the protein when applied with high dilutions of 

about 50 mL per mg cell pellet. In contrast, other detergents such as Triton X-100, Tween 20, or deoxycholate did 

not solubilize the protein. The MBP-tagged protein exhibited poorly reproducible immobilization behavior. SUMO-

tagged HAdV-C05 E4ORF1, in contrast, is readily purifiable by nickel affinity chromatography in the presence of 

0.2% NLS, which is well below the critical micelle concentration. The detergent could be effectively removed by 

several dialysis steps and extensive washing of immobilized E4ORF1p on a nickel column, as assessed by LC-MS 

analysis. However, analytical gel filtration runs and dynamic light scattering experiments consistently indicated 

that the SUMO-tagged protein forms large assemblies of about 500-600 kDa, which corresponds to about 16-20 

E4ORF1 proteins. Negative-stain electron microscopy revealed that these assembled particles indeed are of 

uniform size, but display heterogeneous shapes and no recognizable superstructure. We were able to partially 

cleave off the SUMO tag using the Ulp1 protease, which recognizes the tertiary structure of correctly folded 

SUMO. From these experiments, we concluded that SUMO-tagged HADV-C05 E4ORF1p is poorly folded and prone 

to form aggregates which are held in solution by a coat of folded SUMO tags, thereby forming the observed 

heterogeneous assemblies, and that these assemblies likely do not represent a physiological function of the 

protein. 

Therefore, the rest of this study focuses on the His-tagged HAdV-C05 E4ORF1p construct, despite the much lower 

expression levels. Initially, the bulk of the proteins was found in insoluble inclusion bodies, and the yields of 
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purification were very low (<0.5 mg from 6L culture). We were able to optimize the cell lysis and to establish a 

purification protocol consisting of an initial nickel affinity chromatography (His-Trap) step with low imidazole 

concentrations followed by a digest with TEV protease at a concentration ratio of 1:10 (protease : protein), a 

second His-Trap to remove the tag and protease, and a final gel filtration run. By scaling up the expression, we 

were able to minimize unspecific losses at every purification step. The final purification protocol resulted in a yield 

of 8 mg protein from 18L bacterial cell culture. 

HAdV-C05 E4ORF1p eluted at about 50-120 kDa in SEC experiments depending on the column, suggesting that it 

forms stable oligomers. The size range is consistent with dynamic light scattering experiments. Differential 

scanning fluorimetry experiments indicated a surprisingly high thermal stablility of the complex (Tm 73-76°C) and a 

single melting point with a long melting phase starting at about 60°C. This is indicative for a naturally stable 

quaternary arrangement that cannot be readily dissolved to form monomers. Other publications use stringent 

detergent concentrations to solubilize the protein, and suggest that deoxycholine (DOC) might mimic a cellular 

cofactor that confers monomerization [376]. However, our results with SUMO- and MBP-tagged protein suggest 

that the presence of these detergents might actually result in unfolding of E4ORF1p. 

Crystallization trials showed that E4ORF1p readily crystallizes at a wide concentration range (1.4-10 mg/mL). 

Nineteen out of 96 conditions of an initial JCSG+ grid screen (Qiagen) gave crystals of highly similar morphology 

that diffracted to about 3.5 Å at a synchrotron beamline (X06DA, Swiss Light Source) when illuminated for about 

10s per degree at full beam transmission. We are currently evaluating the reproducibility of these crystals and will 

improve their diffraction properties in the near future. Further experiments will explore whether or not the 

structure of HAdV-C05 E4ORF1 can be solved with molecular replacement using several dUTPase homologues as 

models. An assessment of the β-sheet content by circular dichroism (CD) spectroscopy will serve as a basis to judge 

the suitability of such an approach. Alternatively, we will try to take advantage of the high percentage of 

methionines in the protein (7 out of 128 residues or 5.5%, plus one cysteine), which meets the criteria for solving 

the phase problem by experimental techniques using either selenomethionine (about one residue is needed per 

75-100 amino acids) or sulfur single anomalous diffraction (SAD, about 5% cysteine or methionine content), or a 

combination thereof if the achievable resolution allows for it [379,380]. In parallel, we will assess the binding 

stoichiometry in solution by SAXS experiments. 

In summary, we present initial data indicating that HAdV-C05 E4ORF1 forms stable oligomers and is unlikely to 

persist as a monomer. We further present a working protocol for the purification and crystallization of the protein. 

The crystal structure will serve as a basis to assess the oligomerization state and the energy needed to disrupt the 

oligomer interfaces. Further experiments will establish the purification and crystallization of E4ORF1 from other 

HAdV species, and address the complex formation of the protein with its reported ligands in both biophysical and 

structural experiments. 

 

 

 

Unpublished Manuscript linked to this work: 

The Adenoviral E4ORF1 Protein - Structural Studies on a Viral Powerhouse Protein 

A. Manuel Liaci, Laura Hehl, Antonia Lott, York Stierhof, and Thilo Stehle 

Contributions: The contributions are described in detail in the manuscript (see Chapter 6).  
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6.2. Sequence Alignments of Relevant HAdV Gene Products 
 

The sequence alignments used for analyses throughout this dissertation are listed below. All 

sequences were based on the annotation from the HAdV Working Group Serotyping Tool [381] 
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6.2.1. Fiber Knob Domains (HAdV Types C01 – D70) 

HAdV-B14       -ntlwtgvnpteancqmmdssesndckliltlvktgalvtafvyvigvsnnfnmlttyrn 

HAdV-B55       -ntlwtginpteancqmmdssesndckliltlvktgalvtafvyvigvsnnfnmlttyrn 

HAdV-B07       -ntlwtgvnptrancqimassesndckliltlvktgalvtafvyvigvsndfnmltthkn 

HAdV-B11       --nlwtgvnpteancqimnssesndckliltlvktgalvtafvyvigvsnnfnmltthrn 

HAdV-B34       -ntlwtginpp-pncqiventntndgkltlvlvkngglvngyvslvgvsdtvnqmftqkt 

HAdV-B35       -ntlwtginpp-pncqiventntndgkltlvlvkngglvngyvslvgvsdtvnqmftqkt 

HAdV-B21       -ntlwtgikpp-pncqiventdtndgkltlvlvkngglvngyvslvgvsdtvnqmftqks 

HAdV-B50       -ntlwtgikpp-pncqiventdtndgkltlvlvkngglvngyvslvgvsdtvnqmftqks 

HAdV-B03       -ntlwtgpkpe-anciieygkenpdskltlilvknggivngyvtlmgasdyvntlfknkn 

hadv-b66       -ntlwtgpkpe-anciieygkenpdskltlilvknggivngyvtlmgasdyvntlfknkn 

HAdV-B16       -ntlwtgakps-ancvikegedspdckltlvlvkngglingyitlmgaseytntlfknnq 

hadv-b68       -ntlwtgakps-ancvikegedspdckltlvlvkngglingyitlmgaseytntlfknnq 

HAdV-G52S      -qtlwtpptsn-pnctvyt---esdsllslcltkcgahvlgsvsltgvagtmtnmae--- 

HAdV-F40S      lttiwsi-spt-pncsiye---tqdanlflcltkngahvlgtitikglkgalremnd--- 

HAdV-F41S      -ttiwsi-spt-pncsiye---tqdanlflcltkngahvlgtitikglkgalremhd--- 

HAdV-G52L      -dtlwttadps-pncsiyt---dldakmwlslvkqggmvhgsvalkalkgtllspte--- 

HAdV-F40L      pttlwttadps-pnatfye---sldakvwlvlvkcngmvngtisikaqkgtllkpta--- 

HAdV-F41L      -ttlwttadps-pnatfye---sldakvwlvlvkcngmvngtisikaqkgillrpta--- 

HAdV-A18       -ltlwttpdpl-pncslle---dldtkltlclskngaivhgvvsfvpvkgallnlqnp-- 

HAdV-A12       -ltlwttpdpp-pncsliq---eldakltlcltkngsivngivslvgvkgnllniqstt- 

HAdV-A31       -ltlwttpdpp-pnctlrq---eldakltlcltknesivngivsligvkgdllhiqptt- 

HAdV-A61       -ltlwttpdpp-pnctlrq---eldakltlcltknesivngivsligvkgdllhiqptt- 

HAdV-C02       -ltlwttpdps-pncrihs---dndckftlvltkcgsqvlatvaalavsgdlssmtgtv- 

HAdV-E4        -ltlwttpdps-pncrihs---dndckftlvltkcgsqvlatvaalavsgdlssmtgtv- 

HAdV-C06       -ltlwttpdps-pncrias---dkdckltlaltkcgsqilgtvsalavsgnmasingtl- 

HAdV-C57       -ltlwttpdps-pncrias---dkdckltlaltkcgsqilgtvsalavsgnmasingtl- 

HAdV-C01       -ltlwttpdps-pncqihs---ekdakltlvltkcgsqvlatvsalavrgslapisgti- 

HAdV-C05       -ltlwttpaps-pncrlna---ekdakltlvltkcgsqilatvsvlavkgslapisgtv- 

HAdV-D45       -rtlwttpdts-pnckist---ekdskltlvltkcgsqilasvsllavagsylnmtastq 

HAdV-D28       -rtlwttpdts-pnckmse---vkdskltliltkcgsqilgsvsllavkgeyqnmtastn 

HAdV-D43       -rtlwttpdts-pnckmse---akdskltliltkcgsqilgsvsllavkgeyqnmtantk 

HAdV-D62       -rtlwttpdts-pnckmsk---ekdskltltltkcgsqilgsvsllavsgeylnmttntn 

HAdV-D26       -rtlwttpdts-pnckmst---ekdskltltltkcgsqvlgnvsllavtgeyhqmtattk 

HAdV-D27       -rtlwttpdts-pnckmlt---kkdskltltltkcgsqilgnvsllavsgkylnmtkd-e 

HAdV-D22       -rtlwttpihl-ptaqyqk---i-kiqnnliltkcgsqilasfsllvvkgtyatvdkntt 

HAdV-D42       -rtlwttpdps-pncrvse---dkdskltliltkcgsqilasfsllvvkgtyttvdkntt 

HAdV-D15       -rtlwttpdps-pncrvse---dkdskltliltkcgsqilasfsllvvkgtyatvdkntt 

HAdV-D69       -rtlwttpdps-pncrvse---dkdskltliltkcgsqilasfsllvvkgtyatvdkntt 

HAdV-D29       -rtlwttldps-pnckidi---ekdskltlvltkcgsqilanvsliivngkfkilnnktd 

HAdV-D63       -rtlwttldps-pnckidi---ekdskltlvltkcgsqilanvsliivngkfkilnnktd 

HAdV-D70       -rtlwttldps-pnckidi---ekdskltlvltkcgsqilanvsliivngkfkilnnktd 

HAdV-D58       -rtlwttldps-pnckidi---ekdskltlvltkcgsqilanvsliivngkfkilnnktd 

HAdV-D25       -rtlwttldps-pncridv---dkdskltlvltkcgsqilanvsllvvkgrfqnlnyktn 

HAdV-D67       -rtlwttldps-pncridv---dkdskltlvltkcgsqilanvsllvvkgrfqnlnyktn 

HAdV-D17       -rtlwttpdts-pncridk---ekdskltlvltkcgsqilanvslivvsgkyqyidhatn 

HAdV-D10       -rtlwttpdts-pnctiaq---dkdskltlvltkcgsqilanvslivvagkyhiinnknn 

HAdV-D19       -rtlwttpdts-pnctiaq---dkdskltlvltkcgsqilanvslivvagkyhiinnktn 

HAdV-D37       -rtlwttpdts-pnctiaq---dkdskltlvltkcgsqilanvslivvagkyhiinnktn 

HAdV-D64       -rtlwttpdts-pnctiaq---dkdskltlvltkcgsqilanvslivvagkyhiinnktn 

HAdV-D65       -rtlwttpdts-pnckidq---dkdskltlvltkcgsqilanvslivvagkykiinnntq 

HAdV-D56       -rtlwttpdts-pnckidq---dkdskltlvltkcgsqilanvslivvagkykiinnntq 

HAdV-D59       -rtlwttpdts-pnckidq---dkdskltlvltkcgsqilanvslivvagkykiinnntq 

HAdV-D09       -rtlwttpdts-pncridq---dkdskltlvltkcgsqilanvslivvagrykiinnntq 

HAdV-D08       -rtlwttpdts-pncridq---dkdskltlvltkcgsqilanvslivvagrykiinnntn 

HAdV-D53       -rtlwttpdts-pncridq---dkdskltlvltkcgsqilanvslivvagrykiinnntn 

HAdV-D54       -rtlwttpdts-pncridq---dkdskltlvltkcgsqilanvslivvagrykiinnntq 

HAdV-D32       -rtlwttpdps-pnctide---erdskltlvltkcgsqilanvsllvvkgkfsninnntn 

HAdV-D33       -rtlwttpdps-pnctide---erdskltlvltkcgsqilanvsllvvkgkfsninnntn 

HAdV-D24       -rtlwttpdps-pnctidq---erdskltlvltkcgsqilanvsllvvkgkfsninnntn 

HAdV-D46       -rtlwttpdps-pnctidq---erdskltlvltkcgsqilanvsllvvkgkfsninnnan 

HAdV-D44       -rtlwttpdps-pnckidq---dkdskltfvltkcgsqilanmsllvvkgkfsminnkvn 

HAdV-D48       -rtlwttpdps-pnckidq---dkdskltfvltkcgsqilanmsllvvkgkfsminnkvn 

HAdV-D30       -rtlwttpdps-pnckvse---ekdskltlvltkcgsqilasvsllvvkgkfaninnetn 

HAdV-D49       -rtlwttpdps-pnckvse---ekdskltlvltkcgsqilasvsllvvkgkfaninnktn 

HAdV-D36       -rtlwttpdps-pnckvet---ardskltlaltkcgsqilatvsllvvtgkyaiisdtvn 

HAdV-D60       -rtlwttpdps-pncriev---akdakltlvltkcgsqilasvsiivlkgtyeyakkets 

HAdV-D13       -rtlwttpdps-pnckaet---ekdskltlvltkcgsqilatvsiivlkgkyefvkkete 

HAdV-D38       -rtlwttpdps-pnckaet---ekdskltlvltkcgsqilatvsiivlkgkyefvkkete 

HAdV-D39       -rtlwttpdps-pnckaet---ekdskltlvltkcgsqilatvsiivlkgkyefvkketd 

HAdV-D51       -rtlwttpdps-pnckvse---akdskltlvltkcgsqilasvallivkgkyqtisesti 

HAdV-D23       -rtlwttpdps-pnckvie---akdskltlvltkcgsqilanmsllilkgtyeyisnaia 

HAdV-D20       -rtlwttpdps-pnckiee---vkdskltlvltkcgsqilatmafqvvkgtyenisknta 

HAdV-D47       -rtlwttpdps-pnckieq---dkdskltlvltkcgsqilatmafqvvkgtyenisknta 

                 .:*:       ..         .    : * *  . : . .                   
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HAdV-B14       -----inftaelffdsagnlltsl--------sslktplnhksgqnmatgaitnaksfmp 

HAdV-B55       -----inftaelffdsagnlltsl--------sslktplnhksgqnmatgaitnaksfmp 

HAdV-B07       -----inftaelffdstgnlltsl--------sslktplnhksgqnmatgaltnakgfmp 

HAdV-B11       -----inftaelffdstgnlltrl--------sslktplnhksgqnmatgaitnakgfmp 

HAdV-B34       -----aniqlrlyfdssgnlltde--------sdlkiplknkss-tatsetvasskafmp 

HAdV-B35       -----aniqlrlyfdssgnlltee--------sdlkiplknkss-tatsetvasskafmp 

HAdV-B21       -----atiqlrlyfdssgnlltde--------snlkiplknkss-tatseaatsskafmp 

HAdV-B50       -----atiqlrlyfdssgnlltde--------snlkiplknkss-tatseaatsskafmp 

HAdV-B03       -----vsinvelyfdatghilpdl--------sslktdlqlkykqt----thfsargfmp 

hadv-b66       -----vsinvelyfdatghilpdl--------sslktdlqlkykqt----thfsargfmp 

HAdV-B16       -----vtidvnlafdntgqiityl--------sslksnlnfkdnqnmatgtitsakgfmp 

hadv-b68       -----vtidvnlafdntgqiityl--------sslksnlnfkdnqnmttgtitsakgfmp 

HAdV-G52S      -----tslaieftfddtgkllhsp---------lvnntfsirqgdspasnptynalafmp 

HAdV-F40S      -----nalsvklpfdnqgnllnca---------lesstwryqetnav----asnaltfmp 

HAdV-F41S      -----nalslklpfdnqgnllnca---------lesstwryqetnav----asnaltfmp 

HAdV-G52L      -----saiviilhfdnygvrilnyptlgtqgtlgnnatwgyrqgesad-tnvlnalafmp 

HAdV-F40L      -----sfisfvmyfysdgtwrknypvfdnegilansatwgyrqgqsan-tnvsnavefmp 

HAdV-F41L      -----sfisfvmyfysdgtwrknypvfdnegilansatwgyrqgqsan-tnvsnavefmp 

HAdV-A18       -----tsiglhilfdqhgvlqtgtpsa-----iapqaywgyrqgqsisptpvtnalkfmp 

HAdV-A12       -----ttvgvhlvfdeqgrlitstpta-----lvpqaswgyrqgqsvstntvtnglgfmp 

HAdV-A31       -----ttvglhlvfdrqgrlvtttpta-----lvpqaswgykqgqsvsssavanalgfmp 

HAdV-A61       -----ttvglhlvfdrqgrlvtttpta-----lvpqaswgykqgqsvsssavanalgfmp 

HAdV-C02       -----asvsiflrfdqngvlmens--------slkkhywnfrngnstnanpytnavgfmp 

HAdV-E4        -----asvsiflrfdqngvlmens--------slkkhywnfrngnstnanpytnavgfmp 

HAdV-C06       -----ssvnlvlrfddngvlmsns--------sldkqywnfrngdstngqpytyavgfmp 

HAdV-C57       -----ssvnlvlrfddngvlmsns--------sldkqywnfrngdstngqpytyavgfmp 

HAdV-C01       -----ssahiilrfnehgvlmnhs--------sldpqywnfrkgdltnataytnavgfmp 

HAdV-C05       -----qsahliirfdengvllnns--------fldpeywnfrngdltegtaytnavgfmp 

HAdV-D45       -----ksikvslmfdskgllmtts--------sidkgywnyrnknsvvgtayenaipfmp 

HAdV-D28       -----knvkitllfdangvllegs--------sldkeywnfrnndstvsgkyenavpfmp 

HAdV-D43       -----knvkitllfdangvllags--------sldkeywnfrsndstvsgnyenavqfmp 

HAdV-D62       -----rtitikllfdakgvlltss--------sisgdywnfrnnnstvsnkyenavafmp 

HAdV-D26       -----kdvkisllfdengillpss--------slskdywnyrsddsivsqkynnavpfmp 

HAdV-D27       -----tgvkiillfdrngvlmqes--------sldkeywnyrndnnvigtpyenavgfmp 

HAdV-D22       ----kkefsikllfdangklkses--------nls-gywnyrsdnsvvgtaynnavpfmp 

HAdV-D42       ----nkqfsikllfdangklkses--------nls-gywnyrsdnsvvstpydnavpfmp 

HAdV-D15       ----nkqfsikllfdangklkses--------nls-gywnyrsdnsvvstpydnavpfmp 

HAdV-D69       ----nkqfsikllfdangklkses--------nls-gywnyrsdnsvvstpydnavpfmp 

HAdV-D29       psl-pksfnikllfdqngvllens--------niekqylnfrsgdsilpepyknaigfmp 

HAdV-D63       psl-pksfnikllfdqngvllens--------niekqylnfrsgdsilpepyknaigfmp 

HAdV-D70       psl-pksfnikllfdqngvllens--------niekqylnfrsgdsilpepyknaigfmp 

HAdV-D58       psl-pksfnikllfdqngvllens--------niekqylnfrsgdsilpepyknaigfmp 

HAdV-D25       pnl-pktftikllfdengilkdss--------nldknywnyrngnsilaeqyknavgfmp 

HAdV-D67       pnl-pkafaikllfdengilkdss--------nldknywnyrsgnsilaeqyknavgfmp 

HAdV-D17       ptl--ksfkikllfdnkgvllpss--------nldstywnfrsdnltvseayknavefmp 

HAdV-D10       pei--ksftikllfdkngvlldns--------nlgktywnfrsgdsnvstayekaigfmp 

HAdV-D19       pki--ksftikllfnkngvlldns--------nlgkaywnfrsgnsnvstayekaigfmp 

HAdV-D37       pki--ksftikllfnkngvlldns--------nlgkaywnfrsgnsnvstayekaigfmp 

HAdV-D64       pki--ksftikllfnkngvlldns--------nlgkaywnfrsgnsnvstayekaigfmp 

HAdV-D65       psl--kgftikllfdqngvlmess--------nlgksywnfrnensimstayekaigfmp 

HAdV-D56       pal--kgftikllfdengvlmess--------nlgksywnfrnensimstayekaigfmp 

HAdV-D59       pal--kgftikllfdengvlmess--------nlgksywnfrnensimstayekaigfmp 

HAdV-D09       pal--kgftikllfdkneslwnss--------nlgksswnfrnensimstayekaigfmp 

HAdV-D08       pal--kgftikllfdkngvlmess--------nlgksywnfrnqnsimstayekaigfmp 

HAdV-D53       pal--kgftikllfdkngvlmess--------nlgksywnfrnqnsimstayekaigfmp 

HAdV-D54       pal--kgftikllfdkngvlmess--------nlsksywnfrnensimstayekaigfmp 

HAdV-D32       ptd--kkitvkllfnekgvlmdss--------slkkeywnyrndnstvsqaydnavpfmp 

HAdV-D33       ptd--kkitvkllfnekgvlmdss--------slkkeywnyrndnstvsqaydnavpfmp 

HAdV-D24       ptd--kkitvkllfnekgvlmdss--------tlkkeywnyrndnstvsqaydnavpfmp 

HAdV-D46       ptd--kkitvkllfnekgvlmdss--------tlkkeywnyrndnstvsqaydnavpfmp 

HAdV-D44       gtddykkftikllfdekgvllkds--------sldkeywnyrsnnnnvgsayeeavgfmp 

HAdV-D48       gtddykkftikllfdekgvllkds--------sldkeywnyrsnnnnvgsayeeavgfmp 

HAdV-D30       pgedykkfsvkllfdangklltgs--------sldgnywnyknkdsvigspyenavpfmp 

HAdV-D49       pgedykkfsvkllfdangklltgs--------sldgnywnyknkdsvigspyenavpfmp 

HAdV-D36       ----pkqfsikllfndkgvllsds--------nldgtywnyrsnnnnigtpykeavgfmp 

HAdV-D60       ----vkefsikllfdkngvllpes--------nldkdywnyrsddltiakpyenavpfmp 

HAdV-D13       ----pksfdvkllfdskgvllpts--------nlskeywnyrsydnnigtpyenavpfmp 

HAdV-D38       ----pksfdvkllfdskgvllpts--------nlskeywnyrsydnnigtpyenavpfmp 

HAdV-D39       ----pksfdvkllfdskgvllpts--------nlskeywnyrsydnnigtpyenavpfmp 

HAdV-D51       pkd-qrnfsvklmfdekgklldks--------sldkeywnfrsndsvvgtaydnavpfmp 

HAdV-D23       ----nksftikllfndkgvlmdgs--------sldkdywnyksddsvmskayenavpfmp 

HAdV-D20       ----knsfsikllfddngkllegs--------sldkdywnfrsddsiipnqydnavpfmp 

HAdV-D47       ----kksfsikllfddngkllegs--------sldkdywnfrnddsimpnqydnavpfmp 

                          : *                           :            .  *** 
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HAdV-B14       sttaypfnnn--s--------r--enyiygtchyta-sdhtafpidisvmlnqra----i 

HAdV-B55       sttaypfnnn--s--------rekenyiygtchyta-sdhtafpidisvmlnqra----i 

HAdV-B07       sttaypfnvn--s--------rekenyiygtcyyta-sdhtafpidisvmlnqra----l 

HAdV-B11       sttaypfndn--s--------rekenyiygtcyyta-sdrtafpidisvmlnrra----i 

HAdV-B34       sttaypfntt--t--------rdsenyihgicyymtsydrslfplnisimlnsrm----i 

HAdV-B35       sttaypfntt--t--------rdsenyihgicyymtsydrslfplnisimlnsrm----i 

HAdV-B21       sttaypfntt--t--------rdsenyihgicyymtsydrslvplnisimlnsht----i 

HAdV-B50       sttaypfntt--t--------rdsenyihgicyymtsydrslvplnisimlnsrt----i 

HAdV-B03       sttaypfvlpnag--------tdnenyifgqcyyka-sdgalfplevtvtlnkrl----p 

hadv-b66       sttaypfvlpnag--------tdnenyifgqcyyka-sdgalfplevtvtlnkrl----p 

HAdV-B16       sttaypfityate--------tlnedyiygecyyks-tngtlfplkvtvtlnrrm----l 

hadv-b68       sttaypfityate--------tlnedyiygecyyks-tngtlfplkvtvtlnrrm----s 

HAdV-G52S      nstlyarggs-----------geprnnyyvqtylrg---nvqrpitltvtfnsaa----- 

HAdV-F40S      nstvyprnkt-----------adpgnmli----------qispnitfsvvynein----- 

HAdV-F41S      nstvyprnkt-----------ahpgnmli----------qispnitfsvvynein----- 

HAdV-G52L      sskryprgrg-----------sevqnqtvgytciqg---dlsmpvpyqiqynygp----- 

HAdV-F40L      sskrypnekg-----------sevqnmaltytflqg---dpnmaisfqsiynhai----- 

HAdV-F41L      sskrypnqkg-----------sevqnmaltytflqg---dpnmaisfqsiynhal----- 

HAdV-A18       nssayprang-----------sepksqtftstymqg---diakpmtmkvsfnaas----- 

HAdV-A12       nvsayprpna-----------seaksqmvsltylqg---dtskpitmkvafngit----- 

HAdV-A31       nvsayprpna-----------geaksqmlsqtylqg---dttkpitmkvvfngna----- 

HAdV-A61       nvsayprpna-----------geaksqmlsqtylqg---dttkpitmkvvfngna----- 

HAdV-C02       nllaypktqs-----------qtaknnivsqvylhg---dktkpmiltitlngtsestet 

HAdV-E4        nllaypktqs-----------qtaknnivsqvylhg---dktkpmiltitlngtsestet 

HAdV-C06       nlkaypktqs-----------ktaksnivsqvylng---dkskplhftitlngtde---t 

HAdV-C57       nlkaypktqs-----------ktaksnivsqvylng---dkskplhftitlngtde---t 

HAdV-C01       nlkaypktqs-----------rtaksnivsqvylng---ekekpmtltitlngtdenqt- 

HAdV-C05       nlsaypkshg-----------ktaksnivsqvylng---dktkpvtltitlngtqetgd- 

HAdV-D45       nlvayprpntpdsk-------iyarskivgnvylag---layqpivitvsfnqek----- 

HAdV-D28       nitay-kpvn--sk-------syarshifgnvyida---kpynpvvikisfnqet----- 

HAdV-D43       nitay-kptn--sk-------syarsvifgnvyida---kpynpvvikisfnqet----- 

HAdV-D62       nltaypkptt--tk-------syarsyiygnvylga---lsyqpviikisfnqek----- 

HAdV-D26       nltaypkpsaqnak-------nysrtkiisnvylga---ltyqpviitiafnqet----- 

HAdV-D27       nlvaypkptsadak-------nysrskiisnvylkg---liyqpviiiasfnqet----- 

HAdV-D22       nttaypkiidstt--npadkkssakkiivgnvylgg---npgqpvavaisfnkei----- 

HAdV-D42       nttaypkiinntt--dpenkkssaknnidgnvyleg---nagqpvavaisfnket----- 

HAdV-D15       nttayp-----------enkkssakktivgnvyleg---nagqpvavaisfnket----- 

HAdV-D69       nttayp-----------enkkssakktivgnvyleg---nagqpvavaisfnket----- 

HAdV-D29       nllayakattdqsk-------iyarntiygniyldn---qpynpvvikitfnnea----- 

HAdV-D63       nllayakattdqsk-------iyarntiygniyldn---qpynpvvikitfnnea----- 

HAdV-D70       nllayakattdqsk-------iyarntiygniyldn---qpynpvvikitfnnea----- 

HAdV-D58       nllayakattdqsk-------iyarntiygniyldn---qpynpvvikitfnnea----- 

HAdV-D25       nlaaypkstttqsk-------lyarntifgniylds---qaynpvvikitfnqea----- 

HAdV-D67       nlaaypkstttqsk-------lyarntifgniylds---qaynpvvikitfnqea----- 

HAdV-D17       nlvaypkptt-gsk-------kyardivygniylgg---layqpvvikvtfneea----- 

HAdV-D10       nlvaypkps--nsk-------kyardivygtiylgg---kpdqpavikttfnqet----- 

HAdV-D19       nlvaypkps--nsk-------kyardivygtiylgg---kpdqpavikttfnqet----- 

HAdV-D37       nlvaypkps--nsk-------kyardivygtiylgg---kpdqpavikttfnqet----- 

HAdV-D64       nlvaypkps--nsk-------kyardivygtiylgg---kpdqpavikttfnqet----- 

HAdV-D65       nlvaypkpta-gsk-------kyardivygniylgg---kpdqpvtikttfnqet----- 

HAdV-D56       nlvaypkpta-gsk-------kyardivygniylgg---kpdqpvtikttfnqet----- 

HAdV-D59       nlvaypkpta-gsk-------kyardivygniylgg---kpdqpvtikttfnqet----- 

HAdV-D09       nlvaypkptt-gsk-------kyardivygniylgg---kphqpatikttfnqet----- 

HAdV-D08       nlvaypkptt-gsk-------kyardivygniylgg---kphqpvtikttfnqet----- 

HAdV-D53       nlvaypkptt-gsk-------kyardivygniylgg---kphqpvtikttfnqet----- 

HAdV-D54       nlvaypkptt-gsk-------kyardivygniylgg---kphqpatikttfnqet----- 

HAdV-D32       nikaypkpttdts-akpedkksaakryivsnvyigg---lpdktvvitiklnae------ 

HAdV-D33       nikaypkpttdts-akpedkksaakryivsnvyigg---lpdktvvitiklnae------ 

HAdV-D24       nikaypkpttdts-akpedkksaakryivsnvyigg---lpdktvvitikfnae------ 

HAdV-D46       nikaypkpstdts-akpedkksaakryivsnvyigg---lpdktvvitikfnae------ 

HAdV-D44       sttaypkpptpptnpttpleksqaknkyvsnvylgg---qagnpvattvsfnke------ 

HAdV-D48       sttaypkpptpptnpttpleksqaknkyvsnvylgg---qagnpvattvsfnke------ 

HAdV-D30       nstaypkiinngtan-pedkksaakktivtnvylgg---dagqpvattvsfnket----- 

HAdV-D49       nstaypkiinngtan-pedkksaakktivtnvylgg---daakpvattisfnket----- 

HAdV-D36       sttaypkptnntst-dpdkkvsqgknkivsniylgg---evyqpgfivvkfnqet----- 

HAdV-D60       nlkaypkpdtttqt-tpgdkkssgknkivsnvyfgg---evyqpgvivvafnqek----- 

HAdV-D13       nlkaypkptktasd-kaenkissaknkivsnfyfgg---qayqpgtiiikfneei----- 

HAdV-D38       nlkaypkptktasd-kaenkissaknkivsnfyfgg---qayqpgtiiikfneei----- 

HAdV-D39       nlkaypkptktasd-kaenkvssaknkivsnfyfgg---qtyqpgtiiikfneei----- 

HAdV-D51       nlkaypkntttsst-npddkisagkknivsnvyleg---rvyqpvaltvkfnsen----- 

HAdV-D23       nlkaypnpttsttn-pstdkksngknaivsnvyleg---rayqpvaititfnket----- 

HAdV-D20       nlkaypkp--stvl-pstdknsngkntivsnlyleg---kayqpvavtitfnkei----- 

HAdV-D47       nlkaypnpktstvl-pstdkksngkntivsnlyleg---kayqpvavtitfnket----- 

               .   *                                              *         
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HAdV-B14       radtsyciritwswntgdapegqtsattlvtspftfyyired------ 

HAdV-B55       radtsyciritwswntgdapegqtsattlvtspftfyyiredd----- 

HAdV-B07       nnetsycirvtwswntgvapevqtsattlvtspftfyyired------ 

HAdV-B11       ndetsyciritwswntgdapevqtsattlvtspftfyyired------ 

HAdV-B34       ssnvayaiqfewnlnasespes--niatlttspfffsyited------ 

HAdV-B35       ssnvayaiqfewnlnasespes--niatlttspfffsyited------ 

HAdV-B21       ssnvayaiqfewnlnakes----------------------------- 

HAdV-B50       ssnvayaiqfewnlnakespes--niatlttspfffsyired------ 

HAdV-B03       dsrtsyvmtflwslnaglapet--tqatlitspftfsyired------ 

hadv-b66       dsrtsyvmtflwslnaglapet--tqatlitspftfsyitedd----- 

HAdV-B16       asgmayamnfswslnaeeapet--tevtlitspfffsyired------ 

hadv-b68       asgmayamnfswslnaeeapet--tevtlitspfffsyiredd----- 

HAdV-G52S      ---tgyslsfkwtavv---------rekfaapatsfcyiteq------ 

HAdV-F40S      ---sgyaftfkwsaep---------gkpfhpptavfcyiteq------ 

HAdV-F41S      ---sgyaftfkwsaep---------gkpfhpptavfcyiteq------ 

HAdV-G52L      ---tgysfkfiwrtvs---------rqpfdipccffsyitee------ 

HAdV-F40L      ---egyslkftwrvrn---------nerfdipccsfsyvteq------ 

HAdV-F41L      ---egyslkftwrvrn---------nerfdipccsfsyvteq------ 

HAdV-A18       -tvtgyslsftwtgis--nyrn----qafscpscsfsylaqe------ 

HAdV-A12       -slngysltfmwsgls--nyin----qpfstpscsfsyitqe------ 

HAdV-A31       -tvdgysltfmwtgvs--nyln----qqfstpscsfsyiaqe------ 

HAdV-A61       -tvdgysltfiwtgvs--nyln----qqfstpscsfsyiaqe------ 

HAdV-C02       sevstysmsftwswes-gkytt----etfatnsytfsyiaqe------ 

HAdV-E4        sevstysmsftwswes-gkytt----etfatnsytfsyiaqe------ 

HAdV-C06       nqvskysisfswswns-gqytn----dkfatnsytfsyiaqe------ 

HAdV-C57       nqvskysisfswswns-gqytn----dkfatnsytfsyisqe------ 

HAdV-C01       tpastysisfswswpsnqtyig----qtfatnsytfsyiaqe------ 

HAdV-C05       ttpsaysmsfswdwsg-hnyin----eifatssytfsyiaqe------ 

HAdV-D45       dascaysitfefawnk--dyvg-----qfdttsftfsyiaqe------ 

HAdV-D28       qnncvysisfdytcsk--eytg----mqfdvtsftfsyiaqe------ 

HAdV-D43       qnncvysisfdytlsk--dypn----mqfdvtsftfsyiaqe------ 

HAdV-D62       dvncaysitfeytctk--dyan----qqfdvssftfsyiaqe------ 

HAdV-D26       engcaysitftftwqk--dysa----qqfdvtsftfsyltqe------ 

HAdV-D27       tngcvysisfdftcsk--dytg----qqfdvtsftfsyiaqe------ 

HAdV-D22       --llifn-nirfawgk--ayet---pvpfdtssmtfsyiaqe------ 

HAdV-D42       --tadysitfdfawsk--ayet---pvpfdtssmtfsyiaqe------ 

HAdV-D15       --tadysitfdfawsk--ayet---pvpfdtssmtfsyiaqe------ 

HAdV-D69       --tadysitfdfawsk--ayet---pvpfdtssmtfsyiaqenqdkge 

HAdV-D29       --dsaysitfnyswtk--dydn----ipfdstsftfsyiaqe------ 

HAdV-D63       --dsaysitfnyswtk--dydn----ipfdstsftfsyiaqe------ 

HAdV-D70       --dsaysitfnyswtk--dydn----ipfdstsftfsyiaqe------ 

HAdV-D58       --nsaysitfnyswtk--dydn----vpfdstsftfsyiaqe------ 

HAdV-D25       --dsaysitlnyswgk--dyen----ipfdstsftfsyiaqe------ 

HAdV-D67       --dsaysitlnyswgk--dyen----ipfdstsftfsyiaqe------ 

HAdV-D17       --dsaysitfefvwnk--eyar----vefettsftfsyiaqq------ 

HAdV-D10       --gceysitfdfswsk--tyen----vefettsftfsyiaqq------ 

HAdV-D19       --gceysitfnfswsk--tyen----vefettsftfsyiaqe------ 

HAdV-D37       --gceysitfnfswsk--tyen----vefettsftfsyiaqe------ 

HAdV-D64       --gceysitfnfswsk--tyen----vefettsftfsyiaqe------ 

HAdV-D65       --gceysitfdfswak--tyvn----vefettsftfsyiaqe------ 

HAdV-D56       --gceysitfdfswak--tyvn----vefettsftfsyiaqe------ 

HAdV-D59       --gceysitfdfswak--tyvd----vefettsftfsyiaqe------ 

HAdV-D09       --gceysitfdfswak--tyvn----vefettsftfsyiaqe------ 

HAdV-D08       --gceysitfdfswak--tyvn----vefettsftfsyiaqe------ 

HAdV-D53       --gceysitfdfswak--tyvn----vefettsftfsyiaqe------ 

HAdV-D54       --gceysitfdfswak--tyvn----vefettsftfsyiaqe------ 

HAdV-D32       -tesaysmtfeftwak--tfen----lqfdsssftfsyiaqe------ 

HAdV-D33       -tesaysmtfeftwak--tfen----lqfdsssftfsyiaqe------ 

HAdV-D24       -tecaysitfeftwak--tfed----vqfdsssftfsyiaqe------ 

HAdV-D46       -tecaysitfeftwak--tfed----vqfdsssftfsyiaqe------ 

HAdV-D44       -tgctysitfdfawnk--tyen----vqfdssfltfsyiaqe------ 

HAdV-D48       -tgctysitfdfawnk--tyen----vqfdssfltfsyiaqe------ 

HAdV-D30       esncvysitfdfawnk--tykn----vpfdsssltfsyiaqd------ 

HAdV-D49       esncvysitfdfawnk--tykn----vpfdsssltfsyiaqd------ 

HAdV-D36       dancaysitfdfgwgk--vykd---pipydtssftfsyiaqe------ 

HAdV-D60       eancaysitlkfgwgk--tyet---pipfdtssftfsyiaqenedkeq 

HAdV-D13       detcaysitfnfgwgk--vydn---pfpfdttsftfsyiaqenedkd- 

HAdV-D38       detcaysitfnfgwgk--vydn---pfpfdttsftfsyiaqe------ 

HAdV-D39       ddtcaysitfnfgwgk--tydn---pfpfdttsftfsyiaqe------ 

HAdV-D51       --dcaysitfdfvwsk--tyes---pvafdsssftfsyiaqe------ 

HAdV-D23       --gctysmtfdfgwsk--vynd---pipfdtssltfsyiaqe------ 

HAdV-D20       --gctysitfdfgwak--tydv---pipfdsssftfsyiaqe------ 

HAdV-D47       --gctysitfefgwak--tydv---pipfdsssftfsyiaqe------ 
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6.2.2. Fiber Protein Total Lengths (Types C01 – D70) 

 

HadV-No Species Length 
 

HadV-No Species Length 

       

3 B 319 
 

67 D 371 

66 B 319 
 

63 D 371 

21 B 323 
 

70 D 371 

34 B 323 
 

44 D 373 

35 B 323 
 

48 D 373 

50 B 323 
 

26 D 374 

7 B 325 
 

60 D 376 

11 B 325 
 

20 D 379 

55 B 325 
 

13 D 381 

16 B 353 
 

22 D 381 

68 B 353 
 

23 D 381 

28 D 359 
 

24 D 381 

43 D 359 
 

38 D 381 

62 D 360 
 

46 D 381 

9 D 361 

 
32 D 382 

54 D 361 
 

33 D 382 

8 D 362 
 

39 D 382 

14 B 362 
 

47 D 382 

53 D 362 
 

51 D 383 

56 D 362 
 

30 D 385 

69 D 362 
 

49 D 385 

65 D 362 
 

40S F 387 

59 D 362 
 

41S F 387 

52S G 363 
 

4 E 426 

19 D 365 
 

6 C 528 

37 D 365 
 

57 C 528 

64 D 365 
 

40L F 547 

17 D 366 
 

41L F 547 

10 D 367 
 

61 A 555 

15 D 367 
 

31 A 556 

27 D 367 
 

52L G 560 

45 D 369 
 

5 C 581 

25 D 371 
 

1 C 582 

29 D 371 
 

2 C 582 

36 D 371 
 

18 A 586 

42 D 371 
 

12 A 587 

58 D 371 
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6.2.3. Penton Base (HAdV Types C01 – D70) 

HAdV-C05       ------mrraamyeegpppsyesvvsaapvaaalgspfdapldppfvpprylrptggrns 54 

HAdV-C02       ------mqraamyeegpppsyesvvsaapvaaalgspfdapldppfvpprylrptggrns 54 

HAdV-C57       ------mrraamyeegpppsyesvvsaapvaaalgspfdapldppfvpprylrptggrns 54 

HAdV-C01       ------mrraamyeegpppsyesvvsaapvaaalgspfdapldppfvpprylrptggrns 54 

HAdV-C06       ------mrraamyeegpppsyesvvsaapvaaalgspfdapldppfvpprylrptggrns 54 

HAdV-D13       -mr------rav--vspppsyesvmaqa------------tlevpfvpprymaptegrns 39 

HAdV-D37       -mr------ravvssspppsyesvmaqa------------tlevpfvpprymaptegrns 41 

HAdV-D53       -mr------ravvssspppsyesvmaqa------------tlevpfvpprymaptegrns 41 

HAdV-D69       -mr------ravvssspppsyesvmaqa------------tlevpfvpprymaptegrns 41 

HAdV-D60*      -mr------ravvssspppsyesvmaqa------------tlevpfvpprymaptegrns 41 

HAdV-D20       -mr------ramvssspppsyesvmaqa------------tlevpfvpprymaptegrns 41 

HAdV-D28       -mr------ravvssspppsyesvmaqa------------tlevpfvpprymaptegrns 41 

HAdV-D49       -mr------ravvssspppsyesvmaqa------------tlevpfvpprymaptegrns 41 

HAdV-D32       -mr------ravvssspppsyesvmaqa------------tlevpfvpprymaptegrns 41 

HAdV-D44       -mr------rav--vspppsyesvmaqa------------tlevpfvpprymaptegrns 39 

HAdV-D65       -mr------ravvssspppsyesvmaqa------------tlevpfvpprymaptegrns 41 

HAdV-D08       -mr------ra-vvsspppsyesvmaqa------------tlevpfvpprymaptegrns 40 

HAdV-D58       -mr------r--avvspppsyesvmaqa------------tlevpfvpprymaptegrns 39 

HAdV-D38       -mr------rav--vspppsyesvmaqa------------tlevpfvpprymaptegrns 39 

HAdV-D70       -mr------ravvssspppsyesvmaqa------------tlevpfvpprymaptegrns 41 

HAdV-D54       -mr------ra-vvsspppsyesvmaqa------------tlevpfvpprymaptegrns 40 

HAdV-D67       -mr------ravvssspppsyesvmaqa------------tlevpfvpprymaptegrns 41 

HAdV-D45       -mr------ravvssspppsyesvmaqa------------tlevpfvpprymaptegrns 41 

HAdV-D17       -mr------ravvssspppsyesvmaqa------------tlevpfvpprymaptegrns 41 

HAdV-D64       -mr------ravvssspppsyesvmaqa------------tlevpfvpprymaptegrns 41 

HAdV-D22       -mr------ravvssspppsyesvmaqa------------tlevpfvpprymaptegrns 41 

HAdV-D42       -mr------ravvssspppsyesvmaqa------------tlevpfvpprymaptegrns 41 

HAdV-D59       -mr------ravvssspppsyesvmaqa------------tlevpfvpprymaptegrns 41 

HAdV-D39       -mr------ravvssspppsyesvmaqa------------tlevpfvpprymaptegrns 41 

HAdV-D09       -mr------ravvssspppsyesvmaqa------------tlevpfvpprymaptegrns 41 

HAdV-D10       -mr------ravvssspppsyesvmaqa------------tlevpfvpprymaptegrns 41 

HAdV-D56       -mr------ravvssspppsyesvmaqa------------tlevpfvpprymaptegrns 41 

HAdV-D26       -mr------ravvssspppsyesvmaqa------------tlevpfvpprymaptegrns 41 

HAdV-D47       -mr------ravvssspppsyesvmaqa------------tlevpfvpprymaptegrns 41 

HAdV-D25       -mr------ravvssspppsyesvmaqa------------tlevpfvpprymaptegrns 41 

HAdV-D15       -mr------ravvssspppsyesvmaqa------------tlevpfvpprymaptegrns 41 

HAdV-D46       -mr------ravvssspppsyesvmaqa------------tlevpfvpprymaptegrns 41 

HAdV-D36       -mr------ravvssspppsyesvmaqa------------tlevpfvpprymaptegrns 41 

HAdV-D29       -mr------ravvssspppsyesvmaqa------------tlevpfvpprymaptegrns 41 

HAdV-D43       -mr------ravvssspppsyesvmaqa------------tlevpfvpprymaptegrns 41 

HAdV-D33       -mr------ravvssspppsyesvmaqa------------tlevpfvpprymaptegrns 41 

HAdV-D51       -mr------ravvssspppsyesvmaqa------------tlevpfvpprymaptegrns 41 

HAdV-D30       -mr------ravvssspppsyesvmaqa------------tlevpfvpprymaptegrns 41 

HAdV-D63       -mr------ravvssspppsyesvmaqa------------tlevpfvpprymaptegrns 41 

HAdV-D19       -mr------ravvssspppsyesvmaqa------------tlevpfvpprymaptegrns 41 

HAdV-D23       -mr------ravvssspppsyesvmaqa------------tlevpfvpprymaptegrns 41 

HAdV-D48       -mr------ravv--spppsyesvmaqa------------tlevpfvpprymaptegrns 39 

HAdV-D24       -mr------ravvssspppsyesvmaqa------------tlevpfvpprymaptegrns 41 

HAdV-D27       -mr------ravvssspppsyesvmaqa------------tlevpfvpprymaptegrns 41 

HAdV-D62       -mr------ravvssspppsyesvmaqa------------tlevpfvpprymaptegrns 41 

HAdV-F40*      mrravgvppvmayaegpppsyesvmeta--------dlpatlqalhvpprylgptegrns 52 

HAdV-F41*      mrravgvppvmayaegpppsyesvmgsa--------dspatlealyvpprylgptegrns 52 

HAdV-A18       -mrravelqpvafaeapppsyetvmaa----a---aaqpstleapyvpprylgptegrns 52 

HAdV-A12       -mrravelqtvafpetpppsyetvmaa---------a------ppyvpprylgptegrns 44 

HAdV-A31       -mrravelqtvafpeapppsyetvmaa---------aqtsaleapyvpprylaptegrns 50 

HAdV-A61       -mrravelqtvafpeapppsyetvmaa---------aqtsaleapyvpprylaptegrns 50 

HadV-B16       mrrravlggavvypegpppsyesvmqqq---a---amiqppleapfvpprylaptegrns 54 

HAdV-B68       mrrravlggavvypegpppsyesvmqqq---a---amiqppleapfvpprylaptegrns 54 

HAdV-B03       mrrravlggavvypegpppsyesvmqqq---a---amiqppleapfvpprylaptegrns 54 

HAdV-B66       mrrravlggavvypegpppsyesvmqqq---a---amlqppleapfvpprylaptegrns 54 

HAdV-B07       mrrravlggavvypegpppsyesvmqqq---a---amiqpplevpfvpprylaptegrns 54 

HAdV-E04       mm-------rraypegpppsyesvmqqamaaa---aamqppleapyvpprylaptegrns 50 

HAdV-B21       mmrrtvlggavvypegpppsyesvmqqa-a-a---atmqppleapfvpprylaptegrns 55 

HAdV-B50       -mrrtvlggavvypegpppsyesvmqqa-a-a---aamqppleapfvpprylaptegrns 54 

HAdV-B34       -mrrvvlggavvypegpppsyesvmqqqqa-t---avmqspleapfvpprylaptegrns 55 

HadV-B11       -mrrvvlggavvypegpppsyesvmqqqqa-t---avmqspleapfvpprylaptegrns 55 

HAdV-B35       -mrrvvlggavvypegpppsyesvmqqqqa-t---avmqspleapfvpprylaptegrns 55 

HAdV-B14       -mrrvvlggavvypegpppsyesvmqqqqa-t---avmqspleapfvpprylaptegrns 55 

HAdV-B55       -mrrvvlggavvypegpppsyesvmqq-qa-t---avmqspleapfvpprylaptegrns 54 

                               ******:*:                    .*****: ** **** 
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HAdV-C05       iryselaplfdttrvylvdnkstdvaslnyqndhsnflttviqnndyspgeastqtinld 114 

HAdV-C02       iryselaplfdttrvylvdnkstdvaslnyqndhsnflttviqnndyspgeastqtinld 114 

HAdV-C57       iryselaplfdttrvylvdnkstdvaslnyqndhsnflttviqnndyspgeastqtinld 114 

HAdV-C01       iryselaplfdttrvylvdnkstdvaslnyqndhsnflttviqnndyspgeastqtinld 114 

HAdV-C06       iryselaplfdttrvylvdnkstdvaslnyqndhsnflttviqnndyspgeastqtinld 114 

HAdV-D13       iryselapqydttrvylvdnksadiaslnyqndhsnflttvvqnndftpaeastqtinfd 99 

HAdV-D37       iryselaplydttrvylvdnksadiaslnyqndhsnflttvvqnndftpaeastqtinfd 101 

HAdV-D53       iryselaplydttrvylvdnksadiaslnyqndhsnflttvvqnndftpaeastqtinfd 101 
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HAdV-C02       yrswylaynygdpqtgirswtllctpdvtcgseqvywslpdmmqdpvtfrstsqisnfpv 462 

HAdV-C57       yrswylaynygdpqagirswtllctpdvtcgseqvywslpdmmqdpvtfrstsqisnfpv 465 

HAdV-C01       yrswylaynygdpqagirswtllctpdvtcgseqvywslpdmmqdpvtfrstsqisnfpv 465 

HAdV-C06       yrswylaynygdpqagirswtllctpdvtcgseqvywslpdmmqdpvtfrstsqisnfpv 465 

HAdV-D13       yrswylsytygdpekgvqtwtllttpdvtcgaeqvywslpdlmqdpvtfrstqqvsnypv 408 

HAdV-D37       yrswylsytygdpekgvqswtllttpdvtcgaeqvywslpdlmqdpvtfrstqqvsnypv 410 

HAdV-D53       yrswylsytygdpekgvqswtllttpdvtcgaeqvywslpdlmqdpvtfrstqqvsnypv 410 

HAdV-D69       yrswylsytygdpekgvqswtllttpdvtcgaeqvywslpdlmqdpvtfrstqqvsnypv 410 

HAdV-D60*      yrswylsytygdpekgvqswtllttpdvtcgaeqvywslpdlmqdpvtfrstqqvsnypv 384 

HAdV-D20       yrswylsytygdpekgvqswtllttpdvtcgaeqvywslpdlmqdpvtfrstqqvsnypv 410 

HAdV-D28       yrswylsytygdpekgvqswtllttpdvtcgaeqvywslpdlmqdpvtfrstqqvsnypv 410 

HAdV-D49       yrswylsytygdpekgvqswtllttpdvtcgaeqvywslpdlmqdpvtfrstqqvsnypv 410 

HAdV-D32       yrswylsytygdpekgvqswtllttpdvtcgaeqvywslpdlmqdpvtfrstqqvsnypv 413 

HAdV-D44       yrswylsytygdpekgvqswtllttpdvtcgaeqvywslpdlmqdpvtfrstqqvsnypv 411 

HAdV-D65       yrswylsytygdpekgvqswtllttpdvtcgaeqvywslpdlmqdpvtfrstqqvsnypv 412 

HAdV-D08       yrswylsytygdpekgvqswtllttpdvtcgaeqvywslpdlmqdpvtfrstqqvsnypv 411 

HAdV-D58       yrswylsytygdpekgvqswtllttpdvtcgaeqvywslpdlmqdpvtfrstqqvsnypv 410 

HAdV-D38       yrswylsytygdpekgvqswtllttpdvtcgaeqvywslpdlmqdpvtfrstqqvsnypv 406 

HAdV-D70       yrswylsytygdpekgvqswtllttpdvtcgaeqvywslpdlmqdpvtfrstqqvsnypv 408 

HAdV-D54       yrswylsytygdpkkgvqswtllttpdvtcgaeqvywslpdlmqdpvtfrstqqvsnypv 407 

HAdV-D67       yrswylsytygdpekgvqswtllttpdvtcgaeqvywslpdlmqdpvtfrstqqvsnypv 408 

HAdV-D45       yrswylsytygdpekgvqswtllttpdvtcgaeqvywslpdlmqdpvtfrstqqvsnypv 405 

HAdV-D17       yrswylsytygdpekgvqswtllttpdvtcgaeqvywslpdlmqdpvtfrstqqvsnypv 408 

HAdV-D64       yrswylsytygdpekgvqswtllttpdvtcgaeqvywslpdlmqdpvtfrstqqvsnypv 405 

HAdV-D22       yrswylsytygdpekgvqswtllttpdvtcgaeqvywslpdlmqdpvtfrstqqvsnypv 408 

HAdV-D42       yrswylsytygdpekgvqswtllttpdvtcgaeqvywslpdlmqdpvtfrstqqvsnypv 408 

HAdV-D59       yrswylsytygdpekgvqswtllttpdvtcgaeqvywslpdlmqdpvtfrstqqvsnypv 408 

HAdV-D39       yrswylsytygdpekgvqswtllttpdvtcgaeqvywslpdlmqdpvtfrstqqvsnypv 410 

HAdV-D09       yrswylsytygdpekgvqswtllttpdvtcgaeqvywslpdlmqdpvtfrstqqvsnypv 410 

HAdV-D10       yrswylsytygdpekgvqswtllttpdvtcgaeqvywslpdlmqdpvtfrstqqvsnypv 410 

HAdV-D56       yrswylsytygdpekgvqswtllttpdvtcgaeqvywslpdlmqdpvtfrstqqvsnypv 410 

HAdV-D26       yrswylsytygdpekgvqswtllttpdvtcgaeqvywslpdlmqdpvtfrstqqvsnypv 410 

HAdV-D47       yrswylsytygdpekgvqswtllttpdvtcgaeqvywslpdlmqdpvtfrstqqvsnypv 408 

HAdV-D25       yrswylsytygdpekgvqswtllttpdvtcgaeqvywslpdlmqdpvtfrstqqvsnypv 411 

HAdV-D15       yrswylsytygdpekgvqswtllttpdvtcgaeqvywslpdlmqdpvtfrstqqvsnypv 411 

HAdV-D46       yrswylsytygdpekgvqswtllttpdvtcgaeqvywslpdlmqdpvtfrstqqvsnypv 411 

HAdV-D36       yrswylsytygdpekgvqswtllttpdvtcgaeqvywslpdlmqdpvtfrstqqvsnypv 411 

HAdV-D29       yrswylsytygdpekgvqswtllttpdvtcgaeqvywslpdlmqdpvtfrstqqvsnypv 411 

HAdV-D43       yrswylsytygdpekgvqswtllttpdvtcgaeqvywslpdlmqdpvtfrstqqvsnypv 411 

HAdV-D33       yrswylsytygdpekgvqswtllttpdvtcgaeqvywslpdlmqdpvtfrstqqvsnypv 408 

HAdV-D51       yrswylsytygdpekgvqswtllttpdvtcgaeqvywslpdlmqdpvtfrstqqvsnypv 408 

HAdV-D30       yrswylsytygdpekgvqswtllttpdvtcgaeqvywslpdlmqdpvtfrstqqvsnypv 408 

HAdV-D63       yrswylsytygdpekgvqswtllttpdvtcgaeqvywslpdlmqdpvtfrstqqvsnypv 408 

HAdV-D19       yrswylsytygdpekgvqswtllttpdvtcgaeqvywslpdlmqdpvtfrstqqvsnypv 406 

HAdV-D23       yrswylsytygdpekgvqswtllttpdvtcgaeqvywslpdlmqdpvtfrstqqvsnypv 406 

HAdV-D48       yrswylsytygdpekgvqswtllttpdvtcgaeqvywslpdlmqdpvtfrstqqvsnypv 404 

HAdV-D24       yrswylsytygdpekgvqswtllttpdvtcgaeqvywslpdlmqdpvtfrstqqvsnypv 405 

HAdV-D27       yrswylsytygdpekgvqswtllttpdvtcgaeqvywslpdlmqdpvtfrstqqvsnypv 405 

HAdV-D62       yrswylsytygdpekgvqswtllttpdvtcgaeqvywslpdlmqdpvtfrstqqvsnypv 408 

HAdV-F40*      yrswflaynygdaekgvkswtlltttdvtcgsqqvywslpdmmqdpvtfrpstqvsnypv 395 

HAdV-F41*      yrswflaynygdpkkgvqswtllttadvtcgsqqvywslpdmmqdpvtfrpstqvsnypv 399 

HAdV-A18       yrswylaynygdsekgvrswtllttpdvtggseqvywslpdmmqdpvtfrssrqvsnypv 398 

HAdV-A12       yrswylaynygdpekgvrswtllttpdvtggseqvywslpdmmqdpvtfrssrqvsnypv 388 

HAdV-A31       yrswylaynygdpekgvrswtllttpdvtggseqvywslpdmmqdpvtfrssrqvsnypv 396 

HAdV-A61       yrswylaynygdpekgvrswtllttpdvtggseqvywslpdmmqdpvtfrssrqvsnypv 396 

HadV-B16       yrswylsynygnpekgirswtllttsdvtcgaeqvywslpdmmqdpitfrssrqvnnypv 446 

HAdV-B68       yrswylsynygnpekgirswtllttsdvtcgaeqvywslpdmmqdpitfrssrqvnnypv 446 

HAdV-B03       yrswylsynygnpekgirswtllttsdvtcgaeqvywslpdmmqdpvtfrstrqvnnypv 435 

HAdV-B66       yrswylsynygnpekgirswtllttsdvtcgaeqvywslpdmmqdpvtfrstrqvnnypv 435 

HAdV-B07       yrswylsynygnpkkgirswtllttsdvtcgaeqvywslpdmmqdpvtfrstrqvnnypv 435 

HAdV-E04       yrswylaynygdhekgvrswtllttsdvtcgveqvywslpdmmqdpvtfrstrqvsnypv 426 

HAdV-B21       yrswylsynygdpekgvrswtllttsdvtcgaeqvywslpdmmqdpvtfrstrqvsnypv 452 

HAdV-B50       yrswylsynygdpekgvrswtllttsdvtcgaeqvywslpdmmqdpvtfrstrqvsnypv 451 

HAdV-B34       yrswylsynygdpekgvrswtllttsdvtcgaeqvywslpdmmqdpvtfrstrqvsnypv 449 

HadV-B11       yrswylsynygdpekgvrswtllttsdvtcgaeqvywslpdmmkdpvtfrstrqvsnypv 452 

HAdV-B35       yrswylsynygdpekgvrswtllttsdvtcgaeqvywslpdmmkdpvtfrstrqvsnypv 452 

HAdV-B14       yrswylsynygdpekgvrswtllttsdvtcgaeqvywslpdmmqdpvtfrstrqvsnypv 449 

HAdV-B55       yrswylsynygdpekgvrswtllttsdvtcgaeqvywslpdmmqdpvtfrstrqvsnypv 448 
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HAdV-C05       vgaellpvhsksfyndqavysqlirqftslthvfnrfpenqilarppaptittvsenvpa 522 

HAdV-C02       vgaellpvhsksfyndqavysqlirqftslthvfnrfpenqilarppaptittvsenvpa 522 

HAdV-C57       vgaellpvhsksfyndqavysqlirqftslthvfnrfpenqilarppaptittvsenvpa 525 

HAdV-C01       vgaellpvhsksfyndqavysqlirqftslthvfnrfpenqilarppaptittvsenvpa 525 

HAdV-C06       vgaellpvhsksfyndqavysqlirqftslthvfnrfpenqilarppaptittvsenvpa 525 

HAdV-D13       vgaelmpfraksfyndlavysqlirsytslthvfnrfpdnqilcrppaptittvsenvpa 468 

HAdV-D37       vgaelmpfraksfyndlavysqlirsytslthvfnrfpdnqilcrppaptittvsenvpa 470 

HAdV-D53       vgaelmpfraksfyndlavysqlirsytslthvfnrfpdnqilcrppaptittvsenvpa 470 

HAdV-D69       vgaelmpfraksfyndlavysqlirsytslthvfnrfpdnqilcrppaptittvsenvpa 470 

HAdV-D60*      vgaelmpfraksfyndlavysqlirsytslthvfnrfpdnqilcrppaptittvsenvpa 444 

HAdV-D20       vgaelmpfraksfyndlavysqlirsytslthvfnrfpdnqilcrppaptittvsenvpa 470 

HAdV-D28       vgaelmpfraksfyndlavysqlirsytslthvfnrfpdnqilcrppaptittvsenvpa 470 

HAdV-D49       vgaelmpfraksfyndlavysqlirsytslthvfnrfpdnqilcrppaptittvsenvpa 470 

HAdV-D32       vgaelmpfraksfyndlavysqlirsytslthvfnrfpdnqilcrppaptittvsenvpa 473 

HAdV-D44       vgaelmpfraksfyndlavysqlirsytslthvfnrfpdnqilcrppaptittvsenvpa 471 

HAdV-D65       vgaelmpfraksfyndlavysqlirsytslthvfnrfpdnqilcrppaptittvsenvpa 472 

HAdV-D08       vgaelmpfraksfyndlavysqlirsytslthvfnrfpdnqilcrppaptittvsenvpa 471 

HAdV-D58       vgaelmpfraksfyndlavysqlirsytslthvfnrfpdnqilcrppaptittvsenvpa 470 

HAdV-D38       vgaelmpfraksfyndlavysqlirsytslthvfnrfpdnqilcrppaptittvsenvpa 466 

HAdV-D70       vgaelmpfraksfyndlavysqlirsytslthvfnrfpdnqilcrppaptittvsenvpa 468 

HAdV-D54       vgaelmpfraksfyndlavysqlirsytslthvfnrfpdnqilcrppaptittvsenvpa 467 

HAdV-D67       vgaelmpfraksfyndlavysqlirsytslthvfnrfpdnqilcrppaptittvsenvpa 468 

HAdV-D45       vgaelmpfraksfyndlavysqlirsytslthvfnrfpdnqilcrppaptittvsenvpa 465 

HAdV-D17       vgaelmpfraksfyndlavysqlirsytslthvfnrfpdnqilcrppaptittvsenvpa 468 

HAdV-D64       vgaelmpfraksfyndlavysqlirsytslthvfnrfpdnqilcrppaptittvsenvpa 465 

HAdV-D22       vgaelmpfraksfyndlavysqlirsytslthvfnrfpdnqilcrppaptittvsenvpa 468 

HAdV-D42       vgaelmpfraksfyndlavysqlirsytslthvfnrfpdnqilcrppaptittvsenvpa 468 

HAdV-D59       vgaelmpfraksfyndlavysqlirsytslthvfnrfpdnqilcrppaptittvsenvpa 468 

HAdV-D39       vgaelmpfraksfyndlavysqlirsytslthvfnrfpdnqilcrppaptittvsenvpa 470 

HAdV-D09       vgaelmpfraksfyndlavysqlirsytslthvfnrfpdnqilcrppaptittvsenvpa 470 

HAdV-D10       vgaelmpfraksfyndlavysqlirsytslthvfnrfpdnqilcrppaptittvsenvpa 470 

HAdV-D56       vgaelmpfraksfyndlavysqlirsytslthvfnrfpdnqilcrppaptittvsenvpa 470 

HAdV-D26       vgaelmpfraksfyndlavysqlirsytslthvfnrfpdnqilcrppaptittvsenvpa 470 

HAdV-D47       vgaelmpfraksfyndlavysqlirsytslthvfnrfpdnqilcrppaptittvsenvpa 468 

HAdV-D25       vgaelmpfraksfyndlavysqlirsytslthvfnrfpdnqilcrppaptittvsenvpa 471 

HAdV-D15       vgaelmpfraksfyndlavysqlirsytslthvfnrfpdnqilcrppaptittvsenvpa 471 

HAdV-D46       vgaelmpfraksfyndlavysqlirsytslthvfnrfpdnqilcrppaptittvsenvpa 471 

HAdV-D36       vgaelmpfraksfyndlavysqlirsytslthvfnrfpdnqilcrppaptittvsenvpa 471 

HAdV-D29       vgaelmpfraksfyndlavysqlirsytslthvfnrfpdnqilcrppaptittvsenvpa 471 

HAdV-D43       vgaelmpfraksfyndlavysqlirsytslthvfnrfpdnqilcrppaptittvsenvpa 471 

HAdV-D33       vgaelmpfraksfyndlavysqlirsytsltyvfnrfpdnqilcrppaptittvsenvpa 468 

HAdV-D51       vgaelmpfraksfyndlavysqlirsytslthvfnrfpdnqilcrppaptittvsenvpa 468 

HAdV-D30       vgaelmpfraksfyndlavysqlirsytslthvfnrfpdnqilcrppaptittvsenvpa 468 

HAdV-D63       vgaelmpfraksfyndlavysqlirsytslthvfnrfpdnqilcrppaptittvsenvpa 468 

HAdV-D19       vgaelmpfraksfyndlavysqlirsytslthvfnrfpdnqilcrppaptittvsenvpa 466 

HAdV-D23       vgaelmpfraksfyndlavysqlirsytsltyvfnrfpdnqilcrppaptittvsenvpa 466 

HAdV-D48       vgaelmpfraksfyndlavysqlirsytslthvfnrfpdnqilcrppaptittvsenvpa 464 

HAdV-D24       vgaelmpfraksfyndlavysqlirsytslthvfnrfpdnqilcrppaptittvsenvpa 465 

HAdV-D27       vgaelmpfraksfyndlavysqlirsytslthvfnrfpdnqilcrppaptittvsenvpa 465 

HAdV-D62       vgaelmpfraksfyndlavysqlirsytslthvfnrfpdnqilcrppaptittvsenvpa 468 

HAdV-F40*      vgvellpvhaksfyneqavysqlirqstalthifnrfpenqilvrppaptittvsenvpa 455 

HAdV-F41*      vgvellpvhaksfyneqavysqlirqstalthvfnrfpenqilvrppaptittvsenvpa 459 

HAdV-A18       vaaellpvhaksfyndqavysqlirqstalthvfnrfpenqilvrppaatittvsenvpa 458 

HAdV-A12       vaaellpvhaksfyneqavysqlirqstaltrvfnrfpenqilvrppaatittvsenvpa 448 

HAdV-A31       vaaelmpvhaksfyneqavysqlirqstalthvfnrfpenqilvrppaatvttvsenvpa 456 

HAdV-A61       vaaelmpvhaksfyneqavysqlirqstalthvfnrfpenqilvrppaatittvsenvpa 456 

HadV-B16       vgaelmpvfsksfyneqavysqqlrqstslthvfnrfpenqilirppaptittisenvpa 506 

HAdV-B68       vgaelmpvfsksfyneqavysqqlrqstslthvfnrfpenqilirppaptittisenvpa 506 

HAdV-B03       vgaelmpvfsksfyneqavysqqlrqatslthvfnrfpenqilirppaptittvsenvpa 495 

HAdV-B66       vgaelmpvfsksfyneqavysqqlrqatslthvfnrfpenqilirppaptittvsenvpa 495 

HAdV-B07       vgaelmpvfsksfyneqavysqqlrqatslthvfnrfpenqilirppaptittvsenvpa 495 

HAdV-E04       vgaelmpvysksffneqavysqqlraftslthvfnrfpenqilvrppaptittvsenvpa 486 

HAdV-B21       vgaelmpvfsksfyneqavysqqlrqstslthvfnrfpenqilirppaptittvsenvpa 512 

HAdV-B50       vgaelmpvfsksfyneqavysqqlrqstslthvfnrfpenqilirppaptittvsenvpa 511 

HAdV-B34       vgaelmpvfsksfyneqavysqqlrqstslthvfnrfpenqilirppaptittvsenvpa 509 

HadV-B11       vgaelmpvfsksfyneqavysqqlrqstslthvfnrfpenqilirppaptittvsenvpa 512 

HAdV-B35       vgaelmpvfsksfyneqavysqqlrqstslthvfnrfpenqilirppaptittvsenvpa 512 

HAdV-B14       vgaelmpvfsksfyneqavysqqlrqstslthvfnrfpenqilirppaptittvsenvpa 509 

HAdV-B55       vgaelmpvfsksfyneqavysqqlrqstslthvfnrfpenqilirppaptittvsenvpa 508 
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HAdV-C05       ltdhgtlplrnsiggvqrvtitdarrrtcpyvykalgivsprvlssrtf 571 

HAdV-C02       ltdhgtlplrnsiggvqrvtitdarrrtcpyvykalgivsprvlssrtf 571 

HAdV-C57       ltdhgtlplrnsiggvqrvtitdarrrtcpyvykalgivsprvlssrtf 574 

HAdV-C01       ltdhgtlplrnsiggvqrvtitdarrrtcpyvykalgivsprvlssrtf 574 

HAdV-C06       ltdhgtlplrnsiggvqrvtitdarrrtcpyvykalgivsprvlssrtf 574 

HAdV-D13       ltdhgtlplrssirgvqrvtvtdarrrtcpyvykalgivaprvlssrtf 517 

HAdV-D37       ltdhgtlplrssirgvqrvtvtdarrrtcpyvykalgivaprvlssrtf 519 

HAdV-D53       ltdhgtlplrssirgvqrvtvtdarrrtcpyvykalgivaprvlssrtf 519 

HAdV-D69       ltdhgtlplrssirgvqrvtvtdarrrtcpyvykalgivaprvlssrtf 519 

HAdV-D60*      ltdhgtlplrssirgvqrvtvtdarrrtcpyvykalgivaprvlssrtf 493 

HAdV-D20       ltdhgtlplrssirgvqrvtvtdarrrtcpyvykalgivaprvlssrtf 519 

HAdV-D28       ltdhgtlplrssirgvqrvtvtdarrrtcpyvykalgivaprvlssrtf 519 

HAdV-D49       ltdhgtlplrssirgvqrvtvtdarrrtcpyvykalgivaprvlssrtf 519 

HAdV-D32       ltdhgtlplrssirgvqrvtvtdarrrtcpyvykalgivaprvlssrtf 522 

HAdV-D44       ltdhgtlplrssirgvqrvtvtdarrrtcpyvykalgivaprvlssrtf 520 

HAdV-D65       ltdhgtlplrssirgvqrvtvtdarrrtcpyvykalgivaprvlssrtf 521 

HAdV-D08       ltdhgtlplrssirgvqrvtvtdarrrtcpyvykalgivaprvlssrtf 520 

HAdV-D58       ltdhgtlplrssirgvqrvtvtdarrrtcpyvykalgivaprvlssrtf 519 

HAdV-D38       ltdhgtlplrssirgvqrvtvtdarrrtcpyvykalgivaprvlssrtf 515 

HAdV-D70       ltdhgtlplrssirgvqrvtvtdarrrtcpyvykalgivaprvlssrtf 517 

HAdV-D54       ltdhgtlplrssirgvqrvtvtdarrrtcpyvykalgivaprvlssrtf 516 

HAdV-D67       ltdhgtlplrssirgvqrvtvtdarrrtcpyvykalgivaprvlssrtf 517 

HAdV-D45       ltdhgtlplrssirgvqrvtvtdarrrtcpyvykalgivaprvlssrtf 514 

HAdV-D17       ltdhgtlplrssirgvqrvtvtdarrrtcpyvykalgivaprvlssrtf 517 

HAdV-D64       ltdhgtlplrssirgvqrvtvtdarrrtcpyvykalgivaprvlssrtf 514 

HAdV-D22       ltdhgtlplrssirgvqrvtvtdarrrtcpyvykalgivaprvlssrtf 517 

HAdV-D42       ltdhgtlplrssirgvqrvtvtdarrrtcpyvykalgivaprvlssrtf 517 

HAdV-D59       ltdhgtlplrssirgvqrvtvtdarrrtcpyvykalgivaprvlssrtf 517 

HAdV-D39       ltdhgtlplrssirgvqrvtvtdarrrtcpyvykalgivaprvlssrtf 519 

HAdV-D09       ltdhgtlplrssirgvqrvtvtdarrrtcpyvykalgivaprvlssrtf 519 

HAdV-D10       ltdhgtlplrssirgvqrvtvtdarrrtcpyvykalgivaprvlssrtf 519 

HAdV-D56       ltdhgtlplrssirgvqrvtvtdarrrtcpyvykalgivaprvlssrtf 519 

HAdV-D26       ltdhgtlplrssirgvqrvtvtdarrrtcpyvykalgivaprvlssrtf 519 

HAdV-D47       ltdhgtlplrssirgvqrvtvtdarrrtcpyvykalgivaprvlssrtf 517 

HAdV-D25       ltdhgtlplrssirgvqrvtvtdarrrtcpyvykalgivaprvlssrtf 520 

HAdV-D15       ltdhgtlplrssirgvqrvtvtdarrrtcpyvykalgivaprvlssrtf 520 

HAdV-D46       ltdhgtlplrssirgvqrvtvtdarrrtcpyvykalgivaprvlssrtf 520 

HAdV-D36       ltdhgtlplrssirgvqrvtvtdarrrtcpyvykalgivaprvlssrtf 520 

HAdV-D29       ltdhgtlplrssirgvqrvtvtdarrrtcpyvykalgivaprvlssrtf 520 

HAdV-D43       ltdhgtlplrssirgvqrvtvtdarrrtcpyvykalgivaprvlssrtf 520 

HAdV-D33       ltdhgtlplrssirgvqrvtvtdarrrtcpyvykalgivaprvlssrtf 517 

HAdV-D51       ltdhgtlplrssirgvqrvtvtdarrrtcpyvykalgivaprvlssrtf 517 

HAdV-D30       ltdhgtlplrssirgvqrvtvtdarrrtcpyvykalgivaprvlssrtf 517 

HAdV-D63       ltdhgtlplrssirgvqrvtvtdarrrtcpyvykalgivaprvlssrtf 517 

HAdV-D19       ltdhgtlplrssirgvqrvtvtdarrrtcpyvykalgivaprvlssrtf 515 

HAdV-D23       ltdhgtlplrssirgvqrvtvtdarrrtcpyvykalgivaprvlssrtf 515 

HAdV-D48       ltdhgtlplrssirgvqrvtvtdarrrtcpyvykalgivaprvlssrtf 513 

HAdV-D24       ltdhgtlplrssirgvqrvtvtdarrrtcpyvykalgivaprvlssrtf 514 

HAdV-D27       ltdhgtlplrssirgvqrvtvtdarrrtcpyvykalgivaprvlssrtf 514 

HAdV-D62       ltdhgtlplrssirgvqrvtvtdarrrtcpyvykalgivaprvlssrtf 517 

HAdV-F40*      ltdhgtlplrssisgvqrvtitdarrrtcpyvhkalgivapkvlssrtf 504 

HAdV-F41*      ltdhgtlplrssisgvqrvtitdarrrtcpyvhkalgivapkvlssrtf 508 

HAdV-A18       ltdhgtlplrssisgvqrvtitdarrrtcpyvykalgivsprvlssrtf 507 

HAdV-A12       ltdhgtlplrssisgvqrvtitdarrrtcpyvykalgivsprvlssrtf 497 

HAdV-A31       ltdhgtlplrssisgvqrvtitdarrrtcpyvykalgivsprvlssrtf 505 

HAdV-A61       ltdhgtlplrssisgvqrvtitdarrrtcpyvykalgivsprvlssrtf 505 

HadV-B16       ltdhgtlplrssirgvqrvtvtdarrrtcpyvykalgivaprvlssrtf 555 

HAdV-B68       ltdhgtlplrssirgvqrvtvtdarrrtcpyvykalgivaprvlssrtf 555 

HAdV-B03       ltdhgtlplrssirgvqrvtvtdarrrtcpyvykalgivaprvlssrtf 544 

HAdV-B66       ltdhgtlplrssirgvqrvtvtdarrrtcpyvykalgivaprvlssrtf 544 

HAdV-B07       ltdhgtlplrssirgvqrvtvtdarrrtcpyvykalgivaprvlssrtf 544 

HAdV-E04       ltdhgtlplrssirgvqrvtvtdarrrtcpyvykalgivaprvlssrtf 535 

HAdV-B21       ltdhgtlplrssirgvqrvtvtdarrrtcpyvykalgivaprvlssrtf 561 

HAdV-B50       ltdhgtlplrssirgvqrvtvtdarrrtcpyvykalgivaprvlssrtf 560 

HAdV-B34       ltdhgtlplrssirgvqrvtvtdarrrtcpyvykalgivaprvlssrtf 558 

HadV-B11       ltdhgtlplrssirgvqrvtvtdarrrtcpyvykalgivaprvlssrtf 561 

HAdV-B35       ltdhgtlplrssirgvqrvtvtdarrrtcpyvykalgivaprvlssrtf 561 

HAdV-B14       ltdhgtlplrssirgvqrvtvtdarrrtcpyvykalgivaprvlssrtf 558 

HAdV-B55       ltdhgtlplrssirgvqrvtvtdarrrtcpyvykalgivaprvlssrtf 557 

               **********.** ******:***********:******:*:******* 
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6.2.4. E4ORF1p (HAdV Types C01 – D70) 

The genomes of HAdV types D19p (JQ326209), D37 (AB448778), and D64 (EF121005) all show a deletion of a 

single adenine base from a stretch of eight at the same position which introduces a frameshift after residue 27. 

HAdV-D28 contains a point mutation at position 85 that introduces a stop codon. It is unclear whether these 

changes are physiological or due to sequencing errors. The respective sequences were left out of the 

alignment. HAdVs of species F do not possess the E4ORF1p gene. 
 

HAdV-D54      ---makclyafidspggiapvqegasnkytffcpqsfyifphgvvlvylkvsvlvptgyq 

HAdV-D08      ---maeclyafidspggmapvqegasnkytffcpesfyifphgvvlvylkvsvliptgyq 

HAdV-D49      ---maeclyafidspggmapvqegasnkytffcpesfyifphgvvlvylkvsvlvptgyq 

HAdV-D53      ---maeclyafidspggmapvqegasnkytffcpesfyifphgvvlvylkvsvlvptgyq 

HAdV-D56      ---maeslyafidspggiasvqegtsnrytffcpesfhilphgvvllhlkvsvlvptgyq 

HAdV-D59      ---maeslyafidspggiapvqegtsnrynffcpesfhipphgvvllylkvsvlvptgyq 

HAdV-D42      ---maeslyafidspggiapvqegtsnrynffcpesfhipphgvvllhlkvsvlvpngyq 

HAdV-D22      ---maeslyafidspggiapvqegtsnrynffcpksfhipphgvvllhlkvsvlvptgyq 

HAdV-D20      ---maeslyafidspggiapvqegtsnrynffcpqsfhipphgvvllhlkvsvlvptgyq 

HAdV-D17      ---maeslyafidspggiapvqegasnrynffcpesfhipphgvvllhlkvsvlvptgyq 

HAdV-D09      ---maeslyafidspggiapvqegtsnrytffcpesfhipphgvvllhlkvsvlvptgyq 

HAdV-D10      ---maeslyafidspggiapvqegtsnrytffcpesfhipphgvvllhlkvsvlvptgyq 

HAdV-D15      ---maeslyafidspggiapvqegtsnrynffcpesfhipphgvvllhlkvsvlvptgyq 

HAdV-D24      ---maeslyafidspggiapvqegtsnrynffcpesfhipphgvvllhlkvsvlvptgyq 

HAdV-D46      ---maeslyafidspggiapvqegtsnrynffcpesfhipphgvvllhlkvsvlvptgyq 

HAdV-D69      ---maeslyafidspggiapvqegtsnrynffcpesfhipphgvvllhlkvsvlvptgyq 

HAdV-D70      ---maeslyafidspggiapvqegtsnrynffcpesfhipphgvvllhlkvsvlvptgyq 

HAdV-D62      ---maeslyafidspggiapvqegasnryiffcpesfhipphgvillhlrvsvmvptgyq 

HAdV-D45      ---maeslyafidspggiapvqegasnrytffcpeffhipphgvillhlrvsvlvptgyq 

HAdV-D36      ---maeslyafidspggiapvqegasnryiffcpesfhipphgvillhlrvsvlvptgyq 

HAdV-D30      ---maeslyafidspggiapvqegasnrytffcpesfhipphgvillhlrvsvlvptgyq 

HAdV-D43      ---maeslyafidspggiapvqegasnrytffcpesfhipphgvillhlrvsvlvptgyq 

HAdV-D47      ---maeslyafidspggiapvqegasnrytffcpesfhipphgvillhlrvsvlvptgyq 

HAdV-D51      ---maeslyafidspggiapvqegasnrytffcpesfhipphgvillhlrvsvlvptgyq 

HAdV-D39      ---maeslyafidspgglapvqegasnrynffcpesfhipphgvvllhlrvsvliptgyq 

HAdV-D38      ---maeslyafidspggiapvqegtsnrynffcpesfhipphgvvlvhlrvsvliptgyq 

HAdV-D44      ---maeslyafidspggiapvqegtsnrydffcpesfhipphgvvllhlrvsvliptgyq 

HAdV-D65      ---maeslyafidspggiapvqegssnrynffcpesfhipphgvvllhlrvsvliptgyq 

HAdV-D13      ---maeslyafidspggiapvqegtsnrytffcpesfhipphgvvllhlrvsvlipngyq 

HAdV-D60      ---maeslyafidspggiapvqegtsnrytffcpesfhipphgvvllhlrvsvlipngyq 

HAdV-D23      ---maeslyafidspggiapvqegssnrynffcpesfhipphgvvllhlrvsvliptgyq 

HAdV-D26      ---maeslyafidspggiapvqegssnrynffcpesfhipphgvvlvhlrvsvliptgyq 

HAdV-D33      ---maeslyafidspggiapvqegssnrynffcpesfhipphgvvlvhlrvsvliptgyq 

HAdV-D67      ---maeslyafidspggiapvqegtsnrynffcpesfhipphgvvlvhlrvsvlirngyq 

HAdV-D32      ---maeslyafidspggiapvqegtsnrynffcpesfhipphgvvlvhlrvsvliptgyq 

HAdV-D58      ---maeslyafidspggiapvqegtsnrynffcpesfhipphgvvlvhlrvsvlipngyq 

HAdV-D25      ---maeslyafidspggiapvqegtsnrytffcpesfhipphgvvlvhlrvsvlipngyq 

HAdV-D27      ---maeslyafidspggiapvqegtsnrynffcpesfhipphgvvlvhlrvsvlipngyq 

HAdV-D29      ---maeslyafidspggiapvqegtsnrynffcpesfhipphgvvlvhlrvsvlipngyq 

HAdV-D48      ---maeslyafidspggiapvqegtsnrynffcpesfhipphgvvlvhlrvsvlipngyq 

HAdV-D63      ---maeslyafidspggiapvqegtsnrynffcpesfhipphgvvlvhlrvsvlipngyq 

HAdV-E04      --mdaqvlyvflegagallpvq--kgsnyifyapanfvlhphgvallelrlsivvpqgfi 

HAdV-B16      --madealyvyfrgpgatlpeqqqqrnnyifyspvpftlyprgvallylrlsiiiprgyv 

HAdV-B14      --madealyvylegpgatlpeqq-qrnnyifyspvpftlyprgvallylrlsiiiprgyi 

HAdV-B55      --madealyvylegpgatlpeqq-qrnnyifyspvpftlyprgvallylrlsiiiprgyi 

HAdV-B35      --madealyvylegpgatlpkqq-qrnnyifyspvpftlyprgvallylrlsiiipkgyv 

HAdV-B03      --madealyvylegpgatlpeqq-qrnnyifyspvpftlyprgvallylklsiiiprgyv 

HAdV-B66      --manealyvylegpgatlpeqq-qrnnyifyspvpftlyprgvallylrlsiiiprgyv 

HAdV-B34      --madealyvylegpgatlpeqq-qrnnyifyspvpftlyprgvallylrlsiiipkgyv 

HAdV-B11      --madealyvylegpgatlpeqq-qrnnyifyspvpftlyprgvallylrlsiiipkgyv 

HAdV-B68      --madealyvylegpgatlpeqq-qrnnyifyspvpftlyprgvallylrlsiiiprgyv 

HAdV-B21      --madealyvyldgpgatlpeqr-qrnnyifyspvpftlyprgvallylrlsiiiprgyv 

HAdV-B07      --madealyvylegpgatlpeqq-qrnnyifyspvpftlyprgvallylrlsiiiprgyv 

HAdV-B50      --madealyvyldgpgatlpeqq-qrnnyifyspvpftlyprgvallylrlsiiiprgyv 

HAdV-C01      maaavealyvvleregailprqegfsgvyvffspinfvippmgavmlslrlrvcippgyf 

HAdV-C02      maaavealyvvleregailprqegfsgvyvffspinfvippmgavmlslrlrvcippgyf 

HAdV-C05      maaavealyvvleregailprqegfsgvyvffspinfvippmgavmlslrlrvcippgyf 

HAdV-C06      maaavealyvvleregailprqegfsgvyvffspinfvippmgavmlslrlrvcippgyf 

HAdV-C57      maaavealyvvleregailprqegfsgvyvffspinfvippmgavmlslrlrvcippgyf 

HAdV-G52      --madqhiyvhllgrraflpqqqgysnmyvlfspedfvlaprgiillslqlsldiptgyl 

HAdV-A31      -mavfeavyvyfkgpgamlpeqegysnayvlfspanfvipphgvvllylniavdlppgyv 

HAdV-A61      -mavfeavyvyikgpgamlpeqegysnayvlfspanfvipphgvvllylniavdippgyv 

HAdV-A12      -maafetlyvyftgpgamlpkqegdsnayvlfspanfvipphgvvllylhiavdippgyl 

HAdV-A18      -maalqalyvyfkgpgamlpeqegysnayvlfspanfvipphgvvllylhiavdippgyl 

                   : :*. :    .    *    . * ::.*  * : * *  :: *.: : :  *:   
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HAdV-D54      gifmalndyhatgiltqsdvifagrrqeltvllfnhtdqflyvrkghpvgtlllkrvifp 

HAdV-D08      gtfmalndyhargiltqsdvifagrrqelavllfnhtdqflyvrkghpvgtlllkkvifp 

HAdV-D49      gtfmalndyhargiltqsdvifagrrqelavllfnhtdqflyvrkghpvgtlllkkvifp 

HAdV-D53      gtfmalndyhargiltqsdvifagrrqelavllfnhtdqflyvrkghpvgtlllkkvifp 

HAdV-D56      grfmalndyhardiltqsdvifagrrqeltvllfnhtdrflyvrkghpvgtlllervifp 

HAdV-D59      grfmalndyhardiltqsdvifagrrqeltvllfnhtdrflyvrkghpvgtlllervifp 

HAdV-D42      grfmalndyhardiltqsdvifagrrqeltvllfnhtdrflyvrkghpvgtlllervifp 

HAdV-D22      grfmalndyhardiltqsdvifagrrqeltvllfnhtdrflyvrkghpvgtlllervifp 

HAdV-D20      grfmalndyhardiltqsdvifagrrqeltvllfnhtdrflyvrkghpvgtlllervifp 

HAdV-D17      grfmalndyhardiltqsdvifagrrqeltvllfnhtdrflyvrkghpvgtlllervifp 

HAdV-D09      grfmalndyhardiltqsdvifagrrqeltvllfnhtdrflyvrkghpvgtlllervifp 

HAdV-D10      grfmalndyhardiltqsdvifagrrqeltvllfnhtdrflyvrkghpvgtlllervifp 

HAdV-D15      grfmalndyhardiltqsdvifagrrqeltvllfnhtdrflyvrkghpvgtlllervifp 

HAdV-D24      grfmalndyhardiltqsdvifagrrqeltvllfnhtdrflyvrkghpvgtlllervifp 

HAdV-D46      grfmalndyhardiltqsdvifagrrqeltvllfnhtdrflyvrkghpvgtlllervifp 

HAdV-D69      grfmalndyhardiltqsdvifagrrqeltvllfnhtdrflyvrkghpvgtlllervifp 

HAdV-D70      grfmalndyhardiltqsdvifagrrqeltvllfnhtdrflyvrkghpvgtlllervifp 

HAdV-D62      grfmalndyhargiltqsdvifagrrhdlsvllfnhtdrflyvreghpvgtlllervifp 

HAdV-D45      grfmalndyhargiltqsdvifagrrhdlsvllfnhtdrflyvreghpvgtlllervifp 

HAdV-D36      grfmalndyhargiltqsdvifagrrhdlsvllfnhtdrflyvreghpvgtlllervifp 

HAdV-D30      grfmalndyhargiltqsdvifagrrhdlsvllfnhtdrflyvreghpvgtlllervifp 

HAdV-D43      grfmalndyhargiltqsdvifagrrhdlsvllfnhtdrflyvreghpvgtlllervifp 

HAdV-D47      grfmalndyhargiltqsdvifagrrhdlsvllfnhtdrflyvreghpvgtlllervifp 

HAdV-D51      grfmalndyhargiltqsdvifagrrhdlsvllfnhtdrflyvreghpvgtlllervifp 

HAdV-D39      grfmalndyhargiltqsdvifagrrqelsvllfnhtdrflyvreghpvgilllervifp 

HAdV-D38      grfmalndyhargiltqsdvifagrrhelsvllfnhtdrflyvreghpvgilllekvifp 

HAdV-D44      grfmalndyhargiltqsdvifagrrqelsvllfnhtdrflyvreghpvgilllekvifp 

HAdV-D65      grfmalndyhargiltqsdvifagrrqelsvllfnhtdrflyvreghpvgilllekvifp 

HAdV-D13      grfmalndyhtsgiltqsdvifagrrqelavllfnhtdrflyvreghpvgtlllqrvifp 

HAdV-D60      grfmalndyhtsgiltqsdvifagrrqelavllfnhtvrflyvreghpvgtlllqrvifp 

HAdV-D23      grfmalndyhargiltqsdvifagrrheltvllfnhtdrflyvreghpvgtlllervifp 

HAdV-D26      grflalndfhargiltqsdvifagrrheltvllfnhtdrflyvreghpvgtlllervifp 

HAdV-D33      grflalndyhargiltqsdvifagrrheltvllfnhtdrflyvreghpvgtlllervifp 

HAdV-D67      grfmalndyhargiltqsdvifagrrheltvllfnhtdrflyvreghpvgtlllervifp 

HAdV-D32      grfmalndyhargiltqsdvifagrrqeltvllfnhtdrflyvreghpvgtlllervifp 

HAdV-D58      grfmalndyhsrgiltqsdvifagrrqeltvllfnhtdrflyvreghpvgtlllervifp 

HAdV-D25      grfmalndyhsrgiltqsdvifagrrqeltvllfnhtdrflyvreghpvgtlllervifp 

HAdV-D27      grfmalndyhsrgiltqsdvifagrrqeltvllfnhtdrflyvreghpvgtlllervifp 

HAdV-D29      grfmalndyhsrgiltqsdvifagrrqeltvllfnhtdrflyvreghpvgtlllervifp 

HAdV-D48      grfmalndyhsrgiltqsdvifagrrqeltvllfnhtdrflyvreghpvgtlllervifp 

HAdV-D63      grfmalndyhsrgiltqsdvifagrrqeltvllfnhtdrflyvreghpvgtlllervifp 

HAdV-E04      grffsltdanvpgvyassriihaghreglsvmlfnhnvsfyngragdpvaclvlerviyp 

HAdV-B16      gcffsltdanmsglyassriihaghreelsvllfnhddrfyegragdpvaclvmerliyp 

HAdV-B14      gcflsltdanmfglyassriihaghreelsvllfnhddrfyegragdpvaclvmerliyp 

HAdV-B55      gcflsltdanmfglyassriihaghreelsvllfnhddrfyegragdpvaclvmerliyp 

HAdV-B35      gcffsltdanmsglyassrlihaghreelsvllfnhddrfyegragdpvaclvmerliyp 

HAdV-B03      gcffsltdanmsglyassriihaghreelsvllfnhndrfyegragdpvaclvmerlifp 

HAdV-B66      gcffsltdanmsglyassriihaghreelsvllfnhddrfyegragdpvaclvmerlifp 

HAdV-B34      gcffsltdanmsglyassriihaghreelsvllfnhhdrfyegragdpvaclvmerliyp 

HAdV-B11      gcffsltdanmsglyassriihaghreelsvllfnhddrfyegragdpvaclvmerliyp 

HAdV-B68      gcffsltdanmsglyassriihaghreelsvllfnhddrfyegqagdpvaclvmerliyp 

HAdV-B21      gcffsltdanmsglyassriihaghreelsvllfnhddrfyegragdpvaclvmerliyp 

HAdV-B07      gcffsltdanmsglyassriihaghreelsvllfnhddrfyegragdpvaclvmerliyp 

HAdV-B50      gcffsltdanmsglyassriihaghreelsvllfnhddrfyegragdpvaclvmerliyp 

HAdV-C01      grflaltdvnqpdvftesyimtpdmteelsvvlfnhgdqffyghagmavvrlmlirvvfp 

HAdV-C02      grflaltdvnqpdvftesyimtpdmteelsvvlfnhgdqffyghagmavvrlmlirvvfp 

HAdV-C05      grflaltdvnqpdvftesyimtpdmteelsvvlfnhgdqffyghagmavvrlmlirvvfp 

HAdV-C06      grflaltdvnqpdvftesyimtpdmteelsvvlfnhgdqffyghagmavvrlmlirvvfp 

HAdV-C57      grflaltdvnqpdvftesyimtpdmteelsvvlfnhgdqffyghagmavvrlmlirvvfp 

HAdV-G52      grffsvadmnvrgvllcaqeiqpstwwevsvvlfnhsdefyrgsrgqpvaclllerviyp 

HAdV-A31      gtlfslsgmnargvfvgaetlypgsrmelsvllfnhsdvfcdvrakqpvarlvlnrvifp 

HAdV-A61      gtlfslsgmnargvfvgaetlypgsrmelsvllfnhsdvfcdvrakqpvarlvlnrvifp 

HAdV-A12      gtlfslcdmnargvfvgaetlypgsrmelsvllfnhsdvfcdvrakqpvarlllsrvvfp 

HAdV-A18      gtlfslsdmnargvfvgaetlypgsrmelsvllfnhsdvfcdvrakqpvarlllsrvifp 

              * :::: . :  .:   :  :  .    ::*:****   *        *  *:: ::::* 
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HAdV-D54      svkiatlv 

HAdV-D08      svkiatlv 

HAdV-D49      svkiatlv 

HAdV-D53      svkiatlv 

HAdV-D56      svkiatlv 

HAdV-D59      svkiatlv 

HAdV-D42      svkiatlv 

HAdV-D22      svkiatlv 

HAdV-D20      svkiatlv 

HAdV-D17      svkiatlv 

HAdV-D09      svkiatlv 

HAdV-D10      svkiatlv 

HAdV-D15      svkiatlv 

HAdV-D24      svkiatlv 

HAdV-D46      svkiatlv 

HAdV-D69      svkiatlv 

HAdV-D70      svkiatlv 

HAdV-D62      svriatlv 

HAdV-D45      svriatlv 

HAdV-D36      svriatlv 

HAdV-D30      svrlatlv 

HAdV-D43      svriatlv 

HAdV-D47      svriatlv 

HAdV-D51      svriatlv 

HAdV-D39      svrlatlv 

HAdV-D38      svrlatlv 

HAdV-D44      svrlatlv 

HAdV-D65      svrlatlv 

HAdV-D13      svrlatlv 

HAdV-D60      svrlatlv 

HAdV-D23      svrlatlv 

HAdV-D26      svrlatlv 

HAdV-D33      svrlatlv 

HAdV-D67      svrlatlv 

HAdV-D32      svrlatlv 

HAdV-D58      svrlttlv 

HAdV-D25      svrlatlv 

HAdV-D27      svrlatlv 

HAdV-D29      svrlatlv 

HAdV-D48      svrlatlv 

HAdV-D63      svrlatlv 

HAdV-E04      pvrqasmv 

HAdV-B16      pvrqatmi 

HAdV-B14      pvrqatli 

HAdV-B55      pvrqatli 

HAdV-B35      pvrqatmi 

HAdV-B03      pvrqatmi 

HAdV-B66      pvrqatmi 

HAdV-B34      pvrqatmi 

HAdV-B11      svrqatmi 

HAdV-B68      pvrqatmi 

HAdV-B21      pvrqatmi 

HAdV-B07      pvrqatmi 

HAdV-B50      pvrqatmi 

HAdV-C01      vvrqasnv 

HAdV-C02      vvrqasnv 

HAdV-C05      vvrqasnv 

HAdV-C06      vvrqasnv 

HAdV-C57      vvrqasnv 

HAdV-G52      tvrqaslv 

HAdV-A31      pirqatll 

HAdV-A61      pirqatll 

HAdV-A12      pvcqasli 

HAdV-A18      pvrqasll 

               :  :: : 
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Conservation Logos: 

Apolar: green; Polar: Black; Positive Charge: blue; Negative Charge: Red 
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6.3. Licenses for Figures from Other Publications 
 

Some figures in this dissertation were taken from original presentations. All original publications are referenced in 

the respective figure subtext and are listed here. If the journals are not licensed under the freely distributable 

Creative Commons Attribution (CC BY) license, or do not provide free access to their content for dissertations, 

licenses were obtained from the s100.copyright.com website of RightsLink
TM

. 

 

 Cover Ch. 1; Figure 8:  RCSB PDB-101 Molecule of the Month, Issues December 2010 and February 2011 

Published by David S. Goodsell and the Research Collaboratory for Structural Bioinformatics Protein Data 

Bank. Molecule of the Month illustrations are available under a CC-BY-4.0 license. 

 

 Figure 1:   Bauer et al. 1999: Jounal of Virology, modified 

Published by the American Society for Microbiology. ASM authorizes an advanced degree candidate to 

republish the requested material in his/her doctoral thesis or dissertation. 

 

 Figure 4A:   Nemerow et al., 2012, Curr. Opin. Virol. 

Supplier   Elsevier Limited 

    The Boulevard, Langford Lane 

    Kidlington, Oxford, OX5 1GB, IK 

Customer Name  Antonio Manuel Liaci 

License Number  3965450155690 

License date   Oct 10, 2016 

Licensed Content Publisher Elsevier   

Licensed Content Publication Current Opinion in Virology 

Licensed Content Title  Structure of human adenovirus 

Licensed Content Author Glen R Nemerow,Phoebe L Stewart,Vijay S Reddy 

Licensed Content Date  April 2012 

Original figure numbers  Figure 2 

 

 Figure 4B:   Zubieta et al., 2005, Molecular Cell 

Supplier   Elsevier Limited 

    The Boulevard, Langford Lane 

    Kidlington, Oxford, OX5 1GB, IK 

Customer Name  Antonio Manuel Liaci 

License Number  3965450889114 

License date   Oct 10, 2016 

Licensed Content Publisher Elsevier 

Licensed Content Publication Molecular Cell 

Licensed Content Title  The Structure of the Human Adenovirus 2 Penton 

Licensed Content Author Chloe Zubieta,Guy Schoehn,Jadwiga Chroboczek,Stephen Cusack 

Licensed Content Date  7 January 2005 

Original figure numbers  Figure 4A 
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 Figure 5A,C:   Wasik et al., 2016, Trends in Microbiology 

Supplier   Elsevier Limited 

    The Boulevard, Langford Lane 

    Kidlington, Oxford, OX5 1GB, IK 

Customer Name  Antonio Manuel Liaci 

License Number  3965460040960 

License date   Oct 10, 2016 

Licensed Content Publisher Elsevier 

Licensed Content Publication Trends in Microbiology 

Licensed Content Title  Effects of Sialic Acid Modifications on Virus Binding and Infection 

Licensed Content Author Brian R. Wasik,Karen N. Barnard,Colin R. Parrish 

Licensed Content Date  Available online 1 August 2016 

Original figure numbers  Figure 1 

 

 Figure 5B:   Ströh et al., 2014, Annual Review of Virology 

Published by Annual Reviews. Material may be republished in a thesis / dissertation without obtaining 

additional permission from Annual Reviews, providing that the author and the original source of publication 

are fully acknowledged. 

 

 Figures 5D, 6B:  Neu et al., 2011, Current Opinion in Structural Biology 

Supplier   Elsevier Limited 

    The Boulevard, Langford Lane 

    Kidlington, Oxford, OX5 1GB, IK 

Customer Name  Antonio Manuel Liaci 

License Number  3965451297117 

License date   Oct 10, 2016 

Licensed Content Publisher Elsevier 

Licensed Content Publication Current Opinion in Structural Biology 

Licensed Content Title  Viruses and sialic acids: rules of engagement 

Licensed Content Author Ursula Neu,Johannes Bauer,Thilo Stehle 

Licensed Content Date  October 2011 

Original figure numbers  Figure 1A,B 

 

 Figure 6C:   Ströh et al., 2015, PLoS Pathogens 

Published by the Public Library of Science. PLoS articles are licensed under the Creative Commons Attribution 

(CC BY) license. 

 

 Figure 7:  Michael H. C. Buch, Dissertation, modified with permission 

Published by the University of Tübingen, Faculty of Science, 2016 

 

 Figure 9D:  Veesler et al., 2014, Proceedings of the National Academy of Sciences of the  

   United States of America 

Anyone may, without requesting permission, use original figures or tables published in PNAS for 

noncommercial and educational use (i.e., in a review article, in a book that is not for sale), provided that the 

full journal reference is cited. 
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Abstract
Murine polyomavirus (MuPyV) causes tumors of various origins in newborn mice and ham-

sters. Infection is initiated by attachment of the virus to ganglioside receptors at the cell sur-

face. Single amino acid exchanges in the receptor-binding pocket of the major capsid

protein VP1 are known to drastically alter tumorigenicity and spread in closely related

MuPyV strains. The virus represents a rare example of differential receptor recognition

directly influencing viral pathogenicity, although the factors underlying these differences

remain unclear. We performed structural and functional analyses of three MuPyV strains

with strikingly different pathogenicities: the low-tumorigenicity strain RA, the high-pathoge-

nicity strain PTA, and the rapidly growing, lethal laboratory isolate strain LID. Using ganglio-

side deficient mouse embryo fibroblasts, we show that addition of specific gangliosides

restores infectability for all strains, and we uncover a complex relationship between virus

attachment and infection. We identify a new infectious ganglioside receptor that carries an

additional linear [α-2,8]-linked sialic acid. Crystal structures of all three strains complexed

with representative oligosaccharides from the three main pathways of ganglioside biosyn-

thesis provide the molecular basis of receptor recognition. All strains bind to a range of sialy-

lated glycans featuring the central [α-2,3]-linked sialic acid present in the established

receptors GD1a and GT1b, but the presence of additional sialic acids modulates binding.

An extra [α-2,8]-linked sialic acid engages a protein pocket that is conserved among the

three strains, while another, [α-2,6]-linked branching sialic acid lies near the strain-defining

amino acids but can be accommodated by all strains. By comparing electron density of the

oligosaccharides within the binding pockets at various concentrations, we show that the [α-

2,8]-linked sialic acid increases the strength of binding. Moreover, the amino acid
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exchanges have subtle effects on their affinity for the validated receptor GD1a. Our results

indicate that both receptor specificity and affinity influence MuPyV pathogenesis.

Author Summary

Viruses are obligate intracellular pathogens, and all of them share one crucial step in their
life cycle—the attachment to their host cell via cellular receptors, which are usually pro-
teins or carbohydrates. This step is decisive for the selection of target cells and virus entry.
In this study, we investigated murine polyomavirus (MuPyV), which attaches to host gan-
gliosides with its major capsid protein, VP1. We have solved the crystal structures of VP1
in complex with previously known interaction partners as well as with the ganglioside
GT1a, which we have identified as a novel functional receptor for MuPyV. Earlier studies
have shown that different strains with singular amino acid exchanges in the receptor bind-
ing pocket of VP1 display altered pathogenicity and viral spread. Our investigations show
that, while these exchanges do not abolish binding or significantly alter interaction modes
to our investigated carbohydrates, they have subtle effects on glycan affinity. The combina-
tion of receptor specificity, abundance, and affinity reveals a much more intricate regula-
tion of pathogenicity than previously believed. Our results exemplify how delicate changes
to the receptor binding pocket of MuPyV VP1 are able to drastically alter virus behavior.
This system provides a unique example to study how the first step in the life cycle of a
virus can dictate its biological properties.

Introduction
The engagement of one or several host cell receptors is the first step in the infectious cycle of a
virus. A large number of viruses, including many human pathogens, depend on carbohydrate
recognition for initial attachment to the cell surface. Viral tropism and the internalization path-
way are usually determined by the specificity and affinity of the receptor interaction as well as
the glycan distribution on different cell surfaces (reviewed in [1]). Many viruses use glycopro-
teins, glycolipids, or both as receptors for cell entry [2]. Gangliosides are ubiquitous glycolipids
on the outer leaflet of mammalian cell membranes that serve as receptors for a number of
viruses. They are composed of a membrane-embedded ceramide moiety linked to a complex
carbohydrate structure that projects away from the cell. Gangliosides almost always contain α-
5-N-acetyl-neuraminic acid (sialic acid, Neu5Ac) that can be attached to the core of the mole-
cule with [α-2,3], [α-2,6], or [α-2,8] linkages (Fig 1). Gangliosides exist on cell surfaces in com-
plex and poorly understood patterns that are cell type-, age-, and tissue-dependent ([3,4],
reviewed in [5]).

Murine Polyomavirus (MuPyV) is a double-stranded DNA virus that can induce tumors in
newborn animals. It was long known to engage glycan receptors that contain a minimal motif
of sialic acid [α-2,3]-linked to galactose [6,7], and more recently gangliosides GD1a and GT1b
were identified as MuPyV receptors [8]. Viral attachment is mediated by the major capsid pro-
tein, VP1, which forms pentameric capsomers that assemble into the T = 7d icosahedral capsid
of the virus [9,10]. Sialylated oligosaccharide receptors are engaged in a shallow groove on top
of VP1 formed by loop structures on the protein surface [11–13], similar to other polyomavi-
ruses [1].

Novel Glycan Receptors for Three Murine Polyomavirus Strains
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MuPyV displays striking differences in pathogenicity and spread among three closely
related prototype strains upon infection of newborn virus-free mice. The laboratory-derived
RA strain [14] shows limited spread and induces few tumors of strictly mesenchymal origin
after a long latency period, while the naturally occurring PTA strain [15,16] has disseminated
infection and causes multiple tumors of epithelial and mesenchymal origin within a short time.

Fig 1. Overview and biosynthetic pathway of the four most prominent ganglioside series. The glycan parts of important members are shown for each
series. The downstream biosynthetic steps are identical for all members of a row, although they may vary in linkage orientation. The six-membered pyranose
rings are numbered counterclockwise, starting from the bottom (C1, except for C2 in Neu5Ac), and the ring oxygen is symbolized with a black dot. Neu5Ac
moieties are rearranged for clarity, and all linkages are mediated by O2 or O8. Most of the gangliosides (e.g. LM1) can be further modified, e.g. by
fucosylation. Linkages involving Neu5Ac are present in the α conformation, all other linkages are in the β conformation. Boxes represent three
distinguishable sialoglycotopes that contain linkages found in GT1a (blue, representative for [α-2,8]), GD1a (green, [α-2,3]), and 3’-6’-iso-LD1 (also referred
to as DSLNT, orange, [α-2,6]). The naming is according to the corresponding gangliosides; if possible, the Svennerholm shorthand is used [64–66] All
biosynthetic routes were verified using the KEGGmetabolic pathway database [67]. A prototype glycan that exemplifies the different positions of Gal and
Neu5Ac moieties is depicted on the lower right. The glycan portions investigated in this study are highlighted by purple boxes.

doi:10.1371/journal.ppat.1005104.g001
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LID [17,18], another laboratory isolate MuPyV strain, spreads most rapidly, causing early
death by damaging host tissues, leading to brain hemorrhages and kidney failure [19]. The dif-
ferences among the three strains have been mapped to amino acid variations at two positions,
91 and 296, within the receptor-binding region of VP1 [20–24]. While RA bears a glycine resi-
due at position 91, this residue is replaced with a glutamate in both PTA and LID. An addi-
tional valine-to-alanine exchange at position 296 is present in LID (Table 1). The pathogenicity
profile of one strain can be introduced into the other strains by mutating these two residues,
confirming that these substitutions are necessary and sufficient to generate a specific pheno-
type [25]. The same substitutions have also been observed for other strains of MuPyV [21,22].
MuPyV found in feral mice has the VP1 sequence of PTA [26], but the virus is controlled by an
intact immune system. As studies of viral spread can be conducted in vivo and virus infectivity
can be tested in vitro using ganglioside deficient mouse cells, MuPyV represents an attractive
and rare model system to define the relationships between receptor binding and viral spread
and tropism.

Crystal structures of the low pathogenicity strain RA have shown how this virus engages 3’-
sialyllactose, a short, linear trisaccharide terminating in [α-2,3]-linked sialic acid, as well as an
oligosaccharide that additionally contains a second, branching [α-2,6]-linked sialic acid
[11,12]. These structures also identified the location of residues 91 and 296 in the carbohy-
drate-binding region, suggesting that they might modulate interactions of VP1 with its recep-
tors in the higher pathogenicity strains PTA and LID. Modelling suggested that a glutamate
side chain at position 91 would lead to electrostatic repulsion of the [α-2,6]-branched sialic
acid, thereby preventing binding of such branched structures by either LID or PTA. Branched
sugars carrying an [α-2,6]-linked sialic acid could thus act as pseudoreceptors that will not
facilitate productive infection but hamper the spread of RA within the host, in contrast to PTA
and LID [8,12]. In line with this hypothesis, gangliosides GD1a and GT1b, which do not con-
tain an [α-2,6]-branched sialic acid, have been identified as entry receptors for the PTA [8,16]
and RA strain [27] of MuPyV. However, the molecular determinants of GD1a or GT1b recep-
tor interactions with PTA and LID are not understood, because all structural information is
limited to date to RAMuPyV.

To define the interactions of the three MuPyV strains with receptors on the cell surface, we
have solved high-resolution structures of RA, PTA, and LID VP1 pentamers in complex with
three ganglioside glycans that represent common motifs found in members of the four most
prominent ganglioside biosynthesis series and that feature [α-2,3]-, [α-2,6]-, and [α-2,8]-linked
sialic acids (for carbohydrate structures, nomenclature, and annotations see Fig 1). We have
also conducted crystallographic soaking experiments at different ligand concentrations to com-
pare the relative affinities of each of the three strains for their interaction partners. We find
that expanding the well-characterized Neu5Ac-[α-2,3]-Gal epitope with a linear [α-2,8]-linked
sialic acid (as found for example in GT1a vs. GD1a) leads to additional interactions between
carbohydrate and VP1 in all three strains. Consequently, we identify ganglioside GT1a as an
infectious receptor for all three strains. Moreover, the branching [α-2,6]-linked sialic acid is

Table 1. Description of the investigated MuPyV strains.

RA Strain PTA Strain LID Strain

Distinctive amino
acids

G91, V296 E91, V296 E91, A296

Pathogenicity No or only singular tumors,
mesenchymal origin.

High tumor density of epithelial and
mesenchymal origin.

Virulent. Damage of host tissues, early death due to
brain hemorrhages and kidney failure.

Latency Long Short Very short

doi:10.1371/journal.ppat.1005104.t001
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close to the strain-defining amino acids, but can be accommodated by all strains, in contrast to
the earlier model. However, the amino acid exchanges defining each strain have subtle effects
on their affinity for the validated receptor GD1a. Our results exemplify the effect of minimal
changes in a binding pocket on the receptor binding properties of a virus.

Results

GT1a, GD1a, and GT1b gangliosides are infectious receptors for MuPyV
Previous efforts to identify receptors for MuPyV used immortalized cell lines, such as Vero or
C6 glioma cells that were supplemented with candidate gangliosides before infection [8,28].
We utilized a mouse embryo knock-out fibroblast cell line (Gang-/- MEFs) specifically defi-
cient in ganglioside synthesis and completely resistant to MuPyV infection (S1A Fig and [29])
to test the ability of ganglioside receptors to rescue infection by different strains of MuPyV.
Gang-/- MEFs were supplemented with individual gangliosides followed by infection with RA,
PTA, and LID MuPyV (Fig 2). Importantly, it should be noted that the three MuPyV strains
we used do not have the same particle to PFU ratio. The viruses have been normalized to simi-
lar MOIs, but they cannot be quantitatively compared to one another. However, each strain
has been normalized to its own infection rate of WTMEFs; therefore, infection rates upon sup-
plementation of gangliosides can be compared within a strain. The previously identified gangli-
oside receptors GD1a and GT1b [8] rescued RA, PTA, and LID infection of Gang-/- MEFs in a
dose-responsive manner. We also analyzed the GT1a ganglioside that had not been previously
investigated as a candidate infectious receptor for MuPyV. We found that GT1a, a member of
the ganglio-series synthesized from GD1a (Fig 1), also rescued RA, PTA, and LID infection in
a dose responsive manner (Fig 2). Moreover, GT1a supplementation of Gang-/- MEFs con-
ferred higher levels of RA, PTA, and LID MuPyV infection than the previously identified
receptors GD1a and GT1b. Finally, we tested the ability of the gangliosides GD1b and GM1 to
rescue MuPyV infection of Gang-/- MEFs. GD1b and GT1b supplementation has previously
been shown to restore BK polyomavirus infection of ganglioside deficient cells [30]; however,
GD1b restored little to no MuPyV infection of Gang-/- MEFs. GM1 supplementation has pre-
viously been shown to restore infection by SV40 [8]; however, GM1 did not rescue MuPyV
infection of Gang-/- MEFs. These data confirm that GT1a is an infectious receptor for all
strains of MuPyV.

Fig 2. GT1a, GT1b, and GD1a supplementation rescues MuPyV infection of Gang-/- MEFs.Ganglioside knock-out (Gang-/-) MEFs were completely
resistant to infection of all strains of MuPyV as shown by the absence of T-antigen positive nuclei at 24 hours post infection (DMSO control). GD1a, GT1b,
and GT1a ganglioside supplementation of Gang-/- MEFs restored RA (A), PTA (B), and LID MuPyV (C) infection, while GD1b and GM1 supplementation
resulted in little to no infection by any virus strain. Infection levels were quantified at both 2 μM and 4 μM ganglioside supplementation (blue and green bars,
respectively). Infection levels are normalized to MuPyV infection of WTMEFs, and error bars correspond to standard error.

doi:10.1371/journal.ppat.1005104.g002
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We also investigated whether MuPyV cell surface binding to infectious or non-infectious
ganglioside receptors correlated with infection. To this end, we measured the levels of free
(unbound) virus in each ganglioside supplemented sample at 4 hours post infection. We did
not detect significant differences in MuPyV cell surface binding to different ganglioside recep-
tors or WTMEFs, indicating that cell surface binding alone does not determine infection (S1B
Fig). Instead, a considerable amount of virus binds to Gang-/- MEFs even in the absence of
ganglioside supplementation (S1A Fig). MuPyV is also endocytosed in Gang-/- MEFs, which
however does not lead to infection [29]. Taken together, these data confirm that gangliosides
are not required for cell surface binding. They are, however, required for infection, and GT1a
appears to be more efficient than GD1a and GT1b.

Structure of MuPyV VP1 bound to GT1a
In order to define the mode of recognition of GT1a, particularly to the naturally occurring
PTA strain of MuPyV, we have soaked VP1 crystals with the glycan portion of GT1a and
solved the structure of the complex (Table 2). While the receptor interaction pocket of RA VP1
has been described [11–13], no structural information for the pathogenicity-defining amino
acids at positions 91 and 296 in the pockets of PTA and LID has been available. PTA and LID
both carry a glutamate at position 91, and this side chain is being held in a characteristic posi-
tion with the carboxyl group facing away from the glycan receptor due to a salt bridge formed
with K186 (Fig 3), as previously predicted [12]. The GT1a glycan is a branched structure with a
long disialylated arm, which has the sequence Neu5Acb-[α-2,8]-Neu5Aca-[α-2,3]-Gala-[β-
1,3]-GalNAc, and a second short arm, which consists of a single Neu5Acd [α-2,3]-linked to
Galb (for carbohydrate structures, nomenclature, and moiety indexing see Fig 1). The disialy-
lated arm of GT1a is clearly visible in the crystal structure of PTA VP1; it is well defined by
electron density and makes extensive contacts with the protein (Fig 4B–4D). Overall, the GT1a
glycan adopts a twisted horseshoe-like shape, with Neu5Aca and Neu5Acb wrapping around
the side chains of Y72 and R77 of VP1. Its longer, disialylated arm contains a Neu5Aca-[α-
2,3]-Gala sequence that is also present in GD1a and simpler compounds such as 3’-sialyllactose
(3SL), and the interactions of this motif with VP1 are essentially identical to those seen in pre-
vious structures [11–13]. However, our structure visualizes an additional network of contacts
made by the terminal [α-2,8]-linked Neu5Acb (Fig 4C and 4D). Its carboxyl group engages Y72
and forms water-mediated hydrogen bonds with Q71, Y72, as well as D85 of the neighboring
monomer (D85�). In addition, the N-acetyl nitrogen of Neu5Acb forms a hydrogen bond with
the backbone carbonyl of T67, and O8 and O9 in the glycerol chain of the sugar are hydrogen-
bonded with the R77 side chain. The carboxyl groups of Neu5Aca and Neu5Acb are about 4 Å
apart, and the positively charged side chain of R77 counteracts their negative charges (Fig 4C
and 4D). Neu5Aca and Neu5Acb contribute binding interfaces of approximately 160 Å2 and
190 Å2, respectively (calculated using the PISA server [31]). The remaining Gala-GalNAc-Galb
stem of GT1a forms fewer contacts with the protein, which include a hydrogen bond between
G78 and the Gala O4 hydroxyl group (Fig 4) as well as several van der Waals interactions.
Notably, the Cβ and Cγ atoms of E91 are within van-der-Waals range of O6 and C6 of Gala,
and the E91 carboxylate group is close to C6 of GalNAc. The total contact surface for this por-
tion of the glycan is 142 Å2.

Because the differences in tumorigenicity and host spread among strains have been mapped
to the glycan binding pocket of VP1, and because GT1a appears to be particularly efficient in
facilitating productive infection, we set out to determine how the three strains engage GT1a. By
solving the crystal structures of RA and LID VP1 complexed with GT1a using the identical
strategy used for the PTA-GT1a complex, we found that the overall binding mode of GT1a is

Novel Glycan Receptors for Three Murine Polyomavirus Strains

PLOS Pathogens | DOI:10.1371/journal.ppat.1005104 October 16, 2015 6 / 22



very similar across the three strains (Fig 5A), with a conserved binding mode of the [α-2,8]-
linked Neu5Acb. Although the replacement of glutamate with glycine at position 91 leads to a
contact area decrease of 33 Å2 in RA, the orientation of GT1a in this strain is not altered (com-
pare Fig 5B and 5C). Likewise, the substitution of valine with alanine at position 296 in LID
removes a hydrophobic contact but does not affect the conformation of GT1a (Fig 5E; S2 Fig).

The Neu5Aca-Gala-GalNAc linkages in the long arm of GT1a adopt conformations that
have been reported in numerous structures (for example [32–34]). While the [α-2,3] linkage
between Neu5Aca and Gala adopts the conformation that has been reported for DSLNT and
3SL, the branching Neu5Acd-[α-2,3]-Galb linkage adopts a different conformation, which has
been reported for structures containing O-4-substituted galactoses (as in [35,36]). While a
higher variability is observed for Neu5Ac-[α-2,8]-Neu5Ac linkages (S2E Fig), this linkage
adopts torsion angles that are in agreement with other, related structures such as in the

Table 2. Data collection and refinement statistics.

PTA VP1 Native PTA VP1 + GT1a PTA VP1 + GD1a PTA VP1 + DSLNT RA VP1 + GT1a RA VP1 + GD1a

Data Collection

Beamline SLS, X06DA SLS, X06DA SLS, X06DA ESRF, ID 14–1 SLS, X06DA SLS, X06DA

Space Group P3121 P3121 P3121 P3121 P3121 P3121

Cell Dimensions

a = b, c [Å] 219.61, 99.82 219.60, 99.74 220.45, 99.71 219.73, 100.00 219.55, 99.60 219.06, 99.40

α = β, γ [°] 90, 120 90, 120 90, 120 90, 120 90, 120 90, 120

Resolution [Å] 50–1.64 (1.68–
1.64)

50–1.75 (1.79–
1.75)

50–1.93 (1.98–
1.93)

50–1.87 (1.92–
1.87)

50–1.71 (1.75–
1.71)

50–1.90 (1.95–
1.90)

Rmeas [%] 10.5 (68.7) 13.3 (68.3) 11.3 (68.8) 15.2 (69.1) 7.4 (74.1) 11.1 (71.7)

I/σ(I) 10.5 (2.3) 7.08 (1.51) 12.8 (3.0) 7.6 (3.0) 15.71 (2.17) 11.3 (1.9)

Completeness [%] 99.9 (99.9) 97.6 (96.6) 96.0 (98.1) 99.8 (99.8) 99.8 (99.9) 99.0 (99.1)

Redundancy 5.0 (4.8) 3.4 (3.2) 5.4 (5.5) 3.7 (3.7) 4.3 (3.9) 2.9 (2.8)

Wilson B-Factor
[Å2]

23.1 25.3 25.7 23.1 26.0 23.3

Refinement

Resolution [Å] 48.2–1.64 47.6–1.75 47.8–1.93 48.4–1.83 50–1.71 48.1–1.90

No. of Reflections 324,802 261,253 192,327 220,105 285,887 205,733

Rwork / Rfree [%] 15.85 / 17.30 16.0 / 18.13 15.27 / 17.42 15.38 / 17.56 15.27 / 16.98 15.46 / 17.84

No. of Atoms

Protein 11,117 11,088 11,150 10,996 11,323 11,225

Solvent 1,840 1,827 1,884 1,632 2,059 1,971

Carbohydrate - 425 285 202 385 285

B-Factors [Å2]

Protein 19.3 20.7 21.4 20.1 21.1 19.9

Solvent 29.6 30.9 31.5 30.5 32.6 31.1

Carbohydrate - 30.3 35.1 34.2 36.0 38.2

R. m. s. Deviations

Bond Lengths [Å] 0.007 0.007 0.006 0.008 0.007 0.008

Bond Angles [°] 1.16 1.17 1.06 1.20 1.13 1.19

Ramachandran Plot

Favored 1,340 (97.2%) 1,336 (97.0%) 1,335 (96.9%) 1,334 (96.9%) 1,342 (97.0%) 1,340 (97.0%)

Allowed 38 (2.8%) 41 (3.0%) 42 (3.2%) 42 (3.1%) 42 (3.0%) 42 (3.0%)

Disallowed 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)

PDB ID 5CPU 5CPW 5CPY 5CPX 5CPZ 5CQ0

doi:10.1371/journal.ppat.1005104.t002
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structure of human liver fructose-1,6-bisphosphatase in complex with an allosteric inhibitor
[37] or in the complex of tetanus toxin with a GT1b analog [38]. The overall structure is in
good agreement with a molecular dynamics simulation using an AMBER force field in an aque-
ous environment [39]. A well-defined set of water molecules mediates bridged hydrogen bonds
between the pyranose moieties, especially between Neu5Acb and Neu5Acd (S3 Fig). Due to
these steric constraints, the GT1a complexes feature well-defined electron density not only for
the binding epitope, but also for the non-binding, branching NeuNAcd in its preferred solution
conformation [40], which brings this moiety to about 5 Å near the end of the long arm and
gives the glycan the characteristic, horseshoe-like topology that is observable in all complex
structures.

Structures of MuPyV VP1 strains bound to other sialylated glycans
As RA, PTA, and LID VP1 all bind GT1a in a highly similar conformation, we hypothesized
that the differences in pathogenicity and spread among the three strains might be due to the
recognition of additional carbohydrates by only a subset of MuPyV strains. As shown in Fig 1,
the many different gangliosides share a relatively small set of common sialoglycotopes. We
therefore investigated the ability of all three VP1 proteins to bind other glycan structures that
are representative for these epitopes. We solved structures of VP1 bound to the glycan portions
of two of these gangliosides: The GD1a glycan is an established infectious receptor and essen-
tially a truncated version of GT1a lacking the [α-2,8]-linked Neu5Acb in the long arm. The
human milk hexasaccharide DSLNT is the glycan portion of the lacto-series ganglioside 3’-6’-
isoLD1 (Fig 1) [41], which is overexpressed in the central nervous system. In contrast to GT1a
and GD1a, DSLNT does not contain an [α-2,3]-linked Neu5Acd as a short arm but instead a

Fig 3. The MuPyV binding pocket. Top view on the receptor-binding region of PTA, which is shown with E91 and V296 highlighted in salmon. Residues that
are known to participate in receptor binding are contributed by the BC and HI loops and are highlighted as stick models. One monomer is shaded in green
and the other monomers are alternatingly shaded light and dark grey for better distinction.

doi:10.1371/journal.ppat.1005104.g003
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Fig 4. Binding of GT1a to PTA. A The PTA binding pocket and the GT1a conformation upon binding are shown from an angle parallel to the fivefold axis. A
scheme of the glycan is shown in the inset, and the sugar rings are filled according to the coloring scheme from Fig 1. B Simulated annealing Fobs-Fcalc omit
map (resolution 1.71 Å, calculated at 3.5 σ, carved 2.3 Å around the glycan).C Possible binding interactions of GT1a and PTA. E91 and V296 are highlighted
in salmon. Hydrogen bonds are shown in black, the hydrophobic contact mediated by V296 in gold, and the van-der-Waals contacts of E91 are shown in
cyan. Waters that mediate key hydrogen bonds are shown as red spheres. Unique interactions mediated by the novel GT1a-like binding motif are shown in
red. D Zoomed view of the binding to the two terminal Neu5Ac moieties. The rest of the glycan is omitted for clarity. Residues except Y72 and R77 as well as
waters involved in contacts with these two glycan moieties are pale grey and salmon, respectively.

doi:10.1371/journal.ppat.1005104.g004
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branching [α-2,6]-linked Neu5Acc. This structure is similar to a very common epitope on O-
linked glycoproteins [42–44]. DSLNT was used in previous studies of MuPyV as a model
“pseudoreceptor” [12] and was investigated here to help rationalize these earlier data, to facili-
tate a comparison among strains, and to establish a binding profile for glycans containing an
[α-2,6]-linked sialic acid.

GD1a. The previously identified MuPyV receptor GD1a is similar to a truncated GT1a
structure, containing only a Neu5Aca-[α-2,3]-Gala motif instead of Neu5Acb-[α-2,8]-
Neu5Aca-[α-2,3]-Gal. The disaccharide engages all three strains in a very similar manner (Fig
6A). Neither the longer E91 side chain (in PTA and LID) nor the shorter A296 side chain (in
LID) result in an altered conformation of the ligand.

DSLNT. The DSLNT glycan terminates in a Neu5Aca-[α-2,3]-Gala motif, which is the
part of the molecule best defined by electron density in all complexes. DSLNT also contains an
additional [α-2,6]-linked, branched Neu5Acc residue, which is not present in either GT1a or
GD1a. There is weak electron density for Neu5Acc in one of the five binding pockets of the RA
strain, but it only engages in few interactions [12]. While PTA and LID do bind DSLNT, the
complex structures do not show any electron density for the Neu5Acc, indicating that this
sugar is conformationally flexible and does not contribute contacts. When bound to the PTA
strain, the stem of DSLNT is moderately rearranged (Fig 6B). In comparison to GalNAc in
GT1a, the GlcNAc moiety is slightly tilted away from E91 due to a ~20° rotation of the psi
angle in the Gala-[β-1,3]-GlcNAc linkage (Fig 6B and 6C, assessed using CARP) that propa-
gates throughout the sugar. In addition, there is no visible electron density for the GlcNAc O6
that is engaged in the [α-2,6]-branching as well as an increased B-Factor variance within the

Fig 5. Bindingmodes of GT1a to the different MuPyV strains. A Superposition of the GT1a-binding mode of RA (GT1a in sky blue), PTA (dark blue), and
LID (pale blue). The Neu5Acb-[α-2,8]-Neu5Aca-[α-2,3]-Gala motif is shown in solid sticks, together with the adjacent GalNAc moiety. All superpositionings
were carried out in PyMOL [61] using ‘align’ for the protein chains only. Surface, E91 and V296 are from PTA/GT1a. All ‘align’ rmsd values are below 0.16 Å.
B & C Close view of the van-der-Waals contacts introduced by the E91 side chain present in PTA and LID (C), but not in RA (B). Hydrogen bonds are shown
in grey, van-der-Waals contacts in cyan.D & E Close view of the hydrophobic contact mediated by V296 in RA and PTA (D), but not by A296 in LID (E). The
4.0 Å hydrophobic contact is not present in the LID strain, whose pocket is opened to the right. Hydrogen bonds are shown in grey, hydrophobic contacts are
shown in gold.

doi:10.1371/journal.ppat.1005104.g005
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Fig 6. Differences in receptor binding patterns across glycans. A Superposition of the binding modes of GD1a to RA (light green), PTA (dark green), and
LID (pale green). The sequence of GD1a is shown in the inset. The Neu5Aca-[α-2,3]-Gala motif is shown in solid sticks, together with the adjacent GalNAc
moiety. In all figures, GT1a bound to PTA is overlaid as a grey ghost for comparison, with Neu5Acb omitted for clarity. Deviations exceeding the atomic error
of the structure and alignment rmsd values are only found in the stem region of the sugar, starting at Galb. All superpositionings were carried out in PyMOL
[61] using ‘align’ for the protein chains only. Surface, E91 and V296 are from PTA/GT1a. All ‘align’ rmsd values are below 0.16 Å. B & C Comparison of the
DSLNT binding modes to RA (red), PTA (orange), and LID (violet). In PTA-DSLNT, [α-2,6]-branching causes a 15–20° psi angle shift of the GlcNAc moiety
compared to GD1a and GT1a, resulting in a 1 Å sideward twist movement of the stem. In RA-DSLNT, combination of this shift with a 15° shift in the phi angle
results in a downward movement of GlcNAc and its branching Neu5Acc compared to PTA-DSLNT. In LID, the shift is already observable for Gala and results
in the loss of ordered density for GlcNAc. All angles were analyzed with CARP. The sequence of DSLNT is shown in the inset of panel C.

doi:10.1371/journal.ppat.1005104.g006
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glycan (S4 Fig). The reason for the sideward twist and the missing electron density for Neu5Acc
observed in PTA is probably the electrostatic repulsion between the carboxyl groups of
Neu5Acc and E91. While the charge of E91 is compensated by K186 (Fig 3), as was hypothe-
sized before [12], the two carboxylate groups would come within about 2 Å of one another if
DSLNT bound to PTA in the same way as observed in RA. This hypothesis is confirmed by a
PTA E91Q mutant that rescued binding of Neu5Acc (S5 Fig). In turn, when bound to RA,
DSLNT exhibits a stronger conformational rearrangement (Fig 6B and 6C). Due to the missing
side chain at position 91, the psi angle rotation between Gala and GlcNAc is accompanied by
an additional 15° rotation of the phi angle, bringing the GlcNAc moiety and the attached
Neu5Acc closer to the protein surface [12]. In LID, the valine to alanine mutation at position
296 reduces its van-der-Waals radius. This change results in a broader binding pocket com-
pared to the other strains and the loss of a hydrophobic interaction between position 296 in
VP1 and C3 of Neu5Aca for all glycans. This gives room for a stark alteration in the binding
mode of DSLNT that starts with a slight tilt of Neu5Aca and propagates through the sugar (Fig
6C), ultimately resulting in a prominent sideward shift of the whole glycan stem. The resulting
increased conformational freedom of DSLNT is reflected by a lack of electron density in its
stem region as well as by an elevated temperature factor variance (S4 Fig). This alteration of the
binding mode in LID is likely to be observed for other glycans that are not conformationally
restrained by the [α-2,3]-linked Neu5Acd.

Relative affinities of MuPyV strains for sialylated glycans
Since all three MuPyV strains are able to engage the three different glycan structures in a
largely identical manner, we reasoned that the differences in pathogenicity and spread might
be attributable to subtle differences in affinity, rather than specificity, among the strains. The
affinities of RA VP1 for 3’-sialyllactose and DSLNT were estimated to be in the low mM range
[11]. Coupled with the high costs of glycans and the high amount required due to their low
binding affinity, weak binding poses technical challenges for classical affinity measurements.
We therefore utilized a crystallographic approach to quantitatively compare ligand binding.
We crystallized all three VP1 pentamers in the same condition, and soaked each with the oligo-
saccharide portions of GT1a, GD1a, and DSLNT at different concentrations in parallel. X-ray
data of all crystals were collected in the same manner, and the data sets were processed using
the same protocol and integrated as described previously [45]. All data sets were processed in
the same unit cell, scaled, and the bias-reduced difference electron density around the central
Neu5Aca-[α-2,3]-Gala motif was quantified for each data set (see the Methods section for
details). Our crystallization condition contains a high amount of ammonium sulfate, which
competes with the carboxyl group of Neu5Aca and has to be displaced by the carbohydrates.
Therefore, our observed binding is weaker than in a physiological setting. However, while not
yielding dissociation constants in the traditional sense, this method enables us to compare rela-
tive levels of binding across our three different strains and three different glycans.

The GT1a glycan exhibits the strongest binding in all three VP1 variants compared with
DSLNT or GD1a (Fig 7A–7C), with no detectable difference between the strains (Fig 7D). This
finding is in accord with our ganglioside add-back experiments in cell culture (Fig 2), which
consistently showed higher levels of infection mediated by GT1a compared to GD1a. The
stronger overall binding of GT1a can be attributed to the additional [α-2,8]-linked sialic acid
present in GT1a (Neu5Acb), which contributes several interactions and an increased buried
surface area. These contacts seem to outweigh the differences in van der Waals contacts with
the side chains of E91 or V296, at least to the extent discernable in our assay.
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GD1a binds less well to all strains compared to GT1a. In addition, there are differences in
binding strength among the three strains. PTA and LID VP1 appear to bind GD1a at the same
level and better compared with RA (Fig 7A–7C and 7E) because these two strains gain addi-
tional interaction surface and van-der-Waals contacts from their E91 side chain. This effect is
more pronounced than in GT1a, because in GD1a it cannot be masked by the additional con-
tacts of the [α-2,8]-linked Neu5Acb.

DSLNT displays the lowest overall affinity to all strains, with levels comparable to GD1a in
RA for all three strains (Fig 7A–7C) despite the DSLNT conformation being slightly different
in each VP1 complex (Fig 7F). Neither the blocking of Neu5Acc binding by E91, nor the
increased conformational freedom in LID appears to alter binding affinity. It is possible that
Neu5Acc in RA adopts a conformation that might not be favorable and therefore not heavily
contribute to affinity, in spite of the added contact surface. Combined with the fact that elec-
tron density for Neu5Acc could only be observed in one binding pocket of RA VP1 [12], we
believe that this conformation is possible but not probable in solution. Instead, an increased
number of conformational options might make up for a loss of binding contacts.

Discussion
Many viruses engage cell-surface glycans to mount an infection, and subtle differences in the
recognition of such receptors can be linked with altered tropism and pathogenicity. Examples
include the canine parvovirus and feline panleukopenia virus [46,47], the human BK polyoma-
virus [48], B-lymphotropic polyomavirus [49,50] as well as avian and human influenzaviruses

Fig 7. Binding of ligands to MuPyV VP1. The average simulated annealing Fobs-Fcalc electron density for the Neu5Aca-[α-2,3]-Gala in GT1a, GD1a, and
DSLNT is plotted against ligand concentration. RA VP1 is colored blue, PTA VP1, is colored red, and LID VP1 is colored green. GT1a is displayed in a dotted
line with triangles, GD1a in a dashed line with circles, and DSLNT in a solid line with squares. The error bars correspond to the standard deviation of the
mean electron density observed in the five chains of VP1.A Electron density of GT1a, GD1a, and DSLNT in RA VP1. B Same as inA, but for PTA VP1.C
Same as inA, but for LID VP1. D Comparison of GT1a-derived electron density in RA VP1, PTA VP1, and LID VP1. E Same as in D, but for GD1a. F Same
as in D, but for DSLNT.

doi:10.1371/journal.ppat.1005104.g007
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[51,52]. However, MuPyV is a rare example of a virus in which drastic differences in pathoge-
nicity directly correlate with single amino acid substitutions in the viral capsid.

In order to provide a structural basis for understanding the profoundly different pathoge-
nicities of the three MuPyV strains RA, PTA and LID, we have solved structures of their VP1
proteins and characterized their receptor-binding properties. We show that the ganglioside
GT1a serves as a MuPyV receptor and promotes infection with higher potency than the previ-
ously identified receptors GD1a and GT1b. Structurally, the increased potency of GT1a can be
directly explained by a set of additional contacts involving the [α-2,8]-linked Neu5Acb that is
only present in this glycan and that gives it a characteristic horseshoe-like shape. It had previ-
ously been suggested that the G91E mutation present in PTA and LID abolishes binding to
branched glycans containing [α-2,6]-linked Neu5Ac and thus allows the virus to spread more
efficiently in the host [8,11]. However, our analyses show that the presence of a glutamate at
position 91 still allows binding of the branched oligosaccharides GT1a, GD1a, or DSLNT to all
three strains, albeit with subtle differences in binding affinity. While all three strains bind
GT1a with comparable affinity, PTA and LID bind GD1a better than RA. The DSLNT glycan
binds similarly to all three strains, with the lowest overall affinity. This is again in line with the
structures, which show that the branched Neu5Acc of DSLNT does not engage in any specific
contacts. The limited contacts between Neu5Acc and RA observed in an earlier structure [12]
have to be considered a crystallization artifact as they were only observed in one out of five
binding sites, and this visible Neu5Acc moiety was located near a crystal contact.

The ligand binding promiscuity of MuPyV is surprisingly high. Binding mostly requires a
ubiquitous minimal Neu5Ac-[α-2,3]-Gal motif, in agreement with earlier findings [6,7]. It
therefore seems plausible that the virus also recognizes other glycans bearing this motif, result-
ing in differences in pathogenicity and spread. Preliminary studies show that glycans with an
N-acetyllactose core (Neu5Ac-[α-2,3]-Gal-[β-1,4]-GlcNAc), as found in neolacto gangliosides
such as the predominant ganglioside of peripheral nerve cells, LM1 [53,54], can also be bound
in a manner similar to DSLNT and with higher flexibility than GT1a or GD1a (S6 Fig).

Based on our structures, certain requirements that contribute to receptor specificity can be
established. For example, branches at Gal-O4 within the minimal motif produce clashes and
cannot be tolerated. Therefore, although the GD1a glycan possesses two Neu5Ac-[α-2,3]-Gal
motifs, it prefers the one on its longer arm for complex formation. For the same reason, glycans
such as GM1 or GM2 that only possess such a branched Neu5Ac-[α-2,3]-Gal epitope cannot
engage MuPyV productively. In support of this, the GM1 ganglioside is not able to rescue
MuPyV infection of Gang-/- MEFs (Fig 2, [29]), although low-level and probably non-specific
interactions with cells can be detected (S1B Fig). GT1b possesses a disialylated arm at Galb and
is monosialylated at Gala. We predict that GT1b engages VP1 with its monosialylated arm. The
second, disialylated arm is likely to be accommodated in such a binding mode, and the [α-2,8]-
linked sialic acid might contribute additional contacts. Binding via the monosialylated arm is
in line with our findings that supplementation of Gang-/- cells with GT1b rescues infection at a
level between GD1a and GT1a. Some gangliosides whose glycan epitopes are capable of engag-
ing VP1 in vitromight not be infectious receptors in vivo, mainly because of steric complica-
tions in the context of the cell membrane. For example, while the crystal structure of PTA with
the glycan portion of GD3 shows an identical binding mechanism to GT1a (S7 Fig), supple-
mentation of Gang-/- MEFs with GD3 does not restore infectivity [29]. We reason that the gly-
can stem of GD3 (and of gangliosides with a similar length such as GM3) is too short to allow
efficient attachment of the MuPyV capsid to the cell membrane.

The discrepancy in pathogenicity in MuPyV strains that differ only at one single position is
stark. In sharp contrast, the differences among receptor binding between the three strains
investigated here are subtle, and a correlation of the structural data with the observed
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pathogenicity profiles remains challenging. One reason for this is that avidity effects in the
virus capsid, which can engage many ligands simultaneously, multiply subtle changes in the
affinity of capsomers for single glycans. It was shown for influenza viruses that small changes
between millimolar binding affinities of single binding sites can result in dramatically altered
viral binding properties [52]. As discussed above, we found the main difference between RA
and PTA/LID to be a differing affinity for GD1a, which appears to bind better to the latter
strains due to the larger E91 side chain. This might facilitate attachment and productive infec-
tion by these strains to cells that display GD1a, and may thus give them an advantage over RA.
While we could not show differences between the PTA and LID strain in terms of glycan affin-
ity to isolated VP1 pentamers, it is unclear how this translates to avidity effects. As such, it is
possible that capsid avidities differ enough to explain the more limited spread of PTA.
Although direct correlations cannot be made, it becomes increasingly clear that the virus needs
to uphold a delicate equilibrium between efficient infection and release from infected and lysed
cells as well as selective affinity for productive receptors. The absence of the RA and LID strains
outside the laboratory [26] emphasizes that this equilibrium is affected by minute changes in
the receptor binding properties.

The MuPyV receptor pocket can clearly accommodate several related but distinct glycan
structures (Figs 1 and 4–6). These structures also decorate glycoproteins on many cell surfaces.
It therefore seems likely that MuPyV can also engage glycans that are not attached to ganglio-
sides. For instance, the glycan stem of GD1α, which is very similar to DSLNT and prominent
on glycoproteins [42–44], is a likely receptor candidate. The different cell-surface distribution
patterns of glycoproteins and gangliosides may likewise influence MuPyV spread [8]. Glyco-
protein receptors with unknown identity have in fact been shown to promote non-productive
internalization of MuPyV, which in turn elicits innate immune responses by the host [29].
Along these lines, our results suggest that virus particles adhere to and enter ganglioside defi-
cient MEFs to levels that are not significantly lower than for wild-type and ganglioside supple-
mented Gang-/- cells, although without detectable infection. Although not representative for
other cell types, these results suggest that the amount of non-productive “pseudoreceptors” on
the MEF cell surface is much higher than anticipated.

Our data demonstrate that varying affinities for different gangliosides are the key determi-
nants of a successful MuPyV infection, in line with earlier reports [6–8]. Perhaps unexpectedly,
we also find that (even non-specific) attachment of the virus to a host cell can lead to successful
internalization, but that this does not necessarily lead to an infection. Thus, we propose that the
ratio between productive (ganglioside bound) and non-productive (ganglioside and glycoprotein
bound) glycotopes on the host cell itself or in its microenvironment helps to determine the pro-
ductivity of infection through diverging entry routes, and that differential affinities to these recep-
tors dictate this equilibrium. The nature of these diverging routes, their underlying driving forces,
and potential biological consequences other than immune stimulation [29] remain unknown–as
does the point at which they diverge. We cannot exclude the possibility that the distribution and
binding properties of (pseudo-)receptors are of importance mostly for the post-entry stage rather
than for events taking place at the cell surface. A better understanding of the distribution patterns
and densities of glycans on specific cells is clearly needed to fully appreciate the many aspects of
pathogenesis and tropism of MuPyV as well as many other glycan-binding viruses.

Methods

Ganglioside supplementation and quantification of MuPyV infection
WT and Gang-/- MEFs were seeded onto 96-well Costar 3906 imaging plates in Dulbecco's
Modified Eagle's Medium supplemented with 10% fetal bovine serum (FBS). WT (B4+/+St8
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+/+) and Gang-/- MEFs (B4-/-St8-/-) were provided by Thomas Benjamin at Harvard Medical
School. Gangliosides were purchased fromMatreya LLC and resuspended in DMSO upon
arrival, aliquoted, and stored at -20°C until use. Cells were incubated overnight in serum free
media prior to infection. For ganglioside supplemented Gang-/- MEFs, cells were starved in
serum free media containing the indicated concentration of ganglioside. Gangliosides were
then removed, and cells were washed with serum free media to remove any free ganglioside.
Cells were then infected with NG59RA, PTA, and LID MuPyV (MOI ~10–30). At 24 hours
post infection cells were washed in phosphate buffered saline and fixed with 4% paraformalde-
hyde at room temperature for 10 minutes. Cells were then permeabilized with 0.1% Triton X-
100, blocked in 10% FBS in PBS, and then stained for the viral protein, T-antigen (E1). Samples
were then incubated with Alexa Fluor labeled secondary antibodies (546). Plates were imaged
with the Molecular Devices ImageXpress Micro XL High-Content Screener. The percent
infected was calculated for each well (5 images were taken per well). Three wells were quanti-
fied per sample and the average percent infected, standard error, and standard deviation were
calculated for each sample. To quantify infection, T-antigen staining was measured per each
DAPI labeled nucleus. For image analysis, the DAPI channel on each image was thresholded,
and nuclei were counted using ImageJ (Analyze Particles). These particles were marked as
“Regions of Interest” (ROI), and then the average pixel intensity of T-antigen staining was
measured for each nucleus (ROI). These were then binned into T-antigen positive or T-antigen
negative nuclei to create % infected.

VP1 immunofluorescence staining
WT and Gang-/- MEFs were seeded onto glass coverslips in Dulbecco's Modified Eagle's
Medium supplemented with 10% (FBS). Cells were incubated overnight in serum free media
prior to infection. For ganglioside supplementation, Gang-/- MEFs were starved in serum free
media containing the indicated concentration of ganglioside. Gangliosides were then removed
and cells were washed with serum free media to remove any free ganglioside. Cells were then
infected with NG59RA. At indicated times post infection the cells were fixed with 4% parafor-
maldehyde at room temperature. Cells were blocked in 10% FBS in PBS and then stained for
GD1a using mAb MAB5606 (Millipore). Cells were then permeabilized with 0.1% Triton X-
100 and stained for the viral proteins, VP1 (I58 antibody) and T-antigen (E1 antibody). Sam-
ples were washed and then incubated with Alexa Fluor labeled secondary antibodies (488, 546,
647). Slides were then mounted using DAPI prolong gold mounting media. Slides were imaged
with a Nikon A1R confocal microscope. All images were taken as a 9 to 13 step (.25μm) z-
stacks on a laser scanning confocal microscope. Each z-stack was aligned and compressed into
a max intensity Z projection image.

Virus binding to ganglioside supplemented Gang-/- MEFs
WT and Gang-/- MEFs were seeded onto a 24 well dish in Dulbecco's Modified Eagle's
Medium supplemented with 10% (FBS). Cells were incubated overnight in serum free media
prior to infection. For ganglioside supplemented Gang-/- MEFs, cells were starved in serum
free media containing the indicated concentration of ganglioside. Gangliosides were then
removed and cells were washed with serum free media to remove any free ganglioside. Cells
were then infected with either NG59RA, PTA, or LID at an MOI ~10–30 (250 μL/well). At 4
hours post infection 150 μL of virus supernatant was removed and placed into a microcentri-
fuge tube. This virus supernatant was then used to infect WTMEFs seeded onto a 96-well plate
(50 μL/well). The amount of free virus was then quantified as percent of infection of the
96-well reinfection plate. At 24 hours post virus addition the plate was washed in PBS and
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fixed with 4% PFA at RT for 10 minutes. Cells were then permeabilized with 0.1% Triton X-
100, blocked in 10% FBS in PBS, and then stained for the viral protein, T-antigen (E1). Samples
were then incubated with Alexa Fluor labeled secondary antibodies (546). Plates were imaged
with the Molecular Devices ImageXpress Micro XL High-Content Screener. The percent
infected was calculated for each well (5 images were taken per well) as indicated by T-antigen
positive nuclei. Three wells were quantified per sample and the average percent infected, stan-
dard error, and standard deviation were calculated for each sample. For image analysis, the
DAPI channel on each image was thresholded and nuclei were counted using ImageJ (Analyze
Particles). These particles were marked as “Regions of Interest” (ROI) and then the average
pixel intensity of T-antigen staining was measured for each nucleus (ROI). These were then
binned into T-antigen positive or T-antigen negative nuclei to create % infected.

Expression and purification of VP1 pentamers
DNA encoding residues 33–316 of RA (GenBank # M34958.1) or PTA VP1 (GenBank #
PSU27812) was cloned into the expression vector pET15b (Novagen) in frame with an N-ter-
minal hexahistidine tag (His-tag) and a thrombin cleavage site. DNA for LID VP1 (GenBank #
PSU27813) was generated by site-directed mutagenesis of PTA VP1 residue 296. VP1 penta-
mers were overexpressed in E. coli (BL21) after IPTG induction, and purified by nickel affinity
chromatography. The His-tag was removed by thrombin cleavage on column for 72 hours
(leaving the non-native residues GSHM at the N-terminus), followed by size exclusion chroma-
tography on a Superdex-200 column.

Crystallization and crystal soaking
Pure VP1 pentamers were supplemented with 20 mMDTT, concentrated to 7.5–8 mg/mL (RA
VP1) or 8.5–9 mg/mL (PTA and LID VP1), and crystallized by sitting-drop vapor diffusion.
RA VP1 was crystallized at 20°C against reservoir solutions containing a range of 1.25–1.8 M
ammonium sulfate and 1–10% (v/v) isopropanol. PTA and LID were crystallized at 4°C against
reservoir solutions containing 0.1 M HEPES pH 7–8.5 and 1.6–1.8 M K-Na phosphate. For
complex formation, the crystals were soaked in the reservoir solution supplemented with the
glycan. The detailed crystallization and soaking procedures are listed in S1 Table. The GT1a
and GD1a glycans were purchased from Elicityl SA (France), and the DSLNT glycan was pur-
chased from Carbosynth (United Kingdom).

For concentration-dependent soaking VP1 pentamers of all three strains were crystallized at
20°C against a mother liquor containing 1.5 M ammonium sulfate and 6% (v/v) isopropanol.
These crystals were soaked in drops of mother liquor containing the appropriate concentration
of glycan for 30 minutes.

All crystals were cryoprotected by incubation in mother liquor supplemented with the
appropriate concentration of glycan and 25% (v/v) glycerol. They were then flash-frozen in liq-
uid nitrogen.

Structure determination and electron density quantification
Data reduction was carried out in XDS [55], and the structure of native RA VP1 was solved in
Molrep [56] using a model generated from the previously solved structure of P16 VP1 (PDB
code 1VPN [12]). Other structures were solved by molecular replacement using the RA VP1
structure in Phenix [57]. All structures were completed by alternating rounds of manual model
building in Coot [58], followed by restrained coordinate and isomorphous B-factor refinement
including TLS refinement and five-fold non-crystallographic symmetry restraints in Refmac5
[59]. TLS parameters were obtained from the TLSMD server [60]. All models agree well with
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the experimental data and have good geometry (Table 2). The PDB accession codes for the
structures are listed in Table 2. Structural figures were prepared in PyMOL [61].

Data collected for concentration-dependent soaking experiments was processed as
described above. The unit cell parameters for all datasets were treated as equal for all datasets
and isomorphous to the dataset “RA Nat” (S2 Table). They were scaled against “RA Nat” in
Scaleit [62] and then subjected to B-factor refinement and simulated annealing in Phenix
against models of RA, PTA, or LID VP1, which lacked atoms of all solvent molecules in the
receptor binding pocket as well as those of tryptophan residues 98 and 227 as controls. The
resulting bias-reduced Fobs-Fcalc electron density for Neu5Aca-[α-2,3]-Gala and the two marker
tryptophans was calculated as a summation of values of the grid points in a mask generated
1 Å around these groups using the programMapman [63]. The overall binding of a sugar at
different concentrations influences the electron density of the Neu5Aca-[α-2,3]-Gala portion,
which is included in GT1a, GD1a, and DSLNT. In contrast, it has no effect on the electron den-
sity of the marker tryptophan residues, which do not differ significantly for all data points. For
each data point, the average density of the five chains was plotted against ligand concentration
and submitted to a non-linear least squares fit using the equation

Y ¼ X
ðKD þ XÞ � ðBmax � B0Þ þ B0 ð1Þ

where Bmax was the highest observed electron density value overall (constrained to 95.03 AU)
and B0 the electron density in the binding pocket at 0 mM ligand concentration. Plotting and
fitting was done using the program Prism 6 (GraphPad Software, Inc., La Jolla, California,
USA).

Supporting Information
S1 Fig. Gangliosides are required for MuPyV infection, but not for cell surface binding. (A)
WT, Gang-/- MEFs, and Gang-/- MEFs supplemented with GD1a were infected with NG59RA
MuPyV. The MuPyV ganglioside receptor GD1a can be detected on the WTMEFs and GD1a-
supplemented Gang-/- MEFs (green), but is absent in Gang-/- MEFs. Virus binds WT, Gang-/-
, and GD1a-supplemented Gang-/- MEFs as shown by VP1 staining (red) on the cell surface at
1 hour post infection. At 24 hours post infection, WT and GD1a-supplemented Gang-/- MEFs
show robust infection as indicated by nuclear T-antigen staining (magenta). Despite high levels
of virus binding, Gang-/- MEFs are completely resistant to infection as shown by lack of T-
antigen staining at 24 hours post infection. (B) Gang-/- MEFs were supplemented with 2μM
GD1a, GT1b, GT1a, GD1b, and GM1 followed by infection with RA, PTA, and LID MuPyV.
At 4 hours post infection, virus supernatant was removed and the amount of free virus was
quantified for each sample by re-infection of WTMEFs. Virus bound to all cells at similar lev-
els, and there were no significant differences in virus binding to infectious versus non-infec-
tious ganglioside receptors. Error bars are standard error, and virus binding to WTMEFs is
normalized to one.
(TIF)

S2 Fig. CARP Plots of GT1a bound to the PTA VP1 pentamer. The observed phi and psi tor-
sion angles for the linkages occurring in the PTA-GT1a complex have been plotted and com-
pared to other linkages found in the PDB using CARP with the crystallographic definition of
torsion angles. The observed linkages are: Neu5Ac-[α-2,3]-Gal (A,B), Gal-[β-1,3]-GalNAc (C),
GalNAc-[β-1,4]-Gal (D), and Neu5Ac-[α-2,8]-Neu5Ac (E). The inlay on the lower right shows
the schematic and observed structure of GT1a. The linkages are named according to the panels;
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the coloring of the glycan rings was adopted from Fig 1.
(TIF)

S3 Fig. Ordered water molecules between the two branches of GT1a. Possible hydrogen
bonds between the glycan and ordered water molecules are depicted in grey. In GD1a, the glyc-
erol-like tail of Neu5Aca could principally also stabilize the glycan, but preferentially adopts a
conformation that does not participate in intramolecular contacts.
(TIF)

S4 Fig. B-factor variance across different strains and glycans. The glycans are colored by B
factor on an absolute scale between 0 (dark blue) and 80 (deep red). GT1a/PTA is shown as a
grey ghost for comparison. For GD1a and DSLNT, the intramolecular B-factor variance when
bound to LID is considerably higher, while values for GT1a are comparable to the other
strains.
(TIF)

S5 Fig. Mutation to a glutamine at position 91 of PTA VP1 restores the DSLNT binding
mode of RA VP1. Shown are the superimposed DSLNT complex structures of RA (PDB-ID
1VPS [12], transparent red) and PTA E91Q (yellow, r.m.s.d. value for the superposition in
PyMOL: 0.159 Å). An Fobs-Fcalc omit map (2σ, carved 1.6 Å around the ligand) is shown for
the PTA E91Q complex. On the lower right, DSLNT is represented schematically. As for RA
VP1, visible electron density for Neu5Acc in PTA E91Q can be seen in one of the five chains.
(TIF)

S6 Fig. The reduced van-der-Waals radius at position 296 in LID allows for a more versatile
glycan binding. The van-der-Waals radius of 3.5 Å is indicated as dotted sphere for V296
(PTA, yellow) and A296 (LID, blue). The mutation opens the pocket to one side and allows for
a more flexible binding mode of glycans without internal stabilization (DSLNT and 3’-N-Ace-
tyl-sialyllactosamine (3’-SLN), the prototype glycan of the LM1 ganglioside). O4 of Gala is
pointing directly towards the surface in all complexes. In this binding mode, no branching at
this point (as is the case e.g. for GD1b) can be tolerated. Glycans that adopt a binding mode
similar to the rigid GT1a are colored in green tones, glycans that exhibit shifts of their moieties
are colored in shades of red. GT1a bound to PTA is shown as a grey ghost for comparison.
(TIF)

S7 Fig. GD3 binding to VP1. The complex structures of PTA VP1 with GT1a (dark blue) and
GD3 (light pink) are superimposed in PyMOL. On the upper right, the structure of GD3 is rep-
resented schematically.
(TIF)

S1 Table. Crystallization and soaking conditions.
(DOCX)

S2 Table. Data set statistics for concentration-dependent soaking experiments.
(DOCX)
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Abstract
Most adenoviruses attach to host cells by means of the protruding fiber protein that binds to

host cells via the coxsackievirus and adenovirus receptor (CAR) protein. Human adenovirus

type 52 (HAdV-52) is one of only three gastroenteritis-causing HAdVs that are equipped

with two different fiber proteins, one long and one short. Here we show, by means of virion-

cell binding and infection experiments, that HAdV-52 can also attach to host cells via CAR,

but most of the binding depends on sialylated glycoproteins. Glycan microarray, flow cytom-

etry, surface plasmon resonance and ELISA analyses reveal that the terminal knob domain

of the long fiber (52LFK) binds to CAR, and the knob domain of the short fiber (52SFK)

binds to sialylated glycoproteins. X-ray crystallographic analysis of 52SFK in complex with

2-O-methylated sialic acid combined with functional studies of knob mutants revealed a

new sialic acid binding site compared to other, known adenovirus:glycan interactions. Our

findings shed light on adenovirus biology and may help to improve targeting of adenovirus-

based vectors for gene therapy.

Author Summary

HAdVs are common pathogens in humans, causing disease mainly in eyes, airways and
gastrointestinal tract. Most HAdVs are equipped with twelve protruding fiber proteins
that mediate attachment to host cell receptor molecules. Recently, a new human gastroen-
teritis-associated adenovirus (HAdV-52) was identified and classified as the first member
of a novel species (HAdV-G). Unlike most other HAdVs, this virus contains two different
fiber proteins, a long and a short one, a feature shared only with the two members of
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species HAdV-F (HAdV-40 and -41). To gain further insights into the mechanisms of
HAdV-52 infection of human cells, we set out to identify the host cell receptors used by
the long and short fibers. We find that the long fiber binds to a protein-based receptor
known as the coxsackievirus and adenovirus receptor (CAR), and that the short fiber
binds to glycoproteins that contain sialic acid-capped glycans. The crystal structure deter-
mination of a complex of the short fiber knob bound to sialic acid demonstrates that this
interaction is unique among HAdVs, and bioinformatic analysis indicates that simian
AdVs may also engage sialic acids in the manner seen in HAdV-52. The results presented
here provide insights into the plasticity of adenovirus-host cell interactions.

Introduction
Human adenoviruses (HAdVs) are classified into seven species (A-G), with more than 50 dif-
ferent types known to date [1]. Most HAdVs cause disease in the eyes (members of species
HAdV-B, -D, -E), airways (HAdV-A, -B, -C, -E) and gastrointestinal tract (HAdV-F mainly)
[2]. HAdV-52 was recently identified as a novel, human pathogen associated with gastroenteri-
tis [3], and was found to be divergent from other HAdVs placing this virus in a new species
(HAdV-G). HAdVs from species HAdV-A and HAdV-C through HAdV-F use the coxsackie-
virus and adenovirus receptor (CAR) as a primary adhesion receptor [4–6]. Members of species
HAdV-B that cause ocular, respiratory and/or urinary tract infections utilize CD46 and/or
desmoglein-2 as cellular receptors [7–10]. Specific members of species HAdV-D cause a more
severe ocular infection, epidemic keratoconjunctivitis, and engage glycoproteins that carry
glycans mimicking those in the GD1a ganglioside: Neu5Acα(2–3)Galβ(1–3)GalNAcβ(1–4)
(Neu5Acα(2–3))Galβ(1–4)Glc as receptors [11–13]. In addition to these AdVs, canine AdV-2
(species CAdV-A) is another glycan-binding AdV, engaging Neu5Acα(2–3)[6S]Galβ(1–4)
GlcNAc-containing glycans at a different location on the knob[14]. The locations of the two
known glycan binding sites are distinct from the regions that allow some knobs to engage CAR
[15] or CD46 [16]. In the case of CAR, the length and flexibility of the fiber shaft also seem to
play a role in infection, as short and sturdy fibers cannot bend to bind CAR on a cell surface
[17]. HAdVs can also enter cells through interactions with coagulation factors that mediate in-
direct binding to heparan sulfate proteoglycans on target cells [18,19]. With a few exceptions,
HAdVs are equipped with a single type of capsid fiber protein that interacts with receptors via
its knob domain. HAdV-40, -41, and -52 on the other hand are equipped with two different fi-
bers, one long and one short [20,21]. The long fibers of HAdV-40 and -41 bind to CAR [6], but
no function has been described for any of the short fibers. Phylogenetic analyses have shown
that the closest human relatives to the knobs of the HAdV-52 long and short fibers are the
knobs of the long and short fibers of species HAdV-F (HAdV-40 and -41) [22].

Adenoviruses are frequently used as vectors for diverse applications including vaccination
[23–25], treatment of cancer [26] and hereditary disorders [27], cardiovascular applications
[28], and stem cell research [29]. Three of the main challenges for the most commonly used
HAdV-5 (species HAdV-C) based vectors are: i) pre-existing, neutralizing antibodies [30], ii)
poor access to CAR [31], and, iii) coagulation factor-dependent off-target transduction of the
liver [18]. Potential solutions to these obstacles have been to use vector candidates based on
less common HAdV types [24], and HAdV types that use receptors alternative to CAR [32,33].
Inefficient targeting have been addressed by ablating CAR- and/or coagulation factor-interac-
tions, and/or by retargeting to receptors that are overexpressed on target cells [34]. Ideally, a
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multi-purpose vector would therefore be based on a rare type that efficiently target host cells
by means of specific receptor interactions and low or absent off-target transduction.

The seroprevalence for HAdV-40 and -41 is relatively high (40–50%) in the human popula-
tion [35–37]. The seroprevalence for HAdV-52 in humans has not been investigated, but the
close relationship with simian AdVs and the low frequency of detection in humans [3,38] sug-
gest that the seroprevalence in humans is low. In combination with its uncommon capsid orga-
nization this prompted us to gain more insight into HAdV-52 interactions with host cells and
more specifically to identify cellular receptors used by HAdV-52 for attachment to host cells.

Results and Discussion

HAdV-52 binds both to CAR and sialic acid-containing glycans on target
cells
To investigate whether CAR, CD46 or sialic acid-containing glycans can function as receptors
for HAdV-52, we first analyzed 35S-labelled HAdV-52 virion binding to CHO cells expressing
or lacking these receptors. HAdV-52 bound with similar efficiency to sialic acid-expressing
control CHO (Pro-5) cells, CD46-expressing CHO cells and CHOMOCK (with respect to
CAR), but with increased efficiency to CAR-expressing CHO cells and with decreased efficien-
cy to sialic acid-lacking Lec2 cells (derived from Pro-5) as compared to the other cells
(Fig. 1A). Pretreatment of cells with sialic acid-cleaving V. cholerae neuraminidase reduced
HAdV-52 binding to background levels for all cells except to CHO-CAR. To test if this neur-
aminidase removed sialic acids with equal efficiency from all cells, we treated the cells with V.
cholerae neuraminidase and quantified MAL-II lectin binding. This treatment reduced MAL-II
binding to background levels (S1 Fig.) and we therefore concluded that HAdV-52 could bind
to CHO-CAR independently of sialic acid. As HAdV-52 bound with equal efficiency to Pro-5,
CHO-MOCK, and CHO-CD46, and as neuraminidase treatment of CHO-CD46 cells reduced
HAdV-52 binding efficiently, these results indicate that CD46 is probably of no or low impor-
tance as a receptor for HAdV-52. HAdV-52 also infected Pro-5 cells more efficiently than Lec2
cells, and pretreatment of Pro-5 cells with neuraminidase abolished infection (Fig. 1B).
HAdV-52 is associated with gastroenteritis, but the number of human cases described is limit-
ed and the cellular tropism of the virus is unclear. We therefore investigated the relative contri-
butions of sialic acid and CAR using respiratory A549 cells, which support productive
infection of most HAdVs and express both sialic acid and CAR at the cell surface. HAdV-52
binding to these cells was reduced by 20% and 25%, respectively, when preincubating HAdV-
52 virions with soluble CAR-D1 (consisting of the N-terminal, most membrane-distal immu-
noglobulin-like domain), or when preincubating cells with monoclonal anti-CAR antibodies
(clone RmcB) prior to virion binding (Fig. 1C). CAR-D1 and anti-CAR antibodies reduced
HAdV-5 binding with 50% and 75%, respectively (S2 Fig.), thus demonstrating their function.
On the other hand, HAdV-52 binding was reduced by 75% and 80% after preincubating virions
with sialic acid or when pretreating cells with neuraminidase, respectively, prior to virion bind-
ing. Pretreatments with CAR-D1 or anti-CAR antibodies in combination with either sialic acid
or neuraminidase reduced binding to background levels. The involvement of sialic acid-con-
taining glycans as functional human cell receptors for HAdV-52 was confirmed by neuramini-
dase pretreatment of A549 cells, which reduced HAdV-52 infection by at least 80% (Fig. 1D).
Finally, preincubation of virions with coagulation factor IX and X efficiently enhanced HAdV-
5 binding to and infection of A549 cells but had no or limited effect on HAdV-52 (Fig. 2A,B).
These results show that HAdV-52 does not use FIX, FX, or CD46 for attachment to A549 cells.
We conclude that HAdV-52 binds to A549 cells mainly via sialic acid-containing glycans, and
that the role of CAR is dwarfed by that of the sialylated receptors. However, we cannot exclude

HAdV-52 Receptors

PLOS Pathogens | DOI:10.1371/journal.ppat.1004657 February 12, 2015 3 / 23



Fig 1. HAdV-52 uses sialic acid and CAR for binding to and infection of cells. (A) 35S-labeled HAdV-52 virion binding to CHO cells expressing or lacking
known HAdV receptors. Pro-5 is a sialic acid-positive, reference cell line and parental cell line to sialic acid-negative Lec2 cells. CHO-CD46 and CHO-CAR
cells express human CD46 and CAR, respectively. CHO-MOCK is mock transfected with respect to CHO-CAR. Black bars show HAdV-52 binding to cells
after pretreatment with V. cholerae neuraminidase. Binding was quantified by liquid scintillation counting and shown as counts per minute (CPM). (B) HAdV-
52 infection of Pro-5 and Lec2 pretreated with (black bars) or without (white bars) V. cholerae neuraminidase. The number of infected cells was quantified by
immunofluorescence. (C) 35S-labeled HAdV-52 virion binding to A549 cells. Virions were preincubated with or without soluble CAR-D1 or sialic acid
monosaccharides, and cells were preincubated with or without mouse anti-CARmab (clone RmcB) or V. cholerae neuraminidase as indicated, prior to
binding. (D) HAdV-52 infection of A549 cells pretreated with or without V. cholerae neuraminidase. All experiments were performed three times with duplicate
samples in each experiment. Error bars represent mean ± SD. n.s = not significant, * P of< 0.05 and ** P of< 0.01.

doi:10.1371/journal.ppat.1004657.g001
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that the role of CAR as an attachment receptor for HAdV-52 may be more pronounced on
other cell types than on A549 cells.

The short fiber of HAdV-52 binds to sialic acid and the long fiber binds to
CAR
To characterize the nature of the sialic acid-containing glycans as receptors and the mechanism
of interaction, we next quantified binding of HAdV-52 virions and HAdV-52 long and short
fiber knobs (52LFK and 52SFK) to A549 cells pretreated with enzymes, lectins or metabolic in-
hibitors that alter the expression levels of cell surface molecules. Whereas inhibitors of glycolip-
id biosynthesis (P4) and N- (via Asp) linked glycosylation (tunicamycin) did not reduce virion
binding to A549 cells significantly (Figs. 3A, S3A,B), benzyl N-acetyl-α-D-galactosaminide
(benzyl-α-GalNAc, an inhibitor of O-linked glycosylation, via Ser or Thr) reduced binding of
both the virions and 52SFK, but not of 52LFK (Fig. 3A,B). Protease (ficin, proteinase K, and
bromelain) treatments of the same cells reduced binding of both 52SFK and 52LFK by 55–85%
(Fig. 3C,D). These results suggest that on A549 cells, in contrast with the 52LFK which engages
proteins directly without involvement of glycans, mucin type O-linked glycans are the domi-
nant receptors for 52SFK and glycolipids and N-linked glycans appear not to play a major role.

To determine the relative contribution of each fiber to cell attachment and infectivity, we
first performed western blot analysis to characterize the relative fiber content in virus particles.
Unlike HAdV-41 virions, which contain short and long fibers in a 6:1 ratio [39], HAdV-52 viri-
ons contained equal amounts of long and short fibers according to western blot analysis using
a monoclonal antibody, which recognizes an epitope that is conserved in all HAdVs (Fig. 4A).
This suggests that the apparent key role of sialic acid cannot be accounted for by the short fiber
being more abundant in the HAdV-52 virion. We also found by flow cytometry analysis that
A549 cells expressed higher levels of CAR compared with another epithelial cell line (human
corneal epithelial cells; HCE) (Fig. 4B), suggesting that the modest function of CAR during
HAdV-52 binding to A549 cells was not due to low expression levels on these cells. Homology
alignment of the long and short fiber knob sequences with corresponding sequences of sialic

Fig 2. HAdV-52 does not use coagulation factors for binding and infection of A549 cells. (A) 35S-labeled HAdV-52 virion binding to A549 cells after
virion preincubation with physiological concentrations of coagulation factor IX and X (FIX: 5μg/ml and FX: 10μg/ml). (B) HAdV-52 infection of A549 cells after
virion preincubation with physiological concentrations of coagulation factors. All experiments were performed three times with duplicate samples in each
experiment. Error bars represent mean ± SD. * P of< 0.05 and ** P of< 0.01 versus control.

doi:10.1371/journal.ppat.1004657.g002
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acid-interacting HAdV-37 (ocular tropism) and CAR-interacting HAdV-5 (respiratory tro-
pism) and HAdV-12 (respiratory and intestinal tropism) revealed that, while the majority of
the known CAR-interacting residues [15,40] are conserved in 52LFK, only a few of these resi-
dues are conserved in 52SFK (S4 Fig.). Furthermore, when examining the potential for interac-
tions with sialic acid based on the structure of the HAdV-37 knob bound to sialic acid [41],
only two out of the seven sialic acid-contacting residues are conserved in 52SFK and none of

Fig 3. HAdV-52 short fiber knob binds toO-linked glycoproteins on A549 cells. (A) 35S-labeled HAdV-52 virion binding to A549 cells pretreated with
benzyl-α-GalNAc, tunicamycin or P4 (inhibitors ofO-linked glycan synthesis, N-linked glycan synthesis, and glycolipid synthesis, respectively). (B) HAdV-52
short fiber knobs (52SFK) and HAdV-52 long fiber knobs (52LFK) binding to A549 cells pretreated with benzyl-α-GalNAc (inhibitor ofO-linked glycan
synthesis). (C) 52SFK and (D) 52LFK binding to A549 cells pretreated with ficin, proteinase K or bromelain proteases at indicated concentrations. All
experiments were performed three times with duplicate samples in each experiment. Error bars represent mean ± SD. * P of< 0.05, ** P of< 0.01 and ***
P of< 0.001 versus control.

doi:10.1371/journal.ppat.1004657.g003
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these are conserved in 52LFK. Flow cytometry analysis confirmed that 52LFK can only bind to
CAR-expressing cells (Fig. 5A). 52SFK bound with similar efficiency to all cells (including
CAR-expressing cells) but not to sialic acid-deficient Lec2 cells (Fig. 5B). Neuraminidase treat-
ment of A549 cells reduced binding of 52SFK to A549 cells but not of 52LFK (Fig. 5C), con-
firming that 52SFK binds to sialic acid-containing receptors on human target cells. ELISA
experiments showed that 52SFK (in solution) bound efficiently to sialylated fetuin glycoprotein
(immobilized) but not to two desialylated variants of fetuin (Fig. 5D), this was also confirmed
with surface plasmon resonance (SPR) where fetuin bound to immobilized 52SFK with an af-
finity of 37 μM, while for the desialylated fetuin type II a KD could not be determined (S5 Fig.).
52LFK did not bind to any of these proteins. SPR analysis demonstrated that the 52LFK:CAR-
D1D2 (full length extracellular domain) and 52LFK:CAR-D1 interactions were of high affinity
(5 and 2.6 nM, respectively; Figs. 5E and S6), which is in the same range as of other CAR:
HAdV-knob interactions [42]. According to SPR analysis, 52SFK did not interact with CAR at
all (S7 Fig.). As the sialic acid-containing glycan(s) used by 52SFK for binding to A549 cells
are not known, we can only speculate that such monovalent interactions would probably be of
low affinities, as most other protein:glycan interactions, and thereby lower than the affinity of
the LFK:CAR interaction. We conclude from these results that the HAdV-52 long fiber binds
to CAR and that the short fiber binds to sialic acid-containing glycans. It has been shown that
cells infected with HAdV-2 (species HAdV-C) secrete an excess of fibers that unlocks junction-
al, intercellular CAR-CAR homodimers, resulting in increased extracellular space and im-
proved intercellular transport of subsequently released virions [43], and similar effects have
been shown for HAdV-3 (species B) penton dodecahedra [44]. It is therefore tempting to spec-
ulate that a possible function of the HAdV-52 short fiber is to mediate virion attachment to
non-infected cells whereas excess of long fibers are secreted from infected cells and facilitate

Fig 4. Virion composition and relative expression of CAR and sialic acid on human epithelial cells. A) Western blot analysis of HAdV-52 virion fiber
content using a mouse mab (clone 4D2) recognizing an epitope (MKRARPSEDTFNPVYPY) conserved in the tail domain of all HAdVs. The experiment was
performed three times (with three different virus preparations) and the figure shows one representative set of results. B) Flow cytometry analysis of CAR
expression on A549 and human corneal epithelial (HCE) cells using an anti CARmouse mab (clone E1-1). Data are shown as geometrical mean (geo mean)
and the experiment was performed three times with duplicate samples in each experiment. Error bars represent means ± SD.

doi:10.1371/journal.ppat.1004657.g004
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Fig 5. HAdV-52 short fiber knob binds to sialic acid and long fiber knob binds to CAR. (A) HAdV-52 long fiber knob (52LFK) and (B) HAdV-52 short
fiber knob (52SFK) binding to CHO-cells lacking human CAR (all cells except CHO-CAR), lacking sialic acid (only Lec2) and expressing human CAR (CHO-
CAR). (C) 52SFK and 52LFK binding to A549 cells pretreated with V. cholerae neuraminidase. (D) ELISA analysis of 52SFK and 52LFK (in solution) binding
to immobilized, sialylated fetuin and asialofetuin type I (chemically prepared) and II (enzymatically prepared). Relative absorbance is shown. (E) Surface
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transmission of subsequently released virions within a tissue, or between tissues. Further sup-
port for this hypothesis is provided in that sialic acid-containing, O-linked glycans are abun-
dant on the apical side of polarized epithelial cells in vivo, whereas CAR is mainly expressed
laterally and basolaterally [45]. Thus it is plausible that virions approaching non-infected cells
from the apical side have access to sialylated glycans, but not to CAR.

HAdV-37 has been shown to interact primarily with sialic acids linked via α2,3-glycosidic
bonds to galactose (Siaα2,3Gal). We found here that Siaα2,3Gal-bindingM. amurensis type II
(MAL-II) lectins and/or Siaα2,6Gal-binding S. nigra (SNA) lectins did not compete with
HAdV-52 virion binding to A549 cells (S8 Fig.). We noted that α2,3-specific neuraminidase
inhibited HAdV-52 virion binding to A549 cells (Fig. 5F), but only at 100-fold higher concen-
trations than what has been observed for inhibition of HAdV-37 virion binding [11]. Pretreat-
ment of A549 cells with neuraminidase from V. cholerae, which cleaves α2,3/6/8-linked sialic
acids with similar efficiencies, inhibited HAdV-52 binding at much lower concentrations. By
means of glycan microarray screening we identified a number of α2,3-sialylated probes that are
bound by 52SFK, whereas no binding was detected with probes that contain exclusively α2,6-
sialyl linkage (Fig. 6). The probe most strongly bound was a synthetic glycolipid with type II
(Galβ-4GlcNAc) backbone sequence (GSC-273). In contrast, no binding was detected to the
type I (Galβ-3GlcNAc) analog (GSC-272). Weaker binding was observed to three of the four
sulfated sialyl analogs with or without 3-linked fucose. There was also weak binding to a neo-
glycolipid derived from GD1a glycan, the previously described ligand for HAdV-37 [35]. No
binding was detected to GD1a glycosylceramide. It should be mentioned that, although five of
the ligand-positive sialyl probes in the array were glycolipids, their glycan sequences are com-
mon to glycoproteins. Among the N-glycan probes analysed, there was binding to probes with
α2,3-linked terminal sialic acids. Collectively, we cannot exclude α2,3-linked sialic acid-con-
taining N-glycans from contributing to HAdV-52 binding to A549 cells, but it is likely that
other types of sialic acid-containing glycans also contribute. Our results suggest that the short
fiber is capable of binding to sialic acids on O-glycosylated proteins on A549 cells, but that on
other cell types binding to sialyl-N-glycans may also occur.

Structure of the complex of HAdV-52 SFK bound to sialic acid
In order to define the interactions of the HAdV-52 fiber with sialic acid, we solved the crystal
structure of 52SFK in complex with 2-O-methyl-sialic acid (a stereochemically uniform ana-
logue of sialic acid) at a resolution of 1.65 Å. Similar to all other known AdV fiber knob struc-
tures [13,46–48] the 52SFK has a nine-stranded antiparallel β-sandwich fold and forms a stable
trimer in solution. The three shallow sialic acid binding sites of 52SFK are formed at the con-
tact site of two neighboring monomers by the EG and GH loops at the side of the short fiber
knob domain (Fig. 7A-C). Two of the three binding sites are partially blocked by crystal con-
tacts, and therefore the structure contains only one fully occupied sialic acid, while a second si-
alic acid is visible with partial occupancy in one of the two partially blocked binding sites. The
location of this binding site is distinct from those of the other structurally characterized sialic
acid-binding fiber knobs, HAdV-37 and canine adenovirus type 2 (CAdV-2; included here
since it is the only known sialic acid-interacting AdV besides those of species HAdV-D)

plasmon resonance analysis of 52LFK (in solution) binding to CAR (immobilized). A twofold dilution series of 52LFK is shown, ranging from 2 μM to 8 nM.
Results are shown as response units (RU). (F) 35S-labeled HAdV-52 virion binding to A549 cells pretreated with V. cholerae neuraminidase (removes α2,3-,
α2,6- and α2,8-linked sialic acid) or α2,3-specific neuraminidase at indicated concentrations. All experiments were performed three times with duplicate
samples in each experiment. Figure E show one representative set of results. Error bars represent mean ± SD, n.s = not significant, * P of< 0.05, **
P of< 0.01 and *** P of< 0.001 versus control.

doi:10.1371/journal.ppat.1004657.g005
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Fig 6. Features of 52SFK binding to selected sialyl sequences in the microarray. a The oligosaccharide probes are all lipid-linked, neoglycolipids
(NGLs) or glycosylceramides and are from the collection assembled in the course of research in the Glycosciences Laboratory. b The selected α2-3-linked
and α2-6-linked sialyl sequences are marked in bold. For definition of the lipid moieties of the probes, please see https://glycosciences.med.ic.ac.uk/docs/
lipids.pdf c Numerical scores for the binding signals are shown as means of duplicate spots at 5 fmol per spot. d-, signal less than 1.

doi:10.1371/journal.ppat.1004657.g006
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(Fig. 8; PDB_IDs 1UXA and 2WBV). The bound 2-O-methyl-sialic acid is well defined by elec-
tron density (Fig. 7C) and engages the 52SFK mainly through contacts between the sugar’s car-
boxylate group and the side chains of R316 and N318 (Fig. 7B). The bidentate salt bridge
formed by R316 is a prominent binding motif among glycan binding viruses [49,50] (S9 Fig.).
In addition, the backbone carbonyl oxygens of R316, G317, and G303 form hydrogen bonds
with the sialic acid O4, N-acetyl and glycerol-like functions, respectively (Fig. 7B). The tripep-
tide R316-G317-N318 located on the GH loop forms a hook-shaped motif (RGNmotif) that is
contributing most of the interactions, and that therefore largely defines the specificity of SFK52

Fig 7. HAdV-52 interaction with sialic acid. (A) Surface representation of the HAdV-52 short fiber knob structure viewed from the top along the three-fold
symmetry axis. The three monomers are shown in green, blue and grey. The 2-O-methyl sialic acid bound to two of three binding sites is shown as orange
and red stick model. (B) Detailed view of the interactions in the ligand binding site. The side chain of R316 forms a bidentate salt bridge with the carboxyl
group of sialic acid. Residues G303, R316 and G317 form backbone hydrogen bonds with the glycerol, amide and O4 groups of the sialic acid, respectively,
while the side chain of N318 engages in a hydrogen bond with the sialic acid carboxylate. The methyl group is not involved in binding contacts. (C) Simulated
annealing Fo-Fc omit map for the sialic acid. The map was calculated at 3.0 σ and is displayed with a radius of 1.7 Å around the ligand. 52SFKWT (wild type)
and mutant binding to Pro5 (D) and A549 (E) cells. All experiments were performed three times with duplicate samples in each experiment. Error bars
represent mean ± SD. * P of< 0.05, ** P of< 0.01 and *** P of< 0.001 versus control.

doi:10.1371/journal.ppat.1004657.g007
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for sialic acid. The pattern of polar contacts formed by this motif is highly similar to HAdV-37
(S9 Fig.) [50]. Mutating either R316 or N318 to alanine, replacing the R316 side chain with a
negatively charged glutamate, or introducing a steric clash (and a polar clash, introducing a
charge) at position 308 (N308E) all abolished the attachment of 52SFK to Pro-5 and A549 cells
(Fig. 7D,E). The sugar’s O2 function, to which additional sugars would be attached in a glycan
chain, is pointing away from the protein and towards the tip of the knob, suggesting that more
complex glycan receptors that bind the knob with their sialic acid caps would have to face to-
wards the capsid in order to be bound by the virus. The methyl group attached to this oxygen
in the compound used for structural analysis (2-O-methyl-sialic acid) does not participate in
interactions with the knob. Alignment of multiple knob sequences suggests that the RGN motif
is conserved in the knob domain of the short fibers of other members of species HAdV-G: sim-
ian AdV-1 and -7 (S10 Fig.), and we therefore predict that the ability to engage sialylated re-
ceptors is shared by these HAdVs. The RGNmotif is not conserved in any other known
human and non-human AdV knob sequences, including the short fiber knobs of HAdV-40
and -41.

In conclusion, we have identified two types of cellular receptors used by HAdV-52, the only
human member of species HAdV-G. By analogy with HAdV-40 and -41, we identified CAR as
a receptor for the HAdV-52 long fiber. We also present evidence that O-glycosylated proteins
carrying sialic acid-containing glycans serve as receptors on A549 cells for HAdV-52 short fi-
bers. The 52LFK:CAR interaction is probably of higher affinity than the 52SFK:sialic acid inter-
action, however the relative importance of cellular receptors is not only determined by the

Fig 8. HAdV-52 has a unique sialic acid binding site compared to other sialic acid binding HAdVs.
Comparison of the sialic acid binding site in HAdV-52 (green with orange sticks) with those of HAdV-37
(cyan) and CAdV-2 (magenta). The protein chains were superposed using the PyMOL (The PyMOL
Molecular Graphics System, Version 1.5.0.4 Schrödinger, LLC) align tool, and the contact surface of each
ligand was mapped onto HAdV-52 (calculated 4.5 Å around sialic acid).

doi:10.1371/journal.ppat.1004657.g008
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affinity but also to a high extent on the abundance of the receptors. It has been shown for ex-
ample by us and others that HAdV-37 binds with lower affinity to CAR (20 nM) than other
HAdVs, but with even lower affinity to sialic acid-containing glycans (19 μM) [41,51]. Still,
HAdV-37 uses sialic acid-containing glycoproteins as the main receptor [11,52]. Accessibility
may also influence receptor usage. In vivo, CAR localizes to the lateral and basolateral side of
polarized epithelial cells, which are not easily accessible for HAdVs, while sialic acid is abun-
dant on the apical surface and may therefore be more available for interaction. Thus we suggest
that sialylated proteins rather than CAR function as primary receptors for HAdV-52 virions
on A549 cells. HAdV-52 might have retained the ability to bind to CAR as secretion of CAR-
interacting fibers can disrupt CAR-CAR homodimers in the tight junctions and thereby facili-
tate virion escape and transmission within a tissue, or between tissues. The mode of interaction
between 52SFK and its sialylated receptors is fundamentally different, both in location on the
protein and in contacts formed to the ligand, from the known interactions between HAdV-37
fiber knob and sialic acid. As the sialic acid-binding RGNmotif of 52SFK is not conserved in
any other HAdV fiber, it appears that HAdV-52 and other members of species HAdV-G em-
ploy a unique strategy for engaging sialic acid. This is the first information presented about the
receptors used by viruses in species HAdV-G, and the first describing a receptor recognized by
an AdV short fiber. These findings shed light on AdV biology and tropism and may be useful
for development of vectors based on members of species HAdV-G.

Materials and Methods

Cells, viruses and antibodies
A549 cells (gift from Dr. Alistair Kidd) were grown in Dulbecco´s modified Eagle medium
(Sigma-Aldrich) supplemented with 5% fetal bovine serum (FBS: Invitrogen), 20 mMHEPES
(Sigma-Aldrich) and 20 U/ml penicillin + 20 μg/ml streptomycin (Invitrogen), human corneal
epithelial (HCE) cells (gift from Dr. Araki-Sasaki) were grown as previously described [53].
Pro-5 and Lec2 cells [54,55] (both purchased from LGC Promochem), Chinese hamster ovary
(CHO)-CAR, CHO-MOCK (gift from Dr. Jeffrey Bergelson) [4], and CHO-CD46 (isoform
BC1; gift from Dr John P. Atkinson) [56] were grown as described.

Species G HAdV-52 (strain TB3-2243)[3] and species C HAdV-5 (Ad75; source ATCC) vi-
rions were produced with or without 35S-labeling in A549 cells as described previously [57],
with the exception that the virions were eluted in sterile phosphate buffered saline (PBS) when
desalting on a NAP column (GE Healthcare). Serotype-specific rabbit polyclonal antisera to
each HAdV was a gift from Dr GöranWadell [58]. Antiserum produced against HAdV-41 viri-
ons was used for detection of HAdV-52 antigens in infection experiments.

Virion binding experiments
Cells were detached with PBS containing 0.05% EDTA, reactivated in growth medium for one
hour at 37°C (in solution), pelleted in 96 well plates (2x105 cells/well) and washed with binding
buffer (BB: Dulbecco´s modified Eagle medium supplemented with 20 mMHEPES, 20 U/ml
penicillin + 20°g/ml streptomycin and 1% bovine serum albumin).35S-labeled virions (2x109 vi-
rions diluted in BB, 100 μl/sample) were added to the cells and incubated for 1 h on ice. Un-
bound virions were washed away with BB and the cell associated radioactivity was measured in
a Wallac 1409 liquid scintillation counter (Perkin-Elmer). This experiment was performed
with the following additions/variations:

i) Cells were pretreated with increasing concentrations of Vibrio cholerae neuraminidase
(Sigma-Aldrich) or α2,3-sialidase (TaKaRa Bio Inc) for 1 h at 37°C, or, with a 1:100 dilution of
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anti-CAR antibody (clone RmcB, Upstate, Millipore) or with 50 μg/mlM. Aamurensis type II
(MAL-II) or S. Nigra (SNA) lectins (Vector Laboratories) for 1 h on ice before addition of viri-
ons. The effect of V. cholerae neuraminidase treatment of CHO cells was examined by flow cy-
tometry. Cells were incubated with 1μg/ml of biotinylated MAL-II lectin for 30 min on ice,
followed by a 30 min incubation with a 1:100 diluted streptavidin-FITC (on ice).

ii) Virions were preincubated for 1 h on ice with a) 100 mM sialic acid (or concentrations as in-
dicated; N-acetylneuraminic acid, Dextra Laboratories), b) CAR-D1 (a kind gift from Dr. Paul
Freimuth), c) physiological concentrations of coagulation factor IX (FIX 5 μg/ml, resulting in a
1 virion:2700 FIX ratio, Calbiochem) or coagulation factor X (FX 10 μg/ml, resulting in a 1 viri-
on:5100 FX ratio, Haematologic Technologies Inc.) before incubation with A549 cells.

iii) To affect both CAR and sialic acid binding, A) virions were preincubated with a combina-
tion of sialic acid and CAR-D1 1h on ice before addition to A549 cells, B) cells were preincu-
bated with a 1:100 dilution of anti-CAR antibody on ice, and virions were preincubated with
sialic acid, C) cells were pretreated with Vibrio cholerae neuraminidase for 1 h at 37°C and viri-
ons were preincubated with CAR-D1 for 1 h on ice before they were mixed together, or D) cells
were pretreated with Vibrio cholerae neuraminidase for 1 h at 37°C followed by incubation
with a 1:100 dilution of anti-CAR antibody on ice before addition of virions. HAdV-5 was used
as a CAR-binding control, to check the efficiency of soluble CAR-D1 and anti-CAR mab.iv)
Cells were pretreated with or without 2.5 μM P4 [(1R,2R)-1-phenyl-2-hexadecanoylamino-3-
pyrrolidino-1-propanol] or 2.5 μM inactive enantiomer of P4 (1S,2S, both kindly provided by
Dr Roland L. Schnaar) for 5 days at 37°C to inhibit glycolipid biosynthesis via the glycosylcera-
mide synthase enzyme [59]. Media was changed after 3 days when new P4 was added. The ef-
fect of P4 on the cells was analyzed by performing flow cytometry using ganglioside GM1-
binding AF488-conjugated cholera toxin subunit B (Invitrogen, Molecular probes). v) Cells
were pretreated with 0.3 μg/ml tunicamycin (Sigma Aldrich) for 24 h at 37°C to inhibit N-gly-
cosylation, or with 3 mM benzyl-α-GalNAc (Sigma-Aldrich) for 48 h at 37°C to inhibit O-gly-
cosylation. To determine the effect of tunicamycin, cells were incubated with FITC-conjugated
Phaseolus vulgaris erythroagglutinating lectin (PHA-E; Vector Laboratories) for 1 h on ice,
washed and analyzed with flow cytometry. Cell viability was verified with trypan blue staining
prior to binding experiments

Infection experiments
Pro-5, Lec2, or A549 cells, grown as monolayers on glass slides in 24-well plates, were washed
three times with serum-free medium and treated with or without 10 mU/well of Vibrio cholerae
neuraminidase for 1 h at 37°C. Virions were added to the cells and incubated for 1 h on ice.
After incubation, the wells were washed three times with serum-free medium in order to re-
move unbound virions. Cell culture medium containing 1% FBS was added and the plates were
incubated for 44 h at 37°C. Thereafter the glass slides were washed with PBS (pH 7.4) once,
fixed with methanol and stained with polyclonal rabbit anti-HAdV diluted 1:200 for 1 h at
room temperature. The slides were washed twice with PBS and incubated for an additional
hour with a FITC-conjugated swine anti-rabbit IgG antibody (DakoCytomation) diluted 1:100
in PBS. After washing, the slides were mounted and examined in a fluorescence microscope
using 20 X magnification (Axioskop2, Carl Zeiss). Ten pictures was taken of each well and the
number of infected cells was calculated using ImageJ [60]. In one experiment, virions were pre-
incubated with or without physiological concentrations of FIX (5 μg/ml, equal to 1:60000 viri-
on:FIX ratio) or FX (10 μg/ml, equal to 1:110000 virion:FX ratio) for 1 h on ice before addition
to cells.
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Cloning and purification of fiber knobs
DNA isolation from HAdV-52 virions was performed by using the Blood & Cell Culture DNA
Mini kit (Qiagen Nordic). DNA fragments encoding HAdV-52 long fiber knob (52LFK) and
HAdV-52 short fiber knob (52SFK) were amplified by polymerase chain reaction (PCR) using
KOD Hot Start (Novagen, Merck) and the following primers (DNA Technology): 52LFK for-
ward (5´-aaaaggatccggaaacatagctgtttctcct), reverse (5´-aaaacccgggcggaggaagccttactgtgcgtgt),
52SFK forward (5´-aaaaggatccaggtttaacagcagt-ggagcc), reverse (5´-aaaacccgggagggttt
tattgttcggtaatgtagca). Fragments were then cloned into a pQE30Xa expression vector encoding
an N-terminal His-tag (Qiagen) using restriction sites for BamHI and XmaI (Fermentas, Ther-
moFisher Scientific). All constructs were confirmed by sequencing (Eurofins MWG Operon).
Proteins were expressed in Escherichia coli (strain M15) and purified with Ni-NTA agarose
beads according to protocol from the supplier (Qiagen). Proteins were analyzed by denaturing
gel (NuPAGE Bis-Tris, Invitrogen, Life Technologies) and western blot with monoclonal anti-
bodies directed against the His-tag (Qiagen).

Fiber knob mutants
Six different 52SFK mutants were created using a QuikChange mutagenesis kit (Agilent) ac-
cording to their protocol. The following mutants were created: 1) R316A,2) R316E, 3) N318A,
4) N308E, 5) R316A/N318A, and 6) R316E/N318A. Correct trimerization of all proteins was
confirmed with gas-phase electrophoretic mobility molecular analysis (GEMMA)[61] (S11
Fig., showing 52SFK wt and one representative mutant; R316A), which is a protein oligomer
measurement technique where the protein solution is converted into gas phase by a charged re-
duced electrospray process. The particles are separated according to size in a differential mobil-
ity analyzer and quantified by a particle counter. All mutant and wt fiber knobs were analyzed
in the same manner: G-25 columns (GE Healthcare) were used for buffer exchange to 20mM
ammonium acetate buffer, pH 7.8 containing 0.005% (v/v) Tween 20. Buffer exchange was
done to remove the non-volatile salts from the protein solution. The concentrations for 52SFK
wt and mutants 1, 2 and 3 were 0.05 mg/ml while for mutants 4, 5 and 6 it was 0.06 mg/ml.
Three to five scans were taken with the GEMMA system (TSI Corp.) for each sample with a
capillary pressure of either 1.7 or 3.7 psi. These parameters depended on the protein sample
and the stability of the signal. Each sample was scanned for 120 seconds per scan at the size
range of 2.55–255 nm. For molecular mass calculations, a particle density of 0.58 g/cm3

was used.

Fiber knob binding experiments
Cells were detached with PBS-EDTA, reactivated in growth medium for one hour at 37°C, pel-
leted in 96 well plates (2x105 cells/well) and washed once with BB. The cells were then incubat-
ed with 10 μg/ml of 52SFK or 52LFK in 100 μl BB for one hour on ice. Unbound fiber knobs
were washed away with PFN (PBS containing 2% FBS and 0.01% NaN3) and the cells were
then incubated with an anti RGS-His mouse monoclonal antibody (Qiagen; diluted 1:200 in
PFN) for 30 min. Followed by one wash with PFN, the cells were incubated with polyclonal
rabbit-anti-mouse FITC antibodies (Dako Cytomation; diluted 1:20 in PFN) for 30 min on ice.
Thereafter the cells were washed with PFN and analyzed with flow cytometry using FACSLSRII
instrument (Becton Dickinson). Results were analyzed using FACSDiva software (Becton Dick-
inson). This experiment was performed with the following additions/variations: The cells were
i) grown in the presence or absence of benzyl-α-GalNAc (as described above), ii) preincubated
with or without different concentrations of proteases (ficin, proteinase K and bromelain; all
from Sigma-Aldrich) for 30 min at 37°C before incubation with fiber knobs, and iii) treated

HAdV-52 Receptors

PLOS Pathogens | DOI:10.1371/journal.ppat.1004657 February 12, 2015 15 / 23



with or without Vibrio cholerae neuraminidase for 1 h at 37°C before incubation with fiber
knobs.

Western blot
Purified HAdV-52 virions were resolved on 10% Bis-Tris denaturing gels (NuPAGE, Invitro-
gen, Life Technologies) and transferred to Trans-Blot nitrocellulose membranes (Bio-Rad Lab-
oratories, Solna, Sweden) by electroblotting. The membrane was blocked with 5% milk in PBS-
T (PBS supplemented with 0.05% Tween20). Staining was carried out using 1:5000 dilution of
a monoclonal anti-adenovirus fiber antibody (epitope region suggested by the manufacturer:
MKRARPSEDTFNPVYPY, clone 4D2, ab3233, Abcam) in PBS-T with 2.5% milk, followed by
a 1:1000 dilution of a HRP-conjugated rabbit anti-mouse IgG antibody (Dako Cytomation) in
PBS-T with 2.5% milk. The fibers were then detected by chemiluminescence using super signal
west pico or femto (Thermo Scientific) and visualized using the multipurpose CCD camera sys-
tem FujiFilm LAS-4000. Pictures were taken every 10s and the relative abundance of the two fi-
bers were evaluated using ImageJ.

Cellular expression of CAR
A549 and HCE cells were detached with PBS-EDTA, reactivated in growth medium for one
hour at 37°C, pelleted in 96 well plates (2x105 cells/well) and washed once with PFN. The cells
were then incubated with a mouse monoclonal antibody directed against CAR (E1-1, Merck
Millipore) for 30 min on ice followed by one wash with PFN. A polyclonal rabbit-anti-mouse
FITC antibody (Dako Cytomation) was added to the cells and incubated for 30 min on ice fol-
lowed by one wash with PFN before flow cytometry analysis.

ELISA
96-well plates (Nunc maxisorp, Thermo Scientific) were coated with 1 μg/ml of fetuin or asialo-
fetuin type I or II (Sigma-Aldrich) for 2 h at room temperature (RT) in coating buffer (bicar-
bonate/carbonate coating buffer 100 mM, pH 9.6). Meanwhile fiber knobs (0.4 μg/ml) were
preincubated with monoclonal anti RGS-His antibodies (Qiagen; dilution 1:1000) in PBS-T for
1 h at RT. The wells were then washed four times with PBS-T and incubated with the fiber
knob mixtures for 1 h at RT. After washing, the plate was incubated with a HRP-conjugated
rabbit anti-mouse IgG antibody (Dako Cytomation; diluted 1:2000 in PBS-T) for 1 h at RT.
The wells were washed again and incubated with 100 μl enhanced K-Blue TMB substrate (Neo-
gen Europe) for 15 min and the reaction was then stopped by addition of 100 μl 1 M H2SO4.
The absorbance was measured at 450 nm using Tecan infinite F2000 Pro (Tecan Nordic AB).

Determination of binding parameters by use of surface plasmon
resonance (SPR)
All SPR experiments were performed at 25°C with a Biacore T100 instrument and a data collec-
tion rate of 1 Hz. For CAR interaction studies: CM5 sensor chips, amine-coupling kit, and
HBS-EP+ buffer (10 mMHEPES, 150 mMNaCl, 3 mM EDTA, 0.005% [vol/vol] surfactant
P20, pH 7.4) were all purchased from GE Healthcare. Recombinant human CAR (CXADR Fc
chimera; R&D Systems; full length extracellular D1D2 domain), or CAR-D1 was coupled to
the CM5 sensor chip by using the amine coupling reaction according to the manufacturer’s in-
structions, resulting in an immobilization density of 900–1100 RU. The surface of the upstream
flow cell was subjected to the same coupling reaction in the absence of protein and used as ref-
erence. All binding assays were carried out at 25°C, and HBS-EP+ buffer was used as running

HAdV-52 Receptors

PLOS Pathogens | DOI:10.1371/journal.ppat.1004657 February 12, 2015 16 / 23



buffer. The analytes (52LFK and 52SFK) were serially diluted in running buffer to prepare a
two-fold concentration series ranging from 8 nM to 2 μM, and then injected in series over the
reference and experimental biosensor surfaces for 120 s at a flow rate of 30 μl/min. Blank sam-
ples containing only running buffer were also injected under the same conditions to allow for
double referencing. After each cycle, the biosensor surface was regenerated with a 60 s pulse of
10 mM Tris-Glycine pH 1.5 at a flow rate of 30 μl/min. For 52SFK interaction studies: Ni-NTA
sensor chips, and HBS-EP+ buffer were purchased from GE Healthcare. 52SFK was diluted in
running buffer (HBS-EP+) to a concentration of 0.03μM and captured on the Ni-NTA sensor
chip according to the manufacturer’s instructions, resulting in an immobilization density of
700 RU. In short: an automated program cycle of the following sequence: (1) activation of the
sensor chip with Ni(II), (2) capture of 52SFK (3) analyte injection, (4) regeneration of the sur-
face with 0.3 M EDTA, and (5) rinse with HBS-EP+ without EDTA. All steps were performed
at a flow rate of 30 μl/min. All binding assays were carried out at 25°C, and HBS-EP+ buffer
was used as running buffer. The analytes (fetuin and asialofetuin type II) were serially diluted
in running buffer to prepare a two-fold concentration series ranging from 125 to 1 μM, and
then injected in series over the reference and experimental biosensor surfaces for 180 s and a
dissociation time of 100 s. Blank samples containing only running buffer were also injected
under the same conditions to allow for double referencing.

Glycan microarray
Microarrays were composed of lipid-linked oligosaccharide probes robotically printed on ni-
trocellulose-coated glass slides at 2 and 5 fmol per spot in duplicate using a non-contact instru-
ment as described previously [62]. Binding signals were probe-dose dependent. For 52SFK
binding, the results of 15 oligosaccharide probes at 5 fmol per spot are shown in Fig. 6. The full
microarray data will be described elsewhere. The microarray binding assay of the recombinant
His-tagged 52SFK was performed at 20°C essentially as described [63]. In brief, the arrayed
slide was blocked for 1 h with 5 mMHEPES pH 7.4, 150 mMNaCl, 5mM CaCl2, 0.3% (v/v)
Blocker Casein (Pierce), 0.3% (w/v) bovine serum albumin (Sigma) (0.3% casein/0.3% BSA).
52SFK was pre-complexed with mouse monoclonal anti-poly-histidine (Ab1) and biotinylated
anti-mouse IgG antibodies (Ab2) (both from Sigma) in a ratio of 4:2:1 (by weight). The 52SFK-
antibody pre-complexes were prepared by pre-incubating Ab1 with Ab2 for 15 min at ambient
temperature, followed by addition of 52SFK and incubation for an additional 15 min on ice.
The VP1-antibody complexes were diluted in 0.3% casein/0.3% BSA, to give a final 52SFK con-
centration of 150 μg/ml, and overlaid onto the arrays at 20°C for 2 h. Binding was detected
with Alexa Fluor-647-labelled streptavidin (Molecular Probes); imaging and data analysis was
as described [62].

Structural analysis of HAdV-52:glycan interactions
Expression and purification. Residues 183–363 of the HAdV-52 short fiber (accession #
DQ923122.2) were cloned into a pQE-30Xa vector (Qiagen) for expression of SFK52 (as de-
scribed above). This construct was expressed in E. coli BL-21 DE3 at 20°C for approximately
16h after induction with 0.5 mM IPTG. Cells were harvested, resuspended in pellet buffer AHis

[50 mM Tris (pH 7.5), 250 mM NaCl, 5% (V/V) glycerol, 10 mM imidazole] supplied with
PMSF [1 mM] and lysozyme [1 mg/ml], and incubated at 4°C with agitation for 30 minutes.
Cells were sonicated at maximal microtip setting with four two-minute cycles with 0.5 seconds
pulses at a rate of 1 Hz. The resulting solution was centrifuged at 43,000 x g at 4°C for one
hour, and the supernatant was filtered through 0.45 and 0.20 μM nitrocellulose filters. HAdV-
52 was loaded onto a HisTrap Nickel IMAC column (GE Healthcare) using the Äkta Prime
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FPLC system and washed with buffer AHis until the UV absorbance returned to baseline. After
a washing step with a 10% solution of BHis [20 mM Tris (pH 7.5), 250 mM NaCl, 5% glycerol,
500 mM imidazole] the protein was eluted by a gradient of 50–500 mM imidazole (10–100%
BHis). 20 mM DTT was added to the samples, followed by concentration and purification on a
Superdex HiLoad 16/60 SD200 column (GE Life Sciences). During this step, the buffer was
changed to gel filtration buffer [30 mM Tris (pH 7.5), 150 mM NaCl]. Purity was checked by
SDS-PAGE analysis. Prior to crystallization, protein was concentrated to 8.5 mg/mL using a
Millipore concentrator.

Crystallization, soaking and structure determination. For the high resolution structure,
crystals of SFK52 were grown by hanging drop vapor diffusion in a reservoir solution of 15%
(w/V) PEG1000, 12.5% (w/V) PEG3350, 12.5% (w/V) MPD, 20 μM of each Na L-glutamate, DL-
alanine, glycine, DL-lysine HCl, and DL-serine, 0.1 M Tris/Bicine (pH = 8.5) using a combina-
tion of micro-and macroseeding. No cryoprotection was necessary. For complex formation,
crystals were soaked with mother liquor supplied with 20 mM 2-O-methyl sialic acid for 1
hour. Data were collected at the PXIII beam line (SLS Villigen, Switzerland) at a wavelength of
1.000 Å using a Pilatus 2M detector. Initial phases were obtained by molecular replacement
with Phaser [64] using a CHAINSAWmodel derived from the HAdV-12 fiber knob structure
(PDB ID: 1NOB). Refinement was carried out using Phenix [65] and Buster [66] using three-
fold NCS averaging, TLS ans isotropic B factor refinement. Data statistics are given in S12 Fig.
Structural figures were prepared with PyMOL (The PyMOL Molecular Graphics System, Ver-
sion 1.5.0.4 Schrödinger, LLC).

Alignment
Homology sequence alignment was performed using the Clustal W algorithm and the online
server: http://www.ebi.ac.uk/Tools/clustalw2/index.html

Statistical analysis
All experiments were performed three times with duplicate samples in each experiment. The
results are expressed as means ± standard deviations and either t-test or one-way ANOVA
with Dunnett's post test was performed using GraphPad Prism version 4.00 for Windows,
GraphPad Software, San Diego California USA. P-values< 0.05 were considered
statistically significant.

Supporting Information
S1 Fig. MAL-II binding to CHO-cells. Binding of the sialic acid binding MAL-II lectin to
CHO cells expressing or lacking known HAdV receptors. Pro-5 is a sialic acid-positive, refer-
ence cell line, CHO-CD46 and CHO-CAR cells express human CD46 and CAR, respectively.
CHO-MOCK is mock transfected with respect to CHO-CAR. Black bars show MAL-II binding
to cells after pretreatment with V. cholerae neuraminidase.
(TIF)

S2 Fig. Effect of RmcB and soluble CAR-D1 on HAdV-5 binding to A549 cells. 35S-labeled
HAdV-5 virion binding to A549 cells after virion preincubation with or without soluble CAR-
D1 or cell preincubation with or without mouse anti-CAR mab (clone RmcB). The experiment
was performed three times with duplicate samples in each experiment. Error bars represent
mean ± SD. �� P of< 0.01.
(TIF)
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S3 Fig. Control of P4 active/inactive and tunicamycin function. (A) Ganglioside GM1-bind-
ing AF488-conjugated cholera toxin subunit B (CT-B) binding to A549 cells pretreated with
active or inactive forms of P4 (inhibitor of glycolipid synthesis). CT-B binding was analyzed
using flow cytometry. (B) N-linked glycan-binding Phaseolus vulgaris erythroagglutinating lec-
tin (PHA-E; FITC-conjugated) binding to A549 cells pretreated with tunicamycin (inhibitor of
N-linked glycan synthesis. Note that PHA-E can only bind to a specific subset of N-linked gly-
cans). PHA-E binding was analyzed using flow cytometry. All experiments were performed
three times with duplicate samples in each experiment. Error bars represent mean ± SD. � P
of< 0.05, �� P of< 0.01 and ��� P of< 0.001 versus control.
(TIF)

S4 Fig. Potential CAR- and sialic acid-interacting residues in AdV fiber knobs. CAR-engag-
ing residues in the knobs of HAdV-5[40] and -12[15] are shown on yellow background. Resi-
dues in direct contact with CAR are Asp191, Leu202, Lys205 (HAdV-12) and in indirect
contact (via water) are Pro193, Pro194, Val226, Lys227, Gln263, Gln270, Ser273, Val274,
Asn296, and Glu299 (HAdV-12). CAR-interacting residues of HAdV-5 (identified by muta-
genesis): Ser193, Pro194, Lys201, Lys205, Asp259, Pro260, Glu261, Tyr262 and Tyr276. Sialic
acid-engaging residues in the knob of HAdV-37 [41,50] and CAdV-2 [51] are shown on blue
background. Residues in direct contact with sialic acid are Tyr312, Pro317, and Lys345 (all
HAdV-37) and Ser237, Gln238, Ser240, Asn256 and Arg336 (all CAdV-2) and residues in indi-
rect contact are Tyr 308, Thr310, Val322 and Ser344 (all HAdV-37). Potentially conserved
CAR- and sialic acid-interacting residues in 52LFK and 52SFK are shown on yellow and blue
backgrounds, respectively. Secondary-structure beta strands elements of HAdV-5 are indicated
with arrows.
(TIF)

S5 Fig. Surface plasmon resonance analysis of fetuin and asialofetuin type II (in solution)
binding to 52SFK (immobilized). A twofold dilution series of fetuin and asialofetuin is
shown, ranging from 125 μM to 1 μM. The affinity of the 52SFK:fetuin interaction was calculat-
ed to 37 μM, whereas no affinity could be calculated for the 52SFK:asialofetuin interaction. Re-
sults are shown as response units (RU).
(TIF)

S6 Fig. Affinity and kinetics of HAdV-52 long fiber interaction with CAR-D1. Surface plas-
mon resonance analysis of 52LFK (in solution) binding to CAR-D1 (immobilized). A twofold
dilution series of 52LFK is shown, ranging from 2 μM to 8 nM. Results are shown as response
units (RU).
(TIF)

S7 Fig. Surface plasmon resonance analysis of 52SFK (in solution) binding to CAR-D1D2
(immobilized).No affinity could be calculated for the HAdV-52 short fiber knob interaction
with CAR-D1D2. Results are shown as response units (RU). The experiment was performed
three times and the figure shows one representative set of results.
(TIF)

S8 Fig. HAdV-52 binding is not affected by preincubation of cells with MAL-II and or SNA
lectins. 35S-labeled HAdV-52 virion binding to A549 cells preincubated withM. Amurensis
lectin type II (MAL-II; preferentially binds to α2,3-linked sialic acid), S. Nigra lectin (SNA;
preferentially binds to α2,6-linked sialic acid), or both. Virion binding was quantified by liquid
scintillation counting. The experiment was performed three times with duplicate samples in
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each experiment. Error bars represent mean ± SD.
(TIF)

S9 Fig. Comparison of the polar contacts of HAdV-52 and HAdV-37 bound to sialic acid.
The sialic acid moieties of HAdV-52 and HAdV-37[50] (PDB-ID: 1UXA) were superimposed
using the “align” function in PyMOL (The PyMOLMolecular Graphics System, Version
1.5.0.4 Schrödinger, LLC). The sialic acid moiety of HAdV-52 is shown in orange, and the sialic
acid bound to HAdV-37 is overlaid as a ghost. Polar contacts formed with HAdV-52 and the
respective residues are colored orange, contacting residues of HAdV-37 and the respective
bonds are colored light blue. Although the binding pocket of HAdV-37 is located in an entirely
different part of the knob and the interacting amino acids are not conserved, the polar contacts
formed are highly similar to those of the RGN motif. The salt bridge contributed by R316 in
HAdV-52 is formed by K345 in HAdV-37. The hydrogen bonds formed with the sugar’s O4
and N-acetyl group are also retained.
(TIF)

S10 Fig. Conservation of sialic acid-interacting residues in 52SFK. Sialic acid-interacting
residues in 52SFK are shown on red background, together with similar, potential sialic acid-in-
teracting residues of other AdV:s. Representative types have been selected from human species
A-G and canine species A (HA-G and CA, respectively). Secondary-structure elements (beta
strands) of HAdV-5 are indicated by arrows.
(TIF)

S11 Fig. Trimerization of HAdV-52 knobs. A) 52SFK wt and B) 52SFK R316A mutant were
separated according to size using gas-phase electrophoretic mobility molecular analysis
(GEMMA). Results are shown as number of molecules (particles) in respect to molecular
weight (kDa).
(TIF)

S12 Fig. X-ray data collection and refinement statistics. Values for the highest resolution
shell are shown in parenthesis.
(TIF)
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Human adenovirus 52 (HAdV-52) is one of only three HAdVs equipped with two different fiber 

proteins, one long and one short. The knob domain of the HAdV-52 short fiber (52SFK) binds to 

previously unknown sialic acid-containing glycans on the cellular surface of target cells. Using glycan 

array screening we show here that 52SFK displays a selectivity for long chains of [α-2,8]-linked (poly) 

sialic acids (PSia). Cell based knob attachment assays confirmed a strong preference for 52SFK binding 

to PSia- expressing cells compared to PSia-deficient cells. This binding was efficiently reduced by pre-

incubating 52SFK with soluble oligo-PSias. X-ray crystallography analysis of 52SFK in complex with 

oligo-PSia revealed engagement at the non-reducing end of oligo-PSia to the canonical sialic acid 

binding site, but also suggested the presence of a ‘steering rim’ consisting of positively charged amino 

acids contributing to the interaction by long-range electrostatic interactions. Here we discuss the role 

of PSia as a receptor for HAdV-52 and the potential impact of using PSia-targeted HAdV52-based 

vectors for treatment of PSia-overexpressing cancer forms.    

 

Human adenoviruses (HAdVs) are frequently 

explored as vectors for multiple applications, 

including vaccination (1-3), cardiovascular 

applications (4) and treatment of cancer (5, 6). HAdV-

based vectors can be manipulated to conditionally 

replicate in and kill cancer cells, while leaving healthy 

cells unaffected (7). Besides lysing cancer cells as a 

direct effect of viral replication, these vectors can 

also cause cell death by expression of cytotoxic 

proteins (8, 9), activation of anti-tumor immune 

response (10, 11) and sensitizing tumor cells to the 

cytotoxic effect of radiotherapy and chemotherapy 

(12). This new form of cancer therapy has the 

potential to be of importance especially for certain 

types of cancer that are not responding to 

conventional treatments. Glioblastoma multiforme 

(GBM) is the most common primary malignant brain 

tumor, and even with state-of-the-art treatment 

patients usually survive only 12-15 months after 

diagnosis (13). To combat GBM, HAdV-based vectors 

have been developed that carry conditional cytotoxic 

genes such as herpes simplex virus type 1-thymidine 

kinase (7, 14). This enzyme is involved in the 

conversion of the pro-drug ganciclovir to its active tri-

phosphorylated form, causing termination of DNA 

chain polymerization  and  cell death in proliferating 

cancer cells (8).  

However, most HAdV vectors explored in clinical 

trials are still based on HAdV-5, despite the fact that 

decades of research have revealed a number of 

problems such as pre-existence of neutralizing 

antibodies in the patient (15); poor access to their 

primary attachment receptor CAR (coxsackie- and 

adenovirus receptor) on target cells (16); and 

coagulation factor-dependent off-target effects, 

which reduce bioavailability of the vector and 
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decrease transduction of target cells (17). Several 

strategies have been developed to overcome these 

problems, including usage of vector candidates based 

on less common HAdV types to reduce the amount of 

pre-existing antibodies (3); creation of chimeric 

vectors that retarget vectors to alternative receptors 

(18-20); and/or abolish interactions with coagulation 

factors to reduce off-target effects (21). For many 

applications, an ideal vector would harbor all these 

features by nature.  

HAdV-52 was isolated in 2003 from a small 

outbreak of gastroenteritis (22). It was shown to be 

divergent from other HAdVs and was therefore 

classified into a new species, HAdV-G. HAdVs are 

normally equipped with one fiber protein but HAdV-

52, along with the two more common species F types 

HAdV-40 and -41, differ from all other HAdVs by 

having two different fiber proteins, one long and one 

short (22-24). We showed recently that the knob 

domain of the HAdV-52 long fiber (52LFK) binds to 

CAR and that the knob domain of the short fiber 

(52SFK) binds to sialic acid (Sia)-containing 

glycoproteins on target cells (25). The close 

relationship of HAdV-52 to simian AdVs (SAdVs) and 

the low frequency of detection in humans suggest a 

low seroprevalence (22, 26). Together with its 

inability to interact with coagulation factors (25) we 

believe that HAdV-52 would constitute a good vector 

candidate.  

Here we show that HAdV-52 binds to a class of 

glycans known as polysialic acid through an 

interaction involving the short fiber knob. In humans, 

the N-linked attachment of PSia to its target proteins 

is tightly regulated both spatially and temporally 

through the expression of the two sialyltransferases 

ST8Sia-II and -IV. The expression of both enzymes is 

largely restricted to the developing brain during 

embryogenesis, and their major target protein is the 

neural cell adhesion molecule (NCAM) (27). Apart 

from being present in the gut microbiota (28), brain 

regions requiring persistent neuronal plasticity (29), 

and under specific conditions on dendritic cells (30), 

PSia is usually not detected in healthy adults. 

However, several types of cancer including glioma 

(31-33), neuroblastoma (34, 35) and lung cancer (36, 

37) reactivate the synthetic machinery of 

polysialylation, which is strongly associated with a 

poor prognosis and an aggressive and invasive 

disease development (29, 33, 38). Therefore, PSia has 

been recognized as a highly promising tumor marker, 

and researchers have been trying to redirect Ad5-

based oncolytic adenovirus vectors to target PSia 

(39). An adenovirus vector with a natural preference 

for PSia-expressing cancer cells might thus prove 

useful for treatment of several cancer types.  

Here we set out to characterize the interaction 

between the short fiber knob of HAdV-52 and its 

cellular receptor PSia.  

 

MATERIALS AND METHODS 

Cells  

Human respiratory epithelial A549 cells (gift from Dr. 

Alistair Kidd) were grown in Dulbecco´s modified 

Eagle medium (DMEM, Sigma-Aldrich) supplemented 

with 5% fetal bovine serum (FBS: Invitrogen), 20 mM 

HEPES (Sigma-Aldrich) and 20 U/ml penicillin + 20 

µg/ml streptomycin (Invitrogen). Human 

neuroblastoma SK-N-SH cells (purchased from LGC 

Promochem) were grown in DMEM supplemented 

with 10% FBS, 20 mM HEPES, 20 U/ml penicillin, 20 

µg/ml streptomycin. Human neuroblastoma SH-SY5Y 

cells were purchased from LGC Promochem and 

grown in DMEM: Ham´s-F12 (Sigma-Aldrich) 1:1, with 

the same supplements as the parental SH-N-SH cell 

line.  

 

Production of fiber knobs  

52SFK and 52LFK were produced as described 

previously (25). HAdV-37 FK (amino acids 172-365), 

HAdV-5 FK (387-581) were produced in the same 

way. SAdV-1 SFK (183-363), SAdV-2 SFK (132-312), 

SAdV-7 SFK (167-347), SAdV-11 SFK (183-364) and 

SAdV-19 (101-286) were all cloned with the same 

RGS-hexa-his tag as the fiber knobs described above. 

SAdV fiber knobs were expressed in E. coli (strain 

Rosetta) and purified with Ni-NTA agarose beads 

followed by anion exchange (Q-sepharose). Fiber 
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knob mutants of 52SFK were created using a 

QuikChange mutagenesis kit (Agilent Technologies). 

The following mutants were created: 1) K349A, 2) 

R321Q, 3) R321Q/E348Q, 4) R321I, 5) R321V, 6) 

R321L, 7) K349A/R321Q and 8) K349R. The mutants 

were produced as 52SFK, described above. All fiber 

knobs were analysed by denaturing gel (NuPAGE Bis-

Tris, LifeTechnologies) and western blot with 

monoclonal antibodies directed against the His-tag 

(Qiagen). 

 

Glycan microarray 

Microarrays were composed of lipid-linked 

oligosaccharide probes robotically printed on 

nitrocellulose-coated glass slides at 2 and 5 fmol per 

spot in duplicate using a non-contact instrument as 

described previously (40). Binding signals were 

probe-dose dependent. The microarray binding assay 

of the recombinant His-tagged 52SFK was performed 

at 20°C essentially as described previously (41). In 

brief, the arrayed slide was blocked for 1 h with 5 

mM HEPES pH 7.4, 150 mM NaCl, 5mM CaCl2, 0.3% 

(v/v) Blocker Casein (Pierce), 0.3% (w/v) bovine 

serum albumin (Sigma) (0.3% casein/0.3% BSA). 

52SFK was pre-complexed with mouse monoclonal 

anti-poly-histidine (Ab1) and biotinylated anti-mouse 

IgG antibodies (Ab2) (both from Sigma) in a ratio of 

4:2:1 (by weight). The 52SFK-antibody pre-complexes 

were prepared by pre-incubating Ab1 with Ab2 for 15 

min at ambient temperature, followed by addition of 

52SFK and incubation for an additional 15 min on ice. 

The VP1-antibody complexes were diluted in 0.3% 

casein/0.3% BSA, to give a final 52SFK concentration 

of 150 µg/ml, and overlaid onto the arrays at 20 °C 

for 2 h. Binding was detected with Alexa Fluor-647-

labelled streptavidin (Molecular Probes); imaging and 

data analysis was performed as described previously 

(40). The oligosaccharide probes are all lipid-linked, 

neoglycolipids (NGLs) or glycosylceramides and are 

from the collection assembled in the course of 

research in the Glycosciences Laboratory. For 

definition of the lipid moieties of the probes, please 

see https://glycosciences.med.ic.ac.uk/docs/lipids 

 

ELISA 

96-well plates (Nunc maxisorp, Thermo Scientific) 

were coated with 1 µg/ml of colominic acid (Sigma-

Aldrich) for 2 h at room temperature (RT) in coating 

buffer (100 mM bicarbonate/carbonate, pH 9.6). The 

plate was blocked with asialofetuin type II (Sigma-

Aldrich) 1 mg/ml in PBS-T (phosphate-buffered saline, 

140 mM NaCl, 2.7 mM KCl, 10 mM phosphate buffer 

pH 7.4, supplemented with 0.05% Tween-20) for 1 h 

at RT and then washed three times with PBS-T. 

Meanwhile, fiber knobs (10 µg/ml) were incubated 

with monoclonal anti RGS-His antibodies (Qiagen; 

dilution 1:1000) in PBS-T for 1 h at RT. The wells were 

then washed three times with PBS-T and incubated 

with fiber knob:antibody mixtures for 1 h at RT. After 

washing, the plate was incubated with a HRP-

conjugated rabbit anti-mouse IgG antibody (Dako 

Cytomation; diluted 1:2000 in PBS-T) for 1 h at RT. 

The wells were washed again and incubated with 100 

µl enhanced K-Blue TMB substrate (Neogen Europe) 

for 15 min and the reaction was then stopped by 

addition of 100 µl 1 M H2SO4. The absorbance was 

measured at 450 nm using Tecan infinite F2000 Pro 

(Tecan Nordic AB). 

 

Flow cytometry  

Cells were detached with PBS-EDTA (PBS 

supplemented with 0.05% EDTA), reactivated in 

growth medium for one hour at 37˚C, pelleted in 96-

well plates (2x105 cells/well) and washed once with 

binding buffer (BB: Dulbecco´s modified Eagle 

medium supplemented with 20 mM HEPES, 20 U/ml 

penicillin + 20 µg/ml streptomycin and 1% bovine 

serum albumin). Fiber knobs were added (10 µg/ml in 

BB) to the cells and incubated for 1h on ice. Unbound 

fiber knobs were washed away with PF buffer (PBS 

supplemented with 2% FBS) and the cells were then 

incubated with an anti RGS-His mouse monoclonal 

antibody (Qiagen; diluted 1:200 in PF) for 30 min. 

Followed by one wash with PF, the cells were 

incubated with polyclonal rabbit-anti-mouse FITC 

antibodies (Dako Cytomation; diluted 1:40 in PF) for 

30 min on ice. Thereafter the cells were washed once 

with PF and analysed with flow cytometry using 

https://glycosciences.med.ic.ac.uk/docs/lipids
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FACSLSRII instrument (Becton Dickinson). Results 

were analysed using FACSDiva software (Becton 

Dickinson).  

The experiment was performed with the following 

variations: i) fiber knobs were pre-incubated with 

different concentrations of oligo [α-2,8]-linked Sia for 

1h hour on ice before addition to cells; ii) cells were 

incubated on ice for 30 min with 4 µg/ml of 

biotinylated a) M. Aamurensis type I or II (MAL-I or II) 

lectins, b) S. Nigra (SNA) lectins, c) wheat germ 

agglutinin (WGA; all from Vector Laboratories), or d) 

monoclonal mouse-anti PSia antibody (mab 735, kind 

gift from Rita Gerardy-Schahn, 1:500) diluted in PF-

buffer. Following a-c, the cells were incubated for 30 

min on ice with a 1:100 diluted streptavidin-FITC for 

MAL-I & II, SNA and WGA, or (following d), incubated 

for 30 min on ice with 1:40 diluted polyclonal rabbit-

anti-mouse FITC antibodies.  

 

Crystallization, data collection, and refinement of 

complex structures 

52SFK crystals were prepared as described previously 

(25). PSia complex crystals were generated by 

soaking in 17,5% (w/v) PEG 1000, 12,5% (v/v) PEG 

3350, 12,5% MPD, 100 mM Bicine/Tris pH 8.5 

supplemented with 50 mM PSia DP3-5 (GERBU) for 

18 to 36 h. The GD3 complex structure was prepared 

by soaking with 20 mM GD3 (Elicityl) for 1.5 h. No 

cryoprotection was necessary for crystal freezing. 

Data collection was done at the X06DA beam line of 

the Swiss Light Source (Villigen) at a wavelength of 1 

or 0.92 Å using a Pilatus 2M detector. Structures 

were indexed with XDS (42) and initial phases were 

obtained by molecular replacement with Molrep (43). 

The structures were refined using phenix.refine (44) 

and Refmac5 (45) from the PHENIX and CCP4 

software suites, respectively, using threefold NCS 

restraints. Figures were prepared with PyMOL (The 

PyMOL Molecular Graphics System, Version 1.8, 

Schrödinger, LLC). Data collection and refinement 

statistics can be found in Tables S1 and S2. Poisson-

Boltzmann electrostatics were calculated using the 

PDB2PQR and APBS plugins in PyMOL (46, 47). 

 

Saturation transfer difference NMR 

NMR spectra were recorded at 285 K using 3 mm 

tubes (200 μL sample volume) and a Bruker AVIII-600 

spectrometer equipped with a room temperature 

probe head and processed with TOPSPIN 3.0 (Bruker). 

Samples contained 1 mM of either oligosialic acid 

DP3 or DP5 (GERBU) and 20 µM of 52SFK WT or 

R316A mutant protein (monomeric concentration). 

The proteins were buffer-exchanged prior to NMR 

experiments to 20 mM potassium phosphate pH 7.4, 

150 mM NaCl in D2O and the glycans were 

subsequently added from concentrated stock 

solutions in D2O. Off- and on-resonance irradiation 

frequencies were set to -30.0 ppm and 7.0 ppm, 

respectively. The irradiation power of the selective 

pulses was 57 Hz, the saturation time was 2 s, and 

the total relaxation delay was 3 s. A 50 ms 

continuous-wave spin-lock pulse with a strength of 

3.2 kHz was employed to suppress residual protein 

signals. A total number of 512 scans and 10,000 

points were collected, and spectra were multiplied 

with a Gaussian window function prior to Fourier 

transformation. 

 

Surface plasmon resonance 

Ni-NTA sensor chips, and HBS-EP+ buffer were 

purchased from GE Healthcare. 52SFK was diluted in 

running buffer (HBS-EP+) to a concentration of 

around 0.03 μM (0,022-0,035 μM) and captured on 

the Ni-NTA sensor chip according to the 

manufacturer’s instructions, resulting in an 

immobilization density between 700- 900 RU. In 

short: an automated program cycle of the following 

sequence: (1) activation of the sensor chip with Ni(II), 

(2) capture of 52SFK (3) analyte injection, (4) 

regeneration of the surface with 0.35 M EDTA, and 

(5) rinse with HBS-EP+ without EDTA. All steps were 

performed at a flow rate of 30 μl/min. All binding 

assays were carried out at 25°C, and HBS-EP+ buffer 

was used as running buffer. The analytes (oligo-PSia 

acid DP3-5 and colominic acid) were serially diluted in 

running buffer to prepare a two-fold concentration 

series ranging from 0.1 to 8 mM (with small 

variations depending on the analyte), and then 
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injected in series over the reference and 

experimental biosensor surfaces for 120 s and a 

dissociation time of 120 s. Blank samples containing 

only running buffer were also injected under the 

same conditions to allow for double referencing. 

 
Figure 1. Glycan array of HAdV-52 short fiber knob interactions with sialylated glycans.  52SFK binding to sialylated 

glycans is shown as fluorescence intensity. Higher peaks represents stronger binding.                                                                                               

LM1= sialyl-3-paragloboside (Neu5NAc-[α-2,3]-Gal-[β-1,4]-GlcNAc-[β-1,3]-Gal-[β-1,4]-Glc), DP3-DP9= [α-2,8]-linked sialic 

acids with a degree of polymerization (DP) between 3-9.  Inlay: general structure of PSia. Up to ~100 sialic acid moieties 

are linearly connected via an [α-2,8]-linkage. Blue: non-reducing end (nr); Pink: reducing end. PSias can vary considerably 

in length.  

 

 

RESULTS AND DISCUSSION 

HAdV-52 binds to polysialic acid  

We showed previously that HAdV-52 mainly uses 

sialic acid-containing glycans as cellular receptors for 

binding and infection of human epithelial cells (25). 

To date, the precise structure of the glycans that can 

be engaged by the short fiber knob remains 

unknown. We employed a glycan array to screen for 

naturally occurring glycans that might serve as HAdV-

52 receptor candidates. Analysis of 52SFK binding to 

128 different sialylated glycans showed only 

moderate binding to [α-2,3]- and [α-2,6]-linked sialic 

acids.   However, very strong binding was observed 

for a group of linear [α-2,8]-linked oligosialic acids, 

mimicking the naturally occurring PSia (Fig. 1 & Table 

S3). A drastic increase in binding was seen at a degree 

of polymerization (DP) of more than 3 

monosaccharides. To confirm the ability of 52SFK to 

interact with PSia and evaluate the specificity of this 

interaction we developed an ELISA with immobilized, 

E.coli-derived PSia (colominic acid; MW=24-38 kDa) 

and fiber knobs (FKs) from sialic acid-binding HAdV-

37 and CAR-binding HAdV-5 and 52LFK. 52SFK bound 

efficiently to PSia, while CAR-binding FKs did not 

show any binding at all (Fig. 2). 37FK, which binds 

with relatively high affinity to the branched, 

disialylated GD1a glycan (48), bound less efficiently to 

PSia than 52SFK. We therefore conclude that HAdV-
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52 is able to interact specifically with PSia via the 

knob domain of its short fiber.   

 

52SFK binds to polysialic acid on neuroblastoma 

cells 

To test the relevance of PSia recognition by HAdV-52 

in a cellular context, we used human PSia-expressing 

neuroblastoma cells, SH-SY5Y, and its PSia-lacking 
Figure 2. HAdV fiber knob binding to immobilized 

polysialic acid. ELISA-based experiment with immobilized 

E.coli-derived PSia (colominic acid, MW=24-38 kDa) and 

HAdV fiber knobs. Relative absorbance is shown. The 

experiment was performed three times with duplicate 

samples in each experiment. Error bars represent mean ± 

SD. 

 

parental cell line SK-N-SH (49). The levels of PSia on 

these cells were confirmed by flow cytometry (Fig. 

S1). 52SFK bound five times better to PSia-expressing 

SH-SY5Y compared to the control cell line, whereas 

none of the control knobs, including 37FK, bound 

with a pronounced difference to either cell line (Fig. 

3A). In order to exclude the possibility that the 

increased 52SFK binding to SH-SY5Y was due to a 

higher level of  glycans with terminal monosialic acids 

on these cells rather than a specific binding to PSia, 

we used monosialic acid-binding lectins to determine 

the relative levels of glycans with terminal sialic acids 

on both cell lines. On the contrary, MAL-I & -II (bind 

to [α-2,3]-linked sialic acid), SNA (binds to [α-2,6]-

linked sialic acid) and WGA (binds to terminal sialic 

acid regardless of glycosidic bond as well as to N-

acetyl-D-glucosamine) all showed higher binding to 

SK-N-SH cells than SH-SY5Y cells (Fig. 3B). 

Furthermore, pre-incubation of 52SFK with soluble 

PSia (DP5) reduced 52SFK binding to SH-SY5Y cells 

with up to 75%, while no effect was observed in the 

case of 37FK (Fig. 3C). From these results we 

conclude that 52SFK shows a clear preference for 

PSia-expressing cells over cells lacking PSia. We also 

conclude that PSia is the major receptor molecule for 

52SFK on SH-SY5Y neuroblastoma cells, and that this 

feature is not shared by sialic acid- or CAR-binding 

knobs from other HAdVs. 

 

PSia is engaged at the non-reducing end, similarly to 

mono- and di-sialylated glycans 

We previously identified a sialic acid binding site on 

the upper side of 52SFK. This site is physically distinct 

from the binding site of 37FK, which engages sialic 

acid within its central cavity. Using 2-O-methyl-sialic 

acid as a ligand, we found the major determinant of 

the 52SFK binding site to be a stretch of three 

adjacent residues that together formed a prominent 

RGN motif (25). In a PSia context, several questions 

regarding the binding mode remain, e.g. whether the 

glycan is engaged via its non-reducing end or via a 

more promiscuous internal binding mode, or how the 

increased binding potency arises on a structural level. 

To address these questions, we solved the complex 

structures of 52SFK with three oligosialic acids (DP3-

5) as well as the GD3 glycan (Neu5NAc-[α-2,8]- 

Neu5NAc-[α-2,3]-Gal-[β-1,4]-Glc, representing a 

disialic acid motif). All complex structures produced 

highly similar results, shown exemplary for DP3 in Fig. 

4. In all cases, unambiguous electron density for a 

sialic acid moiety was found in the canonical binding 

pocket. The electron density around O8 and its 

direction relative to the protein clearly indicate that it 

is the non-reducing end of the glycans that is 

engaged at this position, and the observed binding 

mode is highly similar to what has been observed for 

monosialic acid. In all cases except GD3, there was 

additional electron density for a second sialic acid 
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moiety projecting from the pocket towards the 

solvent. The overall density for this moiety was much 

weaker, deteriorating from the glycerol group to the 

pyranose ring and thereby indicating an increased 

flexibility. All structures showed similar angles for the 

[α-2,8]-glycosidic linkage, which agree with what has 

been found in other crystal structures (Fig. S3) (50).  

Interestingly, the second sialic acid moiety did not 

seem to contribute any directed contacts to the 

overall interaction, except for a van-der-Waals 

contact between its N-Acetyl group and E328. This 

contact seemed to cause a local decrease of electron 

density and a slight rotation of the N-Acetyl group. 

The third sialic acid could not be unambiguously 

traced in any of the structures. In order to verify this 

finding in solution, we employed saturation transfer 

difference NMR (STD-NMR) to screen for glycan 

protons of DP3 and 5 that are placed within 5-6 Å of 

the protein in solution (shown exemplary for DP3 in 

Fig. 4B and C). The spectrum of the glycan alone 

compared well to the literature (51, 52). Since all of 

the sialic acid repeats were in a highly similar 

chemical environment in solution, the respective 

peaks overlap - with the exception of the non-

reducing end, which experienced an upfield shift. The 

experiment showed a saturation transfer occurring 

almost exclusively at the non-reducing end, while the 

other moieties only received a very moderate spin 

saturation occurring exclusively in the N-Acetyl group 

region, putatively from the second sialic acid. In the 

case of the R316A mutant (which destroys the 

canonical RGN motif and prevents 52SFK attachment 

to sialic acid on A549 cells) (25), the saturation 

transfer was completely abrogated. Together, these 

results demonstrate that 52SFK engages PSia 

exclusively via its canonical sialic acid binding site, 

without any additional epitopes present on the 

protein. 

   
Figure 3. HAdV-52 short fiber knob binds strongly to 

polysialic acid on human cells. A) Flow cytometry-based 

quantification of HAdV fiber knob binding to human 

neuroblastoma cells expressing (SH-SY5Y) or lacking (SK-N- 

SH) PSia. B) Flow cytometry-based quantification of sialic 

acid on SK-N-SH and SH-SY5Y cells using sialic acid-binding 
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Long-range effects are major determinants of 

52SFK:PSia interactions  

Despite the lack of directed contacts, a length of 

more than DP3 appeared to be beneficial for 

oligosialic acid binding as seen in our glycan array 

data (Fig. 1). According to the cell attachment 

inhibition data, a DP of more than 2 was already 

sufficient to substantially decrease 52SFK binding 

(Fig. 5A). Similar results were acquired from SPR 

experiments, where the biggest increase in affinity 

was shown between DP2 and 3 

 
lectins. C) Flow cytometry-based quantification of 52SFK 

and 37FK binding to SH-SY5Y cells after fiber knob pre-

incubation with increasing concentrations of pentasialic 

acid. All experiments were performed three times with 

duplicate samples in each experiment. Error bars represent 

mean ± SD. 

 

Figure 4. [α-2,8]-linked oligosialic acids are engaged in the canonical binding pocket of HAdV-52 short fiber knob via 

their reducing end. A) Complex structure of 52SFK and DP3. Shown is a 2Fo-Fc map calculated at 1.1 σ after refinement. 

The third sialic acid moiety could not be resolved. B) Schematic representation of sialic acid in the α-conformation. The 

positions of distinctive protons for NMR are indicated. C) STD-NMR of 52SFK and DP3. Green box: PSia alone; blue box: 

Saturation transfer difference spectrum of the 52SFK:DP3 complex; red box: Saturation transfer difference spectrum of 

the R316A-52SFK:DP3 complex, nr= non-reducing end. 

 

 

(Fig. 5B-F). In combination with the structural data, 

these findings suggest that long-range effects 

account for increased binding affinity rather than 

directed short-range contacts. We hypothesize that 

these effects could be electrostatic interactions or 

entropy-related contributions. 

According to in-solution NMR studies, the poly-

anionic PSia seemed to at least transiently adopt a 
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left-handed helical conformation, with the negatively 

charged carboxyl groups facing towards the non-

reducing end (53). However, PSia is expected to be 

rather flexible in solution due to the lack of branching 

and the fact that the individual sialic acid moieties 

are  

linked via an [α-2,8]-linkage, which provides a much 

larger conformational freedom than more common 

glycosidic linkages. Recent molecular dynamics (MD) 

simulations showed that helical structures can be 

observed within a timeframe of 1 µs. Even though 

these are not stable (M. Frank, data not shown),it is 

tempting to speculate that such an arrangement 

might lead to an electrostatic momentum that is 

beneficial for the binding. In line with this, an 

inspection of the electrostatic potential of the 52SFK 

revealed a positively charged rim located around the 

sialic acid binding site, which we coined the ‘steering 

rim’. The   rim is mainly formed by residues R321, 

R316, and K349

 
Figure 5.  A degree of polymerization greater than 2 is sufficient for interactions with 52FSK. A) Flow cytometry-based 

quantification of 52SFK binding to A549 cells after fiber knob pre-incubation with increasing concentrations of oligosialic 

acid. The experiments were performed three times with duplicate samples in each experiment. Error bars represent mean 

± SD. Surface plasmon resonance analysis of 52SFK (immobilized) binding to B) disialic acid, DP2, C) trisialic acid, DP3, D) 

tetrasialic acid, DP4, E) pentasialic acid, DP5, and F) E.coli-derived PSia, DP≈80-100 (in solution). 
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(Fig. 6). In the DP3 complex structure, the second 

sialic acid moiety is placed over the ε-amino group of 

K349. If the PSia glycan roughly follows the proposed 

left-handed helical arrangement with energy-minimal 

glycosidic angles similar to those observed between 

the first two moieties (Fig. S2A,B), the third or fourth 

moiety are placed above R321 (indicated in Fig. 6D), 

with all carboxyl groups facing towards the protein 

surface. The non-directional nature of electrostatic 

interactions might allow for a certain degree of 

flexibility in this arrangement. Preliminary MD 

simulations with 52SFK and DP5 confirmed these 

assumptions and indicate that the second sialic acid is 

indeed constantly placed over K349, while the third 

and fourth moiety are more mobile, but transiently 

under the influence of R321 in a helix-like 

arrangement (M. Frank, data not shown).  

To further test this hypothesis, we produced fiber 

 

Figure 6. Representation of the HAdV-52 short fiber knob ‘steering rim’. Poisson-Boltzmann electrostatic potential 

isosurfaces and field lines for the protein were calculated at ±1; ±0.75; ±0.5 kT/e. The positively charged rim can be 

seen in blue. Bound DP3 is shown as sticks. A) Side view B) Top view including field lines C) Detailed view of the 

binding pocket including field lines. D) Stereo figure showing the relative placement of glycan and ‘steering rim’ 

residues. Residues influencing the ‘steering rim’ are highlighted as sticks. R321 and E348 are forming a salt bridge, as 

do R316 and the carboxyl group at the non-reducing end of DP3. The expected rough orientation of the glycan is 

indicated as a grey arrow. 
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Figure 7. HAdV-52 short fiber knob mutant binding to 

polysialic acid-expressing SH-SY5Y cells. Flow cytometry-

based analysis of wild type and mutant 52SKF binding to 

SH-SY5Ycells. The experiment was performed three times 

with duplicate samples in each experiment. Error bars 

represent mean ± SD. 

 

 

 

  

 

 

 

 

 

 

 

 
 

 

Figure 8. HAdV short fiber knob binding to polysialic acid-

expressing/-lacking cells. Flow cytometry-based 

quantification of simian (S) and human short fiber knobs-

binding to human neuroblastoma cells expressing (SH-

SY5Y) or lacking (SK-N-SH) PSia. The experiment was 

performed three times with duplicate samples in each 

experiment. Error bars represent mean ± SD. 

 

knobs with mutations in the ‘steering rim’, and 

analyzed knob binding to PSia-expressing SH-SY5Y 

cells. The K349A mutant almost completely lost its 

cell binding capacity, and similar effects were 

observed for the R321Q and analogous mutants (Fig. 

7). When mutated, R321 could no longer counteract 

the closely situated E348, which then would likely 

repel the polyanionic PSia, and might thus contribute 

to an unexpectedly strong loss in binding. Indeed, if 

E348 was also mutated to a non-charged residue, the 

effect of the R321Q mutation was partially reversed 

(Fig. 7). This implies that R321 interacts more weakly 

with PSia than the other two residues, which fits well 

with the assumption of a flexible ‘pseudo-helical’ 

arrangement. In addition to interacting with the more 

distant sialic acid moieties of PSia, both R321 and 

K349 might have a supportive direct effect on the 

non-reducing end.  

 

The PSia binding site and the ‘steering rim’ are 

conserved in closely related simian adenoviruses 

The PSia-binding RGN motif is conserved in the short 

fibers of other closely related members of species 

HAdV-G: SAdV-1, -2, -7 and -11, as well as SAdV-19 

(SAdV-C), but it is not found in any other known non-

human or human AdVs, including the short fiber 

knobs of HAdV-40 and -41 (Fig. S3A). Interestingly, 

the three positively charged residues forming the 

‘steering rim’ are also functionally conserved in these 

SAdV types, but in different permutations (RRK, RKK, 

RRR) (Fig. S3A). No other HAdV fiber knobs with 

known structures exhibits a comparable ‘steering rim’ 

(Fig. S3C). This further supports our hypothesis that 

PSia binding is a specific ability limited to a small 

subset of AdVs. We assayed the PSia specificity and 

binding capacity of fiber knobs belonging to this 

subset in a cell attachment assay with cells expressing 

or lacking PSia. All knobs except S-2SFK bound better 

to PSia-expressing cells than the control cell line (Fig. 

8). One possible explanation for the inability of S-

2SFK to bind PSia, despite a conserved ‘steering rim’, 

could be that S-2SFK harbor a fiber sequence more 

distantly related to 52SFK (Fig. S3B) which, in theory, 

S
-1

S
F

K

S
-2

S
F

K

S
-7

S
F

K

S
-1

1
S

F
K

S
-1

9
S

F
K

5
2
S

F
K

0

2 0 0 0

4 0 0 0

6 0 0 0

G
e

o
 M

e
a

n

S K -N -S H

S H -S Y 5 Y



MANUSCRIPT 

 

12 
 

could result in a different overall arrangement of the 

residues. However, 52SFK still displayed the strongest 

discrepancy between SH-SY5Y and SK-N-SH cells, 

indicating a more specific interaction of 52SFK with 

PSia rather than a general high binding to both cell 

lines as seen for S-7SFK.  

In humans, PSia is present in high amounts on 

NCAM during embryogenesis but almost absent in 

healthy adults. It is currently unclear why a subset of 

human and simian adenoviruses might have 

developed a specificity for a glycan which is rarely 

present in their main host. However, such a finding is 

not unprecedented and may confer a currently 

unrecognized evolutionary advantage. As an 

example, human polyomavirus 9 and the Shiga-

toxigenic E.coli subtilase cytotoxin have evolved a 

preference for 5-N-glycolylsialic acid, despite the fact 

that this sugar is only incorporated into human cells 

through nutritional uptake (54, 55). Secondly, there is 

increasing evidence for an interplay between 

commensal bacteria and viruses (e.g. noro-, reo- and 

polioviruses) to mount infections in the gut (56, 57), 

which seems especially interesting given the 

observed gastroenteric tropism of HAdV-52 and the 

presence of PSia on commensal bacteria.  

Although PSia is close to absent on cells in healthy 

adults it is often overexpressed on many tumors, 

where it modulates cell adhesion, migration and 

invasion (31-37). PSia expression is therefore often 

associated with higher tumor aggressiveness and 

invasiveness resulting in poor clinical prognosis (29, 

33, 38). These types of cancers are also often 

recurrent and non-responsive to conventional 

treatments (33). Large attention has therefore been 

drawn to novel therapeutic approaches, including 

AdV vectors for gene delivery and use of modified 

oncolytic AdVs. HAdV-52 is a naturally occurring virus 

type that combines low seroprevalence rates, 

reduced liver tropism, and a tumor-specific natural 

receptor profile. In light of the many drawbacks of 

HAdV-5 based vectors and the ability of HAdV-52 to 

specifically interact with a receptor selectively 

expressed in high amounts on cancer cells, we 

believe that HAdV-52 is an excellent choice as an 

oncolytic vector for treatment of cancer with 

elevated PSia-expression. 
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SUPPORTING INFORMATION 

Table S1. Data collection statistics of 52SFK complex structures. 

 

 

Table S2. Refinement statistics of 52SFK complex structures 
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Table S3. List of sialylated glycans included in microarray screening analysis. 

Position Probe 
a 

Sequence 
Fluorescence  
intensities 

b,c 

1 Lac-AO Galβ-4Glc-AO 

                             
27  

2 LacNAc-AO Galβ-4GlcNAc-AO  -  

3 LNT Galβ-3GlcNAcβ-3Galβ-4Glc-DH 

                             
10  

4 LNnT Galβ-4GlcNAcβ-3Galβ-4Glc-DH 

                           
430  

5 LNFP-III 
Galβ-4GlcNAcβ-3Galβ-4Glc-DH 

      │ 

 Fucα-3 

                           
154  

6 NA2 

Galβ-4GlcNAcβ-2Manα-6 

                    │ 

                    Manβ-4GlcNAcβ-4GlcNAc-DH 

                    │ 

Galβ-4GlcNAcβ-2Manα-3 

                           
113  

7 GM4 NeuAcα-3Galβ-Cer  -  

8 GM3 NeuAcα-3Galβ-4Glcβ-Cer  -  

9 GM3(Gc) NeuGcα-3Galβ-4Glcβ-Cer  -  

10 Haematoside NeuAcα-3Galβ-4Glcβ-Cer  -  

11 NeuAcα-(3')Lac-AO NeuAcα-3Galβ-4Glc-AO 

                           
755  

12 GSC-199 KDNα-3Galβ-4Glcβ-C30  -  

13 NeuAcβ-(3')Lac-AO NeuAcβ-3Galβ-4Glc-AO 

                           
832  

14 Neuα-(3')Lac-AO Neuα-3Galβ-4Glc-AO 

                           
667  

15 Neu4,5Ac-(3')Lac-AO (4-OAc)NeuAcα-3Galβ-4Glc-AO 

                           
750  

16 GSC-75 (4-deoxy)NeuAcα-3Galβ-4Glcβ-Cer36 

                           
221  

17 GSC-76 (7-deoxy)NeuAcα-3Galβ-4Glcβ-Cer36  -  

18 GSC-77 (8-deoxy)NeuAcα-3Galβ-4Glcβ-Cer36  -  

19 GSC-51 (9-deoxy)NeuAcα-3Galβ-4Glcβ-Cer36  -  

20 GSC-78 (4-OMe)NeuAcα-3Galβ-4Glcβ-Cer36 

                             
84  

21 GSC-79 (9-OMe)NeuAcα-3Galβ-4Glcβ-Cer36  -  

22 GSC-161 
NeuAcα-3Galβ-4Glcβ-C30 

              │ 

         Fucα-3  -  

23 NeuAcα-(3')LN1-3-AO NeuAcα-3Galβ-3GlcNAc-AO 

                           
266  

24 NeuAcα-(3')LN NeuAcα-3Galβ-4GlcNAc-DH 

                           
326  

25 NeuAcα-(3')LN-AO NeuAcα-3Galβ-4GlcNAc-AO 

                             
55  
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26 SA(3')-Lea-Tri-AO 
NeuAcα-3Galβ-3GlcNAc-AO 

              │ 

         Fucα-4 

                               
2  

27 SA(3')-Lex-Tri-AO 
NeuAcα-3Galβ-4GlcNAc-AO 

              │ 

         Fucα-3 

                           
308  

28 GSC-440 
NeuAcα-3Galβ-4GlcNAcβ-C30 

              │ 

         Fucα-3 

                             
11  

29 GSC-512 
(4-OAc)NeuAcα-3Galβ-4GlcNAcβ-C30 

                     │ 

                Fucα-3  -  

30 GSC-513 
(9-OAc)NeuAcα-3Galβ-3GlcNAcβ-C30 

                     │ 

                Fucα-4  -  

31 GSC-511 
(9-OAc)NeuAcα-3Galβ-4GlcNAcβ-C30 

                     │ 

                Fucα-3  -  

32 GSC-479 
NeuAcα-3Galβ-4GlcNAcβ-3Galβ-C30 

              │ 

         Fucα-3 

                           
577  

33 GSC-105 
NeuAcα-3Galβ-4GlcNAcβ-3Galβ-Cer36 

              │ 

         Fucα-3  -  

34 GSC-177 
NeuGcα-3Galβ-4GlcNAcβ-3Galβ-Cer36    

              │  

         Fucα-3 

                           
129  

35 GSC-341 
KDNα-3Galβ-4GlcNAcβ-3Galβ-C30 

            │  

       Fucα-3  -  

36 GSC-257 
NeuAcα-3(4,6-deoxy)Galβ-4GlcNAcβ-3Galβ-Cer36 

                         │ 

                    Fucα-3 

                           
201  

37 GSC-175 
NeuAcα-3(4-deoxy)Galβ-4GlcNAcβ-3Galβ-Cer36 

                       │ 

                  Fucα-3  -  

38 GSC-176 
NeuAcα-3(6-deoxy)Galβ-4GlcNAcβ-3Galβ-Cer36 

                       │ 

                  Fucα-3 

                           
326  

39 LSTa NeuAcα-3Galβ-3GlcNAcβ-3Galβ-4Glc-DH 

                           
108  

40 GSC-272 NeuAcα-3Galβ-3GlcNAcβ-3Galβ-4Glcβ-C30  -  

41 GSC-273 NeuAcα-3Galβ-4GlcNAcβ-3Galβ-4Glcβ-C30 

                       
8436  

42 GSC-396 NeuGcα-3Galβ-3GlcNAcβ-3Galβ-4Glcβ-C30 

                           
106  

43 Sialylparagloboside NeuAcα-3Galβ-4GlcNAcβ-3Galβ-4Glcβ-Cer  -  

44 GSC-31 NeuAcα-3Galβ-4GlcNAcβ-3Galβ-4Glcβ-Cer36 

                             
79  

45 GSC-516B 
Neuα-3Galβ-4GlcNAcβ-3Galβ-4Glcβ-Cer36 

            │ 

         SU-6  -  

46 C4U 
NeuAcα-3Galβ-4GlcNAcβ-3Galβ-3GlcNAc-DH 

              │        │     │ 

           SU-6     SU-6  SU-6 

                       
2732  

47 SA(3')-LNFP-II 
NeuAcα-3Galβ-3GlcNAcβ-3Galβ-4Glc-DH 

              │ 

         Fucα-4 

                           
396  

48 SA(3')-LNFP-III 
NeuAcα-3Galβ-4GlcNAcβ-3Galβ-4Glc-DH 

              │ 

         Fucα-3 

                           
175  

49 GSC-64 
NeuAcα-3Galβ-4GlcNAcβ-3Galβ-4Glcβ-Cer36 

              │ 

         Fucα-3  -  
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50 GSC-533 
NeuAcα-3Galβ-4GlcNβ-3Galβ-4Glcβ-Cer36 

              │ 

         Fucα-3  -  

51 GSC-149 
KDNα-3Galβ-4GlcNAcβ-3Galβ-4Glcβ-Cer36 

            │  

       Fucα-3  -  

52 GSC-472 
Neuα-3Galβ-4GlcNAcβ-3Galβ-4Glcβ-Cer36 

            │ 

       Fucα-3  -  

53 GSC-268 

     SU-6 

        │ 

NeuAcα-3Galβ-4GlcNAcβ-3Galβ-4Glcβ-Cer36 

              │ 

         Fucα-3 

                       
1392  

54 GSC-268 deNAc 

   SU-6 

      │ 

Neuα-3Galβ-4GlcNβ-3Galβ-4Glcβ-Cer36 

            │ 

       Fucα-3 

                           
249  

55 GSC-269 

           SU-6 

              │ 

NeuAcα-3Galβ-4GlcNAcβ-3Galβ-4Glcβ-Cer36 

              │ 

         Fucα-3 

                           
447  

56 GSC-406 

         SU-6 

            │ 

Neuα-3Galβ-4GlcNAcβ-3Galβ-4Glcβ-Cer36 

            │ 

       Fucα-3 

                           
419  

57 GSC-270 

     SU-6  SU-6 

        │     │ 

NeuAcα-3Galβ-4GlcNAcβ-3Galβ-4Glcβ-Cer36 

              │ 

         Fucα-3 

                       
3219  

58 GSC-220 
NeuAcα-3Galβ-4GlcNAcβ-3Galβ-4GlcNAcβ-3Galβ-4Glcβ-Cer36 

              │              │ 

         Fucα-3         Fucα-3 

                             
24  

59 GSC-221 
NeuAcα-3Galβ-4GlcNAcβ-3Galβ-4GlcNAcβ-3Galβ-4Glcβ-Cer36 

                             │ 

                        Fucα-3 

                           
527  

60 MSMFLNH 

        Galβ-4GlcNAcβ-6 

              │       │ 

         Fucα-3       Galβ-4Glc-DH 

                      │ 

NeuAcα-3Galβ-3GlcNAcβ-3 

                               
1  

61 A2F(2-3) 

NeuAcα-3Galβ-4GlcNAcβ-2Manα-6         Fucα-6 

                            │              │ 

                            Manβ-4GlcNAcβ-4GlcNAc-DH 

                            │ 

NeuAcα-3Galβ-4GlcNAcβ-2Manα-3 

                       
3575  

62 P22-1 (GTP 3N(2,3)-3A(2,6)+F) 

 NeuAcα-3Galβ-4GlcNAcβ-6 

                       │ 

NeuAcα-3Galβ-4GlcNAcβ-2Manα-6         Fucα-6 

                            │              │ 

                            Manβ-4GlcNAcβ-4GlcNAc-DH 

                            │ 

NeuAcα-3Galβ-4GlcNAcβ-2Manα-3 

                           
211  

63 P6-1 (GTP 4N(2,3)-4A+F) 

 NeuAcα-3Galβ-4GlcNAcβ-6 

                       │ 

NeuAcα-3Galβ-4GlcNAcβ-2Manα-6         Fucα-6 

                            │              │ 

                            Manβ-4GlcNAcβ-4GlcNAc-DH 

                            │ 

NeuAcα-3Galβ-4GlcNAcβ-2Manα-3 

                       │ 

 NeuAcα-3Galβ-4GlcNAcβ-4 

                           
139  

64 P7-2 (GTP 4N(2,3)-4A+1R+F) 

                NeuAcα-3Galβ-4GlcNAcβ-6 

                                      │ 

NeuAcα-3Galβ-4GlcNAcβ-3Galβ-4GlcNAcβ-2Manα-6         Fucα-6 

                                           │              │ 

                                           Manβ-4GlcNAcβ-4GlcNAc-DH 

                                           │ 

               NeuAcα-3Galβ-4GlcNAcβ-2Manα-3 

                                      │ 

                NeuAcα-3Galβ-4GlcNAcβ-4 

                           
137  
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65 P8-1 (GTP 4N(2,3)-4A+2R+F) 

 NeuAcα-3Galβ-4GlcNAcβ-3Galβ-4GlcNAcβ-6 

                                      │ 

NeuAcα-3Galβ-4GlcNAcβ-3Galβ-4GlcNAcβ-2Manα-6         Fucα-6 

                                           │              │ 

                                           Manβ-4GlcNAcβ-4GlcNAc-DH 

                                           │ 

               NeuAcα-3Galβ-4GlcNAcβ-2Manα-3 

                                      │ 

                NeuAcα-3Galβ-4GlcNAcβ-4 

                           
185  

66 GM2 
GalNAcβ-4Galβ-4Glcβ-Cer 

         │ 

  NeuAcα-3  -  

67 GM1 
Galβ-3GalNAcβ-4Galβ-4Glcβ-Cer 

               │ 

        NeuAcα-3  -  

68 GM1-penta 
Galβ-3GalNAcβ-4Galβ-4Glc-DH 

               │ 

        NeuAcα-3  -  

69 GM1(Gc) 
Galβ-3GalNAcβ-4Galβ-4Glcβ-Cer 

               │ 

        NeuGcα-3  -  

70 GM1(Gc)-penta 
Galβ-3GalNAcβ-4Galβ-4Glc-DH 

               │ 

        NeuGcα-3  -  

71 GSC-195 
KDNα-3Galβ-3GalNAcβ-4Galβ-4Glcβ-Cer36  

                     │  

                KDNα-3 

                           
107  

72 GD1a 
NeuAcα-3Galβ-3GalNAcβ-4Galβ-4Glcβ-Cer 

                       │ 

                NeuAcα-3  -  

73 GD1a-hexa 
NeuAcα-3Galβ-3GalNAcβ-4Galβ-4Glc-DH 

                       │ 

                NeuAcα-3 

                       
2356  

74 GSC-335 
           SU-6 

              │ 

NeuAcα-3Galβ-3GalNAcβ-4Galβ-4Glcβ-Cer36 

                           
547  

75 GSC-488 NeuAcα-3Galβ-3GalNAcβ-C30 

                             
50  

76 GSC-489 
           SU-6 

              │ 

NeuAcα-3Galβ-3GalNAcβ-C30 

                           
963  

77 GSC-154 
NeuAcα-3Galβ-4GlcNAcβ-6Galβ-4Glcβ-Cer36 

              │ 

         Fucα-3  -  

78 GSC-441 NeuAcα-3Galβ-4GlcNAcβ-6GalNAcα-3Galβ-4Glcβ-C30 

                       
1193  

79 GSC-384 
NeuAcα-3Galβ-4GlcNAcβ-4GalNAcβ-3Galβ-4Glcβ-C30 

              │ 

         Fucα-3 

                           
478  

80 GSC-284 
GalNAcβ-6Galβ-4Glcβ-Cer36 

         │ 

  NeuAcα-3 

                           
531  

81 GSC-27 NeuAcα-6Galβ-Cer36 

                             
39  

82 GSC-61 NeuAcα-6Galβ-4Glcβ-Cer36  -  

83 NeuAcα-(6')Lac-AO NeuAcα-6Galβ-4Glc-AO 

                           
335  

84 NeuAcβ-(6')Lac-AO NeuAcβ-6Galβ-4Glc-AO 

                           
476  

85 Neuα-(6')Lac-AO Neuα-6Galβ-4Glc-AO 

                           
390  

86 NeuAcα-(6')LN NeuAcα-6Galβ-4GlcNAc-DH  -  

87 NeuAcα-(6')LN-AO NeuAcα-6Galβ-4GlcNAc-AO  -  
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88 Neu5,9Ac-(6')LN (9-OAc)NeuAcα-6Galβ-4GlcNAc-DH  -  

89 LSTb 
 Galβ-3GlcNAcβ-3Galβ-4Glc-DH 

       │ 

NeuAcα-6 

                       
1243  

90 LSTc NeuAcα-6Galβ-4GlcNAcβ-3Galβ-4Glc-DH  -  

91 GSC-397 NeuGcα-6Galβ-3GlcNAcβ-3Galβ-4Glcβ-C30  -  

92 GSC-97 
NeuAcα-6Galβ-4GlcNAcβ-3Galβ-4Glcβ-Cer36 

             │ 

        Fucα-3  -  

93 SA(6')-LNFP-VI 
NeuAcα-6Galβ-4GlcNAcβ-3Galβ-4Glc-DH 

                             │ 

                        Fucα-3  -  

94 MSLNH 

NeuAcα-6Galβ-4GlcNAcβ-6 

                      │ 

                      Galβ-4Glc-DH 

                      │ 

        Galβ-3GlcNAcβ-3  -  

95 MSLNnH-I 

        Galβ-4GlcNAcβ-6 

                      │ 

                      Galβ-4Glc-DH 

                      │ 

NeuAcα-6Galβ-3GlcNAcβ-3 

                           
138  

96 DSLNnH 

NeuAcα-6Galβ-4GlcNAcβ-6 

                      │ 

                      Galβ-4Glc-DH 

                      │ 

NeuAcα-6Galβ-4GlcNAcβ-3  -  

97 MFMSLNnH 

        Galβ-4GlcNAcβ-6 

              │       │ 

         Fucα-3       Galβ-4Glc-DH 

                      │ 

NeuAcα-6Galβ-3GlcNAcβ-3  -  

98 A2(2-6) 

NeuAcα-6Galβ-4GlcNAcβ-2Manα-6 

                            │ 

                            Manβ-4GlcNAcβ-4GlcNAc-DH 

                            │ 

NeuAcα-6Galβ-4GlcNAcβ-2Manα-3 

                             
66  

99 AGP-Bi-Ac2 

NeuAcα-6Galβ-4GlcNAcβ-2Manα-6 

                            │ 

                            Manβ-4GlcNAcβ-4GlcNAc-DH 

                            │ 

NeuAcα-6Galβ-4GlcNAcβ-2Manα-3 

                           
700  

100 AGP-Bi-Gc2 

NeuGcα-6Galβ-4GlcNAcβ-2Manα-6 

                            │ 

                            Manβ-4GlcNAcβ-4GlcNAc-DH 

                            │ 

NeuGcα-6Galβ-4GlcNAcβ-2Manα-3 

                       
1222  

101 GSC-442 
GalNAcβ-4Galβ-4Glcβ-Cer36   

         │  

  NeuAcα-6 

                             
70  

102 GSC-68 NeuAcα-6Galβ-3GalNAcβ-4Galβ-4Glcβ-Cer36 

                           
652  

103 GSC-155 
 Galβ-3GalNAcβ-4Galβ-4Glcβ-Cer36   

       │  

NeuAcα-6 

                           
444  

104 GSC-107 
NeuAcα-6Galβ-3GalNAcβ-4Galβ-4Glcβ-Cer36  

              │  

       NeuAcα-6 

                           
704  

105 GSC-70 NeuAcα-6Galβ-6GalNAcβ-4Galβ-4Glcβ-Cer36 

                           
174  

106 DST 
NeuAcα-3Galβ-3GalNAc-DH 

              │ 

       NeuAcα-6 

                       
1086  

107 DST-AO 
NeuAcα-3Galβ-3GalNAc-AO 

              │ 

       NeuAcα-6 

                       
3027  

108 GSC-490 
NeuAcα-3Galβ-3GalNAcβ-C30 

              │ 

       NeuAcα-6  -  
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109 DSLNT 
NeuAcα-3Galβ-3GlcNAcβ-3Galβ-4Glc-DH 

              │ 

       NeuAcα-6 

                       
3213  

110 A3 

NeuAcα-3Galβ-4GlcNAcβ-2Manα-6 

                            │ 

                            Manβ-4GlcNAcβ-4GlcNAc-DH 

                            │ 

NeuAcα-3Galβ-4GlcNAcβ-4Manα-3 

                       │ 

 NeuAcα-6Galβ-4GlcNAcβ-2 

                       
3473  

111 GSC-118 
NeuAcα-3Galβ-3GalNAcβ-4Galβ-4Glcβ-Cer36   

              │  

       NeuAcα-6 

                           
195  

112 GSC-230 NeuAcα-8NeuAcα-3Galβ-Cer36 

                           
223  

113 GSC-231 NeuAcα-8NeuAcα-6Galβ-Cer36 

                             
58  

114 GSC-439 NeuAcα-8NeuAcα-8NeuAcα-6Galβ-Cer36 

                           
454  

115 GD3 NeuAcα-8NeuAcα-3Galβ-4Glcβ-Cer 

                           
391  

116 GD3-tetra-AO NeuAcα-8NeuAcα-3Galβ-4Glc-AO 

                           
873  

117 GSC-229 NeuAcα-8NeuAcα-3Galβ-4Glcβ-Cer36 

                           
319  

118 GSC-437 NeuAcα-8NeuAcα-8NeuAcα-3Galβ-4Glcβ-Cer36  -  

119 GD2 
      GalNAcβ-4Galβ-4Glcβ-Cer 

               │ 

NeuAcα-8NeuAcα-3 

                           
228  

120 GD1b 
Galβ-3GalNAcβ-4Galβ-4Glcβ-Cer 

               │ 

NeuAcα-8NeuAcα-3 

                           
800  

121 GQ1b 
NeuAcα-8NeuAcα-3Galβ-3GalNAcβ-4Galβ-4Glcβ-Cer 

                               │ 

                NeuAcα-8NeuAcα-3 

                           
673  

122 SA3(α8) NeuAcα-8NeuAcα-8NeuAc-DH 

                       
4026  

123 SA5(α8)* NeuAcα-8NeuAcα-8NeuAcα-8NeuAcα-8NeuAc-DH 

                     
31735  

124 SA7(α8)* NeuAcα-8NeuAcα-8NeuAcα-8NeuAcα-8NeuAcα-8NeuAcα-8NeuAc-DH 

                     
28224  

125 SA9(α8)* NeuAcα-8NeuAcα-8NeuAcα-8NeuAcα-8NeuAcα-8NeuAc-8NeuAcα-8NeuAc-

8NeuAcα-DH 

                     
32320  

126 GT1a 
NeuAcα-8NeuAcα-3Galβ-3GalNAcβ-4Galβ-4Glcβ-Cer 

                               │ 

                        NeuAcα-3 

                           
781  

127 GT1b 
NeuAcα-3Galβ-3GalNAcβ-4Galβ-4Glcβ-Cer 

                       │ 

        NeuAcα-8NeuAcα-3 

                       
2104  

128 GSC-96 NeuAcα-9NeuAcα-3Galβ-4Glcβ-Cer36 

                              
-    

a
 the oligosaccharide probes are all lipid-linked, neoglycolipids (NGLs) or glycosylceramides and are from the collection assembled 

in the course of research in the Glycosciences Laboratory. For definition of the lipid moieties of the probes, please see 

https://glycosciences.med.ic.ac.uk/docs/lipids.pdf. 
b
 Numerical scores for the binding signals are shown as means of duplicate spots 

at 5 fmol per spot. 
c
 -, signal less than 1. 

 

https://glycosciences.med.ic.ac.uk/docs/lipids.pdf
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Figure S1. Levels of polysialic acid on SK-N-SH and SH-SY5Y cells. PSia expression was determined using the anti-

PSia antibody (mab735). The experiment was performed three times with duplicate samples in each experiment. 

Error bars represent mean ± SD. 

 

 

 

 

 

Figure S2. Observed glycosidic angles in 52SFK / PSia complex structures. A) Torsion angles observed for PSia of 

different DP in the complex crystal structures. All angles adopt similar conformations. B) Definition of the glycan 

torsion angles as in (58).  
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Figure S3. A) Sequence alignment of AdV knobs closely related to HAdV-52. While several simian AdV types have 

functionally conserved motives, the most closely related short fiber knobs of HAdV-40 and -41 largely differ in this 

region. Sequences are ordered by name. B) Phylogenetic cladogram of the short fiber knob sequences based on 

ClustalOmega alignment. Although SAdV-19 possesses both the RGN and ‘steering rim’ motives, it is more closely 

related to HAdV-41 than to other SAdV types. SAdV-2 does not cluster with the other types. C) Poisson-Boltzmann 

electrostatic surface potentials of known HAdV fiber knobs across all species. No other human type with a known 

structure possesses a sophisticated ‘steering rim’ on their surface. In the case of HAdV-41 short fiber knob, a 

severely disordered G strand is thought to obstruct the electropositive patch on the side (59). HAdV-5 possesses an 

electropositive patch, but lacks a useable sialic acid binding and has never been reported to use sialic acid as 

attachment receptor. Instead, it has been used as a negative control in many studies (see also Fig. 2). Electrostatic 

surface potentials have been calculated at ±3 kT/e. 
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Abstract 

Human Adenovirus type 36 (HAdV-D36) is a member of HAdV species D and has first been isolated in the early 

80’s. The virus is commonly associated with gastroenteritis, but its pathogenicity profile and infectious routes 

are not well understood. Interestingly, HAdV-36 is found in human adipose tissue, and it has been causally 

linked to obesity in animals in a number of studies. In the course of these studies, HAdV-D36 has been 

demonstrated to infect animals such as chickens or rats and to spread from infected to healthy chickens 

through natural routes, which is unusual for HAdVs.  

Despite the extensive research that has been conducted on the virus following this discovery, there is currently 

no information about its receptor profile. We investigated the attachment factor portfolio of HAdV-D36 using a 

combined structural biology and virology approach. The HAdV-D36 fiber knob domain (FK), which is responsible 

for the primary attachment of HAdVs to host cells, possesses a significantly elongated DG loop that alters 

known binding interfaces for established receptors such as the coxsackie- and adenovirus receptor (CAR) and 

CD46. Our data indicate that HAdV-D36 attaches to host cells using sialic acid.-containing glycans, CAR, and an 

unknown protein or glycoprotein. However, bioinformatic comparison of the fiber shaft with other HAdVs 

suggests that CAR is not used for productive infection. Sialic acids are recognized at the same binding site used 

by other HAdVs of species D such as HAdV-D37, although with lower IC50 values in cell attachment experiments. 

Using glycan microarrays, we demonstrate that HAdV-36 displays a binding preference for glycans containing a 

rare sialic acid variant, 4-O,5-N-diacetylneuraminic acid, over the more prominent 5-N-acetylneuraminic acid. 

To date, this sialic acid variant has not been detected in humans, although it can be synthesized by various 

animal species, including a range of domestic and livestock animals. The structural analysis of complex 

structures explains this preference, and shows that the interactions with the diacetylneuraminic acid are 

specific. Taken together, our results indicate that HAdV-D36 has evolved to recognize a specialized set of 

primary attachment receptors that is different from those of other known HAdV types and coincides with a 

unique host range and pathogenicity profile. 
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Introduction 
 

Human adenovirus 36 (HAdV-D36) is a member of HAdV species D. The virus was first isolated in 1983 from a 

gastroenteritis patient [1]. HAdV-D36 was found to be serologically unique, which prompted Dhurandhar et al. 

to use it as an experimental replacement for SMAM-1, a chicken adenovirus that is associated with excessive 

fat accumulation in infected animals [2,3]. Interestingly, HAdV-D36 was shown to infect chickens, rhesus 

monkeys, marmosets, mice, and rats alike, causing obesity in all of them [2,4-6]. Moreover, the virus was 

shown to be transmitted horizontally from infected to healthy chickens through natural routes [5]. Both 

findings were surprising, since human adenoviruses (HAdVs) usually do not infect other species by natural 

routes, and predominantly infect mucous epithelial tissues. In HAdV-D36-infected chickens, however, the virus 

accumulated in fat tissue as opposed to skeletal muscle. In addition, the virus caused the differentiation of a 

murine preadipocyte cell line, while the CAR-binding HAdV-C02 required heterologous overexpression of the 

coxsackie- and adenovirus receptor (CAR) for efficient infection and did not induce adipogenesis [7]. After 

recognizing the adipogenic potential of the virus, large-scale epidemiological studies have been carried out in 

order to investigate a possible correlation of acute HAdV-D36 infection or seropositivity and human obesity. 

Indeed, significantly elevated HAdV-D36 seroprevalence was found in obese patients in multiple studies 

(reviewed in [8,9]), and viral DNA was isolated from human adipose tissue [10,11]. Three findings suggest a 

causative role of HAdV-D36 in human obesity. For one, infection of human adipose-derived stem cells (hASCs) 

with HAdV-D36 (but not HAdV-C02) resulted in lineage commitment, differentiation, and lipid accumulation, 

and natural infection of hASCs significantly increased the adipogenic potential [11]. This adipogenic effect can 

be attributed to the action of the HAdV-D36 E4ORF1 protein [12]. Secondly, obese patients with HAdV-D36 

infections showed reduced serum lipids, while HAdV-D36 infection enhanced lipid and glucose uptake by 

adipose tissue explants and in human skeletal muscle cells, resulting in elevated intracellular lipid content and 

increased lipogenesis [13-15]. Thirdly, HAdV-D36 infections of human adipose tissues were found to be 

accompanied by abnormal fat deposits, e.g. in the thorax and abdomen - while sparing other body parts [16]. 

Since the rapid and worldwide increase of obesity since the 1980’s is reminiscent of an infectious epidemic, 

several authors speculate that HAdV infections might be one of the factors contributing to this phenomenon 

[17-20]. However, the role of HAdV-D36 infection in human adiposity is still controversially discussed [21]. 

Despite the extensive research that has been conducted on the virus, information about the determinants of its 

unusual tropism and its ability to horizontally spread between animals has remained elusive to date. This 

prompted us to investigate the virus’ primary attachment receptor portfolio, which is believed to be one of the 

determinants of HAdV tropism, employing a combined structural biology and virology approach. We postulate 

that the virus engages one or several unique receptors that might at least partially account for the observed 

phenomena.  
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Results 
 

HAdV-D36 uses a sialic acid-containing glycoprotein and a protein receptor to attach to A549 cells  

We initially screened for a cell line that allows for efficient attachment of 
35

S-labeled HAdV-D36 virions. Due to 

the unusual tissue tropism of the virus, we tested a range of cell types originating from different tissues such as 

lung, adipose, small intestine, liver, and kidney (Figure S1 A,B). Among these cells, A549 (human 

adenocarcinoma alveolar basal epithelium cells) proved to be most suitable for HAdV-D36 attachment assays. 

We then sought to investigate the chemical nature of the factor(s) mediating the attachment using differently 

pretreated A549 cells.  

 

 

Figure 1 | HAdV-D36 uses CAR and sialic-acid-containing glycotopes to attach to A549 cells by its fiber knob. A Binding of 
35

S-labelled HAdV-D36 virions to A549 cells pretreated with different concentrations of the protease ficin. B Binding of 
35

S-

labelled HAdV-D36 virions to A549 cells cultured in the presence and absence of the metabolic inhibitor BenzylGalNAc C 

Binding of 
35

S-labelled HAdV-D36 FK to different CHO cell lines expressing different human cell surface proteins (CAR, CD46, 

CD21; see legend on the right), or overexpressing sialic acid (Pro5). CHO-K1 and CHO-mock cells represent control cell lines. 

Y-axis shows the amount of knobs bound to cells, represented as CPM (counts per minute). All experiments were performed 

three times with duplicate samples. Error bars represent mean ± SD. * P of < 0.05 and ** P of < 0. 



4 
 

Pretreatment of cells with proteases ficin (Figure 1A) and proteinase K (Figure S2A) significantly reduced the 

attachment of 
35

S-labeled HAdV-D36 virions, whereas other proteases such as bromelain and V8 did not show 

an effect (Figure S2B-C). Additionally, we treated A549 cells with inhibitors of the de novo synthesis of 

glycolipids as well as N- and O-linked glycosylation and tested for their inhibitory potency on virion attachment. 

Treatment with Benzyl-GalNAc, an inhibitor of N-glycosylation, significantly reduced virus binding (Figure 1B). 

Tunicamycin, which inhibits O-glycosylation, showed a moderate reduction in virus binding which was 

statistically non-significant (Figure S2D). No effect was observed for pretreatment of cells with P4 (an inhibitor 

of glycolipid synthesis) or heparinase III (an enzyme which removes cell surface heparan sulfate; Figure S2E-F), 

as well as for the pre-treatment of cells with soluble heparin (Figure S2G). 

We therefore concluded that the surface molecules mediating the attachment of HAdV-D36 virions to A549 

cells must be a protein and/or a glycoprotein entity rather than glycolipids or glycosaminoglycans (GAGs). We 

screened for possible involvement of known HAdV attachment factors by testing virion binding to a library of 

CHO cell lines that overexpress the coxsackie- and adenovirus receptor (CAR), the complement regulatory 

protein CD46, and a number of candidate cell surface receptors such as CD21, ICAM-1, and CD55, including a 

control cell line (CHO-K1) and a mock-transfected CHO cell line (Figure S3). However, these experiments did not 

reveal any clear receptor candidate, as almost all cell lines displayed higher binding levels than the control. 

Variations were high even between control and mock-treated cells, and there was no clear tendency for 

functional usage of any of the overexpressed proteins. When using the FK domain instead of virions, however, 

we detected statistically significant attachment only for CHO cells that either ectopically express CAR or display 

high levels of sialic acid (Pro5) (Figure 1C). We thus hypothesized that HAdV-D36 uses both CAR and sialic acid-

containing glycoproteins for cell attachment, and that both factors are recognized simultaneously by the FK 

domain. 

We verified these results in a number of cell attachment inhibition assays and comparing HAdV-D36 virions to 

the known sialic acid binder HAdV-D37 and the CAR-binding HAdV-C05. We used HAdV-D37 as a control 

throughout this study, since it is functionally and structurally well-characterized and displays a more specific 

tropism and host range than HAdV-D36 - despite apparent similarities in its fiber knob. HAdV-D37 is a causative 

agent of epidemic keratoconjunctivitis in humans [22]. Similarly to HAdV-D36, the virus is known to engage 

sialic acid-containing glycans and uses the O-glycosylation motif GD1a as a primary attachment factor [23-25]. 

Treatment of A549 cells with V. cholerae neuraminidase significantly inhibited the attachment of HAdV-D36 

viral particles, about half as efficiently as that of HAdV-D37 (Figure 2A). Pre-incubation of virions with soluble 

5-N-acetylneuraminic acid (Neu5Ac) resulted in a similar pattern, with an IC50 of about 25 mM for HAdV-D36 

and about 12 mM for HAdV-D37 (Figure 2B). Pre-incubation of HAdV-D36 virions with the soluble domain 1 of 

CAR (CAR-D1), which mediates the cell attachment of other HAdV types, also decreased attachment levels, 

although slightly less effectively than those of CAR-binding HAdV-C05 (Figure 2C). The canonical binding site for 

CAR and the sialic acid binding site of other species D HAdVs are located on distinct and spatially separated 

parts of the knob domain. Therefore, CAR and Neu5Ac engagement are unlikely to interfere with each other. 

Indeed, pre-incubation of A549 cells with both CAR-D1 and Neu5Ac had a synergistic inhibitory effect on virion 

binding (Figure 2D).  
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Figure 2 | CAR and Neu5Ac engagement have a synergistic effect on virion attachment. A Neuraminidase treatment of 

A549 cells reduces HAdV-D36 virion attachment. B Pretreatment of HAdV-D36 virions with sialic acid reduced its attachment 

to A549 cells. 
35

S-labelled HAdV-D36 and -D37 virions were pre-incubated with different concentrations of Neu5Ac. C 

Pretreatment of HAdV-D36 virions with soluble CAR-D1 reduced its attachment to A549 cells. 
35

S-labelled HAdV-D36 and –

C05 virions were pre-incubated with different concentrations of CAR-D1. D Pretreatment with both CAR-D1 and Neu5Ac has 

a synergistic effect on attachment inhibition. The highest concentrations of CAR-D1 (50 µg/mL) and Neu5Ac (50 mM) were 

used. All data is presented in % of control, where control refers to the binding of virions to cells without Neu5Ac and/or CAR-

D1. All experiments were performed three times with duplicate samples. Error bars represent mean ± SD. ** P of < 0.01 and 

*** P of < 0.001. 
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Structure of the HAdV-D36 FK and implications for CAR engagement 

In order to define the regions known to mediate binding to sialic acid, CAR, and other known receptors such as 

CD46, we determined the crystal structure of the HAdV-D36 FK. Like all HAdV fiber knobs, the HAdV-D36 FK is a 

compact trimer. Each monomer is formed by a β sandwich domain, in which the β-strands of the two β-sheets 

(ABCJ and DIHG, respectively) are connected by long, surface-exposed loops. The E and F strands, which are 

present in some knobs are not formed in the case of HAdV-D36.  

 

 

Figure 3 | Structural features of the HAdV-D36 FK. A Poisson-Boltzmann electrostatic potential surface representation of 

the HAdV-D36 FK calculated at ±3 kT/e and shown from a top view along the threefold axis. The HAdV-D36 FK is less 

electropositive than that of HAdV-D37 [25]. B Comparison of the quaternary arrangement of the FKs of HAdV-D36 (gray) 

and HAdV-D37 (green, PDB-ID 1UXE). The HAdV-D36 FK displays a narrower central cavity due to a tilt of the monomers 

towards the threefold axis. The superposition was calculated using all atoms of both trimers. C The HAdV-D36 FK possesses 

long DG loops (red) that are partially ordered and contact the counterclockwise neighboring monomer when viewed from 

the top. D Close-up view of the interactions between the DG loop and the counterclockwise neighboring monomer. Polar and 

hydrophobic interactions are displayed as black and yellow dashes, respectively. 
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The knob possesses three main distinctive features when compared to other species D FKs. Firstly, it has a 

reduced positive charge in comparison to HAdV-D37 and D19p (Figure 3A) [25]. Secondly, the HAdV-D36 FK 

possesses a narrower central cavity compared to the two other knobs (Figure 3B). The reason for this is an 

altered relative arrangement of the monomers in the trimeric knobs (rmsd=0.79Å) rather than a significant 

difference between the monomers of each type (rmsd=0.48Å). Thirdly, HAdV-D36 possesses a significantly 

extended DG loop at located at the side (Figure 3C). With a total length of 21 amino acids, this loop is among 

the largest DG loops found in HAdV FKs. The loop is only partially flexible and forms a number of interactions 

with the clockwise neighboring monomer involving a stretch of nine residues (Figure 3D), probably contributing 

to the extraordinary stability of the fiber knob (Figure S4). Namely, there are interactions between the 

backbone of D300 and the side chain of K202 (AB loop). Additional interactions near the sheet are mediated by 

S304, G306 (both with D359) and K307 (with P187/T204, both AB loop). The bulky K302 forms a salt bridge with 

D359, while the alkane part of its side chain interacts with V223 and L221. Even at a pH below 3, the fiber knob 

still displays a remarkable stability (Tm 64.6°C), which might be one of the prerequisites for its putative enteric 

tropism.  

 

 

Figure 4 | Molecular modelling and SEC analysis of CAR and CD46 binding. A When superposed onto the HAdV-A12 FK 

(blue) in the CAR complex structure (PDB-ID 1KAC), the HAdV-D36 FK (red) heavily clashes with CAR (light gray) through its 

DG loop. B Superposition of HAdV-D36 FK onto HAdV-B11 in the CD46 complex structure (PDB-ID 2O39). The HAdV-D36 DG 

loop is located proximally in front of CD46 (dark gray) and would likely interfere with CD46 binding without producing direct 

clashes. C Size exclusion chromatography of the HAdV-D36 FK / CAR complex. HAdV-D36 FK was incubated with soluble CAR-

D1 for 20 minutes prior to SEC. Due to the small size of CAR-D1, the shift of the complex (red line) in comparison to 

uncomplexed HAdV-D36 FK (blue line) is weak. However, SDS-PAGE of the peak fraction (orange bar) confirmed the 

formation of a complex. Green line = uncomplexed CAR-D1. Equal amounts of FK and CAR were used for optimal 

comparability. D Size exclusion chromatography of HAdV-D36 and CD46. When compared to HAdV-B11, which readily forms 

complexes of different stoichiometry with the soluble extracellular portion of CD46 (CD46-D4, green line) and the elution 

profile of the unliganded HAdV-D36 FK, it becomes obvious that HAdV-D36 FK and CD46-D4 do not form a stable complex 

(red line). The proteins causing the respective peaks are noted below the chromatograms.  
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Interestingly, the DG loop is located near the canonical binding interfaces of both CAR (determined in complex 

with HAdVs A12 and D37, PDB IDS 1KAC and 2J12) and CD46 (in complex with HAdVs B11 and B21, PDB IDs 

2O39 and 3L89), and the length of this loop is one of the determinants for binding of both receptors (reviewed 

in [26]). Although the residues directly interacting with CAR, mainly located on the AB loop, are generally 

conserved in HAdV-D36 and the main part of the canonical binding site shows a high shape complementarity to 

CAR (assessed by the SC program in CCP4 [27], data not shown), structural superposition of the HAdV-D36 FK 

with those complex structures results in major clashes between the DG loop of the counterclockwise adjacent 

FK monomer and CAR (Figure 4A). These clashes could only be overcome by a major rearrangement in the loop 

involving the dissociation of the inter-monomer contacts, or by altering the binding region. HAdV-D36 FK 

readily forms a stable complex with the distal extracellular domain of CAR (CAR-D1) using a protocol similar to 

that used for the formation of the HAdV-D37/CAR-D1 complex (Figure 4C) [28]. However, the physiological 

relevance of CAR binding for HAdV-D36 infection is questionable. As such, HAdV-D36 (but not HAdV-C02) is 

capable of infecting and differentiating mouse preadipocytes that do not express human CAR [7]. The length of 

the HAdV-D36 fiber shaft is very similar to that of HAdV-D37. The latter also binds to CAR, but cannot use it for 

productive infection, likely due to the sturdiness of its fiber that prevents engagement of the secondary 

receptor. Similarly to HAdV-D37 and -D26, HAdV-D36 has only seven to eight predicted repeat units and is 

lacking a non-repeat motif between repeat three and four that is thought to be crucial for fiber bending [29]. 

As a confirmatory measure, we also inspected the interference of the long DG loop with potential binding of 

CD46, the second protein HAdV receptor with a known interface. The DG loop is expected to interfere with a 

potential CD46 binding site, although no direct clashes were observed in the model (Figure 4B). The major 

determinants of CD46 binding that have been determined for HAdV-B11, B07, and B14 are not conserved in 

HAdV-D36 [30]. In constrast to CAR, CD46 does not form a stable complex with HAdV-D36 FK (Figure 4D). 

The alignment of the FK sequences of all species D serotypes (including types from HAdV-D08 to D56) reveals 

two major clades of similar size (Figure 5A). The 18 members of the ‘HAdV-D36-like’ clade possess similarly 

elongated DG (or FG) loops, while the 17 knobs of the ‘HAdV-D37-like’ clade containing all EKC-causing HAdVs 

possess DG/FG loops shorter by eight to eleven residues. Species D is the largest HAdV species and contains 47 

types, many of which result from homologous recombination occurring upon co-infection of multiple species D 

HAdVs in the gut [31,32]. Many of the species D types have low seroprevalence rates and no associated disease 

or tissue profile [31-34]. From what is known in the literature so far, there seems to be no consistent tissue 

tropism within either of the two clades, except for the fact that EC-causing HAdVs are so far exclusively found 

in the ‘HAdV-D37-like’ clade [32,35]. However, to our knowledge, none of the HAdVs of the ‘HAdV-D36-like 

clade’ has a reported primary attachment receptor. Since the DG/FG residues that confer specific inter-

monomer contacts are conserved within the ‘HAdV-D36-like’ clade, we postulate that there are similar 

implications for the receptor binding of these knobs as well. Similar assumptions have been made previously 

based on the HAdV-D36 genome sequence [36]. 

The amino acids of the G strand directly adjacent to the DG loop show a similar conservation pattern as the 

loop itself. The G strand forms a large portion of the trimeric interface and is located at the base of the central 

cavity, right underneath the canonical sialic acid binding site. Visual analysis of the trimer interfaces of the 

HAdV-D36 and D37 FKs revealed a stretch of three amino acids within this strand (VSN311-313 in HAdV-D36 

and YGT308-310 in HAdV-D37) that likely determines the relative orientation of the monomers with respect to 

each other, thus accounting for the narrower trimer interface in HAdV-D36 (Figure 5B,C). This area also harbors 

the sialic acid binding site of HAdV-D37.  
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Figure 5 | Conservation of DG loop and trimer interface among HAdV species D. A Excerpt of the alignment of all species D 

HAdVs from type HAdV-D08 to D56 performed with Clustal Omega [37]. The 18 HAdV-types belonging to the 

‘HAdV-D36-like’ clade possess elongated DG loops (yellow box) and a VSN or VTN interface configuration (green). The 17 

types belonging to the ‘HAdV-D37-like’ clade have shorter DG loops and a YGT (light pink) or YGN (purple) interface 

configuration. HAdV-D15 could not be assigned to any of the two clades. B VSN trimer interface (green) as found in the 

HAdV-D36 FK. C YGT trimer interface as observed in the HAdV-D37 FK (PDB-ID 1UXE). 

 

The glycan binding site of HAdV-D36 FK is similar to other species D HAdVs 

The structure of the HAdV-D36 FK in complex with the synthetic Neu5Ac analogue α-2-O-methyl-Neu5Ac 

confirms that this compound binds to the canonical sialic acid binding site (Figure 6A). In the case of the HAdV-

D37 fiber knob, the two key polar interactions are formed between residue K345 and the carboxyl group of 

Neu5Ac and between the backbone of P317 and the sugar’s amide nitrogen, respectively (Figure 6B). Both 

interactions are formed with the β-face of the sugar and are also present in the HAdV-D36 complex structure, 

although the analogous position of P317 is occupied by a valine (V320) in HAdV-D36.  

The narrower binding cavity has several implications for the way HAdV-D36 engages Neu5Ac. For one, this 

arrangement allows HAdV-D36 to contact the sugar from the α-face, using a second monomer to form a direct 

hydrogen bond between N313 and the N-acetyl group of Neu5Ac, as well as a water-mediated contact 

between the backbone of W348 and the sugar’s glycerol chain. HAdV-D37, on the other hand, only mediates 

water-bridged contacts to the α-face. Secondly, the binding cavity for the N-acetyl group is rearranged and 

becomes less spacious in the HAdV-D36 FK (Figures 3A and 6A-C). The residues forming this cavity are Y315 as 
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well as V311 and F325 from the monomer facing the α-side of the sugar. In HadV-D37, the N-acetyl group is 

accommodated in a canyon-shaped cavity formed mostly by two tyrosines (Y312, Y308) from the neighboring 

monomer, as well as V322, which occupies the position analogous to F325. Overall, the HAdV-D36 FK 

quaternary structure causes a shift of the sugar in the direction of the α-face (Figure 6C). 

 

 

Figure 6 | Comparison of the Neu5Ac binding modes of HAdV-D36 and HAdV-D37. A Neu5Ac (yellow) binding mode 

observed for the HAdV-D36 FK (gray surface). The structure was solved with α-2-O-methyl-Neu5Ac, and methyl functions 

have been left out for clarity. Residues marked with a ‘*’ are contributed by the clockwise neighboring monomer. Polar key 

contacts are mediated by K350 and V320 (purple), while the hydrophobic binding cavity for the 5-acetyl function is formed 

by V311, V327*, and F352*. W348 (yellow) contacts the glycerol function by a water-bridged contact. The three residues 

N313, Y315, and P323 (cyan) put steric constraints onto the sugar’s O4 atom, while N313* contacts the 5-acetyl group by 

means of a hydrogen bond from the α-face. The α- and β- faces of Neu5Ac are marked with an arrow. B Neu5Ac binding 

mode observed for HAdV-D37 (PDB-ID 1UXA). Coloring according to A. Unlike N313 in HAdV-D36, T310 (yellow) does not put 

steric pressure onto the Neu5Ac O4, and T310* contacts the sugar via a water-bridged polar contact. C Relative placement 

of Neu5Ac complexed to HAdV-D36 FK (yellow) and HAdV-D37 FK (teal) upon superposition of the knob trimers. The sugars 

show a prominent relative shift. D Comparison of the two binding modes upon superposition of only one monomer. The 

binding modes are largely similar, and the differences observed in C largely originate from an altered relative placement of 

the monomers within the knob.  



11 
 

When aligning two monomers of the HAdV-D36 and D37 fiber knobs (Figure 6D), it becomes apparent that this 

shift is not caused by differences in the tertiary structure. Despite the overall similarity of the binding, our 

glycan array, attachment inhibition, and hemagglutination data consistently show that HAdV-D36 has a lower 

affinity for Neu5Ac than HAdV-D37 (Figures 7 and S5, 2B, S6). This discrepancy is likely to originate at least 

partially from the lower electropositive charge of the HAdV-D36 binding pocket. 

 

HAdV-D36 preferentially binds to a rare sialic acid variant 

We employed glycan array screening with a library of about 500 compounds in order to identify sialic acid-

containing glycans that support efficient binding of the HAdV-D36 FK (Figure 7A, Table S1). The array showed a 

low overall fluorescence signal and no elevated signal for the GD1a glycan. Interestingly, one glycan gave the 

highest signal by far: a 3’sialyllactose (3’SL) probe containing a rare sialic acid variant with an additional 

4-O-acetylation (Neu4,5Ac2, the glycan will be referred to as 4-O-Ac-3’SL). Glycans containing a 3’SL motif 

capped with the more common Neu5Ac showed little to no binding. In contrast, HAdV-D37 showed preferential 

binding to 3’SL over 4-O-Ac-3’SL and also bound to several other sialylated probes in the array, in overall 

agreement with our earlier findings (Figure S5). A second array that specifically probed for the binding to 

differentially acetylated 3’SL variants confirmed these results (Figure 7B,C). The gene conferring 4-O-

acetlyation of Neu5Ac in vertebrates has not been characterized to date [38,39]. Only few studies detected 

4-O-acetylated sialic acid in humans [40,41], and Neu4,5Ac2 was not among them. The sialic acid variant has 

not been detected in more recent screenings of human tissues using lectins from Mouse Hepatitis Virus Strain S 

(MHV-S) and Infectious Salmon Anemia Virus (ISAV). However, Neu4,5Ac2 is readily detected in a wide range of 

domesticated animals such as chickens, mice, rats, rabbits, guinea pigs, or horses, as well as a large number of 

fish species including salmon, cod, herring, and trout [39,42,43]. Furthermore, it is present as one of several 

sialic acid modifications on certain bacteria such as E.coli K1 and N. meningitidis [44]. As described in the 

introduction, several of these animals have been shown to be infected by HAdV-D36. The physiological role of 

4-O-acetylation and its apparent absence in some animals remain enigmatic. One current theory is that its 

function may lie in the inhibition of pathogen sialidases (reviewed in [45]). 4-O-Ac-3’SL has a more restricted 

species distribution than Neu4,5Ac2 and has been reported only in the milk of Australian monotremes such as 

the short-beaked echidna [46]. 
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Figure 7 | Glycan array screening for the HAdV-D36 FK and comparison to the HAdV-D37 FK. A A large glycan array 

containing 498 glycans (see legend on the upper right) showed a low overall signal with one outstanding signal caused by 4-

O-Ac-3’SL (7,279 fluorescence units). B A smaller screen designed to test for HAdV-D36 FK binding to differentially acetylated 

3’SL variants. 1=Lactose (Gal-[β-1,4]-Glc); 2,3=3’SL (Neu5Ac-[α2,3]-Gal-[β-1,4]-Glc); 4,5=4-O-Ac-3’SL (Neu4,5Ac2-[α2,3]-Gal-

[β-1,4]-Glc); 6,7=6’SL (Neu5Ac-[α2,6]-Gal-[β-1,4]-Glc), 8=6’SL with containing GlcNAc instead of Glc (Neu5Ac-[α2,3]-Gal-

[β-1,4]-GlcNAc). Even numbers are attached via a DHPE linker, while uneven numbers are attached via an aminooxy (AO) 

functionalized linker DHPE linker. Glycan quantities used per spot: 0.3 fmol (blue bars), 0.8 fmol (red), 1.7 fmol (green), 5 

fmol (purple). The HAdV-D36 FK only shows a signal for 4-O-Ac-3’SL. C The same array as in B was applied to the HAdV-D37 

FK. The knob shows a preference for 3’SL, while 4-O-Ac-3’SL gives a much lower signal. Differences between lipid linkers are 

routinely observed in glycan arrays. 
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We were able to solve the crystal structure of the HAdV-D36 fiber knob in complex with 4-O-Ac-3’SL isolated 

from echidna milk, and found that the lactose part of the sugar is not ordered in two of the three complexed 

glycans and does not seem to contribute to the binding (Figure 8). The only detectable contact mediated by the 

glycan stem was formed between the poorly ordered O6 atom of the galactose moiety and a backbone 

carbonyl function Thus, the Neu4,5Ac2 part must be the decisive factor for the increased binding. Since 4-O-Ac-

3’SL is the only Neu4,5Ac2-containing glycan in the array, we conclude that the sialic acid variant is probably 

recognized in several glycan contexts, similar to what has been fund for HAdV-D37 which recognizes a range of 

Neu5Ac-containing glycans. For subsequent studies, we therefore replaced 4-O-Ac-3’SL with the more readily 

accessible synthetic α-2-O-methyl-Neu4,5Ac2. We could demonstrate by X-Ray crystallography that the 

complex structures of both compounds are highly similar (Figure 9). The crystal structure of the HAdV-D36 FK 

in complex with a similar synthetic sialic acid variant, α-2-O-methyl-Neu4,5,9Ac3, revealed that an additional 

acetylation at position 9 can be accommodated, but does not contribute additional interactions to the binding 

(Figure S7A). Similarly, none of the three Neu5,9Ac2-containing probes from the glycan array displayed a 

binding signal (Table S1). Molecular modelling of sialic acid variants containing an additional O-acetylation at 

positions 7 and 8 suggest that both would likely induce clashes and would result in an abrogation of the binding 

(Figure S7B). We therefore conclude that 4-O-acetylation has a specific effect on HAdV-D36 recognition that is 

not seen with other sialic acid variants. 

 

 
Figure 8 | Structure of the HAdV-D36 FK in complex with 4-O-Ac-3’SL. A Simulated annealing omit map (green: 3σ; yellow: 

2.5σ) and 2Fo-Fc map after refinement (1σ, blue). The lactose stem is generally poorly ordered and only partially visible in 

one of three cases. B 4-O-Ac-3’SL colored by B factors ranging from 10Å
2
 (blue) to 60 Å

2
 (red). 
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Structural basis for the Neu4,5Ac2 preference 

The HAdV-D36 FK/Neu4,5Ac2 binding mode is generally similar to that of Neu5Ac. The key polar interactions 

mediated by the carboxyl and amide functions of Neu5Ac are also found in the Neu4,5Ac2 complex structure, 

as are the residues that make up the hydrophobic cavity for the N-acetyl group and the water-bridged 

hydrogen bond mediated by the glycerol function. The main distinguishing element is the relative orientation 

of the three Neu4,5Ac2 moieties that are tilted towards the threefold axis (Figure 9A,B). Interestingly, the 

O-acetyl function does not contribute any polar contacts, and instead induces the tilting movement under the 

steric influence of the bulky side chains of Y315 and P323. This interaction is supposedly not favorable for the 

binding; however, the steric constraints bring the O-acetyl groups of the three sugar moieties into a position in 

which they contact each other by means of a triangular hydrophobic interaction (mean distance between 

methyl C atoms: 4.3 Å) that displaces water molecules in the area (Figure 9B). Since the interaction is mediated 

solely via the O-acetyl groups, a similar effect is not expected for Neu5Ac. The binding environment of the 

O-acetyl groups is made up by three amino acids: N313, Y315, and P323 (Figure 9C). Y315 thereby acts as a 

gatekeeper residue that inserts itself between the N-acetyl and O-acetyl groups of Neu4,5Ac2. 

 

 

Figure 9 | Comparison of Neu5Ac (yellow) and Neu4,5Ac2 (green) engagement by HAdV-D36. A Superposition of the two 

complex structures, coloring analogous to Figure 6. Neu4,5Ac2 is forced towards the threefold axis by the steric influence of 

N313, Y315, and P320, while the polar key contacts are only slightly altered. B This movement causes the three neighboring 

Neu4,5Ac2 moieties to form a triangular hydrophobic contact (green dashes) that is not possible for Neu5Ac. C Steric 

influence of Y315 and P320 on Neu4,5Ac2. Short-ranged van-der-Waals contacts are formed with both acetyl groups of the 

sugar. As a result, even slight alterations in the Y315 conformation would interfere with the binding. 

 

Even a subtle displacement of this residue would likely interfere with Neu4,5Ac2 binding. Interestingly, all 

known complex structures with 4,5-acetylated sialic acid display a similar arrangement (Figure S8) [47,48]. 

N313 is one of the residues of the conserved VSN stretch and closes the binding pocket from below. The three 

N313 residues of the trimeric knob are located right at the threefold axis, and each residue contacts two 

Neu4,5Ac2 residues simultaneously. Similarly to the Neu5Ac complex structure, N313 engages in a direct 

hydrogen bond with the β-face of one Neu4,5Ac2 moiety (Figure 10A). Additionally, each N313 residue is in the 

van der Waals range of the O-acetyl groups from two neighboring Neu4,5Ac2 compounds simultaneously 

(Figure 10B). The topology and reduced polarity of this residue allow for the formation of the triangular inter-

sugar hydrophobic contact.  
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Figure 10 | Comparison of the Neu5Ac and Neu4,5 Ac2 binding between HAdV-D36 (upper panel) and HAdV-D37 (Lower 

panel). Coloring of interacting residues according to Figure 9. A-C Neu4,5Ac2 (green) binding mode observed for the HAdV-

D36 FK (gray surface) analogous to Figure 9A-B. D-F Neu4,5Ac2 (green) binding mode observed for the HAdV-D37 FK (gray 

surface). The triangular hydrophobic interaction is not observed in HAdV-D37. Instead Neu4,5Ac2 moieties are located in the 

periphery of the binding cavity. The relative movement between Neu5Ac (yellow, PDB-ID 1UXA) and Neu4,5Ac2 is less 

pronounced for HAdV-D37 than for HAdV-D36. 

 

In the complex structure of HAdV-D37 [25], the steric influence of the two residues Y312 and P320 is 

observable to the same extent, but the overall arrangement of the knob trimer does not allow for the 

formation of this hydrophobic interaction (mean distance between methyl C atoms: 5.2 Å) (Figure 10E). This 

finding is in line with the preference for Neu5Ac over Neu4,5Ac2 observed for HAdV-D37. As a result, the 

observed relative twist between Neu5Ac and Neu4,5Ac2 is much less pronounced (Figure 10C,F). It is tempting 

to speculate that the presence of this direct interaction between the three sugars might lead to a cooperative 

effect that alters the binding kinetics and accounts for the observed binding preference of HAdV-D36, 

especially in the absence of the strong electrostatic attraction between knob and carbohydrate observed for 

HADV-D37.  

 

How does the affinity of HAdV-D36 for Neu4,5Ac2 compare to Neu5Ac in vivo and in vitro? 

While our available data consistently indicate that Neu4,5Ac2 binding by HAdV-D36 is stronger than Neu5Ac 

engagement, we are evaluating the physiological importance if this interaction in ongoing experiments. To this 

end, we will employ several cell line-based assays that are outlined here: (I) We will probe for the relative 

attachment inhibition potency of both sialic acid variants in various cell types (A549 cells, human Simpson-

Golabi-Behmel syndrome (SGBS) preadipocyte cells, equine dermis (EDERM) cells). HAdV-D36 virions or fiber 

knobs will be preincubated with increasing concentrations of both sugars and the loss in attachment will be 
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compared. HAdv-D37 will serve as a reference for these experiments. (II) The dependency of HAdV-D36 virion 

and FK attachment and infection on surface-Neu4,5Ac2 will be tested with suitable Neu4,5Ac2-expressing 

animal cell lines. The inhibitory potency of 4-O-acetyl-specific esterases, neuraminidases, and sodium salicylate, 

(a de-O-acetylating agent), will be used to evaluate the results. 

In addition, we are currently investigating methods to assess the relative affinity of the HAdV-D36 FK to both 

sialic acid variants in vitro. Although Neu4,5Ac2 has been clearly demonstrated to interact with the HAdV-D36 

FK in this study, STD-NMR experiments with 4-O-Ac-3’SL did not show a detectable difference signal. An absent 

STD-signal can be caused by a slow ligand off-rate, which seems plausible based on our structural data. Similar 

findings have been made for the simian B-Lymphotropic polyomavirus (LPyV), which is known to efficiently 

engage 3’SL [49] but did not give an STD signal (B. S. Blaum, personal communication). Furthermore, we have 

started initial tests to assess relative affinities using TROSY-NMR. This method is highly sensitive and relies on 

the assessment of chemical shift perturbations (CSPs) of specific amino acid side chains upon interaction with a 

ligand and makes it possible to assess affinity data by ligand titration. To this end, we have collected initial 2-

dimensional (
15

N and 
1
H) spectra of the HAdV-D36 fiber knob alone and with 3’SL as a readily affordable test 

ligand with presumed low affinity. Despite the size of the knob trimer (~70 kDa), initial tests show interpretable 

TROSY spectra and distinct chemical shift perturbations upon ligand addition (data not shown). 

 

Difference to Ad37 and other HAdV-D knobs - Is the binding site unique among species D Ads? 

To provide additional support for our hypothesis that the relative arrangement of the monomers is the main 

cause of the difference in Neu4,5Ac2 binding, we replaced the central three amino acid stretch of HAdV-D36 

(VSN) with that of HAdV-D37 (YGT) and vice versa. Indeed, the mutations assimilated the spatial arrangement 

at the central cavity (Figure S9A,D). As a result, the HAdV-D37 VSN mutant restored the triangular hydrophobic 

contact (Figure S10, mean distance between methyl C atoms: 4.4 Å), although the electron density for the 

sugar was not as pronounced as for the HAdV-D36 wild type. The HAdV-D36 FK YGT mutant, on the other hand, 

displays a widened binding pocket as compared to the wild type. The mutant knob still engages Neu5Ac, but 

completely lost its ability to bind Neu4,5Ac2 due to the loss of the water-bridged contact with T313*, which 

distorts the sugar orientation and produces clashes with the gatekeeper residue Y315 as well as P323 and T313 

(Figure S9D-K). Although the VSN trimer-interface configuration is highly conserved among HAdVs of the 

‘HAdV-D36-like’ clade, they are not under general suspicion of engaging Neu4,5Ac2. As an example, the low-

seroprevalence type HAdV-D48 [50] exhibits an altered spatial arrangement of the lysine at the position that 

usually mediates the key contact to the sugar’s carboxyl group (Figure S11B). This displacement results in a 

largely distorted binding site and a complete abrogation of Neu5Ac binding, as became apparent from co-

crystallization trials. The HAdV-D26 FK belonging to the ‘HAdV-D37’-like clade, in turn, exhibits a less displaced 

lysine residue at the respective position and partially maintained its ability to bind Neu5Ac (Figure S11C), albeit 

with affinities that are likely below physiological conditions (K. Cupelli, personal communication). However, this 

movement results in a somewhat different binding orientation that would produce a clash with the gatekeeper 

tyrosine in a Neu4,5Ac2 context. Notably, this movement is caused by a minor rearrangement of the IJ loop and 

a mutation at position 327, despite the apparent presence of all the known key residues. These examples 

demonstrate the level of sophistication needed to maintain the three-dimensional arrangement of HAdV-D 

sialic acid binding sites that are sensitive to subtle alterations affecting the quaternary structure or secondary 

mutations that have an effect on the binding site topology without directly interfering with the binding. In this 

light, it is of little surprise that HAdV-D36 is the only HAdV type known to efficiently engage Neu4,5Ac2 to date.  
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Development of Novel Trivalent Inhibitors 

We recently reported the development of sialic acid-based high-affinity inhibitors of HAdV-D37 cell attachment 

and infection [51]. We tested the efficacy of one of these inhibitors for inhibition of HAdV-D36 attachment. 

Indeed, the inhibitor compound 17a efficiently inhibited HAdV-D36 binding to A549 cells with an IC50 value of 6-

10 µM (Figure S12). A complex crystal structure of the HAdV-D36 Fk and compound 17a showed that the 

inhibitor is indeed engaged at the sialic acid binding pocket (data not shown). We are currently synthesizing a 

new generation of Inhibitors specifically designed for the inhibition of HAdV-D36 glycan binding that was 

inspired by the binding mode of Neu4,5Ac2 to the HAdV-D36 FK. The usability and efficacy of these compounds 

critically depends on the relative physiological importance of the yet unidentified protein receptor in vivo. 

 

Discussion 
 

The systematic analysis of possible HAdV-D36 attachment factors revealed that virion attachment to various 

cell types depends on CAR and sialic-acid-containing glycoproteins. The attachment is sensitive to treatment of 

cells with proteases and neuraminidase. It is furthermore diminished by inhibitors of O- and, to a lesser extent, 

N- glycosylation, and can be competed for with soluble sialic acid. However, we were never able to inhibit the 

binding by more than 80% (Figure 2D). Thus, although CAR and Neu5Ac-containing glycoproteins appear to be 

the major factors for HAdV-D36 cell attachment, there likely are additional factors that can account for about 

20% of the binding, at least on A549 cells. In light of the results we obtained for CHO-cell attachment of virions 

(Figure S3) and fiber knobs (Figure 1C), it seems plausible that an additional factor is present on CHO cells as 

well, and that this factor might be responsible for the high overall attachment seen for the virion. However, 

since knob attachment showed an unambiguous preference for CAR and sialic acid, the additional attachment 

factor is likely recognized by a different capsid protein. We are planning to test this hypothesis by assessing the 

combined inhibitory potency of CAR-D1 and Neu5Ac on FK attachment. We have so far been unable to 

unambiguously identify the additional attachment factor. However, our results indicate that it is probably not 

among the known set of protein attachment factors for HAdVs. Coagulation factor X, which is known to engage 

the HAdV hexon and mediate cell uptake, is not present in the system and has been demonstrated to not bind 

the HAdV-D36 particle (Figure S2H). Species D HAdVs, especially HAdV-D09, are known to very efficiently 

engage αv integrins by their penton base, to an extent that they can be used for cell attachment [52]. The 

penton base sequence of HAdV-D36 is similar to that of HAdV-D09, and a similar mechanism seems possible for 

A549 cells. However, HAdVs are generally not capable of engaging non-human integrins as they would appear 

on CHO cells. 

Our cell-based assays show that HAdV-D36 recognizes CAR with its FK domain, and our structural data indicate 

that it probably possesses an altered binding interface compared to established CAR-binding knobs such as 

HAdV-C05 FK. Although we could clearly demonstrate that CAR is functional in supporting HAdV-D36 

attachment to different cell types, whether CAR can serve to mediate cell infection, as well, remains to be 

clarified. In the case of the closely related HAdV-D37, which recognizes CAR with its knob domain and can use it 

for cell attachment, but not for infection, the stiffness of the fiber shaft does not allow an efficient interplay 

between CAR and integrins on the cell surface [29]. As discussed above, HAdV-D36 possesses a similar shaft 

sequence and misses known bending motifs, as well. Therefore, CAR recognition of both viruses might be more 

important for virus spread after lytic completion of the life cycle than for the actual infection process [53]. This 

notion agrees well with the finding that both HAdV-D36 and –D37 FKs additionally attach to glycoproteins, 

which are also much more prominently displayed on the apical side of epithelia than CAR. 
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Glycan array screening and structural investigations indicate that the rare sialic acid variant Neu4,5Ac2 is 

engaged more effectively by the knob of HAdV-D36 than the more common Neu5Ac. We have identified the 

factors responsible for this preference and identified residues that influence the binding by altering the knob 

topology. Analysis of the knob phylogeny suggests that these residues are evolutionarily conserved in about 

half of species D, although Neu4,5Ac2 binding is likely a specific ability acquired only by HadV-D36 or a small 

subset of HAdVs of the ‘HAdV-D36-like clade’. Given the strong evolutionary pressure on viral capsid proteins, 

especially receptor-recognizing molecules, it appears unlikely that an interaction with this level of 

sophistication appears at random. The specific exploitation of sialic acid variants by human or animal viruses is 

not unprecedented, and the presence or absence of sialic acid derivatives in different organisms determines 

the tropism of many sialic acid-binding viruses (reviewed in [45]). A prominent example is human influenza C 

virus, which uses 9-O-acetyl-Neu5Ac as a receptor and possesses a hemagglutinin with an esterase activity as 

receptor-destroying enzyme [54]. Some toro- and lineage A betacoronaviruses have long been known to 

specifically use O-acetylated sialic acid variants as receptors on the cell surface via their hemagglutinin-esterase 

(HE) proteins (reviewed in [55]). Although 9-O-acetyl-Neu5Ac is the prototypical receptor for coronaviruses, 

some virus strains have developed altering specificities.  For example, two biotypes of mouse coronaviruses are 

distinguished. While members of group I use 9-O-acetyl-Neu5Ac, some viruses constituting group II evolved to 

specifically use Neu4,5Ac2. As discussed above, mouse hepatitis virus strain S (MHV-S), a murine coronavirus of 

class II, has been demonstrated to establish this receptor switch by modest changes in both the lectin and 

esterase domain that allow the formation of a binding pocket optimal for the spacing of its two acetyl groups 

[47,48]. This arrangement resembles the pocket formed by the protein and two neighboring residues in the 

HAdV-D36 complex structure. For these viruses, the presence of Neu4,5Ac2 in the colon and brain is likely a 

determinant of tropism [56]. Since Neu4,5Ac2 is abundant on fish skin [42], several piscine viruses including 

infectious salmon anemia virus (ISAV) use this receptor as well [57]. Neu4,5Ac2 from horse and guinea pig sera 

influences the tropism of some influenza A H2 and H3 strains by inhibiting their neuraminidase [58]. In fact, this 

mode of action is assumed to be one of the physiological functions of Neu4,5Ac2 [45,59]. Although Neu4,5Ac2 

has not yet been detected in human tissue samples, its occurrence and distribution in humans is still not well 

understood. The carbohydrate is difficult to analyze histochemically due to the acid/base liability of the 4-O-

ester function (reviewed in [45,59]). Suitable detection methods have been developed only recently, and tissue 

stainings using viral hemagglutinin-esterases have so far not covered all tissues [42,43]. Furthermore, studies in 

mice suggest that its synthesis is restricted to only a few tissue types [43,60]. In this light, it is possible that the 

sugar might be expressed in specialized tissues that have not yet been investigated in this regard. From a 

pathogen’s perspective, specifying on sialic acid variants with a restricted expression profile may help to 

circumnavigate the vast amounts of sialylated non-productive ‘decoy’-glycotopes that are present on virtually 

any tissue in high local concentrations. Bare a receptor-destroying enzyme, it appears as a feasible strategy for 

HAdV-D36 to bind effectively to a spatially confined epitope while having a low affinity for the more ubiquitous 

variant. Since no study searching for Neu4,5Ac2–displaying tissues in humans included adipose tissue [43], we 

are planning to specifically screen for the presence of Neu4,5Ac2 on a human preadipocyte cell line (SGBS) and 

in fat tissues obtained from liposuction samples from obese US citizens. 

The preference for Neu4,5Ac2 displayed by HAdV-D36 and the distribution of the sugar among different species 

overlap remarkably well with the animal range that is known to be permissive for the virus. It is therefore 

tempting to speculate that HAdV-D36 might be the first HAdV known to possess an animal reservoir. Following 

this rationale, it also appears plausible that HAdV-D36 has maintained its ability to engage Neu5Ac and 

additionally binds a protein receptor. It should not go unnoticed that the presence of an animal host reservoir 

would directly implicate a route of virus transmission through contact with domestic animals or the 

consumption of livestock, respectively. Many human viruses are known to infect intermediary animal hosts, 

and adenoviruses are known to be spread through foodborne oral-fecal transmission [61]. In particular, 

chickens seem to be a suitable candidate for such a reservoir due to the practice of intensive mass animal 

farming and the fact that they are one of the main sources of meat in many countries. However, there is no 
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publicly available data for HAdV-D36 seroprevalence in animals to date. The results obtained from studies of 

this kind will give further insights into the physiological relevance of Neu4,5Ac2 for human HAdV-D36 infection. 

 

Materials and Methods 
 

Cells and viruses 

Human lung carcinoma cells A549 (a gift from Dr. Alistair Kidd) were grown in Dulbecco’s modified Eagle 

medium (DMEM; Gibco, Paisley, UK) supplemented with 10 % fetal bovine serum (FBS; Thermo Scientific, 

Cramlington, UK), 20 mM HEPES (Fischer Scientific, Fair Lawn, USA), and 20 U/mL penicillin + 20 μg/mL 

streptomycin (GE Healthcare, South Logan, USA). Chinese hamster ovary cells CHO-K1 (gift from David 

Fitzgerald) were grown in Ham’s  F12 medium (Gibco) supplemented with 10 % FBS (Thermo Scientific) and 20 

U/mL penicillin + 20 μg/mL streptomycin (GE Healthcare). HAdV-D36 (strain 275) was used in the experiments. 

In some experiments HAdV-5 (strain Adenoid 75, source ATCC) and HAdV-37 (Strain 1477) were used as 

compound controls. 

Animal red blood cells used for hemagglutination assays were kindly provided by Agrisera (Vännäs, Sweden). 

Bovine, chicken, equine, goat, porcine and rabbit blood were collected in sodium citrate. Human venous blood 

was collected in sodium citrate from three volunteer donors with different blood types according to the AB0 

system (A, B, and 0). 

 

Virus production 

Confluent A549 cells were split in 175 cm
2
 cell culture flasks and incubated overnight in 37 ⁰C. The next day, the 

growth medium was removed and 5 mL of DMEM (Gibco) supplemented with 1 % FBS (Thermo Scientific), 20 

mM HEPES (Fischer Scientific) and 20 U/mL penicillin + 20 μg/mL streptomycin (GE Healthcare) were added to 

each flask. The inoculation material (i.m.; previously prepared from infected A549 cells) was freeze-thawed 

three times in 37⁰C and -80⁰C, and 100 μL were added to each flask and incubated for 90 mins. The medium 

with i.m. was poured off to remove unbound virions and 30 mL of DMEM (Gibco) supplemented with 1 % FBS 

(Thermo Scientific), 20 mM HEPES (Fischer Scientific) and 20 U/mL penicillin + 20 μg/mL streptomycin (GE 

Healthcare) were added to each flask. About 72 h post infection, the cells were harvested, pelleted, 

resuspended in 6 ml of DPH (DMEM, PEST and 20 mM HEPES) and freeze-thawed three times. 

1,1,1,2,3,4,4,5,5,5- Decafluoropentane (6ml, Sigma-Aldrich, St Louis, USA) was added to the cell suspension and 

shaken by hand for 2-3 min. After centrifugation the top layer containing the virus particles was added onto a 

CsCl gradient with densities 1,27 g/mL, 1,32 g/mL and 1,37 g/mL and ultracentrifuged (SW41Ti rotor, 

OptimaTM L-80 XP Ultracentrifuge, Beckman Coulter) at 25 000 rpm, 4⁰C for 1 h 30 min. The lower band, which 

contained the virus particles, was harvested and desalted on a NAP column (GE Healthcare, Buckinghamshire, 

UK) in sterile PBS. Glycerol was added to a final concentration of 10 %, the virion concentration was measured 

with NanoDrop (ND-1000 Spectrophotometer, Saveen Werner), and the virion solution was aliquoted and 

stored in -80⁰C until further use. 

Production of 
35

S-radiolabelled virions was performed as described previously [62], with the following 

exceptions: After 24 h of infection, cells were washed twice with sterile phosphate buffered saline (PBS) 

containing 0,05 % EDTA to get rid of traces of L-cystein and L-methionin and starved for 2 h in DMEM without 

L-cystein and L-methionin (Gibco) supplemented with 1 % FBS (Thermo Scientific), 20 mM HEPES (Fischer 

Scientific), 20 U/mL penicillin + 20 μg/mL streptomycin (GE Healthcare) and 4 mM L-glutamine (Gibco). The 
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isotope 
35

S (Easy tag express protein labeling mix, Perkin Elmer, Boston, USA) was added thereafter at a 

concentration of 1 mCi/flask. L-cystein (Sigma-Aldrich) and L-methionin (Sigma-Aldrich) was added to a final 

concentration of 2 mM at 1 h or 4,5 h after addition of 
35

S, respectively. L-cystein (Sigma-Aldrich) and L-

methionin (Sigma-Aldrich) were added again to a final concentration of 2 mM 24 h after addition of 
35

S. 

 

Cell-binding assays 

Cells were split one day before the experiment. On the day of the experiment cells were detached with PBS 

containing 0,05 % EDTA and reactivated for 1 h at 37⁰C in growth media. Cells (1x10
5
 cells/well) were placed on 

a V-shaped bottom 96-well plate and washed once with binding buffer (BB: DMEM (Gibco) supplemented with 

20 mM HEPES (Fischer Scientific), 20 U/mL penicillin + 20 μg/mL streptomycin (GE Healthcare) and 1 % bovine 

serum albumin (Roche, Mannheim, Germany)). 
35

S-labelled viruses (HAdV-D36: 1x109 virions/well, HAdV5: 

1x109 virions/well and HAdV-37: 5x108 virions/well) diluted in BB were added to the cells and incubated at 4⁰C 

for 1 h. Cells were then pelleted and washed twice with PBS to remove unbound virions. Samples were 

analyzed by measuring radioactivity in a scintillation counter (1450 Microbeta, Wallac).  

The assay were performed with following variations: Binding of HAdV-D36 was analysed to (i) A549, 3T3-

L1, SGBS, EKVX, HEK293, FHS, HEP-G2, CHO-K1, CHO-mock, CHO-CAR, CHO-CD46, CHO-CD21, CHO-ICAM-1, 

CHO-CD55, CHO-Pro5, CHO-Lec2, CHO-2241 and CHO-2241 cells (ii) A549 cells pretreated for 1 h at 37 ⁰C with 

different concentrations of enzymes (Ficin, proteinase K, Bromelain, V8 protease, heparinase III (F. heparinum) 

and neuraminidase (20 mU/mL, V. cholerae). In some experiments the binding of HAdV-D36 virus, pre-

incubated 1 h at 4⁰C with different concentrations of sialic acid (N-acetylneuraminic acid, Dextra Laboratories, 

Reading, UK), heparin (from porcine intestinal mucosa, Sigma-Aldrich) and compound 17a [51], to A549 cells 

was analyzed. The data represent values from two individual experiments with duplicate samples in each 

experiment. Error bars represent mean ± SD. Untreated cells or absence of compounds were used as controls.     

 

Hemagglutination assay 

Erythrocytes from blood samples were washed three times and diluted to a 1 % (v/v) solution in PBS. Cells were 

counted in a Countess II cell counter (Life Technologies). Fifty microliter PBS were added to a round bottom 96-

well plate. Virions were added in a range of 1x109 to 3,2x1011 depending on virus identity, followed by 2-fold 

serial dilution. Fifty microliter of the 1 % cell suspension were added to each well and the plates were 

incubated 1 h in room temperature. The results were interpreted visually as complete agglutination when a 

lattice of red blood cells were formed in the well and hemagglutination negative when buttons are formed in 

the bottom of the wells. If buttons were not running when the plate was tilted they were judged as incomplete 

agglutination, running buttons were considered definitely negative. To estimate the strength of the interaction 

between virions and cells, the number of virus particles per cell needed to cause hemagglutination, which is 

one hemagglutinating unit (vp/HAU) was calculated.    

 

Cloning, purification, and crystallization of HAdV fiber knobs and their complex structures 

The HAdV-D37 was purified and crystallized as described previously. The HAdV-D36 FK amplified from 

HAdV-D36 strain 275 genomic DNA and cloned into a pPROEX htb vector using the following primers: 5’-gcc cat 

ggg aga ctt agt agc ttg-3’  (forward); 5’-cgc ctc gag tca ttc ttg agc gat ata tga gaa ag-3’ (reverse). The construct 

design was analogous to that of the HAdV-D37 FK. The YGT and VSN mutants were prepared by site-directed 

mutagenesis using a modified Strategene protocol. PCR was performed in 22 cycles, routinely using annealing 

temperatures from 55-57°C in eight 50 µL setups and the ExactRun Polymerase (Genaxxon). Each setup 
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contained 5 ng of template plasmid. All eight setups were pooled, incubated with 3µL DpnI (Thermo Fischer 

Scientific) and subjected to an ethanol precipitation for 1-3 days and resuspended in in H2O prior to 

transformation. All construct sequences were verified by Sanger-sequencing (performed at MWG Eurofins) and 

comparison to GenBank entries GQ384080.1 (HAdV_D36 complete genome) and ABK59080.1 (HAdV-D37 fiber). 

Expression and purification of the HAdV-/D36D37 FKs was performed essentially as reported previously for 

HAdV-D37 [51]. For crystallization, the HAdV D37 FK was concentrated to 12-13 mg/ml, and the HAdV-D36 FK 

to 8.0-8.2 mg/ml. The HAdV-D37 FK was crystallized as described previously. The HAdV-D36 FK was crystallized 

by the hanging drop vapor diffusion method using 23-26% PEG 3,350, 175-200 mNH4Ac, 0.1 M Bis-Tris pH 5.5 

and an initial drop size of 1+1µL at 4°C. Complex crystals were prepared by co-crystallization with 10 mM of the 

respective carbohydrate compound. Crystals were flash frozen in liquid nitrogen without cryoprotection. Data 

collection was carried out at the beamlines X06SA and X06DA at the SLS (Villigen, Switzerland). Data were 

processed with XDS [63,64]. For the initial structure of HAdV-D36 wt, the phase problem was solved using 

Molrep and a HAdV-D37 FK-based model prepared with CHAINSAW [65]. If possible, subsequent structures 

were solved by simple rigid body refinement and simulated annealing in phenix.refine [66]. Otherwise, the 

phase problem was solved with Molrep [67] or Phaser [68]. Refinement was carried out using Coot [69] for real 

space refinement and phenix.refine with automatically determined non-crystallographic symmetry (NCS) 

restraints and isotropic B-Factor refinement. At high enough resolution, translation-libration-screw (TLS) 

tensors (all structures in Table S1) or anisotropic B-Factors were refined. Ligands were unambiguously placed 

into Fo-Fc difference maps and refined using restraints from the CCP4 monomer library. Waters were located 

using an automated algorithm in Coot. Simulated annealing omit maps were calculated with phenix.refine and 

FFT [70].  

Cloning.purification, crystallization, and refinement of HAdV-D26 and –D48 FKs have been performed as 

described elsewhere [71]. 

 

Superpositioning of complex Structures 

Superpositions of fiber knobs and the corresponding complex structures were performed using the ‘align’ 

algorithm in PyMol (The PyMOL Molecular Graphics System, Version 1.8 Schrödinger, LLC.). An important 

distinction has to be made between aligning all atoms in the knob trimer and alignment based on single chains.  

 

Complexation of HAdV-D36 FK with CAR-D1 and CD46-D4 

The complexation experiments were carried out as described previously [28] with minor alterations. Purified 

HAdV-D36 FK was mixed with CAR-D1 (laboratory stock produced by A. Thor) and CD46 D4 (purified as 

described previously [72]) in different molar ratios in their respective buffers and incubated for 20 min at 4°C. 

30 µL were subjected to analytical size exclusion chromatography using a Superdex 200 column on an ETTAN 

system (GE Healthcare, Sweden) using a standard buffer containing 30 mM Tris-HCl (pH 7.5) and 150 mM NaCl. 

The peaks were analysed by comparison to a standard laboratory calibration curve and, if possible, by SDS-

PAGE. In the case of CAR-D1, both HAdV-D36 FK and CAR-D1 alone were run at the same concentrations for 

comparison. In the case of CD46 D4, a HAdV-B11 FK complexed with CD46 D4 was run as a positive control 

instead of CD46 D4 alone. 
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Differential Scanning Fluorimetry (DSF)  

Samples were diluted to a concentration of 0.1 mg/mL in a buffer containing 150 mM NaCl, 20 mM imidazole, 

and 30 mM Tris-HCl, pH 7.5. The experiments were performed using a sample volume of 10 μl per capillary. The 

capillaries were filled directly from respective solution. An initial fluorescence scan of loaded capillaries was 

performed at 20 °C, low gain sensitivity in order to ensure that samples were within the optimal concentration 

range. The DSF experiment was performed in a single run by heating all samples from 20°C to 95 °C with 

1°C/min. To determine the melting point (Tm), the shift in native tryptophan fluorescence was monitored by 

plotting changes in the emission at 350 and 330 nm. 

 

TROSY NMR spectroscopy 

Wildtype HAdV-D36 FK was expressed in 0.5 L M9 minimal medium and purified as described above. Proton-

nitrogen correlated TROSY spectra were recorded at 25°C on a Bruker AVIII-600 spectrometer with a room 

temperature probe head. The Ad36 sample was prepared in 30 mM Tris, pH 7.5 and 150 mM NaCl, which was 

based on 90% H2O/10% D2O at a protein concentration of 0.5 mM Ad36 monomer. In addition to a reference 

spectrum, spectra were recorded at a 10- and 40-fold molar excess of sialyl lactose. Before recording the data 

in presence of 40-fold excess of sialyl lactose, the buffer conditions were changed to 60 mM Tris pH 7.5, 150 

mM NaCl to provide buffer capacity for the acidic ligand.NMR data were processed using the NMRPipe-

NMRDraw software suite and figures displaying NMR spectra were produced using NMRView 

(www.onemoonscientific.com). 

 

Saturation transfer difference NMR 

NMR spectra were recorded at 283 K using 3 mm tubes (200 μL sample volume) and a Bruker AVIII-600 

spectrometer equipped with a room temperature probe head and processed with TOPSPIN 3.0 (Bruker). The 

sample contained 1 mM of 4-O-Ac-3’SL and 20 µM of HAdV-D36 FK protein (monomeric concentration). The 

proteins were buffer-exchanged prior to NMR experiments to 20 mM potassium phosphate pH 7.4, 150 mM 

NaCl in D2O and the glycans were subsequently added from concentrated stock solutions in D2O. Off- and on-

resonance irradiation frequencies were set to -30.0 ppm and 7.0 ppm, respectively. The irradiation power of 

the selective pulses was 57 Hz, the saturation time was 2 s, and the total relaxation delay was 3 s. A 50 ms 

continuous-wave spin-lock pulse with a strength of 3.2 kHz was employed to suppress residual protein signals. 

A total number of 512 scans and 10,000 points were collected, and spectra were multiplied with a sine-bell 

squared window function prior to Fourier transformation. 

 

Glycan array screening 

His-tagged HAdV-D36 FK was analzyed in two different array sets: the big screening array set containing 492 

sequence-defined lipid-linked oligosaccharide probes (Glycosciences Array Set 32–39) and a focused sialyl 

oligosaccharide array set containing 8 oligosaccharide probes in dose response format (see Figure 7B,C). The 

probes were robotically printed in duplicate on nitrocellulose-coated glass slides at the levels indicated using a 

non-contact instrument [73]. The microarray analyses were performed essentially as described previously [74]. 

In brief, microarrays were blocked in 0.3% (v/v) Blocker Casein (Pierce), 0.3% (w/v) bovine serum albumin 

(Sigma A8577) in Hepes buffered saline (5 mM Hepes, pH 7.4, 150 mM NaCl, 5 mM CaCl2). The His-Ad36 fiber 

knob was tested as protein-antibody complexes that were prepared by preincubating fiber knob protein with 

mouse monoclonal antipolyhistidine and biotinylated anti-mouse IgG antibodies (both from Sigma) at a ratio of 

4:2:1 (by weight) and diluted in blocking solution to provide a final fiber knob concentration of 150 μg/ml. 

Binding was detected using Alexa Fluor-647-labeled streptavidin from Molecular Probes (1 ug/ml). In the small 
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sialyl oligosaccharide array, His-Ad36 fiber knob was also tested without precomplexation for comparison. The 

oligosaccharide probes are all lipid-linked (neoglycolipids (NGLs) or glycosylceramides) and are from the 

collection assembled in the course of research in the Glycosciences Laboratory. For definition of the lipid 

moieties of the probes, please see https://glycosciences.med.ic.ac.uk/docs/lipids.  

 

Purification of 4-O-acetyl-3'-sialyllactose (4-O-Ac-3’SL) from echidna milk oligosaccharides (EMOs)  

4-O-Ac-3’SL was isolated from an oligosaccharide mixture derived from the milk of the Australian short-beaked 

echidna. EMOs [75] received from Professor Tadasu Urashima (Obihiro University) were fractionated by gel 

filtration chromatography on a Bio-Gel P4 column (16 x 90 cm) with elution by ammonium acetate (0.2 M) and 

detection by refractive index (Figure S13A). As detected by hexose assay, fractions 5-10 contain carbohydrate 

materials. The pooled fraction F6 was further fractionated by normal phase HPLC (Amide column) with elution 

by a gradient of H2O/ACN containing 0.05 mM phosphate and detection at UV 196 nm (Figure S13B) and the 

subfraction 2 (F6-2) was analysed by negative-ion electrospray mass spectrometry. The spectrum (Figure S13D) 

indicated that F6-2 contained the trisaccharide of interest as the major component ([M-H]- at m/z 674) but also 

contain a minor component disialylated hexasaccharide ([M-2H]2- at m/z 664 and [M-H]- at m/z 1330). Further 

HPLC purification using the same system but with an amine column resolved the two component (Figure S13C) 

and the mass spectra identified F6-2a as the sialylated lactose with an acetyl on the 4-O-position of NeuAc 

(Figure S13E,G) and F6-2d as the disialylated hexsasaccharide containing a single OAc (Figure S13F). 

Quantitation was carried out by microscale orcinol assay as essentially as described [76]. 

 

Synthesis of differentially O-acetylated α-2-O-methyl-Neu5Ac variants 

Methyl 5-acetamido-4-O-acetyl-3,5-dideoxy-D-glycero-a-D-galacto-2-nonulopyranosidonic acid (2-O-me-

Neu4,5Ac2) and methyl 5-acetamido-4,9-di-O-acetyl-3,5-dideoxy-D-glycero-a-D-galacto-2-nonulopyranosidonic 

acid (2-O-me-Neu4,5,9Ac3) were synthesized essentially as described previously [77]. 
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Figure S1 |HAdV-D36 binds better to A549 cells than to other cell lines. Different cell lines were tested for their ability to 

bind 
35

S-labeled HAdV-D36 virions on their surface. (A) Binding of 
35

S-labelled HAdV-D36 virions to A549, 3T3-L1 (mouse 

mouse fibroblasts that can differentiate into an adipocyte-like phenotype) and SGBS (human Simpson-Golabi-Behmel 

syndrome preadipocyte cell line) cells. (b) Binding of 
35

S-labelled HAdV-D36 virions to different human derived  cell lines 

A549 (adenocarcinomic human alveolar basal epithelial cells), EKVX (human lung adenocarcinoma cell line), HEK293 (human 

embryonic kidney 293 cells), FHS (human small intestine cell line), HEP-G2 (human hepatocellular carcinoma cell line). All 

experiments were performed three times with duplicate samples. Error bars are representing mean +_SD.  
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Figure S2 |Evaluation of HAdV-D36 binding to A549 cells. Binding of 
35

S-labelled HAdV-D36 virions to A549 cells treated with 

different proteases (A) Proteinase K (a broad-spectrum serine-protease), (B) Bromelain (a mixture of pineapple cysteine 

proteases), (C) V8 (an endoproteinase Glu-C serine protease cleaving after glutamic acid), (D) tunicamycin (an inhibitor of N-

glycoslylation), (E), P4 (DL-threo-1-phenyl-2-palmitoylamino-3-pyrrolidino-1-propanol, an inhibitor of glycolipid synthesis) and 

(F) heparinase III (which cleaves heparan sulfate from cell surface). G Attachment inhibition assay with soluble heparin (Mw 

approx. 21000). HAdV-D37 was used as a positive control (N. Chandra, personal communication). (H) 
35

S-labeled HAdV-D36 

virion binding to A549 cells after virion preincubation with physiological concentrations of coagulation factor X (FX: 10 μg/ml). X- 

axis represents different concentrations of enzymes, treatment and concentrations of heparin. In figure A-F and H, y-axis shows 

the amount of virus particles bound to cells AND represented as CPM (count per minute). All experiments were performed three 

times with duplicate samples. Error bars are representing mean +_  SD. n.s = not significant, * P of < 0.05, ** P of < 0.01 and *** 

P of < 0.001. 

  



30 
 

 

Figure S3 | Binding of 
35

S-labelled HAdV-D36 virions to different CHO cell lines expressing different human cell surface 

proteins. CHO-K1 and CHO-mock cells represent control cell lines. Y-axis shows the amount of knobs bound to cells, 

represented as CPM (counts per minute). All experiments were performed three times with duplicate samples. Error bars 

represent mean ± SD. * P of < 0.05 and ** P of < 0. 
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Figure S4 |Differential Scanning Fluorimetry of the HAdV-D36FK. The scan was performed using a Prometheus NT.48. The 

ratio of the fluorescence at 350 nm and 330 nm is plotted against the temperature (upper figure). The first derivative 

calculation can be deduced to determine the Tm (lower figure). At pH 7.5 (red and green curves, n=5), a Tm of 86.3-86.5°C 

was observed. At a pH of 2-3 (blue), the FK stability was lowered, but still high (Tm=62.4°C). The experiment was performed 

in the course of a Prometheus demonstration by Dr. Fabian Zehender (NanoTemper Technologies GmbH). 
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Figure S5 | Glycan array screening for the HAdV-D37. A large glycan array containing 498 glycans (see legend on the upper 

right) was in good overall agreement with previous findings [24].  

 

Table S1 | Excerpt of the fluorescence signals obtained for large arrays of HAdV-D36 and HAdV-D37. 

Glycan No. Probe Structure HAdV-D36 HAdV-D37 

44 NeuAcα‐(3')Lac NeuAcα-3Galβ-4Glc-DH ‐ 50,438 

45 NeuAcα‐(3')Lac‐AO NeuAcα-3Galβ-4Glc-AO - 16,272 

46 Neu4,5Ac‐(3')Lac (4-OAc)NeuAcα-3Galβ-4Glc-DH 7,279 12,366 

47 Neu4,5Ac‐(3')Lac‐AO (4-OAc)NeuAcα-3Galβ-4Glc-AO 107 297 

107  Neu5,9Ac‐(6')LN (9-OAc)NeuAcα-6Galβ-4GlcNAc-DH - - 

114 GSC-513 (9-OAc)NeuAcα-3Galβ-3GlcNAcβ-C30 
                                       │ 
                             Fucα-4 

- - 

115 GSC-511 (9-OAc)NeuAcα-3Galβ-4GlcNAcβ-C30 
                                        │ 
                             Fucα-3 

- - 

311 GD1a-hexa NeuAcα-3Galβ-3GalNAcβ-4Galβ-4Glc-DH 
                                                 │ 
                                 NeuAcα-3 

- 15,425 
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Figure S6 |Hemagglutination potency of HAdV-D36 and HAdV-D37. A Depiction of the hemagglutination experiment. 

Human blood was diluted as indicated in the methods. B Quantification of the number of virus particles per cell required for 

complete agglutination of human red blood cells. 
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Table S1 | Data collection and refinement statistics of selected datasets. The structures are not yet completely refined. All 

other structures are listed in [71], [78],[79].  
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Figure S7 |Binding of differentially acetylated sialic acid variants by HAdV-D36. A Complex structure of HAdV-D36 with 

synthetic α-2-O-methyl-Neu4,5,9Ac3. Shown is a 2Fo-Fc map contoured at 1.5σ (dark blue) and 1σ (light blue), respectively. 

The additional 9-O-acetyl group displays vavrious conformations and does not contribute to the binding. B Modelling of 

additional O-acetylations at position 7 and 8 (purple). Modelling was performed in Coot without application of a force field. 

In agreement with [43], the Acetyl groups were added in a sterically favorable position that retains good ligand geometry. 

Steric clashes are probable in both cases (red discs represent the clashing regions). 
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Figure S8 | Gatekeeping residues of HAdV-D36 and different nidovirus hemagglutinin-esterases. Superpositioning was 

done according to the carbohydrate portions using Pymol. A Superposition of HAdV-D36 (green), mouse hepatitis virus strain 

S hemagglutinin-esterase (MHV-S HE
0
, cyan, PDB ID 4C7W), and the lectin (yellow) and catalytic (orange) sites of rat 

coronavirus strain New-Jersey hemagglutinin-esterase (RCoV-NJ HE
0
, PDB ID 5JIL) in complex with the non-hydrolysable 

Neu4,5Ac2 analogue α-2-O-methyl-Neu4,5-di-N-acetylneuraminic acid. B Gatekeeping residue of MHV-S HE
0
. C,D 

Gatekeeping residues of the RCoV-NJ HE
0
 esterase (orange) and lectin (yellow) binding sites. 
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Figure S9 | Quaternary arrangements of HAdV-D36/D37 FK wild type and trimer interface mutants. All superpositions 

were performed in PyMol aligning all atoms of the trimer. A Superposition of the HAdV-D36 wt FK (gray) with the HAdV-D37 
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wt FK (teal) in analogy to Figure 4B. B-C Separate surface representations of the two wt knobs. D Superposition of the HAdV-

D36 YGT FK (orange) with the HAdV-D37 VSN FK (dark gray). The HAdV-D37 VSN FK shows a narrower central cavity than 

HAdV-D36 YGT. A clockwise movement of the Y317 side chain in HAdV-D36 YGT distorts the N-acetyl binding cavity (both 

analogous tyrosine residues shown as sticks). E-F Separate surface representations of the two mutant knobs. G 

Superposition of sialic acid complexes of HAdV-D36 wt. The interacting residues were aligned on the sidechain of the 

gatekeeping residue Y315. The O-acetyl group of Neu4,5Ac2 (green) is in the van-der-Waals range of sidechains N313, Y315, 

and P323, while the N-acetyl group forms a direct hydrogen bond with N313*. H Modeling of Neu4,5Ac2 (green) on the 

HAdV-D36/Neu5Ac complex structure. Neu4,5Ac2 was aligned onto Neu5Ac (yellow) in Coot. The relative spacing of T313* 

and the N-acetyl group prevent the formation of a water-mediated contact. Instead, the N-acetyl group moves towards 

T313* and forms a direct, long hydrogen bond. Thereby, the N-acetyl function is slightly rotated out of its ideal position and 

causes a rotation of the whole ligand. As a consequence, the O-acetyl function of a possible Neu4,5Ac2  complex would 

produce heavy clashes with T313, Y315, and P323 that cannot be overcome by a rotation towards the center. I Superposition 

of sialic acid complexes of HAdV-D37 wt. T310* is located further away from the sugar’s N-acetyl group and allows for the 

formation of a water-mediated contact in both cases. J Superposition of the Neu5Ac complex structures of HAdV-D36 wt, 

HAdV-D36 YGT, and HAdV-D37 wt. The need to form a direct contact in HAdV-D36 YGT pulls the sugar towards the 

gatekeeping residue Y315. Coloring according to G-I. K Superposition of the Neu4,5Ac2 complex structures of HAdV-D36 and 

D37 wt with the modelled complex of HAdV-D36 YGT. The downward motion and rotation of the sugar in the latter induce 

heavy clashes. Coloring according to G-I. 
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Figure S10 | Comparison of the Neu4,5Ac2 binding modes of HAdV-D37 wt, HAdV-D37 VSN, and HAdV-D36 wt. Residues 

at the analogous positions 310 (HAdV-D37) and 313 (HAdV-D36) are displayed as sticks and their contacts with the sugar as 

black  dashed lines. A Binding mode of HAdV-D37 wt (pink sticks, light surface). B Superposition of the Neu4,5Ac2 complex 

structured of HAdV-D37 wt and VSN (cyan sticks, dark surface). The triangular hydrophobic contact is restored in the VSN 

mutant. C, D Binding mode of HAdV-D37 VSN. The same panel is displayed twice for reasons of clarity. E Superposition of the 

Neu4,5Ac2 complex structures of HAdV-D37 VSN and HAdV_d36 wt (green sticks, light surface). Despite a relative clockwise 

and upward positioning of the sugars in HAdV-D36, the length of the triangular hydrophobic contact is very similar. F 

Binding mode of HAdV-D37 wt analogous to Figure 10. 
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Figure S11 |Conservation of Sialic acid binding among species D HAdVs. Only the displayed chain was used for 

superpositioning the structures in PyMol. A Comparison of HAdV-D36 and HAdV-D37, analogous to Figure 7D. The binding 

modes are highly similar. B In HAdV-D48, the position analogous to Q322 (HAdV-D36) is mutated to a slightly shorter 

asparagine. N327 engages K353 in a polar contact and, together with a slight shift of the IJ loop, displaces the canonical 

lysine residue from the binding site. As a result, HAdV-D48 has lost its ability to bind sialic acid.  C HAdV-D26 displays a 

similar alteration of the IJ loop conformation, but since K246 is not engaged in a polar contact it still reaches into the binding 

pocket and can engage the carboxyl group of Neu5Ac, although this results in a relative shift of the sugar compared to 

HAdV-D36. 

 

 

Figure S12 | Possible sialic acid-based inhibitors of HAdV-D36 attachment.A The trivalent sialic acid-based 

HAdV-D37 inhibitor 17a is a potent inhibitor of HAdV-D36 attachment. 
35

S-labelled HAdV-D36 virions were pre-

incubated with soluble sialic acid or ME0462 (17a). 17a (IC50: 6-10 µM) is about 10
4
 times more potent than 

Neu5Ac. The data is presented in % of control (binding of virions  without any preincubation). B Conformation of 

17a bound to HAdV-D37 (PDB-ID 4XQA). C structural model of a Neu4,5Ac2-based new generation inhibitor. A 

geometry restraint file was generated using the GRADE web server [80] and modelling was done in Coot [69] 

based on the HAdV-D36 FK/Neu4,5Ac2 complex structure and showed optimal geometry values and no steric 

clashes.  



41 
 

 

Figure S13 | Purification of 4-O-Ac-3’SL from echidna milk oligosaccharides (EMOs). A Bio-Gel P4 Fractionation of EMOs. B 

HPLC of Bio-Gel P4 fraction F6 C Re-HPLC of Bio-Gel P4 fraction F6-2. D Negative-ion mass spectra of HPLC fraction F6-2. E 

Negative-ion mass spectra of HPLC fraction F6-2a F Negative-ion mass spectra of HPLC fraction F6-2b. G 
1
H-NMR of HPLC 

F6-2a. 
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Adenovirus type 37 (Ad37) is one of the principal agents responsible for epidemic keratoconjunctivitis

(EKC), a severe ocular infection that remains without any available treatment. Recently, a trivalent sialic

acid derivative (ME0322, Angew. Chem. Int. Ed., 2011, 50, 6519) was shown to function as a highly potent

inhibitor of Ad37, efficiently preventing the attachment of the virion to the host cells and subsequent

infection. Here, new trivalent sialic acid derivatives were designed, synthesized and their inhibitory pro-

perties against Ad37 infection of the human corneal epithelial cells were investigated. In comparison to

ME0322, the best compound (17a) was found to be over three orders of magnitude more potent in a

cell-attachment assay (IC50 = 1.4 nM) and about 140 times more potent in a cell-infection assay (IC50 =

2.9 nM). X-ray crystallographic analysis demonstrated a trivalent binding mode of all compounds to the

Ad37 fiber knob. For the most potent compound ophthalmic toxicity in rabbits was investigated and it was

concluded that repeated eye administration did not cause any adverse effects.

Introduction

Human adenoviruses (Ads), which belong to the mammalian
adenovirus genus, Mastadenovirus, are commonly encountered
infectious agents. In humans, Ads are associated with a multi-
tude of clinical symptoms encompassing upper and lower res-
piratory tract infections, gastroenteritis, hemorrhagic cystitis
and ocular diseases such as conjunctivitis and epidemic kerato-
conjunctivitis (EKC).1 Ads are ubiquitous in nature and new
types are continuing to be discovered.2,3 Since the isolation of
the first Ads about 60 years ago,4,5 over 60 types that are

grouped into seven species (A–G) have been identified. Ad
infections are usually self-limited in immunocompetent
patients while they can become a serious life-threatening
disease in immunocompromised individuals.6,7

To date, there are no specific antiviral drugs available for
the treatment of Ad infections.8 Ads are obligate intracellular
pathogens that are fully dependent on the cellular replication
machinery. The selective inhibition of Ad replication by anti-
viral compounds is therefore difficult to achieve as some of the
essential functions of the host cells may also be altered. The
acyclic nucleoside analogue cidofovir has been shown effective
against EKC-causing Ads. Unfortunately, nephrotoxicity and
lacrimal canalicular blockage have been reported after sys-
temic administration.1,8 An alternative approach to the intra-
cellular activity of nucleoside analogues is to block the initial
interaction between the virus and host cell and thereby block
cell attachment and subsequent entry.9

EKC is a severe and highly contagious ocular infection that
is contracted by millions of individuals every year. Among the
Ad types responsible for EKC, Ad8, Ad19 and Ad37 remain the
principal causative agents of the infection;10 however, new
EKC-causing types such as Ad53, Ad54 and Ad56 have been
recently isolated from patients.11–13 Common symptoms are
keratitis, conjunctivitis, edema, pain, lacrimation, formation
of pseudomembranes and decreased vision.14 Because these
viruses are spread by contact (e.g. hand to eye contact),14 EKC
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pounds; SPR data; X-ray crystallographic tables. See DOI: 10.1039/c5ob01025j
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is frequent in densely populated areas and in medical wards
with insufficient hygiene precautions. The infection commonly
lasts for up to two weeks; however, some patients continue to
suffer from sight impairment for several months, years or even
permanently. Whereas other non-EKC causing Ads use CD46
and coxsackie-adenovirus receptor (CAR) as receptors,15 EKC-
causing Ads bind via their homotrimeric fiber knobs to sialic
acid-containing glycans that are situated on epithelial cells in
the cornea and/or conjunctiva.16 The fiber knobs of EKC-
causing Ads are located at the most distal part of each of the
12 fibers that protrude from the icosahedral virion. The knobs
are highly homologous and the critical sialic acid-interacting
residues are thus conserved within the different types of an Ad
species.17 Consequently, substances targeting a single type
also have the potential to prevent cell attachment by the other
types. Recently, glycoproteins with glycans corresponding to
the carbohydrate portion of the GD1a gangliosides were shown
to function as receptors for the infection of ocular cells by
EKC-causing Ads.17 The crystal structure of the Ad37-GD1a
complex showed that the terminal sialic acid residues, located
on each of the two branches of the GD1a glycan, are accommo-
dated into two out of three carbohydrate recognition sites on
top of the Ad37 fiber knob. Thus, inhibition of Ads with
natural or synthetic sialic acid derivatives may prevent the
virion to attach to, penetrate into and infect new cells. As a
result, the infection and its spread would become limited.
Importantly and especially in the case of EKC, the poor
pharmacologic properties of carbohydrate-based drugs that
include rapid serum clearance and poor cellular uptake
obtained after systemic administration can be bypassed by the
use of a topical mode of administration (e.g. cream, ointment,
eye drops) and extracellular targeting of the virus particles.

Efficient sialic acid–based inhibitors of Ad37 infection of
human corneal epithelial (HCE) cells have been recently
reported.18–21 In order to circumvent the relatively low efficacy
of monovalent sialic acid derivatives, the authors took advan-
tage of the trimeric binding site at the Ad37 fiber knob. The
use of multivalent sialic acid derivatives or glycoconjugates
that can simultaneously bind to several carbohydrate reco-
gnition domains per knob considerably improved the inhibi-
tory potency in comparison to the sialic acid monosaccharide.
For instance, ME032221 (Fig. 1a), a synthetic trivalent sialic
acid derivative was reported as four orders of magnitude more
potent than the natural sialic acid monosaccharide. Other suc-
cessful reports of trivalent glycosides include, for example, the
synthesis of glycoclusters targeting the hepatic asialoglyco-
protein receptor.22–24

Herein, we report on the design, synthesis and evaluation
of new potent trivalent sialic acid inhibitors of Ad37 infection
of HCE cells where the trivalent scaffolds were conveniently
accessed by “click” chemistry. We probed the beneficial effect
of a more compact linker and the influence of a small modifi-
cation at the N-acetyl moiety on efficacy. Finally, the analysis of
the respective crystal structures allowed us to confirm that the
trivalent binding mode is engaged by all the inhibitors to the
fiber knob as well as to reason on the potency differences.

Results and discussion
Design strategy for the first-generation triazole linker-based
compounds

The design of new trivalent sialic acid conjugates was based
on the structural features of ME0322 (Fig. 1). Thus, the com-

Fig. 1 Structure of (a) trivalent sialic acid ME0322,21 a potent inhibitor
of Ad37, (b) the first-generation triazole linker-based trivalent sialic acid
derivatives and (c) the second-generation triazole linker-based trivalent
sialic acid derivatives.

Organic & Biomolecular Chemistry Paper

This journal is © The Royal Society of Chemistry 2015 Org. Biomol. Chem., 2015, 13, 9194–9205 | 9195

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

9 
Ju

ly
 2

01
5.

 D
ow

nl
oa

de
d 

on
 0

5/
12

/2
01

6 
16

:0
3:

06
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d 

L
ic

en
ce

.
View Article Online

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://dx.doi.org/10.1039/c5ob01025j


pounds were composed of three key building blocks: the core
fragment that is necessary for the construction of a trivalent
network; the sialic acid residue that is required for the binding
to the carbohydrate recognition sites at the Ad37 fiber knob
and the linker that is connecting the sialic acid residues to the
core fragment.

The tertiary amino scaffold that constituted the core frag-
ment in ME0322 and the sialic acid residues that are crucial
for the interactions with the target protein were conserved in
the new ligands. Contrarily, the linker, which could not be
visualized in the crystal structure of ME0322 in complex with
the Ad37 fiber knob21 likely due to flexibility and lack of inter-
actions with the protein, was revised. The design efforts were
initially focused on both, shortening the original linker with
the idea to bring the core fragment closer to the receptor and,
introducing a heteroaromatic ring moiety to possibly create
new contacts with the fiber knob (Fig. 1b). After analysis of the
commercial availability of functionalized tertiary amino build-
ing blocks (core fragment) and robust chemical reactions that
allow a rapid access to multivalent sialic acid containing struc-
tures our choice was triazole-based linkers.25–30 Two linker
lengths were investigated to probe an eventual size effect on
the potency.

In addition to trivalent sialic acid compounds 11a and 11b,
their corresponding N-acetyl modified analogues 12a and 12b
were also included in this series (Fig. 1b). Thus, we aimed to
further investigate the hydrophobic pocket to which the
N-acetyl group of the sialic acid is directed in the Ad37-ME0322
complex.21 Previous studies on a set of multivalent human
serum albumin (HSA) conjugates highlighted a detrimental
effect of an increased lipophilicity at the N-acetyl group of the
sialic acid on the compound potency, although crystallo-
graphic investigations suggested that these modifications
should readily fit in the hydrophobic fiber knob pocket that

accommodate the sialic acid N-acetyl group.31 This loss in
potency could eventually be scaffold- and/or linker-dependent
as suggested by a better tolerance of an increased lipophilicity
during the evaluation of their corresponding monovalent ana-
logues. Therefore, the effect of such modifications on trivalent
sialic acid derivatives that have a linker especially designed to
better accommodate into the fiber knob cellular receptor
should clarify the scaffold- and linker-dependence hypothesis.

Synthesis of the first-generation triazole linker-based
compounds

The route to unmodified N-acyl trivalent sialic acids 11a and
11b proved straightforward and could be achieved in eight
steps from commercially available chemicals or in five steps
from key intermediate 1 (Scheme 1). The synthesis of the sialic
acid thiophenyl derivative 1, readily prepared from sialic acid,
was performed according to published procedures.32 Sialo-
sides 3a and 3b were then accessed in good conversion by gly-
cosylation of 2-bromoethanol and 3-bromopropan-1-ol
respectively, with compound 1. The reactions yielded insepar-
able mixtures of anomers together with the resulting elimin-
ation product that was not further purified at this stage.
Bromo derivatives 3a and 3b were readily converted to their
azido analogues 5a and 5b. Subsequent O-deacylation using
standard Zemplèn conditions afforded anomerically pure 7a
and 7b in 40% and 58% yields, respectively, over three steps.
Then, compounds 7a and 7b were reacted with tripropargyl-
amine in a copper-catalyzed azide–alkyne cycloaddition reaction
(“click” reaction). Thus, methyl esters 9a and 9b were obtained
in 51% and 45% yields, respectively. Subsequent saponifica-
tion provided the final target compounds 11a and 11b in 76%
and 41% yields, respectively. The route to N-acyl modified tri-
valent sialic acids 12a and 12b proved somewhat more challen-
ging. The target compounds could be reached in 13 steps from

Scheme 1 Synthesis of 11a, 11b, 12a and 12b. Reagents and conditions: (a) i: molecular sieves 3 Å, 2-bromoethanol or 3-bromopropan-1-ol,
CH3CN/CH2Cl2 (3 : 2), rt, 2 h, ii: AgOTf, IBr, −73 °C, 4.5 h, iii: DIPEA, −73 °C, 30 min. (b) NaN3, TBAI, DMSO, rt, 6 h. (c) i: NaOMe, MeOH, rt, 3 h, ii: H+

ion exchange resin. (d) Tripropargylamine, CuSO4, sodium ascorbate, THF/H2O (1 : 1), 50 °C, 3 h then rt, 18 h. (e) i: LiOH, MeOH, rt, 9 h, ii: H+ ion
exchange resin.
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commercially available sialic acid or in five steps from key
intermediate 2 (Scheme 1). The synthesis of compound 2 was
performed according to published procedures.31 The following
steps were analogous to the above-described synthetic route to
compounds 11a and 11b. Thus, the successive glycosylation,
azide formation and O-deacylation reactions afforded anomeri-
cally pure product 8a and 8b in 46% and 55% yields over three
steps, respectively. Subsequent “click” reactions provided the
trivalent compounds 10a and 10b in 50% and 34% yields,
respectively. Finally, saponification of the methyl esters gave
the target products 12a and 12b in good yields.

Biological evaluation of the first-generation triazole linker-
based compounds

Cell-binding assays using 35S-labeled virions were performed
to investigate the efficiency of compounds 11a, 11b, 12a and
12b to prevent the attachment of Ad37 virions to HCE cells
(Fig. 2a). The assays were carried out essentially as previously
described but with minor modifications16,33 and, ME0322,
sialic acid and GD1a glycan were used as reference com-
pounds.17,21 In brief, 35S-labeled Ad37 virions were mixed with

or without the trivalent sialic acid derivatives, GD1a glycan
and sialic acid at various concentrations. The mixtures were
incubated with HCE cells and unbound virions were then
washed away. Finally, the cell-associated radioactivity was
measured by using a scintillation counter.

The attachment of Ad37 virions to HCE cells was dramati-
cally hindered in the presence of the triazole linker-based com-
pounds (Fig. 2a). Indeed, the new trivalent sialic acid
derivatives were considerably more potent than the sialic acid
monosaccharide (IC50 = 1.2 mM) and bivalent GD1a glycan
(IC50 = 90.8 μM). Compounds 11a and 11b were found as the
most efficient compounds to prevent Ad37 virions from HCE
cells attachment with IC50 values of 107 nM and 40 nM,
respectively. The previously described compound, ME0322,
proved to be less potent (IC50 = 3.2 μM). The N-acyl modified
derivatives 12a and 12b completed the series with IC50 values
of 4.5 μM and 23.4 μM, respectively.

A correlation between the linker length and the ligand
potency could not be demonstrated. Thus, reduction of the
linker size in the N-acetyl series (11a vs. 11b) resulted in a 2.7
times decrease in binding potency. Contrarily, the same trans-
formation in the N-acyl modified series (12a vs. 12b) proved
5.2 times more beneficial. These results suggest that some
degree of variation of the linker length is tolerated. However,
increasing the lipophilicity of the ligands at the N-acyl moiety
was clearly not beneficial to the binding to Ad37 virions (11a
vs. 12a and 11b vs. 12b). Even though these data are in agree-
ment with previous investigations;31 herein, the drop in
potency is not as pronounced. Indeed, while N-acyl modified
multivalent HSA conjugates were very poorly effective, com-
pounds 12a and 12b prevent the attachment of Ad37 virions to
HCE cells rather efficiently. Therefore, the loss in binding
potency cannot only be attributed to an increased lipophilicity
and/or bulkiness at the N-acyl moiety and, the nature of the
multivalent scaffold is most likely to play an important role.

Infection experiments were then performed to further
evaluate our set of compounds (Fig. 2b). The assays were
carried out essentially as previously described but with minor
modifications.16,33 In brief, unlabeled virions were mixed with
or without the trivalent sialic acid derivatives, GD1a glycan or
sialic acid at various concentrations. These mixtures were then
added to HCE cells and incubated at +4 °C. Unbound virions
were washed away, the resulting mixtures were incubated at
+37 °C and a synchronized infection – all virions enter the
cells simultaneously – was then obtained. After 44 h of infec-
tion, the cells were rinsed, fixed, incubated with rabbit poly-
clonal anti-Ad37 antibodies (that recognize viral capsid proteins)
prior to being washed and stained. Finally, the cells were
washed and the number of infected cells was quantified by
immunofluorescence microscopy.

Hence, the trends from the cell-binding assays were con-
firmed in the infection experiments (Fig. 2a and b). Com-
pounds 11a and 11b prevented infection of HCE cells by Ad37
virions most efficiently with IC50 values of 172 nM and 54 nM,
respectively. The half maximal inhibitory concentration of
ME0322 that had previously been estimated to 380 nM21 was

Fig. 2 Effect of the set of trivalent sialic acid derivatives 11a–b and
12a–b on Ad37 binding to and infection of HCE cells. (a) Virion binding
in the presence of inhibitors at different concentrations. (b) Infection at
different concentrations of the inhibitors. Data are presented as % of
control that is the value obtained in the absence of inhibitor.
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herein calculated to 408 nM. Compounds 12a and 12b were
evaluated as the least potent trivalent sialic acid derivatives
with IC50 values of 12.4 μM and 6.7 µM, respectively. The GD1a
glycan (IC50 = 25.1 μM) and sialic acid (IC50 = 536 μM) com-
pleted the series.

Design strategy for the second-generation triazole linker-based
compounds

A second round of linker engineering (Fig. 1c), where the con-
necting “click” strategy was reversed with respect to the first
generation of ligands (Fig. 1b), was performed. The linker
lengths of 11a and 11b were preserved in compounds 17a and
17b, respectively; however, the triazole ring was moved closer
to the sialic acid residues. Therefore, we could not only investi-
gate the influence of the triazole ring orientation but also
probe if additional interactions with the fiber knob could be
achieved.

Synthesis of the second-generation triazole linker-based
compounds

Compounds 17a and 17b were prepared in four steps from key
intermediate 1 (Scheme 2). The synthesis of anomerically pure
sialosides 14a and 14b (48% and 31% yields over two steps,
respectively) followed the above-described glycosylation and
O-deacylation procedures, albeit the use of the appropriate
alcohol derivatives in the first step. Compounds 14a and 14b
were then reacted with tris (2-azidoethyl)amine (15) in a
“click” reaction. The core building block 15 was synthesized in
two steps from commercially available triethanolamine. First,
tris (2-chloroethyl)amine was obtained according to published
procedure34 and the chloro derivative was then readily con-
verted to its azido analogue 15. Compound 15 was judged as
potentially explosive and was therefore kept in solution at all
times. The methyl esters 16a and 16b were obtained in 76%

and 53% yields, respectively. Subsequent saponification pro-
vided the final target compounds 17a and 17b in quantitative
and 88% yields, respectively.

Biological evaluation of the second-generation triazole linker-
based compounds

The compounds were subsequently investigated in cell-
binding assays (Fig. 3a). The linker optimization strategy
proved successful and a 76 times increase in potency was
observed for 17a (IC50 = 1.4 nM) with respect to 11a. Contrarily,
17b (IC50 = 376 nM) was evaluated about 9 times less efficient
than 11b to prevent the attachment of Ad37 virions to HCE
cells and 17a was over two orders of magnitude more potent
than 17b. These results contrast our earlier observations where
a clear effect of the linker length on the ligand potency could
not be evidenced. A tentative explanation for the potency of
17a could be that the position of the triazole ring adjacent to
the sialic acid residue might result in additional interactions
with the fiber knob. These potentially favorable contacts would
be harder to achieve for 11a, 17b and 11b, where the triazole
ring is situated further away from the sialic acid residue by one
or two methylene groups, respectively. The reasons for the rela-
tively low efficiency of 17b in comparison to 11a and 11b to
prevent Ad37 virions attachment to HCE cells however remain
unclear.

Compounds 17a and 17b were then subjected to cell-infec-
tion assays. The results were in agreement with the cell-
binding assays and 17a (IC50 = 2.9 nM) was confirmed as the
best inhibitor against Ad37 infection to HCE cells. Interest-
ingly, the optimization strategy entirely based on the linker re-
design provided an inhibitor over 140 times more potent than
the initial lead compound (17a vs. ME0322). Compound 17b
also proved efficient against Ad37 infection to HCE cells,
despite a relatively low potency in relation to 17a.

Scheme 2 Synthesis of 17a and 17b. Reagents and conditions: (a) i: molecular sieves 3 Å, propargyl alcohol or 3-butyn-1-ol, CH3CN/CH2Cl2 (3 : 2),
rt, 2 h, ii: AgOTf, IBr, −73 °C, 4.5 h, iii: DIPEA, −73 °C, 30 min. (b) i: NaOMe, MeOH, rt, 3 h, ii: H+ ion exchange resin. (c) CuSO4, sodium ascorbate,
THF/H2O (1 : 1), 50 °C, 3 h then rt, 18 h. (d) i: LiOH, MeOH, rt, 9 h, ii: H+ ion exchange resin.
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Surface plasmon resonance (SPR) experiments of selected
trivalent inhibitors

Finally, 11a, 11b, 17a, 17b and ME0322 were investigated in
surface plasmon resonance (SPR) experiments and their
respective binding affinities (KD) for immobilized Ad37 fiber
knobs were determined (see Experimental section for further
details). Due to the fast on and off rates, the association and
dissociation constants could not be determined. SPR data cor-
roborated well the trends from both cell-binding and cell-infec-
tion assays and the five compounds proved to interact with the
Ad37 fiber knob. Thus, 17a (KD = 10.3 ± 1.4 μM, n = 3) was con-
firmed to best interact with the Ad37 fiber knob, followed by
11b (KD = 72.8 ± 3.3 μM, n = 3), 11a (KD = 78.6 ± 2.7 μM, n = 3),
ME0322 (KD = 135.4 ± 17.9 μM, n = 3) and 17b (KD = 163.4 ±
12.3 μM, n = 3) (see ESI† for SPR curve tracing). It is also worth
noting the influence of the Ad37 fiber knob construct on the
KD values. Indeed, while histidine-free fiber knobs were used
during our assays, histidine-tagged proteins were previously
utilized thus providing a different KD value for ME0322
(KD value previously evaluated at 14 μM).21 This clearly underlines
the need of an internal reference during the SPR experiments.

Crystallography

Crystal structures of Ad37 in complex with our new trivalent
sialic acid conjugates were obtained by soaking (using 2 mM
12a) or co-crystallization (for 11a, 11b, 12b, 17a and 17b) using
previously reported methods.§17,21 In all complex structures
(Fig. 4, S11 and Table S2†), electron density for the entire conju-
gate was visible thus allowing for unambiguous placement of
the ligands. A simultaneous binding of the three sialic acid resi-
dues from a single ligand to the same fiber knob was evidenced,
and most sialic acid/Ad37 contacts observed in previous com-
plexes17,21,35 were retained within the different complex struc-
tures (Fig. 4 and S12†). Lys345, Pro317 and Tyr312 were
confirmed as key contributors to ligand binding and directly
interact with the sialic acid moiety, whereas the Ser344/sialic
acid contact occurs via water-mediated hydrogen bonds.
Additional interactions from the linker and/or core fragment
with the fiber knob could however not be observed and the con-
formations and flexibility of the linker varied significantly from
one Ad37-ligand complex to another (Fig. 4 and 5a). Although
the hypothesis of favorable direct interactions between the tri-
azole ring of 17a and the fiber knob protein could thus not be
verified, there may still exist long-range electrostatic interactions
that favor binding. However, the analysis of the Ad37-17b
complex highlighted an additional internal order of 17b that
could eventually explain its lower potency. Indeed, in the
complex the sialic acid residues of 17b were rotated sideward
and the linker formed a bell-like shape, possibly due to a stag-
gered arrangement of the triazole rings (Fig. 4f and magenta
structure in Fig. 5a). This ordered and more compact confor-
mation could then directly affect the potency of the ligand.

Crystal structures of the N-acyl modified compounds 12a
and 12b showed an overall binding mode similar to their
corresponding unmodified N-acyl analogues (Fig. 4a–d,
respectively). Moving the analysis to the sialic acid binding
site, the Ad37-12a and Ad37-12b complexes provided impor-
tant information (Fig. 5b and c, respectively). The additional
methyl group in 12a and 12b that is oriented away from Tyr308
and Val322 pushes the entire ligand slightly upwards. This
unfavorable interaction most likely causes the drop in inhibi-
tory potency for the N-acyl modified series of compounds.

Ophthalmic toxicity of compound 17a in rabbit

To examine if the most potent compound (17a) can be used
for topical treatments of eye infections, ophthalmic toxicity
was studied in rabbits. Six male New Zealand white rabbits
were divided into two groups of three and to each eye 40 µL of
1 mg mL−1 of 17a in 0.9% aq. NaCl or vehicle alone was admi-
nistered topically. In total, each eye received 48 adminis-
trations over a period of seven days. Before the first
administration, day 2, and at day 8 the animals were subjected
to body weight recordings, slit lamp examinations, intraocular

Fig. 3 Effect of the set of trivalent sialic acid derivatives (17a–b) on
Ad37 binding to and infection of HCE cells. (a) Virion binding in the pres-
ence of inhibitors at different concentrations. (b) Infection at different
concentrations of the inhibitors. Data are presented as % of control that
is the value obtained in the absence of inhibitor.

§Atomic coordinates and structure factors have been deposited with the Protein
Data Bank under Accession Codes 4K6T (Ad37-11a), 4K6U (Ad37-11b), 4K6W
(Ad37-12a), 4K6V (Ad37-12b), 4XQA (Ad37-17a) and 4XQB (Ad37-17b).
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pressure, and pachymetry measurements under local anesthe-
sia. The variations in body weights noted are common among
rabbits and are probably not related to the treatment. The data
showed that intraocular pressures and corneal thicknesses
were within normal limits throughout the study period. The
results of the slit lamp examinations show that all eyes were of
normal status before start of the study. At the examinations at
days 2 and 8 no signs of influence of the test or control items
were noted on the cornea, the depth of the anterior chamber,
the iris or the lens. No signs of irritation of the test or control
item on surrounding tissues were noted. We conclude that
compound 17a did not cause irritation in ocular tissues after
repeated administration during seven days. In addition,
repeated administration did not cause changes in body
weights, intraocular pressure, or corneal thickness that would
indicate a toxic reaction to the compound.

Conclusions

Two generations of new trivalent sialic acid derivatives have
been designed, synthesized and evaluated against Ad37 infec-

tion of HCE cells. The design of these Ad37 inhibitors was
based on the structural features of ME0322, a previously
characterized trivalent Ad37 inhibitor, as well as on robust
chemical reactions allowing the rapid access to the target com-
pounds. Thus, in this study we set out to improve the potency
of ME0322 by revising the linker strategy. First-generation
ligands 11a and 11b efficiently prevented the attachment and
infection of Ad37 virions to HCE cells while second-generation
compound 17a was determined as the most potent inhibitor of
Ad37 infection of HCE cells. In addition, the original lead
potency was greatly improved. Co-crystallization of the trivalent
sialic acids in complex with the Ad37 fiber knob allowed the
unambiguous placement of the ligands and therefore con-
firmed a one-to-one binding mode between the compounds
and the Ad37 fiber knob. However, ligand–receptor inter-
actions originating from the linker and/or core fragment were
not observed.

In this study, we also explored the effect of an increased
lipophilicity at the N-acyl moiety (12a and 12b). The trivalent
ligands, albeit a great inhibitory potency, were less efficient in
preventing Ad37 infection of HCE cells compared to their
unmodified analogues (11a and 11b). The analysis of the

Fig. 4 Binding of 11a, 11b, 12a, 12b, 17a and 17b to the Ad37 fiber knob (top view, a–f ). Simulated annealing omit difference electron density maps
for 11a (a, 2.0 Å resolution, PDB ID 4K6T), 11b (b, 1.9 Å resolution, PDB ID 4K6U), 12a (c, 1.5 Å resolution, PDB ID 4K6W), 12b (d, 1.5 Å resolution, PBD
ID 4K6V), 17a (e, 1.4 Å resolution, 4XQA) and 17b (f, 1.6 Å resolution, 4XQB) were contoured at 3σ and shown with a radius of 2.4 Å around the ligand
(dark blue). For 17a (e), an additional map at 2σ shows an ordered density for the ligand base (cyan). One inhibitor molecule is simultaneously bound
with its three terminal sialic acid residues. Serine 344 (Ser344) is within the van-der-Waals radius of the sialic acid moieties and only 17b (f ) is
capable of forming hydrogen bonds with this residue. Black dashed lines in a–e indicate distances to Ser344.
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Ad37-inhibitor structures evidenced an unfavorable interaction
between the additional methyl group and the target protein
that could explain the lower potency of these compounds.

In conclusion, we have synthesized highly potent inhibitors
against Ad37 infection to HCE cells. Compound 17a, the most
potent inhibitor, was accessed using a straightforward syn-
thetic route. Some advantages of such drugs are that (i) they
can be used for topical treatment, which would overcome sys-
temic treatment related challenges such as rapid serum clear-
ance and poor cellular uptake of carbohydrate based drugs, (ii)
their mechanism of action is on the extracellular level whereas
most other antiviral drugs act intracellularly (minimizing side
effects), and (iii) the active molecule is a normal carbohydrate
(also minimizing side effects). Our investigation of ophthalmic
toxicity in rabbits show that this type of trivalent sialic acids
are well tolerated and thus have the potential to be developed
into novel treatments of viral eye infections.

Experimental section
General chemical procedures
1H NMR and 13C NMR spectra were recorded with a Bruker
DRX-400 spectrometer at 400 MHz and 100 MHz respectively.
NMR experiments were conducted at 298 K in CDCl3 (residual
solvent peak = 7.26 ppm (δH)), CD3OD (residual solvent peak =
3.31 ppm (δH) and 49.00 ppm (δC)) and D2O (residual solvent
peak = 4.79 ppm (δH)). LCMS was carried out with a Waters LC
system equipped with an Xterra C18 column (50 × 19 mm,
5 μm, 125 Å), eluted with a linear gradient of CH3CN in water,
both of which contained formic acid (0.2%). A flow rate of
1.5 mL min−1 was used and detection was performed at
214 nm. Mass spectra were obtained on a Water micromass ZQ
2000 using positive and negative electrospray ionization.
HRMS was performed using a Bruker MicroTOF II mass
spectrometer with electrospray ionization (ES+); Tune Mix ESI
solution was used for the calibration. Semi-preparative HPLC
separations were performed on a Gilson system HPLC, using a
Nucleodur C-18 column HTEC 5 μm (VP 250/21) with a flow
rate 20 mL min−1, detection at 214 nm and eluent system:
A. aq. 0.005% HCOOH, and B. 0.005% HCOOH in CH3CN.
Column chromatography was performed on silica gel (Merck,
60 Å, 70–230 mesh ASTM). Thin Layer Chromatography (TLC)
were performed on Silica gel 60 F254 (Merck) with detection
under UV light and/or development with 5% H2SO4 in EtOH
and heat. Optical rotations were measured with a Perkin-Elmer
343 polarimeter at 20 °C. Organic solvents were dried using a
Glass Contour Solvent Systems (SG Water USA) except CH3CN
and MeOH that were dried over molecular sieves 3 Å. All com-
mercial reagents were used as received. ME0322 was syn-
thesized according to published procedure.21 All target
compounds were ≥95% pure according to HPLC UV-traces.
Statistics were calculated using GraphPad Prism (GraphPad
Software, Inc, La Jolla, CA).

Synthetic procedures

General method for the glycosylation reaction. Glycosyl
donor 1 or 2 (1.0 equiv.) and freshly crushed molecular sieves
3 Å (1.5 g mmol−1) were dissolved/suspended in a mixture of

Fig. 5 (a) Superposition of the inhibitor compounds (11a = blue, 11b =
cyan, 12a = yellow, 12b = orange, 17a = green, 17b = magenta). The
corresponding protein chains were aligned in PyMOL. 17b possesses
additional internal order, its sialic acid moieties are rotated sideward and
its linker forms a bell-like structure; (b) and (c) hydrophobic interactions
of 12a (b) and 12b (c). For the two compounds, the additional methyl
group of the propionic acid group is facing away from Y308 and V322,
pushing the whole ligand up.
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CH3CN/CH2Cl2 (3 : 2; 35 mL mmol−1) at room temperature and
under nitrogen atmosphere. 2-Bromoethanol, 3-bromopropan-
1-ol, propargyl alcohol or 3-butyn-1-ol (4.5 equiv.) was added
and the mixture was stirred for 2 h. The reaction was protected
from light and a solution of silver triflate (2.0 equiv.) in
CH3CN was added. The mixture was cooled to −73 °C (−70 °C
< t < −75 °C) and IBr (1.4 equiv., 1 M in CH2Cl2) was added.
The reaction was allowed to proceed for 4.5 h at −73 °C. After
completion, DIPEA (6.0 equiv.) was added. The reaction
mixture was stirred for a further 30 min at −73 °C and then
allowed to warm to room temperature. The mixture was filtered
through a Celite® pad, washed with CH2Cl2 or CH3CN and the
solvents concentrated to dryness.

General method for the synthesis of azido derivatives. To
the bromo derivatives (1.0 equiv.) dissolved in DMSO (40 mL
mmol−1) were successively added portion-wise sodium azide
(6.0 equiv.) and TBAI (2.0 equiv.). The reaction was allowed to
proceed for 6 h at room temperature and under nitrogen
atmosphere. After completion, the mixture was diluted with
CH2Cl2, washed with water and brine, dried over MgSO4, fil-
tered and concentrated to dryness.

General method for the O-deacylation of sialosides. To pera-
cylated sialoside (1.0 equiv.) dissolved in MeOH (70 mL) was
added sodium methoxide (3.9 equiv.). The reaction was
allowed to proceed for 3 h at room temperature and under
nitrogen atmosphere. After completion, the solution was neu-
tralized by drop-wise addition of glacial AcOH or by Amber-
lyst® 15. The solvent was then concentrated to dryness.

General method for the synthesis of the first generation of
trivalent sialic acid derivatives. To the azido derivative
(3.7 equiv.) dissolved in THF/H2O (1 : 1, 81 mL mmol−1) was
successively added tripropargylamine (1.0 equiv.), CuSO4

(0.9 equiv.) and sodium ascorbate (0.9 equiv.). The reaction
was allowed to proceed at 50 °C for 3–3.5 h and at room temp-
erature for a further 18 h. After complete consumption of the
starting azide, THF was evaporated under vacuum and the
crude was freeze-dried. The crude solid was dissolved in
DMSO and purified by HPLC (A: aq. 0.005% HCOOH in H2O,
B: aq. 0.005% HCOOH in CH3CN, organic phase gradient 7%
to 25%). The collected compound-containing fractions were
freeze-dried to afford pure product.

General method for the synthesis of the second generation
of trivalent sialic acid derivatives. To a solution of tris (2-azido-
ethyl)amine (1.1 equiv.) dissolved in THF/H2O (1 : 1, 81 mL
mmol−1) was successively added alkyne derivative (4.5 equiv.),
sodium ascorbate (0.9 equiv.) and copper(II) sulfate (0.9 equiv.).
The reaction was allowed to proceed at 50 °C for 3–3.5 h and at
room temperature for a further 18 h. After complete consump-
tion of the starting azide, THF was evaporated under vacuum
and the residue was diluted with distilled water and then puri-
fied with preparative HPLC (A: aq. 0.005% HCOOH in H2O,
B: 0.005% HCOOH in CH3CN, organic phase gradient 5% to
20%/30 min.). The collected compound-containing fractions
were freeze-dried to afford pure product.

General method for saponification of the methyl esters. To
the trivalent methyl ester derivatives (1.0 equiv.) dissolved in

MeOH (135 mL mmol−1) was added an aqueous solution of
LiOH (1 M, 9.0 equiv.). The mixture was allowed to proceed for
9–44 h at room temperature. After completion, the reaction
mixture was neutralized with Dowex 50W8 (H+) or amberlite
IR120. After filtration, the solvent was evaporated under
vacuum and the crude, dissolved in water, was eluted on a
C-18 plug with H2O. The compound-containing fractions were
freeze-dried to yield pure trivalent sialic acid derivative.

Methyl 2-(prop-2-ynyloxy(5-N-acetamido-4,7,8,9-tetra-O-acetyl-
3,5-dideoxy-D-glycero-α-D-galacto-2-nonulopyranosyl))-onate
(13a). Compound 13a was synthesized following the general
method for the glycosylation reaction. Purification by column
chromatography (gradient n-heptane/EtOAc) afforded com-
pound 13a, the corresponding reverse anomer and the glycal
product (α/β/glycal (n.d.)). Compound 13a was used in the next
step without additional purification. ESI-MS m/z calcd for
C23H32NO13 (M + H)+ 530.19 and C23H31NNaO13 (M + Na)+

552.17; found 530.00 and 552.04, respectively.
Methyl 2-(prop-2-ynyloxy(5-N-acetamido-3,5-dideoxy-D-glycero-

α-D-galacto-2-nonulopyranosyl))-onate (14a). Compound 14a
was synthesized following the general method for the O-deacy-
lation of sialosides. Purification by HPLC (A: aq. 0.005%
HCOOH in H2O, B: aq. 0.005% HCOOH in CH3CN, organic
phase gradient 5% to 20%) afforded compound 14a (178 mg,
48% yield over two steps). 1H NMR (400 MHz, CD3OD): δ 4.40
(dd, J = 4.3 Hz, J = 15.9 Hz, 1H), 4.33 (dd, J = 4.3 Hz, J = 15.9
Hz, 1H), 3.81–3.91 (m, 5H), 3.78 (d, J = 10.3 Hz, 1H), 3.63–3.72
(m, 2H), 3.60 (dd, J = 1.5 Hz, J = 10.4 Hz, 1H), 3.52 (dd, J =
1.4 Hz, J = 9.0 Hz, 1H), 2.86 (t, J = 2.4 Hz, 1H), 2.72 (dd, J3eq,4 =
4.6 Hz, J3eq,3ax = 12.7 Hz, 1H), 2.01 (s, 3H), 1.75 (dd, J3eq,3ax =
12.7 Hz, J3ax,4 = 11.8 Hz, 1H). 13C NMR (100 MHz, CD3OD):
δ 175.12, 170.42, 99.44, 80.31, 75.71, 74.90, 72.17, 70.09, 68.38,
64.73, 53.65, 53.47, 52.69, 41.51, 22.71. ESI-MS m/z calcd for
C15H23NO9 (M + H)+ 362.15; found 361.99.

Tris (2-azidoethyl)amine (15). A solution of triethanolamine
(0.298 g, 2.0 mmol) in 0.5 mL of CHCl3 was slowly added into
a stirred solution of thionyl chloride (0.52 mL, 7.0 mmol) in
0.8 mL of CHCl3. After addition, the reaction mixture was
heated to reflux temperature for 4 h. After cooling to room
temperature the white solid product was filtered and washed
with CH2Cl2 (1.0 mL × 2) to give tris (2-chloroethyl)amine
hydrochloride (0.395 g) in 82% yield after overnight drying
under vacuum. Following, Tris (2-chloroethyl)amine hydro-
chloride (0.198 g, 0.82 mmol) and sodium azide (0.320 g,
4.92 mmol) were added to DMSO (7.0 mL). The resulting
mixture was stirred at 92 °C for 22 h. After cooling the mixture
was poured into distilled water (40.0 mL) and the solution was
alkalized with Na2CO3 (10% aq.) to pH = 10, extracted with
CH2Cl2 (15.0 mL × 3). The organic phase was washed with
water (20.0 mL) and then dried over Na2SO4. CH2Cl2 was con-
centrated to 1 mL, and then 15.0 mL of THF was added, con-
centrated again to 1.0 mL, 15.0 mL of THF added and
concentrated to 1.8 mL. This THF solution containing
0.8 mmol of tris (2-azidoethyl)amine was used in next step
without further purification (note: compound 15 was judged
as potentially explosive and was therefore kept in solution at
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all times). 1H NMR (400 MHz, CDCl3): δ 3.33 (t, J = 6.2 Hz, 6H),
2.76 (t, J = 6.2 Hz, 6H). ESI-MS m/z calcd for C6H13N10 (M + H)+

225.13; found 225.33.
Tris ((4-(2-O-(methyl (5-N-acetamido-3,5-dideoxy-D-glycero-

α-D-galacto-2-nonulopyranosyl)-onate))-2-oxomethyl-1H-1,2,3-
triazol-1-yl)ethyl)amine (16a). Compound 16a was synthesized
following the general method for the synthesis of the second
generation of trivalent sialic acid derivatives (76% yield).
1H NMR (400 MHz, CDCl3): δ 7.78 (s, 3H), 4.92 (d, J = 12.6 Hz,
3H), 4.64 (d, J = 12.1 Hz, 3H), 4.30 (t, J = 6.2 Hz, 6H), 3.79–3.93
(m, 18H), 3.60–3.74 (m, 9H), 3.47–3.58 (m, 3H), 3.03 (t, J =
5.9 Hz, 6H), 2.67 (dd, J3eq,4 = 4.6 Hz, J3eq,3ax = 12.8 Hz, 3H),
2.00 (s, 9H), 1.74 (t, J3eq,3ax = 12.3 Hz, 3H). 13C NMR (100 MHz,
CD3OD): δ 175.05, 170.75, 145.52, 126.09, 100.06, 74.98, 72.26,
70.33, 68.53, 64.93, 58.51, 55.09, 53.71, 53.59, 41.65, 22.75.
HRMS m/z calcd for C51H81N13NaO27 (M + Na)+ 1330.5263;
found 1330.5186.

Tris ((4-(2-O-(5-N-acetamido-3,5-dideoxy-D-glycero-α-D-galacto-
2-nonulopyranosylonic acid))-2-oxomethyl-1H-1,2,3-triazol-1-yl)-
ethyl)amine (17a). 17a was synthesized following the general
method for the saponification of methyl ester (20 mg, quant.).
[α]20D −11.7 (c 1.0 mg mL−1, H2O).

1H NMR (400 MHz, D2O):
δ 7.84 (s, 3H), 4.85 (d, J = 12.0 Hz, 3H), 4.61 (d, J = 12.0 Hz,
3H), 4.35 (t, J = 6.0 Hz, 6H), 3.77–3.94 (m, 9H), 3.49–3.76
(m, 12H), 3.04 (t, J = 6.0 Hz, 6H), 2.73 (dd, J3eq,4 = 4.5 Hz,
J3eq,3ax = 12.4 Hz, 3H), 2.03 (s, 9H), 1.66 (t, J3eq,3ax = 12.3 Hz,
3H). 13C NMR (100 MHz, D2O): δ 179.90, 174.12, 127.82,
101.35, 73.50, 72.50, 69.00, 68.91, 63.74, 63.40, 52.51, 51.39,
49.84, 40.87, 30.05, 10.36. HRMS m/z calcd for C48H76N13O27

(M + H)+ 1266.4974 and C48H75N13NaO27 (M + Na)+ 1288.4793;
found 1266.4901 and 1288.4742, respectively.

Cell-binding assay

The assay was carried out essentially as described previously
but with minor modifications.16,33 35S-labeled Ad37 virions
(5 × 108 per well) were mixed with or without the trivalent sialic
acid derivatives, GD1a glycan or sialic acid at various concen-
trations in binding buffer (50 μL; BB: Dulbecco’s modified
eagle’s medium containing 1% BSA (Roche AB, Stockholm,
Sweden) and HEPES (20 mM, EuroClone, Milan, Italy), pH 7.5).
The mixtures were then added to HCE cells prepelleted (1 × 105

per well) in a 96-well microplate. After re-suspension, the mix-
tures were incubated at +4 °C for 1 h. Finally, unbound virions
were washed away with BB and the cell-associated radioactivity
was counted by using a Wallac 1409 scintillation counter.

Infection assay

The assay was carried out essentially as described previously
with minor modification.16,33 6 × 106 non-labeled virions were
added to serum free growth media (50 μL), with or without tri-
valent sialic acid derivatives, GD1a glycan or sialic acid at
various concentrations. The resulting mixtures were then added
to monolayers of HCE cells in a 96-well plate (3 × 104 cells per
well) and incubated at +4 °C. After 1 h, unbound virions were
washed away with serum free growth media. Cells were then
incubated with growth media containing 1% fetal bovine serum

(FBS) at +37 °C. After 44 h of infection, the cells were rinsed
with PBS, fixed with cold (−20 °C) 99% methanol for 10 min
and incubated with rabbit polyclonal anti-Ad37 antibodies
diluted 1 : 100 in PBS (pH 7.4) at room temperature. After 1 h,
the cells were washed in PBS and incubated with swine anti-
rabbit-IgG Alexa flour 647 secondary antibodies diluted 1 : 250
in PBS for 1 h at room temperature. Finally, the cells were
washed in PBS and the number of infected cells was quantified
in TROPHOS Plate RUNNER (immunofluorescence microscope).

Surface plasmon resonance (SPR)

The affinity measurements were performed using a surface
plasmon resonance BIAcore T200 instrument. Ad37 knob pro-
teins were covalently coupled to a CM5 sensorchip using the
amine coupling kit (GE Healthcare), to a concentration of
14–15 ng mm−2 (∼15 000 RU). Binding of the trivalent sialic
acid conjugates ME0322, 11a, 11b, 17a and 17b to the immobi-
lized knob was performed in 10 mM HEPES, 0.15 M NaCl and
0.05% P20 pH 7.4 (1× HBS-EP+, GE Healthcare). The concen-
trations of trivalent sialic acid used were 400, 200, 100, 50
(twice), 25, 12.5 (twice), 6.25, 3.125, 1.56 and 0.78 μM. The
experiment was performed three times for ME0322, 11a, 11b,
17a and 17b. The binding affinities (KDs) were calculated using
BIAcore T200 evaluation software.

Protein production and structure determination

Expression and purification of Ad37 fiber knob protein were
essentially carried out as described previously.17 For co-crystal-
lization Ad37 fiber knob trimers were concentrated to
13.0–14.4 mg mL−1 and then incubated with a 1.3 fold excess
of the trivalent sialic acid conjugates 11a, 11b, 12b, 17a or 17b.
Co-crystals of Ad37-inhibitor complexes were grown following
the approach described previously.21 For complex production
of Ad37-12a, Ad37 fiber knobs were soaked for 2 h in reservoir
solution containing 2 mM conjugate 12a. Crystals were cryo-
protected by using 29% (wt/vol) polyethylene glycol 8000,
50 mM zinc acetate, and 100 mM HEPES (pH 6.9–7.2), then
flash frozen in liquid nitrogen, followed by data collection on
beamlines X06SA and X06DA at the SLS (Villigen, Switzerland)
as well as MX-14-1 at BESSY (Berlin, Germany). Diffraction
data were recorded with a Pilatus 6M (for 11a, 11b, 17a and
17b) and a Pilatus 2M-F (for 12a and 12b) pixel detector and
processed with the XDS-software.36 The structures of Ad37 in
complex with 11a, 11b, 12a, and 12b were solved first by mole-
cular replacement using Phaser37 in CCP438 and the native
Ad37 knob trimer (pdb-code: 1uxe35) as the search model. For
the structures of Ad37 in complex with 17a and 17b, Molrep39

was used for the same purpose. All conjugates were un-
ambiguously placed in Fco-crystallized/soaked − Fnative difference
Fourier maps, incorporated into the model, and refined with
restraints from either the Refmac540 or the PHENIX41

monomer library and the PRODRG2 server42 (for the ligand).
Structural refinement was carried out by alternating rounds of
model building in Coot43 and restrained refinement including
a combination of isotropic B-factor refinement and the
transition-libration-screw method (TLS)44 with Refmac5 or
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PHENIX (for compound 17b). In the case of 17a, high re-
solution allowed for an anisotropic refinement of B-factors for
all atoms in PHENIX. For TLS refinement, each protomer in
the asymmetric unit was attributed to one TLS group (for
Ad37-12a two TLS groups per protomer were used). In the case
of 17b, PHENIX automatically assigned TLS groups. Waters
were located with ARP/wARP45 solvent in CCP4. Simulated
annealing was carried out with PHENIX. The final models had
excellent geometry. All figures were prepared with PyMOL.46

Statistics on data collection and refinement are given in
Table S1† and the simulated annealing omit difference
electron density maps for conjugates 11a, 11b, 12a, 12b, 17a
and 17b are given in Fig. 4.

Ophthalmic toxicity in rabbit

The experiment was performed in agreement with the EMEA-
guideline for local tolerance testing of medicinal products.47

Compound 17a was dissolved in 0.9% aq. NaCl to a final
concentration of 1 mg mL−1. Six male New Zealand white
rabbits were obtained and were allowed to acclimatize before
start of the study. The animals were divided into two groups
of three. The compound (1 mg mL−1 in 0.9% aq. NaCl) or
vehicle (0.9% aq. NaCl) was administered topically in a
volume of 40 μL hourly (4 administrations during Saturday
and Sunday and 8 administrations during weekdays; 5 × 8 +
2 × 4 = 48 administrations in total) in both eyes during seven
days. Before the first administration, day 2, and at day 8 the
animals were subjected to body weight recordings, slit
lamp examinations, intraocular pressure, and pachymetry
measurements under local anesthesia. The study was per-
formed at Adlego Biomedical AB (Uppsala, Sweden) with
approval of the local animal ethics committee in Stockholm
(N169/14).
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Abstract 

Following initial attachment, Human adenoviruses (HAdVs) use their penton base protein to bind to integrins 

on the host cell surface and mediate cell entry. Almost all HAdVs are recognized by their integrin receptors in a 

similar fashion through a conserved tri-amino acid motif on a surface exposed loop, making this step of the life 

cycle a promising drug target. Several structural studies have therefore addressed this interaction, but are 

complicated by the flexibility of both proteins. Therefore, some essential features such as the binding 

stoichiometry are still enigmatic to date. 

In this study, we set out to generate an expression system that allows studying the interactions between 

soluble, pentameric penton base and the extracellular domains of integrin αvβ3 by single particle cryo-electron 

microscopy. In this preliminary manuscript, we report the current state of the expression and purification of 

recombinant pentameric penton base of HAdV-D09. Heterologous expression in E. coli gave reasonable 

amounts of soluble protein that was readily purifiable, but poorly folded and therefore not suitable for 

structural studies. Therefore, a new generation of constructs for the expression in insect cell systems has been 

designed and is presented here. 
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Introduction 

Human adenoviruses (HAdVs) use a two-step mechanism to select and enter their host cells. An initial primary 

attachment step is followed by a secondary interaction that is not capable of mediating attachment but 

promotes virus entry [1,2]. With the exception of HAdVs F40 and F41, all HAdV types are recognized by αv 

integrins through a canonical arginine-glycine-aspartic acid (RGD) motif located in the surface-accessible RGD 

loop of their penton base (pb) [3]. The pb is a pentameric protein located at the vertices of the HAdV capsid [4]. 

This protein is considered the ‘weak link’ in the otherwise highly stable capsid and is the first protein to be 

released during uncoating. The process of uncoating itself is initialized at the plasma membrane, partially by 

the influence of integrin binding. For one, the relative movement of primary attachment factors and the more 

immobile integrins provide sheer stress that promotes fiber loss [5]. Secondly, the interaction between Integrin 

and pb promotes an untwisting of the pb pentamer that possibly promotes fiber loss and weakens the capsid 

[6,7]. Thirdly, clustering of integrins by several RGD motifs on the HAdV capsid produces an avidity effect and 

induces integrin signaling, which ultimately leads to cellular uptake through clathrin-coated pits [1]. Even within 

the endosome, integrin signaling likely continues to play a role for the passage of the virus-loaded endocytotic 

vesicles through the actin cortex [8]. Some HAdV types, among them HAdVs B03 and D09, produce excess pb 

proteins in their cytosol that self-assemble into fiber-equipped T=1 icosahedral particles called penton 

dodecahedra and are released upon host cell lysis [9-11]. These particles are too small to carry the viral 

genome, but HAdV-B03 penton dodecahedra have been shown to promote viral spread by engaging its 

receptor DSG-2 in cell-cell junctions and triggering its autocatalytic cleavage [12,13]. Notably, the engagement 

of DSG-2 requires the presence of at least two fibers in a precise spatial arrangement and would not be 

possible with just excess fibers [14]. 

The interaction between the pb protein and αv integrins is a crucial step for cell entry and a potentially 

druggable target. Detailed information about the flexibility, stoichiometry, and the binding interface is of 

critical relevance for potential drug development. Several studies have addressed this interaction from a 

structural point of view. The interaction between the αvβ3 integrin and a circular RGD peptide was located to a 

binding site located between the β-propeller domain of the α chain and the I domain of the β chain in a crystal 

structure [15]. In a 2009 study, Lindert et al. solved the complex structure of a complete HAdV-A12 capsid in 

complex with avβ5 integrin [6]. However, modest resolution and the need to impose icosahedral symmetry 

averaging for structure solution - which was incoherent with the integrin stoichiometry - impeded the 

interpretability of the results. Integrin is probably bound in an extended, active conformation, with a proposed 

binding stoichiometry of four integrin heterodimers per pb as determined by EM and SPR studies [6,16]. 

Docking experiments showed that several integrins bound by the same pb pentamer are unlikely to adopt 

identical conformations. Instead, binding of four integrins might lead to an untwisting motion of pb. More 

detailed insights were provided by Veesler et. al in 2014, who determined the complex structure of avβ3 

integrin with the monomeric HAdV-D09 penton base (HAdV-D09pb) insertion domain (which forms the integrin 

interface and contains the RGD loop) using single particle cryo-EM [17]. HAdV-D09pb was chosen because it 

binds exceptionally well to αv integrins, and the interaction is strong enough to tether virions to the cell surface, 

which is usually not the case for HAdVs [18,19]. In addition, it contains a relatively short RDG loop compared to 

other HAdVs (see Appendix 6.2.3. of the main manuscript) and therefore forms a less flexible integrin complex. 

However, the complex reported in the publication still showed a remarkable level of flexibility and several 

preferred binding orientations. It is currently unclear whether all of these orientations are possible in a virion 

context, and whether they represent simultaneously occurring binding modes or steps of a sequential binding.  

We sought to extend the existing data by addressing the interactions between avβ3 integrin and the 

recombinantly expressed pentameric HAdV-D09pb. We designed a pb mutant that is not capable of forming 

penton dodecahedra. This way, we hope to overcome the problems arising from icosahedral capsid symmetry 

and at the same time provide a more natural pb-integrin interface. This manuscript reports the current state of 

the purification of HAdV-D09pb. 
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Results and Discussion 

Construct design 

While the expression and purification of the HAdV-D09pb insertion domain is readily done in E.coli, classical 

protocols to purify full-length pb proteins usually involve the expression in insect cells. In an attempt to 

establish a more economic and less time-consuming purification protocol, we chose an E.coli-based approach 

for protein production. Several publications reported that the expression of pb from bacteria results in 

insoluble inclusion bodies [20,21]. However, the addition of an N-terminal GST tag was reported to facilitate 

the solubilisation of the HAdV-B07pb [22]. To this end, our initial HAdV-D09pb construct includes an N-terminal 

GST tag that can be cleaved off due to a HRV3C cleavage site. In addition, the construct contains a non-

cleavable C-terminal hexahistidine tag (Figure 1A).  

 

 

Figure 1 | Penton base construct for expression in E. coli. A The construct contains a cleavable N-terminal GST tag and a 

non-cleavable C-terminal hexahistidine tag for immobilized metal affinity chromatography (IMAC). The location of a human 

rhinovirus 3C protease (HRV3C) binding site is indicated with a blue symbol; mutations that were introduced to prevent 

dodecahedron formation are highlighted in orange. B Sequence alignment of the HAdV-D09pb deletion variant with the 

wildtype sequence. The insertion domain used to solve the cryo-EM structure of monovalent interactions is highlighted in 

red; mutations that were introduced to prevent dodecahedron formation are highlighted in orange. C Homology model 

generated with SWISS-MODEL based on the HAdV-C02pb structure (PDB ID 1X9T). The outward-facing side of the 

monomeric pb is displayed as cartoon. Insertion domain and mutations are highlighted as in B.  

 



4 
 

We altered several regions of the native HAdV-D09pb sequence (Uniprot ID Q9EA46_ADE09) in order to 

prevent the self-assembly into dodecahedral particles (Figure 1). In particular, two loops at the base of pb are 

known to form a homo-interface between neighboring pentamers and have been coined ‘Region 2’ and 

‘Region 3’, respectively [4,10]. The key residue of ‘Region 2’ is an aspartic acid (D100 in HAdV-D03, D87 in 

HAdV-D09) that is conserved in all HAdV types and lies within an ‘NDFT’ motif in both species B and D HAdVs. 

This residue is involved in a salt bridge with the key residue of ‘Region 3’, an arginine (R425 in HAdV-B03, R400 

in HAdV-D09) situated within an ‘RSTQ’ motif in both species. The mutation of either of these two residues 

partially disrupted dodecahedron formation of HAdV-B03. In order to thoroughly disrupt the interface 

potentially formed by these two motifs, we mutated residues DF 87-88 of ‘Region 2’ to serines, and replaced 

eight residues in ‘Region 3’ containing the RSTQ motif with a minimal SGGS motif. In addition to the ‘Region 2’ 

and ‘Region 3’ motifs, the N-terminus of HAdV-B03pb was found to critically stabilize dodecahedral particles by 

a strand swapping mechanism between neighboring pentamers similar to that seen in polyomavirus capsids. In 

HAdV-B03, the first β-strand of the central β-sandwich starts at residue 64 – however, a truncation of the first 

47 amino acids is already enough to substantially decrease dodecahedron formation. To account for this, and 

for the fact that the disordered N-terminus is prone to proteolytic cleavage, we truncated the first 34 AA of our 

HAdV-D09 construct (Figure 1, equivalent to truncating the first 48 AA in HAdV-B03, which has a longer 

N-terminus). 

 

Expression and purification in E. coli Rosetta 

Protein expression performed in E.coli Rosetta (batch 17) gave reasonable amounts of soluble, overexpressed 

protein that could be further purified by GST affinity chromatography (Figure 2). In contrast, Nickel affinity 

chromatography using the full-length construct gave mostly poorly folded and aggregated protein, since the 

GST tags effectively shield the His tag in assembled oligomers (data not shown). The GST tag was removed 

using 20U HRV3C protease (Sigma Aldrich) per mg of protein in the presence of 1 mM DTT. An additional Nickel 

affinity chromatography step did not increase the purity significantly and was therefore omitted (data not 

shown).  

 

 

Figure 2 | Expression, lysis, and GST affinity purification of HAdV-D09pb. A Chromatogram of a GST affinity purification 

run using 10.6 mg of cell culture pellet. The elution buffer was freshly prepared and applied through tube A. The fractions 

highlighted in cyan were pooled. B Corresponding SDS-PAGE of protein expression, cell lysis, and GST chromatography. 

Fractions 8-35 (cyan highlight as in A) were pooled. The samples were diluted 1:5 in order to not overload the gel. 
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Expression in E. coli results in partial C-terminal truncation 

The purified protein showed a characteristic set of co-purifying bands in SDS-PAGE. Mass spectrometry analysis 

demonstrated that in fact all of these bands contain partial sequences of the expression construct (Figure 3). 

Truncations were assessed using MALDI and functional assays (ability to bind GST columns, IMAC after 

unfolding, time course of HRV3C digest). 

While a small subset of pb proteins is cleaved within the RGD loop region, the other truncations occurred at the 

C-terminus of the protein. C-terminal truncations appear already during protein expression and most probably 

originate from preliminary termination of translation. Cloning of the construct into a T7 vector, testing of 

several protease inhibitors, and extensive trials using different E. coli cell lines as well as different expression 

and induction conditions did not improve the expression quality (data not shown). While the main truncated 

species only lack a hidden β-strand that seems to not be critical for protein stability, the proteolytic digest of 

the RDG loop is of critical importance for protein quality. Protein unfolding in 6M guanidinium hydrochloride 

trials served to separate full-length from truncated protein through the C-terminal his tag, but refolding was 

unsuccessful and is challenging due to the large insertion domain (data not shown). Attempts to purify 

truncated pb proteins from fully expressed versions using careful IMAC steps were also unsuccessful (data not 

shown). The most probable reason for this is that the truncated pb monomers are still folded and incorporated 

into pentamers along with full-length pb versions that still contain the His tag. In this case, a fraction of only 

20% truncated protein would result in the loss of 100% of the pb protein if distributed statistically. 

 

 

Figure 3 | Characteristic truncations occurring during expression of HAdV-D09pb. A SDS-PAGE of HAdV-D09pb before and 

after HRV3C-cleavage. The bands were analyzed and assigned using MALDI. Longer incubation times result in near-complete 

proteolytic cleavage. B Approximate locations of the truncations as assessed by MALDI. The C-terminal truncations are likely 

to occur by incomplete translation, while the RGD-loop nicks (upper flash) are most likely the result of proteolytic hydrolysis 

during expression. C The untranslated C-terminal region is coding for a β-strand hidden inside the lower pentamer interface.  

 

Expression from E. coli results in poor protein folding 

The quality and folding of purified HAdV-D09pb was assessed using a combination of anion exchange 

chromatography (IEX), size exclusion chromatography (SEC), and negative-stain transmission electron 

microscopy (TEM) (Figure 4). IEX resulted in the separation of several peaks that were subsequently analyzed 

by SEC and TEM. Some fractions contained the bacterial chaperone GroEL, which has been reported to co-

purify with HAdV-B07pb upon expression in E. coli and is generally an indicator for the present of substantial 

amounts of misfolded protein (Figure 4C,E). GroEL could be separated from pb by anion exchange 

chromatography (IEX) using a shallow NaCl gradient on a MonoQ column. However, the remaining pb still 
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eluted in a broad peak upon SEC (Figure 4B). TEM analysis of the main peak fraction showed that the particles 

are indeed oligomeric but slightly bigger than expected. Furthermore, they do not exhibit visible pentameric 

features (Figure 4D). 

 

Figure 4 | Ion exchange chromatography, size exclusion chromatography, and negative stain TEM of HAdV-D09pb. A 

Anion exchange chromatography served to separate pb (cyan) from co-purified GroEL (magenta). UV280 (in mAU) and 

theoretical buffer B percentage are depicted on the Y axes. The actual salt gradient is depicted by its conductivity (in mS/cm) 

as brown line. Inlay: SDS-PAGE analysis of the respective peak fractions from B and C corresponding to HAdV-D09pb and 

GroEL. The fractions indicated by color were pooled and subjected to size exclusion chromatography (B, C). B HadV-D09pb 

elutes in a broad peak at a volume corresponding to ~1100 kDa, indicating a high degree of inhomogeneity. The highlighted 

fraction was analyzed by negative-stain electron microscopy. C GroEL elutes in a sharp peak at the expected volume. The 

highlighted fraction was analyzed by negative-stain electron microscopy. D HAdV-D09pb particles form oligomers, but these 

are inhomogeneous and do not exhibit pentameric features. Selected particles are magnified. E GroEL particles exhibit 

characteristic heptameric features in negative-stain EM pictures. 
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In summary, we have developed a strategy to purify HAdV-D36pb expressed in E. coli. However, the expression 

of HAdV pb in bacteria is a challenging task that involves high loss due to faulty protein expression and results 

in poorly folded oligomers. Previous studies reported the necessity to use GST tags for soluble protein 

production. In contrast, our data imply that the size of the tag could impair correct pentamer formation. 

Although the construct has a total length of 717 amino acids (81.65 kDa), the protein is soluble and produced in 

large amounts by E. coli. However, a fraction of about 20% (estimated from SDS-gels) appears to be C-

terminally truncated. Since these protein versions are still folded and incorporated into the stable oligomeric 

quaternary arrangement, they cannot efficiently be separated from fully expressed protein. In addition, the 

folding of pb is complicated by the large insertion domain that forms the integrin interaction interface. It is also 

possible that the extensive mutations introduced in our construct hamper the folding process. Folding 

problems are often indicated by an upregulation and co-purification of chaperones such as the GroEL observed 

here. Both the C-terminal truncations and co-purification of GroEL were also observed for HAdV-B07, and are 

thus likely to be a general problem of pb production in E. coli. Therefore, we conclude that E.coli is not a 

suitable system for the purification of HAdV pb. 

 

Construct design for the expression of HAdV-D09 and HAdV-A12 penton base in insect cells 

Based the findings made for E. coli expression, we designed a new construct with more moderate sequence 

alterations for expression of HAdV-D09pb in S. frugiperda cells. This construct contains only a single amino acid 

substitution. We chose to substitute R400 with a glutamate, since this mutation was reported to efficiently 

reduce dodecamer formation while still resulting in acceptable protein yields in Sf9 cells. In addition, we chose 

to further truncate the N-terminus beyond the ‘SELA’ motif that is thought to mediate the first inter-pentamer 

contacts. Furthermore, since protein solubility has not been reported to be an issue in insect cell systems, we 

replaced the bulky GST tag with an N-terminal hexahistidine tag that can be cleaved off using TEV protease, and 

consequently omitted the C-terminal His tag.  

In addition to HAdV-D09, we designed a construct for HAdV-A12pb expression. Working with HAdV-A12pb is 

advantageous for several reasons. For one, the protein does not form penton dodecahedra and thus does not 

necessitate mutations in ‘Region 2’ or ‘Region 3’. Secondly, both its variable and RGD loops are among the 

shortest found in HAdVs. However, the interaction of HAdV-A12pb with integrins seems to be less efficient 

than for HAdV-D09, and although HAdV-A12 is generally assumed to interact with αv integrins, specific 

interactions have so far only been reported for αvβ5. We did not include any mutations into the HAdV-A12pb 

construct, but decided to also truncate the N-terminus since it is reported to be prone to proteolytic digest by 

cellular proteases. In order to ensure efficient protease cleavage, a short artificial linker of 6 AA is also included. 

The codon usage of both constructs has been optimized for insect cells.  

We are currently in the process of cloning these new constructs. Future experiments will build on the 

purification procedure established for E. coli protein production in order to produce pb pentamers that are of 

sufficient quality for single-particle cryo-EM studies. The stoichiometry of the pb/αvβ3 integrin complex will be 

assessed by SEC and small-angle X-Ray scattering (SAXS) experiments. 
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Figure 5 | New constructs for insect cell expression. A Inter-pentamer interface observed in HAdV-B03 dodecahedra. 

Residues D100 and R425 are shown as sticks. R425 sidechains located on the respective neighboring monomers reach into 

the interface to form a double salt bridge (gray sticks). The unstructured N-terminal amino acids that are part of the strand 

swapping interface are highlighted as transparent surface. In the new constructs, the equivalent of R425 is mutated to 

disrupt the salt bridge, and the highlighted parts of the N-terminus are deleted. The location of the first amino acid to be 

included is highlighted in purple. The insertion domain is shown in red as above. B Schematic representation of the new 

construct for HAdV-D09pb. The construct starts at D52 and possesses an N-terminal His-tag (blue) and a TEV cleavage site 

(arrow). Artificial amino acids present at the N-terminus after cleavage are highlighted in orange. The only mutation is 

R400E (equivalent to the R425E mutant of HAdV-B03, also highlighted in orange). C Schematic representation of the new 

construct for HAdV-A12pb. The construct starts at D55 and possesses an N-terminal His-tag (blue) and a TEV cleavage site 

(arrow). Artificial amino acids present at the N-terminus after cleavage are highlighted in orange. No mutations are 

included. Both constructs are codon-optimized.  
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Materials and Methods 

Cloning 

The gene construct for E. coli expression was ordered from Eurofins Genomics (Ebersberg, Germany). The 

construct is present in a pGEX6P1 vector that contains an IPTG-inducible tac promoter and ampicillin (amp) 

resistance. 

Genes for expression in S. frugiperda were codon-optimized using the ‘GENEius’ web tool (Eurofins Genomics) 

and constructs were ordered in a pFastBac HT B vector.  

 

Expression and cell lysis 

For precultures, 20 ml LB containing 50 µg/ml ampicillin and 34 µg/ml chloramphenicol were inoculated with a 

glycerol stock of E.coli Rosetta containing the pGEX6P1-HAdV-D09pb construct and grown over night at 37°C, 

160 rpm in a Falcon tube. The precultures were added to 1.5 L LB containing the same selection markers, 

grown to an OD600 of 0.6 at 37°C, and protein expression was induced with 0.1 mM IPTG. Proteins were 

expressed for approx. 17h at 20°C, 100 rpm. The total volume of the expression cultures varied between 3 and 

6 L. Cells were harvested for 10 min at 7000 rpm, 4°C in a SLC-4000 rotor and resuspended in 3 mL lysis buffer 

(150 mM NaCl, 100 mM HEPES pH 8, 5 mM DTT) per gram bacterial pellet under the addition of 3 µL 

benzonase, 1 mM MgCl2, and 1 mM PMSF or 1 EDTA-free protease inhibitor tablet (Roche). Lysis was 

performed with a sonicator (3 runs at 40% amplitude, 3s pulse, 4s pause, 90s total per run) followed by 45 min 

of centrifugation at 18500 rpm, 4°C in an SS-34 rotor to remove cell debris. The supernatant was filtered using 

a 0.22 µm cellulose membrane and a vacuum pump.  

 

GST affinity chromatography 

The filtered supernatant was loaded at least twice over a new 5 ml GSTrap column at a flow rate of 1 ml/min 

on a peristaltic pump, then applied to an ÄKTA prime instrument and washed with lysis buffer at the same flow 

rate until UV280 reached baseline level. The protein was eluted in a single step by using lysis buffer supplied 

with 10 mM reduced glutathione (GSH). Peak fractions were analyzed by SDS-PAGE, pooled accordingly, and 

stored at -80°C until further use. The protein concentration was assessed using a Nano Drop with a theoretical 

extinction coefficient of 110,130 and a molecular weight of 81.65 kDa. Typical protein yields were about 20 mg 

per L cell culture, elution resulted in protein concentrations of 1.5-4 mg/mL depending on how much lysate 

was applied. 

 

HRV3C protease digest 

Batches of 5-10 mg of the frozen GSH eluate were diluted to approx. 0.5 mg/ml in lysis buffer containing 1 mM 

DTT into a 15 mL Falcon tube. 20 units HRV3C protease (Sigma) per mg protein were added, and the setup was 

incubated over night at 4°C (60° skewing at 5 rpm). The cleavage efficiency was assessed via SDS-PAGE. 
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Anion exchange chromatography (IEX) on a MonoQ column 

5-20 mg of the digested protein were concentrated to at least 2 mg/mL using a 100 kDa concentration filter 

(Millipore) at spin rates of 3000 rpm in 5 min intervals under frequent manual resuspension to prevent 

adhesion of the protein to the filter material. In the process, the buffer was changed to IEX buffer a (100 mM 

NaCl, Tries pH 7) to guarantee efficient immobilization, and excess GST was removed. An extinction coefficient 

of 67,270 and a molecular weight of 54.82 kDa were used for concentration assessment at the Nano Drop. The 

protein was filtered and applied to a MonoQ column (GE healthcare) installed on an ETTAN system in 3-4 

batches à 500 µL. Prior to elution, the setup was washed with several column volumes of buffer A. A steep 

initial gradient to 15% buffer B (1M NaCl, Tries pH 7) was followed by a slow gradient (4 mL at 0.1 mL/min) to 

45% buffer B in order to effectively separate HAdV-D09pb and GroEL. Intact protein eluted from fractions B2 

and D2-D8 (using a self-made program) were used for further experiments. 

 

Size Exclusion Chromatography 

The IEX fractions B2 (HAdV-D09pb) and GroEL (D2-D9) were used separately. 25 µL of B2 were applied directly 

to a Superose 6 column on an ETTAN system using IEX buffer A as running buffer and standard flow rates. 

Fractions D2-D8 from all four batches were pooled and concentrated to 25 µL in a 100 kDa filter (Millipore). 

The peak fractions from the respective chromatograms were prepared and directly subjected to negative stain 

EM. 

 

Negative-stain transmission electron microscopy (TEM) 

Freshly prepared peak fractions from SEC runs were diluted 1:10 in SEC buffer, applied to poolroom- and 

carbon-coated 400 mesh grids and stained with 1% uranyl acetate (UA). The samples were analyzed with a JEOL 

1400plus TEM-Microscope (JEOL, Japan) at 120 kV and micrographs were acquired with a Tiete Team F-416 

CMOS camera using the Digital Micrograph software (Gaytan, US) and a pixel size of 1.97 Å on the objective 

scale. 
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Abstract 

The E4ORF1 gene product (E4ORF1p) of human adenoviruses (HAdVs) represents an important component of 

the viral early gene machinery. Together with other early gene products, E4ORF1p stimulates the host cell to 

generate optimal conditions for virus replication. The protein is distantly related to the human dUTPase, but 

has lost its enzymatic activity. Instead, E4ORF1p interacts with various cellular partners through its PDZ-binding 

motif and a proposed ‘Domain 2’ to induce cell-transforming activity. Its functions include the constitutive 

activation of the phosphatidylinositol 3-kinase pathway and the stimulation of MYC-dependent gene 

expression. Both of these pathways boost the cellular glucose and nucleotide metabolism, with a result similar 

to the Warburg-effect in cancer in order to provide building blocks for the generation of virus progeny. 

Additionally, E4ORF1p of species A-D deregulates epithelial cell polarity by associating with several components 

of the tight junction complex. HAdV-D36 E4ORF1p was identified as the key obesity-causing factor of the virus 

due to its ability to induce the differentiation of pre-adipocytes into mature adipocytes. Due to its transforming 

and potential adipogenic effects, the protein represents a promising new drug target, and since it efficiently 

promotes glucose uptake, it is also considered a potential anti-diabetic agent. 

E4ORF1p homologues from different HAdV species have been extensively studied from a functional point of 

view, and many assumptions have been drawn about the protein’s structure and biophysical properties. As 

such, E4ORF1 is assumed to exist as functionally distinct trimers and monomers. Here, we present the first 

comprehensive biophysical characterization of E4ORF1p from HAdV species C. The protein forms stable 

oligomers, and we did not detect any signs of monomerization. Further, we report for the first time the 

crystallization of HAdV-C05 E4ORF1p and outline the strategy for structure solution. The resulting structure will 

lead to novel and important insights into how the protein is able to simultaneously carry out its diverse 

functions, and will give valuable cues on how to inhibit and engineer it for therapeutic use. 
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Introduction 

Human adenoviruses (HAdVs) are non-integrating DNA viruses that develop a complex relationship with their 

host cell after infection. The host cell reacts to HAdV infections e.g. by inducing signaling through the surface 

proteins used for attachment and entry or by triggering immune responses and apoptotic pathways [1]. Using 

several splice variants of their early gene products, HAdVs are able to counteract these measures. For example, 

the viruses downregulate antigen presentation on MHC class I molecules or the actions of the tumor 

suppressor proteins retinoblastoma and p53. At the same time, the virus deregulates the host cell metabolism 

in favor of increased glycolysis, depolarization, nucleotide synthesis, and ultimately entry into the S phase and 

replication of virus progeny DNA. In species D HAdVs such as HAdV-D09 and D36, the gene product of E4ORF1 

(E4ORF1p) is the main factor driving the host cell to maximum metabolic capacity, rather than the more 

prominent E1A proteins [2-4]. HAdV-D09 E4ORF1p is able to transform fibroblast cell lines [3], while HAdV-D36 

E4ORF1p is sufficient to induce the differentiation of the mouse preadipocyte cell line 3T3-L1 and is thought to 

be the main player in HAdV-D36-induced obesity [4,5].  

The 14 kDa E4ORF1p, which is present in all HAdV types with the exceptions of F40 and F41, is distantly related 

to the human enzyme dUTPase [6] and shows a remarkable versatility in both structure and function. Its 

manifold effects include increased glucose uptake, depolarization, and the induction of PI3K signaling that leads 

to increased nucleotide metabolism (summarized in [7]). In order to accomplish these tasks, E4ORF1p interacts 

with several different proteins through its two major interaction motifs. The protein is reported to occur as 

both a monomer and a trimer, and both oligomerization states have different functions in the cytosol and the 

nucleus [8]. For one, E4ORF1p possesses a C-terminal class I PDZ-binding motif (PBM) which enables it to bind 

PDZ-containing scaffolding proteins such as MUPP1, ZO-2, and MAGI-1 as a monomer, most likely through a 

canonical PDZ-PBM interaction called β-sheet augmentation [9-13]. These proteins assemble large complexes 

at tight junctions and within the cytoplasm and are important for the establishment of cell polarity and the 

secretion of surface receptors [14]. Similarly, cellular transformation induced by protein E6 of human 

papillomaviruses also depends on the interaction of its C-terminal PBM with scaffolding proteins such as 

MUPP1, MAGI-1, and potentially Dlg1 [12,15]. Interestingly, E4ORF1p interacts with the PDZ I and III domains of 

MAGI-1, both of which also interact with vesicular CAR
ex8

 and control the secretion of this apical attachment 

factor variant in epithelial cells [12,16]. As a trimer, E4ORF1p of HAdV species A-D interacts with the epithelial 

protein Discs large 1 (Dlg1) through its PBM [17]. E4ORF1 and Dlg1 constitutively activate phosphatidylinositol 

3-kinase (PI3K) in the cytosol by forming a ternary complex that migrates to the plasma membrane and induces 

PIP3/Akt signaling. The formation of this complex involves interactions between PI3K and several non-PBM 

residues of E4ORF1p that have been proposed to co-locate in a so-called ‘Domain 2’ [18]. Downstream effects 

of this signaling pathway include an increase of cellular metabolism, enhanced viral replication, and the 

induction of oncogenicity and cell survival [19]. In addition, Akt signaling induces the secretion of the glucose 

importer GLUT4 that is stored in secretory vesicles, hence inducing cellular glucose uptake and mirroring the 

Warburg effect in cancer [20]. At the same time, E4ORF1p (and E4ORF6p) of HAdV-C05 engages and activates 

the broadly active transcription factor MYC in the nucleus that influences about 30% of the cellular 

transcriptome [21]. Downstream effects of MYC activation include the upregulation of metabolic genes and a 

strongly enhanced glycolytic flux. Together, these effects reduce the cellular polarization and turn the infected 

cell into an active powerhouse, creating optimal conditions for virus replication. Because of its ability to 

increase glucose uptake by adipose and skeletal muscle cells, the protein is currently under investigation as a 

potential anti-diabetes agent, and due to its proposed role in the induction of obesity it is a potentially 

druggable target itself [22]. 
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Figure 1 | Reported functions of E4ORF1p. Blue Box: monomeric E4ORF1p (here denoted as E4-ORF1 or E4-ORF1p) is 

reported to interact with tight junction proteins MUPP1, ZO-2, and MAGI-1 (red circle) and to cause depolarization of the 

host cell. Green Box: Trimeric E4ORF1p (green) is reported to interact with the PI3K heterodimer (orange) and Dlg-1 (violet), 

and recruits the complex to the plasma membrane, thereby constitutively activating PI3K downstream signaling through the 

PIP3/Akt pathway. In adipose tissue and skeletal muscle, one of the functions of Akt signaling is the fusion of 

GLUT4-containing vesicles with the plasma membrane, leading to increased glucose uptake. In the liver, influence on GLUT2 

sequestration decreases glucose output (omitted for clarity). Yellow box: E4ORF1p interacts both indirectly and directly with 

MYC, thereby boosting the expression of metabolic MYC downstream genes and shunting glucose metabolites into the 

nucleotide synthesis pathway. The blue box was taken from [14] (© 2007, Elsevier B. V.), the green box from [17] (© 2014, 

Thai et al.), and the yellow box is based on [21] (© 2014, Elsevier B. V.), all with permission. 

 

From a structural point of view, this plethora of functions requires some unique features. As such, a metastable 

trimer interface is necessary to fulfill all the reported functions at the same time. Additionally, the protein 

needs to be able to enter the nucleus, and to form a recognizable ‘Domain 2’ despite its small size. Information 

about the structure and biophysical properties of E4ORFp from different HAdV species would contribute 

significantly to our understanding of how this protein accomplishes all these tasks, and would give valuable 

information for the development of drugs addressing E4ORF1p and the engineering of the protein as a 

potential diabetes drug. Therefore, we set out to structurally characterize E4ORF1 proteins from different 

species using X-ray crystallography, with a special focus on species C HAdVs. This study presents an efficient 

purification protocol from E. coli and an extensive biophysical characterization of the protein. In addition, we 

present an analysis of a model based on human dUTPase and conditions suitable for the crystallization of 

HAdV-C05 E4ORF1p. 
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Results and Discussion 

Sequence Analysis and Molecular Modelling 

E4ORF1p is highly conserved within the individual HAdV species (sequence identity: HAdV-A >85%; HAdV-B 

>94%; HAdV-C 100%; HAdV-D >83% and >89% if leaving out HAdV-D49), while its protein sequence differs 

considerably between species (lowest score 38.4% between HAdV-G52 and HAdV-D49; highest score 70.2% 

between HAdV-E04 and both HAdV-B07 and B34) (Figure 2A). This variability suggests that there might be 

different roles of the protein depending on the species.  

 

 

Figure 2 | Sequence analysis and modelling of HAdV E4ORF1p. A Sequence variation of E4ORF1p among HAdVs. The figure 

was generated with WebLogo [23]. Blue: positively charged; Red: negatively charged; Green: apolar; black: polar. HAdV 

types D19p, D28, D37, and D64 are omitted from the alignment. B-F Different views of the model generated for HAdV-C05 

E4ORF1p based on C. variabilis dUTPase (PDB-ID 3SO2). The chains are colored individually. B, C Top view with and without 

surface representation. D Bottom view featuring the proposed ‘strand swapping’ of C-termini observed for dUTPase. E 

Location of the residues comprising the proposed ‘Domain 2’ (red) and PBM (green) in the model. Most ‘Domain 2’ residues 

are buried inside the protein. The locations of the respective Cα atoms are depicted as spheres. F Side view. The model was 

generated with SWISS-MODEL. 
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Notably, HAdV types D19p, D37, and D64 (a recombinant of types D19, D22, and D37; formerly listed as type 

D19) are reported to possess a single base deletion in the E4ORF1 gene (one adenine is missing from a stretch 

of eight) that causes a frame shift. For this reason, only the C-terminal half of the protein is assumed to be 

expressed and was termed ‘7.8kDa protein’ [24]. It is currently unclear whether this is due to three 

independently occurring sequencing errors in the genome, or whether it represents a physiologically relevant 

truncation/deletion of E4ORF1p from these types. When assuming a sequencing error, all three types cluster 

closely together in a full sequence alignment, and all of them possess a corneal tropism. However, other HAdVs 

with corneal tropism (HAdVs D08, D53, D54, and D56) as well as the sequentially highly similar HAdV-D17 

E4ORF1 all do not seem to possess this base deletion. In addition, the deposited HAdV-D28 genome sequence 

possesses a single base substitution at another position that introduces a stop codon, and it is unclear whether 

this represents a sequencing error, as well. 

Currently, no structural data of any of the HAdV E4ORF1p variants are available, and there are no close 

homologs from other organisms. In order to form initial hypotheses on protein structure and hydrophobicity, 

we searched for lower homology models for HAdV-C05 E4ORF1p. The nuclear splice variant of human dUTPase 

shows a sequence identity between 17 and 22%. A number of bacterial and dUTPase homologues identified 

with SWISS-MODEL [25] display a slightly higher sequence identity. The best hit, trimeric dUTPase from 

Chlorella variabilis, had a sequence identity of 29.8%. Its structure (PDB-ID 3SO2) was used as a template for 

homology modelling with SWISS-MODEL. With a QMEAN score of -3.15 and a global mean quality estimate 

(GMQE) of 0.65, the expected model quality is below average, and its overall arrangement is very similar to 

that found in the template protein. However, the result is highly similar to that obtained by other homology 

modelling programs (I-TASSER [26], RaptorX [27], HHPred [28]) and may provide useful information about the 

overall arrangement of the E4ORF1 protein. The predicted quaternary state of the protein is a trimer. 

Interestingly, despite being cytosolic proteins, all E4ORF1p variants show a very high grand average of 

hydropathy (GRAVY) index, which is a measure for protein hydrophobicity [29]. Monomeric, globular proteins 

usually have a much lower GRAVY index, which might indicate the presence of a hydrophobic homo-protein 

interface that cannot be easily dissolved in an aqueous environment. HAdV-C05 E4ORF1p consists of an 

unusually high fraction hydrophobic residues (7.8% A, 4.7% I, 9.4% L, 5.5% M, 8.6% F, 3.9% Y, 14.8% V, total 

54,7%). The core structure of the homology model consists of four β-sheets that together form two β-

sandwiches (Figure 2 C-E). Both sandwiches are exclusively held together by hydrophobic contacts. The trimer 

interface is large (~ 1000Å
2
) and accounts for a ΔG value of about -18 kcal/mol per homo-interface according to 

the PISA server [30], which is higher than values found for the trimeric HAdV fiber knob domains. The predicted 

interface is relatively hydrophobic (P-value 0.36). Despite the fact that many hydrophobic residues are buried 

in the protein core and the trimer interface, there is a large hydrophobic patch on the water-exposed protein 

surface (Figure 3). According to the model, the residues comprising ‘Domain 2’ are mostly buried within the 

protein, and only few of them would be accessible to PI3K in a trimer. The model predicts a ‘strand swapping 

mechanism (Figure 2D-E) that is regularly observed in dUTPase homologues and would serve to further 

stabilize the trimer. 

 

 

Figure 3 | Electrostatic surface potential (ESP) calculated for the homology model. The ESP was calculated at ±3 kT/e using 

the Pymol APBS plugin. Positive areas are blue, negative areas red. A top view B, C side view D bottom view. 
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E4ORF1p expression constructs 

Owing to the small size, potential trimerization, and expected hydrophobicity of the protein, we decided to test 

three N-terminal tag systems: a small purification tag system that does not interfere with oligomerization, as 

well as two solubility tags of different sizes that might enhance expression and solubilisation (Figure 4). We 

chose to start with His-tagged constructs of all candidate types, since these would give an adequate idea about 

the solubility of the protein itself, and, in a second step, to test if the expression and solubilisation of the best 

construct can be further enhanced using small ubiquitin-related modifier (SUMO) or maltose-binding protein 

(MBP) tags. Cloning of His-tagged proteins from HAdV types A12, B03, C05, D36, E04, and G52 was performed 

from genomic DNA samples (received as a gift from the laboratory of Prof. Niklas Arnberg). We used a 

restriction-ligation protocol in a pETM11 vector modified to possess a TEV cleavage site. All sequences are 

listed in [31]. 

 

 

Figure 4 | Constructs for E4ORF1p expression. The TEV cleavage site is indicated with red arrows. The relative sizes of the 

bars approximately indicate the relative length of the construct domains. The His-tagged constructs were cloned for HAdV 

types B03, E04, C05, A12, D36, and G52. The SUMO-and MBP-tagged constructs were cloned only for HAdV-C05. 

 

We tested the solubility and overexpression of all constructs using a range of standard buffers and E. coli cell 

lines while varying a set of standard parameters (expression time and temperature, induction time point, and 

concentration of IPTG, see [31]). All tested constructs showed low expression levels, and visible overexpression 

was only observed for types E04, C05, D36, and G52. Most of the protein was found in the cell pellet, and the 

largest fractions of soluble protein were achieved for HAdV-E04 and –C05 (Figure 5). Some proteins, such as 

HAdV-G52 E4ORF1p, formed inclusion bodies. HAdV-C05 E4ORF1p emerged as the best candidate, and the 

most efficient buffer contained 20 mm imidazole, 50 mM LiCl, and 100 mM ethanolamine (pH 8.5). The optimal 

expression time was 5h, and the expression strain did not have a significant influence. Using these conditions, a 

sufficient fraction of the protein could be solubilized. An initial purification protocol was established with a 

yield of about 0.5 mg from 6L of bacterial culture (data not shown). 

 

 

Figure 5 | Solubility of His-tagged E4ORF1p variants. Cells were lysed by sonication and separated into supernatant (SN) 

and pellet (P) fractions. The black arrow indicates the expected size of the protein. The highest solubility was observed for 

HAdV-E04, -C05, and –D36. Figure adapted from [31]. 



7 
 

PDZ domains are among the most ubiquitous protein domains and found throughout all kingdoms of life. A 

possible explanation for the low yield and insolubility is therefore that the PBM of E4ORF1 targets it to 

insoluble complexes, thereby contributing to protein toxicity and low solubility. However, an HAdV-C05 E4ORF1 

construct with a deleted PBM did not show an altered behavior upon expression (data not shown). 

 

Solubility Tags Improve Protein Expression but not Folding Quality 

In an attempt to improve the solubility and expression levels, we designed a second generation of 

HAdV-C05 E4ORF1p constructs featuring N-terminal solubility tags. Both constructs showed much higher levels 

of overexpression, but the resulting proteins were almost completely insoluble in most buffers. However, both 

constructs could be readily solubilized with low concentrations (0,2% w/v) of N-lauroylsarcosine (NLS) if a high 

dilution of about 50 ml/mg cell pellet was applied (Figure 6A). We tested the ability of several detergents to 

solubilize both constructs, but apart from the strongly denaturing agent sodium dodecyl sulfate (SDS), only NLS 

was able to promote solubilisation, while other anionic detergents such as DOC generally failed to do so. 

Wherever possible, the experiments with NLS were conducted at room temperature in order to stay below the 

critical micelle concentration (CMC). The construct featuring an N-terminal MBP tag proved difficult to work 

with, since the tag could not readily be cleaved off and immobilization using nickel or amylose affinity 

chromatography was not readily reproducible (data not shown). SUMO-tagged E4ORF1p, in contrast, was 

readily immobilized on a nickel affinity column and eluted at high concentrations of imidazole. To efficiently 

remove the detergent, the protein was dialyzed at a v/v ratio of at least 1:1000 against a buffer without 

detergent or imidazole, immobilized again, and washed with 500-1000 mL of the same buffer at flow rates of 

up to 1 mL/min before elution in a single step. Lastly, the eluate was dialyzed a second time. After this 

procedure, there was no NLS left in the sample, as was assessed by liquid chromatography-mass spectrometry 

(LC-MS). The protein could be at least partially digested with Ulp1 protease, which is indicative for a folded 

SUMO tag. In size exclusion chromatography (SEC) runs, however, both tagged and partially untagged protein 

as a higher-order species of about 500-600 kDa in size in a broad peak (Figure 6B). Similar results were 

obtained in dynamic light scattering (DLS) experiments. This species was also quantitatively present at low 

protein concentrations (data not shown). 

 

 

Figure 6 | Key steps of HAdV-C05 SUMO-E4ORF1p purification. A About 50% of the protein (Mw 28.1 kDa) could be readily 

solubilized using 0.2% NLS and a buffer/cell ratio of 50 mL per mg cell pellet. M= marker, SN = supernatant. B Size exclusion 

chromatography of the tagged protein on a Superose 6 column after Nickel affinity chromatography and thorough dialysis. 

The protein elutes at a theoretical volume of 500-600 kDa in a broad peak (highlighted in cyan). The smaller peak at 1.88 mL 

corresponds to overexpressed SUMO. mAU = milli absorbance unit at λ=280 nm. C Negative stain electron microscopy of the 

peak fraction from B showed that all particles are of similar size, but exhibit little structural homogeneity. 

 

In theory, at least some of the functions of E4ORF1 might benefit from the formation of such large 

superstructures. Therefore, we performed negative-stain electron microscopy to test whether these large 

assemblies (comprised of 15-20 monomers) represent a physiological oligomerization state (Figure 6C). Indeed, 
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nearly all particles exhibited a similar size, but there was no clear structural homogeneity. Therefore, we 

concluded that SUMO-tagged HAdV-C05 E4ORF1 is most likely poorly folded and forms aggregates that are 

limited in size by an outer layer of folded SUMO tags, which keeps the assemblies in solution. 

 

Purification of His-tagged HAdV-C05 E4ORF1p 

Since both solubility tags seemed to enhance expression levels at the cost of protein folding, we resorted to 

scaling up and optimizing the purification of the His-tagged construct. We were able to develop a working 

purification protocol with improved yields compared to initial trials (Figure 7). The protocol includes the scaling 

up of bacterial cultures to 18L in order to minimize losses by unspecific binding of the protein to surfaces and 

thorough cell lysis using a cell homogenizer with the established lysis buffer system. These steps are followed 

by an initial nickel affinity chromatography step with a reduced imidazole content to account for poor 

immobilization, proteolytic cleavage of the protein using TEV protease, and a second nickel affinity 

chromatography step to remove the His-tagged TEV protease and uncleaved protein. A final size exclusion 

chromatography step served to remove aggregated protein and leftover impurities. This improved protocol 

resulted in a yield of about 8 mg pure protein from 18L bacterial culture. 

 

 

Figure 7 | Key steps of HAdV-C05 His-E4ORF1p purification. A Flowchart of the purification progress. The size 

corresponding to the tagged protein is highlighted by a red band, the size corresponding to (monomeric) untagged protein 

by a green band. IMAC and SEC fractions were pooled according to the coloring in B and C. Protein expression was followed 

by thorough cell lysis using a cell homogenizer, Nickel affinity chromatography (IMAC), TEV cleavage during dialysis 

overnight (o/n), a second IMAC step of which the wash (W) was collected, and a quantitative size exclusion chromatography 

(SEC) step in which uncleaved proteins and remaining impurities were separated. The pure protein shows a distinct laddering 

pattern resulting from gel artifacts, as discussed in Figure 8. B Chromatogram of the first IMAC step. The immobilized 

protein was washed with 25% elution buffer (65 mM imidazole) and eluted in a gradient up to 100% elution buffer (200 mM 

imidazole). The concentration of elution buffer is shown as a green line (right axis). The peak highlighted in blue was pooled 

for further use. C Chromatogram of a representative SEC run on a Superdex 200 column using the ETTAN system. The void 

volume is 0.9 mL, the protein elutes at a volume corresponding to 87 kDa. The peak highlighted in green was used for 

protein crystallization. The blue line in B,C represents the UV absorption at λ=280 nm (left axis), the red line at λ=254 nm 

(same scale).  
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Biochemical and Biophysical Characterization 

HAdV-C05 E4ORF1 possesses several characteristic features. Due to the absence of tryptophan residues, the 

relative UV absorbance at 254 nm (theoretical extinction coefficient ε= 3412) is about half the value obtained 

at 280 nm (ε=7450), while the difference is usually much more pronounced for tryptophane-containing 

proteins (Figure 8A). This distinctive correlation can be monitored and used to judge the purity of the protein. 

The protein quantitatively eluted at a volume corresponding to about 80kDa from Superdex 200 columns, as 

compared to 59 kDa when using a Superdex 75 column and 113.5 kDa on a Superose 6 column using the same 

sample. This size range implies that E4ORF1p forms stable oligomers (n=3-9), but definite proof of the 

oligomerization stoichiometry cannot be provided at this point.  

 

 

Figure 8 | Biochemical and biophysical properties of HAdV-C05 E4ORF1p. A Size exclusion chromatography runs using a 

Superdex 75 column (here on an ETTAN system). E4ORF1p elutes at a size roughly corresponding to 59 kDa (green peak) 

according to the standard laboratory calibration curve. Due to the lack of tryptophanes, the extinction at λ=254 nm (red line) 

is about half the extinction at λ=280 nm (blue line, same scale). A small peak (about 1.8% for the volume of the big peak) 

elutes at a size corresponding to 14 kDa. However, the spectral wavelength correlation is different, and it is unclear if this 

peak is formed by monomeric E4ORF1p. B Pure HAdV-C05 E4ORF1p displays distinct laddering bands occurring at multiples 

of the protein weight (14.4 kDa) on SDS gels. However, this laddering does not correlate to the SEC elution volume. C ,D 

Dynamic light scattering indicated that the protein is 99.9% monodisperse. Five independent measurements were averaged 

(colored curves in D) the results are presented in a standard representation. SD = standard deviation; %Pd = percentage of 

polydispersity. E Differential scanning fluorimetry displays a broad melting profile with a single Tm of 81.3°C. The first 

derivative of the fluorescence signal measured at 610 nm is plotted against the temperature. The measurement was carried 

out as a duplicate at a protein concentration of 1 mg/mL. 
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Upon re-chromatographing the SEC peak fraction, a small peak corresponding to 14 kDa occurs, which might 

indicate the formation of a monomeric fraction (the Mw of the protein is 14.4 kDa) (Figure 8A). However, this 

peak contains only about 1.8% of the volume of the larger oligomer peak, and its spectral absorption ratio at 

280 and 254 nm is quite unusual for a protein. We will repeat this experiment with higher protein 

concentrations that allow for an SDS-PAGE analysis of the small peak. In SDS-PAGE runs, even the pure protein 

showed discrete bands occurring at multiples of the molecular weight of a monomer (Figure 8B). All of these 

bands were shown to contain E4ORF1p by mass spectrometry (data not shown). This ‘laddering’ pattern occurs 

in all constructs regardless of the tag, and the bands change their size after proteolytic digest. It is unclear how 

this pattern emerges, but since there are at least nine distinctive bands, the multimerization does not correlate 

with the results obtained by SEC. Since the laddering is also poorly reproducible, it is likely to be a PAGE 

artifact. 

We additionally subjected the pure protein to dynamic light scattering (DLS) shortly after SEC. The DLS data 

indicate that the protein is monodisperse in solution (Figure 8C,D), with a molecular weight in line with the SEC 

data. We are planning to assess the secondary structure content of HAdV-C05 E4ORF1p by circular dichroism 

(CD) spectroscopy. Unfortunately, in initial trials we have been unable to find a buffer condition that allows the 

recording of a full spectrum while keeping the protein folded (data not shown). Differential scanning 

fluorimetry (DSF) showed a broad melting profile with a single melting point at 81.3°C, which is very high for an 

intracellular protein (Figure 8E). The protein starts to melt at around 60°C and shows a long melting range. 

 

Crystallization of HAdV-C05 E4ORF1p 

We screened for suitable crystallization conditions using a commercially available sparse matrix screen (JCSG+ 

suite, Qiagen) at a protein concentration of 8-9 mg/mL. The protein readily crystallized in 19 out of 96 

conditions (Table 1), and all crystals exhibited a highly similar morphology (Figure 9A). The first crystals 

appeared already after 1h (condition A9), while others only grew after 2 weeks (F5). The precipitating 

components are of heterogeneous nature: eight out of nineteen conditions contain small organic alcohols such 

as ethanol, glycerol, isopropanol, ethylene glycol, or MPD, while nine conditions contain PEG with a molecular 

weight of at least 3,350 g/mol. The conditions span a pH range between 5.5 and 9.0, however ten out of 

nineteen conditions have a pH of 8.5 or higher (including those without additional buffer), which is in 

agreement with the established buffer system for purification. In contrast, there is no detectable preference 

for any particular salt. All crystals are rod-shaped with dimensions of about 50 x 5 x 5 µm. Macroseeding of 

crystals from condition B9 increased the crystal size to about 120 x 12 x 12 µM. The identity of the protein 

forming the crystals was verified by SDS-PAGE (data not shown). 
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Table 1 | Conditions of the JCSG+ Suite that resulted in HAdV-C05 E4ORF1p crystals 

 

 

 

The crystals diffracted with a low signal-to-noise ratio to about 3.6 Å at the X06DA beamline (Swiss Light 

Source, Switzerland) at an exposure rate of 0.8 - 1.5s per 0.1° (Figure 9B), which is not unexpected for crystals 

of this size. The unit cell is orthorhombic (unit cell dimensions: a = 66.6 Å, b = 83.6 Å, c = 132.7 Å; α = β = γ = 

90°), and the most probable space group of the crystals is C2221. Matthews Probability calculation, which 

estimates the most probable copy number based on protein molecular weight, space group, and unit cell 

volume, suggests that there are three copies of the protein in the asymmetric unit (Matthews coefficient 2.13, 

solvent content 42%, estimated probability 60%). Unfortunately, the current data quality does not allow the 

assessment of a self-rotation function (which would give experimental evidence about non-crystallographic 

protein symmetry) or molecular replacement methods. The best diffraction patterns were observed for larger 

crystals (e.g. the macroseeds), indicating that increasing the crystal size will also increase diffraction quality. 

Experiments to reproduce and improve crystal size, nucleation, and diffraction potency are currently ongoing. 

In initial fine screens, the protein preferably crystallized at 4°C in robotic 600 nL sitting drop setups at much 

lower concentrations (1.4 mg/mL), as opposed to hanging drop screens that resulted in crystal showers. 
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Figure 9 |Features of the preferred crystal form of HAdV-C05 E4ORF1p. A This example shows condition C7 from the JCSG+ 

screen (Qiagen). Crystals are rod-shaped and about 50 x 5 x 5 µm in size. The scale bar indicated the different zoom levels. B 

Diffraction pattern of an E4ORF1p macroseeding crystal from refined condition B9 collected on a Pilatus 2M detector. The 

crystal was illuminated at full beam transmission (beamline X06DA) for 0.8s while rotating by 0.1°. 

 

Summary and Outlook 

In summary, we have generated a working model for the E4ORF1p structure that is in line with currently 

available information, and we present a protocol for the purification of HAdV-C05 E4ORF1p as well as suitable 

conditions for its crystallization. 

According to the data available in the literature to date, E4ORF1p is generally assumed to originate from the 

trimeric human dUTPase and to switch between a monomeric and trimeric form by an unknown 

mechanism [8]. To date, our available data for HAdV-C05 E4ORF1p do not show signs of significant monomer 

formation without the application of detergents. The publication that postulates this modus operandi used 

stringent detergent concentrations for the monomerization of the HAdV-D09 E4ORF1p (RIPA buffer containing 

a cocktail of the detergents SDS, sodium deoxycholate (DOC), and Triton X-100 or NP-40) [8]. However, the 

application of detergents seems to lead to the solubilisation of poorly folded protein, at least for the HAdV-C05 

variant. It is plausible that, upon unfolding, the protein retains the functions conferred by its PBM while losing 

the ones that involve tertiary structure elements, such as the interaction with PI3K. The authors of the 

publication mentioned above that the presence of DOC induces protein trimerization. However, it seems 

equally possible that DOC simply prevents the protein from unfolding. We will monitor the folding, stability, 

and oligomerization of HAdV-C05 E4ORF1p in different conditions (pH, ionic strength, presence or absence of 

detergents or interaction partners) using a combination of CD spectroscopy, DSF, and size exclusion 

chromatography. As a complementary technique to X-Ray crystallography, we will subject the protein to small-

angle X-Ray scattering (SAXS). This in-solution technique can give information about the rough shape and size 

of a macromolecule without the need to form crystal contacts. At the moment, we cannot exclude the 

possibility that E4ORF1p of different species behave differently in this respect, and the analysis of species D 

homologues will shed further light on the observed phenomena. 

According to the current structural model, all the residues that constitute the proposed ‘Domain 2’ are either 

prolines or residues that are buried in the protein core or the trimer interface. These residues have been 

identified exclusively by a loss of function following mutagenesis [18]. The residues are spread throughout the 

protein and do not come together to form a recognizable domain or protein interface. In this light, it seems 

possible that mutating the residues affected protein integrity, and that a loss of PI3K interaction is indeed a 
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secondary effect. However, the expected accuracy of our model is relatively low, and only the crystal structure 

of E4ORF1p will provide robust data to evaluate this possibility. 

We are planning to employ various crystallization techniques in order to improve crystal size and diffractive 

qualities, e.g. the screening of temperatures and protein concentration as well as seeding techniques. Once a 

dataset with an acceptable resolution (below 3.5 Å) is obtained, we will try to use molecular replacement (MR) 

in order to obtain initial model phases. However, while fast and easy to use, MR requires models with an 

r.m.s.d. below 2.5 Å, and the fidelity of atom coordinates of search models generally decreases below a 

sequence identity of about 30% [32]. Since all available structures possess a sequence identity lower than that, 

it is unclear if MR will produce phases of sufficient quality. Our modeled structure mainly consists of loops 

alternating with β-strands. The assessment of the β-strand content of HAdV-C05 E4ORf1p with CD spectroscopy 

might therefore serve as an indicator for model quality, and the SAXS envelope will provide information about 

the correct oligomerization state. If MR is not a feasible phasing option, we will exploit the high percentage of 

methionines (7 out of 130 residues, plus one cysteine, accounting for a calculated Bijvoet ratio of 1.9%) in 

HAdV-C05 E4ORF1p in order to employ experimental phasing using sulfur single wavelength anomalous 

diffraction (sulfur-SAD). Generally, a content of more than 5% sulfur-containing residues is considered optimal 

for this approach [33]. Alternatively, we will replace the methionines with selenomethionine (SeMet) in order 

to use multiple wavelength anomalous diffraction (MAD) for phasing. While generally decreasing the protein 

yield, SeMet phasing usually generates stronger anomalous signals than sulfur-SAD.  

Our data provide useful information on the stoichiometry and stability of HAdV-C05 E4ORF1p. Its high thermal 

stability might be beneficial for its use as a potential diabetes drug. Future experiments will address the 

functional and structural variability of E4ORF1 proteins among different HAdV species. 
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Materials and Methods 

Cloning 

All sequences were obtained from the NCBI Nucleotide Database using the entry numbers listed by the HAdV 

working group (date: 11/2016) [34]. E4ORF1p variants of HAdV types B03, E04, C05, A12, D36, and G52 were 

amplified from genomic DNA (received as a gift from the laboratory of Prof. Niklas Arnberg). All primer 

sequences are listed in [31,35]. In the process, restriction sites for the endonucleases NcoI and XhoI were 

introduced at the 5’ and 3’ ends, respectively. These restriction sites were used for cloning into a pETM11 

expression vector. This vector features a T7 promoter, kanamycin resistance, T7 sequences for forward and 

reverse sequencing (T7, T7 term), and an N-terminal His-tag that can be cleaved off by tobacco etch virus (TEV) 

protease. All initial constructs contain the full-length E4ORF1 and the artificial N-terminal sequence 

‘MKHHHHHHPMSDYDIPTTENLYFQGA’. After TEV cleavage, only the two C-terminal residues (‘GA’) of this 

stretch remain. The results were verified by Sanger sequencing. Except for HAdV-C05, all sequences 

corresponded to the listed genomic information. In the case of HAdV-C05, two conserved silent mutations 

were observed in all sequenced clones and likely represent a genetic variation of the template. All sequencing 

results can be found in [31]. All constructs were cloned into E. coli strains XL10 gold, LeMo, Arctic Express, and 

BL21 DE3. 

MBP- and SUMO-tagged constructs were obtained by amplification of the inserts by PCR from the pETM11 

vector construct. The 3’ restriction site was replaced with a NotI site in the process. The amplified genes were 

inserted into pETM41 and pMH-SUMO vectors. Both vectors contain T7 promoters as well as a kanamycin 

resistance and T7 sequencing options. pETM41 features a TEV-cleavable N-terminal MBP tag, and pMH-SUMO 

an Ulp1-cleavable N-terminal SUMO tag. Both proteins leave only a short ‘GA’ stretch at the N-terminus after 

proteolytic digest. 

The pBM (sequence ‘ASNV’) was deleted from His-tagged HAdV-C05 E4ORF1 in a site-directed mutagenesis 

reaction that replaced A125 with a stop codon using a standard lab procedure [36]. 

 

Calculation of extinction coefficients at 254 nm and GRAVY indices 

Spectral data for tryptophane, tyrosine, and phenylalanine were obtained from the webpage of the Oregon 

Medical Laser Center (OMLC). Coefficients were then calculated via the same algorithm used by the Expasy 

ProtParam Server [37]. Extinction coefficients at 280 nm and GRAVY indices were obtained directly from the 

ProtParam web tool [29]. 

 

Purification of His-tagged HAdV-C05 E4ORF1p 

The standard lab procedures used for expression tests are reported elsewhere [31,36]. E.coli BL21 DE3 proved 

to be the most suitable expression strain and was used for large-scale expression. The purification of His-tagged 

E4ORF1 is reported in [38], and will be outlined briefly: For expression, 6x 1.5 L LB medium containing 35 µg/mL 

kanamycin in 5L flasks were inoculated with an overnight culture grown at 37°C in LB (35 µg/mL kanamycin) at 

a dilution of 1:50. Cells were grown to an OD600 of 1.2-1.4 at 37°C, and protein expression was induced with 0.5 

mM isopropyl-β-D-thiogalactopyranoside (IPTG). After 4-5 h of expression, cells were harvested and stored at -

20°C over night. The pellets were resuspended in lysis buffer containing 10 mM imidazole, 1mM PMSF, 50 mM 

LiCl, and 100 mM triethanolamine (pH 8.5) at a ratio of 10 mL buffer per g of cells. Cell lysis by homogenizing 

the cells at least five times on an Avestin EmulsiFlex C3 instrument at a pressure of 700-800 bar. Cell debris was 

pelleted, and the supernatant was filtered, separated into four equal parts, and loaded three times onto four 

1 mL Nickel affinity columns at 2 mL/min (GE healthcare) using a peristaltic pump. The columns were then 

mounted onto an ÄKTA prime and washed with lysis buffer until UV280 reached baseline levels. A first step with 

25 % elution buffer (200 mM imidazole, 50 mM LiCl, and 100 mM triethanolamine (pH 8.5)) was applied in 

order to elute unspecifically bound protein from the column. E4ORF1p was eluted in a 60 mL gradient running 

to 100 % elution buffer. Elution factions were analyzed by SDS-PAGE and the concentration was estimated 
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accordingly. Fractions containing E4ORF1p were pooled, mixed with TEV protease (1/10 of the estimated 

protein mass), and dialyzed against at least 40x the pooled volume in buffer containing 50 mM LiCl, 100 mM 

triethanolamine (pH 8.5) using a 6 kDa dialysis tube (SpectraPor). The dialyzed protein was pumped 3x over a 1 

mL Nickel affinity column in the absence of imidazole at 1 mL/min in order to get rid of un- or partially digested 

protein as well as the protease itself. The column was washed with five column volumes of lysis buffer, and 

flow through and wash were pooled and concentrated to a volume of 2.5-3 mL (corresponding to a 

concentration of 3-4 mg/mL). The sample was quantitatively applied to a Superdex 200 column on an ÄKTA 

basic system using dialysis buffer as liquid phase. The protein content of the main peak was checked by SDS-

PAGE, and peak fractions were pooled and stored at -20 °C or -80 °C until further use.  

The purification of SUMO-tagged HAdV-C05 E4ORF1p is reported in detail elsewhere [38]. 

 

Protein crystallization and data collection 

For initial crystallization, the protein was concentrated to 8-9 mg/mL, while lower concentrations (1-1.5 

mg/mL) were used for later fine screen experiments. Crystal plates were set up using a TECAN freedom evo 150 

liquid handling system and the JCSG+ Suite (Qiagen, Hilden). 300 nL of protein solution were mixed with 300 nL 

well solution, and a well size of 100 µL was used. For macroseeding, crystals from condition B9 were 

transferred into pre-equilibrated hanging drops of the same condition (drop size 2 µL, well size 500 µL) with a 

protein concentration of 6-8 mg/mL and allowed to grow for several days before repeating the procedure. 

Initial crystal plates were incubated at 20°C, while later fine screens were set up at 4°C. Crystals were harvested 

in a nylon loop (Hampton Research, USA) of appropriate size. Conditions A5 and F5 were flash frozen 

immediately in liquid nitrogen, while conditions B6, C7, F10, and H4 were transferred into a drop containing a 

standard cryoprotectant (100 mM LiCl, 100 mM Tris pH 8.5, 50% (v/v) glycerol) prior to freezing. For condition 

B9, a cryoprotectant containing 100 mM Bicine pH 9, 10% (v/v) MPD, and 40% (v/v) glycerol was used. The 

diffraction properties of the crystals were tested at the X06DA beamline (Swiss light source, Paul-Scherrer-

Institut, Villigen, Switzerland). Crystals were illuminated for up to 1.5 s per 0.1° at full beam transmission. 

 

Dynamic Light Scattering 

The purified protein was concentrated to 2.2 mg/mL, centrifuged for 30 min at maximum speed in an 

Eppendorf centrifuge, and 25 µL of the sample were equilibrated at 25°C in a 3 mm cuvette before measuring 

its dynamic light scattering behavior in a Malvern Zetasizer Nano-ZS instrument. The experiment was repeated 

five times, and each experiment consisted of 15 runs. 

 

LC-MS 

The washed and dialyzed SUMO-E4ORF1p sample was diluted 1:50 in dialysis buffer and subjected to high 

pressure liquid chromatography using a water-methanol gradient on a C18 porous silica reversed phase column 

(Agilent 1100 HPLC instrument). Chromatography peaks were then subjected to negative-charge ESY-MS at a 

quadrupole MS system (3200 QTRAP, SCIEX, Darmstadt). The detection gate was calibrated with a known 

concentration of NLS. 

 

Differential Scanning Fluorimetry 

The pure protein was diluted to a concentration of 0.5 mg/mL and mixed with a final concentration of 5x 

SYPRO Orange (Invitrogen). 20 µL of protein solution were aliquoted in 96-well plate. The plate was sealed, 

centrifuged carefully, and equilibrated at rt for 5 min. The measurement was performed on a Roche LightCycler 

480 II instrument using a self-made program. The sample was heated from 20 °C to 95°C in a continuous 

gradient with steps of 0.02 °C/s. The dye was excited at 498 nm, and the emission wavelength of 610 nm 
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served as a readout according to [39]. The readout frequency was 24 acquisitions per °C. The first derivative of 

the melting curve was plotted against the temperature, and the maximum of the resulting curve was detected 

manually. The melting curve of the HAdV-D36 fiber knob served as a positive control, a sample without protein 

as a negative control. The experiment was carried out as a duplicate. 

 

Negative stain electron microscopy of SUMO-tagged E4ORF1p 

The freshly prepared peak fraction from analytical SEC (Figure 6B) was diluted 1:4 in dialysis buffer. The 

samples were applied to piolofom- and carbon-coated 400 mesh grids and stained with 1% Uranyl Acetate 

(UA). The samples were analyzed with a JEOL 1400plus TEM-Microscope (JEOL, Japan) at 120 kV and 

micrographs were acquired with a Tietz TemCam F-416 CMOS camera using the Digital Micrograph software 

(Gatan, US) and a pixel size of 1.97 Å on the objective scale. 
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