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Abstract
Human body estimation methods transform real-world observations into predictions
about human body state. These estimation methods benefit a variety of health,
entertainment, clothing, and ergonomics applications. State may include pose, overall
body shape, and appearance.

Body state estimation is underconstrained by observations; ambiguity presents
itself both in the form of missing data within observations, and also in the form
of unknown correspondences between observations. We address this challenge with
the use of a statistical body model: a data-driven virtual human. This helps resolve
ambiguity in two ways. First, it fills in missing data, meaning that incomplete ob-
servations still result in complete shape estimates. Second, the model provides a
statistically-motivated penalty for unlikely states, which enables more plausible body
shape estimates.

Body state inference requires more than a body model; we therefore build obser-
vation models whose output is compared with real observations. In this thesis, body
state is estimated from three types of observations: 3D motion capture markers, depth
and color images, and high-resolution 3D scans. In each case, a forward process is
proposed which simulates observations. By comparing observations to the results of
the forward process, state can be adjusted to minimize the difference between simu-
lated and observed data. We use gradient-based methods because they are critical to
the precise estimation of state with a large number of parameters.

The contributions of this work include three parts. First, we propose a method for
the estimation of body shape, nonrigid deformation, and pose from 3D markers. Sec-
ond, we present a concise approach to differentiating through the rendering process,
with application to body shape estimation. And finally, we present a statistical body
model trained from human body scans, with state-of-the-art fidelity, good runtime
performance, and compatibility with existing animation packages.

Thesis Supervisor: Michael J. Black
Title: Honorarprofessor
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Chapter 1

Introduction

1.1 Thesis Statement

The precision of human body state estimation can be improved with the formulation

of differentiable, statistically motivated forward models.

1.2 Introduction

The human body is essential to every physical interaction we have with the world,

and plays an important role in the communication of ideas and stories. We could

not live without it. It should come as no surprise that there is much interest in the

synthesis and analysis of the body: for animation, entertainment, communication,

computer vision, and biomedical research.

The capture, analysis, and reproduction of body variation are greatly enabled by

a human body model: a parameter-driven virtual human. As shown in Figure 1-1, a

body model is a process that takes parameters as input and produces body shape as

output. Such a model can help to recover the tremendous variety of shapes, poses,

and configurations that bodies exhibit. The goal of this thesis is to improve the state

of the art in precise model-driven human shape estimation: by improvements both to

inference and to modeling.

While a body model is useful, it is not sufficient for inference. Observations
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Training 
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Human 
Body  
Model

Run-time 
Parameters

Figure 1-1: Body models use two types of parameters to create human body shapes.
Training parameters are learned during a preprocess, and define the space of body
shapes; run-time parameters select a body within that space.

typically take the form of images or marker data, which are not directly produced by

a body model. In this work, we model three differentiable forward processes for the

purpose of human state estimation, each of which produces a type of observable: as

shown in Figure 1-2, one produces color and range images, one produces 3D marker

locations, and one produces human body shapes. A body model helps us to predict

observations; comparing these predictions with real observations enables parameter

estimation.

1.3 Problem Statement

Our primary problem is the estimation of human pose and intrinsic shape from ob-

servations. Whereas we define pose by limb rotations and overall body translation,

we define intrinsic shape to broadly mean “pose-independent shape characteristics.”

For example: whereas dancing implies pose variation, body weight change and in-

terpersonal variation imply intrinsic shape variation. While this overall problem has
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(a) Color and depth (b) Marker positions (c) Registrations

Figure 1-2: Various kinds of observations are used in this work: markers in Chapter 3,
color and depth in Chapter 4, and registrations in chapter 5. These images were
generated from data used in this thesis.

been investigated by others (see Chapter 2), our focus is on improving the precision

of existing methods via inversion of well-conceived forward processes.

We specifically wish to demonstrate inference given three types of observations:

markers, images, and registrations. While pose and intrinsic shape are estimated in

all three cases, we also estimate other variables (such as marker placement, albedo,

or soft tissue motion) that are specific to the form of observation.

1.4 Motivation

We distinguish between the scientific and the practical motivation for this work.

The scientific motivation of this work is to push the boundaries of generative in-

ference in computer vision applications. We define generative inference as the process

of adjusting model parameters such that the model output is similar to real-world ob-

servations. Unlike discriminative methods, which estimate parameters directly from

observations, generative models simulate observations from parameters. Generative

inference has the advantage that it can often produce lower error with less training
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data than discriminative methods [1].

The practical motivations include applications for work, play, and health. We next

review the potential practical applications of body-model driven inference.

1.4.1 Games and Animation

Motion capture is critical to the animation industry, but is nontrivial to automate.

For example, The Curious Case of Benjamin Button required artists to add subtlety

to the expressions captured with automated methods [2]; and The Polar Express

required three capture stages with a total of 242 cameras and 151 face markers [3].

One reason for a good statistical model of the human body is that it can reduce

the amount of markers and manual annotation required for faithful reproduction of

human motion.

As demonstrated in Shotton et al. [4], synthetic models (such as that proposed in

Chapter 5) can be used to train discriminative classifiers for real-time, body driven

gameplay. While this thesis is more focused on refined shape estimation rather than

coarse pose estimation, the use of models for a system like the Microsoft Xbox suggests

the power of having a forward modeling process for training discriminative systems.

1.4.2 Ergonomics

There is a long history of human body model usage for ergonomic design; as early

as 1985, 30 such models existed for this purpose [5]. Automotive, cockpit, and work-

station design are currently among the more popular applications of body models to

product design [5]. A typical goal might be to design a driver’s seat to comfortably

fit people from a population with corresponding shape variation.

Models for these purposes include Jack [6], RAMSIS [7], SAFEWORK [7], and

SAMMIE [8].
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1.4.3 Health

While obesity poses a threat to life expectancy [9] and quality of life [10], weight

and BMI alone do not indicate fat distribution. For example, waist circumference

is a valuable predictor of heart disease [11], independent of weight. There is great

promise in augmenting traditional measures (such as weight and body mass index,

or BMI) with more precise shape estimates [12]. Monitoring of shape from image

or depth data (as in Chapter 4) could augment other measurements at the doctor’s

office, and could provide motivation at home to exercise.

1.4.4 Clothing retail

Clothing returns are a big problem for online retailers. As of 2013, more than half of

online retailers in the clothing sector have returns over 25 percent [13]. By collecting

shape estimates for customers, it should be possible to ensure better expected fits

and thereby lower return rates. These shape estimates could be collected from image

data.

1.5 Challenges and Solutions

The challenges of inference include those presented by observations and those pre-

sented by underlying body state. These challenges, and our strategies to address

them, are as follows:

Observations contain noise and missing data, which add ambiguity to the in-

ference process. We address this with rich forward models that estimate (and factor

out) many parameters in order to estimate the variables of interest. For example,

in Chapter 4, many ancillary parameters such as lighting, albedo, and camera pa-

rameters are adjusted to better estimate shape; in Chapter 3, marker placement is

estimated to better estimate shape and pose.

Body state has many degrees of freedom, and presents a large search space.

We address this with regularization (which shrinks the search space) and with gra-
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dient based methods which converge to an optimum more quickly than gradient-free

methods. While gradient-based methods are subject to local minima, our focus on

refinement means that a combination of good initialization and regularization keeps

estimates on track.

1.6 Contributions

The contributions of this work concern fitting simulated models to observations, as

depicted in Figure 1-3. While the scope of the chapters differ by observation type

(markers, images, or registrations) and by desired output (animation, body shape, or

body model), they all illustrate techniques for precise state estimation with a human

body model. These contributions will now be discussed in more detail.

1.6.1 Motion and Shape from Sparse Markers

Our first contribution is a method for extracting body state from conventional motion

capture markers. As shown in Figure 1-4, 3D marker positions are used to guide body

estimation. More specifically, intrinsic body shape, pose, dynamic soft tissue motion,

and marker placement are all estimated from sparse marker positions and coarse

marker placement. A statistical body model is critical to the estimation of all these

parameters from only a sparse set of markers: such a model helps to regularize pose,

regularize shape, and accurately predict the geometry between the markers over time.

Our methods are evaluated on two large motion capture databases, and the effects

of varying numbers of markers is also investigated. A key component is marker

placement refinement: because marker locations on the skin are difficult to replicate

exactly across different people and sessions, we refine the marker locations using the

motion capture sequence itself. The result is a lifelike animation. This contribution

is detailed in Chapter 3.
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Simulated 
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Images
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Figure 1-3: Data-driven body models are used to fit models to markers (Chapter 3),
images (Chapter 4), and registrations (Chapter 5). While Chapter 5 focuses on
learning a body model, the other two chapters focus on shape and pose inference.
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Figure 1-4: In Chapter 3, the body surface is predicted from marker locations. It
works because we use a statistically trained body model to estimate body shape, pose,
soft tissue deformation, and marker placement, all from the marker data.

1.6.2 Differentiable Rendering for Body Shape Estimation

Next, we show how concise patterns for parameter estimation can be achieved with

a differentiable renderer. Whereas a typical renderer provides only pixels, a differen-

tiable renderer also produces derivatives with respect to its parameters. This enables

illumination, camera parameters, albedo, and geometry to be refined from depth or

color images. We release a general framework dedicated towards the flexible estima-

tion of model-based parameters for depth and color images. Its reusability is valuable

for solving new problems, and the provided gradients are useful in computer vision

problems characterized by the refinement of a large number of parameters. Rendering

and derivatives are illustrated in Figure 1-5.

In Chapter 4, we describe this framework and its application to body state es-

timation. Body shapes and measurements are estimated for 23 subjects from color

and range observations. Accuracy is compared to another method: 3D fitting to laser

scans.

A statistically-learned human body model is critical our chosen application in

two ways. First, the body model maps body shape parameters to geometry, which

can have its rendering compared against observed images. And second, statistically
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(a) Rendering (b) Sensitivity to focal
length

(c) Sensitivity to trans-
lation in the “x” direc-
tion

(d) Sensitivity to light
position in the “y” di-
rection

Figure 1-5: Differentiable rendering produces not only the rendering in (a), but also
per-pixel derivatives such as those shown in (b), (c), and (d). Differentiable rendering
helps estimate parameters with gradient-based methods.

learned regularizations on body model parameters help to keep predicted bodies

within the natural space of human shapes. The body model therefore serves both

to match observables and to regularize inferred results.

1.6.3 A Skinned Multi-Person Body Model

Our final contribution is a new body model that is comparable with (and often su-

perior to) existing state-of-the-art body models in speed, fidelity, and compatibility.

Rotation matrix elements are used to drive pose-dependent blendshapes, which is

shown to work well with linear blend skinning. As shown in Figure 1.6.3, our Skinned

Multi-Person Linear model (or SMPL for short) can produce many body shapes, and

its compatibility and speed lend it practicality. The details of its formulation, train-

ing, and comparison against another state-of-the-art body model can be found in

Chapter 5. This model is freely available for research purposes.

1.7 Thesis Outline

This remainder of this document is organized as follows.

Chapter 2: Related Work: We describe previous work both in building body

models and in using them for shape inference.
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Figure 1-6: The SMPL body model produces meshes from pose and shape parameters,
and can represent a wide variety of human bodies. Here, meshes produced by SMPL
(in brown) are superimposed with ground-truth body registrations (in gray).

Chapter 3: Shape Estimation from Sparse Markers: Methods are intro-

duced for the acquisition of static body shape, dynamic body changes, and pose from

sparse markers.

Chapter 4: Shape Estimation from RGB and Range Images: A differen-

tiable renderer is described and applied to the estimation of body shape from color

and range images.

Chapter 5: A Skinned Multi-Person Linear Model: A body model is intro-

duced which is competitive with state-of-the-art alternatives in fidelity, compatibility,

and runtime performance.

Chapter 6: Conclusion: Considerations about “inverse graphics,” the limits of

modeling, and future work are discussed.
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Chapter 2

Related Work

This thesis contributes to both work on human modeling and work on human body

state estimation. Therefore, we first review previous work in modeling, followed by

previous work in model-driven inference.

2.1 Human Body Modeling

Marr and Nishihara define shape as the physical surface geometry of an object [21].

We define a human body model as a mapping from parameters to human-like shapes.

Human body models have a long history; early models resembled stick-figures, and

were used in coarse pose recovery from images. Later models added realism and more

detailed shape variation, and were able to help infer more details. In this section, we

examine how body models have changed over the years.

2.1.1 Models Using Geometric Primitives

Some of the earliest models of the body were composed from geometric primitives.

In early work by Hanavan [22], a mathematical model of the human body was con-

structed from simple polygonal shapes. Its anthropometric and inertial properties

were guided by the measurement of 25 subjects. The model was intended to help the

thruster design of space vehicle maneuvering systems.
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(a) Kinematic
chain (NASA)

(b) Cylindrical model
by Hogg [23]

(c) Conic model
by Lee [24]

(d) Superquadric model
by Sminchisescu [25]

Figure 2-1: Basic geometric primitives have been used for modeling bodies and re-
covering pose.

Marr and Nishihara proposed geometric primitives as compact representations of

observable objects [21]. Since then, cylinders [23, 26, 27, 28], cones [29, 24, 30, 31,

32, 33], and superquadrics [34, 25] have been successfully used to help infer the state

of bodies from images. A sampling of these primitive-based models are shown in

Figure 2-1.

Most of these models use the abstraction of a kinematic chain: rigid bodies con-

nected by links, as shown in Figure 2-1. Human pose may then be expressed as

relative rotations of these links. While realism was improved upon by later models,

the characterization of pose as a set of relative angles remains useful in the models of

today, and in the models used in this thesis.

2.1.2 Artist-Driven Skinned Models

The animation industry has driven much of the quest for realism in human body

modeling. An especially vexing problem is modeling of body joints: while a kinematic

chain can be used to drive surfaces, surfaces near two or more bones can be difficult to

model. The use of skinning, or moving surfaces according to a weighted combination

of bones in a kinematic chain, has been accepted in the animation community as one

useful paradigm for controlling the relationship between an articulated skeleton and

an animated surface.
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(a) LBS collapse (reprinted
from [37])

(b) Dual Quaternion Blend
Skinning [36]

(c) Skins from
Examples [37]

Figure 2-2: Various works have tried to address the artifacts of LBS.

The earliest skinning method was Linear Blend Skinning (LBS), which assigns

transformations to bones, and transforms vertices according to a linear combination

of these transformations [35]. Because this implies linear combinations of rotation ma-

trices, the method suffers [36] from volume shrinkage (also known as “candy-wrapper”

effects) at the joints as shown in Figure 2-2.

Dual quaternion blend skinning [36] was one attempt to address this problem.

Mohr and Gleicher [37] address joint collapse by automatically adding more joints

to a kinematic chain; this avoids collapse by making sure no single joint ever rotates

enough to collapse. Examples of these methods are shown in Figure 2-2.

These skinning methods alone cannot model surface deformation with the preci-

sion required by the animation industry. To address this, Lewis et al [35] proposed

example-based interpolation to allow an artist to manually apply corrections to skin-

ning methods and to improve expressiveness.

2.1.3 Data-Driven Models

Data-driven models can be trained to closely fit large numbers of examples in a

statistical manner, bypassing the subjectivity of artists. The earliest data-driven

model may be from Kakadiaris et al. [38], in which a body model and its segmentation

were estimated from three orthogonal views. The shape of the model was image-

driven. This model was later used for human tracking [39, 34].

More realism was obtained with the work of Allen et al. [40], in which a space

of body shapes was learned from registrations to 250 laser scans. Most attention
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Figure 2-3: In SCAPE, vertices are unstitched into edges; these edges are first de-
formed according to shape and pose parameters, and finally restitched into a con-
nected mesh. (Reprinted from [42])

was given to the shape space, with the pose-dependent deformations limited by un-

realistic stock skinning methods. Allen’s later work [41] corrected this deficiency by

incorporating example-based shape and pose deformations, such that pose deforma-

tions depend explicitly on shape. In contrast to the methods described next, Allen’s

models are position-based: they are trained to reproduce global vertex positions, and

store they offsets to vertex positions.

In 2004, ideas were introduced [43, 44] for representing a surface with local dif-

ferential properties. In contrast to the position-based methods described above, dif-

ferential methods first apply transformations to very local patches (on the scale of a

triangle). Because the locally deformed patches often do not fit together precisely,

least-squares methods are typically used to stitch the patches into a coherent surface.

Representing changes to a mesh by local differential properties (instead of with vertex

offsets) can preserve global smoothness while allowing local editing; a review of such

representations is in [45].

One body model using differential methods is SCAPE [46]; its pipeline is shown
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in Figure 2-3.

2.2 Shape Estimation with Body Models

We now review the literature on shape estimation with the use of human body models.

An overview of modern pose estimation methods is found in [47]; our focus here is

not on pose, but rather on intrinsic shape estimation, or the estimation of aspects of

shape which are specific to an individual.

Table 2.1 illustrates many of the shape estimation methods used to date. Data

acquisition, features, and search methods are all critical components of the estimation

process.

Data acquisition. Data for automatic human shape estimation is optically ac-

quired: laser scans, depth images, marker data, and standard color images all originate

with a camera. Because of the ubiquity of color images and the challenges of uncon-

trolled environments, earlier methods acquired shape from multiple color cameras in a

controlled setting. Later methods either used monocular images, incorporated depth

data, used images over time and/or worked better in uncontrolled settings.

Features. Silhouettes [48, 49, 50, 51, 52] have been used by many works to obtain

shape estimates. Silhouettes rely on background subtraction methods, which fare

poorly in uncontrolled settings, however. Edges, which do not rely on segmentation,

are another popular feature [53, 49]. Raw image intensity [49, 54, 50] and depth

camera image values [52, 54, 55] are also valuable, especially when the quality of

initial parameters and the body model are sufficiently good. Finally, dense 3D marker

positions have also been used to reconstruct personal shape [56].

Search. Shape estimation is like any optimization problem: given observables, the

goal is to search for the best possible characterization of hidden state (eg shape). As

such, shape estimation depends on many design decisions; these include initialization,

stochastic vs. non-stochastic search, whether gradients are used, and whether only

one most likely answer is desired (as opposed to a posterior distribution).

To place this thesis in the context of previous work, this thesis is focused on
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Authors Search Features Notes
Carranza et al., 2003 [57] Powell silhouettes

Park et al., 2006 [58] LSQ markers
Sigal et al., 2007 [59] MoE+PF silhouettes a

Bălan et al., 2007 [48] annealed PF silhouettes
Bălan et al., 2007 [50] annealed PF shading, shadows
Park et al., 2008 [56] LSQ markers

Bălan et al., 2008 [51] simplex silhouttes, skin
Guan et al., 2009 [49] simplex color

Hasler et al., 2009 [60] ICP laser scans b

Hasler et al., 2010 [61] ICP silhouettes c

Weiss et al., 2011 [52] gradient-based silhouettes, depth
Chen et al., 2013 [62] ICP depth image
Loper et al., 2014 [14] LSQ markers
Loper et al., 2014 [15] gradient-based depth, color

MoE = Mixture of Experts
ICP = Iterative closest point
PF = particle filtering
LSQ = least squares

aFeatures: radial distance functions and shape contexts.
bshape under clothing from laser scans
cclicked points required

Table 2.1: Previous work on human body shape estimation has varied by search
strategy, feature choices, and type of observable.

precise shape estimation with differentiated models. To that end, generative models

and regularization both play strong roles in this thesis, and discriminative methods

do not. Discriminative methods are critical for pose estimation from ambiguous data

when weak priors are available, but here we have either a strong data term (as with

MoSh in Chapter 3) or a strong prior (as with OpenDR in Chapter 4).
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Chapter 3

Shape Estimation from Sparse

Markers

3.1 Introduction

While marker-based motion capture (mocap) is widely used to animate human charac-

ters in films and games, it is also widely criticized as producing lifeless and unnatural

motions. We argue that this is the result of “indirecting” through a skeleton that

acts as a proxy for the human movement. In standard mocap, visible 3D markers

on the body surface are used to infer the unobserved skeleton. This skeleton is then

used to animate a 3D model and what is rendered is the visible body surface. While

typical protocols place markers on parts of the body that move as rigidly as possible,

soft-tissue motion always affects surface marker motion. Since non-rigid motions of

surface markers are treated as noise, subtle information about body motion is lost in

the process of going from the non-rigid body surface to the rigid, articulated, skele-

ton representation. We argue that these non-rigid marker motions are not noise, but

rather correspond to subtle surface motions that are important for realistic animation.

We present a new method called MoSh (for Motion and Shape capture) that

replaces the skeleton with a 3D parametric body model. Given a standard marker

set, MoSh simultaneously estimates the marker locations on a proxy 3D body model,

estimates the body shape, and recovers the articulated body pose. By allowing body
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shape to vary over time, MoSh is able to capture the non-rigid motion of soft tissue.

Previous work on the mocap of such motions relies on large marker sets [58, 56]. In

contrast, we show that significant soft tissue motion is present in small marker sets and

that capturing it results in more nuanced and lifelike animations. MoSh also recovers

qualitatively and metrically accurate body shapes from small numbers of markers;

Fig. 1 shows body shapes and poses recovered with 67 markers and compares the

body shapes with 3D scans. While fine details are missing, MoSh enables users of

standard mocap to obtain reasonable 3D body shapes from markers alone.

The basic version of MoSh has five core components. 1) MoSh uses a parametric

3D body model that realistically represents a wide range of natural body shapes,

poses, and pose-dependent deformations. For this we use a learned statistical body

model based on SCAPE [46]. 2) Marker placement on the human body varies across

subjects and sessions, consequently we do not assume that the exact marker placement

is known. Instead, a key contribution of MoSh is that it solves for the observed marker

locations relative to the 3D body model. 3) MoSh also simultaneously solves for the

3D body shape of the person that best explains the observed 3D mocap marker data.

4) Steps 2 and 3 above require that we also simultaneously solve for 3D body pose.

Components 2–4 are all embodied in a single objective function and we optimize this

for a subset of the mocap sequence. 5) In a second stage, MoSh uses the computed

body shape and marker locations on the body, to estimate body pose throughout a

mocap session.

This basic method produces appealing animations but the assumption of a single

body shape across the session does not account for the dynamics of soft tissue; for

example, the jiggling of fat during jumping. Currently there are no practical tech-

nologies for easily capturing these soft-tissue motions. Previous methods have used

large marker sets [58] but these are time consuming to apply, difficult to label, and

suffer from occlusion. These methods also do not apply to archival data. Video-based

surface capture methods offer the potential for even greater realism [63, 64] but are

not yet mature and are not widely adopted. To capture soft-tissue deformation, we

allow the body shape to change over time to better fit the marker motions. Our
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solution uses a low-dimensional shape model to make it practical and penalizes de-

viations from the fixed body shape estimated without soft-tissue deformation. We

make an assumption that these deformations can be approximated within the space

of static human body shape variations; that is, we model the soft-tissue deformations

of an individual effectively by changing their identity. Given a sufficiently rich space

of body shape variation, this works surprisingly well.

While we can estimate body shape and pose from standard marker sets and

archival mocap sequences, we go further to design additional marker sets with greater

or fewer markers. Using a principled objective function, and a training set of 3D body

meshes, we evaluate the effect of different marker sets on the accuracy of body shape

and pose capture. While the standard 47-marker set that is often used for motion

capture (e.g. in the CMU dataset) works surprisingly well for recovering both shape

and pose, we find that an expanded set, with 20 additional markers, captures more

soft tissue motion.

We validate the method with nearly 800 mocap sequences. Since no body scanner

or other hardware is required, MoSh can be applied to archival mocap data. To

demonstrate this we reconstruct gender, shape, and motion of 39 subjects in the CMU

mocap dataset using 47 markers. The resulting animations are nuanced and lifelike

and the body shapes qualitatively match reference video. For quantitative evaluation,

we scanned twenty subjects with widely different body shapes and performed MoSh

with different numbers of markers.

MoSh can be used directly for animation or as a reference for animators. In the

accompanying video we show that we can change the body shape to retarget the

mocap sequence to new bodies (cf. [46]). This transfer works for any character with

the same topology as our body model. We align several cartoon characters to our

mesh and then animate them without the labor-intensive process of developing a

rigged model or retargeting the skeletal motions. The animations include the transfer

of soft tissue motions and we show further how these motions can be magnified to

produce interesting animations with exaggerated soft-tissue dynamics.

In summary, the main contribution of MoSh is that it provides a fully automated

39



method for “mining” lifelike body shape, pose, and soft-tissue motions from sparse

marker sets. This makes MoSh appropriate for processing archival mocap. By using

the same (or slightly augmented) marker sets, MoSh complements, existing marker-

based mocap in that animators can extract standard skeletal models from the markers,

MoSh meshes, or both.

3.2 Prior work

There is an extensive literature on (and commercial solutions for) estimating skeleton

proxies from marker sets. Since MoSh does not use a skeleton, we do not review these

methods here. Instead, we focus on several key themes in the literature that more

directly relate to our work: fitting models to sparse markers, dense marker sets, and

surface capture.

From Markers to Models. To get body shape from sparse markers, one needs

a model of body shape to constrain the problem. There have been several previous

approaches. Allen et al. [40] learn a model of body shape variation in a fixed pose

from 3D training scans. Anguelov et al. [46] go further to learn a model that captures

both body shape and non-rigid pose deformation.

Allen et al. show that one can approximately recover an unknown 3D human shape

from a sparse set of 74 landmarks. They do this only for a fixed pose since their model

does not represent pose variation. Importantly the landmarks are perfect and known;

that is, they have the 3D points on the mesh they want to recover and do not need to

estimate their location on the mesh. Unlike MoSh this does not address the problem

of estimating body shape and pose from mocap markers alone.

Anguelov et al. [46] show how to animate a SCAPE model from motion capture

markers. Their method requires a 3D scan of the subject with the markers on their

body. This scan is used for two purposes. First it is used to estimate the 3D shape

model of the person; this shape is then held fixed. Second the scanned markers are

used to establish correspondence between the scan and the mocap markers. These

limitations mean that the approach cannot work on archival mocap data and that a
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user needs both a 3D body scanner and a mocap system.

It is important to note that Anguelov et al. did not solve the problem addressed by

MoSh. They fit a SCAPE model to a 3D body scan (what they call shape completion)

and with known marker locations, animate the model from mocap markers. We go

beyond their work to estimate the body shape from only the sparse mocap markers

without the use of any scan and without knowing their precise location on the body.

We do this by simultaneously solving for the marker locations, the shape of the body

and the pose using a single objective function and optimization method. Unlike [46],

MoSh is fully automatic and applicable to archival data.

We also go beyond previous work to define new marker sets and evaluate the effect

of these on reconstruction accuracy. This provides a guide for practitioners to choose

appropriate marker sets.

Dynamics of Soft Tissue. Unlike MoSh, the above work does not address the

capture of soft tissue motion. Interestingly, much of the attention paid to soft-tissue

motion in the mocap community (particularly within biomechanics) actually focuses

on minimizing the effects of soft tissue dynamics [65]. Soft tissue motion means the

markers move relative to the bones and this reduces the accuracy of the estimated

skeletal models. For animation, we argue that such soft tissue motions are actually

critical to making a character look alive.

Dense Marker Sets. To capture soft-tissue motion, previous work has used

large, dense, marker sets. Park and Hodgins [58] use 350 markers to recover skin

deformation; in the process, they deform a subject-specific model to the markers and

estimate missing marker locations. In later work [56], they use a large (400-450)

marker set for ⇡ 10, 000 frames of activity to create a subject-specific model; this

model can then be used to recover pose for the same subject in later sessions with a

sparse marker set. In these works, the authors visualize soft-tissue deformations on

characters resembling the mocap actor. Here we transfer soft-tissue deformations to

more stylized characters.

Hong et al. [66] use 200 markers on the shoulder complex and a data driven ap-

proach to infer a model of shoulder articulation. While dense markers can capture
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rich shape and deformation information, they are not practical for many applica-

tions. Placing the markers is time consuming and a large number of markers may

limit movement. With these large sets, additional challenges emerge in dealing with

inevitable occlusions and marker identification.

Recent work captures skin deformations using a dense set of markers or patterns

painted on the body [18, 67]. The work is similar to Park and Hodgins but uses

computer vision methods rather than standard mocap markers.

Our work differs in that it conforms to standard mocap practice and is backwards-

compatible with existing sparse marker sets. The goal of MoSh is to get more out of

sparse markers.

Surface Capture. At the other extreme from sparse markers are methods that

capture full 3D meshes at every time instant [63, 64]; this can be conceived of as a

very dense marker set. Still other methods use a scan of the person and then de-

form it throughout a sequence [68, 69]. Existing methods for surface capture rely on

multi-camera computer vision algorithms that are computationally expensive com-

pared with commercial marker-based systems. These methods are most applicable

to capturing complex surfaces like clothing or breathing [70] that are difficult to

parametrize. In the case of body shape, we find that, together with a parametric

body model, a small marker set is already very powerful.

In a related approach, de Aguiar et al. [71] use an intermediate template that is

animated in a traditional way from mocap markers. They then transfer the template

motion to a more complex mesh. Like MoSh this method is motivated by standard

practice but it still indirects through a crude proxy, rather than solving directly for

shape and pose from markers.

Attribute Capture. The idea that markers contain information about body

shape is not new. Livne et al. [72] use motion capture data to extract socially mean-

ingful attributes, such as gender, age, mental state and personality traits by applying

3D pose tracking to human motion. This work shows that a sparse marker set con-

tains rich information about people and their bodies. MoSh takes a different approach

by using the sparse marker data to extract faithful 3D body shape. Like Livne et al.,
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we show that gender can be estimated from markers. Beyond this, we suspect that

the full 3D body model can be used to extract additional attributes.

Motion Magnification. There has been recent work on magnifying small mo-

tions in video sequences [73, 74, 75] but less work on magnifying 3D motions. In part

this may be because capturing 3D surface motions is difficult. Other work exagger-

ates mocap skeletal motions using mocap data [76]. In [77] they develop methods

for spatially localized modeling of deformations and show that these deformations

can be edited and exaggerated. In [78] they edit body shape to exaggerate it but do

not model or amplify non-rigid soft-tissue dynamics. While the exaggeration of facial

motion has received some attention, we think ours is the first work to use only sparse

marker sets to extract full-body soft-tissue motion for exaggeration.

In summary, MoSh occupies a unique position – it estimates 3D body shape

and deformation using existing mocap marker sets. MoSh produces animated bodies

directly from mocap markers with a realism that would be time consuming to achieve

with standard rigging and skeleton-based methods.

3.3 Body Model

Extracting body shape from sparse markers is clearly an ill-posed problem; an infinite

number of bodies could explain the same marker data. To infer the most likely body

we must have a model of human shape that captures the correlations in body shape

within the population. For this we use a learned body model that is similar to

SCAPE [46]. It should be noted however that any mesh model could be used, as long

as (1) it allows shape and pose variation, and (2) is differentiable with respect to its

parameters.

Our body model is a function that returns a triangulated mesh with 10,777 ver-

tices, and is parameterized by a global translation center �, a vector of pose param-

eters, ✓, a mean shape, µ, and a vector of shape parameters, �. Shape is defined

in terms of deformations applied to the triangles of a base template mesh. The sur-

face of the body is described as S(�, ✓, �), with the coordinates of vertex k notated
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Sk(�, ✓, �). The body mesh is segmented into parts and each part can undergo a ro-

tation defined by ✓. The pose parameters ✓ consist of 19 angle-axis vectors, whereby

length indicates the amount of rotation. Like SCAPE, the function S(·) includes

pose-dependent non-rigid deformations that are learned from bodies in a wide range

of poses. Body shape is approximated by the mean shape and a linear combination

of shape basis vectors; � is a vector of these linear coefficients. This shape basis is

learned from deformations of training body shapes using principal component analysis

(PCA). In what follows, we represent body shape using 100 principal components.

We train the body shape model from 3803 CAESAR scans of people in an upright

pose (approximately 2103 women and 1700 men from the US and EU datasets) [79].

The pose-dependent component of the model is learned from 1832 scans of 78 people

(41 women and 37 men) in a wide range of poses. The scans are aligned using the

technique in [17]. Since the model is trained from an extensive set of scans, it is able

to realistically capture a wide range shapes and poses. For details of SCAPE, the

reader is referred to [46].

Note that we train three body shape models: separate models for men and women,

plus a gender neutral model. If we know the gender of the subject, we use the

appropriate model. If not, we fit the gender-neutral model, infer the gender, and

then use a gender-specific model as described below.

3.4 Markers on the Body and in the World

Mocap markers extend from the human body to varying degrees and are placed on

the body manually. Precise placement can be difficult, particularly on heavy subjects

where fat makes it difficult to palpate boney locations. The result is that we cannot

expect to know the exact marker locations in advance. The first step of MoSh solves

for the marker locations, relative to a template body mesh, for a given mocap sequence

(or collection of sequences for one subject).
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Figure 3-1: Optimizing shape and markers. Left: initial guess of markers, vi, on
the template shape in the canonical pose (blue). Right: Shape and marker locations
after optimization. Optimized marker locations, m̃i, are shown in red. Note that they
have moved (see inset).

3.4.1 Defining a Marker Set

We assume that we know the number of markers and their approximate location

relative to a reference template mesh. The only manual part of MoSh occurs if a user

wants to use a new marker set. In this case they need to identify a template vertex for

each marker. Notationally, we say a user creates a mapping h(i) from marker indices,

i, to vertex indices on the template. Each marker requires the user-specification of

an expected distance di from the marker center to the skin surface. Both the location

and the distance can be approximate since we optimize these for each subject.

To parameterize marker locations with respect to the body, we introduce a latent

coordinate system that contains markers and our body model in a neutral pose, �0,

✓0, as in Fig. 3-1 (left). The purpose of this latent coordinate system is to model

the relationship between the body surface and the markers in a pose-independent,
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translation-independent, fashion. This relationship is then transferred to meshes in

observed mocap frames.

We then denote the default position of the markers, vi, as

vi(�) ⌘ Sh(i)(�, ✓0, �0) + diNh(i)(�, ✓0, �0), (3.1)

where Nk(�, ✓, �) indicates the vertex normal for index k given body model parame-

ters. Thus vi(�) is the position of the model vertex, offset by a user-prescribed dis-

tance, di, from the surface, in the latent coordinate system, corresponding to marker

i. These are illustrated as blue balls in Fig. 3-1.

Defining the marker set needs to be done once and then it is used for any subject

captured with that marker set. For example, we did this once for the 47-marker Vicon

set and used this for all mocap sequences in the CMU database.

3.4.2 Parameterizing Markers

The default markers, vi, are approximate and below we optimize to solve for the body

shape, �, and the actual location of the latent markers, m̃i, for a given subject and

mocap sequence. Let ˜M denote the collection of latent markers. Notationally, we use

i to indicate marker number and t to indicate the mocap sequence frame number.

Observed markers are denoted mi,t individually and Mt together. From a collection

of Mt we estimate the latent markers ˜M , shown as red balls in Fig. 3-1.

To that end, we define a function m̂(m̃i, �, ✓t, �t) that maps latent markers to

the world given a particular shape, pose, and location of the body. We call these

“simulated markers”. Intuitively, we want to solve for the shape, pose, body location,

and latent marker locations m̃i such that, when projected into the mocap sequence,

the simulated markers match the observed markers Mt.

This requires a mapping from local surface geometry to a 3D marker position

that can be transferred from the latent coordinate system to the observed markers

resulting from different poses. We represent a marker position in an orthonormal

basis defined by its nearest triangle in the latent coordinate system. We define that
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Figure 3-2: Marker transformations. In the latent coordinate space (left) we
project a marker, m̃i into a basis defined by the nearest vertex: specifically by its
normal, an arbitrary normalized edge, and the cross product between them. This
provides a pose invariant representation for the marker. When the body pose changes
(right), we then compute the location of the marker, m̂(m̃i, �, ✓t, �t), in the observed
frame.

basis by three vectors: the triangle normal, one of the triangle’s normalized edges,

and the cross product between those two. This is geometrically depicted in Fig. 3-2

(left).

We denote the rigid transformation matrix that projects m̃ into the basis for

closest triangle ⌧(m̃) in the mesh, as B⌧(m̃)(�, ✓, �). We then define a simulated

marker position m̂(·) as

m̂⇤
(m̃, �, ✓t, �t) = B⌧(m̃)(�, ✓t, �t)B

�1
⌧(m̃)(�, ✓0, �0)m̃

⇤ (3.2)

where m̃⇤
= [m̃T , 1]T and m̂⇤

(·) = [m̂(·)T , 1]T denote the marker locations in homo-
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geneous coordinates. Equation 3.2 can be seen as having two steps. First, the matrix

B�1
⌧(m̃)(�, ✓0, �0) transforms m̃⇤ from a 3D latent-space position into a coordinate vector

in the space of its local basis. In the second step, B⌧(m̃)(�, ✓t, �t) maps this coordinate

vector into a 3D observed-space position, m̂⇤
(·), defined by the specific position and

pose, �t, ✓t. This is illustrated in Fig. 3-2 (right).

With the marker parameterization defined, we next define the objective functions

we use to estimate marker positions, shape, pose, and nonrigid motion.

3.5 Objectives

Let sequences of body pose ✓1..n, and position �1..n, with n time instants be denoted

as ⇥ and � respectively. We wish to estimate the latent markers ˜M , poses ⇥, body

locations �, and body shape �, such that the simulated markers m̂(·), match the

observed markers mi,t. To do so we define an objective function with several terms.

The data term, ED, is the sum of squared distances between simulated and ob-

served landmarks:

ED(
˜M, �,⇥,�) =

X

i,t

||m̂(m̃i, �, ✓t, �t)�mi,t||2. (3.3)

Note that distances are measured in cm.

A surface distance energy term, ES, encourages markers to keep a prescribed

distance from the body surface in the latent coordinate system. Let r(x, S) denote

the signed distance of a 3D location x to the surface S. Then

ES(�, ˜M) =

X

i

||r(m̃i, S(�, ✓0, �0))� di||2. (3.4)

Since the marker locations are roughly known to begin with, we penalize estimated

latent markers if they deviate from this. The energy term EI regularizes the adjusted
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marker towards its original position

EI(�, ˜M) =

X

i

||m̃i � vi(�)||2. (3.5)

We also define pose and shape priors to regularize the estimation of body shape and

pose. These are modeled as Gaussian, with their statistics µ�, µ✓,⌃�,⌃✓ computed

from the pose and shape training data used to train our body model. We regularize

� and ✓t by penalizing the squared Mahalanobis distance from the mean shape and

pose:

E�(�) = (� � µ�)
T
⌃

�1
� (� � µ�) (3.6)

E✓(⇥) =

X

t

(✓t � µ✓)
T
⌃

�1
✓ (✓t � µ✓). (3.7)

We also add a velocity constancy term Eu that helps to smooth marker noise by

a small amount:

Eu(⇥) =

n
X

t=2

||✓t � 2✓t�1 + ✓t�2||2. (3.8)

Our objective in total is the sum of these terms, each weighted by its own weight,

�:

E(

˜M, �,⇥,�) =
X

!2{D,S,✓,�,I,u}

�!E!(·). (3.9)

3.6 Optimization

The objective function above is quite general and it enables us to solve a variety of

problems depending on what we minimize and what we hold constant. In all cases,

optimization uses Powell’s dogleg method [80], with Gauss-Newton Hessian approx-

imation. The gradients of the objective function are computed with algorithmic

differentiation [81], which applies the chain rule to the objective function; for this we

use an auto-differentiation package called Chumpy [82]. Only the differentiation of

the body model Sk(�, ✓, �) and the signed mesh distance r(x, S) were done by hand,

to improve runtime performance.

There are two main optimization processes. The first estimates time-independent
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parameters (body shape � and marker placements ˜M), while the second estimates

time-dependent parameters ⇥ = {✓1 . . . ✓n}, � = {�1 . . . �n}.

Body Shape and Latent Markers. For a given mocap sequence (or set of se-

quences for the same subject), optimization always starts by estimating the latent

marker locations ˜M , body shape �, poses ⇥, and body positions � for a subset of

the frames. The latent marker locations and the body shape are assumed to be time

independent and can be estimated once for the entire sequence (or set of sequences).

Notably, the transformation from latent to observed coordinate systems is contin-

uously re-estimated during the optimization of marker placement. The assignment of

nearest neighbors, the local basis itself, and the coefficients relating a marker to that

basis undergo continual adjustment to allow refinement of the relationship between

markers and the body surface.

The � values in Eq. 3.9 are: �D = 0.75, �S = 100.0, �I = 0.25, �� = 1.0, �✓ = 0.25,

�u = 0.

The � values were initialized to normalize each term by an estimate of its expected

value at the end of the optimization; in particular, the distance-based � values (�D,

�S, �I) have interpretations as inverse variances with units of 1
cm2 . These � values

were then empirically refined.

The velocity term is not used in this stage (�u = 0) because we are optimizing

over random disconnected frames.

To help avoid local optima, the optimization is run in six stages, starting with

strong regularization and then gradually decreasing this. Specifically, the regulariza-

tion weights {�✓,��,�I} are lowered from being multiplied by 40, then by 20, 10,

4, 2, and finally 1. Note that these regularization terms are linear and quadratic in

contrast to the data term, which is non-linear. Similar to graduated non-convexity

schemes, by increasing the regularization weights we make the objective function more

convex, potentially helping the optimization avoid local optima during early stages

of the process. In practice we found this to work well.

Computational cost increases with the number of frames used to estimate the
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parameters since each frame requires its own pose ✓t. For efficiency we perform this

optimization using a randomly selected subset of mocap time instants. We ran exper-

iments with different numbers of randomly chosen frames and saw little improvement

with more than 12 frames. Consequently we use 12 random frames for all experiments

here.

Pose. Motion capture now becomes the problem of estimating the pose of the body,

✓t, and body position, �t, at each time instant given the known body shape and latent

markers. We initialize the optimization at frame t with the solution at t � 1 if it is

available and then a short optimization is run for each time step.

For pose estimation, the � values are now: �D = 0.75, �S = 0, �I = 0, �� = 0,

�✓ = 1.0, �u = 6.25. Note that we now employ the velocity smoothness term, �u. A

weight of zero means that this term is not used and the corresponding parameters are

not optimized. Specifically, we do not optimize the marker locations or body shape.

We do however use a pose prior, �✓ = 1.0, to penalize unlikely poses. Here we do not

used the staged regularization because the optimization begins close to the minimum

and converges quickly.

Pose and Soft Tissue Motion. In the optimization above we assume body shape

and latent marker locations do not change. To capture soft tissue motions we now

allow the body shape to vary across the sequence while keeping the marker trans-

formation fixed. We still denote � as a shape estimated in the first stage, but now

denote the time-varying deviations in shape from � as B = {�1 . . . �n}, such that a

person’s shape at time t is now � + �t.

To regularize the �t, we add one additional energy term to Eq. 3.9:

E�(B) =

X

t

||�t||2 (3.10)

and set �� to 0.25, adding ��E�(·) in Eq. 3.9. This term allows body shape to change

over time while regularizing it to not deviate too much from the person’s “intrinsic

shape”, �.

51



While our body shape training set does not contain examples of soft tissue dynam-

ics, it does capture many shape variations across the population. These are exploited

to capture soft tissue deformations during motion. Someone inhaling, for example,

might look like a different person with a higher chest or a bigger stomach. When

someone jumps up and down, their chest changes in ways that resemble the chests

of other people. It is interesting, and perhaps surprising, that the shape variations

between people can be used to approximate the shape variation of an individual due

to dynamics. Presumably there are soft-tissue deformations that cannot be explained

this way but, given sufficiently many training body shapes, and sufficiently many prin-

cipal components, we posit that a wide range of such deformations are representable.

We suspect, however, that training shapes specific to soft-tissue deformations could

be used to learn a more concise model. Note further that we do not model dynamics

of soft tissue, we only approximate what is present in the mocap marker data.

Since standard marker sets are designed for estimating a skeleton, the markers

are mostly placed on rigid body structures to minimize soft tissue motion. This is

another reason why existing mocap methods lack nuance. Consequently to capture

soft tissue dynamics, we want just the opposite; we must have markers on the soft

tissue. We consider this below.

Run Time. Shape and marker estimation requires about 7 minutes. Pose estima-

tion without soft tissue estimation takes about 1 second per frame; pose estimation

with soft tissue estimation requires about 2 seconds per frame.

3.7 Marker Selection

Body shape estimation from motion capture depends on the number and placement

of markers; here we propose a method for constructing a new marker set to improve

body surface reconstruction. To be practical a marker set must be simple, make sense

to the technician applying it, be repeatable across subjects, and take into account self

occlusion, self contact, and the impact on subject movement. Consequently we start
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Figure 3-3: Marker sets. The union of all markers illustrates the 114 possible
markers we considered. Yellow markers correspond to a standard 47-marker Vicon set.
The 20 orange markers were found to improve shape estimation the most. The union
of yellow and orange markers corresponds to our 67-marker set used for capturing
shape and soft-tissue motion. White markers were deemed redundant and were not
used.

with a standard marker set and propose additional symmetrical marker locations for

a total of 114 candidate markers (Fig. 3-3).

We then evaluate these putative markers to determine how important the different

markers are for shape recovery. For this we use a set of 165 meshes of 5 females of

different shapes in a variety of poses selected from the FAUST dataset [18]. A template

mesh is aligned to each of the 3D scans resulting in a set of registered meshes, Rz,

z = 1 . . . 165, in which all vertices are in correspondence across the 165 instances.

We associate our 114 markers with vertices of the template and then estimate body

shape from different subsets of the markers. We evaluate the accuracy of the result in

terms of the Euclidean distance between the vertices of the estimated and true mesh.

Specifically we compute the root mean squared error (RMSE) over all the vertices
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(including the subset used for fitting) for all meshes.

More formally, given a maximum number of markers, c, we seek a subset, T , of

the mesh vertices, A, that enables the most accurate estimation of body shape. This

subset T is the one that minimizes a cost EM(T ); that is

T ⇤
= argmin

T✓A,|T |=c
EM(T ). (3.11)

Notationally, we will now abbreviate body model parameters {�, ✓, �} as P . We will

also denote vertex k of registered mesh z as Rz
k. The best parameters P ⇤

({Rz
j |j 2 T}),

given access only to subset T of the vertices for registered mesh z, are defined as

P ⇤
({Rz

j |j 2 T}) = argmin

P

X

i2T

||Si(P )�Rz
i ||2. (3.12)

The cost of choosing subset T takes into account the distance between all vertices

i 2 A across all the registered meshes z 2 Z = {1 . . . 165}

EM(T ) =
X

i2A,z2Z

||Si(P
⇤
({Rz

j |j 2 T}))�Rz
i ||2. (3.13)

Note that the RMSE is (EM(T )/(|A||Z|))1/2.

Evaluating all possible subsets of 114 markers is infeasible so we take a greedy

approach. If we currently have N markers, we remove one, evaluate the cost for the

N � 1 possible sets, and select the deleted marker that produces the lowest error. We

remove this marker and repeat.

Figure 3-3 shows all 114 putative markers. The standard 47-marker set is in

yellow. White and orange markers correspond to the set of additional markers that

we considered. Using the greedy method, we found that the white markers were not as

useful for estimating shape as the orange ones. Figure 3-4 shows a plot of the RMSE

for different numbers of markers. Note that here we start with the 47-marker set and

subtract markers from it and add markers to it. Surprisingly one can remove markers

from the standard set and still obtain reasonable shape estimates down to about 25
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Figure 3-4: Marker selection residuals. The plot shows the mesh shape recon-
struction error as a function of marker count.

markers. We decided to keep the original set and add the 20 additional (orange)

markers. The addition of markers to the 47 results in a noticeable decrease in RMSE.

Note that we could obtain similar error to our set of 67 with fewer markers by dropping

some of the original 47. To enable comparison with CMU results, however, we decided

to preserve the 47 and add to this set.

3.8 Results

3.8.1 Quantitative Shape Analysis

We evaluate the first stage of optimization, which computes the body shape and

marker locations. To compare estimated body shapes to real ones, we scanned 20

subjects using a high-resolution 3D body scanner (3dMD LLC, Atlanta, GA). Before

scanning, all subjects gave informed written consent. Additionally, 10 of the subjects

were professional models who signed modeling contracts that allow us to release their

full scan data.
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We also used a Vicon mocap system (Vicon Motion Systems Ltd, Oxford, UK)

to capture subjects with 89 markers. The 89 markers were selected using the marker

optimization analysis from the full set of 114 evaluated in Sec. 3.7. We use at most

67 markers for shape and pose estimation; unused markers prove valuable to eval-

uate held-out marker error. In all cases we used the optimization with soft-tissue

deformation. We processed, and evaluate error using, a total of 73 mocap sequences.

Our goal is to estimate a body shape that minimizes 3D body shape reconstruction

error. We measure this error in two different ways: as held-out marker error and

as mesh registration error. Held-out marker error reveals how well we can predict

marker locations that were not used by the optimization: for example, if we use 47

of the markers to estimate the body shape then we use the remaining markers to

estimate held-out error. As shown in Fig. 3-5 (right), the mean distance for held-out

markers drops to approximately 3.4cm when we use 67 markers. Note that these

errors include deviations in placing markers on a subject, which can easily exceed a

centimeter. Specifically, when we estimate shape from a subset of markers, we do

not optimize the placement of the held-out markers. So this error combines human

placement error with errors in soft-tissue motion of the held-out markers that are not

predicted by the subset used for fitting.

After about 25 markers the improvement is very gradual. This is interesting

because it suggests that small marker sets can give good estimates of body shape.

Note that this evaluation uses all 73 mocap sequences and hence evaluates how well

MoSh explains marker motions due to changes in both shape and pose.

Example 3D scans of several subjects are shown in Fig. 3-6 (row 1). For each

subject we align a template mesh to the scan and this template mesh has the same

topology as the MoSh body model (Fig. 3-6 row two); this produces a registered

mesh that we use for evaluation. Note that the registered meshes faithfully represent

the scans and conform to the mesh topology of our model but do not have holes.

Registration error is a measure of how well we can explain a subject’s registered mesh

in terms of average vertex-to-vertex mesh distance. Recovered body shapes using 67

markers are shown in Fig. 3-6 row three. Here we pose the MoSh result in the same
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pose as the scan. Given that MoSh results in a shape vector �, we adjust {✓, �}

for a body model to minimize model-to-registration distance. The heat map in the

bottom row of Fig. 3-6 shows the distance from the MoSh shape to the registered

mesh, illustrating how well MoSh approximates the shape from 67 markers.

This registration error is shown in Fig. 3-5 (left). Registration error behaves

much like held-out marker error, except it is uniformly smaller. Unlike the held-out

experiment, here we only need to explain shape and not both pose and shape. Shape

estimates are obtained from 12 mocap frames and are well constrained.

While large marker sets like those used in [58] certainly contain more information,

we see in Fig. 3-5 (left) diminishing returns with larger marker sets. The ideal number

of markers is likely related to the resolution of the mesh.

To give some insight into what these numbers mean, Fig. 3-7 shows body shape

for one subject reconstructed using different numbers of markers. Here we selected

markers based on our greedy evaluation strategy. What is surprising is that with only

10 markers, we get a shape that roughly captures the person’s size. Note that the

registration error decreases as we add more markers; the numerical results show the

registration error in m.

For the 10 models, scans, aligned meshes, mocap sequences, and MoSh fits are

provided for research purposes here:

http://ps.is.tuebingen.mpg.de/project/MoSh

This data allows others to estimate shape from the same sequences and compare

with both the ground truth shape and our results.

3.8.2 Archival Mocap (CMU)

While we do not have ground truth shape for the CMU dataset, we can evaluate

results qualitatively. A visual inspection of shape recovery from CMU can be seen in

Fig. 3-8, where video frames are shown above the bodies and poses estimated from

47 standard markers. To be clear, MoSh does not use this video frame; we show

it here only for a visual evaluation of rough shape. Since the CMU dataset has no

anthropometric data, a quantitative evaluation is not possible.
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3.8.3 Gender Estimation

For the above CMU results we used sequences for which the gender of the subject

could be determined using accompanying video footage. Next we ask whether we

can estimate gender from the markers automatically (cf. [72]). We use a linear

support vector machine to predict gender from body model parameters. First we

fit a gender-neutral body model to all subjects in the CAESAR dataset to obtain

linear shape coefficients. We then train the SVM to predict known gender given the

shape parameters. We then evaluate gender classification on body shape parameters

estimated by MoSh from the CMU dataset with the gender-neutral body model. For

the 39 subjects with known gender we correctly predicted it 89.7% of the time; this

is comparable to [72], which is not surprising since both methods rely on essentially

the same kind of marker data.

3.8.4 Pose Estimation Results

Given our estimate of intrinsic shape, �, and the marker locations, ˜M , we now opti-

mize the pose across a mocap sequence. We compute the pose for 39 subjects across

722 different mocap sequences in the CMU dataset. Figure 3-9 shows some repre-

sentative frames from some representative sequences in the CMU dataset. Even with

47 markers we can capture some soft tissue deformation and the results shown here

allow body shape deformation over time. The visual nuance of pose reconstruction is

difficult to illustrate in a static image but is apparent in the accompanying video.

Note that this is fully automatic.

The best way to evaluate accuracy of pose and shape together is in terms of held

out marker error. For this we used 20 subjects and 73 mocap sequences acquired

with our extended marker set. We use 67 markers for estimation and 22 to compute

held-out error. This error is 3.4cm and corresponds to the rightmost point on the

right plot in Fig. 3-5 (right).

With a small marker set, noise in any one marker can have an impact. In the

shape estimation stage, the shape and marker placement are estimated from many
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poses, so variation in any individual marker should not unduly harm shape or marker

placement estimation. During pose estimation, velocity constancy helps reduce the

effect of single marker noise. Future work should address methods to automatically

detect and downweight missing markers or markers that have moved.

3.9 Soft Tissue Deformation Results

Our body model was learned to represent both shape and pose-dependent defor-

mations from registered meshes of static subjects. Many other subtle body shape

deformations were not explicitly learned by our model, including static muscle con-

traction, breathing, gravity, external forces, and dynamics. What we show is that the

space of body shapes learned from different people captures variations in shape that

can approximate soft tissue motions. Note that we do not model the dynamics of soft

tissue. We only fit the effects of such motions that are apparent in the marker data.

Figure 3-10 shows examples from several sequences. We show the estimated body

shape with a single body shape, �, per subject (left image in each pair) and the results

allowing deviations, �t, from this shape (right image in each pair). Note the markers

on the chest and belly. Red are the simulated markers predicted by our model and

green are the observed markers. With changing body shape, we more accurately fit

the markers undergoing soft-tissue deformation. This is not surprising, but what is

important is that the shape remains “natural” and continues to look like the person.

Numerically we see the mean observed marker error go down from 0.79cm to

0.62cm with dynamics. Again this is not surprising since we are allowing the shape

to deform to fit these markers. We also tested held out marker error; these are

markers that were not used to estimate shape. Here too we see the mean error go

from 3.41cm to 3.39cm. This is not a significant improvement, but rather a validation

that fitting the soft-tissue motion does not hurt held-out marker error. This confirms

our subjective impression that the body shape does not deform unnaturally and the

non-rigid motions, away from the tracked markers, reflect realistic body deformations.

While, of course, we cannot capture fine ripples with a sparse set of markers, it is
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surprising how much realistic deformation MoSh can estimate.

See the accompanying video for better visualizations and more results. In the

video one sees the observed markers “swimming” around relative to the estimated

shape when we do not model dynamics. There we also compare 47 markers with our

67-marker set and find that the extra markers placed on the soft tissue are important.

3.9.1 Exaggerated Soft-Tissue Deformation

Our soft tissue deformations correspond to directions in the space of human body

shapes. We can vary the amount of deformation along these directions to either

attenuate or amplify the effect. Specifically we magnify the 3D motion by multiplying

�t by a user-specified constant to exaggerate the soft tissue deformations.

This is difficult to show in print but the video shows examples of the same se-

quence with different levels of exaggeration. We found that we could magnify the

deformations by a factor of 1.5 or 2 while retaining something like natural motion.

Pushing the exaggeration by a factor of 4 sometimes produce interesting effects and,

other times, unnatural body shapes.

This tool could be useful to animators to produce reference material since it high-

lights how soft tissue deforms. It could also be used to create new effects that exag-

gerate human actions but in a way that is based on physically realistic deformations.

3.9.2 Soft-Tissue Retargeting

An important use of skeletal mocap data is the retargeting of motion to a new char-

acter; the same can be done with MoSh. Consider the stylized characters in Fig. 3-11

that were downloaded from the Internet. For each character, we deform our tem-

plate towards the character using regularized registration, initialized by hand-clicked

correspondences. To model shape deformations from this character mesh, we simply

recenter our PCA model of body shape by replacing our original mean shape, µ, with

the character’s template deformations. The soft tissue deformation coefficients, �t,

are then simply applied to this new mean shape. We also directly apply the estimated
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translation, �t, and MoSh part rotations, ✓t, to the parts of the new character along

with the learned non-rigid pose-dependent shape deformations. This produces plau-

sible animations. Note that, to get realistic soft-tissue transfer, we use human actors

with body shapes that resemble the stylized character; see Fig. 3-11. Of course, these

deformations can also be exaggerated.

3.10 Conclusion and Discussion

MoSh addresses a key criticism of existing motion capture methods. By estimating a

changing body shape over time from sparse markers, MoSh captures detailed non-rigid

motions of the body that produce lifelike animations. MoSh is completely compatible

with existing industry-standard mocap systems. It can be used alone or in conjunction

with traditional skeletal mocap since no information is lost and MoSh can use exactly

the same markers as current systems. Our hope is that MoSh breathes new life into

old mocap datasets and provides an easily adopted tool that extends the value of

existing investments in marker-based mocap.

There are several current limitations that present interesting directions for future

work. For example, we need to roughly know the marker set and we also assume

the markers are in correspondence. We can correct for some mislabeled markers but

we still assume a largely labeled dataset. Establishing correspondence and cleaning

markers sets is a time consuming part of current mocap practices. It would be inter-

esting to leverage the body model to try to solve these problems automatically. For

example, we could also use our simulated markers to detect when a marker is missing

or has moved. If a marker moves between sessions we could then update its location

on the fly. We could also estimate the noise in each marker independently and take

this into account during pose and shape estimation. The estimated body pose could

also be used to create a virtual marker sequence that could replace the original. This

would provide a principled way of fixing occlusions. Simulating a different set might

be useful for methods that extract skeletal data from markers.

The quality of MoSh output is very dependent on the quality of the body model
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that is used. If our model cannot represent a pose realistically, then the output of

MoSh will have artifacts. We observed this for a few poses, for example, both arms

pointed forward, elbows straight and palms together. This suggests our pose training

set should be augmented with new poses.

An interesting direction for future work would be to use other types of body

models. For example, it should be possible to replace our model with one that uses

linear blend skinning and corrective blend shapes.

Our method for evaluating new marker sets could be used to construct sets to

capture specific types of non-rigid deformations such as breathing. If we had 3D

mesh sequences we could extend our analysis to select marker sets directly relevant for

capturing soft-tissue motion. We did not evaluate which poses are most effective for

estimating body shape; we simply chose 12 at random. Jointly optimizing the marker

set and the poses could make a mocap system a more effective “body scanner;” the

body scanning protocol would involve attaching the markers and having the subject

assume the prescribed poses.

Our soft-tissue motions are approximations based on sparse markers but result in

dense deformations. Since it is easy to acquire the data, it would be interesting

to use these to train a more physical model of how soft tissue moves. That is,

possibly we could leverage MoSh to learn a more sophisticated body shape model

with dynamics. This could allow generalization of soft-tissue motions to new body

shapes and movements.

We plan to extend our body model and MoSh methods to include the motion of

feet, hands and faces. We think this is relatively straightforward but likely requires

a more sophisticated pose prior model than the Gaussian one used here. It may be

possible to extend these ideas further for capturing clothing or to couple our marker-

based analysis with video or range data. Finally, we are also working on speeding

up processing using a multi-resolution model to enable the use of MoSh in virtual

production.
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Figure 3-5: Effects of marker number on reconstruction error. The mean
and standard deviations of distance residuals indicate how the marker number affects
reconstruction. Top: Shape reconstruction error. This is computed as the mean
absolute distance between the true body shape (as represented by the alignment of
the template to a scan) and the body shape estimated by MoSh reposed to match the
registered mesh. Bottom: Held-out marker error across all sequences. This measures
errors in both shape and pose but is inflated by marker placement error and marker
movement. In both plots, 68.2% (±1�) of the residuals are contained between the
error bars.
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Figure 3-6: Shape reconstruction. First row: raw 3D scans from a high-resolution
scanner. Second row: registered meshes obtained by precisely aligning a template
mesh, with the same topology as our model, to the scans. These registered meshes
faithfully capture the body shape and are used for our quantitative analysis. Third
row: our model with shape, �, estimated from only 67 markers. Here we estimate
the pose, ✓, of our model to match the registered meshes to facilitate comparison.
Bottom row: Distance between second and third rows. The heat map shows Euclidean
distance from the registered mesh to the nearest point on the surface of the body
estimated by MoSh; blue means zero and red means � 4 cm.
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Figure 3-7: Shape from markers. We show the effect of the number of markers
(5, 10, 25, 47, 67) on the registration error (in m) of the estimated shape. Far right:
reference image of the subject.

Figure 3-8: CMU bodies. Extracted shapes (bottom) and reference images (top)
for several CMU subjects. Shape and pose is computed with MoSh using 47 Vicon
markers only.
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Figure 3-9: CMU mocap. Example meshes extracted from the CMU mocap dataset
and representative frames from the animation. All shapes and poses are estimated
automatically using only 47 markers. See accompanying video to see these and
other results for CMU.
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Figure 3-10: Motion of soft tissue. Some representative samples are shown. In
each pair, the left image is without modeling dynamics (body shape fixed) and the
right with with dynamics (body shape varying). Each image shows the full body and
a detail region. Green balls correspond to the mocap markers. Red balls correspond
to the simulated marker locations. Allowing body shape to change over time better
captures soft tissue deformations. Note that, with dynamics, the predicted markers
much more closely match the observed markers.
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Figure 3-11: Retargeting soft-tissue motions. Top row: Body part segmentation
for human and stylized characters. Middle row: retargeting pose and soft-tissue
motion of an actor (left) to a stylized female character (middle), with heat maps
(right) illustrating the percentage of soft-tissue deformation; blue means zero and
red means � 20 percent deformation. Bottom row: retargeting to another stylized
character. See accompanying video to visualize the soft-tissue motions.
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Chapter 4

Shape Estimation from RGB and

Range Images

4.1 Introduction

Computer vision as analysis by synthesis has a long tradition [83, 84] and remains

central to a wide class of generative methods. In this top-down approach, vision

is formulated as the search for parameters of a model that is rendered to produce

an image (or features of an image), which is then compared with image pixels (or

features). The model can take many forms of varying realism but, when the model

and rendering process are designed to produce realistic images, this process is often

called inverse graphics [85, 86]. In a sense, the approach tries to reverse-engineer the

physical process that produced an image of the world.

We define an observation function f(⇥) as the forward rendering process that

depends on the parameters ⇥. The simplest optimization would solve for the param-

eters minimizing the difference between the rendered and observed image intensities,

E(⇥) = kf(⇥) � Ik2. Of course, we will specify much more sophisticated functions,

including robust penalties and priors, but the basic idea remains – minimize the differ-

ence between the synthesized and observed data. While much has been written about

this process and many methods fall under this rubric, few methods literally adopt the

inverse graphics approach. High dimensionality makes optimizing an objective like
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the one above a challenge; renderers have a large output space, and realistic renderers

require a large input parameter space. Fundamentally, the forward rendering func-

tion is complex, and optimization methods that include it are often purpose-built with

great effort. Put succinctly, graphics renderers are not usually built to be inverted.

Here we fully embrace the view of vision as inverse graphics and propose a frame-

work to make it more practical. Realistic graphics engines are available for rendering

the forward process and many discriminative approaches exist to recover scene prop-

erties directly from images. Neither explicitly models how the observables (pixels or

features) smoothly change with model parameters. These derivatives are essential

for optimization of high-dimensional problems and constructing these derivatives by

hand for each application is onerous. Here we describe a general framework based on

differentiating the render. We define a differentiable renderer (DR) as a process that

(1) supplies pixels as a function of model parameters to simulate a physical imaging

system and (2) supplies derivatives of the pixel values with respect to those parame-

ters. To be practical, the DR also has to be fast; this means it must have hardware

support. Consequently we work directly with OpenGL. Because we make it publicly

available, we call our framework OpenDR (http://open-dr.org).

Since many methods formulate generative models and differentiate them, why has

there been no general DR framework until now? Maybe it is because rendering seems

like it is not differentiable. At some level this is true, but the question is whether

it matters in practice. All renderers are approximate and our DR is no exception.

We describe our approximations in Sections 4.3 and 4.4 and argue that, in practice,

“approximately differentiable” is actually very useful.

Our goal is not rendering, but inverse rendering: we wish to specify and minimize

an objective, in which the renderer is only one part. To that end, our DR is built

upon a new autodifferentiation framework, called Chumpy, in Python that makes pro-

gramming compact and relatively easy. Our public autodiff framework makes it easy

to extend the basic features of OpenDR to address specific problems. For example,

instead of specifying input geometry as vertices, one might parameterize the vertices

in a shape space; or in the output, one might want a Laplacian pyramid of pixels, or
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edges, or moments, instead of the raw pixel values. While autodifferentiation does

not remove the need to write these functions, it does remove the need to differentiate

them by hand.

Using this we define the OpenDR framework that supports a wide range of real

problems in computer vision. The OpenDR framework provides a compact and effi-

cient way of expressing computer vision problems without having to worry about how

to differentiate them. This is the first publicly-available framework for differentiating

the image generation process.

To evaluate the OpenDR, and to illustrate how to use it, we present two examples.

The first is a simple “hello world” example, which serves to illustrate the basic ideas of

the OpenDR. The second, more complex, example involves fitting an articulated and

deformable model of 3D human body shape to image and range data from a Kinect.

Here we optimize 3D body shape, pose, lighting, albedo, and camera parameters.

This is a complex and rich generative model and optimizing it would generally be

challenging; with OpenDR, it is straightforward to express and optimize.

While differentiating the rendering process does not solve the computer vision

problem, it does address the important problem of local refinement of model parame-

ters. We see this as piece of the solution that is synergistic with stochastic approaches

for probabilistic programming [87]. We have no claim of novelty around vision as in-

verse graphics. Our novelty is in making it practical and easy to solve a fairly wide

class of such problems. We believe the OpenDR is the first generally available solution

for differentiable rendering and it will enable people to push the analysis-by-synthesis

approach further.

4.2 Related Work

The view of vision as inverse graphics is nearly as old as the field itself [85]. It appears

in the work of Grenander on analysis by synthesis [83], in physics-based approaches

[88], in regularization theory [89, 90], and even as a model for human perception

[91, 84, 92]. This approach plays an important role in Bayesian models and today
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the two notions are tightly coupled [93]. In the standard Bayesian formulation, the

likelihood function specifies the forward rendering process, while the prior constrains

(or regularizes) the space of models or parameters [93]. Typically the likelihood does

not involve an actual render in the standard graphics sense. In graphics, “inverse

rendering” typically refers to recovering the illumination, reflectance, and material

properties from an image (e.g. the estimation of BRDFs); see [94] for a review. When

we talk about inverting the rendering process we mean something more general, in-

volving the recovery of object shape, camera parameters, motion, and illumination.

The theory of inverse graphics is well established, but what is missing is the

direct connection between rendering and optimization from images. Graphics is about

synthesis. Inference is about going from observations to models (or parameters).

Differentiable rendering connects these in a concrete way by explicitly relating changes

in the observed image with changes in the model parameters.

Stochastic Search and Probabilistic Programming. Our work is similar phi-

losophy to Mansinghka et al. [87]. They show how to write simple probabilistic

graphics programs that describe the generative model of a scene and how this relates

to image observations. They then use automatic and approximate stochastic infer-

ence methods to infer the parameters of the scene model from observations. While

we share the goal of automatically inverting graphics models of scenes, our work is

different and complimentary. They address the stochastic search problem while we

address the deterministic refinement problem. While stochastic sampling is a good

way to get close to a solution, it is typically not a good way to refine a solution. A

full solution is likely to incorporate both of these elements of search and refinement,

where the refinement stage can use richer models, deterministic optimization, achieve

high accuracy, and be more efficient.

Our work goes beyond [87] in other ways. They exploit a very general but com-

putationally inefficient Metropolis-Hastings sampler for inference that will not scale

well to more complex problems. While their work starts from the premise of doing

inference with a generic graphics rendering engine, they do not cope with 3D shape,
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illumination, 3D occlusion, reflectance, and camera calibration; that is, they do no

render graphics scenes as we typically think of them. None of this is to diminish the

importance of that work, which lays out a framework for probabilistic scene infer-

ence. This is part of a more general trend in probabilistic programming where one

defines the generative graphical model and lets a generic solver do the inference [95,

96, 97]. Our goal is similar but for deterministic inference. Like them we offer a

simple programming framework in which to express complex models.

Recently Jampani et al. [98] define a generic sampler for solving inverse graphics

problems. They use discriminative methods (bottom up) to inform the sampler and

improve efficiency. Their motivation is similar to ours in that they want to enable in-

verse graphics solutions with simple generic optimization methods. Their goal differs

however in that they seek a full posterior distribution over model parameters, while

we seek a local optimum. In general, their method is complimentary to ours and the

methods could be combined.

Differentiating Graphics Models. Of course we are not the first to formulate

a generative graphics model for a vision problem, differentiate it, and solve for the

model parameters. This is a tried-and-true approach in computer vision. In previous

work, however, this is done as a “one off" solution and differentiating the model is

typically labor intensive. For a given model of the scene and particular image features,

one defines an observation error function and differentiates this with respect to the

model parameters. Solutions obtained for one model are not necessarily easily applied

to another model. Some prominent examples follow.

Face modeling: Blanz and Vetter [99] define a detailed generative model of human

faces and do analysis by synthesis to invert the model. Their model includes 3D face

shape, model texture, camera pose, ambient lighting, and directional lighting. Given

model parameters they synthesize a realistic face image and compare it with image

pixels using sum-of-squared differences. They explicitly compute derivatives of their

objective function and use a stochastic gradient descent method for computational

reasons and to help avoid local optima.
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3D shape estimation: Jalobeanu et al. [100] estimate underlying parameters (light-

ing, albedo, and geometry) of a 3D planetary surface with the use of a differentiated

rendering process. They point out the importance of accurate rendering of the image

and the derivatives and work in object space to determine visibilities for each pixel

using computational geometry. Like us, they define a differentiable rendering process

but with a focus on Bayesian inference.

Smelyansky et al. [101] define a “fractional derivative renderer” and use it to

compute camera parameters and surface shape together in a stereo reconstruction

problem. Like [100], they use geometric modeling to account for the fractional con-

tributions of different surfaces to a pixel. While accurate, such a purely geometric

approach is potentially slow.

Bastian [102] also argues that working in object space avoids problems of work-

ing with pixels and, in particular, that occlusions are a problem for differentiable

rendering. He suggests super-sampling the image as one solution to approximate a

differentiable render. Instead he uses MCMC sampling and suggests that sampling

could be used in conjunction with a differentiable renderer to avoid problems due to

occlusion. See also [103], which addresses similar issues in image modeling with a

continuous image representation.

It is important to remember that any render only produces an approximation of

the scene. Consequently any differentiable render will only produce approximations

of the derivatives. This is true whether one works in object space or pixel space. The

question is how good is the approximation and how practical is it to obtain? We

argue below that pixel space provides the better tradeoff.

Human pose and shape: Sminchisecu [104] formulates the articulated 3D human

tracking problem from monocular video. He defines a generative model of edges,

silhouettes and optical flow and derives approximations of these that are differentiable.

In [105] Sminchisescu and Telea define a generic programming framework in which

ones specifies models and relates these to image observations. This framework does

not automatically differentiate the rendering process.

de La Gorce et al. [106] recover pose, shape, texture, and lighting position in a hand
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tracking application. They formulate the problem as a forward graphics synthesis

problem and then differentiate it, paying special attention to obtaining derivatives

at object boundaries; we adopt a similar approach. Weiss et al. [52] estimate both

human pose and shape using range data from Kinect and an edge term corresponding

to the boundary of the human body. They formulate a differentiable silhouette edge

term and mention that it is sometimes not differentiable, but that this occurs at only

finitely many points, which can be ignored.

The above methods all render a model of the world and differentiate some image

error with respect to the model parameters. Despite the fact that they all can be seen

as inverse rendering, in each case the authors formulate an objective and then devise a

way to approximately differentiate it. Our key insight is that, instead of differentiating

each problem, we differentiate the render. Then any problem that can be posed as

rendering is, by construction, (approximately) differentiable. To formulate a new

problem, one writes down the forward process (as expressed by the rendering system),

the derivatives are given automatically, and optimization is performed by one of

several local optimization methods. This approach of differentiating the rendering

process provides a general solution to many problems in computer vision.

4.3 Defining our Forward Process

Let f(⇥) be the rendering function, where ⇥ is a collection of all parameters used

to create the image. Here we factor ⇥ into vertex locations V , camera parameters

C, and per-vertex brightness A: therefore ⇥ = {V,C,A}. Inverse graphics is in-

herently approximate, and it is important to establish our approximations in both

the forward process and its differentiation. Our forward model makes the following

approximations:

Appearance (A): Per-pixel surface appearance is modeled as product of mipmapped

texture and per-vertex brightness, such that brightness combines the effects of re-

flectance and lighting. Spherical harmonics and point light sources are available as

part of OpenDR; other direct lighting models are easy to construct. Global illumi-
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nation, which includes interreflection and all the complex effects of lighting, is not

explicitly supported.

Geometry (V ): We assume a 3D scene to be approximated by triangles, param-

eterized by vertices V , with the option of a background image (or depth image for

the depth renderer) to be placed behind the geometry. There is no explicit limit on

the number of objects, and the DR does not even “know” whether it is rendering one

or more objects; its currency is triangles, not objects.

Camera (C): We approximate continuous pixel intensities by their sampled cen-

tral value. We use the pinhole-plus-distortion camera projection model from OpenCV.

Its primary difference compared with other projections is in the details of the image

distortion model [107], which are in turn derived from [108].

Our approximations are close to those made by modern graphics pipelines. One

important exception is appearance: modern graphics pipelines support per-pixel as-

signment on surfaces according to user-defined functions, whereas here we support

per-vertex user-defined functions (with colors interpolated between vertices). While

we also support texture mapping, we do not yet support differentiation with respect

to intensity values on the texture map. Unlike de La Gorce [106], we do not support

derivatives with respect to texture; whereas they use bilinear interpolation, we would

require trilinear interpolation because of our use of mipmapping. This is future work.

We emphasize that, if the OpenDR proves useful, users will hopefully expand it,

relaxing many of these assumptions. Here we describe the initial release.

4.4 Differentiating our Forward Process

To describe the partial derivatives of the forward process, we introduce U as an inter-

mediate variable indicating 2D projected vertex coordinate positions. Differentiation

follows the chain rule as illustrated in Fig. 4-1. Our derivatives may be grouped into

the effects of appearance ( @f
@A), and changes in projected coordinates (@U@C and @U

@V ),

and the effects of image-space deformation ( @f
@U ).
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Figure 4-1: Partial derivative structure of the renderer.

4.4.1 Differentiating Appearance

Pixels projected by geometry are colored by the product of texture T and appearance

A; therefore @f
@A can be quickly found by rendering the texture-mapped geometry with

per-vertex colors set to 1.0, and weighting the contribution of surrounding vertices

by rendered barycentric coordinates. Partials @A
@V may be zero (if only ambient color

is required), may be assigned to built-in spherical harmonics or point light sources,

or may be defined directly by the user.

4.4.2 Differentiating Projection

Image values relate to 3D coordinates and camera calibration parameters via 2D

coordinates; that is, where U indicates 2D coordinates of vertices,

@f

@V
=

@f

@U

@U

@V
, (4.1)

@f

@C
=

@f

@U

@U

@C
. (4.2)

Partials @U
@V and @U

@C are straightforward, as projection is well-defined. Conve-

niently, OpenCV provides @U
@C and @U

@V directly.
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4.4.3 Differentiating Intensity with Respect to 2D Image Co-

ordinates

In order to estimate @f
@U , we first segment our pixels into occlusion boundary pixels

and interior pixels, as inspired by [106]. The change induced by boundary pixels is

primarily due to the replacement of one surface with another, whereas the change

induced by interior pixels relates to the image-space projected translation of the

surface patch. The assignment of boundary pixels is obtained with a rendering pass by

identifying pixels on edges which (a) pass a depth test (performed by the renderer) and

(b) join triangles with opposing normals: one triangle facing towards the camera, one

facing away. We consider three classifications for a pixel: interior, interior/boundary,

and many-boundary.

Interior: a pixel contains no occlusion boundaries. Because appearance is a

product of interpolated texture and interpolated color, intensity changes are piecewise

smooth with respect to geometry changes. For interior pixels, we use the image-space

first-order Taylor expansion approach adopted by [109]. To understand this approach,

consider a patch translating right in image space by a pixel: each pixel becomes

replaced by its lefthand neighbor, which is similar to the application of a Sobel filter.

Importantly, we do not allow this filtering to cross or include boundary pixels (a case

not handled by [109] because occlusion was not modeled).

Specifically, on pixels not neighboring an occlusion boundary, we perform horizon-

tal filtering with the kernel 1
2 [�1, 0, 1]. On pixels neighboring an occlusion boundary

on the left, we use [0,�1, 1] for horizontal filtering; with pixels neighboring occlusion

boundaries on the right, we use [�1, 1, 0]; and with occlusion boundaries on both

sides we approximate derivatives as being zero. With vertical filtering, we use the

same kernels transposed.

Interior/Boundary: a pixel is intersected by one occlusion boundary. For the

interior/boundary case, we use image-space filtering with kernel 1
2 [�1, 0, 1] and its

transpose. This approximates one difference (that between the foreground boundary

and the surface behind it) with another (that between the foreground boundary and
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a pixel neighboring the surface behind it). Instead of “peeking” behind an occluding

boundary, we are using a neighboring pixel as a surrogate and assuming that the

difference is not too great. In practical terms, the boundary gradient is almost always

much larger than the gradient of the occluded background surface patch, and therefore

dominates the direction taken during optimization.

Many-Boundary: more than one occlusion boundary is present in a pixel.

While object space methods provide exact derivatives for such pixels at the expense

of modeling all the geometry, we treat this as an interior/boundary case. This is

justified because very few pixels are affected by this scenario and because the exact

object-space computation would be prohibitively expensive.

To summarize, the most significant approximation of the differentiation process

occurs boundary pixels where we approximate one difference (nearby pixel minus

occluded pixel) with another (nearby pixel minus almost-occluded pixel). We find

this works in practice, but it is important to recognize that better approximations

are possible [106].

As an implementation detail, our approach requires one render pass when a raw

rendered image is requested, and an additional three passes (for boundary identi-

fication, triangle identification, and barycentric coordinates) when derivatives are

requested. Each pass requires read back from the GPU.

4.4.4 Software Foundation

Flexibility is critical to the generality of a differentiable renderer; custom functions

should be easy to design without requiring differentiation by hand. To that end, we

use automatic differentiation [110] to compute derivatives given only a specification of

the forward process, without resorting to finite differencing methods. As part of the

OpenDR release we include a new automatic differentiation framework (Chumpy).

This framework is essentially Numpy [111], which is a numerical package in Python,

made differentiable. By sharing much of the API of Numpy, this allows the forward

specification of problems with a popular API. This in turn allows the forward spec-

ification of models not part of the renderer, and allows upper layers of the renderer
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to be specified minimally. Although alternative auto-differentiation frameworks were

considered [112, 113, 114], we wrap Numpy for its ease-of-use. Our overall system

depends on Numpy [111], Scipy [115], and OpenCV [107].

4.5 Programming in OpenDR: Hello World

First we illustrate construction of a renderer with a texture-mapped 3D mesh of

Earth. In Sec. 4.3, we introduced f as a function of {V,A, U}; in Fig. 4-2, V , A, U

and f are constructed in turn. While we use spherical harmonics and a static set of

vertices, anything expressible in Chumpy can be assigned to these variables, as long

the dimensions make sense: given N vertices, then V and A must be N ⇥ 3, and U

must be N ⇥ 2.

from opendr.simple import *
w, h = 320, 240

import numpy as np
m = load_mesh(’nasa_earth.obj’)

# Create V, A, U, f: geometry, brightness, camera, renderer
V = ch.array(m.v)
A = SphericalHarmonics(vn=VertNormals(v=V, f=m.f),

components=[3.,1.,0.,0.,0.,0.,0.,0.,0.],
light_color=ch.ones(3))

U = ProjectPoints(v=V, f=[300,300.], c=[w/2.,h/2.], k=ch.zeros(5),
t=ch.zeros(3), rt=ch.zeros(3))

f = TexturedRenderer(vc=A, camera=U, f=m.f, bgcolor=[0.,0.,0.],
texture_image=m.texture_image, vt=m.vt, ft=m.ft,
frustum={’width’:w, ’height’:h, ’near’:1,’far’:20})

Figure 4-2: Constructing a renderer in OpenDR.

Figure 4-3 shows the code for optimizing a model of Earth to match image evi-

dence. We reparameterize V with translation and rotation, express the error to be

minimized as a difference between Gaussian pyramids, and find a local minimum

of the energy function with simultaneous optimization of translation, rotation, and

light parameters. Note that a Gaussian pyramid can be written as a linear filtering

operation and is therefore simply differentiable. The process is visualized in Fig. 4-4.
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# Parameterize the vertices
translation, rotation = ch.array([0,0,4]), ch.zeros(3)
f.v = translation + V.dot(Rodrigues(rotation))

# Create the energy
difference = f - load_image(’earth_observed.jpg’)
E = gaussian_pyramid(difference, n_levels=6, normalization=’SSE’)

# Minimize the energy
light_parms = A.components
ch.minimize(E, x0=[translation])
ch.minimize(E, x0=[translation, rotation, light_parms])

Figure 4-3: Minimizing an objective function given image evidence. The derivatives
from the renderer are used by the minimize method. Including a translation-only
stage typically speeds convergence.

Figure 4-4: Illustration of optimization in Figure 4-3. In order: observed image of
earth, initial absolute difference between the rendered and observed image intensities,
final difference, final result.

In this example, there is only one object; but as mentioned in Sec. 4.3, there

is no obvious limit to the number of objects, because geometry is just a collection

of triangles whose vertices are driven by a user’s parameterization. Triangle face

connectivity is required but may be disjoint.

rn = TexturedRenderer(...)
edge_image = rn[:,1:,:] - rn[:,:-1,:]
ch.minimize(ch.sum((edge_image - my_edge_image)**2.),

x0=[rn.v], method=’bfgs’)

Figure 4-5: Optimizing a function of the rendered image to match a function of image
evidence. Here the function is an edge filter.

Image pixels are only one quantity of interest. Any differentiable operation applied

to an image can be applied to the render and hence we can minimize the difference

between functions of images. Figure 4-5 illustrates how to minimize the difference
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Figure 4-6: Rendering performance versus resolution. For reference, 640x480
is 0.3 million pixels. Left: with rendering only. Right: with rendering and derivatives.

between image edges and rendered edges. For more examples, the opendr.demo()

function, in the software release, shows rendering of image moments, silhouettes, and

boundaries, all with derivatives with respect to inputs.

4.6 Experiments

Run-time depends on many user-specific decisions, including the number of pixels,

triangles, underlying parameters and model structure. Figure 4-6 illustrates the ef-

fects of resolution on run-time in a simple scenario on a 3.0 GHz 8-core 2013 Mac Pro.

We render a subdivided tetrahedron with 1024 triangles, lit by spherical harmonics.

The mesh is parameterized by translation and rotation, and timings are according to

those 6 parameters. The figure illustrates the overhead associated with differentiable

rendering.

Finite differences on original parameters are sometimes faster to compute than

analytic differences. In the experiment shown in Fig. 4-6, at 640x480, it is 1.75 times

faster to compute forward finite differencing on 6 parameters than to find analytic

derivatives according to our approach. However, if derivatives with respect to all 514

vertices are required, then forward finite differencing becomes approximately 80 times

slower than computing derivatives with our approach.

More importantly, the correct finite differencing epsilon is pixel-dependent. Fig-

ure 4-7 shows that the correct epsilon for finite-differencing can be spatially varying:

the chosen epsilon is too small for some pixels and too large for others.
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Figure 4-7: Differentiable rendering versus finite differencing. Left: a rotat-
ing quadrilateral. Middle: OpenDR’s predicted change in pixel values with respect
to in-plane rotation. Right: finite differences recorded with a change to in-plane
rotation.

4.6.1 Body Shape from Kinect

We now address a body measurement estimation problem using the Kinect as an input

device. In an analysis-by-synthesis approach, many parameters must be estimated to

effectively explain the image and depth evidence. We effectively estimate thousands

of parameters (per-vertex albedo being the biggest contributor) by minimizing the

contribution of over a million residuals; this would be impractical with derivative-free

methods.

Subjects were asked to form an A-pose or T-pose in two views separated by 45

degrees; then a capture was performed without the subject in view. This generates

three depth and three color images, with most of the state, except pose, assumed

constant across the two views.

Our variables and observables are as follows:

• Latent variables: lighting parameters AL, per-vertex albedo AC , color camera

translation T , and body parameters B: therefore ⇥ = {AL, AC , T, B}.

• Observables: depth images D1...n and color images I1...n, n = 3.

Appearance, A, is modeled here as a product of per-vertex albedo, AC , and spher-

ical harmonics parameterized by AL: A = ACH(AL, V ), where H(AL, V ) gives one

brightness to each vertex according to the surface normal. Vertices are generated

by a BlendSCAPE model [17], controlled by pose parameters P1..n (each of n views

has a slightly different pose) and shape parameters S (shared across views) which we

concatenate to form B.
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To use depth and color together, we must know the precise extrinsic relation-

ship between the sensors; due to manufacturing variance, the camera axes are not

perfectly aligned. Instead of using a pre-calibration step, we pose the camera trans-

lation estimation as part of the optimization, using the human body itself to find the

translation, T , between color and depth cameras.

Our data terms includes a color term EC , a depth term ED, and feet-to-floor

contact term EF . Our regularization terms include a pose prior EP , a shape prior ES

(both Gaussian), and smoothness prior EQ on per-vertex albedo:

E = EC + ED + EF + EP + ES + EQ. (4.3)

The color term accumulates per-pixel error over images

EC(I, AL, AC , T, B) =

X

i

X

u

kIiu � ˜Iiu(AL, AC , T, B)k2 (4.4)

where ˜Iui is the simulated pixel intensity of image-space position u for view i.

The depth term is similar but, due to sensor noise, is formulated robustly

ED(D, T,B) =

X

i

X

u

kDiu � ˜Diu(T,B)k⇢ (4.5)

where the parameter ⇢ is adjusted from 2 to 1 over the course of an optimization.

The floor term EF minimizes differences between foot vertices of the model and

the ground

EF (D,B) =

X

k

kr(B,Db, k)k2 (4.6)

where r(B,Db, k) indicates the distance between model footpad vertex k and a mesh

Db constructed from the background shot,

The albedo smoothness term EQ penalizes squared differences between the log

albedo of neighboring mesh vertices

EQ =

X

e

k log(b(e, 0))� log(b(e, 1))k2 (4.7)
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where b(e, 0) denotes the albedo of the first vertex on edge e, and b(e, 1) denotes the

albedo of the other vertex on edge e.

Finally, shape and pose parameter priors, ES(S) and EP (P ), penalize the squared

Mahalanobis distance from the mean body shape and pose learned during Blend-

SCAPE training.

Initialization for the position of the simulated body could be up to a meter away

from the real body and still achieve convergence. Without the use of Gaussian pyra-

mids or background images, initialization would require more precision (while we did

not use it, initialization could be obtained with the pose information available from

the Kinect API).

Male and female body models were each trained from approximately 2000 scans

from the CAESAR [79] dataset. This dataset comes with anthropometric measure-

ments for each subject; similar to [116], we use regularized linear regression to predict

measurements from our underlying body shape parameters. To evaluate accuracy of

the recovered body models, we measured RMSE and percentage of explained variance

of our predictions as shown in Fig. 4-8. For comparison, Fig. 4-8 also shows the ac-

curacy of estimating measurements directly from 3803 meshes accurately registered

to the CAESAR laser scans. Although these two settings (23 subjects by Kinect

and 3803 subjects by laser scan) differ in both subjects and method, and we do not

expect Kinect scans to be as accurate, Fig. 4-8 provides an indication of how well the

Kinect-based method works.

Figure 4-9 shows some representative results from our Kinect fitter. While foot

posture is not always correct, the effects of geometry, lighting and appearance are

generally well-estimated. Obtaining this result was made significantly easier with a

platform that includes a differentiable renderer and a set of building blocks to compose

around it.

Each fit took around 7 minutes on a 3.0 GHz 8-core 2013 Mac Pro.
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Figure 4-8: Accuracy of measurement prediction for Kinect-based fitting compared to
measurements from CAESAR scans or guessing the mean (uninformed). Left: root
mean squared error (RMSE) in cm. Right: percentage of explained variance.

4.7 Conclusions

Many problems in computer vision have been solved by effectively differentiating

through the rendering process. This is not new. What is new is that we provide

an easy to use framework for both renderer differentiation and objective formulation.

This makes it easy in Python to define a forward model and optimize it. We have

demonstrated this with a challenging problem of body shape estimation from image

and range data. By releasing the OpenDR with an open-source license (see http:

//open-dr.org), we hope to create a community that is using and contributing to

this effort. The hope is that the this will push forward research on vision as inverse

graphics by providing tools to make working on this easier.

Differentiable rendering has its limitations. When using differences between RGB

Gaussian pyramids, the fundamental issue is overlap: if a simulated and observed

object have no overlap in the pyramid, the simulated object will not record a gradient

towards the observed one. One can use functions of the pixels that have no such

overlap restriction (e.g. moments) to address this but the fundamental limitation is

one of visibility: a real observed feature will not pull on simulated features that are

entirely occluded because of the state of the renderer.
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Consequently, differentiable rendering is only one piece of the puzzle: we believe

that informed sampling [98] and probabilistic graphics programming [87] are also

essential to a serious application of inverse rendering. Despite this, we hope many

will benefit from the OpenDR platform.

Future exploration may include increasing image realism by incorporating global

illumination. It may also include more features of modern rendering pipelines (for

example, differentiation through a fragment shader). We are also interested in the

construction of an “integratable renderer” for posterior estimation; although standard

sampling methods can be used to approximate such an integral, there may be graphics-

related techniques to integrate in a more direct fashion within limited domains.
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Figure 4-9: Reconstruction of subjects (each subject is a row). First column: origi-
nal captured images, with faces blurred for anonymity. Second column: simulated
images after convergence. Third column: captured point cloud together with esti-
mated body model. Fourth column: estimated body shown on background point
cloud.
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Chapter 5

A Skinned Multi-Person Linear

Model

5.1 Introduction

Our goal is to create realistic animated human bodies that can represent different

body shapes and deforms naturally with pose. We want such models to be fast to

render, easy to deploy, and compatible with existing rendering engines. The commer-

cial approach commonly involves hand rigging a mesh and manually sculpting blend

shapes to correct problems with traditional skinning methods. Many blend shapes

are typically needed and the manual effort required to build them is large. As an

alternative, the research community has focused on learning statistical body models

from example scans of different bodies in a varied set of poses. While promising, these

approaches are not compatible with existing graphics software and rendering engines

that use standard skinning methods.

Our goal is to automatically learn a model of the body that is both realistic and

compatible with existing graphics software. To that end, we describe a “Skinned

Multi-Person Linear” (SMPL) model of the human body that can realistically repre-

sent a wide range of human body shapes, can be posed with natural pose-dependent

deformations, is efficient to animate, and is compatible with existing rendering engines

(Fig. 5-1).

89



Figure 5-1: SMPL is a realistic learned model of human body shape and pose that is
compatible with existing rendering engines, allows animator control, and is available
for research purposes. (left) SMPL model (orange) fit to ground truth 3D meshes
(gray). (right) Unity 5.0 game engine screenshot showing bodies from the CAESAR
dataset animated in real time.

Traditional methods model how vertices are related to an underlying skeleton

structure. Basic linear blend skinning (LBS) models are the most widely used, are

supported by all game engines, and are efficient to render. Unfortunately they produce

unrealistic deformations at joints including the well-known “taffy” and “bowtie” effects

(see Fig. 5-2). Tremendous work has gone into skinning methods that ameliorate these

effects [35, 117, 118, 119, 36]. There has also been a lot of work on learning highly

realistic body models from data [120, 46, 121, 122, 123, 62]. These methods can

capture the body shape of many people as well as non-rigid deformations due to

pose. The most realistic approaches are arguably based on triangle deformations [46,

62, 122, 124]. Despite the above research, existing models either lack realism, do not

work with existing packages, do not represent a wide variety of body shapes, are not

compatible with standard graphics pipelines, or require significant manual labor.

In contrast to the previous approaches, a key goal of our work is to make the

body model as simple and standard as possible so that it can be widely used, while,

at the same time, keeping the realism of deformation-based models learned from

data. Specifically we learn blend shapes to correct for the limitations of standard

skinning. Different blend shapes for identity and pose are additively combined with

a rest template before being transformed by blend skinning. A key component of

our approach is that we formulate the pose blend shapes as a linear function of the
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Figure 5-2: Models compared with ground truth. This figure defines the color
coding used in this chapter. The far right (light gray) mesh is a 3D scan. Next to
it (dark gray) is a registered mesh with the same topology as our model. We ask
how well different models can approximate this registration. From left to right: (light
green) Linear blend skinning (LBS), (dark green) Dual-quaternion blend skinning
(DQBS), (blue) BlendSCAPE, (red) SMPL-LBS, (orange) SMPL-DQBS. The zoomed
regions highlight differences between the models at the subject’s right elbow and hip.
LBS and DQBS produce serious artifacts at the knees, elbows, shoulders and hips.
BlendSCAPE and both SMPL models do similarly well at fitting the data.

elements of the part rotation matrices. This formulation is different from previous

methods [120, 119, 117] and makes training and animating with the blend shapes

simple. Because the elements of rotation matrices are bounded, so are the resulting

deformations, helping our model generalize better.

Our formulation admits an objective function that penalizes the per-vertex dis-

parities between registered meshes and our model, enabling training from data. To

learn how people deform with pose, we use 1786 high-resolution 3D scans of different

subjects in a wide variety of poses. We align our template mesh to each scan to

create a training set. We optimize the blend weights, pose-dependent blend shapes,

the mean template shape (rest pose), and a regressor from shape to joint locations

to minimize the vertex error of the model on the training set. This joint regressor

predicts the location of the joints as a function of the body shape and is critical to

animating realistic pose-dependent deformations for any body shape. All parameters

are automatically estimated from the aligned scans.

We learn linear models of male and female body shape from the CAESAR dataset [79]
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(approximately 2000 scans per gender) using principal component analysis (PCA). We

first register a template mesh to each scan and pose normalize the data, which is crit-

ical when learning a vertex-based shape model. The resulting principal components

become body shape blend shapes.

We train the SMPL model in various forms and compare it quantitatively to

a BlendSCAPE model [125] trained with exactly the same data. We evaluate the

models both qualitatively with animations and quantitatively using meshes that were

not used for training. We fit SMPL and BlendSCAPE to these meshes and then

compare the vertex errors. Two main variants of SMPL are explored, one using linear

blend skinning (LBS) and the other with Dual-Quaternion blend skinning (DQBS);

see Fig. 5-2. These variants are described in more detail in Section 5.3. The surprise

is that a vertex-based, skinned, model such as SMPL is actually more accurate than

a deformation-based model like BlendSCAPE trained on the same data. The test

meshes are available for research purposes so others can quantitatively compare to

SMPL.

SMPL models can be animated significantly faster than real time on a CPU using

standard rendering engines. Consequently SMPL addresses an open problem in the

field; it makes a realistic learned model accessible to animators. The SMPL base

template is designed with animation in mind; it has a low-polygon count, a simple

vertex topology, clean quad structure, a standard rig, and reasonable face and hand

detail (though we do not rig the hands or face here). SMPL can be represented as

an Autodesk Filmbox (FBX) file that can be imported into animation systems. We

make the SMPL model available for research purposes and provide scripts to drive

our model in Maya, Blender, Unreal Engine and Unity.

5.2 Related Work

Linear blend skinning and blend shapes are widely used throughout the animation in-

dustry. While the research community has proposed many novel models of articulated

body shape that produce high-quality results, they are not compatible with industry
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practice. Many authors have tried to bring these worlds together with varying degrees

of success as we summarize below.

Blend Skinning. Skeleton subspace deformation methods, also known as blend

skinning, attach the surface of a mesh to an underlying skeletal structure. Each

vertex in the mesh surface is transformed using a weighted influence of its neighboring

bones. This influence can be defined linearly as in Linear Blend Skinning (LBS). The

problems of LBS have been widely published and the literature is dense with generic

methods that attempt to fix these, such as quaternion or dual-quaternion skinning,

spherical skinning, etc. (e.g. [117, 118, 36, 126, 127]). Generic methods, however, often

produce unnatural results and here we focus on learning to correct the limitations of

blend skinning, regardless of the particular formulation.

Auto-rigging. There is a great deal of work on automatically rigging LBS models

(e.g. [128, 129, 130, 131]) and commercial solutions exist. Most relevant here are

methods that take a collection of meshes and infer the bones as well as the joints and

blend weights (e.g. [132]). Such methods do not address the common problems of

LBS models because they do not learn corrective blend shapes. Models created from

sequences of meshes (e.g. [128]) may not generalize well to new poses and motions.

Here, we assume the kinematic structure is known, though the approach could be

extended to also learn this using the methods above.

The key limitation of the above methods is that the models do not span a space

of body shapes. Miller et al. [133] partially address this by auto-rigging using a

database of pre-rigged models. They formulate rigging and skinning as the process

of transferring and adapting skinning weights from known models to a new model.

Their method does not generate blend shapes, produces standard LBS artifacts, and

does not minimize a clear objective function.

Blend shapes. To address the shortcomings of basic blend skinning, the pose

space deformation model (PSD) [35] defines deformations (as vertex displacements)

relative to a base shape, where these deformations are a function of articulated pose.

This is the key formulation that is largely followed by later approaches and is also

referred to as “scattered data interpolation” and “corrective enveloping” [134]. We
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take an approach more similar to weighted pose-space deformation (WPSD) [135,

136], which defines the corrections in a rest pose and then applies a standard skinning

equation (e.g. LBS). The idea is to define corrective shapes (sculpts) for specific key

poses, so that when added to the base shape and transformed by blend skinning,

produce the right shape. Typically one finds the distance (in pose space) to the

exemplar poses and uses a function, e.g. a Radial Basis (RBF) kernel [35], to weight

the exemplars non-linearly based on distance. The sculpted blend shapes are then

weighted and linearly combined.

These approaches are all based on computing weighted distances to exemplar

shapes. Consequently, these methods require computation of the distances and weights

at runtime to obtain the corrective blend shape. For a given animation (e.g. in a video

game) these weights are often defined in advance based on the poses and “baked” into

the model. Game engines apply the baked-in weights to the blend shapes. The sculpt-

ing process is typically done by an artist and then only for poses that will be used in

the animation.

Learning pose models. Allen et al. [137] use this PSD approach but rather than

hand-sculpt the corrections, learn them from registered 3D scans. Their work focuses

primarily on modeling the torso and arms of individuals, rather than whole bodies of

a population. They store deformations of key poses and interpolate between them.

When at, or close to, a stored shape, these methods are effectively perfect. They

do not tend to generalize well to new poses, requiring dense training data. It is not

clear how many such shapes would be necessary to model the full range of articulated

human pose. As the complexity of the model increases, so does the complexity of

controlling all these shapes and how they interact.

To address this, Kry et al. [138] learn a low-dimensional PCA basis for each joint’s

deformations. Pose-dependent deformations are described in terms of the coefficients

of the basis vectors. Kavan et al. [139] use example meshes generated using a non-

linear skinning method to construct linear approximations. James and Twigg [140]

combine the idea of learning the bones (non-rigid, affine bones) and skinning weights

directly from registered meshes. For blend shapes they use an approach similar to
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[138].

Another way to address the limitations of blend skinning is through “multi-weight

enveloping” (MWE) [117]. Rather than weight each vertex by a weighted combination

of the bone transformation matrices, MWE learns weights for the elements of these

matrices. This increases the capacity of the model (more parameters). Like [140]

they overparameterize the bone transformations to give more expressive power and

then use PCA to remove unneeded degrees of freedom. Their experiments typically

involve user interaction and the MWE approach is not supported by current game

engines.

Merry et al. [119] find MWE to be overparameterized, because it allows vertices to

deform differently depending on rotation in the global coordinate system. Their Ani-

mation Space model reduces the parameterization at minimal loss of representational

power, while also showing computational efficiency on par with LBS.

Another alternative is proposed by Mohr and Gleicher [37] who learn an efficient

linear and realistic model from example meshes. To deal with the problems of LBS,

however, they introduce extra “bones” to capture effects like muscle bulging. These

extra bones increase complexity, are non-physical, and are non-intuitive for artists.

Our blend shapes are simpler, more intuitive, more practical, and offer greater re-

alism. Similarly, Wang et al. [127] introduce joints related to surface deformation.

Their rotational regression approach uses deformation gradients, which then must be

converted to a vertex representation.

Learning pose and shape models. The above methods focus on learning

poseable single-shape models. Our goal, however, is to have realistic poseable models

that cover the space of human shape variation. Early methods use PCA to charac-

terize a space of human body shapes [40, 141] but do not model how body shape

changes with pose. The most successful class of models are based on SCAPE [46] and

represent body shape and pose-dependent shape in terms of triangle deformations

rather than vertex displacements [62, 121, 142, 125, 124]. These methods learn

statistical models of shape variation from training scans containing different body

shapes and poses. Triangle deformations provide allow the composition of different

95



transformations such as body shape variation, rigid part rotation, and pose-dependent

deformation. Weber et al. [143] present an approach that has properties of SCAPE

but blends this with example shapes. These models are not consistent with existing

animation software.

Hasler et al. [122] learn two linear blend rigs: one for pose and one for body

shape. To represent shape change, they introduce abstract “bones” that control the

shape change of the vertices. Animating a character of a particular shape involves

manipulating the shape and pose bones. They learn a base mesh and blend weights

but not blend shapes. Consequently the model lacks realism.

What we would like is a vertex-based model that has the expressive power of

the triangle deformation models so that it can capture a whole range of natural

shapes and poses. Allen et al. [120] formulate such a model. For a given base body

shape, they define a standard LBS model with scattered/exemplar PSD to model pose

deformations (using RBFs). They greedily define “key angles” at which to represent

corrective blend shapes and they hold these fixed across all body shapes. A given

body shape is parameterized by the vertices of the rest pose, corrective blend shapes

(at the key angles), and bone lengths; these comprise a “character vector.” Given

different character vectors for different bodies they learn a low-dimensional latent

space that lets them generalize character vectors to new body shapes; they learn

these parameters from data. Their model is more complex than ours, has fewer

parameters, and is learned from much less data. A more detailed analysis of how this

method compares to SMPL is presented in Sec. 5.6.

5.3 Model Formulation

Our Skinned Multi-Person Linear model (SMPL) is illustrated in Fig. 5-3. Like

SCAPE, the SMPL model decomposes body shape into identity-dependent shape

and non-rigid pose-dependent shape; unlike SCAPE, we take a vertex-based skinning

approach that uses corrective blend shapes. A single blend shape is represented as

a vector of concatenated vertex offsets. We begin with an artist-created mesh with
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(a) T̄, W (b) T̄+ BS(~�), J(~�) (c) TP (~�, ~✓) = T̄+BS(~�)+

BP (~✓)

(d) W (TP (~�, ~✓), J(~�), ~✓,W)

Figure 5-3: SMPL model. (a) Template mesh with blend weights indicated by color
and joints shown in white. (b) With identity-driven blendshape contribution only;
vertex and joint locations are linear in shape vector ~�. (c) With the addition of of
pose blend shapes in preparation for the split pose; note the expansion of the hips.
(d) Deformed vertices reposed by dual quaternion skinning for the split pose.

N = 6890 vertices and K = 23 joints. The mesh has the same topology for men

and women, spatially varying resolution, a clean quad structure, a segmentation into

parts, initial blend weights, and a skeletal rig. The part segmentation and initial

blend weights are shown in Fig. 5-7.

Following standard skinning practice, the model is defined by a mean template

shape represented by a vector of N concatenated vertices ¯

T 2 R3N in the zero pose,
~✓⇤; a set of blend weights, W 2 RN⇥K , (Fig. 5-3(a)); a blend shape function, BS(

~�) :

R|~�| 7! R3N , that takes as input a vector of shape parameters, ~�, (Fig. 5-3(b)) and

outputs a blend shape sculpting the subject identity; a function to predict K joint

locations (white dots in Fig. 5-3(b)), J(~�) : R|~�| 7! R3K as a function of shape

parameters, ~�; and a pose-dependent blend shape function, BP (
~✓) : R|~✓| 7! R3N , that

takes as input a vector of pose parameters, ~✓, and accounts for the effects of pose-

dependent deformations (Fig. 5-3(c)). The corrective blend shapes of these functions

are added together in the rest pose as illustrated in (Fig. 5-3(c)). Finally, a standard

blend skinning function W (·) (linear or dual-quaternion) is applied to rotate the

vertices around the estimated joint centers with smoothing defined by the blend

weights. The result is a model, M(

~�, ~✓;�) : R|~✓|⇥|~�| 7! R3N , that maps shape and pose

parameters to vertices (Fig. 5-3(d)). Here � represents the learned model parameters
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described below.

Below we will use both LBS and DQBS skinning methods. In general the skinning

method can be thought of as a generic black box. Given a particular skinning method

our goal is to learn � to correct for limitations of the method so as to model training

meshes. Note that the learned pose blend shapes both correct errors caused by the

blend skinning function and static soft-tissue deformations caused by changes in pose.

Below we describe each term in the model. For convenience, a notational summary

is provided in Table 5.1 in the Appendix.

Blend skinning. Blend skinning deforms a surface according to the movement of

a skeleton. The surface is typically defined by a set of vertices, and the skeleton

is defined by its endpoint positions and its parent-child structure (or kinematic tree

structure). A depiction of such a skeleton, and the surface it controls, is in Figure 5-4.

While the idea that “limbs attach to bones” is intuitive, the model by which they

do so varies based on the choice of skinning method. For both DQBS and LBS,

the template surface is deformed according to linearly blended transformations. LBS

and DQBS encode these transformations differently, however: with LBS, matrices

are blended, whereas with DQBS, quaternion parameters are blended. The most

important consequence of this is that blending rigid DQBS-encoded transformations

always results in rigid transformations, whereas blending rigid LBS-encoded trans-

formations can result in non-rigid transformations including which include scale and

shear. Put another way, rigid transformations used by LBS are not closed under

addition, whereas those used by DQBS are closed under addition. As a practical

matter, this means that certain artifacts (such as volumetric collapse at the joints,

and the so-called “candy wrapper” effect) exhibited by LBS are avoided with DQBS,

as described by Kavan [36].

We now present notation which is invariant to the choice of LBS or DQBS. Meshes

and blend shapes are vectors of vertices represented by bold capital letters (e.g. X)

and lowercase bold letters (e.g. xi 2 R3) are vectors representing a particular vertex.

The vertices are sometimes represented in homogeneous coordinates. We use the
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(a) Skeletal rig in green, and
one relative rotation ~!i illus-
trated in white.

(b) Surface driven by skeletal
rig.

Figure 5-4: Rig-driven deformation. Joint angles control the relative orientation
of bone segments; the bone segments, in turn, affect the computed surface.

same notation for a vertex whether it is in standard or homogeneous coordinates as

it should always be clear from the context which form is needed.

The pose of the body is defined by a standard skeletal rig, where ~!k 2 R3 denotes

the axis-angle representation of the relative rotation of part k with respect to its parent

in the kinematic tree. Our rig has K = 23 joints, hence a pose ~✓ = [~!T
0 , . . . , ~!

T
K ]

T is

defined by |~✓| = 3 ⇥ 23 + 3 = 72 parameters; i.e. 3 for each part plus 3 for the root

orientation. Let !̄ =

~!
k~!k denote the unit norm axis of rotation.

Having described notation for skinning which is invariant to the choice of LBS or

DQBS, we next summarize the workings of LBS and DQBS in turn.

Linear blend skinning. The axis angle for every joint j is transformed to a

rotation matrix using the Rodrigues formula

exp(~!j) = I +

b!̄j sin(k~!jk) + b!̄
2
j cos(k~!jk) (5.1)

where b!̄ is the skew symmetric matrix of the 3-vector !̄ and I is the 3 ⇥ 3 iden-
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tity matrix. Using this, the standard linear blend skinning function W (

¯

T,J, ~✓,W) :

R3N⇥3K⇥|~✓|⇥|W| 7! R3N takes vertices in the rest pose, ¯

T, joint locations, J, a pose,
~✓, and the blend weights, W , and returns the posed vertices. Each vertex ¯

ti in ¯

T is

transformed into ¯

t

0
i (both column vectors in homogeneous coordinates) as

¯

t

0
i =

K
X

k=1

wk,iG
0
k(
~✓,J)¯ti (5.2)

G0
k(
~✓,J) = Gk(

~✓,J)Gk(
~✓⇤,J)�1 (5.3)

Gk(
~✓,J) =

Y

j2A(k)



exp(~!j) jj

~
0 1

�

(5.4)

where wk,i is an element of the blend weight matrix W , representing how much the

rotation of part k effects the vertex i, exp(

~✓j) is the local 3 ⇥ 3 rotation matrix

corresponding to joint j, Gk(
~✓,J) is the world transformation of joint k, and G0

k(
~✓,J)

is the same transformation after removing the transformation due to the rest pose,
~✓⇤. Each 3-element vector in J corresponding to a single joint center, j, is denoted

jj. Finally, A(k) denotes the ordered set of joint ancestors of joint k. Note, for

compatibility with existing rendering engines, we assume W is sparse and allow at

most four parts to influence a vertex.

Many methods have modified equation (5.2) to make skinning more expressive.

For example MWE [117] replaces Gk(
~✓,J) with a more general affine transformation

matrix and replaces the scalar weight with a separate weight for every element of

the transformation matrix. Such changes are expressive but are not compatible with

existing animation systems.

Dual quaternion blend skinning. Using dual quaternion blend skinning im-

plies a change in the behavior of the skinning function W (·). A dual quaternion can

be interpreted as a rigid transformation, and is the “dual number” counterpart of a

single quaternion. With " being a dual unit satisfying "2 = 0, a dual quaternion q̂

can be considered as the sum of two conventional quaternions q0 and q":

q̂ = q0 + q""
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Whereas q0 is a conventional quaternion representing rotation, q" stores the prod-

uct of translation and rotation. We will not write out all the operations of dual

quaternions (and conversions to and from other types of transformations) in detail

here, as Kavan [36] provides an excellent summary. But it is worth re-emphasizing

that when the dual quaternion parameters are linearly blended, the result is always

a rigid transformation, whereas blending matrices with LBS rarely results in a rigid

transformation and often includes scale and shear as part of the transformation.

Incorporation of pose and shape. To maintain compatibility, we keep the

basic skinning function and instead modify the template in an additive way and learn

a function to predict joint locations. Our model, M(

~�, ~✓;�) is then

M(

~�, ~✓) = W (TP (
~�, ~✓), J(~�), ~✓,W) (5.5)

TP (
~�, ~✓) =

¯

T+BS(
~�) + BP (

~✓) (5.6)

where BS(
~�) and BP (

~✓) are vectors of vertices representing offsets from the template.

We refer to these as shape and pose blend shapes respectively.

Given this definition, and assuming LBS, a vertex ¯

ti is transformed according to

¯

t

0
i =

K
X

k=1

wk,iG
0
k(
~✓, J(~�))(¯ti + bS,i(

~�) + bP,i(
~✓)) (5.7)

where bS,i(
~�),bP,i(

~✓) are vertices in BS(
~�) and BP (

~✓) respectively and represent the

shape and pose blend shape offsets for the vertex ¯

ti. Hence, the joint centers are now

a function of body shape and the template mesh that is deformed by blend skinning

is now a function of both pose and shape. Below we describe each term in detail.

Shape blend shapes. The body shapes of different people are represented by a

linear function BS

BS(
~�;S) =

|~�|
X

n=1

�nSn (5.8)

where ~� = [�1, . . . , �|~�|]
T , |~�| is the number of linear shape coefficients, and the

Sn 2 R3N represent orthonormal principal components of shape displacements. Let
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S = [S1, . . . ,S|~�|] 2 R3N⇥|~�| be the matrix of all such shape displacements. Then

the linear function BS(
~�;S) is fully defined by the matrix S, which is learned from

registered training meshes, see Sec. 5.4.

Notationally, the values to the right of a semicolon represent learned parameters,

while those on the left are parameters set by an animator. For notational convenience,

we often omit the learned parameters when they are not explicitly being optimized

in training.

Figure 5-3(b) illustrates the application of these shape blend shapes to the tem-

plate ¯

T to produce a new body shape.

Pose blend shapes. We denote as R : R|~✓| 7! R9K a function that maps a pose

vector ~✓ to a vector of concatenated part relative rotation matrices, exp(~!). Given

that our rig has 23 joints, R(

~✓) is a vector of length (23 ⇥ 9 = 207). Elements of

R(

~✓) are functions of sines and cosines (Eq. (5.1)) of joint angles and therefore R(

~✓)

is non-linear with ~✓.

Our formulation differs from previous work in that we define the effect of the pose

blend shapes to be linear in R⇤
(

~✓) = (R(

~✓)�R(

~✓⇤)), where ~✓⇤ denotes the rest pose.

Let Rn(
~✓) denote the nth element of R(

~✓), then the vertex deviations from the rest

template are

BP (
~✓;P) =

9K
X

n=1

(Rn(
~✓)�Rn(

~✓⇤))Pn, (5.9)

where the blend shapes, Pn 2 R3N , are again vectors of vertex displacements. Here

P = [P1, . . . ,P9K ] 2 R3N⇥9K is a matrix of all 207 pose blend shapes. In this way,

the pose blend shape function BP (
~✓;P) is fully defined by the matrix P , which we

learn in Sec. 5.4.

Note that subtracting the rest pose rotation vector, R(

~✓⇤), guarantees that the

contribution of the pose blend shapes is zero in the rest pose, which is important for

animation.

Joint locations. Different body shapes have different joint locations. Each joint

is represented by its 3D location in the rest pose. It is critical that these are accurate,

otherwise there will be artifacts when the model is posed using the skinning equation.
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For that reason, we define the joints as a function of the body shape, ~�,

J(~�;J , ¯T,S) = J (

¯

T+BS(
~�;S)) (5.10)

where J is a matrix that transforms rest vertices into rest joints. We learn the

regression matrix, J , from examples of different people in many poses, as part of

our overall model learning in Sec. 5.4. This matrix models which mesh vertices are

important and how to combine them to estimate the joint locations.

SMPL model. We can now specify the full set of model parameters of the SMPL

model as � =

�

¯

T,W ,S,J ,P
 

. We describe how to learn these in Sec. 5.4. Once

learned they are held fixed and new body shapes and poses are created and animated

by varying ~� and ~✓ respectively.

Then the SMPL model is finally defined as M(

~�, ~✓;�) =

W
⇣

TP (
~�, ~✓; ¯T,S,P), J(~�;J , ¯T,S), ~✓,W

⌘

(5.11)

and hence (assuming LBS) each vertex is transformed as

t

0
i =

K
X

k=1

wk,iG
0
k(
~✓, J(~�;J , ¯T,S))tP,i(~�, ~✓; ¯T,S,P) (5.12)

where tP,i(
~�, ~✓; ¯T,S,P) =

¯

ti +

|~�|
X

m=1

�msm,i +

9K
X

n=1

(Rn(
~✓)�Rn(

~✓⇤))pn,i (5.13)

represents the vertex i after applying the blend shapes and where sm,i,pn,i 2 R3 are

the elements of the shape and pose blend shapes corresponding to template vertex ¯

ti.

Below we experiment with both LBS and DQBS and train the parameters for

each. We refer to these models as SMPL-LBS and SMPL-DQBS; SMPL-DQBS is

our default model, and we use SMPL as shorthand to mean SMPL-DQBS.
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Figure 5-5: Sample registrations from the multipose dataset.

5.4 Training

We train the SMPL model parameters to minimize reconstruction error on two datasets.

Each dataset contains meshes with the same topology as our template that have been

aligned to high-resolution 3D scans using [144]; we call these aligned meshes “reg-

istrations.” The multi-pose dataset consists of 1786 registrations of 40 individuals

(891 registrations spanning 20 females, and 895 registrations spanning 20 males); a

sampling is shown in Fig. 5-5. The multi-shape dataset consists of registrations to the

CAESAR dataset [79], totaling 1700 registrations for males and 2100 for females; a

few examples are shown in Fig. 5-6. We denote the jth mesh in the multi-pose dataset

as V

P
j and the jth mesh in the multi-shape dataset as V

S
j .

Our goal is to train the parameters � =

�

¯

T,W ,S,J ,P
 

to minimize vertex

reconstruction error on the datasets. Because our model decomposes shape and pose,

we train these separately, simplifying optimization. We first train {J ,W ,P} using

our multi-pose dataset and then train {¯T,S} using our multi-shape dataset. We train

separate models for men and women (i.e. �m and �f ).
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Figure 5-6: Sample registrations from the multishape dataset.

5.4.1 Pose Parameter Training

We first use the multi-pose dataset to train {J ,W ,P}. To this end, we need to

compute the rest templates, ˆ

T

P
i , and joint locations, ˆJP

i , for each subject, i, as well

as the pose parameters, ~✓j, for each registration, j, in the dataset. We alternate

between optimizing registration specific parameters ~✓j, subject-specific parameters

{ˆTP
i , ˆJ

P
i }, and global parameters {W ,P}. We then learn the matrix, J , to regress

from subject-specific vertex locations, ˆ

T

P
i , to subject-specific joint locations, ˆJP

i . To

achieve all this, we minimize an objective function consisting of a data term, ED, and

several regularization terms {EJ , EY , EP , EW} defined below.

The data term penalizes the squared Euclidean distance between registration ver-
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tices and model vertices

ED(
ˆ

T

P , ˆJP ,W ,P ,⇥) =

Preg
X

j=1

||VP
j �W (

ˆ

T

P
s(j) +BP (

~✓j;P), ˆJP
s(j),

~✓j,W)||2

where ⇥ =

n

~✓1, . . . , ~✓Preg

o

, s(j) is the subject index corresponding to registration

j, Preg are the number of meshes in the pose trainings set, ˆ

T

P
= {ˆTP

i }
Psubj

i=1 , ˆJP
=

{ˆJP
i }

Psubj

i=1 are the sets of all rest poses and joints, and Psubj is the number of subjects

in the pose training set.

We estimate 207⇥3⇥6890 = 4, 278, 690 parameters for the pose blend shapes, P ,

4⇥3⇥6890 = 82, 680 parameters for the skinning weights, W , and 3⇥6890⇥23⇥3 =

1, 426, 230 for the joint regressor matrix, J . To make the estimation well behaved,

we regularize by making several assumptions. A symmetry regularization term, EY ,

penalizes left-right asymmetry for ˆ

J

P and ˆ

T

P

EY (
ˆ

J

P , ˆTP
) =

Psubj
X

i=1

�U ||ˆJP
i � U(

ˆ

J

P
i )||2 + ||ˆTP

i � U(

ˆ

T

P
i )||2,

where �U = 100, and where U(T) finds a mirror image of vertices T, by flipping

across the sagittal plane and swapping symmetric vertices. This term encourages

symmetric template meshes and, more importantly, symmetric joint locations. Joints

are unobserved variables and along the spine they are particularly difficult to local-

ize. While models trained without the symmetry term produce reasonable results,

enforcing symmetry produces models that are visually more intuitive for animation.

Our model is hand segmented into 24 parts (Fig. 5-7). We use this segmentation

to compute an initial estimate of the joint centers and a regressor JI from vertices to

these centers. This regressor computes the initial joints by taking the average of the

ring of vertices connecting two parts. When estimating the joints for each subject we
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regularize them to be close to this initial prediction:

EJ(
ˆ

T

P , ˆJP
) =

Psubj
X

i=1

||JI
ˆ

T

P
i � ˆ

J

P
i ||2.

To help prevent overfitting of the pose-dependent blend shapes, we regularize them

towards zero

EP (P) = ||P||2F ,

where k · kF denotes the Frobenius norm. Note that replacing the quadratic penalty

with an L1 penalty would encourage greater sparsity of the blend shapes. We did not

try this.

We also regularize the blend weights towards the initial weights, WI , shown in

Fig. 5-7:

EW (W) = ||W �WI ||2F .

The initial weights are computed by simply diffusing the segmentation.

Altogether, the energy for training {W ,P} is as follows:

E⇤(ˆT
P , ˆJP ,⇥,W ,P) =

ED + �YEY + �JEJ + �PEP + EW , (5.14)

where �Y = 100, �J = 100 and �P = 25. These weights were set empirically.

Our model has a large number of parameters and the regularization helps prevent

overfitting. As the size of the training set grows, so does the strength of the data

term, effectively reducing the influence of the regularization terms. Our experiments

below with held-out test data suggest that the learned models are not overfit to the

data and generalize well.

The overall optimization strategy is described in Sec. 5.4.3.

Joint regressor. Optimizing the above gives a template mesh and joint locations

for each subject, but we want to predict joint locations for new subjects with new body
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shapes. To that end, we learn the regressor matrix J to predict the training joints

from the training bodies. We tried several regression strategies; what we found to

work best, was to compute J using non-negative least squares [145] with the inclusion

of a term that encourages the weights to add to one. This approach encourages

sparsity of the vertices used to predict the joints. Making weights positive and add to

one discourages predicting joints outside the surface. These constraints enforce the

predictions to be in the convex hull of surface points. Figure 5-8 shows the non-zero

elements of the regression matrix, illustrating that a sparse set of surface vertices are

linearly combined to estimate the joint centers.

5.4.2 Shape Parameter Training

Our shape space is defined by a mean and principal shape directions {¯T,S}. It is

computed by running PCA on shape registrations from our multi-shape database

after pose normalization. Pose normalization transforms a raw registration V

S
j into

a registration, ˆ

T

S
j , in the rest pose, ~✓⇤. This normalization is critical to ensure that

pose and shape are modeled separately.

To pose-normalize a registration, VS
j , we first have to estimate its pose. We denote

ˆ

T

P
µ and ˆ

J

P
µ as the mean shape and mean joint locations from the multi-pose database

respectively. Let We(
ˆ

T

P
µ , ˆJ

P
µ ,

~✓,W),VS
j,e 2 R3 denote an edge of the model and of the

registration respectively. An edge is obtained by subtracting a pair of neighboring

vertices. To estimate the pose using an average generic shape ˆ

T

P
µ , we minimize the

following sum of squared edge differences so that ~✓j =

argmin

~✓

X

e

||We(
ˆ

T

P
µ +BP (

~✓;P), ˆJP
µ ,

~✓,W)�V

S
j,e||2, (5.15)

where the sum is taken over all edges in the mesh. This allows us to get a good

estimate of the pose without knowing the subject specific shape.

Once the pose ~✓j is known we solve for ˆ

T

S
j by minimizing

ˆ

T

S
j = argmin

T̂

||W (

ˆ

T+BP (
~✓j;P),J ˆ

T, ~✓j,W)�V

S
j ||2.

108



This computes the shape that, when posed, matches the training registration. This

shape is the pose-normalized shape.

We then run PCA on {ˆTS
j }

Ssubj

j=1 to obtain {¯T,S}. This procedure is designed to

maximize the explained variance of vertex offsets in the rest pose, given a limited

number of shape directions.

Note that the optimization of pose is critically important when building a shape

basis from vertices. Without this step, pose variations of the subjects in the shape

training dataset would be captured in the shape blend shapes. The resulting model

would not be decomposed properly into shape and pose. Note also that this approach

constrasts with SCAPE or BlendSCAPE, where PCA is performed in the space of

per-triangle deformations. Unlike vertices, triangle deformations do not live in a

Euclidean space [121]. Hence PCA on vertices is more principled and is consistent

with the registration data term, which consists of squared vertex disparities.

Figure 5-9 visualizes the first three shape components. The figure also shows how

the joint locations change with the changes in body shape. The joint positions are

shown by the spheres and are computed from the surface meshes using the learned

joint regression function. The lines connecting the joints across the standard devia-

tions illustrate how the joint positions vary linearly with shape.

Figure 5-10 shows the relative cumulative variance of SMPL and BlendSCAPE.

While SMPL requires many fewer PCs to account for the same percentage of overall

variance, the variance is different in the two cases: one is variance in vertex locations

and the other is variance in triangle deformations. Explained variance in deformations

does not directly translate into explained variance in vertex locations. While this

makes the two models difficult to compare precisely, triangle deformations have many

more degrees of freedom and it is likely that there are many deformations that produce

visually similar shapes. A model requiring fewer components is generally preferable.

5.4.3 Optimization summary

Pose parameters ~✓j in Eq. (5.14) are first initialized by minimizing the difference

between the model and the registration edges, similar to Eq. (5.15) using an average
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template shape. Then {ˆTP , ˆJP ,W ,P ,⇥} are estimated in an alternating manner to

minimize Eq. 5.14. We proceed to estimate J from {ˆJP , ˆTP}. We then run PCA on

pose normalized subjects {ˆTS
j }

Ssubj

j=1 to obtain {¯T,S}. The final model is defined by

{J ,W ,P , ¯T,S}. Note that all training parameters except for {¯T,S} are found with

gradient-based dogleg minimization [80]. Gradients are computed with automatic

differentiation using the the Chumpy framework [15].

5.5 SMPL Evaluation

All training subjects gave prior informed written consent for their data to be used

in creating statistical models for distribution. Registered meshes and identifiable

subjects shown here are of professional models working under contract.

5.5.1 Quantitative Evaluation

We evaluate two types of error. Model generalization is the ability of the model to fit

to meshes of new people and poses; this tests both shape and pose blend shapes. Pose

generalization is the ability to generalize a shape of an individual to new poses of the

same person; this primarily tests how well pose blend shapes correct skinning artifacts

and pose-dependent deformations. Both are measured by mean absolute vertex-to-

vertex distance between the model and test registrations. For this evaluation we use

120 registered meshes of four women and two men from the public Dyna dataset [146].

These meshes contain a variety of body shapes and poses. All meshes are in alignment

with our template and none were used to train our models. Figure 5-11 (gray) shows

four examples of these registered meshes.

We evaluate SMPL-LBS and SMPL-DQBS. We also compare these with a Blend-

SCAPE model [125] trained from exactly the same data as the SMPL models. The

kinematic tree structure for SMPL and the BlendSCAPE model are the same: there-

fore we have the same number of pose parameters. We also compare the models using

the same number of shape parameters.

To measure model generalization we first fit each model to each registered mesh,
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optimizing over shape ~� and pose ~✓ to find the best fit in terms of squared vertex

distances. Figure 5-11 shows fits of the SMPL-LBS (red) and BlendSCAPE (blue)

models to the registered meshes. Both do a good job of fitting the data. The figure

also shows how the model works. Illustrated are the estimated body shape, ¯T+BS(
~�),

and the effect of applying the pose blend shapes, TP (
~�, ~✓).

For pose generalization, we take each indvidual, select one of the estimated body

shapes from the generalization task, and then optimize the pose, ~✓, for each of the

other meshes of that subject, keeping the body shape fixed. The assumption behind

pose generalization is that, if a model is properly decomposed into pose and shape,

then the model should be able to fit the same subject in a different pose, without

readjusting shape parameters. Note that the pose blend shapes are trained to fit

observed registrations. As such, they correct for problems of blend skinning and

try to capture pose-dependent deformations. Since the pose blend shapes are not

dependent on body shape, they capture something about the average deformations

in the training set.

Figures 5-12 and 5-13 show the error of the SMPL models and BlendSCAPE as

a function of the number of body shape coefficients used. The differences between

SMPL and BlendSCAPE are small (on the order of 0.5mm) but SMPL is more accu-

rate on average. Remarkably, SMPL-LBS and SMPL-DQBS are essentially identical

in model generalization and SMPL-LBS is actually slightly better at pose general-

ization. This is surprising because the pose blend shapes have much more to correct

with LBS. Possibly the simplicity of LBS helps with generalization to new poses. This

analysis is important because it says that users can choose the simpler and faster LBS

model over the DQBS model.

The plots also show how well standard LBS fits the test data. This corresponds

to the SMPL-LBS model with no pose blend shapes. Not surprisingly, LBS produces

much higher error than either BlendSCAPE or SMPL. LBS is not as bad in Fig. 5-12

because here the model can vary body shape parameters, effectively using changes

in identity to try to explain deformations due to pose. Figure 5-13 uses a fixed

body shape and consequently illustrates how LBS does not model pose-dependent
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deformations realistically. Note that here we do not retrain a model specifically for

LBS and expect such a model would be marginally more accurate.

5.5.2 Sparse SMPL

The pose blend shapes in SMPL are not sparse in the sense that a rotation of a

part can influence any vertex of the mesh. With sufficient training data sparsity

may emerge from data; e.g. the shoulder corrections will not be influenced by ankle

motions. To make hand animation more intuitive, and to regularize the model to

prevent long-range influences of joints, we can manually enforce sparsity. To this end,

we trained a sparse version of SMPL by using the same sparsity pattern used for

blend weights. In particular, we allow a vertex deviation to be influenced by at most

4 joints. Since every joint corresponds to a rotation matrix, the pose blend shape

corresponding to any given vertex will be driven by 9 ⇥ 4 numbers as opposed to

9⇥ 23.

This model is referred to as SMPL-LBS-Sparse in Figs. 5-12 and 5-13. It is

consistently less accurate than the regular SMPL-LBS model but may still be useful

to animators. This suggests that SMPL-LBS is not overfit to the training data and

that sparseness reduces the capacity of the model. The sparse model sometimes

produces slight discontinuities at boundaries were vertices are influenced by different

joint angles. Other strategies to enforce sparsity could be adopted, such as using

an L1 prior or enforcing smoothness in the pose blend shapes. These approaches,

however, would complicate the training process.

5.5.3 Visual Evaluation

Figure 5-14 illustrates the decomposition of shape parameters ~� and pose parameters
~✓ in SMPL. Pose is held constant from left to right across each row while varying the

shape. Similarly, the shape of each person is held constant while varying the pose

from top to bottom in each column. The bodies are reposed using poses from the

CMU mocap database [147]. Note that the pose-dependent deformations look natural
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through a wide range of poses, despite very different body shapes. This illustrates

that the joint regression works well and that the blend shapes are general.

5.5.4 Run-time Performance

The run-time cost of SMPL is dominated by skinning and blend-shape multiplication.

Many skinning implementations exist, and we do not claim to have the fastest. Per-

formance of our own CPU-based implementation, and a comparison against Blend-

SCAPE, is shown in Fig. 5-15. The plot shows the time needed to generate the

vertices. Note that our BlendSCAPE rendering makes use of multiple cores, while

the SMPL rendering does not; this is why the system time for BlendSCAPE is higher

than the wall-clock time. Note that here we are showing the cost of changing body

shape. For most applications, this is done once and the shape is then held fixed. The

cost of animating the mesh then comes from only the pose blend shapes; this cost

corresponds to 0 shape coefficients.

For meshes with the same number of vertices, SCAPE will always be slower. In

SMPL each blend shape is of size 3N , requiring that many multiplications per shape.

SCAPE uses triangle deformations with 9 elements per triangle and there are roughly

twice as many triangles as vertices. This results in roughly a factor of 6 difference

between SMPL and SCAPE in terms of basic multiplications.

5.5.5 Compatibility with Rendering Engines

Because SMPL is built on standard skinning, it is compatible with existing 3D anima-

tion software. In particular, for a given body shape, we generate the subject-specific

rest-pose template mesh and skeleton (estimated joint locations) and we export SMPL

as a rigged model with pose blend shapes in Autodesk’s Filmbox (FBX) file format,

giving cross-platform compatibility. The model loads as a typical rigged mesh and

can be animated as usual in standard 3D animation software.

Pose blend weights can be precomputed, baked into the model, and exported as

an animated FBX file. This kind of file can be loaded into animation packages and
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played directly. We have tested the animated FBX files in Maya, Unity, and Blender.

Pose blend weights can also be computed on the fly given the pose, ~✓t, at time t.

To enable this, we provide scripts that take the joint angles and compute the pose

blend weights. We have tested loading and animating SMPL in Maya 2013, 2014 and

2015. The animator can animate the model using any of the conventional animation

methods typically used in Maya. We will provide a Python script that runs inside

Maya to apply blend-shape corrections to an animated SMPL model. The pose blend

shape values can be viewed and/or edited manually within Maya if desired. We have

also tested SMPL in Unity. In SMPL, the blend weights range from -1 to +1 while

in Unity they range form 0 to 1. Consequently, we scale and recenter our weights for

compatibility. For runtime computation of pose blend shape coefficients, we provide

a C# script that the user can attach to SMPL’s mesh game object.

The SMPL model with shape and pose blend shapes, and the evaluation meshes,

are available for research purposes at http://smpl.is.tue.mpg.de.

5.6 Discussion

Why does it work? First, good quality training data is important. Here we use thou-

sands of high-quality registered template meshes. Importantly, the pose training data

spans a range of body shapes enabling us to learn a good predictor of joint locations.

Second, training all the parameters (template shape, blend weights, joint regressor,

shape/pose blend shapes) to minimize vertex reconstruction error is important to

obtain a good model. Here the simplicity of the model is an advantage as it enables

training everything with large amounts of data.

In contrast to the scattered-data interpolation methods, we learn the blend shapes

from a large set of training meshes covering the space of possible poses and learn a

simpler function relating pose to blend-shape weights. In particular, our function is

linear in the elements of the part rotation matrices. The larger support of the learned

linear functions as opposed to radial basis functions allows the model to generalize

to arbitrary poses; in addition the simple linear form makes it fast to animate in a
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game engine without baking in the weights. Because elements of a rotation matrix

are constrained, the model cannot “blow up” when generalizing outside the training

set.

SMPL is an additive model in vertex space. In contrast, while SCAPE also factors

deformations into shape and pose deformations, SCAPE multiplies the triangle defor-

mations. With SCAPE a bigger person will have bigger pose-dependent deformations

even though these deformations are not learned for different body shapes. Despite

this, in our experiments, the SCAPE approach is less accurate at generalizing to new

shapes.

Why is it more accurate than BlendSCAPE? Models based on the statistics of

triangle deformations have dominated the recent literature [46, 62, 121, 142]. Such

models are not trained to reproduce their training registrations directly. Instead,

they are trained to reproduce the local deformations that produced those registra-

tions. Part of the tractability of training these models comes from the ability to train

deformations independently across triangles. As a result, long range distances and

relationships are not preserved as well as local relationships between vertices. We

speculate that an advantage of vertex based models (such as SMPL and [120]) is that

they can be trained to minimize the mean squared error between the model and train-

ing vertices. Theoretically one could train a SCAPE model to minimize vertex error

in global coordinates, but the inner loop of the optimization would involve solving

a least-squares problem to reconstruct vertices from the deformations. This would

significantly increase the cost of optimization and make it difficult to train the model

with large amounts of data.

Why has it not been done before? While we think the SMPL model is a natural

way to extend blend skinning, we are unaware of any previous published versions.

Unfortunately, the obvious implementation makes the pose blend shapes a linear

function of ~✓. This does not work. The key to SMPL’s performance is to make the

blendshapes a linear function of the elements of R⇤
(

~✓). This formulation, sufficient

training data, and a good optimization strategy make it possible to learn the model.

The closest work to ours is the pioneering work of Allen et al. [120]. Their model is
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more complex than ours, using radial basis functions for scattered data interpolation,

shape-dependent pose deformations, and a fixed set of carrying angles. Consequently

training it is also complex and requires a good initialization. They had limited data

and difficulty with overfitting so they restricted their body shape PCA space. As a

result, the model did not generalize well to new shapes and poses. Our simpler model

lets us learn it from large datasets and having more data makes the simple model

perform well.

Other features for driving pose blend shapes. We experimented with driving

pose blendshapes linearly from other features, such as raw ~✓, simple polynomials of
~✓, and trigonometric functions (sin, cos) of ~✓. None of these performed as well as our

proposed formulation. Using raw ~✓ has serious limitations because the values vary

between -⇡ and ⇡. Imagine a twist of the neck (Fig. 5-16), which produces negative

and postive angles about the vertical axis. Standard LBS will cause the neck to

shrink as it rotates in either direction. To counteract this, we need a blend shape

that increases the neck volume no matter which direction it rotates. Unfortunately,

if the blendshapes are trained to expand during rightwards rotation (to counteract

LBS shrinkage), they would contract during leftward rotation.

In general one can think of replacing the raw rotations with any functions of

rotations and using these to weight the blend shapes. An exhaustive search is im-

possible and other features may work as well as our method; for example, we did not

experiment with normalized quaternions.

Our pose blend shapes function is also very different from scattered data inter-

polation methods like WPSD [135, 136], which use a discrete number of poses and

associated corrections are interpolated between them using RBFs. In practice, a large

number of poses might be needed to cover the pose space well. This makes animation

slow since the closest key poses have to be found at run time.

Limitations. The pose-dependent offsets of SMPL are not dependent on body

shape. It is surprising how well SMPL works without this, but the general approach

would likely not work if we were to model a space of nonrealistic animated characters

in which body part scales vary widely, or a space of humans that includes infants and
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adults. This limitation could be addressed by training a more general function that

would take elements of R⇤
(

~✓) together with ~� to predict the blend shape coefficients.

As described, the SMPL model is a function of joint angles and shape parameters

only: it does not model breathing, facial motion, muscle tension, or any changes

independent of skeletal joint angles and overall shape. These could potentially be

learned as additional additive blendshapes if the appropriate factored data is available

(cf. [70]).

While we learn most model parameters, we do not learn them all. We manually

define the segmentation of the template into parts, the topology of the mesh, and

the zero pose. Theoretically these could also be learned but we expect only marginal

improvements for significant effort.

Future work. SMPL uses 207 pose blend shapes. This could likely be reduced

by performing PCA on the blend shapes. This would reduce the number of multi-

plications and consequently increase rendering speed. Also, here we fit our model to

registered meshes but could fit SMPL to mocap marker data (cf. MoSh [14]), depth

data, or video. We anticipate that optimizing the pose and shape of a SMPL-LBS

model will be significantly faster than optimizing a SCAPE model of similar quality.

5.7 Conclusions

Our goal was to create a skeletally-driven human body model that could capture body

shape and pose variation as well as, or better than, the best previous models while

being compatible with existing graphics pipelines and software. To that end, SMPL

uses standard skinning equations and defines body shape and pose blend shapes that

modify the base mesh. We train the model on thousands of aligned scans of different

people in different poses. The form of the model makes it possible to learn the pa-

rameters from large amounts of data while directly minimizing vertex reconstruction

error. Specifically we learn the rest template, joint regressor, body shape model, and

pose blend shapes. The surprising result is that, when BlendSCAPE and SMPL are

trained on exactly the same data, the vertex-based model is more accurate and sig-
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nificantly more efficient to render than the deformation-based model. Also surprising

is that a relatively small set of learned blend shapes do as good a job of correcting

the errors of LBS as they do for DQBS. SMPL can be exported as an FBX file and

we make scripts available to animate the model in common rendering systems. This

will allow anyone to realistically animate human bodies.

5.8 Appendix

5.8.1 Mathematical Notation

We summarize our notation here and in Table 5.1. Matrices A 2 Rn⇥m are denoted

with math calligraphic typeface. Vectors A 2 Rm are denoted with uppercase bold-

face, expect for the special case of 3-vectors, which are denoted with lower case a 2 R3

to distinguish a particular vertex from a vector of concatenated vertices. The notation

A() : Rm 7! Rn is used to denote a function that maps vectors in an m-dimensional

space to vectors in n-dimensional space. Typically, indices are used as follows: j iter-

ates over mesh registrations, k iterates over joint angles and i iterates over subjects,

and t denotes time.
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(a) Segmentation (b) Initialization WI

Figure 5-7: Initialization of joints and blend weights. Discrete part segmenta-
tion in (a) is diffused to obtain initial blend weights, WI , in (b). Initial joint centers
are shown as white dots.
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Figure 5-8: Joint regression. (left) Initialization. Joint locations can be influenced
by locations on the surface, indicated by the colored lines. We assume that these
influences are somewhat local. (right) Optimized. After optimization we find a sparse
set of vertices and associated weights influencing each joint.

(a) PC 1 (b) PC 2 (c) PC 3

Figure 5-9: Shape blend shapes. The first three shape principal components of
body shape are shown. PC1 and PC2 vary from -2 to +2 standard deviations from
left to right, while PC3 varies from -5 to +5 standard deviations to make the shape
variation more visible. Joint locations (red dots) vary as a function of body shape
and are predicted using the learned regressor, J .
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Figure 5-10: Cumulative relative variance of the CAESAR dataset explained as a
function of the number of shape coefficients. For SMPL the variance is in vertex
locations, while for BlendSCAPE it is in triangle deformations.
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¯

T+BS(
~�) TP (

~�, ~✓) M(

~�, ~✓) BlendSCAPE Registration

Figure 5-11: Model fitting with intermediate stages. We fit both BlendSCAPE (blue)
and SMPL-LBS, M(

~�, ~✓), (red) to registered meshes by optimizing pose and shape.
¯

T + BS(
~�) shows the estimated body shape and TP (

~�, ~✓) shows the effects of pose-
dependent blend shapes. Here we show SMPL-LBS, because TP shows more variation
due to pose than SMPL-DQBS.
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Figure 5-12: Model generalization indicates how well we can fit an independent reg-
istration. Mean absolute vertex error versus the number of shape coefficients used.
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Figure 5-13: Pose generalization error indicates how well a fitted shape generalizes to
new poses.
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Figure 5-14: Animating SMPL. Decomposition of SMPL parameters into pose and
shape: Shape parameters, ~�, vary across different subjects from left to right, while
pose parameters, ~✓, vary from top to bottom for each subject.
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Figure 5-15: Performance of SMPL and BlendSCAPE vary with the number of body
shape coefficients used. Performance shown here is from a 2014 Macbook Pro.

(a) Euler-angles (b) SMPL parameteriza-
tion

Figure 5-16: Parameterizing pose blend shapes. (a) Pose blend shapes parame-
terized by Euler angles cause significant problems. (b) our proposed parameterization
allows the head to rotate in either direction with natural deformations.
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Table 5.1: Table of Notation

Model generation functions

W ⌘ Skinning function
M ⌘ SMPL function
BP ⌘ Pose blendshapes function
BS ⌘ Shape blendshapes function
J ⌘ Joint regressor: Predicts joints from surface

Model input parameters (controls)

~� ⌘ Shape parameters
~✓ ⌘ Pose parameters
~! ⌘ Scaled axis of rotation; the 3 pose parameters corresponding to a

particular joint
~✓⇤ ⌘ Zero pose or rest pose; the effect of the pose blendshapes is zero for

that pose

Model parameters (parameters learned)

S ⌘ Shape blendshapes
P ⌘ Pose blendshapes
W ⌘ Blendweights
J ⌘ Joint regressor matrix
¯

T ⌘ Mean shape of the template

Training data

V ⌘ A registration
V

P ⌘ Pose dataset registration
V

S ⌘ Shape dataset registration
ˆ

T

P ⌘ Pose dataset subject shape; body vertices in the template pose
ˆ

J

P ⌘ Pose dataset subject joint locations in the template pose
ˆ

T

P
µ ⌘ Mean shape of a pose subject; body vertices in the template pose

ˆ

T

S ⌘ Shape dataset subject shape; body vertices in the template pose
ˆ

T

S
µ ⌘ Mean shape of a subject in the shape dataset; body vertices in the

template pose
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Chapter 6

Conclusion

This thesis provides methods for human shape and pose estimation from three differ-

ent types of observations. We explore the potential of a statistically motivated body

model, and enrich the ability to solve for parameters with the generation of images,

non-rigid deformations, marker positions, and registrations. Optimization methods

for this are arguably very simple: Gauss-Newton gradient-based optimization, with

a sum-of-squares data term, is used throughout this work. The focus is therefore not

on search strategies but on the formulation and differentiation of good observation

models. We now revisit the contributions of each work in turn.

The contribution of MoSh in Chapter 3 is to show that a small number of 3D

markers can reveal a surprising amount of information about shape and nonrigid

tissue motion. Traditional approaches estimate a skeleton from the data, and throw

away valuable information about body shape and nonrigid jiggle. MoSh captures that

information from archival data without high-resolution body scans. A crucial aspect

of MoSh is marker placement parameterization and refinement: as it is impossible

to place markers exactly, the data can help inform where markers are placed on the

body, which in turn helps estimate shape, pose, and nonrigid tissue motion.

While OpenDR in Chapter 4 is applied to body shape estimation, the contribution

of that work is more general. The key novelty is the proposal of a reusable differen-

tiable renderer, which provides not only rendered images, but also the derivatives of

the image process with respect to controlling parameters. This allows gradient-based
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parameter estimation from images. Whereas many works have differentiated objec-

tive functions including some form of rendering, this work is the first we know of in

which a differentiable renderer is built and distributed by itself.

Finally, the contribution of SMPL in Chapter 5 lies in the formulation and training

of a statistically-motivated body model. We show that this model is superior to state-

of-the art models in speed, accuracy, and compatibility. This model is unusual in that

it neither uses radial basis function interpolation, nor does it use deformation transfer

style constructions: instead, pose-dependent are driven directly from rotation matrix

elements.

All of these works are accompanied by online materials intended to further the

field: MoSh is released with ground-truth datasets, the SMPL model itself is available

for research purposes, and OpenDR is freely available online under the MIT software

license.

We now turn to possible enhancements and future directions for this work.

6.1 Future Directions

Improvements to realism would be a step forward for all the works presented. Specif-

ically, it is interesting to consider ways to add realism without increasing the number

of parameters (and generally the size of the search problem). MoSh, for example,

could benefit from simulating infrared camera images (from which marker positions

were derived) directly. Likewise, OpenDR would benefit from the modeling of shad-

ows; ambient occlusion may be the easiest to model. Finally, the realism of SMPL

may be improved with the addition of more physically motivated deformation.

Computational efficiency is another issue that bears further study. The perfor-

mance of OpenDR and MoSh were both hampered by constant reallocation of sparse

matrices, and both might benefit from moving to reverse-mode autodifferentiation

from forward-mode autodifferentiation. The SMPL model may benefit either from

compression of the pose-dependent blendshapes, either by inducing sparsity or via

some form of dimensionality reduction such as PCA.
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It is notable that (unlike many works in computer vision) no stochastic search or

discriminative techniques are used in this thesis. While we find it encouraging how

much is possible with gradient-based approaches alone, supplementing our methods

with these techniques may help overcome the local minima that often hinder gradient-

based methods.

Some parameters in these works were specified by hand, and the tuning of these

parameters presented a real challenge. Ensuring generality of any candidate set of

parameters means testing on large datasets; and because evaluation often includes

qualitative perceptual criteria, evaluation can be time-consuming. Ways to address

this in the future might include a more perceptually-oriented data term, the automatic

learning of more parameters from more ground-truth data, or the inclusion of more

physically (or statistically) motivated regularizations.
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