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NBT nitro blue tetrazolium 

NIT2 NITRILASE 2 

NLS nuclear localization signal 

NoLRs number of lateral roots 

Nos-0 Nossen-0 

NPA 1-N-naphthylphthalamic acid 

NPR1 NONEXPRESSOR OF PATHOGENESIS-RELATED GENES 1 

N-terminus amino terminus 

Nub amino terminal part of ubiquitin 
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OD optical density 

PAMP pathogen-associated molecular pattern 

PAS Per-Arnt-Sim 

PCR polymerase chain reaction 

Pcz propiconazole 

PHOT PHOTOTROPIN 

PHY PHYTOCHROME 

PI propidium iodide 

PIF PHYTOCHROME INTERACTING FACTORS 

PIN PIN-FORMED 

PIP PLASMA MEMBRANE INTRINSIC PROTEIN 

PP2A  protein phosphatase 2A 

PP2C protein phosphatase 2C 

PYL PYRABACTIN RESISTANCE-LIKE 

PYR PYRABACTIN RESISTANCE 

RAB18 RESPONSIVE TO ABSCISSIC ACID 18 

RALF rapid alkalinization factor 

RBX1 RING-BOX 1 

RCAR REGULATORY COMPONENT OF ABA RECEPTORS 

RD29B RESPONSIVE TO DESICCATION 29B 

REC receiver 

RFP red fluorescent protein 

Rif rifampicin 

RING REALLY INTERESTING NEW GENE DOMAIN 

RLK RECEPTOR-LIKE KINASE 

RLP RECEPTOR-LIKE PROTEIN 

RNA ribonucleic acid 

ROS reactive oxygen species 

rpm rounds per minute 

SA salicylic acid 

SAR systemic acquired resistance 

SAUR SMALL AUXIN UP-RNA 

SCF SKP1, CUL1, F-box protein 

SD short day 

SDS-PAGE sodium dodecyl sulfate polyacrylamid gel electrophoresis 

Ser serine 

SIRK1 SUCROSE-INDUCED RECEPTOR KINASE 1 

SKP1 S-PHASE KINASE-ASSOCIATED PROTEIN 1 

SL strigolactone 

SnRK SUCROSE NONFERMENTING 1-RELATED PROTEIN KINASE 

SOB super optimal broth 

SOB7 SUPPRESSOR OF PHYB-4 7 

SOS SALT OVERLY SENSITIVE 

SPA SUPPRESSOR OF PHYA-105 

Spec Spectinomycin 

SPS1F SUCROSE PHOSPHATE SYNTHASE 1F 

TCS two-component signaling 

T-DNA transfer DNA 

TEMED tetramethylethylenediamine 

TF transcription factor 

Thr threonine 

TIR1 TRANSPORT INHIBITOR RESPONSE 1 
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TM transmembrane domain 

TPL TOPLESS 

TPR TOPLESS-RELATED 

Trp tryptophane 

TTP thymidintriphosphat 

Tyr tyrosine 

Ura uracile 

UV-A ultraviolet-A 

UV-B ultraviolet-B 

(v/v) volume per volume 

(w/v) weight per volume 

WAK WALL-ASSOCIATED KINASE 

Ws-2 Wassilewskija-2 

wt wildtype 

wt.m Ws-2 treated for 10min with 0.3M mannitol 

wt.man Ws-2 treated for 10min with 0.3M mannitol 

Y2H yeast two-hybrid 

YEB yeast extract broth 

YUC YUCCA 

ZTL ZEITLUPE 

β-ME β-mercaptoethanol 

ψW water potential 
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SUMMARY 

The Arabidopsis thaliana sensor hybrid histidine kinase AHK1 was suggested to work as osmosensor 

in plants (Urao et al., 1999; Reiser et al., 2003; Tran et al., 2007; Wohlbach et al., 2008). Several 

studies could show, that AHK1 indeed is involved in the regulation of osmotic stress adjustment (Urao 

et al., 1999; Reiser et al., 2003; Tran et al., 2007; Wohlbach et al., 2008; Kumar et al., 2013). 

Nevertheless there were opposing results whether AHK1 works as positive or negative regulator of 

osmoregulation (Tran et al., 2007; Wohlbach et al., 2008; Kumar et al.; 2013).  

In this study it could be revealed, that under defined conditions AHK1 in fact acts as positive regulator 

of osmoregulation. It is shown that this is highly influenced by various factors, including variations in 

temperature. A consistent phenotype was found in etiolated seedlings for ahk1 knock down mutants in 

the Arabidopsis thaliana ecotypes Ws-2 and Nos-0. Col-0 did not show this alteration under normal 

growth conditions which might be in part due to the contribution of phyD to hypocotyl elongation in 

etiolated seedlings (Aukerman et al., 1997). Still, in etiolated seedlings a physiological function of the 

AHK1-BAK1 interaction could be revealed. Furthermore, a trend of an AHK1-dependent altered 

response of Arabidopsis thaliana to infection with the necrotophic fungus Alternaria brassicicola could 

be observed which confirms this interaction.  

The analysis of the phosphoproteome of ahk1-3 and the wildtype Ws-2 showed a tremendous 

transition from the AHK1-induced His-to-Asp multistep phosphorelay to Ser/Thr/Tyr phosphorylation 

cascades after mock as well as after mannitol treatment. Such a transition was also observed in the 

analysis of the phosphoproteome of ahk2 ahk3 and the wildtype Col-0 after mock and after kinetin 

treatment. Thereby the overlap of the quantified phosphopeptides in the phosphoproteomes of ahk1-

3/Ws-2 and ahk2 ahk3/Col-0 was surprisingly small.  

With the analysis of the phosphoproteome of ahk1-3 and Ws-2 proteins were identified which indeed 

showed interaction with AHK1 in subsequent protein-interaction assays. Furthermore, the analysis of 

the phosphoproteome together with the results of phenotyping experiments led to the establishment of 

a putative AHK1-dependent regulatory network which could now be further investigated.  

Due to the generation of a homology model for the structure of the extracellular domain of AHK1, the 

suggested mechano-sensitive signal perception mechanism is doubted. For further verification it was 

achieved to express the extracellular domain of AHK1 to go for ligand fishing and crystallization. 
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ZUSAMMENFASSUNG 

Bisher wurde angenommen, dass die Arabidopsis thaliana Sensor Hybrid Histidine Kinase AHK1 als 

möglicher Osmosensor fungiert (Urao et al., 1999; Reiser et al., 2003; Tran et al., 2007; Wohlbach et 

al., 2008). Mehrere Studien haben gezeigt, dass AHK1 tatsächlich an der Regulation der Anpassung 

der Pflanze an osmotischen Stress beteiligt ist (Urao et al., 1999; Reiser et al., 2003; Tran et al., 2007; 

Wohlbach et al., 2008; Kumar et al., 2013). Jedoch wurden unterschiedliche Ergebnisse erzielt in 

Hinblick darauf, ob AHK1 als positiver oder negativer Regulator in der Regulation bei osmotischem 

Stress beteiligt ist (Tran et al., 2007; Wohlbach et al., 2008; Kumar et al.; 2013).  

In dieser Studie konnte gezeigt werden, dass AHK1 unter definierten Bedingungen als positiver 

Regulator in der Regulation von osmotischem Stress wirkt. Es wird gezeigt, dass dies stark von 

verschiedenen Faktoren wie beispielsweise Unterschiede in der Temperatur beeinflusst wird. Ein 

beständiger, reproduzierbarer Phänotyp wurde für etiolierte Keimlinge der ahk1 knock down Mutanten 

in Arabidopsis thaliana der Ökotypen Ws-2 und Nos-0 gefunden. Im Ökotyp Col-0 konnte dies nicht im 

gleichen Umfang gezeigt werden was teilweise auf dem Fehlen von funktionellem Phytochrom D in 

Ws-2 beruhen könnte, das erwiesenermaßen am Elongationswachstum des Hypokotyls beteiligt ist 

(Aukerman et al., 1997). Außerdem konnte in etiolierten Keimlingen ein physiologischer 

Zusammenhang der Interaktion von AHK1 mit BAK1 gezeigt werden. Dieser physiologische 

Zusammenhang wurde durch die Tendenz einer AHK1-abhängigen veränderten Reaktion von 

Arabidopsis thaliana auf die Infektion mit Alternaria brassicicola bekräftigt. 

Die Analyse des Phosphoproteoms von ahk1-3 und dem Wildtyp Ws-2 zeigte einen massiven 

Übergang vom Histidin-zu-Aspartat Phosphatgruppenrelais zu klassischen Serin/Threonin/Tyrosin 

Phosphorylierungskaskaden nachdem die Keimlinge einer Scheinbehandlung und der Behandlung mit 

osmotischem Stress, der mit Hilfe von 0.3M Mannitol appliziert wurde, unterzogen wurden. Ein 

derartiger massiver Übergang konnte ebenfalls für ahk2 ahk3 und Col-0 nach einer Scheinbehandlung 

und der Behandlung mit Kinetin gezeigt werden. Der Überlapp der quantifizierten phosphorylierten 

Peptide war dabei erstaunlich gering. 

Durch die Analyse des Phosphoproteoms von ahk1-3 und Ws-2 konnten Proteine identifiziert werden, 

die in nachfolgenden Interaktionsstudien Interaktion mit AHK1 zeigten. Darüber hinaus führte die 

Analyse des Phosphoproteoms zusammen mit den Ergebnissen der Phänotypisierung zu der 

Erstellung eines putativ AHK1-abhängigen regulatorischen Netzwerks, das nun weiterführend 

untersucht und charakterisiert werden kann. 

Auf der Grundlage des Homologiemodells für die Struktur der extrazellulären Domäne der AHK1 kann 

vermutet werden, dass die Perzeption eines Signals von AHK1 nicht mechanisch abläuft sondern dass 

es sich bei dem Signal um einen niedermolekularen Liganden handeln könnte. Um dies nachzuweisen 

wurden erste Ergebnisse in der Expression der extrazellulären Domäne der AHK1 erzielt die in 

weiterführenden Experimenten der Kristallisierung und dem Fischen nach dem putativen Liganden 

dienen soll. 
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1 INTRODUCTION 

Plants are sessile organisms which are continuously exposed to various environmental stimuli to which 

they have to adapt to (Suzuki et al., 2016; Pekárová et al., 2016). They evolved several pathways for 

signal perception and signal transduction which enable them to sense, process and respond to diverse 

external stimuli (Pekárová et al., 2016). These pathways can act independently but cooperation and 

cross-talk between them is essential for the integration of various signals and to effect the proper 

adaptive responses (Pekárová et al., 2016). Sensing of environmental stimuli in general leads to post-

translational modifications of proteins to transduce the signal to the nucleus to cause a change in 

transcription factor (TF) activity to achieve adapted gene expression which in turn leads to an 

adjustment to the altered environmental surrounding (Deribe et al., 2010; Appleby et al. 1996; 

Pekárová et al.; 2016). There are diverse post-translational modifications which are involved in signal 

transduction. For instance sumoylation and ubiquitination of proteins controls their localization and 

activity but primarily targets them for proteasomal degradation (Miura et al., 2009; Hua and Vierstra, 

2011). Furthermore, phosphorylation of proteins is involved in the regulation of protein activity, protein 

localization and protein-protein interactions and thereby plays a central role in signal transduction 

pathways (Vu et al., 2016). In proteins serine (Ser), threonine (Thr), tyrosine (Tyr), histidine (His) and 

aspartate (Asp) residues can be phosphorylated (Sanders et al., 1989; Appleby et al., 1996; Pekárová 

et al., 2016). Ser/Thr/Tyr phosphorylation is connected to classical phosphorylation cascades which 

lead to an amplification of the signal (Posas et al., 1996; Droillard et al., 2004). For instance, a typical 

phosphorylation cascade occurs with the activation of MITOGEN-ACTIVATED PROTEIN (MAP) 

KINASEs (MPKs) in which MAP kinase kinase kinases (MKKKs) phosphorylate and activate MAP 

kinase kinases (MKKs) which in turn phosphorylate MPKs (Droillard et al., 2004). Instead, His and Asp 

phosphorylation is connected to the His-to-Asp phosphorelay in the multistep phosphorelay (MSP) 

system which does not lead to a signal amplification which is due to the transfer of one phosphate 

(Posas et al., 1996). Ser, Thr and Tyr phosphorylation is more stable than His and Asp 

phosphorylation and a direct transfer of the phosphate group from His and Asp to Ser, Thr or Tyr or the 

way around is biochemically not possible (Sanders et al., 1989). 

In the beginning of the 20th century it has been proven that growth in plants is under control of special 

growth substances or hormones and that they work at “concentrations of almost unbelievable lowness” 

in the range of nanomolar concentrations (Paál, 1918; Thimann, 1938). Hormones have been defined 

as chemical messengers which are produced in one cell but modulate the cellular processes in another 

cell (Taiz and Zeiger, 2010). This is linked to signal perception by receptors and signal transduction 

which leads to the adaption of cellular processes and which also includes phosphorelay systems as 

well as phosphorylation cascades (Taiz and Zeiger, 2010; Wang et al., 2012b; Pekárová et al.; 2016). 

So far, ten types of plantal hormones have been identified to regulate growth, development and stress 

responses: Auxins, cytokinins, gibberellic acids (GAs), ethylene, abscissic acid (ABA), brassinosteroids 

(BRs), jasmonates (JAs), salicylic acid (SA), strigolactones (SLs) and small polypeptides (Taiz and 



INTRODUCTION 

 

2 
 

Zeiger, 2010). Furthermore, second messengers like for instance Ca2+, cyclic nucleotides or reactive 

oxygen species (ROS) are involved in integrating the different pathways (Dodd et al., 2010; Newton et 

al., 1999; Neill et al., 2002). Cytokinins and ethylene are perceived by sensor hybrid histidine kinases 

and for cytokinins the signal is primarily transduced by a MSP (Kieber and Schaller, 2014; Merchante 

et al., 2013). Ethylene, BRs and small polypeptides like the rapid alkalinization factor (RALF) have 

been shown to activate receptor kinases which transduce the signal by activating phosphorylation 

cascades (Wang et al., 2012b; Merchante et al. 2013; Haruta et al., 2014). In contrast, one group of 

the ABA receptors inactivates protein phosphatase 2C (PP2C) family proteins like ABA INSENSITIVE 

1 (ABI1) and ABI2 upon ABA binding (Umezawa et al., 2009; Park et al., 2009; Golldack et al., 2014). 

This in turn leads again to the activation of kinases like SUCROSE NONFERMENTING 1-RELATED 

PROTEIN KINASEs 2 (SnRK2s) and thereby to phosphorylation cascades (Vlad et al., 2009). Auxins, 

GAs, JA, SA and SLs are bound by receptors which are part of E3 ligases and which target 

transcriptional repressors of gene expression like auxin/indole-3-acetic acid (AUX/IAA) and DELLA 

proteins for degradation upon hormone binding (Tan et al., 2007; Park et al., 2013; Fu et al., 2012; 

Seto and Yamaguchi, 2014; Smith and Li, 2014). 

1.1 The ubiquitin-26S proteasome system and E3 ligases 

The ubiquitin-26S proteasome system starts with adenosine triphosphate (ATP) dependent activation 

of ubiquitin by the ubiquitin-activating enzyme (E1) (Hu and Vierstra, 2011). Then, the activated 

ubiquitin is transferred to the ubiquitin-conjugating enzyme (E2) which in turn interacts with the 

ubiquitin ligase (E3 ligase) which ubiquitinates the specific target protein (Hu and Vierstra, 2011). The 

specificity of ubiquitination is achieved by the E3 ligases as it is suggested that more than 1500 

different E3 ligases occur in Arabidopsis thaliana (Gagne et al., 2002; Lee et al., 2008; Mudgil et al., 

2004; Stone et al., 2005; Hua and Vierstra, 2011). One important group of E3 ligases are the CULLIN-

RING ligases (CRLs) (Stone et al., 2005; Hua and Vierstra, 2011). They share a common backbone 

including the CULLIN (CUL) scaffold protein, the REALLY INTERESTING NEW GENE DOMAIN 

(RING)-containing protein RING-BOX 1 (RBX1) and a substrate recognition subunit (Petroski et al., 

2005; Bosu et al., 2008; Hua and Vierstra, 2011). According to the nature of their substrate and their 

associated CUL five major types can be distinguished for the CRLs whereas just three of them have 

been identified in plants (Petroski et al., 2005; Bosu et al., 2008; Hua and Vierstra, 2011). These are 

SCF CRLs, BTB CRLs and DWD CRLs (Hua and Vierstra, 2011). SCF CRLs are named according to 

their subunits S-PHASE KINASE-ASSOCIATED PROTEIN 1 (SKP1), CUL1 and an F-box protein 

which works as substrate recognition subunit (Gagne et al., 2002; Hua and Vierstra, 2011; Yu et al., 

2015). BTB CRLs comprise CUL3, RBX1 and members of the BROAD 

COMPLEX/TRAMRACK/BRICK-A-BRACK (BTB) family (Gingerich et al., 2005). DWD CRLs are 

composed of CUL4, RBX1 and substrate recognition subunit consisting of DAMAGED DNA BINDING 

1 (DDB1) and a set of DDB1-BINDING/WD-40 DOMAIN CONTAINING (DWD) proteins which for 

instance comprises CONSTITUTIVE PHOTOMORPHOGENIC 1 (COP1) which is involved in light 

signaling (Hua and Vierstra, 2011; Huang et al., 2014) 
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1.2 The multistep phosphorelay (MSP) system  

The MSP system appears to have evolved from the bacterial two-component signaling (TCS) system 

(Pekárová et al., 2016). The bacterial TCS system comprises two conserved proteins: the histidine 

kinase which perceives a certain signal and the response regulator (Appleby et al., 1996; Pekárová et 

al., 2016). Upon signal perception the histidine kinase is activated and autophosphorylation occurs at a 

conserved His residue in the histidine kinase domain (West and Stock, 2001; Skerker et al., 2008; 

Pekárová et al., 2016). Subsequently the phosphate group is transferred to a conserved Asp residue in 

the receiver domain of the response regulator (West ad Stock, 2001; Skerker et a., 2008; Pekárová et 

al., 2016). Thereby, the response regulator is activated and mediates the final response by interaction 

with gene or protein targets (Casino et al., 2009; Pekárová et al., 2016). Dephosphorylation of the 

response regulator in turn leads to its inactivation and attenuation of TCS (Casino et al., 2009; 

Pekárová et al., 2016). 

 

 

figure 1.1: The multistep phosphorelay system  

Sensor hybrid histidine kinases which comprise transmembrane domains (TMs), a histidine kinase domain 

(HK) with a conserved histidine residue (white H) and a receiver domain with a conserved aspartate 

residue (white D) are mainly localized to membranes. Upon signal perception in the exracytosolic domain 

autophosphorylation occurs at the cytoplasmic histidine kinase domain. The phosphate group (white P) is 

subsequently intramolecularly transferred to the conserved aspartate in the receiver domain, then 

transferred to the conserved histidine residue of the AHP and subsequently to the conserved aspartate 

residue in the response regulator which leads to its activation and mediation of gene expression.  

 

The MSP system in Arabidopsis thaliana comprises three components (fig. 1.1): The sensor hybrid 

histidine kinase (AHK) which comprises the histidine kinase domain with the conserved His residue 

and a receiver domain with a conserved Asp residue, the phosphotransfer protein (AHP) with a 

conserved His residue and the response regulator (ARR) with a conserved Asp residue (Stock et al., 

2000; West and Stock, 2001; Lohrmann and Harter, 2002; Oka et al., 2002; Horak et al. 2011). Upon 

signal perception, autophosphorylation of the conserved His residue of the AHK takes place (Miwa et 

al., 2007; Hothorn et al., 2011b). Subsequently the phosphate group is intramolecularly transferred 

from the His residue in the kinase domain to the Asp residue in the receiver domain and from there to 

the His residue of the AHP (Gruhn et al., 2014; Lohrmann and Harter, 2002; Oka et al., 2002). AHPs 

shuttle continuously between the cytoplasm and the nucleus (Gruhn et al., 2014; Punwani et al., 2010). 

From the AHP the phosphate group is transferred to the conserved Asp residue in the receiver domain 

of the ARR (Lohrmann and Harter, 2002; Oka et al., 2002). The activated ARR mediates the final 

response by interaction with gene or protein targets (Lohrmann and Harter, 2002; Oka et al., 2002; 

Pekárová et al., 2016).  

In Arabidopsis thaliana there are eleven AHKs which can be divided into different groups: the five 

ethylene receptors, the three cytokinin receptors and the AHKs whose signal has so far not yet been 
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identified although AHK5 is assumed to be a redoxsensor and AHK1 to be an osmosensor (Kumar et 

al., 2013; Pekárová et al., 2016). CYTOKININ INSENSITIVE 1 (CKI1) was at first assumed to be 

involved in cytokinin signaling as well until it was shown that CKI1 does not bind cytokinin due to a 

missing cytokinin-binding domain (Yamada et al. 2001; Pekárová et al., 2016). Furthermore, there are 

five Arabidopsis thaliana phosphotransfer proteins (AHPs) and one pseudo-AHP, AHP6, which act 

partially redundant as positive regulators in cytokinin signaling (Kumar et al., 2013; Hutchison et al. 

2006). For the mediation of the final response, there are 23 Arabidopsis thaliana response regulators 

(ARRs) (Müller and Sheen, 2007). The ARRs can be further divided into three subgroups: Type-A 

ARRs, type-B ARRs and type-C ARRs (Mason et al., 2004; Müller and Sheen, 2007; Schaller et al., 

2007; To and Kieber, 2008).  

Type-A ARRs comprise ARR3, ARR4, ARR5, ARR6, ARR7, ARR8, ARR9, ARR15, ARR16 and 

ARR17 (Müller and Sheen, 2007). They consist of the receiver (REC) domain with the conserved Asp 

residue which is involved in the phosphorelay and a short carboxy terminal domain (To and Kieber, 

2008). The carboxy terminal domain is involved in mediating interactions with proteins to regulate their 

activity (D’Agostino et al., 2000). Type-A ARRs localize in the nucleus as well as in the cytoplasm and 

act partially redundant (Sweere et al., 2001; Dortay et al., 2008) The expression of type-A ARRs is 

fastly upregulated after application of cytokinin in a type-B ARR-dependent manner which enables the 

negative feedback regulation of the cytokinin signaling pathway (Caesar, 2010; D’Agostino et al. 2000; 

Pekárová et al., 2016). 

Type-B ARRs comprise ARR1, ARR2, ARR10, ARR11, ARR12, ARR13, ARR14, ARR18, ARR19, 

ARR20 and ARR21, act as nuclear localized transcription factors and consist of the REC domain, a 

Myb-like DNA binding domain, the GARP domain and a transactivation domain (Mason et al., 2004; 

Imamura et al., 1999; Riechmann et al., 2000; Grefen and Harter, 2004; Lohrmann et al., 2001; 

Hosoda et al., 2002; Müller and Sheen, 2007; Argyros et al. 2008). Like type-A ARRs also type-B 

ARRs can act partially redundant (Sakai et al., 2001). 

Type-C ARRs comprise ARR22 and ARR24 (Kiba et al., 2004). They miss an output domain but at 

least ARR22 has been shown to interact with components of the MSP system (Horak et al., 2008).  

1.3 Cytokinins 

Cytokinins are N6-substituted adenine derivatives and they play major roles in apical dominance, 

lateral root, vascular and gametophyte development, leaf senescence, phyllotaxis, sink/source 

relationships, nutrient uptake as well as cell cycle control, circadian rhythm and plant defense (Kieber 

and Schaller, 2014). They bind to the CHASE (extracytosolic cyclases/hisidine kinases associated 

sensor extracellular)-domain of AHK2, AHK3 and AHK4 which are localized in the membrane of the 

endoplasmic reticulum (ER) (Anantharaman, 2001; Heyl et al., 2007; Caesar et al., 2011b; Wulfetange 

et al., 2011; Kieber and Schaller, 2014). After cytokinin perception autophosphorylation of the AHKs 

occurs and a MSP transports the signal to the nucleus to adjust gene expression (Kieber and Schaller, 

2014; Pekárová et al., 2016). 
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1.4 Brassinosteroids 

Brassinosteroids regulate numerous processes like seed germination, stomata development, vascular 

differentiation, plant architecture, flowering, male fertility, senescence, photomorphogenesis and innate 

immunity (Wang et al., 2012b). Furthermore they have major effects on cell expansion (Mandava, 

1988). Extensive studies of the brassinosteroid signaling pathway revealed major components and 

assembled them into a signal transduction pathway (Wang et al., 2012b). Brassinosteroids (BR) bind 

to the leucine-rich repeat receptor kinase (LRR-RK) BRASSINOSTEROID-INSENSITIVE 1 (BRI1) 

which activates BRI1 kinase activity (Wang et al., 2012b; Li and Chory, 1997; Kinoshita et al., 2005; 

Hothorn et al., 2011a; She et al., 2011; Wang et al., 2001). Upon activation of kinase activity, BRI1 

dissociates from BRI1 KINASE INHIBITOR 1 (BIK1) and associates with the coreceptor kinase BRI1-

ASSOCIATED RECEPTOR KINASE 1 (BAK1) (Jaillais et al., 2011; Wang and Chory, 2006; Wang et 

al., 2008; Li et al., 2002b; Nam et al., 2002). BAK1 interacts not exclusively with BRI1 but with several 

plasma membrane-localized receptor kinases including the LRR-RK FLAGELLIN-SENSITIVE 2 (FLS2) 

which perceives the pathogen associated molecular pattern (PAMP) flagellin22 (flg22) and therefore 

plays an eminent role not just in BR signaling but also in plant innate immunity and other signal 

transduction pathways (Sun et al. 2013; Wang et al., 2014a; Ladwig et al., 2015). Association of BR-

activated BRI1 with BAK1 leads to sequential transphosphorylation of BRI1 and BAK1 (Wang et al., 

2008). Furthermore, activated BRI1 phosphorylates BR-SIGNALING KINASE (BSKs) and 

CONSTITUTIVE DIFFERENTIAL GROWTH 1 (CDG1) families of kinases (Wang et al., 2012b; Tang et 

al., 2008; Kim et al., 2011). BSKs and CDG1 interact and activate the Ser/Thr protein phosphatase 

BRI1-SUPPRESSOR 1 (BSU1) which in turn dephosphorylates and inactivates the glycogen synthase 

kinase 3 (GSK3)-like kinase BRASSINOSTEROID-INSENSITIVE 2 (BIN2) (Wang et al., 2012b; Kim et 

al., 2009; Kim et al., 2011; Lau and Deng, 2012; Li et al., 2002a). The phosphorylated and active 

kinase BIN2 phosphorylates the two homologous transcription factors BRASSINAZOLE-RESISTANT 1 

(BZR1) and BRI1-EMS-SUPPRESSOR 1 (BES1) which is also named BZR2 (He et al., 2002; Wang et 

al, 2002; Yin et al. 2002). The phosphorylation of BZR1 and BES1 leads to their inactivation of 

transcriptional regulation through cytoplasmic retention with the help of 14-3-3 proteins as well as 

through their targeting for degradation by an E3-ligase (He et al., 2002; Wang et al., 2002; Yin et al., 

2002; Gampala et al., 2007). In addition to BIN2, BZR1 can be phosphorylated by MPK4 and BES1 by 

MPK6 (Asai et al., 2002; Wang et al., 2013; Kang et al., 2015b). Upon cytoplasmic retention BZR1 and 

BES1 can be dephosphorylated by a cytoplasmic protein phosphatase 2A (PP2A) and be relocated to 

the nucleus (Tang et al., 2011; Farkas et al.2007). BZR1 and BES1 act as TFs in cooperation with 

other TFs like the basic helix-loop-helix (bHLH) TFs PHYTOCHROME INTERACTING FACTORS 

(PIFs) or with Groucho/TUP1-like transcriptional corepressors like TOPLESS (TPL) and TOPLESS-

RELATED (TPR) proteins (Gampala et al., 2007; Causier et al., 2012; Oh et al., 2012; Oh et al., 2014). 

The interaction of BZR1 and TPL for instance leads to the repression of the GATA family TF GATA4 

and the B-box zinc finger family protein BZS1 which act as positive regulators on photomorphogenesis 

whereas the interaction of BES1 with TPL represses ABI3 expression (Luo et al., 2010; Fan et al., 

2012; Oh et al., 2014; Ryu et al., 2014). Beside phosphorylation of BSU1, CDG1 also phosphorylates 

the phosphatases BRI1 SUPRESSOR 1-LIKE 1 (BSL1), BSL2 and BSL3 (Kim et al., 2011). BSL2 in 
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turn dephosphorylates the kinase BSK8 which then exhibits kinase activity towards the SUCROSE 

PHOSPHATE SYNTHASE 1F (SPS1F) (Wu et al., 2014). The phosphorylation of SPS1F can be 

removed by the PP2C family protein ABSCISSIC ACID INSENSITIVE 1 (ABI1) which provides a link to 

abscissic acid signaling (Nishimura et al., 2010).  

Furthermore, the abundance of BR leads, like light-activated phyA, to the inhibition of the expression of 

the NO APICAL MERISTEM domain transcriptional regulator superfamily protein ATAF2 (Peng et al., 

2015). ATAF2 inhibits the expression of NITRILASE 2 (NIT2) which is involved in auxin biosynthesis 

and of cytochrome P450 superfamily proteins PHYTOCHROME B ACTIVATION TAGGED 

SUPPRESSOR 1 (BAS1) and SUPPRESSOR OF PHYB-4 7 (SOB7) which are involved in the 

degradation of BR (Huh et al., 2012; Bartling et al., 1992; Bartling et al. 1994; Turk et al., 2005; Peng 

et al., 2015). The signaling of BRs provides cross-talk with at least IAA-, ABA-, GA- and light-signaling. 

1.5 Auxins 

Auxins play a critical role in apical dominance, the differentiation of the vascular tissue, lateral root 

development and tropic responses to abiotic stimuli as well as cell extension, cell division and cell 

differentiation (Li et al., 2016b; Guilfoyle and Hagen, 2007; Mockaitis and Estelle, 2008; Su et al., 

2014; Went and Thimann, 1937). It is assumed that auxin signaling occurs due to acting as “molecular 

glue” that promotes the interaction between the auxin receptor TRANSPORT INHIBITOR RESPONSE 

1 (TIR1) and auxin/indole-3-acetic acid (AUX/IAA) proteins (Tan et al., 2007; Ruegger et al., 1998). 

TIR1 is a F-box component and thereby the substrate recognition subunit of the SCF complex which is 

a SCF CRL E3 ligase (Ruegger et al., 1998; Smalle and Vierstra, 2004; Hua and Vierstra, 2011; Yu et 

al., 2015). Therefore binding of auxin to TIR1 leads to the recruitment of AUX/IAA proteins to the SCF 

complex and to their targeting for degradation (Ruegger et al., 1998; Dharmasiri et al. 2005; Kepinski 

and Leyser, 2005; Tan et al., 2007). AUX/IAA proteins have been shown to act as transcriptional 

repressors by interacting with and thereby inhibiting the transcription activating function of AUXIN 

RESPONSE FACTORs (ARFs) (Tiwari et al., 2001; Hagen and Guilfoyle, 2002; Hellmann and Estelle, 

2002, Tiwari et al., 2003; Tatemasu et al., 2004). In Arabidopsis thaliana there are 29 AUX/IAA genes 

and 22 ARF genes (Liscum and Reed, 2002; Guilfoyle and Hagen, 2007). Most AUX/IAA proteins 

comprise four conserved domains: Domain I which is an amino terminal repression domain, domain II 

which comprises a recognition sequence for the SCF complex and thereby acts as regulatory domain 

of protein stability, domain III and domain IV which both contribute to protein interactions with other 

AUX/IAA proteins and ARFs (Tatemasu et al., 2004; Korasick et al., 2014). ARFs reveal three 

conserved domains: an amino terminal B3-type DNA-binding domain which is important for the 

regulation of gene expression and two carboxy terminal domains which share homology with domain III 

and domain IV of AUX/IAA proteins and therefore confer protein-interaction with AUX/IAAs and other 

ARFs (Tiwari et al., 2003; Tatemasu et al., 2004; Korasick et al., 2014). 

One of the largest family of auxin-induced genes is the family of SMALL AUXIN UP-RNA (SAUR) 

genes which comprises 79 members in Arabidopsis thaliana (Hagen and Guilfoyle, 2002; Spartz et al., 

2014). Thereby, the SAUR19 and SAUR63 subfamilies have been suggested to work as positive 

effectors of cell expansion (Franklin et al., 2011; Chae et al., 2012, Spartz et al., 2012; Spartz et al., 

2014). For SAUR19 it has been shown, that it interacts with and inhibits the activity of the subfamily D 
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of PP2C family proteins which in turn regulate the activity of plasma membrane localized H+-ATPases 

(AHAs) (Spartz et al., 2014). AHA-activity is regulated by diverse signaling pathways which all result in 

differential phosphorylation of the regulatory carboxy terminus of AHAs especially of the penultimate 

Thr-residue (Kinoshita and Shimazaki, 1999; Kinoshita and Shimazaki, 2002; Hayashi et al., 2010; 

Wang et al, 2014). Phosphorylation of the regulatory carboxy terminus leads to the association with 14-

3-3 proteins which are involved in the regulation of AHA activity as well (Fuglsang et al., 1999). AHAs 

work as proton pumps and are therefore involved in the regulation of apoplastic pH which plays major 

roles in the acid growth theory (Rayle and Cleland, 1992; Kinoshita and Shimazaki, 1999; Hager, 

2003).  

1.6 Abscissic acid 

Abscissic acid (ABA) is involved in the regulation of various aspects of plant growth and development 

including embryo maturation, seed dormancy, seed germination, cell division and elongation, floral 

induction, nutrient signaling, turgor maintenance, stomatal regulation, senescence and responses to 

environmental stresses like osmotic stress, pathogen attack and UV radiation (Finkelstein, 2013). To 

date, three classes of ABA receptors have been identified (Finkelstein, 2013). First, there are the 

membrane localized ABA-binding G PROTEIN-COUPLED RECEPTOR-TYPE G PROTEIN 1 (GTG1) 

and GTG2 which are assumed to contribute to fertility, hypocotyl and root growth and responses to 

light and sugars although gtg1 gtg2 knock down mutants respond normally in classic ABA responses 

(Pandey et al., 2009; Jaffé et al., 2012; Finkelstein, 2013; Golldack et al., 2014). Second, there is 

evidence for ABA perception by the chloroplast-localized H subunit of Mg2+-chelatase which is involved 

in plastid-to-nucleus retrograde signaling and mediates ABA signaling as a positive regulator in seed 

germination, post-germination growth and stomatal movement (Shen et al., 2006; Finkelstein, 2013; 

Golldack et al., 2014). The to date best characterized ABA receptors are the nucleocytoplasmic 

receptors PYRABACTIN RESISTANCE / PYRABACTIN RESISTANCE-LIKE / REGULATORY 

COMPONENT OF ABA RECEPTORS (PYR/PYL/RCARs) which inhibit protein phosphatase 2C 

(PP2C) family proteins like ABA INSENSITIVE 1 (ABI1) and ABI2 upon ABA binding (Ma et al., 2009; 

Park et al., 2009; Finkelstein, 2013; Golldack et al., 2014). Additional members of this clade of PP2Cs 

have been shown to contribute to ABA and stress signaling and their knock down mutants either reveal 

a hypersensitive phenotype to ABA or no phenotype which is then due to redundancy (Kuhn et al., 

2006; Nishimura et al., 2007; Finkelstein, 2013). Inactivation of these PP2Cs leads to the accumulation 

of active SnRK2s which regulate ABA-responsive transcription factors including ABA-responsive 

promoter element binding factors by phosphorylation (Ma et al., 2009; Park et al., 2009; Umezawa et 

al., 2009; Vlad et al., 2009; Golldack et al., 2014). The phosphorylation of these transcription factors 

leads to the activation of ABA-responsive genes and therefore to the activation of ABA-responsive 

physiological processes (Umezawa et al., 2009; Vlad et al., 2009; Golldack et al., 2014). Important 

transcription factors in this pathway comprise ABSCISSIC ACID INSENSITIVE 3 (ABI3), ABI4 and 

ABI5 (Koornneef et al., 1984). ABI3 belongs to the B3 transcription factor family, ABI4 to the 

APETALA2 (AP2) family and ABI5 to the basic leucine zipper (bZIP) family (Giraudat et al., 1992; 

Finkelstein, 1994; Finkelstein et al., 1998).  
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ABI3, ABI4 and ABI5 can be phosphorylated by SnRK2s as well as by BIN2 which provides a link to 

BR signaling (Lynch et al., 2012; Yuan et al., 2013; Hu and Yu, 2014). This phosphorylation can be 

removed by PHYTOCHROME-ASSOCIATED PROTEIN PHOSPHATASE 1 (FyPP1) and FyPP3 which 

are known to also dephosphorylate and thereby regulate the auxin efflux carriers PIN-FORMED 1 

(PIN1), PIN3 and PIN4 and thereby provide a link to light and auxin signaling (Dai et al., 2012; Dai et 

al., 2013; Yuan et al., 2013). Furthermore, type-A ARRs interact with ABI3, ABI4 and ABI5 at least by 

the regulation of their expression and thereby provide a link between MSP, cytokinin and ABA 

signaling (Wang et al., 2011a). Further cross-talk is achieved by the dependence of ABA signaling on 

second messengers (Finkelstein, 2013). 

1.7 Gibberellic acids 

Gibberellic acids (GAs) belong to a large family of tetracyclic diterpenoids and are plant hormones 

which regulate various transition processes like seed germination and flowering (Sun and Gubler, 

2004; Park et al., 2013; Xu et al., 2014b). Furthermore they are involved in stem and hypocotyl 

elongation, leaf expansion and responses to environmental stresses (Gao et al., 2011; Park et al., 

2013; Xu et al., 2014b). GA binding to the soluble receptor GA-INSENSITIVE DWARF 1 (GID1) binds 

leads to GID1 association with the amino terminus of the GRAS (GA INSENSITIVE; REPRESSOR OF 

ga1-3; SCARECROW) subgroup of DELLA proteins (Murase et al., 2008; Shimada et al., 2008; 

Golldack et al., 2014). This enables the interaction of DELLAs with the SCF E3 ligase which targets the 

DELLA protein for 26S proteasomal degradation (McGinnis et al., 2003; Sasaki et al.; 2003). The 

destabilization of DELLA proteins leads to the release of TFs like PIFs, BZR1 and the AUXIN 

RESPONSE FACTOR 6 (ARF6) (Choi and Oh, 2016; de Lucas et al., 2008; Feng et al.; 2008; Bai et 

al., 2012b; Oh et al., 2014). DELLA proteins have been shown to integrate diverse signaling pathways 

including IAA-, BR-, JA-, ethylene- and light- as well as temperature- and osmotic stress signaling (Xu 

et al., 2014b). 

1.8 Ethylene 

The gaseous hormone ethylene is involved in the regulation of germination, fruit ripening, senescence 

and stress responses (Bleecker and Kende, 2000; Liu et al., 2010; Merchante et al., 2013; Pekárová et 

al., 2016). Ethylene is perceived by ETHYLENE RESPONSE 1 (ETR1), ETR2, ETHYLENE 

RESPONSE SENOR 1 (ERS1), ERS2 and ETHYLENE INSENSITIVE 4 (EIN4) which are similar to the 

histidine kinase proteins (Bleecker et al., 1988; Chang et al. 1993; Hua et al.; 1998; Sakai  et al., 1998; 

Liu et al., 2010). Thereby, ETR1 and ERS1 comprise a histidine kinase domain with the signature 

motifs essential for histidine kinase activity whereas in ETR2, ERS2 and EIN4 some consensus amino 

acid residues which are essential for histidine kinase activity are lacking (Liu et al., 2010).Upon 

ethylene perception the Raf-like Ser/Thr kinase CONSTITUTIVE TRIPLE RESPONSE (CTR1) is 

inactivated which leads to the phosphorylation of EIN2. By an unknown mechanism the carboxy 

terminus of EIN2 is cleaved off and translocated to the nucleus where it induces the degradation of 

EIN3-BINDING F-BOX PROTEIN 1 and EBF2 but stabilizes EIN3 and ETHYLENE-INSENSITIVE 3-

LIKE 1 which activate ethylene target genes (Ju et al., 2012; Ji and Guo, 2013; Solano et al. 1998; 

Merchante et al., 2013). 



 INTRODUCTION 

 

9 
 

1.9 Jasmonates 

Jasmonates (JAs) are lipid-derived compounds and involved in the response to herbivory, mycorrhiza 

and the regulation of plant immunity as well as in the regulation of seed germination, seedling 

development, root growth, flower and seed development, tuber formation and senescence 

(Wasternack, 2007; Wasternack and Hause, 2013). They are perceived by negative regulators of JA-

induced gene expression, the JASMONATE-ZIM DOMAIN proteins which are upon JA binding 

targeted for degradation by the SCF E3 ligase with CORONATIVE INSENSITIVE 1 as substrate 

recognition subunit for the SCF complex (Chini et al., 2007; Thines et al., 2007; Yan et al., 2007; Xie et 

al., 1998; Wasternack and Hause, 2013; Hua and Vierstra, 2011). 

1.10 Salicylic acid 

Salicylic acid (SA) is a phenolic compound which has been shown to activate plant defense responses 

especially systemic acquired resistance (SAR) as well as to play a role in plant responses to abiotic 

stresses like drought, chilling, heat, osmotic stress and heavy metal toxicity (Rivas-San Vicente and 

Plasencia, 2011; Kumar, 2014). SA binds to its receptors NPR1-like protein 3 (NPR3) and NPR4 which 

are CUL3 E3 ligase substrate recognition subunits for NONEXPRESSOR OF PATHOGENESIS-

RELATED GENES 1 (NPR1) degradation (Fu et al., 2012). This leads to SA mediated signal 

transduction (Fu et al., 2012; Kumar, 2014). 

1.11 Strigolactones 

Strigolactones (SLs) have been shown to regulate root and shoot development and can promote 

symbiotic relationships with mycorrhizal fungi and nitrogen-fixing bacteria (Smith and Li, 2014). It is 

assumed that SL perception and signal transduction occurs similar to GAs, JAs and auxins which 

depends on recognition of SL by a substrate recognition subunit of the SCF CRL E3 ligase and which 

targets proteins for degradation (Seto and Yamaguchi, 2014; Ishikawa et al., 2005; Stirnberg et al. 

2002; Johnson et al., 2006). Evidence has been provided for cross-talk of SL-signaling with GA- and 

BR-signaling (Smith and Li, 2014). 

1.12 Light signaling 

The abiotic factor light highly influences plant growth and development as light provides energy for 

carbon fixation through photosynthesis as well as information for the adaption to the different aspects 

of light like light intensity and light quality which comprises the spectral composition and spatiotemporal 

patterns (Menon et al., 2016). For the sensing of and for the adaption to these aspects of light, plants 

have several classes of photoreceptors which have specific as well as overlapping functions (Menon et 

al., 2016). The acclimation of plants to UV-B light is mediated by the UV-B light receptor UVB-

RESISTANCE 8 (Favory et al., 2009; Menon et al., 2016). Blue light is perceived by PHOTOTROPIN 1 

(PHOT1) and PHOT2, by photoreceptors of the ZEITLUPE (ZTL)-family as well as by 

CRYPTOCHROME 1 (CRY1) and CRY2 (Chaves et al.¸ 2011; Ito et al., 2012; Christie et al., 2015; 

Fankhauser and Christie, 2015; Menon et al. 2016). Phototropins play major roles in the regulation of 

light responses which are important to optimize photosynthesis which includes phototropism, 

chloroplast and stomatal movement (Chen et al., 2004; Menon et al., 2016). They sense light with their 
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amino terminal photosensory domain in which a flavin mononucleotide (FMN) molecule is bound to the 

LIGHT, OXYGEN, VOLTAGE (LOV) domain which allows light sensing and which is structurally closely 

related to Per-Arnt-Sim (PAS) domains (Briggs and Christie, 2002; Chen et al., 2004). Furthermore, 

phototropins comprise a carboxy terminal Ser/Thr protein kinase domain which leads to light-regulated 

autophosphorylation as initial step of phototropin dependent signaling (Briggs and Christie, 2002; Chen 

et al., 2004). Upon phosphorylation, phototropins are bound by 14-3-3 proteins (Kinoshita et al., 2003; 

Chen et al., 2004). Like phototropins, ZTL, LOV KELCH REPEAT PROTEIN 2 and FLAVIN-BINDING 

KELCH REPEAT F-BOX 1 comprise a LOV-domain which binds a FMN molecule for light perception 

with the difference of a very slow dark-reversion rate compared to the phototropins (Christie et al., 

2015; Chen et al. 2004). Photoreceptors of the ZTL-family are involved in maintenance of circadian 

clock function and photoperiod-dependent induction of flowering (Imaizumi et al., 2003; Yanovsky and 

Kay, 2003; Chen et al., 2004). Beside blue light, CRY1 and CRY2 are known to perceive UV-A light 

(Lin, 2002; Liscum et al., 2003; Chen et al., 2004). They are involved in the regulation of inhibition of 

hypocotyl growth, promotion of leaf expansion as well as in chlorophyll and anthocyanin synthesis 

during seedling de-etiolation (Lin, 2002; Liscum et al., 2003; Chen et al., 2004). Furthermore they 

contribute to photoperiod-dependent induction of flowering and to resetting of the circadian oscillator 

(Yanovsky and Kay, 2003; Cashmore, 2003; Chen et al. 2004). Photosensing by CRY1 and CRY2 

works through the amino terminal photolyase homology region which noncovalently binds a catalytic 

flavin adenine dinucleotide (FAD) and a pterin or deazaflavin as light-harvesting chromophore (Lin et 

al., 1995; Sancar, 2003; Chen et al. 2004). Cryptochromes act in coordination with the red light 

sensing phytochromes (Chen et al., 2004). In Arabidopsis thaliana there are five members of 

phytochromes: The light-labile phytochrome A (phyA) and phyB, phyC, phyD and phyE which are more 

or less stable in light and darkness (Chen et al., 2004; Menon et al., 2016). They are composed of the 

amino terminal photosensory domain with a covalently attached phytochromobilin and a carboxy 

terminal domain which comprises two PAS-domains and a histidine kinase-related domain (Quail, 

1997; Yeh and Lagarias, 1998; Bolle et al. 2000; Kohchi et al.; 2001; Chen et al., 2004). Still, higher 

plant phytochromes are Ser/Thr kinases (Yeh and Lagarias, 1998; Fankhauser, 2000; Chen et al., 

2004). Phytochromes are synthesized in the inactive red-light absorbing Pr-form (Phee et al., 2008). 

Upon red-light absorption the Pr-form is converted to the active and far red-light absorbing Pfr-form 

(Chen et al., 2004). The Pfr-form can be re-converted to the Pr-form either by the absorption of far red 

light or thermally which is then called dark reversion (Kendrick and Kronenberg, 1994; Chen et al., 

2004). In the dark, phytochromes accumulate in the cytoplasm but upon light perception they are 

translocated to the nucleus where they interact with and thereby regulate diverse transcription factors 

like PIFs, ELONGATED HYPOCOTYL 5 (HY5) or FAR-RED ELONGATED HYPOCOTYL 3 (FHY3) 

(Kircher et al., 2002; Chen et al., 2004; Hardtke et al., 2000; Rolauffs et al., 2012; Menon et al., 2016). 

Phytochromes are together with cryptochromes involved in seedling development and floral induction 

but solely control seed germination and shade-avoidance response (Casal and Sanchez, 1998; Neff et 

al.¸ 2000; Chen et al., 2004).  

The absence of light, especially after germination when the seed might be buried in soil effects a 

developmental strategy called skotomorphogenesis or etiolated growth (Leivar et al., 2008). The 
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etiolated growth is characterized by hypocotyl elongation, a closed apical hook and the absence of 

chlorophyll accumulation (Leivar et al., 2008). Upon light perception, the transition from 

skotomorphogenic to photomorphogenic growth occurs (Leivar et al., 2008). This transition is called 

de-etiolation and comprises the inhibition of hypocotyl elongation, unfolding of the apical hook, 

separation and expansion of the cotyledons and chlorophyll accumulation (Leivar et al., 2008). 

1.13 Temperature-induced hypocotyl elongation 

Warmth induces hypocotyl elongation in light-grown seedlings (Gray et al., 1998; Stavang et al., 2009; 

Oh et al., 2012; Delker et al., 2014). The increase of the temperature leads to a decreased level of the 

transcription factor HY5 indicating an increased targeting of HY5 to degradation by the DET1-COP1-

HY5 pathway (Delker et al., 2014). This in turn leads to an increase of PIF4 protein levels as HY5 

negatively regulates PIF4 transcription (Delker et al., 2014). PIF4 mediates the expression of YUC 

genes, which are necessary for auxin biosynthesis and, together with BZR1, activates the transcription 

of auxin responsive genes like SAUR19 to SAUR24 and IAA19 and IAA29 which results in auxin 

response and therefore in elongation growth although in light, PIF4 is phosphorylated by active 

phytochromes in the Pfr-from and thereby inhibited to bind to target promoters and targeted for 

degradation (Shen et al., 2005; Cheng et al., 2006; Oh et al., 2006; Al-Sady et al., 2006; Stepanova et 

al., 2011; Won et al., 2011; Oh et al., 2012; Park et al., 2012; Delker et al., 2014). 

1.14 Acid growth theory, cell walls and growth 

The turgor-driven cell expansion requires a balance between cell wall relaxation and cell wall stiffening 

(Wolf et al., 2012). Wall hydration, turgor-driven wall extension followed by the cross-linking of newly 

synthesized cell-wall components are thereby the major steps of turgor-driven cell expansion (Wolf et 

al., 2012). Corresponding to the acid growth theory wall hydration is in part mediated by the IAA- and 

BR-induced activation of AHAs which cause the hyperpolarization of the plasma membrane and the 

acidification of the apoplast (Rayle and Cleland, 1992; Caesar et al., 2011a; Wolf et al., 2012). The 

acidification of the apoplast leads to cell-wall loosening in part through the activation of cell-wall-

loosening enzymes like expansins which have an acidic pH optimum (Lee et al., 2001; Yennawar et 

al., 2006; Thompson, 2008; Wolf et al., 2012). Increased wall-hydration and the activity of wall-

loosening enzymes promote the extensibility of the cell-wall (Evered et al., 2007; Wolf et al., 2012). 

Dependent on the orientation of the cellulose microfibrils upon wall-loosening increased spacing 

between cellulose microfibrils occurs through turgor-driven cell expansion (Lloyd and Chan, 2008; Wolf 

et al., 2012). Therefore the orientation of the cellulose microfibrils determines the direction of cell 

expansion which is the reason why reorientation of cellulose microfibrils can occur (Steen and 

Chadwick, 1981; Bashline et al., 2014). This can be induced by ethylene which also influences the 

orientation of cortical microtubules (Steen and Chadwick, 1981). Cortical microtubules play a key role 

in the organization of the cellulose deposition as they control the insertion, trajectory and velocity of the 

cellulose synthesizing cellulose synthase complexes (Crowell et al., 2009; Gutierrez et al., 2009; Wolf 

et al., 2012; Bashline et al., 2014). The effect of ethylene on the orientation of cortical microtubules 

appears to be opposite to the effect of IAA, GA and BR (Shibaoka, 1993; Fujino et al., 1995; Le et al., 

2005; Polko et al., 2012; Wang et al., 2012a; Bashline et al., 2014). 
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Cell wall relaxation and cell expansion are suggested to be coupled with mechanosensing as the 

plasma membrane is stretched and pressed to the cell wall (Monshausen et al., 2009; Monshausen 

and Gilroy, 2009). Mechanical stimuli result in an increase of cytosolic Ca2+ levels which inhibit AHAs 

and open H+-channels which in turn lead to an alkalinization of the apoplast and cytoplasmic 

acidification and therefore to the inhibition of cell expansion and growth (Monshausen et al., 2009; 

Monshausen and Gilroy, 2009; Wolf et al., 2012). Thereby, growth rate, cytosolic Ca2+-levels and 

apoplastic pH oscillate with the same period (Monshausen et al., 2009; Monshausen and Gilroy, 2009; 

Wolf et al., 2012). It was assumed that the increase of cytosolic Ca2+-levels depends on stretch-

activated Ca2+-channels of the MscS-like (MSL) family but recent studies propose the contribution of 

phosphorylation dependent plastidial K+ EFFLUX ANTIPORTER (KEA) KEA1, KEA2 and KEA3 

(Monshausen and Gilroy, 2009; Wilson et al., 2013; Stephan et al., 2016). 

The inhibition of cell expansion through cytoplasmic acidification is supported by the stabilization of 

PLASMA MEMBRANE INTRINSIC PROTEINs (PIPs) in the closed pore conformation through the 

protonation of a conserved His-residue in the cytoplasmic loop D (Törnroth-Horsefield et al., 2006; 

Frick et al., 2013; Maurel et al., 2015). PIPs build one of five subfamilies of higher plant aquaporins 

which are membrane channels that facilitate the transport of water and small neutral molecules across 

biological membranes (Maurel et al., 2015). PIPs comprise a cytoplasmic amino terminus, six 

transmembrane domains which are connected through five loops and a cytoplasmic carboxy terminus 

(Maurel et al., 2015). Thereby loop A, C and E are extracellular whereas loop B and D are cytoplasmic 

(Maurel et al., 2015). Beside the conserved His-residue in loop D which stabilizes PIPs in their closed 

pore conformation there are regulatory phosphorylation sites at the PIP’s carboxy terminus which 

influence the pore conformation as well (Maurel et al., 2015). The phosphorylation of these residues 

has been shown to depend on Ca2+ DEPENDENT PROTEIN KINASEs (CDPKs) and the LRR-RK 

SUCROSE-INDUCED RECEPTOR KINASE 1 (SIRK1; Sjövall-Larsen et al., 2006; Wu et al., 2013; 

Maurel et al., 2015). Due to their involvement in facilitating water transport and transport of small 

neutral molecules, PIPs are involved in ROS detoxification and signaling, nutrient availability, diurnal 

and circadian rhythms, guard cell and leaf movements as well as in osmoregulation (Maurel et al., 

2015). 

1.15 Osmotic stress  

Osmotic stress can be induced by several different factors like for instance altered water availability, 

flooding and therefore altered oxygen availability, dissolved ion content, abundance of other 

osmotically active substances, atmospheric humidity, temperature, wind speed as well as solar 

irradiance (Stephan et al., 2016). Therefore it is necessary to sense osmotic stress and integrate 

various signals to obtain a proper response to osmotic stress.  

ABA is known to play a key role in adaptational processes to osmotic stress like stomatal closure, 

growth inhibition and osmoregulatory solute accumulation which comprises proline accumulation and 

recently, evidence has been provided for cross-talk between ABA-, GA- and JA-signaling in plant 

responses to drought (Verslues et al., 2006; Wohlbach et al., 2008; Finkelstein, 2013; Kumar et al. 

2013; Golldack et al., 2014). Furthermore it has been revealed that ROS contribute to a modified 

tolerance to osmotic stress (Zheng et al. 2013a, Golldack et al., 2014). Other mechanisms which are 
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involved in the adaption to osmotic stress are the maintenance of cell wall development and the 

maintenance of integrity of cellular membranes at the plasma membrane as well as at the 

endomembranes (Cominelli et al., 2008; Lippold et al., 2009; Golldack et al., 2014). The maintenance 

of integrity of cellular membranes upon osmotic stress is known to be influenced by changes of the 

monogalactosyldiacylglycerol and digalactosyldiacylglycerol contents in the chloroplast envelope and 

in thylakoid membranes as well as by lipid signaling which involves a change in the activity of 

phospholipase C and the diacylglycerol kinase (Torres-Franklin et al., 2007; Darwish et al., 2009; 

Golldack et al., 2014). A link between ABA- and lipid-signaling has been shown by Lemtiri-Chlieh et al. 

(2003) who described that in response to ABA myo-inositol hexakisphosphate (InsP6) levels are 

elevated and that InsP6 inactivates the plasma membrane inward K+-conductance in a cytosolic Ca2+-

dependent manner which promotes stomatal closure and which is assumed to be conferrable to 

osmotic stress signaling (Golldack et al., 2014). Furthermore, intracellular Ca2+-levels contribute to the 

maintenance and regulation of ion homeostasis during osmotic stress by activating the salt overly 

sensitive (SOS) pathway (Du et al., 2011; Golldack et al., 2014). Thereby, the Calcineurin B-like (CBL) 

protein calcium sensor SALT OVERLY SENSITIVE 3 (SOS3) as well as the CBL-interacting protein 

kinase (CIPK) SOS2 regulate the activity of the Na+/H+-antiporter SOS1 (Liu et al., 1997; Halfter et al., 

2000; Liu et al., 2000). 

In regard to the perception of osmotic stress by osmosensors it has been hypothesized that this might 

include the sensing of cell volume, cell shape, membrane tension, turgor pressure, the pressure of the 

plasma membrane to the cell wall or macromolecular crowding (Kumar et al., 2013; Wohlbach et al., 

2008; Hsiao, 1973; Burg et al., 2007; Schliess et al., 2007; Wood, 2011). So far the mechanism of 

osmotic stress perception is unclear but for instance in yeast, components of the high osmolarity 

glycerol (HOG) pathway which leads to osmotic adjustment have been elucidated (Reiser et al., 2003; 

Saito and Tatebayashi, 2004; Kumar et al., 2013). In the HOG pathway osmotic stress is perceived by 

the sensor hybrid histidine kinase SLN1 (Maeda et al., 1994; Posas et al., 1996). SLN1 transmits the 

signal through the SLN1-YPD1-SSK1 multistep phosphorelay to the redundant pairs of MKKKs SSK2 

and SSK22 which in turn activate a MPK phosphorylation cascade (Maeda et al., 1994; Posas et al., 

1996; Reiser et al., 2003; Kumar et al., 2013; Pekárová et al.; 2016). This pathway finally activates the 

MPK HOG1 which participates in the regulation of several osmotic stress responses like for instance 

the accumulation of glycerol as intracellular osmotically active substance (Reiser et al., 2003; Dihazy et 

al. 2004; Kumar et al., 2013). Beside SLN1, the HOG-pathway can be activated by the SHO1 branch 

(Reiser et al., 2003). As the osmosensitive growth defect of the yeast sln1/sho1 mutant can be 

complemented by the Arabidopsis thaliana cytokinin receptors AHK2, AHK3 and AHK4 as well as by 

AHK1 it was assumed that AHK1 might be the main osmosensor in plants (Urao et al., 1999; Reiser et 

al., 2003; Tran et al., 2007; Wohlbach et al., 2008).  

1.16 AHK1 

AHK1 is a sensor hybrid histidine kinase which comprises two transmembrane domains, an 

extracellular domain which might perceive a so far uncharacterized signal, a histidine kinase domain 

and a receiver domain (Urao et al., 1999). It has been shown, that AHK1 localizes to the plasma 



INTRODUCTION 

 

14 
 

membrane after transient expression in Nicotiana benthamiana as well as to vesicle-like compartments 

which have not yet been fully characterized (Katharina Caesar, unpublished).  

 

figure 1.2: AHK1 with a carboxy terminal GFP-tag complements the germination phenotype of ahk1-3, 

AHK1 with an amino terminal GFP-tag does not. 

AHK1 with a carboxy terminal GFP-tag (AHK1-GFP) under the control of the Cauliflower Mosaic Virus 

(CaMV) 35S-promoter (C1) and AHK1 with an amino terminal GFP-tag (GFP-AHK1) under the control of 

the CaMV 35S-promoter (C2) were transiently transformed into Nicotiana benthamiana (B) and stably into 

the ahk1 knock down mutant ahk1-3. The analysis with confokal microscopy (SP2) of the transient 

expression of AHK1-GFP and GFP-AHK1 revealed localization of AHK1-GFP at the plasma membrane 

and localization of GFP-AHK1 in the endoplasmic reticulum. (C) A germination assay with homozygous 

Arabidopsis thaliana lines which contained either the C1 or the C2 construct revealed that just AHK1-GFP 

is able to complement the germination phenotype on high mannitol stress conditions. (Unpublished data by 

Katharina Caesar)  

 

The analysis of Arabidopsis thaliana ahk1 knock down mutants revealed a contribution of AHK1 in 

osmoregulation (Urao et al., 1999; Reiser et al., 2003; Tran et al.; 2007; Wohlbach et al., 2008; Kumar 

et al. 2013). Tran et al. (2007) could show, that the overexpression of AHK1 in the Arabidopsis thaliana 

Col-0 or Nos-0 ecotype enhances drought tolerance and that AHK1 in contrast to AHK2, AHK3 and 

AHK4 acts as positive regulator of ABA signal transduction and osmotic stress signaling. Wohlbach et 

al. (2008) revealed in the Arabidopsis thaliana ecotype Ws-2 that the disruption of AHK1 leads to 

decreased germination rates of seeds on media which are supplemented with the osmotically active 

substances sorbitol, mannitol, sucrose, glucose and NaCl and to decreased root elongation during 

growth on sorbitol supplemented media. Furthermore ahk1 knock down mutants in the Ws-2 ecotype 

revealed altered ABA sensitivities in regard to decreased expression of the ABA-dependent marker 

gene RESPONSIVE TO ABA 18 (RAB18) and the gene of RESPONSIVE TO DESICCATION 29B 

(RD29B) but did not show any change in stomatal aperture (Wohlbach et al., 2008; Kumar et al., 

2013). As ABA biosynthetic genes were upregulated upon overexpression of AHK1 an AHK1-

dependent regulation of ABA synthesis was hypothesized (Wohlbach et al., 2008). Tran et al. (2007) 

and Wohlbach et al., (2008) concluded AHK1 to be a positive regulator of osmoregulation in the 

Arabidopsis thaliana ecotypes Nos-0, Col-0 and Ws-2. In contrast, Kumar et al. (2013) found, that ahk1 

knock down mutants in the Nos-0 and Col-0 ecotype revealed reduced relative water content, 

increased leaf water loss which is explained by an increased stomatal index, unimpaired root growth 

upon salt and low water potential stress as well as unimpaired ABA, proline and osmoregulatory solute 

accumulation which led to the conclusion of AHK1 being a negative regulator of osmoregulation. Still, 
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these results were obtained under unequal conditions: Beside different compositions of growth media 

Tran et al. (2007) used growth conditions of 22°C under a 16h light/8h dark cycle, Wohlbach et al. 

(2008) used 23°C under a 16h light/8h dark cycle or continuous light whereas Kumar et al. (2013) used 

25°C under continuous light as well as 22°C-26°C under a 16h light/8h dark cycle.  

 

 

figure 1.3: FRET-FLIM suggests interaction of AHK1 and BAK1. 

Transient co-expression of AHK1-GFP with AHA1-mCherry, AHK1-mCherry and BAK1-mCherry led to a 

drop in fluorescence lifetime for the pairs AHK1-GFP/AHK1-mCherry and AHK1-GFP/BAK1-mCherry as 

well as for the positive control AHK1-GFPmCherry indicating that AHK1 forms homodimers and interacts 

with BAK1. Stars indicate statistical significance. (Unpublished data by Katharina Caesar) 

 

Additional studies of Katharina Caesar showed, that AHK1 with a carboxy terminal but not with an 

amino terminal GREEN FLUORESCENT PROTEIN (GFP)-tag could complement the germination 

phenotype of ahk1-3 under osmotic stress conditions which were applied with the osmotically active 

substance mannitol (Katharina Caesar, unpublished; fig. 1.2). Furthermore it was revealed, that 

expression of mCherry with an additional nuclear localization signal (NLS) under the control of the 

RD29B promoter is enhanced upon mannitol treatment in an AHK1- and temperature-dependent 

manner (Katharina Caesar, unpublished). Moreover, a mating-based split-ubiquitin assay in 

Saccharomyces cerevisiae and a Förster resonance energy transfer (FRET)-fluorescence lifetime 

imaging (FLIM) study in Nicotiana benthamiana suggested the interaction of AHK1 and BAK1 

(Katharina Caesar, unpublished; fig. 1.3). 
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1.17 Objective of this work 

AHK1 was suggested to work as osmosensor in plants (Urao et al., 1999; Reiser et al., 2003; Tran et 

al., 2007; Wohlbach et al., 2008). Several studies could show, that AHK1 indeed is involved in the 

regulation of osmotic stress adjustment (Urao et al., 1999; Reiser et al., 2003; Tran et al., 2007; 

Wohlbach et al., 2008; Kumar et al., 2013). Nevertheless there were opposing results whether AHK1 

works as positive or negative regulator of osmoregulation (Tran et al., 2007; Wohlbach et al., 2008; 

Kumar et al.; 2013).  

Moreover, nothing more was known about the components of the AHK1-dependent signal transduction 

pathway except the fact, that AHK1 is a sensor hybrid histidine kinase which contributes to the 

multistep phosphorelay system and that it interacts with BAK1 (Urao et al., 2000; Dortay et al., 2006; 

Dortay et al., 2008; Katharina Caesar, unpublished). 

The aim of this work was, to clarify whether AHK1 acts as positive or negative regulator on 

osmoregulation, to gain insight into the molecular mechanisms of the signal transduction pathway and 

its components and to investigate whether AHK1 acts as mechano-sensitive osmosensor.  

To clarify whether AHK1 acts as positive or negative regulator on osmoregulation a consistent 

phenotype for all ahk1 knock down mutants in all three previously described Arabidopsis thaliana 

ecotypes should be found (Tran et al. 2007; Wohlbach et al., 2008; Kumar et al. 2013). To support the 

finding of the respective result it is important to gain insight into the molecular mechanisms of signal 

transduction. As it was previously suggested that the osmoregulation in Arabidopsis thaliana works 

similar to the HOG pathway in yeast with AHK1 as osmosensor a transition from the His-to-Asp 

multistep phosphorelay to Ser/Thr/Tyr phosphorylation was hypothesized (Reiser et al., 2003; Tran et 

al. 2007; Wohlbach et al., 2008). The comparative analysis of the phosphoproteome of an ahk1 knock 

down mutant and the wildtype after treatment with mock or the osmotically active substance mannitol 

was suggested to provide the prove of a possible transition. This should comparatively be investigated 

as well for ahk2 ahk3 knock down mutants and their wildtype Col-0 which were treated with mock or 

kinetin. Although it would have been interesting to identify a similar pathway like in yeast, it should be 

tested whether interactions of AHK1 with other plasma membrane localized proteins are involved in 

osmotic stress signaling. Therefore AHK1-dependent and mannitol-dependent differentially 

phosphorylated proteins which were quantified in the phosphoproteome should be tested on direct 

protein-protein interaction with AHK1. 

To investigate whether AHK1 acts as mechano-sensitive osmosensor the evolutionary conservation as 

well as the structure of the extracellular domain of AHK1 should be analyzed and determined. This 

should occur with the help of sequence analysis and sequence alignments as well as through the 

cloning, expression and crystallization of the extracellular domain of AHK1. 
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2 MATERIAL 

2.1 Organisms 

2.1.1 Escherichia coli strains 

table 2.1: Escherichia coli strains 

strain (company) genotype function 

NEB®5α  

(New England Biolabs) 

fhuA2 Δ(argF-lacZ)U169 phoA glnV44 

 Φ80 Δ(lacZ)M15 gyrA96 recA1 

 relA1 endA1 thi-1 hsdR17 

Used for cloning and 

 amplification of 

 vectors 

One Shot®TOP10 

(invitrogen) 

F- mcrA Δ(mrr-hsdRMS-mcrBC) 

 Φ80ΔlacM15 ΔlacX74 nupG recA1 

 araD139 Δ(ara-leu)7697 galE15 

 galK16 rpsL (StrR) endA1 λ- 

Used for cloning of 

 Entry vectors with 

 TOPO® Cloning 

CopyCutterTM EPI400TM 

(Epicentre, USA) 

F- mcrA Δ(mrr-hsdRMS-mcrBC) 

 Φ80dlacZΔM15 ΔlacX74 recA1 

 endA1 araD139 Δ(ara, leu)7697 

 galU galK λ- rpsL (StrR) nupG trfA 

 tonA pcnB4 dhfr 

Used for cloning of 

 coding sequences 

 which are toxic to 

 E.coli 

Origami-2 (DE3) 

(Merck, D) 

Δ(ara-leu)7697 ΔlacX74 ΔphoA PvuII 

 phoR araD139 ahpC galE galK rpsL 

 F‘ [lac+ lacIq pro] (DE3) gor 522::Tn 

 10 trxB (StrR, TetR) 

Used for protein 

 expression 

DB3.1TM 

(invitrogen) 

F-gyrA462 endA1 Δ(sr1-recA) mcrB  mrr 

hsdS20(rB–, mB–) supE44 ara-

 14 galK2 lacY1 proA2rpsL20(SmR)  xyl-

5 λ– leu mtl1 

Used for amplification 

 of Donor and 

 Destination vectors 

 

2.1.2 Agrobacterium thumefaciens strains 

GV3101::pMP90 (Koncz and Schell, 1986) 

The strain GV3101::pMP90 is a rifampicin resistant derivate of Agrobacterium thumefaciens C58C1 of 

which the Ti-plasmid pTiC58 traC was removed. Instead the strain was supplemented with the plasmid 

pMP90. pMP90 is a derivate of pTiC58 traC nocC in which the T-region was completely replaced by a 

gentamycine resistence operon.  
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2.1.3 Saccharomyces cerevisiae strains 

table 2.2: Saccharomyces cerevisiae strains 

for mating-based split-ubiquitin (mbSUS) and yeast two-hybrid (Y2H) assays 

strain (source) genotype function 

THY.AP4 

 (Grefen et al., 2009) 

MATa; ade2−, his3−, leu2−, trp1−,  ura3−; 

 lexA::ADE2, lexA::HIS3,  lexA::lacZ 

Used for mbSUS 

THY.AP5 

 (Grefen et al., 2009) 

MATα, ade2−, his3−, leu2−, trp1− Used for mbSUS 

pJ69-4A  

 (James et al., 1996) 

MATa, trp1-901, leu2-3, 112 ura3-52,  his3-

200, gal4Δ, gal80Δ,  LYS2::GAL1- HIS3, 

GAL2-ADE2, met2::GAL7-lacZ 

Used for Y2H 

2.1.4 Arabidopsis thaliana lines 

2.1.4.1 Arabidopsis thaliana lines which have been provided for the Ph.D. thesis 

table 2.3: Arabidopsis thaliana lines which have been provided for the Ph.D. thesis 

line (NASC) ecotype description source 

Nos-0 Nos-0 wildtype Paul Verslues 

ahk1-1 Nos-0 Kumar et al. (2013) Paul Verslues 

Ws-2 Ws-2 wildtype Katharina Caesar 

ahk1-3 Ws-2 Wohlbach et al. (2008) Katharina Caesar 

ahk1-4 Ws-2 Wohlbach et al. (2008) Katharina Caesar 

ahk1-3/35S::AHK1-

 GFP 

Ws-2 pH7FWG2-AHK1 (vector #1168) 

 in ahk1-3, homozygote 

Katharina Caesar 

bri1-5 Ws-2 Noguchi et al. (1999) Peter Huppenberger 

bak1-1 (N6125) Ws-2 Li et al. (2002) NASC  

Col-0 Col-0 wildtype Paul Verslues 

ahk1-5 Col-0 Kumar et al. (2013) Paul Verslues 

ahk1-6 Col-0 Kumar et al. (2013) Paul Verslues 

AHK1 ox Col-0 pUBQ10::AHK1-GFP (vector 

 #1708)  in Col-0 

Katharina Caesar 

bri1-201 (N9532) Col-0 Domagalska et al. (2007) Sacco de Vries 

bri1-301 Col-0 Kang et al. (2010) Sacco de Vries 

cngc7 (N679395) Col-0 SALK_019117.56.00.x NASC  

bak1-3 (N534523) Col-0 Kemmerling et al. (2007) Birgit Kemmerling 

bak1-4 Col-0 Kemmerling et al. (2007) Birgit Kemmerling 

aha1-6 (N67805) Col-0 Haruta et al. (2010) Friederike Wanke 

aha2-4 (N67807) Col-0 Haruta et al. (2010) Friederike Wanke 

ahk2 ahk3 Col-0 Higuchi et al. (2004) Virtudes Mira- Rodado 

Col-0/R-GECO1 

(1460/1) 

Col-0 unpublished Karin Schuhmacher 
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2.1.4.2 Arabidopsis thaliana lines which have been generated during the Ph.D. thesis 

table 2.4: Arabidopsis thaliana lines which have been generated during the Ph.D. thesis 

line ecotype description source 

pHK1::mC Col-0 pB7-AHK1pro-mCherryNLS   

(vector #1868) in Col-0 

A. thumefaciens 

 transformation 

Ws-2.RFP-MBD  

  

Ws-2 pUBN-RFP-MBD (vector #3296) in Ws-2, 

T2, heterozygote 

A. thumefaciens 

 transformation 

ahk1-3.RFP-MBD 

  

Ws-2 pUBN-RFP-MBD (vector #3296) in  

ahk1-3, T2, heterozygote 

A. thumefaciens 

 transformation 

ahk1-4.RFP-MBD 

  

Ws-2 pUBN-RFP-MBD (vector #3296) in  

ahk1-4, T2, heterozygote 

A. thumefaciens 

 transformation 

Ws-2.ABD2-GFP 

  

Ws-2 pUB-GFP-ABD2-GFP (vector #3298) in 

Ws-2, T2, heterozygote 

A. thumefaciens 

 transformation 

ahk1-3.ABD2-GFP 

  

Ws-2 pUB-GFP-ABD2-GFP (vector #3298) in 

ahk1-3, T2, heterozygote 

A. thumefaciens 

 transformation 

ahk1-4.ABD2-GFP 

  

Ws-2 pUB-GFP-ABD2-GFP (vector #3298) in 

ahk1-4, T2, heterozygote 

A. thumefaciens 

 transformation 

bri1-5 ahk1-3 Ws-2 homozygoute crossing 

bak1-1 ahk1-3 Ws-2 homozygote crossing 

2.1.5 Nicotiana benthamiana lines 

Nicotiana benthamiana L. Samsun NN 

2.2 DNA 

2.2.1 Vectors 

2.2.1.1 Vectors which have been provided for the Ph.D. thesis 

A complete list of the vectors which have been provided for the Ph.D. thesis is included in appendix 

(A1). Maps of the vectors which show the important functional features are attached in appendix (A3). 

2.2.1.2 Vectors which have been generated during the Ph.D. thesis 

A list of the vectors which were generated during the Ph.D. thesis is included in the appendix (A2). 

Maps of the vectors which show the important functional features are attached in appendix (A3). 

2.2.2 Oligonucleotides 

Oligonucleotides were ordered from biomers.net.  

The appendix comprises the list of oligonucleotides for genotyping of Arabidopsis thaliana T-DNA 

insertion lines (A4), oligonucleotides and restriction enzymes for genotyping of Arabidopsis thaliana 

EMS mutants (A5), oligonucleotides for the detection of T-DNAs in stably transformed Arabidopsis 

thaliana lines (A6), oligonucleotides for cloning (A7), oligonucleotides for site-directed mutagenesis 

(A8) and oligonucleotides for sequencing by GATC-Biotech (A9). 

 



MATERIAL 

 

20 
 

2.3 General chemicals and solutions 

2.3.1 Chemicals 

Unless otherwise noted, all used chemicals were ordered analytically pure from Sigma-Aldrich 

(Steinheim, D) and Roth (Karlsruhe, D). 

2.3.2 Antibiotics 

table 2.5: Antibiotics 

antibiotic 
selection 
E.coli 

selection  
A. thumefaciens 

selection  
A. thaliana solvent company 

Ampicillin 100µg/mL - - 70% EtOH Roth® 

Kanamycin 50µg/mL 50µg/mL 50µg/mL H2O Roth® 

Spectinomycin 50µg/mL 100µg/mL - H2O AppliChem 

Hygromycin - - 25µg/mL H2O Sigma-Aldrich 

Rifampicin - 100µg/mL - DMSO Sigma-Aldrich 

Gentamycin 10µg/mL 40µg/mL - H2O Duchefa 

2.3.3 Hormones and inhibitors 

table 2.6: Hormones and inhibitors 

hormone solvent company 

1-aminocyclopropane-1-carboxylic acid H2O Sigma-Aldrich 

silver nitrate H2O Biotech 

methyl-jasmonate ethanol Sigma-Aldrich 

salicylic acid ethanol Sigma-Aldrich 

indole-3-acetic acid ethanol Serva 

abscissic acid ethanol Sigma-Aldrich 

brassinolide ethanol Sigma-Aldrich 

propiconazole ethanol Sigma-Aldrich 

β-estradiol ethanol Sigma-Aldrich 

kinetin  H2O Sigma-Aldrich 

1-N-naphthylphthalamic acid DMSO Sigma-Aldrich 

2.3.4 Elicitors (PAMPs) 

The pathogen-associated molecular pattern flg22 was kindly provided by Markus Albrecht (ZMBP, 

Biochemistry). 

2.3.5 Enzymes and commercial kits 

table 2.7: Enzymes and commercial kits 

enzyme or commercial kit company 

Taq DNA Polymerase New England Biolabs 

Phusion® High Fidelity DNA Polymerase Thermo Scientific 

T4-DNA-Polymerase Thermo Scientific 

pENTRTM/D-TOPO® Cloning Kit Thermo Scientific 
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enzyme or commercial kit company 

Gateway® LR Clonase enzyme mix Thermo Scientific 

Gateway® BP Clonase enzyme mix Thermo Scientific 

restriction endonucleases Thermo Scientific and  

New England Biolabs 

Shrimp Alkaline Phosphatase, SAP Thermo Scientific 

T4 Polynucleotide Kinase, PNK Thermo Scientific 

T4 DNA Ligase Thermo Scientific 

RevertAidTM H Minus Reverse Transcriptase Thermo Scientific 

PureLinkTM
 Quick Gel Extraction Kit Invitrogen 

Gel Extraction Kit genaxxon 

EURx GeneMATRIX Universal RNA Purification Kit roboklon 

NucleoBond Xtra Midi (50) Macherey-Nagel 

Maxima® SYBR Green qPCR Master Mix (2X) Thermo Scientific 

2.3.6 Antibodies 

table 2.8: Antibodies 

antibody clonality source organism dilution for use company 

α-c-myc monoclonal mouse 1:1000 Roche 

α-HA monoclonal rat 1:1000 Roche 

α-VP16 polyclonal rabbit 1:500 GeneTex 

α-mouse-AP polyclonal goat 1:3000 BioRad 

α-rat-AP polyclonal goat 1:3000 Sigma 

α-rabbit-AP polyclonal goat 1:3000 Sigma 

α-His-AP monoclonal mouse 1:3000 antibodies-online 

2.3.7 Size standards  
 

 

figure 2.1: Protein and DNA size standards  

(A) SpectraTM Multicolor Broad Range Protein Ladder (Thermo Scientific). Bands mark proteins of the 

sizes 260kDa, 140kDa, 100kDa, 70kDa, 50kDa, 40kDa, 35kDa, 25kDa, 15kDa and 10kDa. (B) Self-made 

λ-PstI DNA size marker. Bands mark DNA-fragments of the sizes 11502bp, 5077bp, 4749bp, 4507bp, 

2838bp, 2555bp, 2459bp, 2443bp, 2140bp, 1986bp, 1700bp, 1159bp, 1093bp, 805bp, 514bp, 468bp, 

448bp, 339bp, 264bp, 247bp, 216bp, 211bp, 200bp, 164bp, 150bp, 94bp, 87bp, 72bp and 15bp from the 

left to the right. 
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table 2.9: Size standards 

description size standard for company 

λ-PstI marker DNA self-made 

SpectraTM Multicolor Broad Range Protein Ladder protein Thermo Scientific 

2.4 General solutions 

10X TE-buffer pH 8.0 100mM 

10mM 

Tris/HCl pH 8.0 

EDTA 

   

TE-buffer pH 8.0 10% (v/v) 10X TE-buffer pH 8.0 

   

0.5M NaOH   

   

1.5M Tris/HCl pH 8.8   

   

1M Tris/HCl pH 8.0   

   

0.5 Tris/HCl pH 6.8   

   

20% SDS   

2.5 Special buffers and solutions for work with bacteria 

2.5.1 Growth media 

Luria-Bertani broth (LB) 

 

 

for plates add 

1% (w/v) 

0.5% (w/v) 

1% (w/v) 

1.5% (w/v) 

Bacto-Peptone 

Yeast extract 

NaCl 

Agar No.1 (Oxoid) before autoclaving 

   

Yeast Extract Broth (YEB) 

 

 

 

 

for plates add 

0.5% (w/v) 

0.1% (w/v) 

0.5% (w/v) 

0.5% (w/v) 

2mM 

1.5% (w/v) 

Beef Extract 

Yeast Extract 

Peptone 

Sucrose  

MgSO4 

Agar No.1 (Oxoid) before autoclaving 

 

For the production of selection media respective antibiotics were added when the autoclaved media 

had ~55°C at most. 

2.5.2 Media and buffers to obtain chemically competent cells 

Super Optimal Broth (SOB) 

 

 

 

 

after autoclaving add 

2% (w/v) 

0.5% (w/v) 

10mM 

2.5mM 

Bacto Tryptone 

Yeast Extract 

NaCl 

KCl 

adjust pH with NaOH to pH 7.0 

10mM 

10mM  

MgCl2 (1M stock, sterile filtrated) 

MgSO4 (1M stock, sterile filtrated) 
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RF1 100mM 

50mM 

30mM 

10mM 

15% (v/v) 

RbCl 

MnCl2 

Potassium acetate 

CaCl2 

glycerol 

adjust pH with acetic acid to pH 5.8 

sterilize by filtration 

   

RF2 10mM 

10mM 

75mM 

15% (v/v) 

MOPS 

RbCl 

CaCl2 

glycerol 

adjust pH with KOH and HCl to pH 6.1 – 6.4 

sterilize by filtration 

2.6 Special buffers and solutions for work with yeast 

2.6.1 Growth media 

YPAD 

 

 

 

for plates add 

2% (w/v) 

2% (w/v) 

1% (w/v) 

0.001% (w/v) 

2% (w/v) 

Peptone 

Glucose 

Yeast Extract 

Adenine-Hydrochloride 

Agar No.1 (Oxoid) before autoclaving 

   

CSM-Leu--Trp- 

 

 

 

for plates add 

2% (w/v) 

0.5% (w/v) 

0.17% (w/v) 

0.064% (w/v) 

2% (w/v) 

Glucose 

(NH)4SO4 

Yeast Nitrogen Base (Becton, Dickinson) 

CSM-Leu--Trp- (Th.Geyer, D) 

Agar No.1 (Oxoid) before autoclaving 

   

CSM-Leu--Trp--Ade- 2% (w/v) 

0.5% (w/v) 

0.17% (w/v) 

0.064% (w/v) 

2% (w/v) 

Glucose 

(NH)4SO4 

Yeast Nitrogen Base (Becton, Dickinson) 

CSM-Leu--Trp--Ade- (Th.Geyer, D) 

Agar No.1 (Oxoid)   

   

CSM minimal medium 

 

 

 

 

for plates add 

2% (w/v) 

0.5% (w/v) 

0.17% (w/v) 

0.064% (w/v) 

 

2% (w/v) 

Glucose 

(NH)4SO4 

Yeast Nitrogen Base (Becton, Dickinson) 

CSM-Ade--His--Trp--Leu--Ura--Met- (Th.Geyer, 

D) 

Agar No.1 (Oxoid) before autoclaving 

   

0.2% Ade 0.2g 

100mL 

adenine sulfate 

MilliQ water 

sterilize by filtration, store at 4°C 

   

0.2% Ura 0.2g 

100mL 

uracile 

MilliQ water 

sterilize by filtration, store at 4°C 
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1% Leu 1.0g 

100mL 

L-leucine 

MilliQ water 

sterilize by filtration, store at 4°C 

 

   

1% Trp 1.0g 

100mL 

L-tryptophane 

MilliQ water 

sterilize by filtration, store at 4°C 

   

1% His 1.0g 

100mL 

L-histidine 

MilliQ water 

sterilize by filtration, store at 4°C 

   

1.5% Met 1.5g 

100mL 

L-methionine 

MilliQ water 

sterilize by filtration, store at 4°C 

   

CSM-Ade+-His+-Trp+-Ura+ 

for plates add 

100% (v/v) 

2% (w/v) 

CSM minimal medium 

Agar No.1 (Oxoid) before autoclaving 

autoclave 

1% (v/v) 

0.2% (v/v) 

0.2% (v/v) 

1% (v/v) 

0.2% Ade 

1% His 

1% Trp 

0.2% Ura 

   

CSM-Ade+-His+-Leu+ 

for plates add 

100% (v/v) 

2% (w/v) 

CSM minimal medium 

Agar No.1 (Oxoid) before autoclaving 

autoclave 

1% (v/v) 

0.2% (v/v) 

1% (v/v) 

0.2% Ada 

1% His 

1% Leu 

   

CSM-Ade+-His+ 

for plates add 

100% (v/v) 

2% (w/v) 

CSM minimal medium 

Agar No.1 (Oxoid) before autoclaving 

autoclave 

1% (v/v) 

0.2% (v/v) 

0.2% Ade 

1% His 

   

CSM-Met+ 

for plates add 

100% (v/v) 

2% (w/v) 

CSM minimal medium 

Agar No.1 (Oxoid) before autoclaving 

autoclave 

0.05% (v/v) 1.5% Met 

 

2.6.2 Buffers for the transformation of S. cerevisiae 

salmon sperm DNA 400mg 

ad 50mL 

Salmon Sperm DNA (Sigma-Aldrich) 

sterile TE/LiAc buffer pH7.5 

Incubate at 4°C for 24-48h while rotating. 

Store Aliquots at -20°C. 
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LiAc stock solution 1M LiAc 

adjust pH to pH 7.5 with acetic acid 

autoclave  

   

PEG stock solution 50% (w/v) 

autoclave 

PEG 4000 

   

10X TE buffer 100mM  

10mM  

autoclave 

Tris/HCl pH 7.5 

EDTA 

   

TE/LiAc buffer 10% (v/v) 

10% (v/v) 

10X TE buffer 

1M LiAc stock solution 

   

PEG/LiAc buffer 10% (v/v) 

10% (v/v) 

80% (v/v) 

1M LiAc stock solution 

10X TE buffer 

PEG stock solution 

2.7 Special buffers and solutions for work with plants 

2.7.1 Growth substrates and media 

½ MS 2.15g/L Murashige and Skoog basal salt mixture 

(Sigma-Aldrich) 

adjust pH with KOH to pH 5.7  

autoclave 

   

½ MS-agar 

  

2.15g/L Murashige and Skoog basal salt mixture 

(Sigma-Aldrich) 

adjust pH with KOH to pH 5.7  

1% (w/v) Phytoagar (Duchefa) 

autoclave 

  

 

For ½ MS-agar supplemented with hormones, PAMPs and inhibitors the substances were added to 

autoclaved ½ MS-agar of ~55°C.  

 

   

5X MS-stock 21,5g/L Murashige and Skoog basal salt mixture 

(Sigma-Aldrich) 

   

Osmotic stress media 

 

 

 

for plates add 

10% (v/v) 

0.039% (w/v) 

5X MS-stock 

MES 

add respective mass of mannitol/sorbitol/CaCl2 

adjust pH with KOH to pH 5.7  

1% (w/v) Phytoagar (Duchefa) before autoclaving 
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JPL-medium 10% (v/v) 

0,3% (v/v) 

0.5% (w/v) 

2mM 

1mM 

1mM 

2mM 

4mM 

1mM 

10X Medium Stock Solution 

1M MES pH 5.8 

Sucrose 

KNO3 

NH4NO3 

glutamine 

K2SO4 

CaCl2 

MgSO4 

   

10X Medium Stock Solution 0.3% (v/v) 

0.5% (v/v) 

375mM 

0.1mM 

Microelement Stock Solution 

Solution E 

KH2PO4 

Phosphate buffer 

   

Microelement Stock Solution 100mM 

100mM 

36mM 

5mM 

1mM 

0.1mM 

0.1mM 

H3BO3 

MnSO4 

ZnSO4 

KI 

Na2MoO4 

CoCl2 

CuSO4 

   

Solution E 10mM 

10mM 

FeSO4 

Na2EDTA 

   

Phosphate buffer 39mL 

61mL 

200mM NaH2PO4 

200mM Na2HPO4 

 

For plant growth assays on plates, plates in the size of 12cm x 12cm have been used and filled with 

~50ml media. Any additives to the media were given when the media was not warmer than 55°C. 

For cultivation of Arabidopsis thaliana on soil, ten parts T-soil, ten parts P-soil and one part sand were 

mixed. For the cultivation of Nicotiana benthamiana the mixture of T-soil to P-soil to sand was 1:1:1.  

T-soil had a pH5.5-6.5 and contained 3.0g/L salt, 250-300mg/L N, 250-450mg/L P2O5 and 300-

500mg/L K2O. P-soil had a pH5.5-6.5 and contained 1.5g/L salt, 100-250mg/L N, 100-250mg/L P2O5 

and 100-250mg/L K2O. 

2.7.2 Seed surface sterilization 

sodium hypochlorite solution 50% (v/v) 

0.01% (v/v) 

Sodium hypochlorite 

Triton-X-100 

   

ethanol solution 70% (v/v) 

0.01% (v/v) 

ethanol 

Triton-X-100 

2.7.3 Stable transformation of Arabidopsis thaliana plants 

transformation solution 5% 

0.01% 

200µM 

10mM 

Sucrose 

Silwet L-77 

Acetosyringon 

MgSO4 
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2.7.4 Transient expression of proteins in Nicotiana benthamiana 

transformation solution 1% (v/v) 

0.1% (v/v) 

0.33% (v/v) 

1M MES/KOH pH 5.6 

200mM Acetosyringon 

3M MgCl2 

 

2.7.5 Induction of protein expression in N. benthamiana with β-estradiol 

induction solution 20µM 

0.1% (v/v) 

β-estradiol 

Tween 20 

 

2.7.6 Pathogen assay with Alternaria brassicicola 

trypan blue staining solution 10mL 

10mL 

10mL 

10mL 

300mg 

80mL 

lactic acid 

glycerol 

phenol 

water 

trypan blue 

ethanol 

   

chloral hydrate solution 25g 

25mL 

chloral hydrate 

water 

 

2.7.7 Destaining of Arabidopsis thaliana with acidified methanol 

acidified methanol 20% (v/v) 

4% (v/v) 

methanol 

37% HCl 

   

neutralisation solution 7% (w/v) 

60% (v/v) 

NaOH 

ethanol 

 

2.7.8 Protoplast isolation 

enzyme solution 

 

 

 

 

 

add 

10% (v/v) 

10% (v/v) 

50% (v/v) 

1.5% (w/v) 

0.4% (w/v) 

0.2M MES pH 5.7 

0.2M KCl 

0.8M mannitol 

Cellulase R10 

Macerozyme R10 

incubate at 55°C for 10min, then place on ice 

10% (v/v) 

0.1% (v/v) 

0.1M CaCl2 

1mg/mL BSA 

   

W5 solution 1% (v/v) 

2.5% (v/v) 

10% (v/v) 

10% (v/v) 

0.2M MES pH 5.7 

0.2M KCl 

1.25M CaCl2 

1.54M NaCl 

   

MMG solution 2% (v/v) 

8% (w/v) 

10% (v/v) 

0.2M MES pH 5.7 

mannitol 

0.15M MgCl2 
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300M solution 10mM 

10mM 

10mM 

300mM 

MES/KOH pH5.8 

CaCl2 

KCl 

mannitol 

   

300ME solution 

 

 

 

 

 

add 

10% (v/v) 

10% (v/v) 

37.5% (v/v) 

1.5% (w/v) 

0.4% (w/v) 

0.2M MES/KOH pH 5.7 

0.2M KCl 

0.8M mannitol 

Cellulase Onozuka R-10 (Duchefa) 

Macerozyme R-10 (Duchefa) 

incubate at 55°C for 10min 

10% (v/v) 0.1M CaCl2 

2.7.9 Transformation of Arabidopsis thaliana mesophyll protoplasts 

PEG solution 40% (w/v) 

25% (v/v) 

8% (w/v) 

PEG 4000 

0.8M mannitol 

1.25M CaCl2 

   

luciferin 20mM luciferin 

solve in water and add KOH until yellow color stays 

 

2.7.10 Protoplast swelling assay 

150M solution 10mM 

10mM 

10mM 

150mM 

MES/KOH pH5.8 

CaCl2 

KCl 

mannitol 

 

2.8 Special buffers and solutions for work with RNA 

2.8.1 Reverse transcription 

dNTP Mix 10mM 

10mM 

10mM 

10mM 

dATP 

dTTP 

dGTP 

dCTP 

 

2.9 Special buffers and solutions for work with DNA 

2.9.1 Preparation of plasmid DNA from Escherichia coli 

Mini I 50mM 

10mM 

Tris/HCl pH8.0 

EDTA 

autoclave 

20mg/mL RNase A 

   

Mini II 0.2M 

1% 

NaOH 

SDS 
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Mini III (pH 5.5) 29.44% (w/v) 

11.4% (v/v) 

KCH3COO 

Acetic acid glacial 

2.9.2 Extraction of genomic DNA from Arabidopsis thaliana 

Edward’s buffer 200mM 

250mM  

25mM 

0.5% (w/v) 

Tris/HCl pH 7.5 

NaCl 

EDTA 

SDS 

2.9.3 Agarose-gel-electrophoresis 

50X TAE-buffer 2M 

1M 

0.05M 

Tris 

acetic acid 

EDTA 

   

1X TAE-buffer 2% (v/v) 50X TAE-buffer  

(40mM Tris, 20mM acetic acid, 1mM EDTA) 

2.9.4 Polymerase chain reaction (PCR) 

dNTP Mix 10mM 

10mM 

10mM 

10mM 

dATP 

dTTP 

dGTP 

dCTP 

2.10 Special buffers and solutions for work with proteins 

2.10.1 Extraction buffers 

Lyse and Load buffer 0.05M 

0.1M 

8M 

0.005% 

4% 

30% 

Tris/HCl pH 6.8 

DTT 

Urea 

Bromophenol blue 

SDS 

glycerol 

stored at -20°C 

2.10.2 SDS-PAGE 

Bottom buffer 1M 

0.27% (w/v) 

Tris/HCl pH 8.0 

SDS 

sterilize by filtration 

   

Upper buffer 0.25M 

0.2% (w/v) 

Tris/HCl pH 6.8 

SDS 

sterilize by filtration 

 

table 2.10: Incredients for of two SDS-PAGE running and stacking gels 

Running Gel 30% acrylamide MilliQ water Bottom buffer 10% APS TEMED 

15.0% 6.0mL 1.4mL 4.5mL 100µL 8µL 

12.5% 5.0mL 2.4mL 4.5mL 100µL 8µL 

10.0% 4.0mL 3.4mL 4.5mL 100µL 8µL 

7.5% 3.0mL 4.4mL 4.5mL 100µL 8µL 
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Stacking Gel 30% acrylamide MilliQ water Upper buffer 10% APS TEMED 

4.5% 0.6mL 1.4mL 2.0mL 20µL 4µL 

 

APS:  Ammonium persulfate 

TEMED: tetramethylethylendiamine 

2.10.3 Coomassie staining 

staining solution 25% (v/v) 

10% (v/v) 

0.05% (w/v) 

isopropanol 

acetic acid 

Coomassie R-250 

   

destainer solution 10% (v/v) acetic acid 

2.10.4 Western Blot 

transfer buffer 1.43% (w/v) 

0.39% (w/v) 

20% (v/v) 

glycine 

Tris-base 

ethanol 

 

PVDF-membrane (Millipore) 

Whatman®-paper (GE Healthcare Life Sciences) 

2.10.5 Immunodetection 

10X TBS buffer 0.5M 

1.5M 

Tris/HCl pH 7.4 

NaCl 

   

1X TBS buffer 10% (v/v) 10X TBS buffer 

   

TBS-Tween 10% (v/v) 

0.1% (v/v) 

10X TBS buffer 

Tween20 

   

blocking solution 10% (v/v) 

5% (w/v) 

10X TBS buffer 

milk powder 

   

staining buffer A 100mM  

100mM  

5mM 

Tris/HCl pH 9.5 

NaCl 

MgCl2 

   

NBT stock solution 5% (w/v) 

70% (v/v) 

nitro blue tetrazolium 

Dimethylformamid 

   

BCIP stock solution 5% (w/v) 

100% (v/v) 

5-bromo-4-chloro-3-indolylphosphate-p-tuloidin 

Dimethylformamid 

   

staining solution 0.66% (v/v) 

0.33% (v/v) 

100% (v/v) 

NBT stock solution 

BCIP stock solution 

staining buffer A 
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2.10.6 CD-spectroscopy with AHK1-ED 

buffer for AHK1-ED  0.25M 

0.15M 

0.1% (v/v) 

0.1% (v/v) 

Tris/HCl pH 9.0 

NaCl 

Triton-X-100 

sodium lauroyl sarcosine 

   

buffer for AHK1-ED-

 Leu298/422Ala 

0.25M 

0.15M 

0.1% (v/v) 

Tris/HCl pH 9.0 

NaCl 

sodium lauroyl sarcosine 

 

2.11 Growth chambers for plants 

long day chamber 16h light / 8h dark 

 light tubes: 33% Osram L18W/77 Fluora,  

   66% Osram L18/840 Lumilux Cool White 

20°C (day) / 18°C (night) 

50% humidity 

  

short day chamber 8h light / 16h dark 

 light tubes: 50% Osram L18W/77 Fluora,  

   50% Osram L18/840 Lumilux Cool White 

21°C (day) / 20°C (night) 

50% humidity 

  

constant light chamber 24h light (89µmol m-2 s-1) 

20°C 

  

greenhouse (A. thaliana) 16h light / 8h dark 

18°C (day) / 15°C (night) 

55-60% humidity 

  

greenhouse (N. benthamiana) 14h light / 10h dark 

23°C (day) / 20°C (night) 

60% humidity 

2.12 Machines 

Thermomixer 5436, Eppendorf 

Vortex-GenieTM, Bender & Hobein AG 

Sherwood flame photometer Model 410 

Roth Micro Centrifuge 

Eppendorf Centrifuges 5417R, 5417C, 5810R 

Beckmann J2-21M induction drive centrifuge 

PCR-Thermocycler PeqStar96 Universal gradient, Peqlab 

microscopes: TCS SP2, Leica Microsystems GmbH, TCS SP8, Leica Microsystems GmbH 

clean benches: Microflow Biological Safety cabinet, ASTEC 

incubators: HettCube 600 R, Hettrich; Inova 44, Eppendorf 

Agarose gel-electrophoresis chambers: Peqlab Perfect BlueTM Gelsystem 

Labnet Power Station 300 Plus 
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Scanner: Expression 1600, Epson 

NanoDrop photometer ND-1000, NanoDrop products 

SDS-PAGE chambers: Mini-PROTEAN® Tetra Vertical Electrophoresis Cell, BioRad 

PowerPacTM High-Current Power Supply, BioRad 

Mini Trans-Blot Electrophoretic Transfer Cell, BioRad 

Silamat® S6, Ivoclar Vivadent 

2.13 Software 

PicsArt 

ImageJ (Wayne Rasband, National Institutes of Health) 

Gimp (The Gimp Team) 

ApE - A plasmid editor (by M. Wayne Davis) 

Microsoft Office 2007 + 2010 (Microsoft Corporation) 

Adobe Reader IX (Adobe Systems Software Ireland Limited) 

Leica Application Suite X (Leica Microsystems GmbH) 

Leica Application Suite AF Lite (Leica Microsystems GmbH) 

2.14 Online resources 

MUSCLE sequence alignment http://www.ebi.ac.uk/Tools/msa/muscle/ 

Pub Med and BLAST   https://www.ncbi.nlm.nih.gov 

ExPasy translate tool   http://web.expasy.org/translate/ 

prediction of protein domains  www.elm.eu.org 

http://smart.embl-heidelberg.de 

Arabidopsis eFP browser  http://bar.utoronto.ca/efp/cgi-bin/efpWeb.cgi 

information about Arabidopsis lines http://arabidopsis.info/BrowsePage 

https://www.arabidopsis.org 

2.15 External devices 

GATC-Biotech (D) 

GenScript (USA) 

GeneCust (L) 
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3 METHODS 

3.1 Molecular-biological methods 

3.1.1 Production of competent cells 

3.1.1.1 Production of chemically competent Escherichia coli cells 

Cells from a glycerol-stock were distributed on a selection-free LB-plate using 2.85-3.45mm glass 

beads and grown over night at 37°C. A 5mL LB-preculture was inoculated with one single colony and 

grown over night at 28°C while shaking. Two 200mL SOB-main-cultures were inoculated in 2L flasks 

with 0.1mL of the LB-preculture and grown up to an OD600 of 0.45 to 0.55 at 25°C while shaking. 

Before the cells were pelletized by centrifugation at 4°C with 2500g for 10min, the culture was 

incubated on ice for 15min. The pellet was resuspended in 4°C cold 5mL RF1 and incubated for one 

hour on ice. The cells were again pelletized by centrifugation at 4°C with 2500g for 10min. The pellet 

was resuspended in 4°C cold 4mL RF2 and incubated on ice for 15min. Aliquots of 50µl were 

immediately frozen in liquid nitrogen and stored at -80°C. The analysis of resistance and competence 

was executed on the day of production and two weeks later. For the analysis of resistance it was 

checked that the cells do not grow on Ampicillin-, Kanamycin-, Spectinomycin- and Gentamycin-

selection.  

3.1.1.2 Production of electrically competent Escherichia coli cells 

Cells from a glycerol-stock were distributed on a selection-free LB-plate using 2.85-3.45mm glass 

beads and grown over night at 37°C. A 5mL LB-preculture was inoculated with one single colony and 

grown over night at 37°C while shaking. 100mL main culture were inoculated with the over-night 

preculture to an OD600=0.01. When the OD600 reached 0.5 cells were pelletized by centrifugation at 4°C 

with 4000rpm for 10min. The cells were then washed twice with pre-cooled 90mL sterile MilliQ water 

and once with pre-cooled 90mL autoclaved 10% glycerol. Subsequenly the cells were resuspended in 

1mL autoclaved 10% glycerol. Aliquots of 50µL were directly frozen in liquid nitrogen and stored at -

80°C. 

3.1.1.3 Production of chemically competent Agrobacterium thumefaciens cells 

A dilution streaking was executed on YEB-media with Rifampicin (Rif) and Gentamycin (Gent) as 

selection using a glycerol stock of the Agrobacterium thumefaciens strain GV3101. The plates were 

incubated for two to three days at 28°C. The selection with Rif and Gent was applied in all following 

cultures. A 5mL YEB-preculture was inoculated with one single colony and incubated over night at 

28°C while shaking. For an intermediate culture 22.5mL YEB-medium were inoculated with 2.5mL of 

the preculture and grown over night at 28°C while shaking. The 25mL of the intermediate culture were 

then used to inoculate the main culture of 250mL YEB-medium. The main culture was cultured up to 

an OD600 of 0.5 – 0.8. Before the cells were pelletized by centrifugation at 4°C with 4000g for 5min, the 
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culture was incubated on ice for 15min. The cell pellet was resuspended in 50mL of pre-cooled 150mM 

CaCl2-solution. The cells were again pelletized by centrifugation at 4°C with 4000g for 5min. The cell 

pellet was then resuspended in 10mL of pre-cooled 20mM CaCl2-solution. Aliquots of 100µL were 

immediately frozen in liquid nitrogen and stored at -80°C. For the analysis of resistance it was checked 

that the cells do not grow on Kanamycin- and Spectinomycin-selection. 

3.1.1.4 Production of chemically competent Saccharomyces cerevisiae 

An over-night preculture of 4-5mL YPAD was inoculated with 1 colony of the respective 

Saccharomyces cerevisiae strain and incubated over night at 28°C shaking. The main culture of 4mL 

YPAD was inoculated with 0.4mL of the preculture and shaken at 28°C for four to six hours until an 

OD600 of 0.8 – 1.0 was reached. The cells were pelletized by centrifugation at room temperature with 

1700g for 1min and resuspended in 500µL TE/LiAc buffer. The centrifugation and resuspension was 

repeated two to three times. Then the cells were resuspended in 300µL TE/LiAc buffer and incubated 

on ice for 10min to 3h. The competent cells were always used freshly for transformation. 

3.1.1.5 Analysis of competence of competent cells 

For the test of the competence of E. coli cells a transformation of 50µL competent cells was executed 

with 1µL of 10pg/µL pUC19. Instead of 1mL LB for the one hour recovering at 37°C just 300µL LB 

were used. After the recovering 20µL, 50µL and 80µL of the transformed cells were distributed on LB 

medium with Ampicillin selection using 2.85-3.45mm glass beads and grown over night at 37°C. The 

grown colonies were counted for the calculation of competence. The transformation efficiency TE is 

defined as TE = Colonies / µg DNA / dilution and therefore as the number of colony forming units per 

1µg of plasmid. 

3.1.2 Transformation of competent cells 

3.1.2.1 Transformation of chemically competent Escherichia coli 

The aliquot of chemically competent E. coli cells (NEB®5α, One Shot® TOP10, Origami-2 (DE3)) was 

slowly thawed on ice. 0.1-1µg of vector DNA was added to the thawed cells and the mixture was 

incubated on ice for 5-30min. Then a heat shock of 42°C for 30-60s was executed and afterwards the 

cells were incubated for another 2min on ice. 1mL LB-medium without any selection was added and 

the cells were incubated at 37°C for 1h while shaking. The cells were pelletized by centrifugation at 

13000rpm for 30s, plated on LB-plates with the respective selection and grown over night at 37°C. 

3.1.2.2 Transformation of electrically competent Escherichia coli 

The aliquot of electrically competent E. coli cells (CopyCutterTM EPI400TM) was slowly thawn on ice. 

0.1-11µg of DNA was added to the thawn cells and the mixture was incubated on ice for 5-30min. The 

DNA had to be in water or in very low salt buffer. To get rid of salts for example after ligations the DNA 

solution was dialyzed using dialysis membranes according to the manual. After the incubation on ice 

the mixture was filled into the electroporation cuvettes and the electroporation was executed using 

1.8kV. The mixture was then again placed on ice for 2min. 1mL LB-medium without any selection was 

added and the cells were incubated at 37°C for 1h while shaking. The cells were pelletized by 
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centrifugation at 13000rpm for 30s, plated on LB-plates with the respective selection and grown over 

night at 37°C. 

3.1.2.3 Transformation of chemically competent Agrobacterium thumefaciens 

The aliquot of chemically competent A. thumefaciens was slowly thawed on ice. 1-5µg of a binary 

vector were added to the thawed cells and the mixture was incubated for 5min on ice, for additional 

5min in liquid nitrogen and for 5min at 37°C. Then 1mL YEB-medium without any selection was added. 

For recovery the cells were then shaken at 28°C for 2-4h. The cells were pelletized with 3000rpm in 

2min, subsequently plated on YEB-plates with Rifampicin-, Gentamycin- and the vector-specific 

selection and then cultivated at 28°C for 2-3d. 

3.1.2.4 Verification of the expression construct in Agrobacterium thumefaciens 

To verify the correctness of the nucleotide sequence of the respective expression construct 

transformed in Agrobacterium thumefaciens, a “plasmid rescue” was executed. Therefore the plasmids 

were extracted by an Alkaline Lysis and transformed into Escherichia coli Neb®5α cells. 70µL of this 

transformation reaction were used to inoculate 4mL LB-medium with appropriate antibiotic selection 

and were grown over night at 37°C shaking. Subsequently the plasmids were extracted by Alkaline 

Lysis and analyzed using restriction endonucleases, agarose gel electrophoresis and sequencing.  

3.1.2.5 Transformation of chemically competent Saccharomyces cerevisiae 

For the transformation of Saccharomyces cerevisiae, 16.5µL competent cells were mixed with 3.5µL 

salmon sperm DNA which was heated to 95°C for 3min and then cooled on ice for 1-2min, 2µL of 

vector DNA of ~0.5-1µg/µL and at last with 100µL PEG/LiAc buffer. The mixture was incubated for 30-

60min at room temperature shaking with 500rpm. Subsequent to 20min heat shock at 42°C the cells 

were recovered for 20-30min at 30°C. The cells were pelletized by centrifugation with 1700g for 1min, 

resuspended in 50µL sterile MilliQ water, plated on auxotrophy selection plates and grown for 2-5d at 

28°C (Gietz and Schiestl, 1995). 

For yeast-two-hybrid the bait (pGBKT7) and prey vector (pGADT7) were co-transformed into the S. 

cerevisiae strain pJ69-4A using 1µL vector DNA of each. The transformed cells were plated on CSM-

Leu--Trp- as the pGBKT7-vector complements the Trp auxotrophy and the pGADT7-vector the Leu 

auxtotrophy of pJ69-4A (Fields ad Song, 1989). For the mating-based split-ubiquitin system bait 

(pMetYC) and prey (pXNubA22) vectors were transformed solitary into the two different haploid S. 

cerevisiae strains THY.AP4 and THY.AP5. The transformed THY.AP4 were plated on CSM-Ade+-His+-

Trp+-Ura+- and THY.AP5 on CSM-Ade+-His+-Leu+ auxotrophy media (Grefen et al., 2009).  

3.1.3 Storage of bacterial cells 

For long-term storage of E. coli and A. thumefaciens glycerol- and DMSO-stocks were generated. For 

glycerol-stocks 500µL of the respective over-night culture were mixed with 500µL autoclaved 60% 

glycerol, incubated at room temperature for 5-10min, frozen in liquid nitrogen and stored at -80°C. For 

DMSO-stocks 930µL of the respective over-night culture were mixed with 70µL DMSO, incubated at 

room temperature for 5-10min, frozen in liquid nitrogen and stored at -80°C. 
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3.1.4 Extraction of nucleic acids 

3.1.4.1 Extraction of plasmid DNA  

The Alkaline Lysis was executed according to Sambrook et al. 1989. 4mL LB-medium with an 

appropriate antibiotic were inoculated with a single E. coli colony and incubated over night at 37°C 

shaking. The cells were pelletized by centrifugation at room temperature with 13000rpm for 30s. The 

cells were resuspended in 400µL of Mini I-solution. The lysis was executed with the addition of 400µL 

of Mini II-solution and incubation at room temperature for 4min at most. The neutralization was 

obtained with the addition of 400µL Mini III-solution and incubation on ice for 5min. Cell fragments and 

the drop out were removed by centrifugation at 4°C with 13000rpm for 15min. The addition of an equal 

volume of 2-propanol to the supernatant and a subsequent incubation at -20°C for 20min effects the 

precipitation of vector-DNA. The vector-DNA was pelletized by centrifugation at 4°C with 13000rpm for 

30min, washed with 70% ethanol and dissolved in 54µL 10mM Tris/HCl pH8.0. For the inactivation of 

DNases the samples were heated up to 65°C for 10min.  

Midi Preps for plasmid DNA in higher concentrations and of higher purity were executed using the 

NucleoBond Xtra Midi (50) Kit (Macherey-Nagel) according to the manual. 

3.1.4.2 Extraction of RNA from Arabidopsis thaliana 

The extraction of RNA from Arabidopsis thaliana was executed using the EURx GeneMATRIX 

Universal RNA Purification Kit (roboklon) according to the manual. 

3.1.4.3 Extraction of genomic DNA from Arabidopsis thaliana 

100mg of plant material which is frozen in liquid nitrogen was grinded with the addition of glass beads 

with 1.25-1.65mm size and the use of the Silamat® S6 with 4500rpm for 5-10s. 300µL of Edward’s 

buffer were added and the samples incubated at 65°C for 10min. Cell fragments were removed by 

centrifugation with 13000rpm for 10min. The DNA was precipitated by the addition of an equal volume 

of 2-propanol to the supernatant. The genomic DNA was pelletized by centrifugation with 13000rpm for 

5-30min, washed with 70% ethanol and dissolved in 100µL 10mM Tris/HCl pH8.0. For the inactivation 

of DNases the samples were heated up to 65°C for 10min. The genomic DNA was stored at -20°C. 

3.1.5 Restriction of plasmid DNA 

For the analytical restriction and the targeted opening of vector DNA for classical cloning suitable 

restriction endonucleases of New England Biolabs and Thermo Scientific were used according to the 

manual. A subsequently executed agarose gel electrophoresis elucidated the size of the DNA 

fragments. 

3.1.6 Reverse transcription 

For the reverse transcription the protocol of the RevertAidTM H Minus Reverse Transcriptase was 

followed using total RNA as template RNA and Oligo(dT)18 (Thermo Scientific) as primer.  

3.1.7 Polymerase chain reaction (PCR) 

The Polymerase chain reaction (PCR) was used to amplify specific DNA-fragments. Dependent on the 

purpose of the reaction different DNA polymerases were used. The Taq DNA Polymerase of New 
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England Biolabs was used for analytical PCRs, the Phusion® High Fidelity DNA Polymerase of Thermo 

Scientific was used for the amplification of DNA-fragments which should be used for cloning and the 

Maxima® SYBR Green qPCR Master Mix (2X) of Thermo Scientific was used for quantitative real time 

PCR. The PCRs with the different DNA polymerases were executed according to the respective 

manual.  

3.1.8 Genotyping 

To confirm homozygosity of exchanges of basepairs and T-DNA insertions, the used Arabidopsis 

thaliana lines were genotyped. To genotype plant lines with T-DNA insertions, PCRs were executed on 

genomic DNA with Taq DNA Polymerase (New England Biolabs) and two pairs of primers. The pair of 

primers in which both primers were gene-specific, detected putative wildtype alleles. The second pair 

comprised a gene-specific and a T-DNA specific primer to prove the presence of the T-DNA. When an 

amplicon could be proven just with the first pair of primers, there was no T-DNA insertion at this site 

indicating a wildtype allele. The detection of an amplicon for both pairs of primers indicated 

heterozygosity, the detection of an amplicon just with the second pair of primers indicated 

homozygosity for the T-DNA insertion. For each genotyping reaction a water-, wildtype- and positive 

control was added. 

To genotype plant lines which were derived from EMS mutagenesis and which have single basepair 

exchanges PCRs on genomic DNA were executed with Taq DNA Polymerase (New England Biolabs) 

and gene-specific primers. Subsequent to amplicons which were detected in agarose gel 

electrophoresis, the amplicons were cut with restriction endonucleases which cut specifically either the 

wildtype or the mutated nucleotide sequence. Dependent on the DNA-fragment size the zygosity of the 

plant line could be concluded.  

To proof the presence of stably transformed constructs in Arabidopsis thaliana lines, PCRs were 

executed on genomic DNA with Taq DNA Polymerase (New England Biolabs) and T-DNA specific 

primers. 

3.1.9 Site-directed mutagenesis 

Site-directed mutagenesis used polymerase chain reaction and primers which are modified at the 

particular site to specifically exchange base-pairs in the nucleotide sequence of DNA-fragments. 

Therefore a forward and a complementary reverse primer was designed which contained the desired 

nucleotide sequence. Two PCR reaction setups of 50µL each were mixed according to the manual of 

the Taq DNA Polymerase (New England Biolabs) but just with the forward- or reverse primer 

respectively. After 10 cycles of PCR 25µL of each reaction setup were mixed. Subsequent to additional 

30 PCR cycles the template vector was erased from the reaction setup by the addition of 1µL of the 

restriction endonuclease DpnI. DpnI was inactivated at 85°C for 10min. 5µL of the reaction setup were 

then transformed into E. coli cells.  

3.1.10 Dephosphorylation of DNA-fragments 

The dephosphorylation of DNA-fragments avoids the re-attachment of sticky ends and therefore 

reduces the background in classical cloning. For the dephosphorylation the Shrimp Alkaline 

Phosphatase (Thermo Scientific) was used according to the manufacturer’s manual. 
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3.1.11 Phosphorylation of DNA-fragments 

The phosphorylation of DNA-fragments facilitates the directed attachment of phosphorylated DNA-

fragments with dephosphorylated DNA-fragments in ligations. For the phosphorylation the T4 

Polynucleotide Kinase (Thermo Scientific) was used according to the manufacturer’s manual. 

3.1.12 Classical cloning 

After specific cleavage, the extraction of the desired DNA-fragment from an agarose gel and after de- 

and phosphorylation, DNA-fragments with complementary sticky ends were ligated with the T4 DNA 

Ligase (Thermo Scientific) according to the manufacturer’s manual. The applied ratio of vector 

backbone to DNA-insert depended on the ratio of their size. For the calculation of the molar amount of 

DNA the following formular was used: 

m(DNA − fragment)in µg ∗ 10

size(DNA − fragment)in kb ∗ 6.6 
= n in nmol 

3.1.13 GatewayTM-Cloning 

The GatewayTM system of Thermo Scientific/invitrogen enables fast and site-specific recombination of 

DNA-fragments in vectors. The system is advantageous as one Entry clone which contains the gene of 

interest flanked by attL sequences serves as donor of the gene of interest for different Destination 

vectors. Destination vectors contain the GatewayTM cassette flanked by attR sequences for the in vitro 

recombination with the Entry clone (LR-reaction) and are vectors with different features for protein 

expression. The LR-reaction generates expression clones with the gene of interest flanked by attB 

sites. An in vitro recombination between the expression clone and a Donor vector with the GatewayTM 

cassette flanked by attP sites (BP-reaction) generates an Entry clone and a Destination vector. 

3.1.13.1 pENTRTM/D-TOPO® Cloning 

To generate an Entry clone which contains the gene of interest flanked by attL sequences, 

pENTRTM/D-TOPO® Cloning was used. Therefore the gene of interest was amplified in a polymerase 

chain reaction using the Phusion® High Fidelity DNA Polymerase of Thermo Scientific with proof 

reading function. As the pENTRTM/D-TOPO® Cloning Kit was used for directional TOPO-cloning the 

gene-specific forward primer needed to have the sequence 3’-CACC-[gene-specific nucleotide 

sequence]-5’. For the TOPO-reaction 0.5-2.0µL of the PCR reaction were mixed with 0.5µL Salt 

Solution and 0.5µL pENTRTM/D-TOPO® Cloning mix. The total volume of the reaction setup was 

3.0µL. The reaction was incubated at room temperature for 5min, then placed on ice and transformed 

into chemically competent One Shot® TOP10 or, after dialysis, into electrically competent 

CopyCutterTM EPI400TM E. coli cells. 

3.1.13.2 BP-Cloning 

To generate Entry clones from expression clones for site-directed mutagenesis or further generation of 

expression clones, BP-reactions were executed using the respective expression clone and the Donor 

vector pDONR207 in the concentration of 150ng/µL. 0.5µL of the expression clone, pDONR207, BP-

Clonase buffer, TE-buffer pH 8.0 and BP Clonase Enzyme Mix was mixed, incubated for at least 1h at 

room temperature and transformed into chemically competent NEB®5α E. coli cells. 
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3.1.13.3 LR-Cloning 

The reaction setup for the generation of expression clones by an LR recombination reaction was 0.5µL 

of 150ng/µL Entry clone, 150ng/µL Destination vector, 5X LR Clonase buffer, TE buffer pH 8.0 and LR 

Clonase Enzyme Mix. The mixture was incubated for at least 1h at room temperature. Subsequently, 

1µL Proteinase K was added and the mix incubated for 20min at 37°C. After 10min heat inactivation at 

65°C the LR reaction setup was transformed into chemically competent NEB®5α or into electrically 

competent CopyCutterTM EPI400TM E. coli cells. 

3.1.14 Expression of proteins in Escherichia coli 

For the expression of proteins in Escherichia coli Origami-2 (DE3) cells 4mL LB medium with 

appropriate antibiotics were inoculated with a single Escherichia coli colony which was transformed 

with the respective expression vector. After shaking incubation over night at 37°C 4mL LB medium with 

appropriate antibiotics were inoculated with the over-night culture to OD600=0.8 and induced with 

0.3mM IPTG. After growth at 16°C for 22h the cells were harvested by centrifugation and the proteins 

extracted. 

3.1.15 Denaturing extraction of proteins 

Proteins were extracted from Escherichia coli, Saccharomyces cerevisiae and Nicotiana benthamiana. 

For the extraction of protein from E. coli and S. cerevisiae the OD600 was measured first. Then cells of 

2mL of the respective culture were pelletized by centrifugation with 13000rpm for 30s and the 

supernatant was discarded. Approximately 50µL glass beads in the size of 0.25-0.5mm were added to 

the pellet. Lyse and Load buffer which was pre-heated to 95°C was added in the volume which would 

have been necessary to reach an OD600 of 20. The samples were vortexed for 1min and shaken at 

65°C for 10min. Subsequent to centrifugation with 13000rpm for 30s the supernatant was transferred 

to a new tube and stored at -20°C. 

For the extraction of protein from N. benthamiana a leaf part in the size of approximately 1cm² was 

frozen in liquid nitrogen and shredded with glass beads in the size of 1.25-1.65mm and the Silamat® 

S6 shaking for 5-10s with 4500rpm. 200µL of Lyse and Load buffer which was pre-heated to 95°C was 

added. The samples were vortexed for 1min and shaken at 95°C for 10min. Subsequent to 

centrifugation with 13000rpm for 5min the supernatant was transferred to a new tube and stored at -

20°C. 

The total protein extraction from Arabidopsis thaliana for the analysis of the phosphoproteome as well 

as the tryptic digestion and phosphopeptide enrichment was carried out as described in Wu and 

Schulze 2015. 

3.1.16 Phosphoproteomics (by Waltraud X. Schulze) 

The experimental procedures are adopted from Dautel et al., 2015 and extended for ahk1-3/Ws-2. 

15N-labeling and a reciprocal experimental design (Kierszniowska et al., 2009) was used for the kinetin 

approach with ahk2 ahk3 and Col-0 as well as for the mannitol approach with ahk1-3 and Ws-2 (fig.3.1 

A). In addition, for ahk1-3 and Ws-2 an experimental approach without 15N-labeling was executed 

(fig.3.1 B). In comparison to the metabolic labeling approach, in which the Col-0 and ahk2 ahk3 sample 

or Ws-2 and ahk1-3 sample respectively could be mixed after harvesting, the samples in the not-
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labeled approach had to be further processed individually. These experiments were carried out in at 

least three biological replicates for each combination of 14N/15N-labeling as well as for the un-labeled 

approach. Data were averaged between these replicates. 

 

 

figure 3.1: Experimental setup for the analysis of the phophoproteome detected with and without 

metabolic labeling. 

(A) Experimental setup with metabolic labeling of seedling cultures. Shown is the setup with the unlabeled 

wildtype (blue) and the metabolic labeled mutant plants (red). The setup was additionally executed vice 

versa. Unlabeled wildtype and labeled mutant plants were treated and 1:1 mixed (A, grey) for total protein 

extraction, phosphoprotein enrichment, tryptic digestion and mass spectrometric analysis. The mass 

spectrometric detection of labeled (red) and unlabeled (blue) peptide ions gives an isotope peak separation 

in light and heavy peaks dependent on the mass-to-charge-ratio (m/z) with quantitative differences in the 

intensity. A control experiment was carried out without treatment. (B) Experimental setup without labeling 

of seedling cultures. Treated and untreated cultures of not-labeled (blue) wildtype and mutant plants were 

used individually (B, grey) for total protein extraction, phosphoprotein enrichment, tryptic digesetion and 

mass spectrometric analysis. For each culture and treatment individual spectra were measured all 

together. (A) and (B) were adopted from Arsova et al., 2012 and adjusted.  

 

Protein extraction, tryptic digestion and phosphopeptide enrichment was carried out as described in 

Wu and Schulze 2015. Tryptic peptide mixtures were analyzed by LC/MS/MS using nanoflow Easy-

nLC1000 (Thermo Scientific) as an HPLC-system and a Quadrupole-Orbitrap hybrid mass 

spectrometer (Q-Exactive Plus, Thermo Scientific) as a mass analyzer. Peptides were eluted from a 

75µm x 50cm C18 analytical column (PepMan, Thermo Scientific) on a linear gradient running from 4 

to 64% acetonitrile in 120min (240min for label-free samples) and sprayed directly into the LTQ-

Orbitrap mass spectrometer. Proteins were identified by MS/MS using information-dependent 
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acquisition of fragmentation spectra of multiple charged peptides. Up to twelve data-dependent MS/MS 

spectra were acquired for each full-scan spectrum acquired at 60,000 full-width half-maximum 

resolution. Overall cycle time was approximately one second (Wu et al., 2014).  

For the analysis of the metabolically labeled samples acquired spectra were matched against the 

Arabidopsis proteome (TAIR10, 35386 entries) using Mascot v.2.2. Thereby, carbamidomethylation of 

cysteine was set as fixed modification; oxidation of methionine as well as phosphorylation of serine, 

threonine and tyrosine was set as variable modifications. Mass tolerance for the database search was 

set to 20ppm on full scans and 0.5Da for fragment ions and “15N-metabolic labeling” was chosen as 

quantitation option. Peptides were accepted using a FDR threshold of 0.01. For quantitation, ratios 

between heavy (15N) and light forms of each peptide were calculated using Mascot Distiller. Hits to 

contaminants (e.g. keratins) and additionally identified reverse hits were excluded from further 

analysis. Ratios from reciprocal experiments were converted to “mutant vs wildtype” ratios and 

averaged. Significantly up- or down-regulated proteins were defined by pairwise t-testing with multiple-

testing correction (Benjamini et al., 1995) if peptides were identified in both replica experiments. For 

the peptides identified only in one replica experiment, a two-fold-change cutoff was applied. For the 

analysis of the not labeled samples protein identification and ion intensity quantitation was carried out 

by MaxQuant version 1.5.3.8 (Cox et al., 2008). Spectra were matched against the Arabidopsis 

proteome (TAIR10, 35386 entries) using Andromeda (Cox et al., 2011). Thereby, 

carbamidomethylation of cysteine was set as a fixed modification. Oxidation of methionine as well as 

phosphorylation of serine, threonine and tyrosine was set as variable modifications. Mass tolerance for 

the database search was set to 20 ppm on full scans and 0.5 Da for fragment ions. Multiplicity was set 

to 1. For label-free quantitation, retention time matching between runs was chosen within a time 

window of two minutes. Peptide false discovery rate (FDR) and protein FDR were set to 0.01, while 

site FDR was set to 0.05. Hits to contaminants (e.g. keratins) and reverse hits identified by MaxQuant 

were excluded from further analysis.  

Reported ion intensity values were used for quantitative data analysis. cRacker (Zauber et al., 2012) 

was used for label-free data analysis of phosphopeptide ion intensities based on the MaxQuant output. 

All phosphopeptides and proteotypic non-phosphopeptides were used for quantitation. Within each 

sample, ion intensities of each peptide ions species (each m/z) were normalized against the total ion 

intensities in that sample (peptide ion intensity/total sum of ion intensities). Subsequently, each peptide 

ion species (i.e. each m/z value) was scaled against the average normalized intensities of that ion 

across all treatments. For each peptide, values from three biological replicates then were averaged 

after normalization and scaling. In case of non-phosphopeptides, protein ion intensity sums were 

calculated from normalized can scaled ion intensities of all proteotypic peptides. 

In this work a log2 value above 1.0 or beyond -1.0 is set as threshold for differential phosphorylation. 

For the experiments with metabolic labeling the all phosphopeptides with these log2 values were 

included independently from their p-value, as the quantitation of the phosphopeptides was carried out 

in pairs of ahk1-3 and wt. For the experiments without labeling just the phosphopeptides with p<0.05 

were counted. 
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3.1.17 AHA activity assay (by Waltraud X. Schulze) 

Proteins were extracted from 14d old seedlings which were grown in liquid culture and treated with 

0.3M mannitol and mock for 10min how it was described for the phosphoproteome but without tryptic 

digestion and phosphopeptide enrichment. The measurement of the change of inorganic phosphate 

was performed like described in Lanzetta et. al. (1979). Na3VO4 was used as inhibitor for plasma 

membrane ATPases, EDTA for Ca2+ ATPases, NaN3 for mitochondrial ATPases and Bafilomycin A1 

for the inhibition of V-ATPases. 

3.2 Cell-biological methods 

3.2.1 Cultivation of Escherichia coli  

For the cultivation of Escherichia coli on LB-agar with appropriate antibiotic selection, cells which were 

dissolved in medium were distributed using sterile 2.85-3.45mm glass beads. The LB-agar plates were 

incubated over night at 37°C and could be stored for up to three weeks at 4°C. 

For the cultivation of Escherichia coli in liquid culture 4mL LB-medium with appropriate antibiotic 

selection were inoculated with a single E. coli colony from LB-agar and grown for at least 8h at 37°C 

shaking. These cultures were directly used for the extraction of plasmid DNA (Alkaline Lysis).  

For the production of competent cells as well as for a Midi Prep to extract plasmid DNA the culture was 

used to inoculate cultures of a bigger volume. These cultures were grown according to the respective 

protocols.   

Liquid cultures of CopyCutterTM EPI400TM cells were used to inoculate 4mL LB-medium with 

appropriate antibiotic selection and 4µl CopyCutterTM Induction Solution to OD600=0.1 to induce 

plasmid amplification. These cultures were incubated at 37°C for 4h shaking and then used for the 

extraction of plasmid DNA (Alkaline Lysis).  

For the expression of proteins in Origami-2 (DE3) cells, 4mL LB-medium with appropriate antibiotic 

selection were inoculated with one colony of transformed Origami-2 (DE3) cells and grown over night 

shaking at 37°C. The preculture was used to inoculate the 5mL LB main culture with appropriate 

antibiotic selection and 0.3M IPTG to OD600=0.8 for the induction of protein expression. The main 

culture was cultivated for 22-26h shaking at 16°C. 

3.2.2 Cultivation of Agrobacterium thumefaciens  

Agrobacterium thumefaciens was cultivated on LB as well as on YEB with appropriate antibiotic 

selection. For the cultivation on plates, cells which were dissolved in medium were distributed using 

sterile 2.85-3.45mm glass beads whereas a dilution streaking was executed for A. thumefaciens of 

glycerol or DMSO stocks. The plates were incubated for 2-3d at 28°C and could be stored for up to 

three weeks at 4°C. For the cultivation in liquid culture 4mL medium were inoculated with a single A. 

thumefaciens colony and grown for at least 8h at 28°C shaking.  

3.2.3 Cultivation of Saccharomyces cerevisiae 

For the cultivation of Saccharomyces cerevisiae on plates of the appropriate auxotrophy medium 

dissolved cells were distributed using sterile 2.85-3.45mm glass beads whereas a dilution streaking 

was executed for S. cerevisiae of glycerol or DMSO stocks. The plates were incubated for 1-5d at 
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28°C and could be stored for up to three weeks at 4°C. For the cultivation in liquid culture 4mL of the 

appropriate auxotrophy medium were inoculated with S. cerevisiae, shortly vortexed and incubated at 

28°C shaking for at least 8h. 

3.2.4 Transformation of Arabidopsis thaliana plants 

For the stable transformation of Arabidopsis thaliana plants the “floral dip” method of Clough and Bent, 

1998 was used. Therefore a 5mL YEB-preculture with the respective selection was inoculated with one 

single colony of A. thumefaciens carrying the correct vector-DNA which should be transformed into the 

plant. The preculture was incubated shaking over night at 28°C. The main culture of 200mL YEB-

medium with respective selection was inoculated with 4mL preculture and incubated shaking over night 

at 28°C. The cells of the main culture were pelletized by centrifugation at 4°C with 4000g for 20min and 

resuspended in 200mL of the transformation solution. For the transformation ten flowering plants in 

one 8cm pot were put head first into the Agrobacterium-transformation-solution for 30s. Then the 

plants were placed under the tray cover for keeping the humidity. The tray cover was removed the next 

day. The floral dipping was repeated two days later.  

3.2.5 Transient expression of proteins in Nicotiana benthamiana 

For the transient expression of proteins in Nicotiana benthamiana a 4mL YEB- or LB-preculture with 

the respective selection was inoculated with one single colony of A. thumefaciens carrying the correct 

binary vector-DNA which should be transformed into the plant. The preculture was incubated shaking 

over night at 28°C. The 3mL LB- or YEB-main culture was inoculated with 0.5mL of the preculture and 

grown shaking for 4h at 28°C. The cells were pelletized by centrifugation with 4000rpm at 4°C for 

15min and resuspended in precooled transformation solution. The volume of the transformation 

solution was calculated with 0.5mL transformation solution per leaf which should be infiltrated. When 

two or more constructs should be infiltrated at once, the resuspended A.thumefaciens cells 

transformed with the respective binary vector were mixed 1:1. Subsequent to the incubation of the cells 

on ice for at least 1h, the cells were injected into the tobacco leaf using a syringe without the needle. 

The samples were analyzed by microscopy two to three days after the transformation.  

3.2.6 Induction of protein expression in N. benthamiana with β-estradiol 

Transient expression of proteins in infiltrated leaves of Nicotiana benthamiana was induced 4-8h 

before the microscopic analysis. Therefore the induction solution was applied with a brush to the 

abaxial side of the leaves and incubated for 4-8h. 

3.2.7 Yeast-two-hybrid 

The Yeast-two-hybrid system was used to analyze physical in vivo protein-protein-interactions of 

cytosolic and nuclear proteins. For the interaction test fusion-contructs were generated fusing the 

proteins which should be tested for interaction to either the N-terminal GAL4-activating domain (AD) of 

the GAL4-transcription factor using the pGADT7-vector or the GAL4-DNA binding domain (BD) using 

the pGBKT7-vector. The yeast-two-hybrid system and the interaction test bases on the reconstitution 

of the GAL4-transcription factor upon the physical interaction of two proteins which then leads to the 

transcriptional activation and translation of the auxotrophy marker gene ADE2 and therefore to the 
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ability of growth on ADE depleted medium. For the interaction test 4mL of CSM-Leu--Trp- were 

inoculated with three colonies of co-transformed pJ69-4A and grown over night at 28°C shaking. The 

cells were pelletized by centrifugation with 2000g for 10min and washed twice with sterile MilliQ water. 

Subsequently the cells were resuspended in sterile MilliQ water to OD600=1.0 and a dilution series was 

generated with OD600=0.1 and OD600=0.01. 10µL of each dilution were dropped on the growth control 

medium CSM-Leu--Trp- and the auxotrophy-medium CSM-Leu--Trp--Ade-. The growth at 28°C was 

documented for four to six days by scanning of the plates.  

3.2.8 Mating-based split-ubiquitin screen 

The mating-based split-ubiquitin system was used to analyze in vivo protein-protein-interactions of 

membrane-bound proteins or the interaction between a protein which is bound to a membrane (bait) 

and a cytosolic protein (prey). It utilizes ubiquitin which was split into two halves, the N- (Nub) and C-

terminal (Cub) half. The N-terminal half was mutated to avoid spontaneous reassembling (NubA) and 

Cub was fused N-terminally with a transcriptional activator (lexA-VP16). For the protein-protein 

interaction test fusion constructs were generated, fusing a bait and a prey protein N-terminally to Cub 

(pMetYC) and NubA (pXNubA22). When the bait and prey protein interact, Cub and NubA are brought 

into close proximity and are hence recognized as a functional ubiquitin. This leads to the release of the 

lexA-VP16, therefore to the activation of the Ade2-, His3- and lacZ-gene and the loss of the Ade- and 

His-auxotrophy (Grefen et al., 2009). 

3.2.8.1 Mating of Saccharomyces cerevisiae 

For the protein-interaction test the transformed THY.AP4 and THY.AP5 expressing the proteins which 

should be tested had to be mated. Therefore over-night cultures with 4mL of the respective CSM-

auxotrophy medium were inoculated with at least three colonies and grown at 28°C shaking. Cells of 

2mL were pelletized using centrifugation with 1000g for 10min. The cells were resuspended in YPAD-

medium whereat 20µL per mating were used. 

20µL of bait and prey each were mixed in all combinations which should be tested for interaction. 

Subsequently 4µL of each mating were dropped on a YPAD-plate and grown over night at 28°C. The 

colonies of the mating were resuspended in 50µL of sterile MilliQ water respectively, 7µL each dropped 

on CSM-Ade+-His+ plates and grown for 1-3d at 28°C.  

3.2.8.2  Interaction test 

4mL CSM-Ade+-His+ were inoculated with one colony of the mated S. cerevisiae strains respectively 

and grown over night at 28°C. 2mL of the culture were stored for the denaturing extraction of proteins. 

For the interaction test, cells of 100µL culture were pelletized using centrifugation with 1000g for 

10min, washed three times with 100µL of sterile MilliQ water and resuspended in the volume of sterile 

MilliQ water for OD600=1.0. A dilution series with OD600=0.1 and OD600=0.01 was generated. 5µL of 

each mating in each dilution was dropped on CSM minimal medium, CSM-Ade+-His+ as well as on 

CSM-Met+ and grown at 28°C for up to 8d. The growth was monitored every day by scanning of the 

plates.  
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3.2.9 Propidium iodide (PI) staining 

Propidium iodide (PI) is a cationic dye that does not cross intact membranes but binds to cell walls, 

forming an outline of living cells. Seedlings and leaves were mounted in 0.1mg/mL PI on slides, 

incubated for at least 10min and then analyzed with the epifluorescence or confocal microscope. The 

excitation wavelength for PI is 536nm, the emission maximum at 617nm.  

3.3 Physiological methods 

3.3.1 Seed surface sterilization 

3.3.1.1 Seed surface sterilization with sodium hypochlorite 

At most 50mg of Arabidopsis thaliana seeds were surface sterilized with 1mL sodium hypochlorite 

solution for 5min and washed four times with 1mL of sterile 0.01% Triton-X-100. 

3.3.1.2 Seed surface sterilization with ethanol 

At most 50mg of Arabidopsis thaliana seeds were surface sterilized with 1mL ethanol solution and 

shaken overhead for 15min. The ethanol solution was replaced by 100% ethanol and the seeds again 

shaken overhead for 15min at most. The seeds were pipetted on sterile filter paper, dried and stored 

for further use. 

3.3.1.3 Seed surface sterilization with chloric gas 

At most 50mg seeds of Arabidopsis thaliana were placed in the desiccator. In a beaker glass set in the 

desiccator as well, 50mL 12% sodium hypochlorite and 1.5mL 37% HCl were mixed and the lid of the 

desiccator was immediately closed. The seeds were incubated in the formed chloric gas for three 

hours and were directly used or stored after the evaporation of the gas. 

3.3.2 Cultivation of Arabidopsis thaliana 

For all physiological experiments seeds were used which originate from plants which were 

contemporaneously grown in the greenhouse. 

3.3.2.1 Cultivation of Arabidopsis thaliana on soil 

To synchronize the germination of the seeds, surface sterilized Arabidopsis thaliana seeds were 

stratified in 1mL MilliQ water at 4°C for at least 24h. Then the seeds were pipetted on soil and the trays 

covered by a hood for the first week. Depending on the purpose the plants were grown in the 

greenhouse or the phytochambers.  

For plants which should be used to isolate mesophyll protoplasts, surface sterilized Arabidopsis 

thaliana seeds were stratified in 1mL MilliQ water at 4°C for at least 24h and then pipetted on soil in 

6cm pots. The tray, the pots were placed in, were covered by a hood for two weeks. After two weeks 

the seedlings were singularized in 6cm pots and grown for additional two weeks covered by a hood. 

Subsequently to one week of growth without a hood the plants could be used for mesophyll protoplast 

isolation.  



METHODS 

 

46 
 

3.3.2.2 Cultivation of Arabidopsis thaliana on ½ MS-Agar plates 

Surface sterilized Arabidopsis thaliana seeds were individually placed with autoclaved toothpicks on 

petri dishes with ½ MS-Agar supplemented with different substances. To synchronize the germination 

of the seeds, the dishes were incubated at 4°C for 1-4d. 

3.3.2.3 Cultivation of Arabidopsis thaliana in liquid culture  

Arabidopsis thaliana seeds, which were surface sterilized with chloric gas, were stratified in 1mL sterile 

MilliQ water at 4°C for 3d. The MilliQ water was replaced by the growth medium and the seeds were 

pipetted into the growth vessel. They were cultivated at continuous light (40µmol m-2 s-1) shaking with 

80u/min. After 10d the growth medium was renewed, after 14d the seedlings were treated and 

harvested respectively. 

To obtain seedlings for the analysis of the phosphoproteome 20mg seeds of ahk2 ahk3, ahk1-3 and 

their wildtypes Col-0 and Ws-2 were grown in 50mL JPL medium in 250mL Erlenmeyer flasks whereas 

Ws-2 and ahk1-3  have been stratified in 5µM gibberellic acid (GA3). Col-0 and ahk2 ahk3 grew at 

22°C, Ws-2 and ahk1-3 at 20°C. After 14d the media ahk2 ahk3 and Col-0 were growing in were 

supplemented with kinetin to a final concentration of with 100ng/mL. Subsequent to 10min shaking at 

80u/min in kinetin-supplemented media the seedlings were harvested, frozen in liquid nitrogen and 

stored at -80°C. In a control experiment (mock treatment) the seedlings were not treated with kinetin 

and harvested directly. For ahk1-3 and its wildtype Ws-2 the 14d old seedlings were transferred into 

50mL JPL medium respectively which was supplemented with 0.3M mannitol. Subsequent to 10min 

incubation in mannitol-supplemented media the seedlings were harvested, frozen in liquid nitrogen and 

stored at -80°C. In a control experiment (mock treatment) the seedlings were transferred to JPL 

medium without mannitol and harvested like the mannitol-treated seedlings. 

For the analysis of the seedlings’ sodium-, potassium- and calcium-content, 3-5mg seeds were 

stratified in 5µM gibberellic acid and grown in 2mL JPL medium in 24-well micro titer plates at 20°C. 

After 14d the seedlings were transferred into 2mL JPL medium which was supplemented with 0.3M 

mannitol. Subsequent to 10min incubation in mannitol-supplemented media the seedlings were 

harvested, frozen in liquid nitrogen and stored at -80°C. In a control experiment (mock treatment) the 

seedlings were transferred to JPL medium without mannitol and harvested like the mannitol-treated 

seedlings. 

3.3.3 Cultivation of Nicotiana benthamiana 

The seeds of Nicotiana benthamiana were sown on P-soil. Two week old seedlings were singularized 

into 6cm pots with the soil mixture and grown for additional two to three weeks at 23°C/20°C 

(day/night), 14h light and 60% humidity.  

3.3.4 Crossing of Arabidopsis thaliana lines 

Arabidopsis thaliana lines were cultivated on soil in the greenhouse as described until they were 

flowering. For the crossing of Arabidopsis thaliana lines, sepals, petals and stamen were removed from 

flowers which were going to open the next hours. The stigma of the carpel was then pollinated with 

pollen of the desired Arabidopsis thaliana line. All flowers which were not pollinated like this were 

removed from the plant. The seeds which resulted from this pollination were cultivated and genotyped 
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to analyze that both alleles were there. The plant lines were progenated like this until homozygote 

plant lines could be identified. 

3.3.5 Destaining of Arabidopsis thaliana with acidified methanol 

The plant material was put into acidified methanol and incubated for 20min at 55°C. The acidified 

methanol was replaced by the neutralization solution. After the destaining the plant material was 

rehydrated by replacing the neutralization solution by 40%, 20%, 10% ethanol and finally by H2O.  

3.3.6 Protoplast isolation 

3.3.6.1 Protoplast isolation of mesophyll cells 

The isolation of mesophyll protoplasts was performed as described by Yoo et al., 2007 and modified by 

Anna Jehle. Leaves were cut with a razor blade (0.5-1mm) and incubated in the enzyme solution (~10-

20 leaves/5mL enzyme solution). Leaf strips were vacuum infiltrated in the dark for 30min using a 

desiccator and incubated in the dark for 3h at room temperature. Subsequently the enzyme/leaf 

solution was diluted with the same volume W5 solution, gently swirled to release the protoplasts from 

the leaf strips and filtered through a nylon mesh (75µm). Protoplasts were pelletized by centrifugation 

at 4°C with 200g for 1min in a round-bottomed tube (14mL, Roth) and resuspended in W5 whereas the 

double volume of initially used enzyme solution was utilized. Then the protoplasts were counted in a 

hemocytometer and incubated on ice for 30min to 3h. The protoplasts which settled on the bottom by 

gravity were resuspended in MMG solution to a final concentration of 200 000 protoplasts/mL. 

3.3.6.2 Protoplast isolation of seedlings 

Hypocotyls and cotyledons of 4d old Arabidopsis thaliana seedlings grown on JPL medium plates were 

separated from roots, transferred to 1mL 300ME solution, cut into small pieces and incubated gently 

shaking for at least 3h in the dark. The isolated protoplasts were filtered through a 50µm nylon filter, 

harvested by centrifugation with 80g at 4°C for 5min and washed three times with ice-cold 300M 

solution. The protoplasts were resuspended in 0.5mL 300M and stored on ice for at least 30min before 

an experiment was started (Wu et al., 2013). 

3.3.7 Transformation of Arabidopsis thaliana mesophyll protoplasts 

The transformation of Arabidopsis thaliana mesophyll protoplasts was performed as described by Yoo 

et al., 2007 and modified by Anna Jehle. For the transformation in total 10µg plasmid DNA were gently 

mixed with 100µL aliquots comprising 20 000 protoplasts and 110µL of PEG solution. The mixture was 

incubated for 5min, subsequently diluted with 400µL W5-solution and centrifuged at 4°C with 200g for 

1min. The pelletized protoplasts were resuspended in 100µL W5-solution supplemented with 200µM 

luciferin and distributed in aliquots of 100µL with 20 000 protoplasts per well in a 96-well plate. The 

protoplasts were incubated for 16h in the dark at room temperature. For transformation of several 

batches up-scaling of all components was performed whereas at least two technical replicates per 

transformation were used.  
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3.3.8 Protoplast Luciferase assay 

After 16h of incubation, transformed Arabidopsis thaliana mesophyll protoplasts were treated by the 

addition of stock solutions in the same volumes and the luminescence of protoplast samples was 

quantified in vivo using a luminometer. 

3.3.9 Protoplast swelling assay 

For the protoplast swelling assay 20µL of the isolated protoplasts were added to approximately 200µL 

300M solution in a perfusion chamber constructed by Gerhard Obermeyer placed under the 

microscope. Protoplasts were allowed to settle down for about 5-10min. The chamber was then 

perfused with 300M solution to select protoplasts sticking well to the glass bottom of the perfusion 

chamber. The perfusion solution was then changed to the hypo-osmolar 150M solution. Images of the 

swelling protoplasts were taken each second for at least 1min with a video-camera equipped 

microscope. The osmolality of all media was measured with a cryoscopic osmometer (Osmomat 030, 

Gonotec) and the following osmolalities were noted: 300M: 0.364osmol kg-1; 150M: 0.207osmol kg-1. 

The video sequence was converted to an image sequence with one picture per second using STOIK 

Video Converter 3. For each time point the diameter and cross-section area of the protoplasts was 

measured using ImageJ and the volume as well as the surface area was calculated. The linear 

regression curve of the increase of the protoplast volume per time was used to calculate the water flux 

per µm² protoplast membrane which was defined as water flux density. 

3.3.10 Pathogen assay with Alternaria brassicicola (by Jens Riexinger and Birgit Kemmerling) 

Arabidopsis thaliana lines were cultivated on soil in the short day chamber as described. Three week 

old plants were watered properly prior to the assay whereas the leaves were kept dry. The plant lines 

were mixed in the trays and two leaves per plant labeled. The glycerol stock of 2x107 spores/mL was 

diluted with sterile water to 1x106 spores/mL and kept at room temperature. Two to six droplets of 5µL 

spore solution were put on the leaves. Bonitation was executed after 7, 10 and 13 days after infection 

using the bonitation code which is shown in fig. 3.2. 

 
figure 3.2: Bonitation code for the pathogen assay with Alternaria brassicicola 

According to the severity of symptoms the infected leaves show, they are classified into six categories: 

category1: leaf shows no symptoms; category2: light brown spots at infection site; category3: dark brown 

spots at the infection site; category4: spreading necrosis; category5: leaf maceration; category6: 

sporulation. 

 

Category one means that the leaf does not show any symptoms, category two that the leaf shows light 

brown spots at the infection site, category three that the leaf shows dark brown spots at the infection 

site, category four describes spreading necrosis, category five leaf maceration and category six 

sporulation.  
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Trypan blue was used to selectively stain dead tissue. Therefore infected leaves were put into a 6-well 

micro titer plate filled with 2mL Trypan blue staining solution per well and boiled for 45-60s in a 100°C 

water bath. Subsequently to the incubation for 5min at room temperature, the staining solution was 

replaced by 1.5mL chloral hydrate solution and incubated for 6h. After 6h the chloral hydrate solution 

was renewed. After incubation in chloral hydrate over night the leaves were put into 20% glycerol and 

analyzed by microscopy.  

3.3.11 Salt response assay (by Christa Testerink) 

The response of Ws-2, ahk1-3 and ahk1-4 to 75mM NaCl was executed and analyzed like described in 

Julkowska et al., 2014. 

3.3.12 Determination of flowering time 

According to Kang et al., 2015, flowering time was measured as the number of days from seed sowing 

to the opening of the first flower. The Arabidopsis thaliana plants were cultivated as described in the 

long day and short day phytochamber. 

3.3.13 Germination assay 

Surface sterilized seeds were individually placed with autoclaved toothpicks on half strength MS salts, 

2mM MES and 1% phytoagar as well as on media supplemented with 0.3M mannitol, stratified for 4d 

at 4°C to synchronize the germination and grown for six days at continuous light conditions at 20°C. 

Germination was monitored every day by scanning of the plates and counting of germinated seeds. 

The germination rate was defined as the percentage of seeds which have germinated after five days of 

continuous light. The germination time was defined as the mean value of days the seeds needed to 

germinate. The experiment was carried out in at least three biological replicates with 50 seeds per line 

and treatment respectively. Data were averaged between these replicates.   

3.3.14 Hydrotropic growth assay 

Surface sterilized seeds were individually placed with autoclaved toothpicks on ½ MS-agar, stratified at 

4°C for 3d to synchronize germination and grown in constant light conditions at 20°C for 4d. To test the 

hydrotropic response plates were needed with a diagonal gradient of water potential (ψW). To obtain 

this, 65mL half strength MS salts with 1% phytoagar were casted into 12cm x 12cm petri dishes. Once 

solid, the half strength MS-agar was diagonally cut with a sterile blade of a scalpel and the lower part 

removed. The lower part was filled with 30mL half strength MS-agar supplemented with 400mM 

sorbitol. The 4d old seedlings were transferred to these plates orienting their roots straight and vertical 

to the bottom frame of the petri dish and placing their root tips precisely on a parallel line of 3mm 

distance to the medium interface. The plates were put in an upright position to constant light. After at 

least 12h of growth the hydrotropic response of the different plant lines was analyzed using the growth 

angle α of the roots in reference to the gravitropic growth stimulus (g) as indicator. The angle was 

measured using ImageJ. The experiment was repeated more than three times with 35 seedlings per 

line respectively. Data were averaged between these replicates.  
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figure 3.3: Experimental setup to test the hydrotropic response. 

4d old seedlings of different Arabidopsis thaliana lines (here: Ws-2, ahk1-3, ahk1-4) were transferred to 

plates which were splitted diagonally in an upper part with ½ MS-Agar and a lower part with ½ MS-Agar 

supplemented with 400mM sorbitol whereat the root tips were precisely placed on a line lying 3mm distant 

parallel to the medium interface in the upper part (dashed line). This leads to a diagonal gradient of water 

potential (ψW). To analyze the hydrotropic response of the different plant lines the growth angle α of the 

roots in reference to the gravity (g) was used as indicator which was measured with the use of ImageJ. 

 

3.3.15 Gravitropic growth assay 

Surface sterilized seeds were individually placed on ½ MS-agar and ½ MS-agar supplemented with 

1µM methyl-jasmonate (MeJA), stratified at 4°C for 3d to synchronize germination and grown in 

constant light conditions at 20°C for 3d whereat the plates were put into an upright position. To 

investigate the gravitropic response of root growth, the plates were turned for 90° to the left. After 2d of 

additional growth the plates were scanned for the analysis. Using ImageJ the growth angle α of the 

root towards the applied gravitropic stimulus in reference to the original direction of gravity was 

analyzed and defined as curvature. The experiment was executed once with at least 90 seedlings per 

line and treatment.  

3.3.16 Investigation of lateral root development 

Lateral root development is favored at the bending zone of main roots after an altered gravitropic 

stimulus. Stage I lateral root primordia were usually first detected 18h after gravitropic induction. The 

formation of each subsequent stage usually takes 3h (Péret et al., 2012). Therefore the bending point 

of gravitropically induced roots was analyzed and the lateral root primordia categorized 18h and 42h 

after the gravitropic induction of 3d old seedlings. To obtain these seedlings, at least 40 surface 

sterilized seeds per line were individually placed on ½ MS-agar. The seeds on the plates were 

stratified for 3d at 4°C to synchronize germination and grown for 3d in an upright position in constant 

light conditions at 20°C. The same seed set was sown for the 18h time point as well as for the 42h time 

point. The gravitropic induction was applied by the 90° turn of the plate to the left. 18h and 42h after 

the gravitropic induction the seedlings were transferred into a 24-well micro titer plate and destained 

with acidified methanol. Subsequently the seedlings were mounted on glass slides in 50% glycerol and 

incubated over night. With the use of differential interference contrast microscopy the lateral root 

primordia were categorized into the different stages. The number of plants with a primordium in the 

respective stage was determined and the percental amount of plants in regard to the total number of 

ahk1-3 ahk1-4 Ws-2

½ MS-agar +
400mM sorbitol

½ MS-agar ψW

α

g

medium 
interface
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analyzed plants at the particular time point calculated. The experiment was repeated two times. Data 

were averaged between these replicates. 

3.3.17 Analysis of stomatal density and stomatal index 

Surface sterilized seeds were individually placed on half strength MS salts with 2mM MES and 1% 

phytoagar, stratified for 3d and grown at constant light at 20°C whereat the plates were put in an 

upright position. When the seedlings began to develop their first leaf they were transferred to half 

strength MS salts with 2mM MES and 1% phytoagar or half strength MS salts with 2mM MES and 1% 

phytoagar supplemented with 0.3M mannitol respectively.  

The first leaves were stained with propidium iodide and imaged with the use of a confokal laser 

microscope (Leica, SP2).  

Additionally surface sterilized seeds were individually placed on ½ MS-agar, stratified for 3d and grown 

for 3d at constant light at 20°C whereat the plates were put in an upright position. The cotyledons were 

stained with propidium iodide and imaged with the use of a confokal laser microscope (Leica, SP2).  

The images of the outlined cells were merged with the use of ImageJ. For the analysis of stomatal 

density and stomatal index, the outlines of the cells had to be retraced. This was executed manually 

with PicsArt. Then the number of cells was counted and the stomatal density and stomatal index 

calculated. 

3.3.18 Root growth assay 

Surface sterilized seeds were individually placed on half strength MS salts with 2mM MES and 1% 

phytoagar or ½ MS-agar respectively. The seeds on the plates were stratified at 4°C for 3d to 

synchronize germination and were the grown at constant light and 20°C for 4d whereat the plates were 

put in an upright position. The 4d old seedlings were then transferred to osmotic stress media or media 

supplemented with hormones, inhibitors of hormone biosynthesis or signaling as well as on pathogen-

associated molecular pattern (PAMPs). For each treatment a respective control was included. 20 

seedlings per line and treatment were transferred. The treatment plates were scanned every day at the 

same time beginning from the day of transfer (“d0”) until eight days after the transfer (“d8”). For the 

analysis of root elongation, an overlay of the images of d8, d4 and d0 was generated. ImageJ was 

used to measure the root length of d0, d4 and d8 in one run. From these data, the total root length 

could be compared as well as the mean values of total root elongation which were determined like it 

was described by Kumar et al., 2013. According to Wohlbach et al., 2008 the mean percentage of root 

elongation based on the mean value of non-stressed control roots was calculated in addition to 

compare the results of both ways of analysis. To illustrate differences of several experiments in regard 

to root length and root elongation the mean percentage of root elongation based on the respectively 

treated wildtype root was calculated. For each type of analysis data were averaged between replicates 

when more than one replicate was executed. 

3.3.19 Study of Arabidopsis thaliana seed size 

At least 80 seeds per Arabidopsis thaliana line were filled in a petri dish which was scanned with 

300dpi resolution. With the use of ImageJ binary pictures were generated and the seed size was 

measured using the tool “Analyze Particles”. Three seed batches were analyzed. Each seed batch 
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originated from plants which grew contemporaneously in the greenhouse. Data were averaged 

between these replicates. 

3.3.20 Investigation of skotomorphogenesis 

50 surface sterilized seeds per Arabidopsis thaliana line and treatment were individually placed on ½ 

MS-agar without supplementation, with supplementation of PAMPs, hormones, inhibitors of hormone 

biosynthesis and signaling as well as on osmotic stress media including the respective control. The 

seeds on the plates were stratified at 4°C for 3d to synchronize germination. 2h light at 20°C induced 

germination. Subsequently to the 2h of light induction the plates were carefully darkened by wrapping 

in aluminum foil and placed in an upright position in the constant light at 20°C. After 3d of growth in the 

dark the plates with the skotomorphogenic seedlings were scanned. With the use of ImageJ the 

hypocotyl and root length of the seedlings was measured. To illustrate the constant difference in length 

the mean percentage of hypocotyl and root length in reference to the respective wildtype was 

calculated. Data were averaged between replicates when more than one replicate was executed. 

3.4 Biochemical methods 

3.4.1 Agarose gel electrophoresis 

In agarose gel electrophoresis DNA is separated according to its size by an electrical field. Depending 

on the size of the expected DNA fragments an agarose concentration of 0.8-3% (w/v) was chosen. 

Agarose was dissolved in 1X TAE buffer by boiling. After chilling to ~50°C the DNA stain ethidium 

bromide or Midori Green was added to a final concentration of 0.5µg/mL or 0.02% (v/v) Midori Green 

Advanced DNA Stain (Nippon Genetics Europe) and the mixture was poured into the electrophoresis 

cell. 1X TAE buffer was used as running buffer. DNA-samples and a size standard were mixed with 

DNA loading buffer in a ratio of 1:4 and loaded onto the gel. The gel was run with 5V/cm. The size of 

DNA fragments was reported using UV-light. 

3.4.2 Extraction of DNA-fragments from agarose gels 

The extraction of DNA-fragments from agarose gels was executed with the use of the Quick Gel 

Extraction Kit (invitrogen) and Gel Extraction Kit (genaxxon) according to the manuals. 

3.4.3 Measurement of nucleic acid concentrations in solutions 

The concentration of nucleic acids which were dissolved in 10mM Tris/HCl pH 8.0 or sterile MilliQ 

water was photometrically determined using NanoDrop1000 Spectrophotometer (Thermo Scientific). 

OD260=1.0 correlates to a nucleic acid concentration of 50µg/mL (Sambrook et al., 2001). The ratio of 

sample absorbance at 260nm and 280nm is used to assess the purity of DNA and RNA. A ratio of ~1.8 

is generally accepted as “pure” for DNA, a ratio of ~2.0 is generally accepted as “pure” for RNA. A ratio 

which is lower indicates the presence of protein. The ratio of sample absorbance at 260nm and 230nm 

is an additional measure of nucleic acid purity whereas a ratio between 1.8 and 2.2 indicates “pure” 

nucleic acids.  

3.4.4 DNA-sequencing 

Sequencing of vector DNA was executed by GATC Biotech AG, D. 
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3.4.5 SDS-Polyacrylamid-Gel-Electrophoresis (SDS-PAGE) 

SDS-Polyacrylamid-Gel-Electrophoresis (SDS-PAGE) was utilized to separate proteins according to 

their size. Therefore the electrophoresis chambers of BioRad were used. Proteins were extracted and 

loaded on the SDS-gel in Lyse and Load buffer. The SpectraTM Multicolor Broad Range Protein Ladder 

(Thermo Scientific) was used as marker for the protein size. SDS buffer was utilized as running buffer. 

The gel was run with 120V and 10-15mA/gel.  

3.4.6 Coomassie staining 

For the detection of proteins in the SDS-gel after the SDS-PAGE the gel was incubated shaking over 

night in Coomassie staining solution. Then the Coomassie staining solution was replaced by the 

destainer solution and the gels were incubated shaking until the protein bands were visible. For 

documentation, stained SDS-gels were then placed between two Cellophan (Roth) foils which were 

wetted with 20% glycerol, dried and scanned. 

3.4.7 Western Blot 

The proteins which were separated according to their size by SDS-PAGE were transferred by a 

Western wet Blot to an immobilizing PVDF-membrane (Millipore). The wet blot setup was performed in 

the following sequence: Anode, sponge, Whatman-paper (GE Healthcare), PVDF-membrane, SDS-

gel, Whatman-paper, sponge, cathode in transfer buffer. Previously the PVDF-membrane was 

equilibrated in 100% methanol. The transfer was executed at 4°C using the electrophoresis chambers 

of BioRad with a constant current of 60mA over night or a constant current of 300mA for 1.5h. 

3.4.8 Immunodetection 

The proteins which were transferred and immobilized on the PVDF-membrane were detected with 

specific antibodies. After the Western wet Blot, the PVDF-membrane with the bound proteins was 

incubated in blocking solution for at least 1h at room temperature or over night at 4°C. Subsequently to 

three washing steps with TBS-Tween for 10min each the first antibody was added and incubated for at 

least 2h at room temperature or over night at 4°C. The first antibody binds specifically to the protein 

which should be detected. Excessive antibody was removed in three washing steps with TBS-Tween 

for 10min each. The second antibody which binds the first antibody and which is fused to the Alkaline 

Phosphatase (AP) was added and incubated for at least 1h at room temperature. Excessive antibody 

was again removed by three washing steps with TBS-Tween for 10min each. Subsequently to the 

equilibration of the PVDF-membrane in staining buffer for 5min the staining with the staining solution 

was executed. The staining solution contains 5-Bromo-4-chloro-3-indolyl phosphate (BCIP) and 

nitroblue tetrazolium (NBT). BCIP is oxidized by the AP to a blue indigo-dye whereas the BCIP 

oxidation leads to the reduction of NBT and therefore to the generation of a blue formazan-dye. The 

staining reaction was stopped by washing with MilliQ water as soon as clear band were visible. For 

documentation the PVDF-membrane was dried and scanned. Alternatively to the use of two antibodies 

just one antibody was applied when it was specifically binding to the tag and already fused to the AP. 
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3.4.9 Extraction of ions from dried plant material 

To obtain dry plant material, the plant material of which the fresh weight was determined was wrapped 

in aluminum foil and dried at 80°C for several days. The dry weight was determined and the plant 

material transferred to 1.5mL reaction tubes. Glass beads of 1.25-1.65mm were added and the plant 

material grinded. 1mL 1M HNO3 was added per 0.3g fresh weight. The samples were incubated over 

night at room temperature. Plant fragments were removed by centrifugation with 13000rpm for 1min.  

3.4.10 Flame photometric measurement of Na+-, K+- and Ca2+-concentration 

As described on www.sherwood-scientific.com compounds of the alkali and alkaline metals are 

thermally dissociated into atoms at the temperature of a Bunsen burner flame and some of these 

atoms are further excited to a higher energy level. When these “excited” atoms return to the ground 

state, they emit radiation, which for the elements of these two groups lies mainly in the visible region of 

the electromagnetic spectrum. The wavelength of the light emitted from the flame is characteristic for 

the particular element. The intensity of this light is mainly proportional to the absolute quantity of the 

species present in the flame. The emitted radiation is isolated by an optical filter and then converted to 

an electrical signal by the photo detector.  

For the measurement of the concentration of Na+, K+ and Ca2+ which were extracted from dried plant 

material with 1M HNO3 the extracts were diluted in the ratio 1:20. Before the ion concentration in the 

samples could be determined a respective reference curve was generated. For potassium-ions a 

reference curve was generated using KCl solutions in the concentrations 100µM, 200µM, 500µM, 

1000µM and 2000µM. For sodium- and calcium-ions reference curves were generated using NaCl or 

CaCl2 solutions respectively in the concentrations 20µM, 50µM, 100µM, 200µM and 500µM. As the 

optical filter has to be changed for each metal the generation of the reference curve and the 

measurement of the respective ion-concentration in the samples were executed consecutively. 

The reference curves provided the relationship between the ion-concentration and the displayed value 

of the Sherwood flame photometer (model 410) for the different ions. Using the formula of the 

regression line the displayed values were calculated to the respective ion-concentration. The ion-

concentration was normalized to the dry weight of plant material. 9-12 biological replicates per 

Arabidopsis thaliana line and treatment which were grown contemporaneously were measured and 

data averaged. 

3.5 Bioinformatical methods 

3.5.1 Prediction of protein domains 

For the analysis of a protein’s amino acid sequence in regard to putative domains like transmembrane 

or kinase domains the amino acid sequence in the FASTA-format was submitted to elm.eu.org for 

domain prediction.  

3.5.2 Search for similar sequences and phylogenetic analysis 

To identify proteins with a similar nucleotide or amino acid sequence like AHK1 different BLASTs were 

executed using https://blast.ncbi.nlm.nih.gov/Blast.cgi. The AHK1 nucleotide sequence in FASTA-

format was used as query sequence for blastn. Somewhat similar sequences were searched in the 



 METHODS 

 

55 
 

databases “Nucleotide collection (nr/nt)”, “Expressed sequence tags (est)”, “Genomic survey 

sequences (gss)”, and “Whole-genome shotgun contigs (wgs)” for the respective organism. The AHK1 

full length amino acid sequence as well as the amino acid sequence of the AHK1 extracellular domain 

(AHK1-ED) was used as query to run blastp and tblastn searching in the previously described 

databases for the respective organisms. 

For the phylogenetic analysis of AHK1-ED the identified sequences were all translated to their amino 

acid sequence. For all amino acid sequences a prediction of protein domains was executed. 

Subsequently the sequences were reduced to their predicted transmembrane domains including their 

extracellular domain. These sequences were then aligned with the CLUSTAL multiple sequence 

alignment tool MUSCLE 3.8. The output is the sequence alignment as well as a phylogenetic tree. 

3.5.3 Modeling of the AHK1-ED structure (by Michael Hothorn) 

The modeling of the AHK1 extracellular domain (AHK1-ED) is based on the structure of the sensor 

domain of AHK4 (pdb id: 3T4J). The homology model of AHK1-ED was modeled with “Modeller” 

(https://salilab.org/modeller/) according to an alignment which was generated with “HHPRED” 

(https://toolkit.tuebingen.mpg.de/hhpred/).  
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4 RESULTS 

 

During my Ph.D. thesis I was working on the molecular characterization of the Arabidopsis thaliana 

histidine kinase 1 (AHK1). This work can be divided into different parts, comprising tissue-specificity of 

AHK1 expression and the subcellular localization and dynamics of AHK1, the evolutionary 

conservation of the AHK1 extracellular domain (ED) and steps towards the elucidation of its structure 

and the identification of its perceived signal, the finding of conditions when ahk1 knock down mutants 

show a reproducible phenotype in comparison to the wildtype as well as the analysis of AHK1-

dependent changes in the phosphoproteome and the study of the molecular mechanisms of AHK1 

signaling. 

Additionally I have contributed to a phosphoproteomic study in which it was investigated which 

influence short term kinetin treatment has on the phosphoproteome in the wildtype Col-0 as well as in 

the cytokinin-receptor knock down mutant ahk2 ahk3. 

The molecular characterization of AHK1 as well as the study of the phosphoproteome of ahk2 ahk3 

after short term kinetin treatment allows new insights into the network of hormones, signaling pathways 

and mechanisms of their regulation.  

4.1 Molecular characterization of AHK1 

4.1.1 Expression and subcellular localization of AHK1 

4.1.1.1 AHK1 expression 

In the study of Urao et al. (1999) GUS-stained stable Arabidopsis thaliana lines containing an AHK1-

promoter β-glucuronidase (GUS) fusion construct showed that the AHK1-promoter mediates strong 

GUS-activity in leaf bases and roots of rosette plants when the plants were exposed to either high- or 

low-osmolarity solutions but just weak GUS-activity when the plants were exposed to isotonic solutions 

or when the plants were untreated. Together with RNA gel blot analysis they could draw conclusions 

about rough localization of AHK1 expression and semi-quantitative promoter activity.  

To address the question about tissue-specificity of AHK1-promoter activity and to have the opportunity 

to investigate it in vital plants the construct of Katharina Caesar, in which 2074bp upstream of AHK1’s 

ATG is fused as promoter (AHK1pro) to a mCherry which is linked to a nuclear localization signal (NLS) 

to concentrate the signal of low expression levels (fig. 4.1 A), was stably transformed into Arabidopsis 

thaliana Col-0 ecotype and progenated until homozygous lines could be obtained.  

The analysis of this line revealed different AHK1pro activity in light-grown and etiolated seedlings. In 

three day old light-grown seedlings AHK1pro activity could be detected in the cotyledons, in the 

vascular tissue of the lower part of the hypocotyl as well as in the vascular tissue of the differentiation 

zone of the root. In the meristematic, the transition and elongation zone of the root no AHK1pro activity 
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could be revealed by nuclear mCherry signal (fig. 4.1 B). In three day old etiolated seedlings AHK1pro 

activity could be revealed in the cotyledons and in the vascular tissue of the hypocotyl and of the root. 

Thereby it has to be pointed out, that the section of the hypocotyl in which AHK1pro activity could be 

detected is much bigger in etiolated seedlings than in light-grown seedlings and that the part of the 

root in which AHK1pro activity could be shown is bigger in light-grown seedlings. When the seedlings 

were grown on different concentrations of mannitol, light-grown as well as etiolated seedlings still 

show AHK1pro activity in the cotyledons and in the vascular tissue in the same sections of the 

hypocotyl and root as in the control samples (appendix A10, A11).  

 

figure 4.1: Activity of the AHK1-promoter in Col-0 seedlings. 

(A) To analyze the tissue specificity of the AHK1-promoter (AHK1pro, white) it was fused to mCherry (red) 

and a nuclear localization signal (NLS, grey) in a binary plant vector and stably transformed into 

Arabidopsis thaliana Col-0. The tissue specificity of AHK1pro activity and mCherry expression was analyzed 

in three day old light-grown seedlings (B) and three day old etiolated seedlings (C) with confokal 

microscopy. The single pictures were assembled to obtain a whole picture of the whole seedling. Shown 

are brightfield overview images of the seedlings as well as close ups (1-5) which show brightfield images 

and mCherry signal (red). The bars in the overviews give 1mm, the bars in the close ups 0.05mm. Stars 

mark nucleic mCherry signal.  

 

4.1.1.2 Subcellular localization of AHK1 

Katharina Caesar could show in previous studies that AHK1 localizes to the plasma membrane and to 

vesicle-like structures. To clarify the identity of these vesicle-like structures AHK1-GFP was transiently 

co-expresssed under the control of the CaMV 35S- (Odell et al. 1985) or the β-estradiol inducible 

promoter lexA-4635S (Zuo et al. 2000) together with endosomal markers which were described in 

Nelson et al. (2007) or obtained by Peter Pimpl in N. benthamiana. AHK1-GFP did neither co-localize 

with the peroxisomal marker CD3-983 px-rk (fig. 4.2 A), GOT1-mCherry as marker for the golgi (fig. 4.2 
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C) nor VTI12-mCherry as marker for the trans-golgi-network and early endosomes (fig. 4.2 D). Co-

localization could be revealed for AHK1-GFP and CD3-967 g-rk as golgi marker (fig. 4.2 B), RabD2a-

mCherry as marker for endosomes and the golgi-system (fig. 4.2 E), ARA6-mCherry as marker for late 

endosomes and prevacuolar compartments (fig. 4.2 F), PEP12-mCherry as marker for the post-golgi 

compartment (fig. 4.2 G) and with RabA5d-mCherry as marker for the recycling endosome (fig. 4.2 H).  

 
 

figure 4.2: Subcellular localization of AHK1-GFP 

Transient expression of AHK1-GFP with (A) the peroxisomal marker CD3-983 px-rk; (B) the golgi-marker 

CD3-967 g-rk; (C) the golgi-marker GOT1-mC; (D) VTI12-mC as marker for the trans-golgi-network and 

early endosomes; (E) RabD2a-mC as marker for endosomes and the golgi-system; (F) ARA6-mC as 

marker for late endosomes and prevacuolar compartments; (G) PEP12-mC as marker for the post golgi 

compartment and with (H) RabA5d-mC as marker for the recycling endosome. (A, B) were obtained from 

Andreas Nebenführ. The markers are fused with RFP and under the control of the CaMV 35S-promoter. 

These marker constructs were co-transformed into N. benthamiana with AHK1-GFP is under control of the 

CaMV 35S-promoter (pH7FWG2-AHK1). (C-H) The markers for organelles fused with mCherry (mC) were 

obtained from Peter Pimpl who used the β-estradiol inducible promoter lexA-4635S (Zuo et al. 2000). These 

marker constructs were co-transformed with AHK1-GFP under control of the lexA-4635S promoter (pABind-

AHK1-GFP). The subcellular localization was analyzed two days after transformation (A-H) and 4-24h after 

β-estradiol induction (C-H). The tobacco leaves were mounted in water. White outlined arrows mark 

vesicle-like structures which do not show co-localization, white arrows mark co-localization. The scale in all 

images is 20µm. 

 

The same localization pattern could be observed after mounting of the tobacco leaf discs in 0.8M 

mannitol except for GOT1-mCherry, which in contrast to mounting in water shows co-localization with 
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AHK1-GFP and RabA5d-mCherry which did not show co-localization any more (appendix A12). AHK1-

GFP did neither localize to the endoplasmic reticulum, mitochondria nor plastids (appendix A13). 

4.1.2 Signal perception of AHK1 

AHK1 was suggested to be a mechano-sensitive osmosensor but nothing was really known about the 

mechanisms of the perception of osmotic stress. To get a hint about the mechanism, the extracellular 

domain of AHK1 (AHK1-ED) as putative site of signal perception, comprising amino acid 100-446, was 

analyzed in regard to the evolutionary conservation of the amino acid sequence as well as in structure. 

4.1.2.1 Evolutionary conservation of the extracellular domain of AHK1 

Urao et al. (1999) revealed that in Arabidopsis thaliana AHK1 shows the highest degree of similarity to 

CKI1 and that the histidine kinase and receiver domain show high similarity with SLN1 in 

Saccharomyces cerevisiae. As in other sensor hybrid histidine kinases like the cytokinin receptors 

AHK2, AHK3 and AHK4 the signal is perceived with the use of the CHASE domain which is located 

between the two transmembrane domains (figure 4.12) an importance of the extracellular domain of 

AHK1 (AHK1-ED) for signal perception was suggested. Different sequence alignments of the 

sequences which are located between the two transmembrane domains revealed that the sequence 

similarity of SLN1 to CKI1 (appendix A15) is bigger than to AHK1 (appendix A16) and the sequence 

similarity of AHK1 to CKI1 (appendix A17) is bigger than to SLN1 (appendix A16) indicating that AHK1 

might not be an ortholog of SLN1. An alignment of the domain between the extracellular domains of 

AHK1, CKI1 and SLN1 is shown in appendix A18 and did not show an increased similarity. In an 

additional analysis of sequence similarities the amino acid sequence of AHK1-ED including the 

predicted transmembrane domains (aa 77-99, aa 447-469) was used as query to run blastp and tblastn 

against different species. 

In Aquilegia coerulea, Coleochaete orbicularis, Cyanophora paradoxa, Oryza sativa, Picea abies, 

Saccharomyces cerevisiae, Spirogyra pratensis and Zea mays there were no sequences found which 

are similar to AHK1 but in Marchantia polymorpha (Mp), Medicago truncatula (Mt), Physcomitrella 

patens (Pp), Populus trichocarpa (Pt), Selaginella moellendorffii (Sm), and Vitis vinifera (Vv).  

With the CLUSTAL multiple sequence alignment tool MUSCLE 3.8 it could be shown that 63 (18.15%) 

of the 347 amino acids of the AHK-ED without the transmembrane domains and its similar sequences 

are identical and 71 (20.46%) are highly conserved from moss and moss fern up to the dicotyledon 

tree Populus trichocarpa. 

figure 4.3: (next side): Conservation of the extracellular domain of AHK1 (AHK1-ED) 

CLUSTAL multiple sequence alignment by MUSCLE (3.8) of the amino acid sequences of Arabidopsis 

thaliana (At) AHK1-ED (aa100-446) and similar sequences from Selaginella moellendorffii (Sm), 

Physcomitrella patens (Pp), Marchantia polymorpha (Mp), Vitis vinifera (Vv), Medicago truncatula (Mt) and 

Populus trichocarpa (Pt). Predicted transmembrane domains (AHK1-ED: aa77-99; aa447-469, dark grey) 

were included in the alignment. Identical residues (*) are shaded in grey. Highly conserved residues are 

designated with “:”, weakly conserved residues with “.”. The sequence of the PAS-domain in AHK1-ED is 

marked with fat letters. Sequences which, according to the homology model of Michael Hothorn, putatively 

form α-helices or β-sheets are highlighted above the sequences in blue and yellow.  
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At least 38 (10.95%) amino acid residues could be identified as weakly conserved (fig. 4.3). 39 

(61.90%) of the identical amino acid residues are nonpolar, 15 (23.80%) are polar, 6 (9.52%) are basic 

and 3 (4.76%) are acidic. The predicted Per-Arnt-Sim (PAS) domain which consists of 119 amino acid 

residues of AHK1-ED comprises 10 of in total 63 amino acid residues which are identical in all 

sequences which are similar to AHK1-ED, 20 of 71 which are highly conserved and 9 of 38 which are 

weakly conserved. The average size of the identified sequences with similarity to AHK1-ED is 355 

amino acids with 10 amino acids more or less whereas the putative extracellular domain of SLN1 

comprises 288 amino acids. The inclusion of SLN1 to the multiple sequence alignment with the AHK1-

ED orthologs leads to a massive reduction in conserved residues (appendix A14) which implicates that 

SLN1 confirms the finding that SLN1 might not be an AHK1 ortholog. 

4.1.2.2 Homology model of the extracellular domain of AHK1 

Based upon just 13% sequence similarity to AHK4, Michael Hothorn could derive a homology model 

for the structure of the extracellular domain of AHK1 (fig. 4.4). 

 
figure 4.4: Homology model of the extracellular domain of AHK1 

The construction of the homology model of the extracellular domain of AHK1 (AHK1-ED; amino acid 101-

447) is based on the 13% sequence similarity of AHK1 and AHK4. (A) shows the tertiary structure of 

AHK1-ED. The predicted PAS domain is highlighted in turquoise and the residues which are identical in all 

of the identified similar sequences of AHK1 are assigned in red. (B) The tertiary structure shows a 

combination of α-helices (blue) and β-sheets (yellow). The depicted amino acid residues are those which 

are identified in all sequences similar to AHK1-ED. (C) Close up of the „neck“ region of AHK1-ED. (D) 

Tertiary structure of the PAS domain including α-helices (blue) and β-sheets (yellow) comprising the 

identical residues of the similar sequences of AHK1-ED. 

 

The model shows the amino acid sequence starting with aa100 of AHK1 full-length protein after the 

first predicted transmembrane domain reaching to aa440 which is the aa before the second predicted 

transmembrane domain. Starting from aa100, the sequence first forms two α-helices which build a kind 

A B C

~10nm

6-10nm

Leu199

Leu323

Trp186

N-term.

C-term.

N-term.

C-term.

D

N-term.

C-term.



RESULTS 

 

62 
 

of backbone for the AHK1-ED. At the plasma membrane distal end of this α-helix backbone the 

predicted PAS domain (aa164-282) is formed (fig. 4.4 A, turquoise) comprising two α-helical structures 

as well as four β-sheets (fig. 4.4 D). Three additional β-sheets are involved in this distal part of the 

AHK1-ED. The plasma membrane proximal part of the AHK1-ED is formed by five α-helices and seven 

β-sheets (fig. 4.4 B).  

From aa440 the amino acid sequence passes the plasma membrane again to the cytosolic carboxy 

terminus. The plasma membrane distal and proximal parts are connected by two α-helices building a 

kind of “neck” region. This region is stiff and not bendable which might be due to interactions of the 

highly conserved residues Trp186, Leu199 and Leu323 (fig. 4.4 C). 

The size of the AHK1-ED is ~10nm with a maximum diameter of ~5nm. The 63 amino acid residues 

which are identical in the similar sequences of AHK1-ED (fig. 4.3) are distributed all over the structure 

(fig. 4.4 A) indicating a high importance for the signal perception. According to the putative structure a 

mechanical perception of osmotic stress by AHK1 is unlikely. The identification of the PAS domain as 

well as the putative structure supports the idea of a low-molecular ligand binding to AHK1.  

4.1.2.3 Expression of AHK1-ED in Escherichia coli for CD-spectroscopy, crystallization and 

ligand fishing  

The nucleotide sequence of AHK1-ED encoding aa99-446 of the AHK1 full length protein has been 

codon-optimized for expression in Escherichia coli by the company GenScript (USA) resulting in the 

vector construct pUC57-AHK1-ED. In this vector the nucleotide sequence of AHK1-ED was extended 

with a 5’-ATG and a 3’-double stop codon as well as recognition sites for the restriction endonuclease 

NotI at the very 5’-end and NcoI at the 3’-end which were subsequently used for the cloning of the 

codon-optimized sequence into the E. coli expression vector. The vector pMH-HSsumo-AHK1-ED for 

the expression of AHK1-ED under the control of a T7-promoter in E. coli was generated by classical 

cloning, fusing a His-tag, StrepII-tag and a small ubiquitin-related modifier (SUMO) to the amino 

terminus of AHK1-ED how it was described for AHK4 by Hothorn et al. (2011). In addition to AHK1-ED, 

the conserved Leu298 and Leu422 in the “neck”-region of AHK1-ED were mutated by site-directed 

mutagenesis on pUC57-AHK1-ED to Ala leading to pUC57-AHK1-ED-Leu298/422Ala and pMH-

Ssumo-AHK1-ED-Leu298/422Ala. These mutations might influence the structure of AHK1-ED and 

might lead to an extracellular domain which is incapable of signal perception. The expression of the 

AHK1-ED fusion protein worked in Origami-2 (DE3) cells (appendix A19). With the use of the 

expression vectors pMH-Ssumo-AHK1-ED and pMH-Ssumo-AHK1-ED-Leu298/422Ala, the AHK1-ED 

and AHK1-ED-Leu298/422Ala fusion protein was expressed by GeneCust (L) with a purity of 80% 

(appendix A20). These proteins were then used for Circular Dichroism (CD)-spectroscopy in 

cooperation with Thilo Stehle and Volker Niemann to verify the secondary structure of the homology 

model of Michael Hothorn. Unfortunately the CD-spectroscopy did not work due to the high 

absorbance of sodium lauroyl sarcosine in the protein storage buffer. A change of buffer led to the 

almost complete loss of protein. The expression vector for the AHK1-ED fusion protein was further 

used for expression and native protein extraction by Thomas Drechsler to obtain protein for 

crystallization and ligand fishing as well as for antibody production (Drechsler, 2015). 
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4.1.3 AHK1-dependent signal transduction and adaption of the plants 

When a certain signal is perceived by a receptor, signal transduction takes place, leads to altered gene 

expression and finally to an adaption of the plant to the altered surrounding. In previous studies ahk1 

knock down alleles in Arabidopsis thaliana were shown to have certain phenotypes. 

4.1.3.1 Stomata  

Kumar et al. (2013) showed that the ahk1 knock down lines ahk1-1, ahk1-5 as well as ahk1-6 had an 

increased abaxial stomatal index in comparison to the respective wildtype in 5-6 week old plants. In 

this study, this could also be shown for the cotyledons of three day old seedlings of ahk1 knock down 

alleles in the Ws-2 ecotype whereas ahk1-3/35S::AHK1-GFP showed a higher significance of 

increased stomatal index in comparison to the wildtype than the  knock down lines (fig. 4.5).  Thereby, 

in this study seedlings were used as it was tried to investigate stomatal development under normal and 

osmotic stress conditions as it was described in Kumari et al. (2014). Unfortunately, stomatal density 

and stomatal index of mannitol stressed plants could not be determined as too many cells in each 

sample were damaged due to mannitol stress for which reason no proper outline of the cells could be 

imaged with the use of staining with neither propidium iodide nor FM4-64 and confokal microscopy.  

 
figure 4.5: Number of stomates and epidermal cells in ahk1 knock down lines  

Abaxial stomatal density (A), epidermal cell density (B) and stomatal index (C) of cotyledons of three day 

old seedlings. The cell walls of the cells have been stained with propidium iodide, images were taken using 

confokal microscopy (SP2) and used for the counting of cells. Data were obtained from one experiment 

with six cotyledons per line. Shown are mean values and standard deviations. Stars above bars show 

statistical significance of difference to the wildtype. Significance was calculated using student‘s ttest. 

*p<0.05; **p<0.01; ***p<0.0001 

 

4.1.3.2 Root growth of ahk1 plants 

Wohlbach et al. (2008) and Kumar et al. (2013) who were working with ahk1 knock down alleles in 

different ecotypes obtained contradictory results in regard to root growth during osmotic stress 

conditions indicating a positive or rather negative effect of AHK1 on osmoregulation whereas they used 

different methods and growth conditions. Therefore the root growth of the ahk1 knock down alleles was 

further investigated. 
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figure 4.6: Total root length of non-stressed 

ahk1 knock down lines  

Shown is the total root length in mm of four day old 

seedlings of ahk1 knock down alleles in the three 

ecotypes Nos-0, Ws-2 and Col-0. The ecotypes 

are separated by dashed lines. The seedlings 

grew on half strength MS salts with 2mM MES and 

1% phytoagar at constant light conditions and the 

root length has been measured with the use of 

ImageJ. Shown are the mean values and standard 

deviations of at least 21 seedlings per line and 

experiment. For the Nos-0 and Col-0 ecotype one 

experiment was executed, for the Ws-2 ecotype 

data of seven replicates were averaged. Student‘s 

t-test was used to calculate statistical significance. 

The stars above the bars display the significance: 

**p<0.01; ***p<0.001. Brackets around stars 

display that the significance has been shown in a 

single experiment. 

 

First, the total root length of four day old seedlings of ahk1 knock down alleles in the three different 

ecotypes Nos-0, Ws-2 and Col-0 was analyzed (fig. 4.6). In a single experiment with at least 21 

seedlings per line ahk1-1 in the Nos-0 ecotype and ahk1-6 in the Col-0 ecotype showed significantly 

shorter roots than their wildtypes whereas ahk1-5 did not show this difference. In averaged data of 

seven replicates with at least 21 seedlings per line ahk1-3 and ahk1-4 in the Ws-2 ecotype did not 

show a difference in root length in comparison to their wildtype. The total root length of the different 

ecotypes was generally similar and did not show any significant difference. 

Wohlbach et al. (2008) used sorbitol media for osmotic stress treatment and did not investigate the 

total root length but the mean percentage of root elongation which was calculated based on a non-

stressed control root. Thereby, ahk1-3 and ahk1-4 showed a reduced percentage of root elongation in 

comparison to their wildtype. In this study, in one experiment with at least 20 seedlings per line and 

treatment the results of Wohlbach et al. (2008) could not be reproduced. After four days growth on 

sorbitol-supplemented media the root elongation generally decreases with increasing amounts of 

sorbitol. The ahk1 knock down alleles ahk1-3 and ahk1-4 did not show a difference in the mean 

percentage of root elongation based on a non-stressed control root in comparison to the wildtype Ws-2 

(fig. 4.7 H). The same is true for ahk1-6 and Col-0 whereas ahk1-5 showed a reduced mean 

percentage of root elongation on 100mM and 400mM sorbitol (fig. 4.7 I). The mean percentage of root 

elongation based on a non-stressed control root of ahk1-1 in comparison to the wildtype Nos-0 was 

increased on 200mM and decreased on 400mM sorbitol (fig. 4.7 G).  

Kumar et al. (2013) used a different method to quantify root elongation upon osmotic stress. They did 

not analyze the total root length but the total root elongation of seedlings in eight days growth on 

osmotic stress media. In this study, the total root elongation was determined four days after the 

transfer and also showed a general decrease in root elongation upon increasing amounts of sorbitol. 

The ahk1 knock down allele ahk1-1 showed an increased root elongation on 0mM, 50mM, 100mM and 

200mM but a decreased root elongation on 400mM sorbitol in comparison to its wildtype Nos-0 (fig. 4.7 

D). In the Ws-2 ecotype the ahk1-3 and ahk1-4 showed an increased root elongation in comparison to 
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their wildtype on 0mM, 50mM, 100mM and 200mM sorbitol whereas no significant difference could be 

detected for the root elongation on 400mM sorbitol (fig. 4.7 E). In the Col-0 ecotype ahk1-5 showed a 

decreased root elongation in comparison to the wildtype on 100mM and 400mM sorbitol. ahk1-6 

showed an increased root elongation on 0mM and 50mM as well as a decreased root elongation on 

400mM sorbitol (fig. 4.7 I).  

 

 
figure 4.7: Root elongation of ahk1 knock down lines in different ecotypes during sorbitol stress. 

The ahk1 knock down alleles in the Nos-0 (A, D, G), Ws-2 (B, E, H) and Col-0 (C, F, I) ecotype were grown 

for four days on half strength MS salts at constant light conditions, were then transferred to sorbitol-

supplemented media and grown for additional four days. The root elongation was analyzed with the 

method of Kumar et al. (2013) showing the total root elongation (D, E, F) and the method of Wohlbach et 

al. (2008) showing the mean percentage of root elongation based on a non-stressed control root (G, H, I). 

(A) gives the color code for (D) and (G), (B) gives the color code for (E) and (H), (C) gives the color code 

for (F) and (I). The labeling of the y-axis in (D) is also valid for the y-axes in (E) and (F) the labeling of the 

y-axis in (G) is also valid for the y-axes in (H) and (I). Shown are mean values and standard deviations of 

one experiment with at least 20 seedlings per line and treatment. Student‘s t-test was used to analyze 

statistical significance of differences. Stars above the bars display statistical significance in comparison to 

the respective wildtype. *p<0.05; **p<0.01; ***p<0.001. Brackets around stars display that the significance 

has been shown in just one experiment. 

 

In summary the ahk1 knock down alleles in the Nos-0 and Ws-2 ecotype showed a generally increased 

root elongation in comparison to their wildtypes on the control media as well as on osmotic stress 

media. This could not be shown in the Col-0 ecotype. In contrast, the root elongation of the ahk1 knock 
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down alleles in the Nos-0 and Col-0 ecotype on 400mM sorbitol is decreased in comparison to their 

wildtype which could not be shown in the Ws-2 ecotype. This indicates that osmotic stress or at least 

sorbitol is not causing the difference in root elongation. Furthermore, the method which is used for the 

analysis of root growth during osmotic stress gives different results for the same raw data. 

Another possibility to apply osmotic stress is the use of mannitol. Mannitol has also been used in 

previous studies about AHK1 by Katharina Caesar. Therefore it was tested whether the root elongation 

of the ahk1 knock down alleles behaves similar during mannitol stress like during sorbitol stress at the 

same growth conditions. It could be revealed that this is the case. 

In one experiment with at least 20 seedlings per line and treatment a general decrease in root 

elongation could be correlated to increasing amounts of mannitol like previously shown with sorbitol. A 

decrease in the mean percentage of root elongation based on a non-stressed control root in 

comparison to the respective wildtype could be detected for ahk1-1 grown on 50mM mannitol 

(appendix A21 G), for ahk1-3 grown on 200mM and 400mM mannitol (appendix A21 H), for ahk1-4 

grown on 50mM, 200mM and 400mM mannitol (appendix A21 H), for ahk1-5 grown on 400mM 

mannitol (appendix A21 I) and for ahk1-6 grown on100mM and 200mM mannitol (appendix A21 I). An 

increase could be shown exclusively for ahk1-5 grown on 100mM mannitol (appendix A21 I). 

In total root elongation ahk1-1 showed a general increase in comparison to its wildtype (appendix A21 

D). In the Ws-2 ecotype ahk1-3 showed an increased root elongation in comparison to the wildtype on 

0mM and 100mM mannitol, whereas ahk1-4 showed an increased root elongation on 0mM and a 

decreased root elongation on 400mM mannitol (appendix A21 E). In the Col-0 ecotype an increased 

root elongation was detected for ahk1-5 grown on 100mM mannitol and for ahk1-6 grown on 0mM and 

50mM mannitol. On 400mM mannitol the root elongation of ahk1-5 and ahk1-6 was decreased in 

comparison to the wildtype (appendix A21 F). 

The root elongation of ahk1 knock down alleles on mannitol-supplemented media is as contradictory 

as the root elongation on sorbitol.  

So far the root elongation was analyzed in eight day old seedlings which have been grown on osmotic 

stress media for four days. Wohlbach et al. (2008) analyzed the mean percentage of root elongation in 

eight day old seedlings after five days growth on osmotic stress media whereas Kumar et al. (2013) 

analyzed the root elongation in twelve day old seedlings after eight days of growth on stress media. 

Hence, the root elongation on mannitol-supplemented media of ahk1-3, ahk1-4 and ahk1-

3/35S::AHK1-GFP in comparison to the wildtype Ws-2 was analyzed four and eight days after the 

transfer of four day old seedlings and compared. 

Averaged data of three experiments with at least 19 seedlings per Arabidopsis thaliana line and 

treatment did not show any significant difference in total root elongation (fig. 4.8 B, C) or in the mean 

percentage of root elongation based on a non-stressed control root (fig. 4.8 D,E)  after neither four (fig. 

4.8 B, D) nor eight days (fig. 4.8 C, E) of osmotic stress treatment. Like in previous experiments a 

general decrease in root elongation upon increasing osmotic stress could be observed.  

The osmotic stress dependent difference in root elongation of ahk1 knock down alleles how it was 

described by Wohlbach et al. (2008) and Kumar et al. (2013) could not be shown in additional 

replicates of the mannitol stress experiment. 
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figure 4.8: Comparison of the root elongation of ahk1 mutants in four and eight days of mannitol stress 

Ws-2 (dark grey), ahk1-3 (light grey), ahk1-4 (medium grey) and ahk1-3/35S::AHK1-GFP (darkest grey) 

were grown on half strength MS salts without mannitol for four days at constant light conditions and then 

transferred to mannitol-supplemented media. Four days (4dat; B, D) and eight days (8dat; C, E) after the 

transfer the root elongation was measured. Neither the analysis with the method of Kumar et al. (2013) (B, 

C) showing the total root elongation nor the method of Wohlbach et al. (2008) (D, E) showing the mean 

percentage of root elongation based on a non-stressed control root could show a significant difference of 

the root elongation of ahk1 mutants in the Ws-2 ecotype after four (B, D) and eight days (C, E) of mannitol 

treatment. Shown are mean values and standard deviations of three experiments with at least 19 seedlings 

per line and treatment. (A) gives the color code for (B), (C), (D) and (E). 

  

Dependent on the season when the root growth was investigated contrary results were obtained (fig. 

4.9). In three experiments (exp.1-3) which were executed during winter time the root length (fig. 4.9 B) 

and elongation (fig. 4.9 D) of ahk1-3 and ahk1-4 was increased in comparison to the wildtype whereas 

in three experiments in summer time (exp.4-6) the total root length after (fig. 4.9 B) and the root 

elongation (fig. 4.9 D) in four days of growth on osmotic stress of ahk1-3 and ahk1-4 was not changed 

in comparison to the wildtype whereby the plants were grown in the same phytochamber with same 

settings and experimental setup. Still, in summer time the phytochamber had problems to reduce the 

temperature to the set value. For a better comparison of the root length and elongation between the 

different experiments the root length and elongation of the ahk1 knock down lines was normalized to 

the respective wildtype root which grew at the same conditions. The averaged data of all replicates do 
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not show a difference in root length (fig. 4.9 C) and root elongation (fig. 4.9 E) between ahk1 knock 

down alleles and their wildtype upon osmotic stress treatment.  

In summary the root growth phenotypes for the ahk1 knock down alleles were contradictory in the 

respective publications and could not be reproduced in this study. This arose the question about the 

components of the AHK1 signal transduction pathway and a reproducible AHK1-dependent phenotype. 

 

 
figure 4.9: Root growth of ahk1 knock down lines is not stably reproducible during mannitol stress. 

(A) gives the color code for (B) to (D). Eight day old seedlings of ahk1 knock down lines which have been 

grown on mannitol-supplemented media for four days do not show a stably reproducible phenotype during 

mannitol stress. Shown is the mean percentage of the total root length (B, C) and the mean percentage of 

root elongation (D, E) with the respective standard deviation of six experiments with at least four (exp. 1-3) 

or 19 (exp. 4-6) eight day old seedlings per line and treatment. Experiment 1-3 (exp.1-3) have been 

conducted during winter time, experiment 4-6 (exp. 4-6) during summer time. (B) and (D) show the season 

dependence of the results, (C) and (E) show the mean values of all experiments. The mean value of the 

root length as well as the root elongation of the respective wildtype was defined as 100%. Student‘s t-test 

was used to calculate statistical significance within the defined experiments. Stars above the bars indicate 

the statistical significance of difference to the respectively treated wildtype: *p<0.05; **p<0.01; ***p<0.001 
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4.1.3.3 Phosphoproteome of ahk1-3 and its wildtype Ws-2 

AHK1 is part of the multistep phosphorelay system in plants in which the signal is usually transduced 

by the transfer of one phosphate from histidine (His) to aspartate (Asp) residues which finally changes 

the activity of response regulators and subsequently regulates gene expression. The phosphorylation 

of His and Asp is biochemically not as stable as serine (Ser)/threonine (Thr) or tyrosine (Tyr) 

phosphorylation and a direct transfer of the phosphate from His or Asp to Ser/Thr or Tyr is not possible 

(Sanders et al., 1989) but as it is known from the osmotic stress signaling HOG-pathway in yeast 

(Reiser et al., 2003) as well as from the ethylene signaling pathway in plants (Merchante et al., 2013) a 

transition from the multistep phosphorelay system to a classical phosphorylation cascade can occur. 

To analyze whether such a transition also occurs AHK1-dependent upon osmotic stress in Arabidopsis 

thaliana, the phosphoproteome of ahk1-3 was compared to the wildtype (wt) Ws-2 after 10min of 0.3M 

mannitol or mock treatment in a reciprocal metabolic labeling experimental design as well as in a non 

labeling experimental design.  

 

figure 4.10: Distribution of phosphopeptide 

log2 ratios  

(A) Distribution of phosphopeptide log2 ratios 

between the ahk1-3 mutant and the wildtype 

in the mock and mannitol treated experiments 

with the experimental setup of no labeling 

(black) and metabolic labeling (grey). (B) 

Distribution of phosphopeptide log2 ratios 

between mannitol and mock treatment in the 

wildtype and the ahk1-3 mutant in the 

experimental setup without labeling. 

In these experiments, which have been executed by Waltraud X. Schulze, peptides with specific 

phosphorylation patterns (phosphopeptides) at Ser, Thr or Tyr residues were identified and quantified 

by mass spectrometry. The log2-value of the ratio of normalized phosphopeptide ion intensities of 

ahk1-3 and the wildtype Ws-2 simplifies the analysis whether a phosphopeptide is more abundant in 

ahk1-3 (log2>0) or in the wildtype (log2<0). The altered abundance of phosphopeptides is further 

termed differentially phosphorylated whereas a log2-value above 1.0 or beyond -1.0 which indicates a 

two times higher or respectively lower abundance of the phosphopeptide in ahk1-3 in comparison to 

the wildtype was chosen as threshold. This threshold was chosen as due to insufficient data points for 

the ttest it was not possible to calculate the significance of difference for each phosphopeptide and 

because for the experiment without labeling it has to be taken into account that proteins from the 

different samples were extracted, further processed and analyzed independently for each line and 

treatment which can lead to quantitation errors. In figure 4.10 the distribution of log2 ratios for all 

experiments is illustrated. It reveals a differential phosphorylation between ahk1-3 and the wildtype 

upon mannitol and mock treatment indicating an AHK1-dependent transition from the multistep 

phosphorelay system to classical phosphorylation cascades. Additionally a general and mannitol-

dependent differential phosphorylation could be observed in ahk1-3 as well as in the wildtype. A high 
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range of log2-values could be shown especially for phosphopeptides which were quantified in the 

metabolic labeling experiment with mannitol treatment.  

In these experiments in total 3022 phosphopeptides were quantified (fig. 4.11) whereas 1055 

phosphopeptides were quantified in the reciprocal metabolic labeling experiment with ahk1-3 and the 

wildtype after mannitol treatment (appendix A33). In the reciprocal metabolic labeling experiment with 

ahk1-3 and the wildtype just 140 phosphopeptides could be quantified after mock treatment (appendix 

A34). In the experiment without labeling but after mannitol and mock treatment of ahk1-3 and the 

wildtype 1827 phosphopeptides were quantified (appendix A35).  

 

 
 

figure 4.11: Functional categorization of the quantified phosphopeptides. 

Functional categorization of phosphopeptides which were quantified in experiments with metabolic labeling 

and without labeling. In total 3022 phosphopeptides were quantified and categorized according to their 

function to the categories cell.organisation (dark blue), cell.vesicle transport (red), development (dark 

green), protein.degradation (dark violet), protein.posttranslational modification (petrol), RNA, regulation of 

transcription (orange), signaling (light blue), stress (rosé), transport (light green) and others (light violet). 

The category “others” comprises cell wall, cell, DNA, gluconeogenesis/glyoxylate cycle, glycolysis, metal 

handling, microRNA, misc, protein, photosynthesis, redox, RNA, TCA/org transformation, not assigned, 

secondary metabolism and metabolism of amino acids, carbohydrates, nucleotides, nitrate, hormones, 

lipids, Co-factors and vitamins. Differential mannitol and differential mock describes phosphopeptides 

which show a log2-value above 1.0 or beyond -1.0. The phosphopeptides of “differential mannitol (909)” 

were subgrouped into “more in ahk1-3 (435)” and “less in ahk1-3 (474)” whereas the phosphopeptides of 

“differential mock” were subgrouped into “more in ahk1-3 (77)” and “less in ahk1-3 (49)”. Same colors 

designate the same functional category. 
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After mannitol treatment in total 909 phosphopeptides were differentially phosphorylated in ahk1-3 in 

comparison to wt whereas 435 peptides showed more and 474 showed less phosphorylation (fig. 

4.11). After mock treatment, in total 126 phosphopeptides were differentially phosphorylated whereas 

77 peptides showed more and 49 showed less phosphorylation (fig. 4.11). The portions of the 

functional categories to which the quantified phosphopeptides were sorted did not reveal blatant 

changes after mannitol but after mock treatment especially in the portions of phosphopeptides which 

are involved in “cell.vesicle transport”, “development.”, “RNA.regulation of transcription.” “signaling.”, 

“stress.” and “transport.”. All quantified phosphopeptides, their log2-values as well as their functional 

categories are listed in appendix A33, A34 and A35 respectively. 

4.1.3.4 Components of the multistep phosphorelay system 

Interestingly, some components of the multistep phosphorelay system were identified and quantified in 

the phosphoproteomic analysis of ahk1-3 and Ws-2 comprising Ser and Thr phosphorylation. The 

components and the respective quantified phosphopeptides are listed in table 4.1. After 10min 

treatment with mannitol AHK4 (gi:30677959) showed a highly reduced phosphorylation at Ser875 and 

Thr883 and ARR19 (gi:334183176) at Ser171 whereas the phosphorylation of AHK2 (gi:18421494) at 

Thr11 and Ser12 is similar in ahk1-3 in comparison to the wildtype. EIN4 (gi:42572247) with 

phosphorylated Ser635 and Ser637 was identified in just one line and treatment so no comparative 

quantification could be obtained. As these phosphorylation sites are Ser and Thr residues which are 

located neither in the histidine kinase domain nor in the receiver domain (fig. 4.12) they do not directly 

belong to the multistep phosphorelay system which occurs between His and Asp residues. In the 

phosphoproteomic analysis of ahk2 ahk3 in comparison to the wildtype Col-0 AHK2 was also found to 

be phosphorylated at Ser and Thr residues but at Thr4, Ser596 and Thr740. Most of these 

phosphorylation sites are identified to be close to NEK2-kinase sites (Dinkel et al., 2016). There are 

seven NEK-kinases annotated in Arabidopsis thaliana but no phosphopeptide of them was quantified 

in the phosphoproteome of ahk1-3 and wt.  

table 4.1: Quantified phosphopeptides of components of the multistep phosphorelay system. 

log2-values for the ratio of quantified peptides in ahk1-3 and the wildtype (wt) Ws-2 in the experiments with 

a reciprocal metabolic labeling (met. labeling) experimental design or without labeling (no labeling) after 

10min treatment with 0.3M mannitol (+man) or mock respectively (-man). For met. labeling +man log2-

values of the two reciprocal replicates are shown. The phosphorylated residue is highlighted with a 

subsequent (ph). (ac) reveals acetylation, (ox) oxidation. The “x” shows that the log2-value could not be 

calculated due to a not quantified peptide for the nominator or denominator. “-“ marks no quantification. 

Underlined values revealed statistical significance with p<0.05. Data obtained from Waltraud X. Schulze. 

accession name phosphopeptide 

log2-values (ahk1-3/wt) 

met. labeling no labeling 

+man -man +man -man 

AT5G35750 AHK2 (ac)SITCELLNLT(ph)S(ph)KK - -0.09 - - - 

AT2G01830 AHK4 TNGNVHHKS(ph)PKLALFAT(ph)NITNSEFDR -4.55 -8.99 - - - 

AT3G04580 EIN4 SILAGNAPELQHPNS(ph)NSILR - - - x x 

  SILAGNAPELQHPNSNS(ph)ILR - - - x x 

AT1G49190 ARR19 S(ph)DRLDQVK -20.44 - - - - 
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figure 4.12: Ser/Thr-phosphorylation sites in components of the multistep phosphorelay system  

Schematic drawings of the domain structure of AHK2 (A), AHK4 (B), EIN4 (C) and ARR19 (D) according to 

the SMART database. Phosphorylation sites identified in this study are indicated by “P“. The blue octagon 

indicates the CHASE domain, the green rectangle the histidine kinase domain (HisKA), the green triangle 

the HATPase_c domain, the pentagon the receiver domain, blue bars the transmembrane domains, 

magenta bars regions of low complexity and green bars coiled-coil regions.  

 

 
figure 4.13: Mating-based split-ubiquitin assay with components of the multistep phosphorelay system  

Fusion constructs of AHK1, AHK2, AHK4 and CKI1 with the C-terminal part of ubiquitin (Cub) were 

transformed into the S. cerevisiae strain THY.AP4, fusion constructs of AHK1, ETR1, AHK3, AHK4, AHK5 

in full length (AHK5_fl) and as truncated version (AHK1-C8), CKI1 and BAK1 with the N-terminal part of 

ubiquitin (Nub) as well as the negative control NubG and the positive control NubWT were transformed into 

the S. cerevisiae strain THY. AP5. After the mating the interaction of the proteins was tested by dropping of 

the yeast in the concentration of OD600=1.0, OD600=0.1 and OD600=0.01 on CSM minimal medium (CSM) 

and verified by dropping them on CSM minimal medium supplemented with 50µM Met (CSM+M) whereas 

CSM-Ade+-His+ (CSM+A+H) served as growth control. The growth was recorded after four days growth at 

28°C. The detection of protein expression is shown in appendix A22. 

 

AHK1 is known to form homodimers (Caesar, unpublished). With the identified AHK1-dependent Ser 

and Thr phosphorylation of AHK2 and AHK4 the question arose, whether AHK1 also forms 

heterodimers with other AHKs although a direct phosphorylation of AHK2 and AHK4 from His or Asp to 

Ser or Thr is biochemically not possible (Sanders et al., 1989). With the use of the mating-based split-

ubiquitin (mbSUS) system in Saccharomyces cerevisiae it could be shown, that AHK1 does not 
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interact with ETR1, AHK3 and AHK5 in full length (AHK5_fl) or in a truncated version (AHK5_C8) but 

interacts weakly with AHK2 and AHK4 and strongly with CKI1 (fig. 4.13).  

In contrast to AHK2, AHK3 and AHK4 which localize to the endoplasmic reticulum (Caesar et al., 

2011b) CKI1-RFP co-localizes with AHK1-GFP in transient expression in N. benthamiana leaves at the 

plasma membrane as well as in vesicle-like structures which were described in 4.1.1.2 (fig. 4.14). 

Unfortunately the expression of AHK1 and CKI1 was too low for FRET-FLIM measurements. To 

investigate, whether the interaction of AHK1 and CKI1 reveals a physiological function mesophyll 

protoplasts of Ws-2, ahk1-3 and ahk1-4 were transfected with a construct encoding a luciferase (LUC) 

under the control of the ARR5-promoter (pBT8-ARR5::LUCm3) which is CKI1- and kinetin-dependently 

induced (Hejatko et al., 2009). Unfortunately no results could be obtained as the protoplasts were not 

stable enough for the time of the protocol. This was also true for these protoplasts which were 

transfected with a construct encoding a LUC under the control of the RD29B-promoter (pB7-

RD29Bpro-LUCm-3XHA) and treated with different concentrations of mannitol as well as for these 

protoplasts which were transfected with a construct encoding a LUC under the control of the pFRK1-

promoter (pFRK::LUC nos c) and treated with a mixture of the PAMPs elf18 and flg22.  

 

 
figure 4.14: Localization of CKI1-RFP and AHK1-GFP 

Transient co-expression of CKI1 tagged with a C-terminal RFP (CKI1-RFP, red) and AHK1 tagged with a 

C-terminal GFP (AHK1-GFP, green) under the control of the CaMV 35S-promoter in N. benthamiana 

revealed in confokal microscopy that CKI1-RFP and AHK1-GFP co-localize at the plasma membrane and 

after treatment with 0.8M mannitol additionally in vesicle-like structures (white arrows). The scale is 10µm. 

 

4.1.3.5 Mitogen-activated protein kinases 

In the phosphoproteome of ahk1-3 and the wildtype Ws-2 several kinases were quantified (appendix 

A24) including some MAP kinases (table 4.2).  

In a yeast two-hybrid assay the intracellular part (ICP) of AHK1 comprising amino acid 470-1207 was 

tested for interaction with different MAP kinases. AHK1-ICP did not show any interaction with MKKK20, 

MPK2, MPK3, MPK4, MPK5, MPK6, MPK7, MPK11 or MPK17 (appendix A26). Furthermore, in a 

mbSUS assay the interaction of AHK1 and MKKK20 was tested and neglected (appendix A25). So far 

it has not been tested whether ARRs downstream of AHK1 but especially ARR19 which was quantified 

in the phosphoproteome and identified to be phosphorylated at Ser171 interact with any of the MAP 

kinases which were also identified in the phosphoproteome. 

w
at

e
r

CKI1-RFP brightfield mergeAHK1-GFP

0
.8

M
 m

an
n

it
o

l



RESULTS 

 

74 
 

table 4.2: Quantified phosphorylated peptides of MAP kinases 

log2-values for the ratio of quantified peptides in ahk1-3 and the wildtype (wt) Ws-2 in the experiments with 

a reciprocal metabolic labeling (met. labeling) experimental design or without labeling (no labeling) after 

10min treatment with 0.3M mannitol (+man) or mock respectively (-man). For met. labeling +man log2-

values of the two reciprocal replicates are shown.The phosphorylated residue is highlighted with a 

subsequent (ph). (ac) reveals acetylation, (ox) oxidation. The “x” shows that the log2-value could not be 

calculated due to a not quantified peptide for the nominator or denominator. “-“ marks no quantification. 

Underlined values revealed statistical significance with p<0.05. Data obtained from Waltraud X. Schulze. 

accession name phosphopeptide 

log2-values (ahk1-3/wt) 

met. labeling no labeling 

+man -man +man -man 

AT1G53165 

 

ATMAP4K 

 ALPHA1 

 

EFS(ph)SNANFSPLAR 

 

- 

 

- 

 

- 

 

x 

 

-0.69 

AT3G58640 

 

MAPKKK-

 related 

AISLPSS(ph)PQNYR - - - x -0.65 

SIS(ph)ITPEIGDDIVR - - - 0.07 -0.71 

AT3G13530 MAPKKK7 TPS(ph)SVSGNELAR - - - x 0.82 

VRS(ph)GQLDPNNPIFGQNETSSLSM 

 (ox)IDQPDVLK 

 

- 

 

- 

 

- 

 

x 

 

x 

AT4G08500 MAPKKK8 S(ph)LEFPEPTSFR - - - x x 

AT1G07150 MAPKKK13 M(ox)LS(ph)S(ph)PSSFWVR - -1.21 - - - 

AT3G50310 MAPKKK20 DEDKVLMS(ph)PK - 2.84 - - - 

AT4G29810 MKK2 FLTQSGT(ph)FK - - - x x 

IISQLEPEVLS(ph)PIKPADDQLSLSDL

 DM(ox)VK 

 

- 

 

- 

 

- 

 

x 

 

x 

AT1G53510 MPK18 FS(ph)KADPLALR - - - - - 

 

4.1.3.6 Link of AHK1 to the cytoskeleton 

The phosphoproteome of ahk1-3 and Ws-2 revealed several differentially phosphorylated peptides 

which are involved in cell organization (fig. 4.11, appendix A33, A34, A35). Some of these quantified 

peptides were tested in a yeast two-hybrid assay for interaction with AHK1-ICP. This interaction study 

was executed in the bachelor thesis of Achim Lorenz (2014). The empty vector controls were placed 

here in appendix A26 although the detection of the proteins in Western Blots has to be repeated.  

AHK1-ICP shows interaction with ATPase katanin p60 (AT1G80350) and a putative myosin 

(AT5G20470) (appendix A26). Therefore it was interesting whether the assembly, disassembly and 

general arrangement of the cytoskeleton is altered in the ahk1 knock down alleles. To address this 

question the binary plant vector constructs pUBN-RFP-MBD and pUB-GFP-ABD2-GFP for the 

expression of a RFP-tagged microtubule-binding protein (MBP) and a GFP-tagged actin-binding 

protein were separately stably transformed into all ahk1 knock down alleles and the respective 

wildtypes. This did not work in the Ws-2 ecotype. In the Col-0 ecotype the lines were progenated and 

heterozygous T2-lines could be obtained and now be used for the further analysis of the cytoskeleton 

as homozygous plants reveal severe developmental defects. 

4.1.3.7 Effect of AHK1 on proteins involved in the response to light 

The analysis of the phosphoproteome of ahk1-3 and Ws-2 and the functional categories of the 

quantified phosphopeptides put proteins into focus which contribute to the plant’s response to light 

(table 4.3). 

SPA2, COP1, HY5 and FHY3 are involved in the regulation of photomorphogenesis of seedlings 

(Jaedicke et al., 2012; Chen et al., 2015; Siddiqui et al., 2016). Therefore it was tested whether ahk1 
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knock down alleles show differences in comparison to their wildtype in the length of their hypocotyl or 

root after they were grown for three days in the dark. 

table 4.3: Quantified phosphopeptides of proteins involved in the response to light 

log2-values for the ratio of quantified peptides in ahk1-3 and the wildtype (wt) Ws-2 in the experiments with 

a reciprocal metabolic labeling (met. labeling) experimental design or without labeling (no labeling) after 

10min treatment with 0.3M mannitol (+man) or mock respectively (-man). For met. labeling +man log2-

values of the two reciprocal replicates are shown.The phosphorylated residue is highlighted with a 

subsequent (ph). (ac) reveals acetylation, (ox) oxidation. The “x” shows that the log2-value could not be 

calculated due to a not quantified peptide for the nominator or denominator. “-“ marks no quantification. 

Underlined values revealed statistical significance with p<0.05. Data obtained from Waltraud X. Schulze. 

accession name phosphopeptide 

log2-values (ahk1-3/wt) 

met. labeling no labeling 

+man -man +man -man 

AT4G11110 SPA2 ARNMDQQT(ph)VAS(ph)SGSALVIANTSAK 0.50 - - - - 

AT2G32950 COP1 M(ox)EEIS(ph)T(ph)DPVVPAVKPDPR 4.18 - - - - 

AT5G11260 HY5 EGIES(ph)DEEIR - - - 0.02 0.24 

AT3G22170 FHY3 SLPDVVTS(ph)PTQGLISVEEDNHSR - - - -0.94 x 

 

In four replicates with at least 18 seedlings per line the etiolated ahk1 knock down seedlings of the 

Nos-0 and Ws-2 ecotype indeed showed a reduced hypocotyl and root length in comparison to the 

respective wildtype. Thereby, the averaged hypocotyl and root length of the respective wildtype was 

defined as 100%. The ahk1-3/35S::AHK1-GFP line in the Ws-2 ecotype obtained no difference of 

hypocotyl or root length in comparison to the wildtype indicating a complementation of the decreased 

hypocotyl and root length in ahk1-3 by the expression of AHK1-GFP. In the Col-0 ecotype ahk1-5 did 

not show any difference in comparison to the wildtype whereas ahk1-6 showed a reduced and the 

AHK1 overexpressor line revealed an increased hypocotyl length (fig. 4.15).  

 

 

figure 4.15: Hypocotyl and root length of 

etiolated ahk1 knock down seedlings  

Hypocotyl (dark grey) and root (light grey) length 

of seedlings of ahk1 knock down alleles in the 

Nos-0, Ws-2 and Col-0 ecotype which grew in 

the dark for three days after 2h light induction of 

germination. The hypocotyl and root length has 

been normalized to the respective wildtype. The 

ecotypes are separated by dashed lines. Data 

were averaged between at least four replicates 

with at least 18 seedlings per line and treatment. 

Shown are mean values and standard 

deviations. Student‘s ttest was used to calculate 

statistical significance. Stars above bars reveal 

statistical significance of difference in 

comparison to the wildtype. *p<0.05; **p<0.01; 

***p<0.001 
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figure 4.16: Hypocotyl and root length of etiolated seedlings upon mannitol treatment  

Hypocotyl (B) and root (C) length of seedlings of ahk1-3, ahk1-4, ahk1-3/35S::AHK1-GFP and their 

wildtype Ws-2 which grew on 0mM, 50mM, 100mM and 200mM mannitol in the dark for three days after 2h 

light induction of germination. The color code for the lines in (B) and (C) is given in (A). The hypocotyl and 

root length has been normalized to the wildtype which grew at the same conditions. Data were averaged 

between three replicates with at least 33 seedlings per line and treatment. Shown are mean values and 

standard deviations. Student‘s ttest was used to calculate statistical significance. Stars above bars reveal 

statistical significance of difference in comparison to the wildtype. *p<0.05; **p<0.01; ***p<0.001 

 

For the investigation of hypocotyl and root growth during osmotic stress conditions the hypocotyl and 

root length of the wildtype which grew at the same conditions like the ahk1 knock down lines was 

defined as 100%. After growth on media which was supplemented with different concentrations of 

mannitol hypocotyl and root length was in general decreased (data not shown). Furthermore, ahk1-3 

and ahk1-4 showed the previously detected reduced hypocotyl (fig. 4.16 B) and root length (fig. 4.16 

C) on control conditions whereas ahk1-3/35S::AHK1-GFP did not show an altered hypocotyl and root 

length in comparison to the wildtype. After growth on media which was supplemented with 50mM, 

100mM and 300mM mannitol no difference of hypocotyl length could be detected for these lines except 

for the decreased hypocotyl length of ahk1-3 after growth on 100mM mannitol. In contrast, a 

decreased root length could be revealed for ahk1-3 after growth on 100mM and 300mM mannitol, for 

ahk1-4 after growth on 50mM mannitol and for ahk1-3/35S::AHK1-GFP after growth on 300mM 

mannitol. Hence, osmotic stress seems to slightly increase the hypocotyl and root elongation in 

etiolated seedlings of ahk1-3 and ahk1-4. 

The reproducibility of this assay enabled to check, whether temperature alters the hypocotyl and root 

growth and might be one factor which led to the opposing results in the root growth assay. At 20°C 

three day old etiolated seedlings of ahk1-3 and ahk1-4 revealed shorter roots and hypocotyls in 

comparison to the wildtype whereas ahk1-3/35S::AHK1-GFP showed wildtype-like hypocotyl and root 

length. At 28°C a general increase of hypocotyl length could be observed whereas root length was 

decreased. The ahk1 knock down lines ahk1-3 and ahk1-4 showed wildtype-like hypocotyl and root 

length at this elevated temperature (fig.  4.17). This indicates an influence of the temperature on the 

elongation of roots and hypocotyls. 
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figure 4.17: Hypocotyl and root length of 

etiolated seedlings after growth at different 

temperatures  

Hypocotyl (B) and root (C) length of 3d old 

etiolated seedlings of ahk1-3, ahk1-4, 

ahk1-3/35S::AHK1-GFP and their wildtype 

Ws-2 which grew at 20°C and 28°C after 

2h light induction of germination. The color 

code for the lines in (B) and (C) is given in 

(A). Hypocotyl and root length has been 

normalized to the wildtype which has been 

grown at 20°C. Data were averaged 

between three replicates with at least 38 

(20°C) or 5 (28°C) seedlings per line and 

treatment. Shown are mean values and 

standard deviations. Student‘s ttest was 

used to calculate statistical significance. 

Stars above bars reveal statistical 

significance of difference in comparison to 

the wildtype. *p<0.05; **p<0.01; ***p<0.001 

 

To analyze whether the altered length of hypocotyls and roots in the ahk1 knock down alleles depends 

on altered germination a germination assay was executed. The germination rate on 0.3M mannitol as 

well as on the control did not differ between the wildtype, ahk1 knock down alleles and ahk1-

3/35S::AHK1-GFP after five days at constant light conditions whereas the germination rate was 

generally lower on 0.3M mannitol than on the control (fig. 4.18). This is contradictory to the findings of 

Wohlbach et al. (2008) and Katharina Caesar but here it has to be noted that seeds were used which 

were not older than six months. For other experiments like for instance root growth assays it was 

observed that the germination especially of ahk1 knock down lines was reduced when the seeds were 

older than six months (data not shown). Beside the germination rate the germination time was also not 

altered in this experiment (fig. 4.35). 

 

 

figure 4.18: Percentage of germination on 

media supplemented with 0.3M mannitol. 

Germination rate after four days of 

stratification and five days growth at constant 

light at 20°C on half strength MS salts 

(control) and media supplemented with 0.3M 

mannitol. Mean values and standard 

deviation of three replicates with 50 seeds 

per line and condition. Student‘s t-test was 

used to calculate statistical significance. No 

statistical significant difference in the 

germination rate could be determined for 

these lines and these conditions. 
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4.1.3.8 Influence of AHK1 on hormone metabolism and signaling 

In the phosphoproteome of ahk1-3 and the wildtype Ws-2 several phosphopeptides were quantified 

which were categorized into hormone metabolism or respective signaling (appendix A33, A34, A35). 

Additionally, other AHKs are known to be receptors for cytokinin and ethylene.  

 
figure 4.19: Hypocotyl and root length of etiolated seedlings upon treatment with hormones or inhibitors of 

hormone biosynthesis or signaling  

Hypocotyl (B, C) and root (D, E) length of seedlings of ahk1-3, ahk1-4, ahk1-3/35S::AHK1-GFP and their 

wildtype Ws-2 which grew in the dark for three days after 2h light induction of germination on control media 

and media which were supplemented with the hormones methyl-jasmonate (MeJA), gibberellic acid (GA3), 

kinetin (CK), indole-3-acetic acid (IAA), the ethylene precurser 1-aminocyclopropane-1-carboxylic acid 

(ACC), the inhibitor of ethylene signaling silver nitrate (AgNO3) as well as on the auxin transport inhibitor 

1-N-naphthylphthalamic acid (NPA). As NPA was solved in DMSO, a DMSO control was added. The color 

code of the tested plant lines for (B), (C), (D) and (E) is given in (A). The hypocotyl and root length has 

been normalized to the respective wildtype. Data were averaged between one (B, D) or three (C, E) 

replicates with at least 37 seedlings per line and treatment. Shown are mean values and standard 

deviations. Student‘s ttest was used to calculate statistical significance. Stars above bars reveal statistical 

significance of difference in comparison to the wildtype. *p<0.05; **p<0.01; ***p<0.001 

 

Therefore it was tested, whether ahk1 knock down alleles show differences in root elongation of light-

grown seedlings or in length of hypocotyls and roots in etiolated seedlings upon treatment with 

different hormones or inhibitors of hormone biosynthesis or signaling. One experiment with at least ten 

seedlings per line and treatment did not reveal any difference in root elongation between ahk1-3 and 
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the wildtype Ws-2 upon treatment with indole-3-acetic acid (IAA), the auxin transport inhibitor 1-N-

naphthylphthalamic acid (NPA), methyl-jasmonate (MeJA), salicylic acid (SA), abscissic acid (ABA), 

giberellic acid 3 (GA3), the ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC), the 

inhibitor of ethylene signal transduction silver nitrate (AgNO3) and kinetin (CK) (appendix A27 D). 

In etiolated seedlings the hypocotyl length of ahk1-3 and ahk1-4 was decreased in comparison to the 

wildtype after growth on MeJA, GA3, CK, IAA as well as after growth on NPA (fig. 4.19 B). The root 

length of the ahk1 knock down alleles in the single experiment with hormones differed from the root 

length of the other experiments as they did not show a decrease after growth on control conditions. As 

well no difference between the root length of the wildtype, the ahk1 knock down alleles and ahk1-

3/35S::AHK1-GFP could be revealed for seedlings grown on MeJA and IAA. Though, a decreased root 

length was detected for ahk1-3 grown on GA3, CK and NPA as well as for ahk1-4 grown on CK and 

DMSO. In contrast to ahk1-3, ahk1-3/35S::AHK1-GFP showed an increased root length after growth 

on NPA (fig. 4.19 D). In three replicates with at least 37 seedlings per line and condition ahk1-3 and 

ahk1-4 again showed a reduced hypocotyl and root length on control conditions. Just ahk1-4 showed a 

reduced hypocotyl length after growth on ACC, whereas after growth on AgNO3 no difference was 

revealed between the wildtype and the ahk1 knock down lines or ahk1-3/35S::AHK1-GFP (fig. 4.19 C). 

The root length was reduced after growth on ACC in ahk1-3 and ahk1-4, after growth on AgNO3 just in 

ahk1-4 (fig. 4.19 E).  

4.1.3.9 Role of AHK1 in auxin signaling 

Application of IAA increased the shortening of hypocotyls in etiolated seedlings of the ahk1 knock 

down alleles in comparison to the respective wildtype. In addition, several peptides were indentified in 

the phosphoproteome of ahk1-3 and Ws-2 which are connected to auxin metabolism, transport and 

signaling. The phosphorylation patterns as well as the log2-values of some of these quantified 

phosphopeptides are listed in table 4.4. 

table 4.4: Quantified phosphopeptides of proteins of auxin metabolism, transport and signaling 

log2-values for the ratio of quantified peptides in ahk1-3 and the wildtype (wt) Ws-2 in the experiments with 

a reciprocal metabolic labeling (met. labeling) experimental design or without labeling (no labeling) after 

10min treatment with 0.3M mannitol (+man) or mock respectively (-man). For met. labeling +man log2-

values of the two reciprocal replicates are shown. The phosphorylated residue is highlighted with a 

subsequent (ph). (ac) reveals acetylation, (ox) oxidation. The “x” shows that the log2-value could not be 

calculated due to a not quantified peptide for the nominator or denominator. “-“ marks no quantification. 

Data obtained from Waltraud X. Schulze.  

accession name phosphopeptide 

log2-values (ahk1-3/wt) 

met. labeling no labeling 

+man -man +man -man 

AT3G04730 IAA16 TYQDLSNALS(ph)K -21.57 -8.31 - - - 

AT1G34410 ARF21 LFGVT(ph)LDTPPM(ox)IK 4.23 3.12 - - - 

AT1G70940 PIN3 M(ox)LIM(ox)EQFPETAASIVS(ph)FK - - - -0.42 x 

PSNLTGAEIYS(ph)LST(ph)TPR - - - x 0.23 

AT1G23080 PIN7 PSNLTGAEIYS(ph)LNT(ph)TPR - - - -0.64 0.34 

AT1G15750 TPL APS(ph)PVNNPLLGGIPK - - 0.15 0.14 0.29 

AT1G68370 ARG1 AQGDESKGDGDS(ph)AGEEGGTENR - - - 1.16 0.50 

AQGDESKGDGDS(ph)AGEEGGTENRDK - - - 0.52 -0.08 
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figure 4.20: AHK1-ICP interacts with IAA16 in yeast. 

The reporter yeast strain pJ69-4A was co-transformed with the BD-fusion contruct of AHK1-ICP (pGBKT7-

AHK1-ICP) and the AD-fusion constructs of AHK1-ICP (pGADT7-AHK1-ICP) and IAA16 (pGADT7-IAA16) 

respectively. The empty destination-vectors (pGBKT7-Dest, pGADT7-Dest) were used as control. For the 

interaction test the respectively transformed yeast was plated on the auxotrophy medium CSM-Leu--Trp--

Ade- (CSM-L-T-A) as well as on the growth control medium CSM-Leu--Trp- (CSM-L-T) and grown for four 

days at 28°C. The detection of expressed protein is shown in appendix A23. 

 

IAA16 is differentially phosphorylated at Ser150 which is located in domain III (Korasick et al., 2014). 

Domain III is involved in the mediation of homo- and heterodimer formation with ARFs. Unfortunately 

ARF21 could not be cloned to test whether IAA16 interacts with ARF21 and whether this interaction is 

influenced by the differential phosphorylation. Nevertheless, in a yeast two-hybrid assay an interaction 

of the intracellular part of AHK1 (AHK1-ICP) comprising aa440-1207 with IAA16 could be revealed (fig. 

4.20). To verify this interaction AHK1-GFP and RFP-IAA16 were transiently expressed under the 

control of the CaMV 35S-promoter in Nicotiana benthamiana. AHK1-GFP localizes to the plasma 

membrane and vesicle-like structures which were described in 4.1.1.2. whereas RFP-IAA16 localizes 

to the nucleus (fig. 4.21) independently from AHK1 (appendix A28). To analyze, whether the 

phosphorylation has any influence on the localization or interactions of IAA16, Ser150 was mutated to 

Ala to mimick the not phosphorylated state as well as to Glu to mimick the phosphorylated state of 

IAA16. The constructs are ready for further investigation. 

 

 
figure 4.21: Localization of RFP-IAA16 and AHK1-GFP 

Transient co-expression of IAA16 tagged with a N-terminal RFP (RFP-IAA16, red) and AHK1 tagged with a 

C-terminal GFP (AHK1-GFP, green) in N. benthamiana reveals in confokal microscopy that RFP-IAA16 

localizes to the nucleus in general and during osmotic stress applied with 0.8M mannitol whereas AHK1-

GFP localizes to the plasmamembrane and vesicle-like compartments as they were described in 4.1.1.2. 

The expression of AHK1-GFP and RFP-IAA16 was regulated by CaMV 35S-promoter each. The scale is 

50µm. 
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figure 4.22: Gravitropic growth is not influenced in ahk1 knock down mutants. 

(A) Twelve day old Ws-2 and ahk1-3 seedlings which have been transferred to control media and media 

supplemented with 1µM methyl-jasmonate (MeJA) four days after germination. The bar gives 1cm. (B) 

Scematic view of the gravitropic response. α specifies the curvature. (C) Color code for Ws-2, ahk1-3 and 

ahk1-4 in (D). (D) Curvature upon an altered gravitropic stimulus three days after germination. The roots 

were scored two days later. Shown are the mean values and standard deviations of one experiment with at 

least 90 seedlings per line and treatment. 

 

In the phosphoproteome ARG1 is more phosphorylated in ahk1-3 after 10min treatment with 0.3M 

mannitol. ARG1 as well as PIN3 and auxin are involved in the response of plants to gravity (Sedbrook 

et al., 1999; Harrison and Masson, 2008). Additionally, in the previous study of AHK1-dependent root 

growth ahk1-3 seemed to be influenced in gravitropic growth upon treatment with 1µM MeJA (fig. 4.22 

A). In a gravitropic growth assay this was further tested. Therefore, seedlings growing on ½ MS-agar 

with and without supplementation of 1µM MeJA were exposed to a gravitropic stimulus coming from 

90° left and the curvature of the root was measured after additional two days of growth (fig. 4.22 B). A 

difference in the curvature of gravitropic growth could not be detected (fig. 4.22 D). 

An alteration in the gravitropic stimulus leads to auxin redistribution in the root and therefore to the 

induction of lateral root development whereas PIN3 and PIN7 which were quantified in the 

phosphoproteome of ahk1-3 and the wildtype Ws-2 play central roles in the redistribution of auxin 

(Marhavý et al., 2013). Therefore the initiation of lateral root development was analyzed in ahk1 knock 

down lines in three different ecotypes. 18h and 42h after gravitropic induction of lateral root 

development the lateral root primordia (LRP) were analyzed and classified into the stages (fig. 4.23) 

how they were described for instance by De Smet et al. (2015). 

18h after the gravitropic induction of lateral root development LRPs in all analyzed lines could be 

categorized to stage 0, I or II, 42h after the gravitropic induction LRPs in all analyzed lines could be 

categorized to the stages IV to VIII. 18h after gravitropic induction approximately 50% of Nos-0 and 

ahk1-1 showed either stage I or stage II LRPs, whereas about 40% of seedlings of ahk1 knock down 

alleles in the Ws-2 and Col-0 ecotype and their respective wildtypes showed stage I LRPs and about 

60% of the seedlings stage II LRPs. Just few seedlings of ahk1-1 and ahk1-6 did not show any LRP 
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18h after gravitropic induction. Besides, less seedlings of ahk1-1 had stage II LRPs in comparison to 

the wildtype.  

42h after the gravitropic induction there was in general no difference in the amount of plants with LRPs 

in the respective stages between the ahk1 knock down lines and their respective wildtypes in the Nos-

0 and Col-0 ecotype. This was also true for the Ws-2 ecotype except that there were more ahk1 knock 

down seedlings with stage VI LRPs than in the wildtype. The number of seedlings with LRPs in the 

respective stage was different between the three ecotypes. 42h after gravitropic induction seedlings of 

Nos-0 and ahk1-1 mainly had LRPs of the stage VII, less plants showed LRPs in the stages V, VI and 

VIII and just few had LRPs which were categorized to stage IV. This was also true for the Ws-2 

ecotype with the difference that in the Ws-2 ecotype approximately the same number of LRPs could be 

categorized to stage VII and stage VIII. 42h after gravitropic induction seedlings of the Col-0 ecotype 

did not have stage IV LRPs. The seedlings showed mainly stage V and stage VIII LRPs and less stage 

VI and stage VII LRPs whereas the amount of plants with LRPs categorized to stage V and VIII as well 

as to stage VI and VII was approximately the same. 

 

figure 4.23: Lateral root development of ahk1 knock down mutants. 

Stages of the lateral root development in ahk1 knock down mutants and their respective wildtypes in the 

ecotypes Nos-0 (blue), Ws-2 (pink) and Col-0 (green) 18h (stage I-III) and 42h (stage IV-VIII) after the 

change of the gravitropic stimulus to 90° to the side. Shown are the mean values and standard deviation of 

two independent experiments with a minimum of 13 seedlings per line. The illustration of the stages 

beyond the axis has been taken from De Smet et al. 2015.  

 

42h after the gravitropic induction there was in general no difference in the amount of plants with LRPs 

in the respective stages between the ahk1 knock down lines and their respective wildtypes in the Nos-

0 and Col-0 ecotype. This was also true for the Ws-2 ecotype except that there were more ahk1 knock 

down seedlings with stage VI LRPs than in the wildtype. The number of seedlings with LRPs in the 

respective stage was different between the three ecotypes. 42h after gravitropic induction seedlings of 

Nos-0 and ahk1-1 mainly had LRPs of the stage VII, less plants showed LRPs in the stages V, VI and 

VIII and just few had LRPs which were categorized to stage IV. This was also true for the Ws-2 

ecotype with the difference that in the Ws-2 ecotype approximately the same number of LRPs could be 

categorized to stage VII and stage VIII. 42h after gravitropic induction seedlings of the Col-0 ecotype 

did not have stage IV LRPs. The seedlings showed mainly stage V and stage VIII LRPs and less stage 
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VI and stage VII LRPs whereas the amount of plants with LRPs categorized to stage V and VIII as well 

as to stage VI and VII was approximately the same. 

As the number of plants with a LRP in a certain stage was always similar for at least three ahk1 knock 

down alleles in at least two different ecotypes and as there was no statistical significant difference 

there is no indication for AHK1-dependent changes in lateral root development. 

Osmotic stress highly influences the root system architecture (Duan et al. 2013). As big differences 

could be revealed in the phosphoproteome of ahk1-3 and the wildtype after 10min of mannitol 

treatment it was interesting whether ahk1 knock down alleles show differences in hydrotropic growth 

and the root system architecture. 

 

figure 4.24: Hydrotropic 

response of ahk1 knock down 

mutants  

(A) Scematic view of the 

hydrotropic response. α 

specifies the curvature. (B) 

Hydrotropic response of 

wildtype (Ws-2) and ahk1 

knock down mutants. Shown 

are results of four experiments 

with 35 seedlings per line and 

experiment. No statistical 

significant difference could be 

shown using student‘s t-test. 

(C) Hydrotropic response of 

Ws-2 and ahk1-3 in eleven 

experiments with 35 seedlings 

per line and experiment. Using 

student‘s t-test no statistical 

significant difference could be 

shown. 

 

The hydrotropic growth was tested with the use of sorbitol. In this assay, four day old seedlings were 

exposed to a diagonal water potential gradient which forces the roots to grow towards areas with 

higher water potential neglecting gravitropic growth (fig. 4.24 A). The greater the angle or curvature 

was the higher was the sensitivity and adaptability to the recognition of water potential. For ahk1 knock 

down lines the variation of the curvature, was very high (fig. 4.24 B, C). Results of four experiments 

with 35 seedlings per Arabidopsis thaliana line show a not significant tendency for ahk1-3 and ahk1-4 

to show a greater curvature than the wildtype indicating that AHK1 negatively influences the sensitivity 

to high water potential or positively influences the sensitivity to low water potential (fig. 4.24 B). After 

11 repeats of this assay the variation of the hydrotropic curvature of ahk1-3 increases and the previous 

tendency of the greater curvature was lost completely (fig. 4.24 C). This indicates that AHK1 does not 

contribute to hydrotropic growth. In a cooperation with Christa Testerink (Plant Physiology, 

Swammerdam Institute of Life Sciences, University of Amsterdam, NL) Dorota Kawa, her Ph.D. 

student, performed a halotropism assay which basically is a hydrotropic growth assay with NaCl as 

well as a Root System Architecture (RSA) assay to further characterize and investigate the root growth 

of ahk1 knock down lines in response to salt stress. For the halotropism assay it was impossible to 

draw any conclusions as Ws-2 as well as ahk1-3 and ahk1-4 were skewing too much at control 
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conditions. In the presence of salt the skewing was less for all lines but no AHK1-dependent difference 

could be detected (appendix A29). 

 
 

figure 4.25: Results of two experiments of the Root System Architecture assay which were executed by 

Dorota Kawa, a Ph.D. student of Christa Testerink. 

Root System Architecture (RSA) traits of Ws-2 (wildtype), ahk1-3 and ahk1-4 on control conditions (ctrl, 

light grey bars) and in presence of 75mM NaCl (salt, dark grey bars) in replicate 1 (A-F) and replicate 2 (G-

L). RSA parameters are the elongation of the main root (MR) after the transfer of seedlings to control or 

salt conditions (A, G), the main root vector angle (MRVA, B, H), the number of lateral roots (NoLRs, C, I), 

the total root size (D, J), the lateral root density (LRD, E, K) as well as the average lateral root (LR) length 

(aLRL, F, L). The parameters were quantified four days after transfer for plants grown on control plates and 

six days after transfer for plants grown on salt stress. Statistical comparisons were done by one-way 

ANOVA (post hoc Tuckey‘s test). Significant differences to the wildtype are indicated with stars directly 

above the bars, stars above brackets give the statistical significance of the two indicated lines. *p<0.05; 

**p<0.01; ***p<0.0001. 

 

The parameters investigated in the RSA assay were the main root (MR) elongation, the main root 

vector angle (MRVA), the number of lateral roots (NoLRs), the total root size, the lateral root (LR) 

density (LRD) and the average lateral root length (aLRL). The assay was repeated twice. The results 

of both replicates for each parameter were contradictory for the ahk1 knock down lines in comparison 
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to the wildtype at control conditions as well as during salt stress. Whereas in the first experiment the 

MR elongation was reduced for ahk1-3 and ahk1-4 at control conditions as as well as on salt stress 

(fig. 4.25 A), in the second experiment there was no difference or even an increase of the main root 

elongation (fig. 4.25 G). The MRVA was generally reduced for all lines at salt stress conditions in 

comparison to control conditions. It was the only parameter which revealed the same result in both 

experiments, showing an increased MRVA for ahk1-4 at control conditions (fig. 4.25 B, H). Further, in 

the first experiment for ahk1-3 and ahk1-4 the number of lateral roots and the LRD (fig. 4.25 E) was 

reduced during salt stress (fig. 4.25 C), the total root size (fig. 4.25 D) as well as the aLRL was 

reduced at control conditions (fig. 4.25 F). In the second experiment no difference between wildtype 

and ahk1 knock down alleles could be observed for neither NoLRs (fig. 4.25 I), total root size (fig. 4.25 

J), LRD (fig. 4.25 K) nor aLRL (fig. 4.25 L). During salt stress in both experiments the aLRL was 

reduced for all lines (fig. 4.25 F, L). 

Furthermore it could be shown in twelve day old seedlings after eight days of mannitol treatment, that 

there is no AHK1-dependent difference in the number of lateral roots during control or osmotic stress 

conditions (appendix A30) whereas ahk1-3 as well as ahk1-3/35S::AHK1-GFP showed a reduced 

number of lateral roots on 0mM mannitol. As this could not be shown for ahk1-4 this seems to be an 

allele specific effect. 

4.1.3.10 Calcium signaling and ion channels 

The analysis of the phosphoproteome of ahk1-3 and Ws-2 revealed many phosphopeptides which are 

involved in calcium signaling or ion transport (appendix A33, A34, A35). 

Therefore it was tested whether seedlings of ahk1-3 show an altered root elongation in comparison to 

the wildtype upon treatment with different concentrations of CaCl2. 

One experiment with at least ten seedlings per line and treatment showed a decreased root elongation 

of ahk1-3 on 1mM and 10mM CaCl2 but not on 0.1mM and 100mM CaCl2 (appendix A27 B). To verify 

the influence of calcium on the root elongation the experiment has to be repeated including ahk1-4 and 

ahk1-3/35S::AHK1-GFP.  

Even if the difference of root elongation upon increased exogenous calcium levels is not reproducible 

there might be AHK1-dependent differences in the calcium influx or the intracellular calcium signature 

in cells. Therefore pGPTVII-Bar-U-RGECO1 of Karin Schuhmacher was stably transformed into the 

ahk1 knock down alleles in all ecotypes and their respective wildtypes. Unfortunately this did not work 

and has to be repeated. In addition, ahk1-5 and ahk1-6 were crossed with Col-0/R-GECO1 of Karin 

Schuhmacher to obtain ahk1 knock down alleles which can be investigated in regard to calcium influx 

and calcium signature. F1 seeds could already be obtained but have to be progenated for further 

investigation.  

The number of ion channels and transporters which were quantified in the phosphoproteome of ahk1-3 

and Ws-2 arose the question whether ahk1 knock down alleles reveal an altered ion content. To test 

this, 14 day old seedlings which were grown in liquid culture were treated for 10min with 0.3M mannitol 

or mock, harvested and dried. The content of sodium, potassium and calcium ions in the different plant 

lines was determined with the use of a flame photometer. The flame photometric analysis of dried plant 

material did not reveal any differences between ahk1-3, ahk1-4, ahk1-3/35S::AHK1-GFP and the 
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wildtype Ws-2 in regard to potassium and calcium content (fig. 4.26 B, D). The same is true for the 

sodium content exept for ahk1-3 which showed a slight increase in sodium content under control 

conditions (fig. 4.26 C). Furthermore ahk1-3 shows a drop in potassium and sodium content after 

10min treatment with 0.3M mannitol (fig. 4.26 B, C). This was also observed for ahk1-3/35S::AHK1-

GFP but for the calcium content (fig. 4.26 D). As the increase or drop of the ion content was observed 

in just one allele respectively the differences might be due to genotype specific factors and might not 

depend on AHK1.  

 
figure 4.26: Ion content of ahk1 knock down lines 

Potassium- (B), sodium- (C) and calcium-ion (D) content per dry weight of 14d old Arabidopsis thaliana 

seedlings of the ahk1 knock down lines ahk1-3 and ahk1-4, ahk1-3/35S::AHK1-GFP and the respective 

wildtype. The plants were grown in liquid culture and treated with 0.3M mannitol or mock for 10min. (A) 

gives the color code for B, C, and D. The diagrams show mean values and standard deviations of one 

experiment with 9-12 biological replicates per line and treatment. Student‘s t-test was used to calculate 

statistical significance. Stars directly above the bars show the statistical significance of difference to the 

wildtype. Stars above brackets reveal the significance of difference between the two marked plant lines. 

*p<0.05; **p<0.01 

 

4.1.3.11 Effect of AHK1 on aquaporins  

The analysis of the phosphoproteome in ahk1-3 and Ws-2 after 10min treatment with 0.3M mannitol, 

revealed 15 phosphopeptides originating from seven aquaporins whereas different phosphorylation 

patterns per peptide were detected (table 4.5). Some of these peptides with the respective 

phosphorylation pattern have already been identified by Wu et al. (2013) in the analysis of the 

phosphoproteome of the sirk1 T-DNA insertional mutant and could be correlated to the altered swelling 

behavior of sirk1 protoplasts in comparison to the wildtype when exposed to hypo-osmolar medium. 

This was not the case for ahk1-3, ahk1-4 or ahk1-3/35S::AHK1-GFP (fig. 4.27), neither in protoplasts 

of seedling shoots (fig. 4.27 A) nor in protoplasts of seedling roots (fig. 4.27 B). The volume of the 

protoplasts before and after swelling did not show any genotype specific differences as well, neither in 

protoplasts of shoots (fig. 4.27 C) nor in protoplasts of seedling roots (fig. 4.27 D). 
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table 4.5: Quantified phosphopeptides of plasma membrane intrinsic proteins 

log2-values for the ratio of quantified peptides in ahk1-3 and the wildtype (wt) Ws-2 in the experiments with 

a reciprocal metabolic labeling (met. labeling) experimental design or without labeling (no labeling) after 

10min treatment with 0.3M mannitol (+man) or mock respectively (-man). For met. labeling +man log2-

values of the two reciprocal replicates are shown.The phosphorylated residue is highlighted with a 

subsequent (ph). (ac) reveals acetylation, (ox) oxidation. The “x” shows that the log2-value could not be 

calculated due to a not quantified peptide for the nominator or denominator. “-“ marks no quantification. 

Underlined values revealed statistical significance with p<0.05. Data obtained from Waltraud X. Schulze. 

accession name phosphopeptide 

log2-values (ahk1-3/wt) 

met. labeling no labeling 

+man -man +man -man 

AT3G53420 PIP2A SLGS(ph)FRS(ph)AANV - - 0.26 0.71 0.72 

SLGS(ph)FRSAANV -0.50 -1.70 0.11 - - 

SLGSFRS(ph)AANV - - -0.57 - - 

AT2G37170 PIP2B SLG(pS)FRSAANV -14.94 -1.70 - - - 

AT3G54820 PIP2D ALGS(ph)FRS(ph)QPHV - - - 1.63 -0.22 

AT2G39010 PIP2E S(ph)QLHELHA - - - -0.18 1.12 

TKDELTEEES(ph)LSGK - - - -1.72 0.92 

AT5G60660 PIP2F ALGS(ph)FGS(ph)FGSFR - - - -0.37 0.57 

ALGSFGS(ph)FGS(ph)FR - - - -0.12 0.70 

ALGSFGS(ph)FGSFR - - 0.13 - - 

ALGSFGSFGS(ph)FR - -1.55 x - - 

AT4G35100 

 

PIP3A 

 

ALGS(ph)FRS(ph)NATN - - 0.13 - - 

ALGS(ph)FRSNATN -21.23 -12.98 0.19 -0.33 -0.14 

ALGSFRS(ph)NATN - - 0.49 - - 

AT2G16850 PIP3B ALAS(ph)FRS(ph)NPTN - - - -0.22 0.71 

 

 
figure 4.27: Protoplast swelling assay did not reveal AHK1-dependent changes in the water flux density. 

Protoplasts of shoots (A, C) and roots (B, D) of four day old seedlings were exposed to hypo-osmolar 

medium. The swelling of the protoplasts was recorded by video-microscopy. The change of volume per 

time was measured and the water flux density calculated. Shown are box plots of water flux densities of at 

least 12 individual protoplasts per line and tissue (A, B) as well as the mean volume of the protoplasts of 

shoots (C) and roots (D) before and after swelling and the respective standard deviations. Student’s t-test 

did not reveal any statistical significant differences. 
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4.1.3.12 AHK1-dependent phosphorylation of AHAs 

The functional categorization of quantified phosphopeptides revealed several v- and p- ATPases 

(appendix A33, A34, A35) comprising also plasma membrane H+-ATPases (AHAs) (table 4.6). AHAs 

contribute to several developmental and adaptive processes in plants. Therefore it was interesting 

whether the AHA activity is changed in ahk1-3 in comparison to the wildtype. 

table 4.6: Quantified phosphorylated peptides of AHAs 

Shown are the log2-values for the ratio of quantified peptides in ahk1-3 and the wildtype (wt) Ws-2 in the 

experiments with a reciprocal metabolic labeling (met. labeling) experimental design or without labeling (no 

labeling) after 10min treatment with 0.3M mannitol (+man) or mock respectively (-man). For met. labeling 

+man log2-values of the two reciprocal replicates are shown.The phosphorylated residue is highlighted with 

a subsequent (ph). (ac) reveals acetylation, (ox) oxidation. The “x” shows that the log2-value could not be 

calculated due to a not quantified peptide for the nominator or denominator. “-“ marks no quantification. 

Underlined values revealed statistical significance with p<0.05. Data obtained from Waltraud X. Schulze. 

accession name phosphopeptide 

log2-values (ahk1-3/wt) 

met. labeling no labeling 

+man -man +man -man 

AT2G18960 AHA1 EDVNIFPEKGS(ph)YR - - - 0.20 0.82 

T(ph)LHGLQPK - - - 0.34 0.09 

GLDIDTAGHHYT(ph)V 1.00 0.77 -0.42 0.08 -0.64 

(ac)S(ph)GLEDIKNETVDLEK - - - -0.47 x 

AT4G30190 AHA2 GLDIETPSHYT(ph)V -9.76 -3.70 -0.53 0.73 0.47 

EAVNIFPEKGS(ph)YR - - - -0.29 0.22 

LKGLDIETPSHYT(ph)V - - -0.60 - - 

AT5G57350 AHA3 LGMGS(ph)NMYPS(ph)SSLLGK 2.34 3.08 - - - 

AT5G62670 AHA11 GLDIETIQQAYT(ph)V - - - 0.23 0.23 

LKGLDIETIQQAYT(ph)V - - - -0.87 x 

 

The AHA activity was tested by Waltraud X. Schulze in 14 day old seedlings which were grown 

contemporaneously with the not labeled samples for the analysis of the phosphoproteome of ahk1-3 

and the wildtype Ws-2 in liquid culture and treated with 0.3M mannitol or mock. Therefore, the change 

of supplemented inorganic phosphate was measured in protein extracts how it was described in 

Lanzetta et al. (1979).  

 

figure 4.28: AHA activity in ahk1-3 and the 

wildtype Ws-2 after mannitol treatment. 

AHA activity in protein extracts was determined 

by the measurement of the change of inorganic 

phosphate which was added to the protein 

extracts. As control for AHA-independent 

changes of inorganic phosphate the inhibitors 

Na3VO4, EDTA, NaN3 and Bafilomycin A1 were 

added. Proteins were extracted from 14 day old 

seedlings of Ws-2 (wt) and ahk1-3 (ahk1) which 

were grown in liquid culture and treated with 

mock or 0.3M mannitol (.man) which grew 

contemporaneously to the seedlings for the 

non-labeling phosphoproteomic approach. 

Shown are mean values and standard 

deviations of two technical replicates.  

 

As control for AHA-independent changes of concentrations of inorganic phosphate Na3VO4 was added 

as inhibitor for AHAs, EDTA as inhibitor for Ca2+-ATPases, NaN3 as inhibitor for ATPases and 

A
H

A
 a

ct
iv

it
y

[n
m

o
lP

i m
in

-1
m

g P
ro

te
in

-1
]

0

1

2

3

4

5

wt.man wt ahk1.man ahk1



 RESULTS 

 

89 
 

Bafilomycin A1 as inhibitor for V-ATPases. Neither for Ws-2 nor for ahk1-3 after mock or mannitol 

treatment a difference in AHA activity could be revealed (fig. 4.28).  

AHAs influence the pH within the plant and in the outside. Additionally, Kang et al. (2012), Koyama et 

al. (2001) and Zhou et al. (2010) suggested that the pH of the growth substrate influences root growth 

whereas low pH amongst others disrupts calcium processes and high pH increases the disassembly of 

microfilaments. Choi et al. (2014) and Cao et al. (2014) suggest extracellular ATP as central signaling 

molecule in plant stress responses. In addition, ATP is the substrate for ATPases. Therefore it was 

tested whether etiolated seedlings of ahk1 knock down alleles reveal differences in hypocotyl and root 

length after growth on media with different pH or ATP-supplementation.  

 
figure 4.29: Hypocotyl and root length of etiolated seedlings after growth on media with different pH or 

supplementation with ATP 

Hypocotyl (B, C) and root (D, E) length of seedlings of ahk1-3, ahk1-4, ahk1-3/35S::AHK1-GFP and their 

wildtype Ws-2 which grew in the dark for three days after 2h light induction of germination on media with 

pH 4.0, pH 5.7, pH 7.1, pH 8.5 (B, D) or media supplemented with 10µM ATP (C, E). The color code for the 

lines in (B), (C), (D) and (E) is given in (A). The hypocotyl and root length has been normalized to the 

wildtype which grew at the same conditions. Data were averaged between three replicates with at least 35 

seedlings per line and treatment. Shown are mean values and standard deviations. Student‘s ttest was 

used to calculate statistical significance. Stars above bars reveal statistical significance of difference in 

comparison to the wildtype. *p<0.05; **p<0.01; ***p<0.001 

 

In three replicates with at least 35 seedlings per line and treatment ahk1-3 and ahk1-4 revealed 

reduced hypocotyl length after growth on media with pH 4.0, pH 5.7 and pH 8.5. Furthermore, reduced 

hypocotyl length was revealed for ahk1-4 on media with pH 7.1 and for ahk1-3/35S::AHK1-GFP on 

media with pH 4.0 and pH 8.5 (fig. 4.29 B). A reduced root length could be detected for ahk1-3 and 
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ahk1-4 after growth on media with pH 4.0 and pH 5.7. ahk1-3 showed a reduced, ahk1-3/35S::AHK1-

GFP showed an increased root length on media of pH7.1 No difference in root length could be 

revealed on media with pH 8.5 (fig. 4.29 D). After growth on media with extracellular ATP no difference 

in the hypocotyl (fig. 4.29 C) and root length (fig. 4.29 E) of ahk1-3, ahk1-4, ahk1-3/35S::AHK1-GFP 

and their wildtype Ws-2 could be detected except the slight increase in root length of ahk1-

3/35S::AHK1-GFP. Under control conditions ahk1-3 and ahk1-4 showed the reduced hypocotyl and 

root length like in previous experiments. 

4.1.3.13 AHK1, BAK1 and a putative superkomplex 

Previous studies of Katharina Caesar which analyzed the function of AHK1 could show an interaction 

of AHK1 and BAK1 in mbSUS assays in Saccharomyces cerevisiae as well as in FRET-FLIM-studies 

using transient expression in Nicotiana benthamiana. 

table 4.7: Quantified phophopeptides of brassinosteroid signaling and a putative supercomplex 

Shown are the log2-values for the ratio of quantified peptides in ahk1-3 and the wildtype (wt) Ws-2 in the 

experiments with a reciprocal metabolic labeling (met. labeling) experimental design or without labeling (no 

labeling) after 10min treatment with 0.3M mannitol (+man) or mock respectively (-man). For met. labeling 

+man log2-values of the two reciprocal replicates are shown. The phosphorylated residue is highlighted with 

a subsequent (ph). (ac) reveals acetylation, (ox) oxidation. The “x” shows that the log2-value could not be 

calculated due to a not quantified peptide for the nominator or denominator. “-“ marks no quantification. 

Underlined values revealed statistical significance with p<0.05. Data obtained from Waltraud X. Schulze. 

accession name phosphopeptide 

log2-values (ahk1-3/wt) 

met. labeling no labeling 

+man -man +man -man 

AT4G39400   BRI1 S(ph)IEDGGFSTIEM(ox)VDM(ox)SIK 12.82 5.99 - - - 

AT5G46330 FLS2 M(ox)NLT(ph)FISIGR -19.63 - - - - 

AT5G48380 BIR1 LK(t)F(s)V(s)DNRLVGPIPNFNQTLQFK -47.46 -14.91 - - - 

AT3G28450 BIR2 S(ph)GLTEVGVSGLAQR - - - 0,37 0,22 

AT5G40170 RLP54 S(ph)LVNC(t)(t)LK -21.10 - - - - 

AT3G23010 RLP36 IM(ox)DTFPFWLGS(ph)LPY(ph)LK 10.00 10.00 - - - 

AT1G21210 WAK4 HIVSYFASAT(ph)K 0.99 2.39 - - - 

AT1G21230 WAK5 IMGEERPS(ph)M(ox)K 2.76 3.91 - - - 

AT1G15990 CNGC7 FIPLT(ph)SELK 4.06 - - - - 

AT2G23080 CKA3 AAE(s)(s)RLRTQ -23.56 - - - - 

AT4G35230 BSK1 SYS(ph)TNLAYTPPEYLR - - - 0,04 -0,58 

AT5G46570 BSK2 TANLPSSDDPSAPNKPES(ph)VNGDQ

 VDQEIQNFK 

 

- 

 

- 

 

- 

 

-0,43 

 

x 

AT3G54030 BSK6 SASVLES(ph)PDIENGGK - - - x x 

AT5G41260 BSK8 S(ph)NPDVTGLDEEGR - - - 0,20 1,08 

S(ph)NPDVTGLDEEGRGESNDLPQFR - - - -0,93 -1,07 

SYS(ph)TNLAFTPPEYLR - - - 1,07 -1,93 

AT4G03080 BSL1 QLS(ph)LDQFQNESR - - - 2,31 0,87 

AT1G08420 BSL2 LIHPLPPALS(ph)SPETSPER - - - 0,45 0,27 

LVLFGGATALEGNSGGTGT(ph)PTSA

 GSAGIR 

 

- 

 

- 

 

- 

 

-1,22 

 

x 

QLS(ph)IDQFENEGR - - - 0,27 0,31 

QLS(ph)IDQFENEGRR - - - x x 

QM(ox)S(ph)INSVPK - - - x 0,80 

AT3G19820 DWF1 (ac)S(ph)DLQTPLVRPK - - - 0,49 0,84 

(ac)M(ox)SDLQT(ph)PLVR - 0.12 - - - 
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figure 4.30: Mating-based split ubiquitin assay with components of a putative supercomplex  

Fusion constructs of AHK1, BRI1, BAK1, BIR1 and AHA1 with the C-terminal part of ubiquitin (Cub) were 

transformed into the S. cerevisiae strain THY.AP4, fusion constructs of AHK1, BAK1, BRI1, BIR1, AHA1, 

AHA2, WAK4, RLP44 and CNGC17 with the N-terminal part of ubiquitin (Nub) as well as the negative 

control NubG and the positive control NubWT were transformed into the S. cerevisiae strain THY. AP5. 

After the mating the interaction of the proteins was tested by dropping of the yeast on CSM minimal 

medium (CSM) and verified by dropping them on CSM minimal medium supplemented with 50µM Met 

(CSM+M) whereas CSM-Ade+-His+ (CSM+A+H) served as growth control. The growth was recorded after 

four days growth at 28°C. The detection of protein expression is shown in appendix A22. 

 

Therefore it was very interesting that the analysis of the phosphoproteome revealed a differential 

phosphorylation of BRI1 at the not yet characterized phosphorylation site Ser1172 as well as 

differential phosphorylation of BIR1. Additionally a phosphorylated peptide originating from BIR2 was 

quantified as well as many phosphopeptides which belong to proteins involved in BR-signaling (table 

4.7) or to LRR-RKs (appendix A33, A34, A35).  

 

 

figure 4.31: AHK1-ED does not dimerize nor interact with WAK4 

The reporter yeast strain pJ69-4A was co-transformed with the BD-fusion contruct of AHK1-ED (pGBKT7-

AHK1-ED) and the AD-fusion constructs of AHK1-ED (pGADT7-AHK1-ED) and WAK4 (pGADT7-WAK4) 

respectively. The empty destination-vectors (pGBKT7-Dest, pGADT7-Dest) were used as control. For the 

interaction test the respectively transformed yeast was plated on the auxotrophy medium CSM-Leu--Trp--

Ade- (CSM-L-T-A) as well as on the growth control medium CSM-Leu--Trp- (CSM-L-T) and grown for four 

days at 28°C. The detection of protein expression is shown in appendix A23. 
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Unfortunately not all of the proteins could be cloned and tested in different interaction studies, but it 

could be revealed that AHK1 does not interact with BRI1, BIR1, AHA1, AHA2, WAK4, RLP44 and 

CNGC17 in the mbSUS whereas it interacts with BAK1 which in turn interacts with BRI1, BIR1, AHA1 

and AHA2 (fig. 4.30). An additional yeast two-hybrid assay showed, that the extracellular domain of 

AHK1 (AHK1-ED) does not interact with the putatively extracellular kinase WAK4 neither (fig. 4.31). 

Additionally this assay did not reveal dimerization of AHK1-ED (fig. 4.31). 

 
figure 4.32: Localization of BRI1-RFP and AHK1-GFP 

Transient co-expression of BRI1 tagged with a C-terminal RFP (BRI1-RFP, red) and AHK1 tagged with a 

C-terminal GFP (AHK1-GFP, green) in N. benthamiana reveals in confokal microscopy that BRI1-RFP and 

AHK1-GFP co-localize at the plasma membrane and in vesicle-like structures (white arrows) in the water 

control as well as after treatment with 0.8M mannitol. Both proteins were expressed under the control of the 

CaMV 35S-promoter. Samples were analyzed two days after transformation. The scale is 10µm. 

 

Although AHK1 did not interact with BRI1 in mbSUS, transiently expressed AHK1-GFP and BRI1-RFP 

co-localized in leaves of Nicotiana benthamiana (fig. 4.32) to the plasma membrane and to vesicle-like 

structures as they were described in 4.1.1.2. AHK1-GFP and BRI1-RFP were expressed under the 

control of the CaMV 35S-promoter but the expression was too weak for FRET-FLIM studies. For 

additional localization and interaction studies binary plant vectors were generated with BIR1 fused to 

C-terminal RFP and GFP (pB7RWG2-BIR1 and pB7FWG2-BIR1). In consideration of the new 

phosphorylation site of BRI1 at Ser1172 and its putative function during osmotic stress first vector 

constructs were generated which encode BRI1 with Ser1172 mutated to Ala and Glu (pDONR207-

BRI1-S1172A and pDONR207-BRI1-S1172E).  

BRs are known to be involved in several developmental processes like for example flowering time (Li 

et al., 2010). In one flowering time experiment it was revealed that ahk1-3 and ahk1-4 do not have an 

altered flowering time in comparison to the wildtype neither in long (fig. 4.33 B) nor short day 

conditions (fig. 4.33 C). The double mutant bri1-5 ahk1-3 which was obtained by crossing had an 

increased number of rosette leaves at the time point of flowering (fig. 4.33 A) and flowered later than 

the wildtype and ahk1-3 in long day conditions (fig. 4.33 B) whereas it exhibited the same phenotype 

as the bri1-5 single mutant (fig. 4.33 A, B). In short day conditions bri1-5 ahk1-3 flowered later than the 

wildtype and ahk1-3 but earlier than bri1-5 (fig. 4.33 C). In long day conditions ahk1-3/35S::AHK1-GFP 

showed a slightly earlier flowering than the wildtype, ahk1-3 and ahk1-4 (fig. 4.33 B). 

According to Zhou et al. (2013) BRs are also involved in the growth of etiolated hypocotyls. Therefore 

three day old etiolated seedlings were analyzed upon their hypocotyl and root length.  

w
at

e
r

BRI1-RFP brightfield mergeAHK1-GFP

0
.8

M
 m

an
n

it
o

l



 RESULTS 

 

93 
 

 

 
figure 4.33: Flowering time in long and short day conditions 

(A) Rosette leaf number of the respective plant lines when transition from vegetative to reproductive growth 

takes place in long day conditions. (B) Number of days after germination when bolting of the respective 

plant lines starts in long day conditions. (C) Number of days after germination when bolting of the 

respective plant lines starts in short day conditions. Shown are mean values and standard deviations of 

one experiment with at least 23 plants per line and condition. Statistical significance was calculated using 

student‘s t-test. Stars above bars indicate the statistical significance of difference to the wildtype, stars 

above brackets give the significance of difference between the two indicated lines. *p<0.05; ***p<0.001 

 

In four replicates with at least 32 seedlings per line and treatment ahk1-3 and ahk1-4 revealed 

decreased length of hypocotyls (fig. 4.34 A) and roots (fig. 4.34 B) in comparison to the wildtype at 

control conditions as well as upon treatment with 100nM brassinolide (BL) or 100nM of the inhibitor of 

brassinolide biosynthesis propiconazole (Pcz). ahk1-3/35S::AHK1-GFP showed longer hypocotyls at 

control conditions and upon treatment with 100nM BL. No difference in comparison to the wildtype 

could be observed for the hypocotyl length of ahk1-3/35S::AHK1-GFP after growth on 100nM Pcz as 

well as for the root length after growth on control conditions, 100nM BL and 100nM Pcz. bri1-5 and 

bri1-5 ahk1-3 revealed a decreased root length at all growth conditions and a decreased hypocotyl 

length at control conditions as well as after growth on 100nM Pcz. Supplementation with 100nM BL led 

to a wildtype-like hypocotyl length in bri1-5 and bri1-5 ahk1-3 and to an increased hypocotyl length in 

bak1-1 and bak1-1 ahk1-3 in comparison to the wildtype. In general bak1-1 shows a shorter hypocotyl 

and root length than bak1-1 ahk1-3 except for the root length at control conditions. 

To verify that this effect did not derive from altered germination an additional germination assay was 

executed in which the germination time (fig.  4.35 A, B) was investigated in addition to the germination 

rate (fig. 4.35 C). At control conditions as well as on 0.3M mannitol the germination time was not 

altered in comparison to the wildtype for ahk1-3, ahk1-4, ahk1-3/35S::AHK1-GFP and bak1-1 ahk1-3 

whereas bri1-5, bri1-5 ahk1-3 and bak1-1 needed approximately half a day longer. For the germination 

rate no difference could be revealed neither at control conditions nor on mannitol-supplemented media 

for ahk1-3, ahk1-4, ahk1-3/35S::AHK1-GFP, bri1-5, bri1-5 ahk1-3, bak1-1 and bak1-1 ahk1-3 except 
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for bri1-5 which showed a reduced germination rate on media supplemented with 0.3M mannitol 

(fig4.35 C). A germination assay n BL and Pcz remains to be conveyed. 

In addition to the investigation of hypocotyl and root length of three day old etiolated seedlings in the 

Ws-2 ecotype the experiment was repeated in the Col-0 ecotype. 

 

 

 
figure 4.34: Hypocotyl and root length of etiolated ahk1 knock down seedlings of the Ws-2 ecotype after 

growth on brassinolide and propiconazole  

Hypocotyl (A) and root (B) length of seedlings which grew in the dark for three days after 2h light induction 

of germination on control media and media which were supplemented with brassinolide and the 

brassinolide biosynthesis inhibitor propiconazole. The different treatments are separated by dashed 

lines.The hypocotyl and root length has been normalized to the respective wildtype. Data were averaged 

between four replicates with at least 32 seedlings per line and treatment. Shown are mean values and 

standard deviations. Student‘s ttest was used to calculate statistical significance. Stars above bars reveal 

statistical significance of difference in comparison to the wildtype. Stars above brackets show the statistical 

significance of difference between the two indicated lines. *p<0.05; **p<0.01; ***p<0.001 
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figure 4.35: Germination of ahk1 knock down alleles 

Germination time of ahk1 knock down alleles, wildtype and controls on half strength MS salts (A) and 

media supplemented with 0.3M mannitol (B) after four days of stratification. (C) Germination rate of ahk1 

knock down alleles, wildtype and controls on half strength MS salts (dark grey) and media supplemented 

with 0.3M mannitol (light grey) after six days of constant light. Mean values and standard deviation of three 

replicates with 50 seeds per line and condition. Student‘s t-test was used to determine the statistical 

significance. * 0.01<p<0.05; ** 0.001<p<0.01. 

 

In the Col-0 ecotype the hypocotyl length of the ahk1 knock down alleles ahk1-5 and ahk1-6 was the 

same like in the wildtype at control conditions whereas the AHK1 overexpressor (AHK1 ox) revealed a 

decreased hypocotyl length. After growth on 100nM BL ahk1-6 showed an increased hypocotyl length. 

A decreased hypocotyl length could be revealed for AHK1 ox on 100nM BL and for ahk1-5 and AHK1 

oc on 100nM Pcz (fig4.36 A). The root length of ahk1-6 in comparison to the wildtype is increased at 

control conditions and after growth on 100nM BL. AHK1 ox showed a decreased root length in 

comparison to the wildtype in all conditions (fig. 4.36 B). The mutants aha1-6 and aha2-4 as well as 

bri1-301 and bak1-3 showed shorter length of hypocotyls and roots at control conditions and after 

growth on 100nM Pcz except for the root length of aha1-6 at control conditions. BL-supplementation 

led to a wildtype-like length of hypocotyls and roots of aha1-6 and aha2-4. Furthermore, BL-

supplementation caused wildtype-like root length of bri1-301 and longer hypocotyls in comparison to 

the wildtype. This could also be observed for the hypocotyl length of bak1-3 whereas the root length 

stays shorter in comparison to the wildtype. The so far not characterized putative gain-of-function or 

knock down mutant of CNGC7 (cngc7, SALK_019117.56.00.x) revealed shorter hypocotyl and root 

length after growth on control conditions, BL and Pcz (fig. 4.36). A germination assay for the Col-0 set 

remains to be added. 
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figure 4.36: Hypocotyl and root length of etiolated ahk1 knock down seedlings in the Col-0 ecotype 

after growth on brassinolide and propiconazole  

Hypocotyl (A) and root (B) length of seedlings which grew in the dark for three days after 2h light 

induction of germination on control media and media which were supplemented with brassinolide and 

the brassinolide biosynthesis inhibitor propiconazole. The different treatments are separated by 

dashed lines.The hypocotyl and root length has been normalized to the respective wildtype. Data 

were averaged between four replicates with at least 32 seedlings per line and treatment. Shown are 

mean values and standard deviations. Student‘s ttest was used to calculate statistical significance. 

Stars above bars reveal statistical significance of difference in comparison to the wildtype. *p<0.05; 

**p<0.01; ***p<0.001 

 

The interaction studies and the length of hypocotyls and roots of the different mutants in the Ws-2 

ecotype indicate a physiological relationship of AHK1 and BAK1. This arose the question whether 

these mutants also reveal a different response to pathogens. Therefore a pathogen assay with the 

necrotrophic fungus Alternaria brassicicola was executed by Jens Riexinger within cooperation with 

Birgit Kemmerling (plant biochemistry, ZMBP, University of Tuebingen, D) (Mosher et al., 2013). Here 

the same effect could be observed like in the root growth assay. Dependent on factors which have so 

far not been identified, the different Arabidopsis thaliana mutants show opposing effects (fig. 4.37). In a 

first experiment with at least 18 leaves per plant line ahk1-4 and ahk1-3/35S::AHK1-GFP showed a 

decreased disease index in comparison to the wildtype seven, ten, and fourteen days after inoculation 

with Alternaria brassicicola spores whereas bri1-5 and bri1-5 ahk1-3 revealed an increased disease 
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index.  No difference to the wildtype was observed for ahk1-3, bak1-1 and bak1-1 ahk1-3 except for 

bak1-1 ahk1-3 fourteen days after inoculation (fig. 4.37 B). In a second experiment an increased 

disease index in comparison to the wildtype was observed seven days after inoculation for bri1-5 and 

for bak1-1 seven and ten days after inoculation (fig. 4.37 C). Trypan blue staining remains to be 

conveyed. 

 
figure 4.36: Susceptibility of ahk1 mutants to Alternaria brassicicola  

Disease symptoms were monitored 7, 10 and 13 days after inoculation of 5 week old plants of the 

indicated genotypes with 106 Alternaria brassicicola spores per ml (B, C). (A) gives the color code for (B) 

and (C). Shown are mean values and standard deviations of experiment 1 (B) and experiment 2 with at 

least 18 analyzed leaves per line (C). Student‘s t-test was used to calculate the significance of difference, 

which is indicated by stars above the bars for the significance of difference in comparison to the wildtype 

and above brackets for the highlighted lines. *p<0.05; **p<0.01; ***p<0.001. Pictures of representative 

leaves were taken thirteen days after inoculation for experiment 1 (D) and experiment 2 (E). 

 

4.2 Phosphoproteomic study of short-term kinetin treatment of Col-0 and ahk2 

ahk3 

Dautel et al., The Sensor Histidine Kinases AHK2 and AHK3 Proceed into Multiple 

Serine/Threonin/Tyrosine Phosphorylation Pathways in Arabidopsis thaliana, Molecular Plant (2015) is 

attached in appendix A31. My contribution to this paper is described in appendix A32. 
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5 DISCUSSION 

In previous studies it has been suggested that AHK1 perceives osmotic stress as a mechano-sensitive 

receptor kinase and acts as a positive regulator of osmotic stress signaling (Urao et al., 1999; Reiser et 

al., 2003; Tran et al., 2007; Wohlbach et al.2008). This has been contradicted by Kumar et al. (2013). 

Therefore, continuative experiments have been executed to gain insight into AHK1-dependent signal-

perception and signal-transduction. 

The comparison of the phosphoproteome of the ahk1 knock down line ahk1-3 and the wildtype Ws-2 

after mock and osmotic stress treatment which was applied with the use of 0.3M mannitol revealed a 

general difference in the phosphoproteome of ahk1-3 and Ws-2 but also a mannitol-dependent 

difference indicating that AHK1 might indeed be involved in the response to osmotic stress but also in 

several developmental and adaptive processes. In this as well as in previous studies, experiments 

which tested the influence of AHK1 on the response to osmotic stress did not reveal a constant 

phenotype of ahk1 knock down lines. For example Wohlbach et al. (2008) and Kumar et al. (2013) 

published contradictory results of root growth assays in which they used different ecotypes and 

different growth conditions with, amongst others, different temperatures to test ahk1 knock down lines. 

A repetition of this assay in this study with the previously analyzed three ecotypes revealed that the 

differences in root growth might not just depend on osmotic stress but also on temperature and light 

(fig. 4.7 and fig. 4.9). This is suggested by the circumstance that the plant growth chamber in which the 

root growth assays were executed had problems in summer to reduce the temperature to the set 

temperature and is confirmed by the fact, that etiolated seedlings of ahk1 knock down alleles showed a 

decreased hypocotyl and root length at least in the Nos-0 and Ws-2 ecotype in comparison to the 

respective wildtype (fig. 4.15) at 20°C but a wildtype-like length at 28°C (fig. 4.17). This indicates that 

at elevated temperatures the elongation is more increased in ahk1 knock down lines than in the 

wildtype and that AHK1 in fact contributes to temperature-dependent growth. Furthermore, this 

indicates a negative effect of AHK1 on temperature-induced hypocotyl elongation. Accordingly, 

elevated temperatures led to increased elongation growth in dark-grown ahk1 knock down seedlings.  

The phenotype of shorter hypocotyls and roots in etiolated ahk1 knock down seedlings of the Ws-2 

ecotype was lost to a wildtype-like hypocotyl and root length after growth at osmotic stress conditions 

which were applied with the use of the osmotically active substance mannitol (fig. 4.16; Osakabe et al. 

2013). As osmotic stress is known to inhibit root elongation (Verslues et al., 2006, Golldack et al., 

2014), the fact, that the absence of AHK1 leads to a wildtype-like hypocotyl and root length in etiolated 

seedlings after growth on mannitol-supplemented media and therefore to an increase in elongation 

growth, indicates a positive effect of AHK1 on osmotic stress regulation which has already been 

suggested by Tran et al. (2007) and Wohlbach et al. (2008) but contradicted by Kumar et al. (2013).  

These observations lead to the question of the molecular mechanisms which cause the phenotype of 

etiolated ahk1 knock down seedlings under control conditions but also in reaction to different 

treatments. In figure 5.1 a part of the plantal signal transduction network is shown which might be 
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involved in AHK1-dependent signaling. It comprises information about previously investigated protein 

interactions and phosphorylation events as well as the contribution of some phosphopeptides which 

were quantified in the phosphoproteome of ahk1-3 and the wildtype Ws-2 as well as the minor 

contribution of phosphopeptides which were quantified in the phosphoproteome of ahk2 ahk3 and Col-

0 seedlings. With the help of this figure possible explanations can be found for the phenotype of 

etiolated ahk1 knock down seedlings.  

5.1 Increased temperature-induced hypocotyl elongation of etiolated ahk1 

knock down seedlings might depend on HY5-levels and phyD signaling 

In previous studies it has been shown that warmth induces hypocotyl elongation exclusively in light-

grown seedlings (Gray et al., 1998; Stavang et al., 2009; Oh et al., 2012; Delker et al., 2014). In 

contrast to these findings in Col-0, this study shows, that Ws-2 revealed the temperature-induced 

hypocotyl elongation not just in light-grown seedlings but also in etiolated seedlings (Gray et al., 1998). 

Furthermore, ahk1 knock down alleles show shorter hypocotyls and roots in the Ws-2 ecotype but 

wildtype-like hypocotyl and root length in Col-0 (fig. 4.15). Ws-2 is homozygous for a 14bp deletion in 

its PHYD gene causing the lack of phyD (Aukerman et al., 1997). phyD is known to be involved 

especially in mediating hypocotyl elongation (Aukerman et al., 1997). This suggests that the difference 

of the hypocotyl and root length phenotype of etiolated ahk1 knock down alleles in the Ws-2 and Col-0 

ecotype as well as the temperature-induced hypocotyl elongation in etiolated seedlings of the Ws-2 

ecotype might in part depend on so far uncharacterized regulatory mechanisms of phyD. According to 

the already described temperature-induced hypocotyl elongation which basically depends on 

decreased levels of the transcription factor HY5 which in turn causes altered PIF levels and auxin 

responses, in etiolated seedlings this might comprise either enhanced degradation of HY5 as HY5 

levels are generally low in darkness, increased inactivation of HY5 by phosphorylation at Ser36 in its 

COP1 binding domain, increased expression of PIF4 which is repressed by HY5 or stabilization of 

PIF4 through protein-interaction for instance with BZR1 or post-transcriptional modifications (Gray et 

al., 1998; Hardtke et al., 2000; Shen et al., 2005; Cheng et al., 2006; Oh et al., 2006; Al-Sady et al., 

2006; Stavang et al., 2009; Stepanova et al., 2011; Won et al., 2011; Oh et al., 2012; Park et al., 2012; 

Toledo-Ortiz et al., 2014; Delker et al., 2014). The phosphoproteome of light-grown ahk1-3 and Ws-2 

seedlings revealed an AHK1-dependent differential phosphorylation of COP1 (AT2G32950) and CUL4 

(AT5G46210) which both contribute to the DET1-COP1-HY5 pathway (Delker et al., 2014; Lau and 

Deng, 2012; Nixdorf and Hoecker, 2010; Hua and Vierstra, 2011). This indicates that an alteration in 

HY5 degradation might occur in light but might also be influenced in darkness through AHK1-

dependent post-translational modifications of other proteins.  

In light-grown seedlings the phosphoproteome of ahk1-3 and Ws-2 did not reveal changes in the 

phosphorylation of HY5 (AT5G11260) itself, neither after mock nor after mannitol treatment. 

Still, the phosphorylation of HY5 in darkness is conveyed by a phytochrome dependent kinase, which 

is putatively a casein kinase 2 (Hardtke et al., 2000). So possibly the phosphorylation of HY5 is not 

altered in light but in darkness in a phytochrome dependent manner. 
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figure 5.1: (previous side) Phosphorylation network with proteins of which phosphopeptides were 

quantified in the phosphoproteome of ahk1-3 and the wildtype Ws-2. 

Proteins of which phosphopeptides were identified and quantified in the phosphoproteome of ahk1-3 and 

the wildtype Ws-2 are highlighted in grey and listed with their respective accession and log2-values in 

appendix A33, A34 and A35. A „p“in front of the short cut of the protein‘s name designates the 

phosphorylation of this protein. The bar beyond the phosphorylated proteins which have been quantified in 

the phosphoproteome is divided in four boxes which describe whether the phosphopeptide was detected in 

the analysis of the phosphoproteome after metabolic labeling and 10min treatment with 0.3M mannitol (left), 

after metabolic labeling and 10min mock treatment (second from the left) or in a non-labeling experimental 

design after 10min treatment with 0.3M mannitol (second from the right) or mock treatment (right). 

According to the previously set threshold for differential phosphorylation the boxes in this bar highlight 

whether the protein was more phosphorylated in ahk1-3 in comparison to the wildtype with log2(ahk1/wt) > 1 

(green), less phosphorylated with log2(ahk1/wt) < -1 or similar phosphorylated with -1 < log2(ahk1/wt) < 1 

(blue). In case no log2(ahk1/wt)-value could be obtained, the respective box is highlighted in black whereas 

it is white when no phosphopeptide was quantified. When boxes of proteins show contact this indicates 

physical protein interaction. BZR1 and pBZR1 respectively are outlined with a thick black frame due to the 

involvement in several pathways. Casein kinases are outlined in brown. Arrows designate the promotion of 

a process, arrows with a blunt end highlight the inhibition of a process. Rectangular arrows indicate gene 

expression. Dashed lines designate assumed regulatory mechanisms. AHK1 is highlighted in violett. 

Signals like light, Ca2+, the pathogen associated molecular pattern flg22, abscissic acid (ABA), auxin and 

brassinolid (BL) which lead to an adaption of the plant are highlighted in yellow. Proteins of which 

phosphopeptides were also quantified in the phosphoproteome of ahk2 ahk3 after 10min treatment with 

kinetin are outlined with a green frame for log2(ahk2 ahk3/wt) > 1, with a red frame for log2(ahk2 ahk3/wt) < 

-1 and with a blue frame for -1 < log2(ahk2 ahk3/wt) > 1. The references in which the shown 

phosphorylation and regulatory events have been described are noted in the text. 

 

This might occur through different mechanisms. It is known, that the Pr- as well as the Pfr-form of 

phytochromes can occur phosphorylated (Kim et al., 2005). For instance, for phyA it has been shown 

that the underphosphorylated Pr-form of phyA preferentially interacts with the transcription factor FHY3 

which prohibits its translocation to the nucleus and therefore represses its effect on gene expression 

(Seo et al.; 2004; Saijo et al., 2008). Such a mechanism might also exist for phyB to phyE. In addition, 

phyB to phyE are known to form heterodimers (Sharrock and Clack, 2004). This might influence the 

specificity of interaction with different target proteins. Therefore the lack of phyD in the Ws-2 ecotype 

might lead to a gap in heterodimerization which might alter specific responses through varied protein-

interactions which in turn causes in the case of temperature-induced hypocotyl elongation, lower HY5 

levels, increased PIF4 levels or influences other pathways which induce elongation growth upon 

elevated temperatures (Gray et al., 1998; Sharrock and Clack, 2004; Delker et al., 2014).  

According to the negative effect of AHK1 on temperature-induced hypocotyl elongation in etiolated 

seedlings of the Ws-2 ecotype, components of this pathway might be phosphorylated in an AHK1-

dependent manner. This might be achieved through an AHK1-dependent phosphorelay which 

activates type-B response regulators which can directly regulate gene expression possibily including 

the expression of PIF4 (Urao et al., 2000; Dortay et al., 2006; Mira-Rodado et al., 2007; Dortay et al., 

2008). Furthermore AHK1-dependent type-A response regulators might regulate kinases or 

phosphatases which in turn regulate enzyme activity (Urao et al., 2000; Sweere et al., 2001; Dortay et 

al., 2006; Mira-Rodado et al., 2007; Dortay et al., 2008). For instance it could be suggested that ARR4 

is activated in an AHK1 dependent manner to interact with phyB or the protein phosphatase 2C family 

protein AT3G12620 (Sweere et al., 2001; Mira-Rodado et al., 2007; Dortay et al., 2008). A comparable 

regulation of enzyme activity might in turn be involved in an altered activity of the E3 ligase comprising 
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COP1 and CUL4 which are shown to be differentially phosphorylated in an AHK1-dependent manner 

and which are known to target HY5 for degradation (Hardtke et al., 2000; Hua and Vierstra, 2011; 

Delker et al., 2014). 

5.2 AHK1 might contribute to brassinosteroid signaling through the 

interaction with BAK1 

The positive effect of AHK1 on osmotic stress regulation might be correlated with brassinosteroid (BR) 

signaling as the phosphoproteome of ahk1-3 and the wildtype Ws-2 revealed several proteins which 

are known to be involved in BR signaling to be differentially phosphorylated in ahk1-3 in comparison to 

the wildtype Ws-2 upon mock or osmotic stress treatment which was applied with the use of 0.3M 

mannitol (Tran et al., 2007; Wohlbach et al., 2008). Furthermore, the altered temperature-induced 

hypocotyl elongation suggests a contribution of PIF4 and BZR1 to AHK1-dependent elongation growth 

whereas BZR1 is a component of BR signaling (Oh et al., 2012). In addition it has previously been 

shown by Katharina Caesar that AHK1 interacts with BAK1 (unpublished data). BAK1 in turn interacts 

with many other proteins including the brassinosteroid receptor BRI1, the receptor of the pathogen-

associated molecular pattern (PAMP) flg22 FLS2, H+-ATPases and cyclic nucleotide gated channels 

(CNGCs) (Li et al., 2002b; Sun et al., 2013; Ladwig et al., 2015; fig. 4.30). Knock down mutants of 

BRI1, BAK1, AHK1, AHA1 and AHA2 as well as a putative gain-of-function or knock down mutant of 

CNGC7 (cngc7; SALK_019117.56.00.x) reveal decreased elongation growth of hypocotyls and roots in 

etiolated seedlings in comparison to the respective wildtype (fig. 4.34 and fig. 4.36) indicating a 

contribution of all these proteins in the regulation of skotomorphogenesis. Thereby, the double mutant 

bri1-5 ahk1-3 revealed the bri1-5 phenotype indicating BRI1 acting epistatic to AHK1 (fig. 4.34). 

Etiolated seedlings of the double mutant bak1-1 ahk1-3 revealed ahk1-3-like hypocotyl length but 

bak1-1-like root length indicating a tissue-specific epistasis of AHK1 and BAK1 under control 

conditions. The generation and analysis of a bri1-5 bak1-1 ahk1-3 triple mutant remains to be 

conveyed. Still, it can be assumed, that AHK1 influences BR signaling. This might occur through 

different ways. One way might be the AHK1-dependent change of abundance of BZR1 interaction 

partners like it was suggested for PIF4 during elevated temperatures (Oh et al., 2012). Another way 

might be initiated by the interaction of AHK1 and BAK1. It has been shown that BAK1-mediated 

signaling specificity depends on the transphosphorylation pattern of BAK1 and its interacting receptor-

like kinases (RLKs) (Wang et al., 2014a). In addition it is assumed, that distinctive 

transphosphorylation patterns of BAK1 interacting RLKs can be generated when the phosphorylation 

status of BAK1 is altered (Wang et al., 2014a). This means that the interaction of BAK1 with different 

RLKs or other proteins like AHK1 might vary the phosphorylation status of BAK1 and therefore the 

transphosphorylation pattern and activity of the RLKs including BRI1 (Wang et al., 2008). This would 

provide an explanation for the differential phosphorylation of BRI1 at Ser1172 in light-grown 14d old 

ahk1-3 seedlings in comparison to the wildtype after 10min treatment with 0.3M mannitol (Wang et al., 

2008). It has to be noted that this is an until now unidentified phosphorylation site of BRI1 (Wang et al., 

2008). This differential phosphorylation of BRI1 might subsequently lead to altered activity or 

interaction of BRI1 with proteins and to a difference in the phosphorylation status of these proteins. An 
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altered activity of BRI1 by the AHK1-dependent phosphorylation at Ser1172 can be suggested due to 

the phenotype which was observed in etiolated seedlings which grew on 100nM brassinolide (BL) or 

the BR-biosynthesis inhibitor propiconazole (Pcz) respectively (fig. 4.34). As BAK1 and BRI1 

transphosphorylate upon BL-perception which initiates phosphorylation cascades and finally amongst 

others leads to elongation growth the disruption of BAK1 in bak1-1 leads to a decrease of hypocotyl 

elongation under control conditions (Wang et al., 2008; Wang et al., 2012b). BL-supplementation might 

cause the enhanced elongation growth of hypocotyls of etiolated bak1-1 seedlings through increased 

activation of BRI1. This occurs in presence of AHK1 which might mediate the phosphorylation or the 

loss of phosphorylation of BRI1 at Ser1172. The disruption of AHK1 in bak1-1 might possibly lead to 

the change of phosphorylation at Ser1172 and might thereby cause the enhanced hypocotyl length of 

etiolated bak1-1 ahk1-3 seedlings indicating a positive effect of this phosphorylation site on BRI1 

activity. The AHK1-dependent phosphorylation of BRI1 at Ser1172 seems thereby to be BL-

independent as etiolated bak1-1 ahk1-3 seedlings which grew on media supplemented with 100nM 

Pcz revealed an increased hypocotyl length in comparison to bak1-1 indicating that the AHK1-

dependent change of BRI1 phosphorylation at Ser1172 still causes increased BRI1-activity and BR-

signaling which causes increased elongation growth. In addition, this indicates that the phosphorylation 

of BRI1 at Ser1172 might be independent of BAK1 transphosphorylation although it can not be 

excluded. It remains to be elucidated whether the AHK1-dependent phosphorylation of BRI1 at 

Ser1172 is enhanced or reduced in etiolated seedlings. 

Furthermore, the phosphorylation of BRI1 at Ser1172 might lead to a difference of BRI1 interaction 

with other proteins as several proteins in the BRI1-dependent phosphorylation cascade show 

differential phosphorylation in ahk1-3 and Ws-2. It is known, that BRI1 phosphorylates and therefore 

activates the kinase CDG1 (Kim et al., 2011). CDG1 unfortunately was not quantified itself in the 

phosphoproteome of ahk1-3 and Ws-2 but active CDG1 is known to phosphorylate and activate the 

phosphatases BSU1, BSL1 and BSL2 (Kim et al.; 2011). The phosphatase BSL2 (AT1G08420) was 

identified to be less phosphorylated at Thr147 in ahk1-3 in comparison to the wildtype after mannitol 

treatment and is known to dephosporylate and activate the kinase BSK8 (Wu et al., 2014). BSK8 

(AT5G41260) in turn was more phosphorylated in ahk1-3 at Ser213 after mannitol treatment and less 

phosphorylated at this site after mock treatment whereas Ser20 did not show differential 

phosphorylation. Wu et al. (2014) showed that the phosphorylation of BSK8 at Ser213 reduces the 

ability of BSK8 to deactivate SPS1F (AT5G20280) through its phosphorylation at Ser152. SPS1F is 

involved in the regulation of sucrose metabolism and sucrose in turn is an osmotically active substance 

(Wu et al., 2013; Osakabe et al.; 2013). Therefore SPS1F might play a role in osmotic adjustment. The 

phosphorylation of SPS1F at Ser152 was not altered in ahk1-3 neither after mock nor mannitol 

treatment but increased for Ser684, Ser688 and Ser700. The role of these phosphorylation sites in 

protein interaction and activity of SPS1F remains to be elucidated. The deactivation of SPS1F through 

phosphorylation at Ser152 can be rejected by dephosphorylation by the protein phosphatase 2C 

(PP2C) family protein ABI1 which has not been quantified in the phosphoproteome of ahk1-3 and Ws-2 

but whose activity is known to be inhibited upon ABA signaling (Nishimura et al., 2010; Finkelstein, 

2013).  
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The differential phosphorylation of the components of this pathway suggests that the AHK1-dependent 

phosphorylation of BRI1 at Ser1172 might indeed play a role in the binding affinity or phosphorylation 

effectiveness of BRI1 towards CDG1. Thereby, the phosphorylation status of CDG1 might alter its 

binding specificity as CDG1 is known to phosphorylate and activate BSL1 (AT4G03080) and BSL2 

whereat BSL1 revealed an increased phosphorylation and BSL2 a decreased phosphorylation in ahk1-

3 in comparison to the wildtype after mannitol treatment. The decreased phosphorylation of the 

phosphatase BSL2 and therefore its decreased activity might cause the increased phosphorylation of 

BSK8 in ahk1-3 in comparison to the wildtype after mannitol treatment (Wu et al., 2014). In addition the 

increased phosphorylation of BSK8 might be explained by an increased kinase activity of BRI1 directly 

towards BSK8 as BRI1 and BSK8 have been shown to interact as well (Sreeramulu et al., 2013). 

Therefore it remains to be elucidated, which kinase targets the respective phosphorylation site.  

5.3 Altered BZR1-levels might explain hypocotyl and root length phenotype of 

etiolated ahk1 knock down seedlings. 

Still, this does not explain the reduced hypocotyl and root length of etiolated ahk1 knock down 

seedlings. An important link between light-, BR- and auxin-signaling is the transcription factor BZR1 

(Oh et al., 2012; Oh et al., 2014; Delker et al., 2014). BZR1 can be phosphorylated (pBZR1) by the 

phosphorylated and therefore active kinase BIN2 as well as by the kinase MPK4 (He et al., 2002; Li et 

al., 2002a; Kim et al., 2009; Wang et al., 2013). Upon phosphorylation, BZR1 is known to be bound by 

14-3-3 proteins, translocalized from the nucleus to the cytoplasm and therefore less active as 

transcription factor (Gampala et al., 2007). On the one hand pBZR1 is targeted for degradation through 

the interaction with the COP1 comprising E3-ligase which is in darkness active in the nucleus (He et 

al., 2002; Yin et al., 2002; Hua and Vierstra, 2011). On the other hand, pBZR1 can be 

dephosphorylated during cytoplasmic retention by protein phosphatase 2A (PP2A) family proteins 

which are heterotrimeric serine/threonine phosphatases which are composed of a scaffolding A 

subunit, a regulatory B subunit and a catalytic C subunit (Tang et al., 2011; Farkas et al., 2007). 

Subsequently BZR1 is relocated to the nucleus mediating activation and repression of gene expression 

(Tang et al., 2011).  

The analysis of the phosphoproteome of ahk1-3 and the wildtype Ws-2 after mannitol treatment 

revealed several proteins to be differentially phosphorylated which are involved in the regulation of 

BZR1 activity. One of these proteins is the protein phosphatase 2C (PP2C) family protein AP2C1 

(AT2G30020) which revealed increased phosphorylation in ahk1-3 after mannitol treatment and which 

dephosphorylates and thereby inactivates MPK4 which in turn leads to decreased levels of pBZR1 

(Schweighofer et al., 2007; Asai et al., 2002; Wang et al., 2013; Kang et al., 2015b). Another protein 

which was identified to be less phosphorylated in ahk1-3 after mannitol treatment and which is known 

to directly interact with BZR1 is a protein phosphatase 2A (PP2A) regulatory B subunit (AT5G25510) 

which leads to dephosphorylation of cytoplasmic pBZR1 and therefore to the nuclear translocation and 

reactivation of BZR1 (Farkas et al., 2007; Tang et al., 2011). Furthermore, COP1 and CUL4 which are 

components of the E3-ligase which is assumed to target pBZR1 for degradation in darkness reveal 

differential phosphorylation in ahk1-3 in comparison to the wildtype after mannitol treatment (Kim et al., 
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2014). The altered phosphorylation of AP2C1, PP2A regulatory B subunit, COP1 and CUL4 might 

cause altered binding affinities of the COP1 E3-ligase towards pBZR1, to changes in the enzyme 

activity or to changes in the complex composition and therefore to altered target specificity. 

Unfortunately the identified phosphorylation sites of all these proteins are not yet characterized in 

regard to their influence on enzyme activity, complex association or BZR1 binding capability. Still, it 

can be assumed that these post-translational modifications which occur AHK1- and mannitol-

dependent might play a role in the observed ahk1 phenotype of decreased hypocotyl and root growth. 

This might work through decreased BZR1 levels or activity in etiolated seedlings of ahk1 knock down 

lines of the Ws-2 ecotype during growth at control conditions which might be achieved by decreased 

phosphatase activity of AP2C1 through altered phosphorylation, less binding capability towards BZR1 

of PP2A which might occur due to altered PP2A complex association through altered phosphorylation 

of the BZR1 binding PP2A regulatory B subunit as well as through increased degradation of pBZR1 by 

the COP1 E3 ligase. Decreased BZR1 levels or activity might in cooperation with PIF4 reduce the 

promotion of the expression of the auxin response genes SAUR19 to SAUR24, IAA19 and IAA29 

which leads to a decrease in auxin response and therefore weakened elongation growth (Franklin et 

al., 2011; Oh et al., 2012; Delker et al., 2014). In addition, less active BZR1 might lead to slightly 

increased expression of positive regulators of photomorphogenesis like BZS1 and GATA4 which might 

also reduce the elongation growth of hypocotyls and roots (Luo et al., 2010; Fan et al., 2012). 

Furthermore less active BZR1 might also lead to slightly increased expression of CPD and DWF4 (He 

et al., 2005; Gampala et al., 2007). CPD and DWF4 are in general involved in BR-biosynthesis so the 

upregulation of their expression by less active BZR1 provides a feedback loop, as more biosynthesis 

of, for instance, the brassinosteroid brassinolide (BL) leads to more BL which is perceived by BRI1 (He 

et al. 2005; Gampala et al., 2007; Tang et al., 2008).This would subsequently lead to the 

phosphorylation and activation of the kinase BSK1 which activates the phosphatase BSU1 (Tang et al., 

2008; Kim et al., 2010; Kim et al., 2010). BSU1 in turn deactivates the kinase BIN2 through 

dephosphorylation which leads to less phosphorylation of BZR1 and therefore to increased levels of 

active BZR1, which in turn reduce the expression of CPD and DWF4 (Li et al., 2002a; He et al., 2002; 

Wang et al., 2002; He et al., 2005; Gampala et al. 2007; Kim et al., 2009). This up- and down-

regulation of CPD and DWF4 expression is independent of PIF4 and might thus, be influenced by 

additional transcriptional regulators which are shown to interact with BZR1 and which reveal differential 

phosphorylation in ahk1-3 in comparison to the wildtype like for example TPL and TPR proteins, 

Aux/IAAs and ARFs or by transcriptional regulators whose expression is regulated by active BZR1 (Oh 

et al, 2012; Causier et al., 2012; Oh et al., 2014). According to the phosphoproteome which also 

showed the mannitol dependence of these phosphorylation events it might be possible that upon 

osmotic stress or mannitol-treatment, the previously decreased BZR1 levels or activity in ahk1 knock 

down mutants are upregulated which in turn leads to increased elongation growth which causes the 

wildtype-like hypocotyl and root length of etiolated ahk1 knock down seedlings after growth on osmotic 

stress media.  

Thereby it has to be noted, that the regulation of BZR1 levels and activity does not only depend on BR 

signaling but also on phyB and light signaling (Kim et al., 2014; Sun et al., 2010; Oh et al., 2012). 
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Although it has been shown, that BRI1 acts epistatically to phyB, the absence of phyB as well as dark 

treatment activates BR signaling which increases BZR1 activity which in turn causes hypocotyl growth 

(Kim et al., 2014).  

As etiolated ahk1 knock down seedlings exhibit decreased hypocotyl elongation growth, AHK1 might 

contribute to this pathway as positive regulator on the one hand as previously described through the 

interaction of AHK1 with BAK1 and the AHK1-dependent change of phosphorylation of BRI1 at 

Ser1172 (Wang et al., 2008).  

5.4 ARR4 might provide a link between AHK1-dependent light-, 

brassinosteroid- and abscissic acid-signaling 

On the other the other hand AHK1 might be involved in this pathway by the change of the 

phosphorylation status of components of the multistep phosphorelay system. It has been shown that in 

the multistep phosphorelay the phosphate group is transferred from AHK1 to either AHP1 or AHP2 

(Urao et al.,2000; Dortay et al., 2006). From AHP1 and AHP2 the phosphate can be transferred to 

either the type-A response regulators ARR3, ARR4, ARR7 or ARR9 or to the type-B response 

regulator ARR1 (Urao et al., 2000; Suzuki et al., 2001; Dortay et al. 2006; Mira-Rodado et al., 2007; 

Dortay et al., 2008). In addition, the phosphate can be transferred from AHP1 to the type-B response 

regulator ARR10 or ARR14 and from AHP2 to the type-B response regulator ARR11 (Dortay et al., 

2006). The type-B response regulators might in turn regulate the expression of type-A ARRs as well as 

the expression of further response genes whereas the type-A response regulators might be involved in 

the regulation of the activity of additional enzymes (Sakai et al., 2001; Hwang and Sheen, 2001; 

Lohrmann and Harter, 2002). For ARR4 it has already been shown that phosphorylated ARR4 

(pARR4) interacts with phyB in its Pr- and Pfr-form but stabilizes phyB in the active Pfr-form in light 

conditions (Sweere et al., 2001; Mira-Rodado et al., 2007). This might lead to increased 

phosphorylation and consequently increased degradation of PIFs by the active phyB (Shen et al., 

2005; Oh et al., 2006; Al-Sady et al., 2006; Li et al., 2012; Rolauffs et al., 2012). The light-dependent 

increased degradation of PIFs in turn leads to a further decrease of the activity of the light-inactivated 

COP1 E3-ligase towards targeting of the activator of light-induced gene expression HY5 to degradation 

(Rolauffs et al., 2012; Xu et al., 2014c; Jang et al., 2014; Lau and Deng, 2012). Hence, pARR4 might 

be able to inhibit the degradation of HY5 and to promote the expression of light-responsive genes in 

light conditions.  

Nevertheless it has been shown that ARR4 protein levels remained below the detection limit in dark-

grown seedlings and were not induced before red light stimuli (Sweere et al., 2001). Furthermore, 

ARR4 has not been detected in roots at all whereas AHK1 in contrast is mainly expressed in roots 

(Sweere et al., 2001; Urao et al., 1999; Dinkel et al., 2016).  

Still, a contribution of ARR4 in AHK1-dependent regulation of osmotic stress cannot be ruled out 

completely as Wohlbach et al. (2008) suggested a role of ARR3, ARR4, ARR8 and ARR9 in osmotic 

stress regulation. This hypothesis depends on the finding that the disruption of ARR3, ARR4, ARR5 

and ARR6 leads to an increased sensitivity to osmotic stress and that this phenotype can be repressed 

by the additional disruption of ARR8 and ARR9 (Wohlbach et al., 2008; Salomé et al., 2006). In this 
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regard it is interesting, that ARR4, which is present in light-grown seedlings, is also known to interact 

with the PP2C family protein AT3G12620 (Dortay et al., 2008). Possibly, in light conditions ARR4 is 

involved in the AHK1-dependent phosphorelay which leads to an altered activity of the phophatase 

AT3G12620 and therefore to a whole set of differentially phosphorylated proteins upon AHK1 

signaling. AT3G12620 was unfortunately not quantified in the phosphoproteome of ahk1-3 and the 

wildtype, neither after mock nor after mannitol treatment. Thereby it has be to noted, that although 

AHK1 is mainly expressed in roots, at least low AHK1 expression levels could be detected in the stem 

and in the leaves (Winter et al., 2007). In regard to the abundance of ARR4 in the shoot of light-grown 

plants and the possibility of an ARR4 dependent transition to Ser/Thr/Tyr phosphorylation by the 

regulation of a PP2C family protein, not many AHK1 receptor kinase proteins are necessary to initiate 

first the phosphorelay without signal enhancement and second through ARR4 the PP2C-dependent 

signal cascade which amplifies the input signal (Sweere et al. 2001; Winter et al, 2007).  

A contribution of ARR4 in AHK1-dependent signaling is further confirmed by the fact, that 

phosphorylated ARR4 is known to inhibit ABI5 expression (Wang et al., 2011a). ABI5 in its 

unphosphorylated form is targeted for degradation by ubiquitination and by sumoylation (Lee et al. 

2010; Miura et al., 2009). The ubiquitination is conferred by an E3-ligase which comprises the in ahk1-

3 differentially phosphorylated CUL4 as scaffold protein and DWA1 as substrate recognition subunit for 

ABI5 (Lee et al., 2010; Hua and Vierstra, 2011). The sumoylation of ABI5 is conferred by SIZ1 (Miura 

et al., 2009). Phosphorylation of ABI5 increases its DNA binding affinity and is conveyed by the 

phosphorylated and thereby active kinase BIN2 (pBIN2) and SnRK2.3 (Lynch et al., 2012; Yuan et al., 

2013; Hu and Yu, 2014). Upon this activation ABI5 is involved in seed dormancy and processes of the 

early seedling development like seed osmotic adjustment and seedlings growth arrest (Carles et al., 

2002; Hirayama et al., 2007). Furthermore, phosphoryated ABI5 (pABI5) promotes, amongst others, 

the expression of RD29B and RAB18 (Carles et al., 2002). Tran et al. (2007) could show that the 

expression of these two genes is decreased in ahk1 knock down lines in comparison to the wildtype in 

unstressed plants as well as after 2.5h of dehydration stress. This indicates that the abundance of 

pABI5 is decreased in ahk1 knock down lines. The abundance of pABI5 can be changed by altered 

activities of phosphorylating enzymes, dephosphorylating enzymes or through degradation. The 

phosphoproteome of ahk1-3 and the wildtype did not reveal a change in the phosphorylation of the 

ABI45 phosphorylating enzymes SnRK2.3 (AT5G66880) or BIN2 (AT4G18710), neither after mock nor 

mannitol treatment, indicating that their activity is not altered. The dephosphorylation of pABI5, seems 

not to be influenced in ahk1-3 neither, as this is conveyed by FyPP1 and FyPP3, which are also 

dephosphorylating PIN proteins (Dai et al., 2012; Dai et al., 2013; Yuan et al., 2013). As PIN3 and 

PIN7 did not reveal differential phosphorylation in ahk1-3 in comparison to the wildtype neither after 

mock nor mannitol treatment, the activity of FyPPs might be similar in ahk1-3 and the wildtype (Dai et 

al., 2012). In fact, differential phosphorylation in ahk1-3 and the wildtype was observed for CUL4 and 

DWA1 which are components of an E3-ligase (Hua and Vierstra, 2011). This indicates that the 

decrease of pABI5 which causes the decreased expression of RD29B and RAB18 depends on 

increased targeting for degradation of ABI5 in ahk1 knock down lines.  
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Beside post-translational modifications, a decrease in abundance of pABI5 could be caused by 

increased inhibition of ABI5 expression might occur. This would imply increased levels of pARR4 which 

inhibit ABI5 expression. ARR4 expression is shown to be upregulated either by light or by cytokinin 

and ARR4 is shown to interact with and might therefore be phosphorylated by AHP1, AHP2, AHP3 and 

AHP5 (D’Agostino et al., 2000; Sweere et al., 2001; Urao et al., 2000; Dortay et al., 2006; Mira-Rodado 

et al., 2007; Dortay et al., 2008). These phosphotransferproteins are known to act redundantly with 

more than one histidine kinase (Dortay et al. 2006; Dortay et al., 2008). Therefore, the phosphorelay 

which leads to a phosphorylation of ARR4 might be initiated by the cytokinin receptors AHK2, AHK3 

and AHK4 or by CKI1 which is shown to be able to form heterodimers with AHK1 (fig. 4.13) or by 

AHK5 (Urao et al., 2000; Dortay et al., 2006; Mira-Rodado et al., 2007; Dortay et al., 2008; Pekárová et 

al., 2011; Bauer et al., 2013). The phosphoproteome of ahk1-3 and the wildtype Ws-2 revealed 

differential phosphorylation of AHK4 after mannitol treatment at phosphorylation sites which are 

located closely to the receiver domain which is important for the interaction with AHPs to convey the 

phosphorelay (Dinkel et al., 2016). Probably this decrease in phosphorylation leads to altered binding 

specificities of AHPs and favoured phosphorelay components. Alternatively such phosphorylations 

might lead to conformational changes and therefore to an altered kinase activity. This indicates an 

AHK1-dependent regulation of cytokinin signaling. This hypothesis is confirmed by the phenotype of 

etiolated ahk1 knock down seedlings as they reveal shorter roots and hypocotyls. This has previously 

been discussed in context with BR signaling. In addition to that it is known that the application of 

exogenous cytokinin leads first to shorter hyocotyls in etiolated wildtype seedlings and later on to open 

cotyledons and the development of true leaves in darkness (Chory et al., 1994). The shorter 

hypocotyls and roots of etiolated ahk1 knock down seedlings after growth on media without 

supplements might thus be an indication for increased endogenous cytokinin levels. In this regard it 

might be interesting, that the analysis of the phosphoproteome of ahk1-3 and the wildtype after 

mannitol treatment revealed more phosphorylation of CYP735A1 (AT5G3845) and less 

phosphorylation of LOG7 (AT5G06300) in ahk1-3 which are both involved in the biosynthesis of 

cytokinin and which implies that they are AHK1- and mannitol-dependent differentially regulated 

(Kieber and Schaller 2014). This, in combination with the loss of the shorter hypocotyl and root 

phenotype of etiolated ahk1 knock down seedlings after growth on mannitol-supplemented media 

indicates that etiolated ahk1 knock down seedlings may have an increased endogenous cytokinin level 

which might be drastically decreased upon osmotic stress as etiolated ahk1 knock down seedlings 

which were grown on mannitol supplemented media to apply osmotic stress revealed wildtype-like 

hypocotyl length (fig. 4.16). The assumption that osmotic stress leads to a decrease in endogenous 

cytokinin levels indicates a negative effect of cytokinin to osmotic stress adaption. This fits to the 

hypothesis of Tran et al. (2007) who proposed a negative effect of AHK2, AHK3 and AHK4 which are 

known as cytokinin receptors on osmotic stress signaling. AHK1 might thereby act as negative 

regulator of cytokinin signaling. This might be proposed due to the finding that the absence of AHK1 

decreases hypocotyl and root length of etiolated seedlings (fig. 4.15) but that treatment with 

exogenous cytokinin, which is known to cause decreased hypocotyl elongation (Chory et al., 1994), 
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leads to a higher decrease of hypocotyl length in etiolated seedlings in the absence of AHK1 (fig. 

4.19).  

The absence of the AHK1-dependent negative regulation of cytokinin signaling in etiolated ahk1 knock 

down seedlings which might cause increased cytokinin levels might subsequently lead to an increase 

in pARR4 levels which inhibit ABI5 expression and might therefore lead to decreased pABI5 levels 

which might result in the previously detected decrease of RD29B and RAB18 expression (D’Agostino 

et al., 2000; Carles et al., 2002; Hirayama et al., 2007; Tran et al., 2007; Wang et al., 2011a). Besides, 

the differential regulation of ABI5 in ahk1 knock down lines does not just provide an explanation for the 

decreased expression of RD29B and RAB18 but also for the altered ABA responses of ahk1 knock 

down lines which have previously been described and which are linked to ABI5 signaling (Tran et al., 

2007; Wohlbach et al., 2008; Kumar et al., 2013; Xu et al., 2014a; Hu and Yu, 2014; Zhou et al., 2015). 

Furthermore, ABI5 expression is not just regulated by HY5 and pARR4 but also by FHY3 (Whitelam et 

al., 1993; Oyama et al., 1997; Yanovsky et al., 2000; Osterlund et al., 2000; Chen et al., 2008; Wang et 

al., 2011a; Tang et al., 2013; Wang et al., 2015). FHY3 was quantified in the phosphoproteome of 

ahk1-3 and the wildtype but did not reveal differential phosphorylation after mannitol treatment. In 

darkness, FHY3 interacts with the Pr-form of phyA, is released upon light-induced conversion of phyA 

from the Pr- to the Pfr-form and is therefore part of the phyA signaling pathway (Saijo et al., 2008). The 

phyA signaling pathway seems to play a minor role in AHK1-dependent signaling as components of 

the signaling pathway which lead to elongation growth were not even detected in the 

phosphoproteome of ahk1-3 and the wildtype. Still it is possible, that in etiolated seedlings of ahk1-3 

lower levels of the transcription factor ATAF2 confer an enhanced expression of the genes NIT2, BAS1 

and SOB7, whereas NIT2 promotes auxin biosynthesis and BAS1 and SOB7 mediate the degradation 

of BL (Bartling et al., 1992; Bartling et al., 1994; Neff et al. 1999; Turk et al., 2005; Delessert et al., 

2005; Huh et al. 2012; Peng et al., 2015).  

5.5 AHK1-dependent differential regulation of AHAs might cause the altered 

hypocotyl and root length in etiolated ahk1 knock down seedlings. 

Auxin and BR mediated alterations in cell elongation are known to be conveyed through alterations in 

the activity of H+-ATPases (AHAs) (Takahashi et al., 2012; Haruta et al., 2015). According to the acid 

growth theory an increase of the activity of AHAs leads to an acidification of the apoplast, subsequently 

to cell wall loosening and therewith to the possibility of the cell to expand (Rayle and Cleland, 1992; 

Caesar et al., 2011a; Wolf et al., 2012). As shown in figure 4.36, AHA1 and AHA2 contribute to 

hypocotyl and root elongation during skotomorphogenic growth. Thereby, AHA1 which is expressed in 

root and shoot seems to play major roles in hypocotyl elongation as the root length in etiolated aha1-6 

seedlings is not altered in comparison to the wildtype Col-0 (Winter et al., 2007). Due to shorter 

hypocotyls and roots in etiolated aha2-4 seedlings, AHA2 might be involved in hypocotyl as well as in 

root elongation although AHA2 is mainly expressed in roots (Winter et al., 2007). 

In regard to the altered length of hypocotyls and roots of etiolated ahk1 knock down seedlings an 

AHK1-dependent regulation of AHA activity can be assumed (fig. 4.34 and fig. 4.36). Thereby it has to 

be noted, that in Col-0 the phenotype is less consistent according to figure 4.15 and 4.36 but tends to 
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be opposing to Ws-2 and Nos-0. The opposite effect of the disruption of AHK1 in Ws-2 and Col-0 has 

already been discussed to be connected to Ws-2 being a natural phyD loss of function mutant 

(Aukerman et al., 1997). As AHK1 as well as phyD might affect auxin- and BR- but also cytokinin-

signaling the disruption of AHK1, phyD or both might lead to the opposing effect in 

skotomorphogenesis of ahk1 knock down mutants. 

Still, AHK1 might impact AHA activity. This hypothesis is supported by the finding that AHAs reveal at 

least the trend to be differentially phosphorylated in ahk1-3 in comparison to the wildtype Ws-2 upon 

mock or mannitol treatment. The quantified phosphopeptides thereby identify the penultimate Thr-

residue of AHA1 and AHA2 to show alterations in phosphorylation which is proposed to be the major 

switch of AHA activity (Nühse et al., 2007; Palmgren et al., 2001). However, the phosphoproteome of 

ahk1-3 and Ws-2 revealed that the phosphorylation of these residues is not just affected by the 

presence or absence of AHK1 but also by mannitol-treatment. Thereby, AHA1 showed a slightly 

decreased phosphorylation at the penultimate Thr948 in light-grown seedlings of ahk1-3 in comparison 

to the wildtype after treatment with mock and increased phosphorylation at this residue after treatment 

with mannitol indicating a general decrease of AHA1 activity in ahk1-3 but an enhanced AHA1 activity 

during osmotic stress due to the absence of AHK1. This suggests a positive effect of AHK1 on AHA1 

activity during normal growth but a negative effect of AHK1 on AHA1 activity during osmotic stress. 

AHA2 showed a slightly decreased phosphorylation at the penultimate Thr in ahk1-3 after mock 

treatment like AHA1 but a higher decrease of phosphorylation after mannitol treatment indicating a 

generally decreased AHA2 activity in ahk1-3 like described for AHA1 but in contrast to AHA1 a further 

decrease of AHA2 activity during osmotic stress. This in turn suggests an enhanced positive effect of 

AHK1 on AHA2 activity during osmotic stress. Previous studies of the phosphoproteome in Ler-0 and 

Col-0 upon treatment with the pathogen-associated molecular pattern (PAMP) flg22 have so far just 

shown cooperative regulation of AHA1- and AHA2-activity (Nühse et al., 2000; Nühse et al., 2007; 

Benshop et al., 2007). The opposing differential phosphorylation of AHA1 and AHA2 at the penultimate 

Thr-residue in ahk1-3 after mannitol treatment indicates a non-cooperative but specific and AHK1-

dependent regulation of AHA1- and AHA2-activity during osmotic stress. 

The shorter hypocotyls and roots of etiolated ahk1 knock down mutants confirm the positive effect of 

AHK1 on AHA activity under control conditions as the absence of AHK1 leads to a decrease in 

hypocotyl and root length which indicates reduced AHA activity.  

According to a higher contribution of AHA1 to hypocotyl than to root elongation, the negative effect of 

AHK1 on AHA1 activity during mannitol stress would suggest an increased activity of AHA1 in the 

absence of AHK1 and therefore an increased hypocotyl length of etiolated ahk1 knock down seedlings 

at least in comparison to control conditions. In fact, this is the case as etiolated ahk1 knock down 

seedlings reveal wildtype-like hypocotyl length after growth on mannitol-supplemented media (fig. 

4.16). Furthermore, the contribution of AHA2 to hypocotyl and root elongation and the positive effect of 

AHK1 on AHA2 activity during mannitol stress would suggest a decreased activity of AHA2 in the 

absence of AHK1 during mannitol stress and therefore would imply a decreased hypocotyl and root 

length of etiolated ahk1 knock down seedlings. In fact, etiolated ahk1 knock down seedlings reveal a 
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wildtype-like hypocotyl length (fig. 4.16). This might be explained by an additive effect of increased 

AHA1 activity and decreased AHA2 activity in the absence of AHK1 during mannitol stress.  

In contrast to the expectation, etiolated ahk1 knock down seedlings revealed no further decrease in 

root length during mannitol stress (fig. 4.16). This difference from the expectation might be explained 

by additional phosphorylation sites which are involved in the regulation of AHA activity. An additional 

phosphorylation site which is known to be involved in this regulation and which was quantified in the 

phosphoproteome of ahk1-3 and Ws-2 but did not show differential phosphorylation neither after mock 

nor mannitol treatment is Ser899 in AHA1 as well as in AHA2 (gi:15234666) (Nühse et al., 2007; 

Benshop et al., 2007).  

The inverse phosphorylation pattern of AHA1 and AHA2 at their penultimate Thr after mock and 

mannitol treatment, the phosphorylation at Ser899 which does not reveal any differential 

phosphorylation as well as the contribution of the other AHAs like AHA3 and AHA11 which also were 

quantified in the phosphoproteome of ahk1-3 and Ws-2 might provide the explanation for the result of 

the AHA activity assay. In the AHA activity assay entire 14d old seedlings of ahk1-3 and the wildtype 

Ws-2 were harvested after mock or mannitol treatment for protein extraction and the determination of 

the change in inorganic phosphate without discrimination between roots and shoots. This assay did not 

reveal any change in the AHA activity between ahk1-3 and the wildtype neither after mock nor after 

mannitol treatment (fig. 4.28). This raises the question whether AHA1 an AHA2 contribute to different 

processes in distinct signaling pathways. A first hint is given by the distinct phosphorylation of AHA1 

and AHA2 at the penultimate Thr after flg22 or mannitol treatment (Nühse et al. 2007; Benshop et al. 

2007). AHA1 is expressed in root and shoot whereas AHA2 is mainly expressed in roots like AHK1 

(Winter et al., 2007). AHA1 is known to contribute to stomatal opening in response to pathogen-attack 

and blue light whereas AHA2 is involved in the root architecture at least in response to different 

nitrogen supply (Liu et al., 2009; Yamauchi et al., 2016; Młodzińska et al., 2015). This indicates a 

tissue and signal specific regulation of AHAs. This might be achieved by the binding of activating or 

inactivating factors which differ in response to a signal or in a tissue specific manner. Factors which 

are known to combine these characteristics are 14-3-3 proteins as they are known to bind to the 

phosphorylated penultimate Thr-residue of AHAs as a homo- or heterodimer and thereby enable the 

association of an active H+-ATPase hexamer (Oecking and Jaspert 2009; Kanczewska et al., 2005; 

Ottmann et al., 2007; Aitken 1996). The expression of the different 14-3-3 proteins is not ubiquitous 

indicating that they are involved in specifying the signal transduction by activating or de-activating 

phosphorylated proteins specifically by enforcing a conformational change or by prohibiting or 

promoting the association with other proteins (Winter et al., 2007; Oecking and Jaspert, 2009; Aitken 

1996). For this specificity the composition of the 14-3-3 dimer might be important. Therefore it has to 

be noted, that the analysis of the phosphoproteome after metabolic labeling of ahk1-3 and the wildtype 

Ws-2 after mock treatment revealed 14-3-3 upsilon (GRF5, AT5G16050) to show slightly decreased 

phosphorylation in ahk1-3 in comparison to the wildtype at Ser2. This phosphorylation might have an 

influence on the dimerization of GRF5 with other 14-3-3 proteins as this phosphorylation is located 

closely to the residues 5-21 which are at least in mammalian 14-3-3 proteins known to be the site for 

dimerization with other 14-3-3 proteins (Aitken 1996; Xiao et al., 1995; Liu et al., 1995). In 
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consequence this might lead to a variety of differentially regulated phosphorylated proteins like AHAs 

which might then cause the respective phenotype. 

Ser2 in GRF5 is predicted to be a putative phosphorylation site of casein kinases 2 (CK2) which are 

known to have diverse targets also comprising 14-3-3 proteins (Dinkel et al., 2016; Oecking and 

Jaspert 2009; Mulekar and Huk 2014). CK2 are tetramers which are composed of two catalytic α-

chains and two regulatory β-chains whereas in plants there are for genes respectively encoding α and 

β subunits (Litchfield, 2003; Salinas et al., 2006). Recent studies suggest that CK2 is involved in the 

regulation of AHA activity (Lin et al., 2015; Schiele, 2016). This might occur either through direct 

phosphorylation of AHAs although the known regulatory phosphorylation sites at the carboxy terminus 

of AHAs are not predicted to be putative phosphorylation sites of CK2 or by the phosphorylation of 

regulatory proteins like 14-3-3 proteins which influence their dimerization and activating properties 

(Jahn et al., 1997; Fuglsang et al., 1999; Oecking and Jaspert, 2009; Hayashi et al., 2010; Haruta et 

al., 2015; Dinkel et al., 2016).  

The analysis of the phosphoproteome after metabolic labeling of ahk1-3 and the wildtype Ws-2 after 

treatment with mannitol revealed the decreased phosphorylation of the CK2 catalytic α-chain CKA3 

(AT2G23080) in ahk1-3 at Ser327 and Ser328 at the carboxy terminus. This AHK1-dependent 

differential phosphorylation might not alter the composition of the CK2 tetramer as the carboxy 

terminus of the α-subunit is not involved in tetramer formation (Litchfield, 2003). The carboxy terminus 

of CKA3 is predicted to contain a 14-3-3 binding motif comprising the CKA3 amino acid residues 329-

333 with a low conservation score which nevertheless let assume that CK2 might regulate 14-3-3 

dimerization whereas 14-3-3 dimers in turn might regulate the activity and specificity of CK2 (Dinkel et 

al., 2016). This suggests that AHK1 has an impact on the phosphorylation and therefore on the activity 

and specificity of 14-3-3 proteins as well as on CK2 which influences the regulation of several 

developmental processes as well as adaptations to osmotic stress (Salinas et al. 2006; Mulekar and 

Huq, 2014).  

The hypothesis of an AHK1-dependent regulation of CK2 activity might be further confirmed by the 

previously suggested change in HY5-levels in etiolated ahk1 knock down lines as it has been assumed 

that HY5 phosphorylation which prevents HY5 from targeting to degradation by the ubiquitinating E3-

ligase and which reduces HY5 DNA-binding affinity is mediated by a light-regulated CK2 (Hardtke et 

al., 2000). Furthermore, the AHK1- and mannitol-dependent differential phosphorylation of Thr883 in 

AHK4 (gi:30677959) might also be mediated by a CK2 as well as it has been revealed as putative CK2 

phosphorylation site (Dinkel et al. 2016). This indicates that an AHK1-dependent change in CK2 

activity might cause the difference in cytokinin response of etiolated ahk1 knock down seedlings. 

5.6 PIPs do not show AHK1-dependent regulation 

The putative AHK1-dependent contribution of 14-3-3 proteins to the regulation of developmental 

processes and adaption to osmotic stress might be further confirmed by the finding, that the analysis of 

the phosphoproteome of ahk1-3 and the wildtype Ws-2 revealed alterations in the phosphorylation of 

several plasma membrane intrinsic proteins (PIPs) which belong to the gene family of aquaporins. The 

quantified phosphopeptides revealed alterations in the phosphorylation of Ser-residues at the carboxy 

terminus of the PIPs which are known to be involved in the regulation of PIP activity as the 
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phosphorylation of these residues favors the open pore conformation (Maurel et al., 2015; Sjövall-

Larsen et al., 2006; Wu et al., 2013). In mammals it has been shown, that 14-3-3 proteins bind to the 

phosphorylated carboxy terminus of PIPs in order to regulate their activity whereas it has to be noted 

that in plantal PIPs the binding of 14-3-3 dimers is predicted not at the PIPs carboxy terminus but at 

their respective loop B (Dinkel et al. 2016; Moeller et al., 2016).  

In addition to the regulation of PIP activity by 14-3-3 proteins it has been shown, that the 

phosphorylation of Ser280 and Ser283 in the carboxy terminus of PIP2A (AT3G53420) which is 

necessary for 14-3-3 binding might depend on the activity of Ca2+-dependent kinases and SIRK1 

(Sjövall-Larsen et al., 2006; Wu et al., 2013; Moeller et al., 2016; Yaneff et al., 2016; Wilson et al., 

2016). The analysis of the phosphoproteome of ahk1-3 and Ws-2 revealed after mock as well as after 

mannitol treatment differential phosphorylation of several Ca2+-dependent kinases as well as of SIRK1 

(AT5G10020). This indicates that the AHK1-dependent differential phosphorylation of Ca2+-dependent 

kinases and SIRK1 might lead to the altered phosphorylation of PIPs and therefore to a change in 14-

3-3 binding and PIP activity (Wu et al. 2013; Maurel et al., 2015; Wilson et al., 2016). 

However, even though the phosphoproteome of ahk1-3 and the wildtype Ws-2 revealed differential 

phosphorylation of the PIPs at suggested regulatory phosphorylation sites, protoplasts of hypocotyls 

and roots of light-grown ahk1 knock down seedlings did not show any difference in the water flux 

density how it was described for sirk1 mutants when exposed to hypo-osmolar medium (Wu et al., 

2013). This indicates that there are no AHK1-dependent alterations in the water transport and 

therefore no change in the PIP activity. This discrepancy between the similar PIP activity and the 

altered phosphorylation might be explained by the inverse phosphorylation pattern of the PIPs how it 

was previously observed and described for AHA1 and AHA2. This means that the AHK1-dependent 

phosphorylation of PIPs which favors the open pore conformation and therefore leads to increased 

activity of PIPs might countervail the decreased activity of other PIPs which results in the determination 

of water flux densities which does not show any AHK1-dependent alteration (Maurel et al., 2015). 

5.7 AHK1 might not be a mechano-sensitive osmosensor 

Conclusively, AHK1 impacts BR and cytokinin signaling as well as auxin, ABA and other hormone 

responses. In addition, AHK1 might work as positive regulator in osmotic stress. Although Kumar et al. 

(2013) suggested that AHK1 may not be the main osmosensor in plants this cannot be ruled out. Still, 

the signal perception might not occur in a mechano-sensitive manner how it was previously proposed 

(Urao et al., 1999; Tran et al., 2007; Wohlbach et al., 2008). This is suggested by the homology model 

of the structure of the extracellular domain of AHK1 (fig. 4.4) which is most likely the site of signal 

perception but which is assumed to be stiff and therefore not susceptible for mechanical stimuli. 

Instead of the perception of a mechanical stimulus like a change in the turgor pressure a ligand is 

suggested to serve as signal for the induction of AHK1 activity which is due to the identification of a 

putative PAS domain in the extracellular domain of AHK1 (fig. 4.4). PAS domains are highly divergent 

at the primary sequence level but reveal a conserved three-dimensional architecture (Henry and 

Crosson, 2011). The prediction of this PAS-domain therefore suggests the binding of a small-molecule 

metabolite to AHK1 as this is a hallmark of the PAS-domain family (Henry and Crosson, 2011). Small-

molecule metabolites which are already identified to bind to PAS-domains are for instance divalent 
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metal ions like Mg2+ as well as Ca2+, fatty acids and C4- and C6 carboxylate-containing substrates as 

well as heme, flavin or 4-hydroxycinnamic acid which are shown to be involved in sensing of light, 

oxygen and the redox-state of the cell (Henry and Crosson, 2011). It remains to be elucidated, which 

ligand binds to AHK1 and which signal is perceived. 

Osmotic stress can be induced by several different factors like for instance altered water availability, 

flooding and therefore altered oxygen availability, dissolved ion content, abundance of other 

osmotically active substances, atmospheric humidity, temperature, wind speed as well as solar 

irradiance (Stephan et al., 2016). This leads to the requirement of the ability of the plant to integrate 

several information of the nature of osmotic stress which necessitates the adjustment of different 

hormonal pathways (Suzuki et al., 2016). In case AHK1 acts as an osmosensor, this might explain the 

diversity of pathways which are AHK1-dependently influenced upon mannitol treatment as well as the 

variety of different and sometimes inconsistent phenotypes of ahk1 knock down lines when factors like 

temperature or the relative position to the light source varied.  

According to this, it is not surprising that many proteins which are involved in calcium signaling reveal 

differential phosphorylation in ahk1-3 in comparison to the wildtype after mock as well as after mannitol 

treatment. Calcium is known to act as second messenger in several developmental as well as in stress 

responsive processes which also includes the regulation of abscissic acid signaling (Dodd et al., 2010; 

Guo et al., 2002). Furthermore,  previous studies revealed that osmotic stress induces a rise in 

intracellular Ca2+ within seconds after stress application (Stephan et al., 2016; Knight et al., 1997; 

Shimomura et al., 1962). This might occur through AHK1-dependent differential phosphorylation of 

Ca+-transporters. In this regard it has been shown that rapid hyperosmotic-induced Ca2+-responses 

involve plastidial KEA transporters indicating that KEA1, KEA2 and KEA3 contribute to the rapid 

intracellular increase in Ca2+-levels upon osmotic stress (Stephan et al., 2016). Thereby kea1-2 kea2-2 

and kea3-1 showed altered hyperosmotic-induced Ca2+-responses whereas this could not be shown 

for the quintuple mutant of the plasma-membrane localized putative mechano-sensitive channels of the 

MscS-like family msl4,5,6,9,10 indicating a not mechanical induced increase of intracellular Ca2+-levels 

(Stephan et al., 2016; Wilson et al., 2013). The phosphoproteome of ahk1-3 and the wildtype Ws-2 

showed that KEA2 (AT400630) actually comprises two phosphorylation sites but due to exclusive 

quantification of KEA2 in ahk1-3 after mannitol treatment and in Ws-2 after mock treatment no 

conclusions could be drawn in regard to AHK1-dependent differential phosphorylation. 

Nevertheless, an AHK1-dependent hyperosmotic-induced rise of intracellular Ca2+-levels cannot be 

excluded. For that it would have been of tremendous interest to express the calcium sensor R-GECO1 

in ahk1 knock down mutants to investigate whether the Ca2+-influx as well as its oscillation signature 

which is described to be changed upon osmotic stress is altered by the disruption of AHK1 (Keinath et 

al., 2015; Zhao et al., 2011; Tewson et al., 2012; Monshausen et al., 2009). Unfortunately the 

transformation of ahk1-3 and ahk1-4 with A. thumefaciens carrying a construct encoding R-GECO1 did 

not work and has to be repeated. Instead, crossings of Col-0 plants expressing the calcium sensors R-

GECO1 and Yellow Cameleon 3.6 with ahk1-5 and ahk1-6 have been executed and F1-seeds have 

already been obtained (Behera et al., 2013; Keinath et al. 2015; Zhao et al., 2011). Still, these plant 

lines have to be progenated until first experiments can be performed but might then gain insight 
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whether the Ca2+-signature upon osmotic stress is altered in ahk1 knock down lines. If this is the case, 

this might indicate an AHK1-dependent regulation of Ca2+-signaling which might in turn cause altered 

Ca2+-dependent responses. This would include Ca2+-dependent kinases, phosphatases and other 

proteins whose binding capabilities are altered by calcium (Dodd et al., 2010). The phosphoproteome 

of ahk1-3 and the wildtype suggests that this might be the case as for instance the Na+/H+-antiporter 

SOS1 (AT2G01980) revealed more phosphorylation in ahk1-3 after mock treatment but wildtype-like 

phosphorylation after mannitol treatment. SOS1 has been shown to mediate salt stress adaption and 

to be regulated by the calcium sensing calcineurin B-like (CBL) protein SOS3 (AT5G24270) and the 

CBL-interacting protein kinase (CIPK) SOS2 (AT5G35410) (Dodd et al., 2010; Gobert et al., 2006; Liu 

et al., 1997; Liu et al., 2000). This indicates that SOS1 is differentially regulated in the absence of 

AHK1 which might lead to an altered oscillation of membrane potential and a change in cytosolic pH as 

SOS1 extrudes Na+ but contemporaneously imports H+ and thereby causes acidification of the cytosol 

(Dodd et al., 2010; Gobert et al., 2006; Liu et al., 1997; Liu et al., 2000). Cytosolic acidification in turn is 

for instance known to inactivate PIPs through protonation of a conserved His-residue in their 

cytoplasmic loop D which subsequently leads to a conformational change which stabilizes PIPs in their 

closed pore conformation (Törnroth-Horsefield et al., 2006; Frick et al., 2013; Maurel et al., 2015). To 

overcome this effect, in ahk1 knock down mutants the activity of CPKs and SIRK1 might be influenced 

as they have been shown to activate PIPs through phosphorylation (Sjövall-Larsen et al., 2006; Wu et 

al., 2013; Maurel et al., 2015). This might lead to a change in the maintenance of turgor pressure in 

ahk1 knock down lines. An involvement of AHK1 in this process can be assumed due to recent 

findings which reveal weaknesses of ahk1 knock down lines to adjust turgor pressure after drought 

stress (Gerhard Obermeyer, unpublished, data not shown). This reveals the importance of AHK1 in 

integrating diverse signals to a proper adaption of the plant to different stresses.  

5.8 AHK1 contributes to plant immunity through interaction with BAK1 

Still, one main pathway of AHK1 signaling might comprise the interaction of AHK1 with BAK1 which 

might influence the BAK1-dependent transphosphorylation pattern of other receptor kinases (Wang et 

al., 2008; Wang et al., 2014a). That the phosphorylation state of BAK1-interacting kinases is changed 

in an AHK1-dependent manner has already been revealed by the analysis of the phosphoproteome of 

ahk1-3 and the wildtype Ws-2 after mock and after mannitol treatment. In addition to the differential 

phosphorylation of BRI1, also the BAK1-interacting receptor like kinase BIR1 (fig. 5.1) and several 

other kinases of the LRR protein kinase family revealed AHK1-dependent differential phosphorylation 

including the PAMP-induced receptor FLS2 (fig. 5.1; appendix A33, A34, A35). The genotype Ws-0 

has been shown to carry a non-functional FLS2 allele, whereas this has so far not been revealed in 

Ws-2 (Vetter et al., 2012; Zipfel et al., 2004). A physiological connection between AHK1, BAK1 and the 

response to pathogen attack could be revealed in a pathogen assay with Alternaria brassicicola (fig. 

4.37). Like in several other phenotyping experiments opposing phenotypes of ahk1 knock down 

mutants could be observed due to different replicates. Nevertheless, the double mutants bri1-5 ahk1-3 

and bak1-1 ahk1-3 revealed a tendency to react differently to pathogen attack than the respective 

single mutants. This effect has to be investigated more detailed under better defined growth conditions 

as it was observed that the result of the pathogen assay is highly influenced by atmospheric humidity. 
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This is due to a more sensitive reaction of the Ws-2 ecotype in comparison to Col-0 to atmospheric 

humidity which has not been described in previous studies but observed without any quantitation or 

precise documentation in the experiments of this study. For example it has been observed that growth 

on plates which in general comprises a higher atmospheric humidity led to the induction of flowering of 

Ws-2 two to three weeks after germination. In addition it was observed that high atmospheric humidity 

leads to curling or the turn of the upside down of the leaves of Ws-2 (data not shown). High 

atmospheric humidity in the pathogen assay is needed to open the stomata before the plants can be 

infected with spores of Alternaria brassicicola. For that reason the atmospheric humidity is upregulated 

by watering and the covering of the tray in which the plants are grown with a hood. Therefore the 

opposing phenotypes of ahk1 knock down mutants in the different replicates of the pathogen assays 

might depend on not defined atmospheric humidity. As recent findings of Gerhard Obermeyer indicate 

weaknesses of ahk1 to re-adjust turgor pressure after osmotic stress (data not shown), the exact 

atmospheric humidity and the thereby applied osmotic stress might highly influence the experimental 

result. According to that, this indicates that the BAK1-dependent reaction of the plant to pathogen 

attack is influenced by AHK1 and that the integration of the response to pathogen attack and to 

osmotic stress occurs in a BAK1-dependent manner. 

The direct interaction of BAK1 with AHAs and the ion channel CNGC17, its influence on several 

signaling pathways and the possibility that BAK1 integrates these signals through mediating signal 

specific transphosphorylation patterns in association with its interaction partners suggests a 

supercomplex of BAK1, AHAs and ion channels like CNGC17 as core complex which adjusts ion 

homeostasis and membrane potential and which is accessed and differentially regulated by various 

receptor kinases (Dodd et al., 2010; Caesar et al., 2011a; Wolf et al., 2012; Wang et al., 2014a; 

Ladwig et al., 2015).  

The finding of differential phosphorylation in ahk1-3 in comparison to the wildtype of LRR protein 

kinase family proteins, CNGC7 (AT1G155900) and other plasma membrane localized ion channels, 

AHAs as well as differential phosphorylation even of wall-associated kinases (WAK4=AT1G21210; 

WAK5=AT1G21230), which are transmembrane proteins with a cytoplasmic Ser/Thr kinase domain, 

which can be covalently linked to pectin in the cell wall, which are assumed to be receptors for 

promoting the cell-wall integrity pathway and which are known to be connected to BAK1 signaling 

through the revealed interaction of BAK1 with RLP44 (AT3G49750) which in turn interacts with WAK1 

(AT1G21250), as well as the respective phenotypes further confirm the existence of such a 

supercomplex (Verica and He, 2002; Wolf et al., 2012). The signal and tissue specific activity and 

composition of this supercomplex might be very interesting in regard to the integration of different 

signals and the specificity of plant response. The contribution of AHK1 in the signaling pathway of this 

supercomplex especially in regard to osmotic stress regulation might be furthermore interesting for the 

basic understanding of the plant’s adaptation processes and later on for the development of plants 

which are more resistant to osmotic stress. 
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5.9 AHK1 might be an osmosensor and therefore impacts many hormonal 

signaling pathways 

Conclusively, it remains to be elucidated which signal is perceived by AHK1. Still, the signal might be 

osmotic stress itself or a signal which is released upon osmotic stress and which has not yet been 

identified. Osmotic stress can occur in different forms which require fine-tuning and adaptation of all 

developmental processes. The phosphoproteome of ahk1-3 and the wildtype Ws-2 in combination with 

further phenotyping studies revealed the cross-talk of AHK1-dependent signaling with several 

hormonal pathways like the brassinosteroid, cytokinin, auxin and abscissic acid signaling pathway. 

Thus, AHK1 might also influence the other hormonal pathways. This might work through the already 

known cross-talk of signaling pathways as well as through AHK1-dependent alterations in 

phophorylation patterns (Nemhauser et al., 2006). For instance the PP2C family protein AP2C1 

(AT2G30020) which revealed increased phosphorylation in ahk1-3 after mannitol treatment is known to 

modulate innate immunity, jasmonic acid and ethylene levels (Schweighofer et al., 2007). Ethylene 

signaling might be directly regulated by AHK1-dependent phosphorylation of the ethylene receptor 

EIN4 (AT3G04580) (table 4.1; Hua et al., 1998). Furthermore, the receptor-like protein kinase 

FERONIA (FER, AT3G51550) showed decreased phosphorylation in ahk1-3 in comparison to the 

wildtype after mock treatment and no differential phosphorylation after mannitol treatment (appendix 

A35). FER is known to act as receptor kinase for the peptide hormone called rapid alkalinization factor 

(RALF) and to control the production of high levels of reactive oxygen species and RALF-induced 

calcium spikes which are involved in root growth inhibition (Chen et al., 2016a; Duan et al., 2014; 

Haruta et al., 2014; Yu et al., 2014). In addition it is known that FER phosphorylation is inhibited by 

interaction with the PP2C phosphatase ABI2 which mediates cross-talk between RALF and abscissic 

acid and changes the expression levels of RD29B, RAB18 as well as ABI5 (Chen et al., 2016a). 

Furthermore, increased levels of gibberellic acid in darkness lead to the release of BZR1 and PIF 

proteins from DELLA proteins which enables BZR1 and PIFs to form active heterodimers to regulate 

genes which are involved in hypocotyl growth (Bae and Choi, 2008; Feng et al., 2008; de Lucas et al., 

2008; Bai et al., 2012b; Jaillais and Vert, 2012). This indicates that gibberellic acid might be involved in 

AHK1-dependent BZR1 regulation as well. Several proteins of these pathways were quantified and 

found to be differentially phosphorylated in ahk1-3 in comparison to the wildtype Ws-2. How the AHK1-

dependent signaling pathway upon osmotic stress takes place, how it influences all these hormonal 

signaling pathways and whether it occurs through interaction with BAK1, AHPs or both remains to be 

elucidated and verified. 
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8 APPENDIX 

A1: Vectors which have been provided for the Ph.D. thesis 

Entry vectors and vectors for further cloning 

vector name (source) selection  purpose 

pENTR/D-Topo (invitrogen) Kan GatewayTM-cloning 

pDONR207 (invitrogen) Gent GatewayTM-cloning 

pENTR/D-Topo-AHK3 (Jakub Horak) Kan GatewayTM-cloning 

pDONR207-AHK4 (Julia Teply) Gent GatewayTM-cloning 

 

E.coli expression vectors 

vector name (source) selection  purpose 

pMH-HSsumo_AHK4 (Michael Hothorn) Kan E. coli expression vector 

 

Vectors for protein interaction studies with Saccharomyces cerevisiae 

vector name (source) 

selection  

(E coli / yeast) purpose 

pMetYC-Dest (Christopher Grefen) Amp, Cm / Leu Cub-fusion, GatewayTM- cloning 

pMetYC-AHK1 (Christopher Grefen) Amp / Leu mbSUS, AHK1-Cub 

pMetYC-AHK2 (Christopher Grefen) Amp / Leu mbSUS, AHK2-Cub 

pMetYC-AHK4 (Christopher Grefen) Amp / Leu mbSUS, AHK4-Cub 

pMetYC-CKI1 (Christopher Grefen) Amp / Leu mbSUS, CKI1-Cub 

pMetYC-BAK1 (Peter Huppenberger) Amp / Leu mbSUS, BAK1-Cub 

pMetYC-BRI1 (Christopher Grefen) Amp / Leu mbSUS,BRI1-Cub 

pMetYC-AHA1 (Friederike Wanke) Amp / Leu mbSUS, AHA1-Cub 

   

pXNubA22-Dest (Christopher Grefen) Amp, Cm / Trp Nub-fusion, GatewayTM- cloning 

pXNubA22-AHK1 (Christopher Grefen) Amp / Trp mbSUS, AHK1-Nub 

pXNubA22-ETR1 (Christopher Grefen) Amp / Trp mbSUS,ETR1-Nub 

pXNubA22-AHK5_fl (Michael Heunemann) Amp / Trp mbSUS, AHK1_fl-Nub 

pXNubA22-AHK5_C8 (Michael  Heunemann) Amp / Trp mbSUS, AHK1_C8-Nub 

pXNubA22-CKI1 (Christopher Grefen) Amp / Trp mbSUS, CKI1-Nub 

pXNubA22-BAK1 (Peter Huppenberger) Amp / Trp mbSUS, BAK1-Nub 

pXNubA22-BRI1 (Peter Huppenberger) Amp / Trp mbSUS, BRI1-Nub 

pXNubA22-AHA1 (Friederike Wanke) Amp / Trp mbSUS, AHA1-Nub 

pXNubA22-AHA2 (Friederike Wanke) Amp / Trp mbSUS, AHA2-Nub 

pXNubA22-RLP44 (Friederike Wanke) Amp / Trp mbSUS, RLP44-Nub 

pXNubA22-CNGC17 (Friederike Wanke) Amp / Trp mbSUS, CNGC17-Nub 

pX32-Dest (Christopher Grefen) Amp, Cm / Trp mbSUS, NubG 

pNubWtXgate (Christopher Grefen) Amp, Cm / Trp mbSUS, NubWT 

   

pGBKT7-Dest (Achim Hahn) Kan, Cm / Trp BD-fusion, GatewayTM-cloning 

   

pGADT7-Dest (Achim Hahn) Amp, Cm / Leu AD-fusion, GatewayTM-cloning 

pGADT7-MPK2 (Achim Hahn) Amp / Leu Y2H, AD-MPK2 

pGADT7-MPK3 (Achim Hahn) Amp / Leu Y2H, AD-MPK3 
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vector name (source) 

selection  

(E coli / yeast) purpose 

pGADT7-MPK4 (Achim Hahn) Amp / Leu Y2H, AD-MPK4 

pGADT7-MPK5 (Achim Hahn) Amp / Leu Y2H, AD-MPK5 

pGADT7-MPK6 (Achim Hahn) Amp / Leu Y2H, AD-MPK6 

pGADT7-MPK7 (Achim Hahn) Amp / Leu Y2H, AD-MPK7 

pGADT7-MPK11 (Achim Hahn) Amp / Leu Y2H, AD-MPK11 

pGADT7-MPK17 (Achim Hahn) Amp / Leu Y2H, AD-MPK17 

 

Binary plant vectors 

vector name (source) 

selection  

E. coli / plants) purpose 

pB7-AHK1pro-mCherryNLS (Katharina 

 Caesar) 

Spec / Basta test AHK1 promoter 

pH7FWG2-AHK1 (Jakub Horak) Spec / Hyg 35S::AHK1-GFP 

pABind-AHK1-GFP Spec / Hyg lexA-4635S::AHK1-GFP 

pB7RWG2-CKI1 Spec / Basta 35S::CKI1-RFP 

pBT8-ARR5::LUCm3 (Niklas Wallmeroth) Amp ARR5::LUC5 

pB7-RD29Bpro-LUCm-3XHA (Manikandan 

 Veerabagu) 

 

Spec / Basta 

 

RD29B::LUC 

pFRK::LUC nos c (Markus Albert) Amp pFRK1::LUC 

pUBN-RFP-MBD (Sabine Müller) Spec / Basta pUBQ::RFP-MBD 

pUB-GFP-ABD2-GFP (Sabine Müller) Spec / Basta pUBQ::GFP-ABD2-GFP 

pGPTVII-Bar-U-RGECO1 (Karin 

 Schuhmacher) 

Kan / Basta pUBQ10::R-GECO1 

   

CD3-959 er-rk (Andreas Nebenführ) Kan / Kan marker ER 

CD3-967 g-rk (Andreas Nebenführ) Kan / Kan marker golgi 

CD3-975 vac-rk (Andreas Nebenführ) Kan / Kan marker vacuole 

CD3-983 px-rk (Andreas Nebenführ) Kan / Kan marker peroxisomes 

CD3-991 mt-rk (Andreas Nebenführ) Kan / Kan marker mitochondria 

CD3-999 pt-rk (Andreas Nebenführ) Kan / Kan marker plastids 

CD3-1007 pm-rk (Andreas Nebenführ) Kan / Kan marker plasma membrane 

   

pABind-ARA6-mCherry (Stephanie Hahn,  

 Peter Pimpl) 

Spec / Hyg marker late endosome, 

 prevacuolar compartment 

pABind-ARA7-mCherry (Stephanie Hahn,  

 Peter Pimpl) 

Spec / Hyg marker late endosome,    

 prevacuolar compartment 

pABind-PEP12-mCherry (Stephanie Hahn, 

 Peter Pimpl) 

Spec / Hyg marker post-golgi 

 compartment 

pABind-RabA5d-mCherry (Stephanie 

 Hahn,Peter Pimpl) 

Spec / Hyg marker recycling endosome 

pABind-RabA1e-mCherry (Stephanie  Hahn, 

Peter Pimpl) 

Spec / Hyg marker recycling endosome 

pABind-RabD2a-mCherry (Stephanie  Hahn, 

Peter Pimpl) 

Spec / Hyg marker endosome, golgi-

 system 

pABind-VTI12-mCherry (Stephanie Hahn,  

 Peter Pimpl) 

Spec / Hyg marker TGN, early endosome 

pABind-GOT1-mCherry (Stephanie Hahn,  

 Peter Pimpl) 

 

Spec / Hyg 

marker golgi 
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A2: Vectors which have been generated during the Ph.D. thesis 

Entry vectors and vectors for further cloning 

vector name selection purpose 

pUC57-AHK1-ED (GenScript) Amp codon-optimized (c.o.) AHK1-ED 

pUC57-AHK1-ED-Leu298Ala Amp c.o. AHK1-ED with Leu298 mutated to 

Ala 

pUC57-AHK1-ED-Leu422Ala  Amp c.o. AHK1-ED with Leu422 mutated to 

Ala 

pUC57-AHK1-ED-Leu298/422Ala  Amp c.o. AHK1-ED with Leu298 and Leu422 

mutated to Ala 

pENTR/D-Topo-MKKK20+stop Kan GatewayTM-cloning 

pENTR/D-Topo-MKKK20-stop Kan GatewayTM-cloning 

pENTR/D-Topo-AT1G80350+stop  Kan GatewayTM-cloning 

pENTR/D-Topo-AT1G80350-stop  Kan GatewayTM-cloning 

pENTR/D-Topo-AT1G72250+stop Kan GatewayTM-cloning 

pENTR/D-Topo-AT1G72250-stop  Kan GatewayTM-cloning 

pENTR/D-Topo-AT1G14390-stop  Kan GatewayTM-cloning 

pENTR/D-Topo-AT1G04780+stop  Kan GatewayTM-cloning 

pENTR/D-Topo-AT5G20470+stop  Kan GatewayTM-cloning 

pENTR/D-Topo-AHK1-ICP Kan GatewayTM-cloning 

pENTR/D-Topo-AHK1-ED Kan GatewayTM-cloning 

pENTR/D-Topo-IAA16+stop Kan GatewayTM-cloning 

pENTR/D-Topo-IAA16-stop Kan GatewayTM-cloning 

pENTR/D-Topo-IAA16-stop-S150A Kan GatewayTM-cloning 

pENTR/D-Topo-IAA16-stop-S150E Kan GatewayTM-cloning 

pENTR/D-Topo-WAK4+stop Kan GatewayTM-cloning 

pENTR/D-Topo-WAK4-stop Kan GatewayTM-cloning 

pENTR/D-Topo-BIR1 Kan GatewayTM-cloning 

pDONR207-BRI1 Gent GatewayTM-cloning 

pDONR207-BRI1-S1172A Gent GatewayTM-cloning 

pDONR207-BRI1-S1172E Gent GatewayTM-cloning 

 

E.coli expression vectors 

vector name (producer) selection  purpose 

pMH-HSsumo-AHK1-ED  Amp E. coli expression vector for AHK1-ED 

pMH-HSsumo-AHK1-ED-

Leu298/422Ala  

Amp E. coli expression vector for mutated 

AHK1-ED 

 

Vectors for protein interaction studies with Saccharomyces cerevisiae 

vector name (producer) 

selection  

(E. coli / yeast) purpose 

pMetYC-MKKK20  Amp / Leu mbSUS, MKKK20-Cub 

pMetYC-AT1G80350  Amp / Leu mbSUS, AT1G80350-Cub 

pMetYC-AT1G72250  Amp / Leu mbSUS, AT1G72250-Cub 

pMetYC-AT1G14390  Amp / Leu mbSUS, AT1G14390-Cub 

pMetYC-IAA16  Amp / Leu mbSUS, IAA16-Cub 

pMetYC-BIR1  Amp / Leu mbSUS, BIR1-Cub 

pMetYC-WAK4 Amp / Leu mbSUS, WAK4-Cub 

   

pXNubA22-AHK3  Amp / Trp mbSUS, AHK3-Nub 
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vector name (producer) 

selection  

(E. coli / yeast) purpose 

pXNubA22-AHK4  Amp / Trp mbSUS, AHK4-Nub 

pXNubA22-MKKK20  Amp / Trp mbSUS, MKKK20-Nub 

pXNubA22-AT1G80350  Amp / Trp mbSUS, AT1G80350-Nub 

pXNubA22-AT1G72250  Amp / Trp mbSUS, AT1G72250-Nub 

pXNubA22-AT1G14390  Amp / Trp mbSUS, AT1G14390-Nub 

pXNubA22-IAA16 Amp / Trp mbSUS, IAA16-Nub 

pXNubA22-BIR1 Amp / Trp mbSUS, BIR1-Nub 

pXNubA22-WAK4 Amp / Trp mbSUS, WAK4-Nub 

   

pGBKT7-AHK1-ICP  Kan / Trp Y2H, BD-AHK1-ICP 

pGBKT7-AHK1-ED  Kan / Trp Y2H, BD-AHK1-ED 

pGBKT7-IAA16 Kan / Trp Y2H, BD-IAA16 

pGBKT7-WAK4 Kan / Trp Y2H, BD-WAK4 

   

pGADT7-AHK1-ICP  Amp / Leu Y2H, AD-AHK1-ICP 

pGADT7-AHK1-ED Amp / Leu Y2H, AD-AHK1-ED 

pGADT7-AT1G04780  Amp / Leu Y2H, AD-AT1G04780 

pGADT7-AT1G80350 Amp / Leu Y2H, AD-AT1G80350 

pGADT7-AT1G72250  Amp / Leu Y2H, AD-AT1G72250 

pGADT7-AT5G20470  Amp / Leu Y2H, AD-AT5G20470 

pGADT7/-IAA16 Amp / Leu Y2H, AD-IAA16 

pGADT7-WAK4 Amp / Leu Y2H, AD-WAK4 

pGADT7-MKKK20 Amp / Leu Y2H, AD-MKKK20 

 

Binary plant vectors 

vector name (producer) 

selection  

(E. coli / plants) purpose 

pB7WGR2-IAA16 Spec / Basta  35S::RFP-IAA16 

pH7WGF2-IAA16 Spec / Hyg 35S::GFP-IAA16 

pB7WGR2-IAA16-S150A Spec / Basta 35S::RFP-IAA16-S150A 

pB7WGR2-IAA16-S150E Spec / Basta 35S::RFP-IAA16-S150E 

pB7RWG2-BRI1 Spec / Basta 35S::BRI-RFP 

pH7FWG2-BRI1 Spec / Hyg 35S::BRI1-GFP 

pB7RWG2-BIR1 Spec / Basta 35S::BIR1-RFP 

pH7FWG2-BIR1 Spec / Hyg 35S::BIR1-GFP 

 

A3: Vector maps 

Entry-vectors 

 



 APPENDIX 

 

149 
 

Destination-vectors for mating-based split-ubiquitin assays 

 
 

Destination vectors for yeast two-hybrid assays 

 
 

Binary plant destination-vectors 

 

 
 

pUC57 with codon-optimized AHK1-ED and vector with codon-optimized AHK1-ED for expression of 

AHK1-ED in Escherichia coli 

 



APPENDIX 

 

150 
 

 

Vectors which were provided by partners of cooperations 

 

 

 

A4: Oligonucleotides for genotyping of Arabidopsis thaliana T-DNA 

insertion lines 

genotype purpose DNA-sequence 

ahk1-1 T-DNA TCCGTTCCGTTTTCGTTTTTTAC 

 gene-specific Fwd TCTGGTATATTCTGTGATTACTCTACAG 

 gene-specific Rev AAACTTTAGTAGACAAATCAGAAACCCA 

ahk1-3 T-DNA CATTTTATAATAACGCTGCGGACATCTAC 

 gene-specific Fwd GACCTCTCTGGTATGACTCGGTATTATA 

 gene-specific Rev CACATCCAGTATCATCAACCTCAAACCA 

ahk1-4 T-DNA CATTTTATAATAACGCTGCGGACATCTAC 

 gene-specific Fwd AGGAAGGTGTTCGATAAAATGACTGAATG 

 gene-specific Rev CAAGTTCTTCTTGAGTTGTTGGCTTGTCA 

ahk1-5 T-DNA AACGTCCGCAATGTGTTATTAAGTTGTC 

 gene-specific Fwd TATTATTACAAACATATTCCTCTCTATA 

 gene-specific Rev GATCCCAAATCATAAACAAAGACACATA 

ahk1-6 T-DNA AACGTCCGCAATGTGTTATTAAGTTGTC 

 gene-specific Fwd TCTGGTATATTCTGTGATTACTCTACAG 

 gene-specific Rev GTTAAAAGCCCTATCAAAATTGCTAACA 

bak1-1 T-DNA CATTTTATAATAACGCTGCGGACATCTAC 

 gene-specific Fwd CTATTTGGCGACACTACTTTCTGAC 

 gene-specific Rev GGTGCTTCAAAGTTGGGATGC 

bak1-3 T-DNA TGGTTCACGTAGTGGGCCATCG 

 gene-specific Fwd CTATTTGGCGACACTACTTTCTGAC 

 gene-specific Rev GGTGCTTCAAAGTTGGGATGC 

bak1-4 T-DNA TGGTTCACGTAGTGGGCCATCG 

 gene-specific Fwd ACATCATCATCATTCGCGAGG 

 gene-specific Rev TTATTGTTTGGCCGATCTTGG 
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genotype purpose DNA-sequence 

cngc7 T-DNA GCGTGGACCGCTTGCTGCAACT 

 gene-specific Fwd CCTTATTATGGCCCATCAACATAAGA 

 gene-specific Rev GGATCGGCAACAAATACTTAAAGTGA 

aha1-6 T-DNA TCAAACAGGATTTTCGCCTGC 

 gene-specific Fwd CGTCTCAACAAAAGTCTCTTTC 

 gene-specific Rev CGAAAGATCAACCTCGTGAG 

aha2-4 T-DNA TCAAACAGGATTTTCGCCTGC 

 gene-specific Fwd ATGTTCATTGCAAAGGTGGT 

 gene-specific Rev CCCATTAGCTCGTGGTTATT 

ahk2-2 T-DNA ATAACGCTGCGGACATCTAC 

 gene-specific Fwd GTCTATAACTTGTGAGCTCTTGAATC 

 gene-specific Rev GCTCGTGTCATAGACAGCAAAGGTC 

ahk3-3 T-DNA TGGTTCACGTAGTGGGCCATCG 

 gene-specific Fwd CTTGTGATTGCGTTACTTGTTGCAC 

 gene-specific Rev GCAGGCCTATGGTCCACAACCACAG 

 

A5: Oligonucleotides and restriction endonucleases (REs) for genotyping of 

Arabidopsis thaliana EMS mutants 

genotype DNA-sequence (Fwd / Rev) RE 

bri1-5 TTTCATTTCAAGCTTCACCATCTCAG / AGAGATGTTCAACAACTTGAGCTCTG HpyCH4V 

bri1-301 ATGGAAACCATTGGGAAGATCAAACA / CTTCATAAGCTCGGGGTCAAACACA Bsp143I 

 

A6: Oligonucleotides for the detection of T-DNAs in stably transformed 

Arabidopsis thaliana lines 

insert DNA-sequence (Fwd / Rev) 

35S::AHK1-GFP TATGGAAGTACAGCAAGAATGAT / TTACTTGTACAGCTCGTCCATGC 

UBQ10::AHK1-GFP TATGGAAGTACAGCAAGAATGAT / TTTGTATAGTTCATCCATGCCATGTG 

RFP-MBD ATCTCCCTCAACTCTTGTTTCCAC / GTCCTTGGAAACACACTTGGATTG 

GFP-ABD2-GFP GAAAGGAATGGTCTAAACAAGGATGG / GAGGAAGAATAACCCACTCGATAGAC 

R-GECO1 GTCGACATCAAGTTGGACATCGTG / CCTTGTAGATGAATACGCCGTCCT 

 

A7: Oligonucleotides for cloning 

purpose DNA-sequence (Fwd / Rev) 

MKKK20-stop CACCAGCTTTTGTTTCAATTTCAATGGAG/CCCTAGCCTTCCAAACACACTG 

AT1G80350-stop CACCATGGTGGGAAGTAGTAATTCG/AGCAGATCCAAACTCAGAGAGCCAC 

AT1G80350+stop CACCATGGTGGGAAGTAGTAATTCG/TAATTAAGCAGATCCAAACTCAGAGAGCCAC 

AT1G72250-stop CACCTTGTTAATGGAGGATTGTTGTGA/GATCCATCGCTCTTGTTTCTGCGG 

AT1G72250+stop CACCTTGTTAATGGAGGATTGTTGTGA/CAGTTTTTAATAGTTTCAGATCCATCGCTC 

AT1G14390-stop CACCATGCATAGTTCCTCTAAAAGCCAGG/TAGTTCTGAACCACCAAGCCCGAGG 

AT1G04780+stop CACCATGGCAAGCAGCACCATTGATG/CTTTTTCTTCAGCTGTTCTGAGATGAC 

AT5G20470+stop CACCATGCATCAGGACATGGTTCTAC/TTATGATGGACTAGCTTCTTTACGAGTGAG 

AHK1-ICP+stop CACCAATGGAACCGGTGTTTCAAAGGAGA/GGTCAAGCGGACAATGAAGTTTGGAA 

AHK1-ED+stop CACCTGGCATTTCACAAGGATTTATACAAAGCAG/ 

 CTAAGTCTTGAAGGCCCTTTCATCCACTTTTCCCA 
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purpose DNA-sequence (Fwd / Rev) 

IAA16+stop CACCATGATTAATTTTGAGGCCACGGAGC/TCAACTTCTGTTCTTGCACTTTTCTAATG 

ARF21+stop CACCATGGAAAGTGGCAACATTGTGAA/TCAACTTGAGAGACTCTTACTGGAC 

WAK4+stop CACCATGAAAGTGCAGCGTCTGTTCTTAG/TCAGCGGCCTGCTTCAATGTCCAG 

BIR1-stop CACCATGATGATGGGTAGGTTAGTTTTTGTAA/ 

 ACGAGCAACTATGAGCTCTTCAATGAAA 

 

A8: Oligonucleotides for site-directed mutagenesis 

purpose DNA-sequence 

AHK1-ED Leu298Ala TATGGATTCTCCGCTGGCCAGTGCGGCCCTGCCGG 

 CCGGCAGGGCCGCACTGGCCAGCGGAGAATCCATA 

AHK1-ED Leu422Ala CCTGAATCTGAAACGGGCGCCGATCGTTGGCGTTGTCA 

 TGACAACGCCAACGATCGGCGCCCGTTTCAGATTCAGG 

MKKK20 insert stop TGGGAGTTGGCTTACAGTCCGGTGAAAGGGTGGGCGCGCCGACCCAGCTTTCTTG 

 CAAGAAAGCTGGGTCGGCGCGCCCACCCTTTCACCGGACTGTAAGCCAACTCCCA 

IAA16 remove stop GTGCAAGAACAGAAGTTTAAAGGGTGGGCGCGCCGA 

 TCGGCGCGCCCACCCTTTAAACTTCTGTTCTTGCAC 

IAA16 Ser150Ala TCTCTCCAACGCCTTAGCCAAAATGTTTAGC 

 GCTAAACATTTTGGCTAAGGCGTTGGAGAGA 

IAA16 Ser150Glu TCTCTCCAACGCCTTAGAGAAAATGTTTAGCTC 

 GAGCTAAACATTTTCTCTAAGGCGTTGGAGAGA 

WAK4 remove stop CTGGACATTGAAGCAGGCCGCAAGGGTGGGCGCGCCGACCCAGCTTTCTTG 

 CAAGAAAGCTGGGTCGGCGCGCCCACCCTTGCGGCCTGCTTCAATGTCCAG 

BRI1 Ser1172Ala CAGTCAACGATCAGAGCAATAGAGGATGGAGGGTTCAG 

 CTGAACCCTCCATCCTCTATTGCTCTGATCGTTGACTG 

BRI1 Ser1172Glu CAGTCAACGATCAGAGAAATAGAGGATGGAGGGTTCAG 

 CTGAACCCTCCATCCTCTATTTCTCTGATCGTTGACTG 

 

A9: Oligonucleotides for sequencing by GATC 

purpose DNA-sequence 

intern AHK1 primer for complete sequencing (fwd1)  AGGGCCTGAAGATGTAAG 

intern AHK1 primer for complete sequencing (fwd2)  AGAGACTTCCAATTGTAGGTGT 

intern AHK1 primer for complete sequencing (fwd3)  TGCCAGCATTAGTCAGAG 

intern AHK1 primer for complete sequencing (fwd4)  TATGGAAGTACAGCAAGAATGAT 

sequencing of insert in pMetYC-Dest (fwd) AGGGTCGTCAGATACATAGA 

sequencing of insert in pMetYC-Dest (rev) TTGTCCACGGCTTCATCGTG 

sequencing of insert in pMetYC-Dest (fwd) ATTTCAAGCTATACCAAGCA 

sequencing of insert in pMetYC-Dest (rev) CAGCGTAATCTGGAACGTCA 

sequencing of insert in pB7WGR2 (rev) TAGATTTGTAGAGAGAGACTGG 

sequencing of insert in pB7WGR2 (fwd) GGACTACACCATCGTGGAACAG 

intern At1G14390 primer for complete sequencing (fwd) CTCCTTCTGCAAAGTATCAGCG 

intern At1g72250 primer for complete sequencing (fwd1) AGTATTACAACTGATGCTG 

intern At1g72250 primer for complete sequencing (fwd2) AGTCCAAGATATCAACGAG 

intern At1g72250 primer for complete sequencing (fwd3) ACGGCTAATGAGCACAG 

intern At1g72250 primer for complete sequencing (fwd4) AAGCTTGCTCGTCAACATG 

intern WAK4 primer for complete sequencing (fwd1) ATGAAGCAAATGGAGAATGTAA 

intern WAK4 primer for complete sequencing (fwd2) TGCCATTAGCTGTATAGAACA 

intern WAK4 primer for complete sequencing (fwd3) GGTCTATGAGTTCATTTCCAG 
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purpose DNA-sequence 

intern AHA2 primer for complete sequencing (fwd1) CTGCAAACAAGGAGAAATCG 

intern AHA2 primer for complete sequencing (fwd2) TGGAATCAGGGAAGTTCAC 

intern AHA2 primer for complete sequencing (fwd3) TTGCTGATGCTACAGATGC 

intern AHA2 primer for complete sequencing (fwd4) TTGCACAACTGATTGCTAC 

 

A10: AHK1pro activity in mannitol-treated light-grown seedlings 

 
 

To analyze the tissue specificity of the AHK1-promoter (AHK1pro) it was fused to mCherry (red) and a 

nuclear localization signal (NLS) in a binary plant vector (pB7-AHK1pro-mCherryNLS) and stably 

transformed into Arabidopsis thaliana Col-0. The tissue specificity of AHK1pro activity and mCherry 

expression was analyzed in three day old light grown seedlings with confokal microscopy. Different 

laser intensities were used for the detection of mCherryNLS. Shown is a brightfield overview image of 

the seedling as well as close ups which show brightfield images and mCherry signal (red). Dashed 

lines mark the zone of the seedling for which the shown pictures are representative. At least six 

seedlings per treatment were investigated. The bars in the overviews give 1mm, the bars in the close 

ups 0.05mm. Stars mark nucleic mCherry signal. 

control 50mM mannitol 100mM mannitol 200mM mannitol

* *

*

*

*

*

* *

*

*

*

*
*

*

*

*

*

*

*

*
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A11: AHK1pro activity in mannitol-treated etiolated seedlings 

 
 

To analyze the tissue specificity of the AHK1-promoter (AHK1pro) it was fused to mCherry (red) and a 

nuclear localization signal (NLS) in a binary plant vector (pB7-AHK1pro-mCherryNLS) and stably 

transformed into Arabidopsis thaliana Col-0. The tissue specificity of AHK1pro activity and mCherry 

expression was analyzed in three day old etiolated seedlings with confokal microscopy. Different 

laser intensities were used for the detection of mCherryNLS. Shown is a brightfield overview image of 

the seedling as well as close ups which show brightfield images and mCherry signal (red). Dashed 

lines mark the zone of the seedling for which the shown pictures are representative. At least six 

seedlings per treatment were investigated. The bars in the overviews give 1mm, the bars in the close 

ups 0.05mm. Stars mark nucleic mCherry signal. 

control 50mM mannitol 100mM mannitol 200mM mannitol

*
*

*

*

*

*

*

*

*

*

*
*

*
*
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A12: Subcellular localization of AHK1 in N. benthamiana treated with 0.8M 

mannitol 

 
 

Transient co-expression of AHK1-GFP with (A) the peroxisomal marker CD3-983 px-rk; (B) the golgi-

marker CD3-967 g-rk; (C) the golgi-marker GOT1-mC; (D) VTI12-mC as marker for the trans-golgi-

network and early endosomes; (E) RabD2a-mC as marker for endosomes and the golgi-system; (F) 

ARA6-mC as marker for late endosomes and prevacuolar compartments; (G) PEP12-mC as marker 

for the post golgi compartment and with (H) RabA5d-mC as marker for the recycling endosome. (A, 

B) were obtained from Andreas Nebenführ (Nelson et al., 2007). The markers are fused with RFP and 

under the control of the 35S-promoter. AHK1-GFP was encoded in pH7FWG2.0-AHK1 and 

expressed under control of the 35S-promoter as well. (C-H) The markers for organelles fused with 

mCherry (mC) were obtained from Peter Pimpl who used the β-estradiol inducible promoter lexA-46-

35S (Zuo et al. 2000). These marker constructs were co-transformed into N. benthamiana together 

with a vector in which AHK1-GFP is under control of lexA-4635S as well. The subcellular localization 

was analyzed two days after transformation (A-H) and 4-24h after β-estradiol induction (C-H). 

Thereby the tobacco leaves were mounted in 0.8M mannitol and incubated for at least 10min. White 

outlined arrows mark vesicle-like structures which do not show co-localization, white arrows mark co-

localization. The scale in all images is 20µm. 

CD3-967 g-rkAHK1-GFP merge

GOT1-mCAHK1-GFP merge

VTI12-mCAHK1-GFP merge

RabD2a-mCAHK1-GFP merge

ARA6-mCAHK1-GFP merge

PEP12-mCAHK1-GFP merge

RabA5d-mCAHK1-GFP merge

A

B

C

D

E

F

G

H

CD3-983 px-rkAHK1-GFP merge
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A13: Transient co-expression of AHK1-GFP with markers for the endoplasmic reticulum, 

mitochondria and plastids in N. benthamiana 

 
Transient expression of AHK1-GFP with markers for the endoplasmatic reticulum (CD3959 er-rk), 

mitochondria (CD3-991 mt-rk) and plastids (CD3-999 pt-rk). The markers were obtained from 

Andreas Nebenführ (Nelson et al., 2007), fused with RFP and under the control of the 35S-promoter. 

These marker constructs were co-transformed into N. benthamiana with pH7FWG2.0-AHK1, a vector 

in which AHK1-GFP is under control of the 35S-promoter as well. The subcellular localization was 

analyzed two days after transformation. Thereby the tobacco leaves were mounted in water or 0.8M 

mannitol and incubated for at least 10min. The scale in all images is 20µm. 

CD3-959 er-rkAHK1-GFP merge

CD3-991 mt-rkAHK1-GFP merge

CD3-999 pt-rkAHK1-GFP merge

CD3-959 er-rkAHK1-GFP merge

CD3-991 mt-rkAHK1-GFP merge

CD3-999 pt-rkAHK1-GFP merge

mounted in water mounted in 0.8M mannitol
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A14: Amino acid sequence alignment of SLN1-ED, AHK1-ED and AHK1-ED 

similar sequences 

Sc_SLN1                     ALVSIVALGSLIILAVTTGVY------FTSNYKNLRSDRLYIAAQLKSSQIDQTLNYLYYQAYYLASRDALQSSLTSYVAGN 

Sm_XM_002978682.1           ---FGARIAIMLMLAILIGLITILTWHFTTAYATKSIKSL--AYSLRVELLKRTISRSWNLISTTLDATTTLANLSDYMIPK 

Sm_XM_002975442.1           ---FGARIAIMLMLAILIGLITILTWHFTTAYATKSIKSL--AYSLRVELLKRTISRSWNLISTTLDATTTLANLSDYMIPK 

At_AHK1                     ---FVVRLAIMVMLAILIGLLTVLTWHFTRIYTKQSLQTL--AYGLRYELLQRPVLRMWSVLNTTSELTTAQVKLSEYVIKK 

Vv_XM_002265212             --VFVARLAIMVMLAILIGLLTILTWHFTRIYTTKSINSL--AYGLRYELLQRPILRMWNILNSTVEITTAQVKLSEYVIKR 

Pt_XM_002327617.1           --VFVVRLAIMAMLAILIGLLTILTWHFTRSYTKKSLDTL--ASGLRYEILQRPILRMWNILNSTAEITAAQVKLSEYVIRR 

Pt_XM_002303370.1           --VFVVRLAIMAMLAILIGLLTILTWHFTRSYTKKSLDTL--ASGLRYELLQRPILRMWNILNSTAEITAAQVKLSEYVIGR 

Mt_5g022470                 ---FVVRLAIMVMLAILIGLLTILTWHFTKIYTKKSLSSL--AYGLRYELLQRPILRMWNILNSTSEITTAQVKLSQYVIRR 

Mt_8g075340                 --VFVVRLAIMVMLAILIGLLTILTWHFTKIYTTKSLNSL--AYDLRYELLQRPILRMWNILNSTAEITTAQVKLSEYVIRS 

Mp_GI_1026776310            -----ARLAIMVMLTILIGLLTILTWHFTTVYTTRSIKSL--AFSLRTELLQRPIARMWNLLNATLDTTVTHVNLSKYVVGQ 

Pp_SNLB_XM_001760151.1      ---FSVRLAIMIMLAVLIALLTILTWHFTTVYTTRSIKNL--AFGLRTELLNRPIARMWNLLNNTVEATLSQVQLSQFVLGE 

Pp_SNLA_XM_001754627.1      -----VRLAIMIMLAVLIALLTILTWHFTTVYTTRSIKNL--AYGLRTELLNRPIARMWNLLNNTVEATLSQVQLSQFVVGQ 

                                 . :. : :*::  .:       **  * .   . *  *  *. . :...:   :       .      .*:.::    

 

Sc_SLN1                     KSADNWVDSLSVIQKFLSSSNLFYVAKVYDSSFNAVLNATNNGTGDLIPEDVLDSL----FP----------LSTDTPLPSS 

Sm_XM_002978682.1           H--FSSILWTYAQPQHLVMRNITWAVFSSRQSLKTLSVLYSNGQLLAFDRNPVNNKTYYLFSN--------NSAASTLGTEF 

Sm_XM_002975442.1           H--FSSILWTYTQPQHLVMRNITWAVFSSRQSLKTLSVLYSNGQLLAFDRNPLNNKTYYLFSN--------NSAASTLGTEF 

At_AHK1                     Y--DKPTTQEELVEMYQAMKDVTWALFASAKALNAITINYRNGFVQAFHRDPASSSTFYIFSD------LKNYSISGTGPED 

Vv_XM_002265212             Y--SKPTTQAQQVELYEVMRDVTWALFASRKALNAITINYRNGFVQAFHRDHRSNNTFYIFSD------LVNYSISGSYNSN 

Pt_XM_002327617.1           Y--SKPTNQAEQVELYEVMRDITWALFASRKALNAITINYRNGFVQAFHRDHRSNNTFYIYSD------LVNYSINAKGPYD 

Pt_XM_002303370.1           Y--SKTTIQAEQVELYEVMRHVTWALFSSRKALNAITINYRNGFVQAFHRDHRSNNTFYIYSD------LRNYSINAKGPSD 

Mt_5g022470                 Y--SNPASQAEQVELYEAMRAVTWSLFASRKALNSITINYKNGFVQAFHRDLKDNNTFYIYSD------LSNYSMVATTSNM 

Mt_8g075340                 H--GNLATQAEQVEMYESMRAVTWALFASRKALNSITVKYRNGFVQAFHRDLKDNNIFYIYTD------LSYHETNSFAAH- 

Mp_GI_1026776310            Y--KLPISPGDQDQLYNVMRNVTWAIFTSRNAVNALTIVYSNGLTQGFERDAATKEEFYSYSV------FRNDTESAESPIA 

Pp_SNLB_XM_001760151.1      Y--TLPIDASTQVQVHRTMRNIFWAVYAGRKSAKSITIAYRNGQLQAFDRNMVTNETFYIFTDPSVGAPLGGVSVIGASPAP 

Pp_SNLA_XM_001754627.1      Y--TLPMDAATQVQVHRSMRNATWAIFASRKSAKSIIVAYRNGQLQAFDRDSTTNNTIYVYTNASAGDPLGGVDLLSPSPAA 

                                           .       :      .: :::     **    :  :   .     :.   

 

Sc_SLN1                     LE--------------------------------------------TIGILTDPVLNSTDYLMSM---------SLPIFANP 

Sm_XM_002978682.1           L---------------EFVESSTPGQWYKEELNPSTGQPIDS----AVSIPSVNFSDYTGNVSTLKTGETFWHVAVGSTDNE 

Sm_XM_002975442.1           L---------------ESVEASTTGQWYKEELNPSTGQPIDS----AVSIPSVNFSDYTGNVSTLKTGETFWHVAVGSTDNE 

At_AHK1                     VS---------GWNN-KSIHGNMSAIWYQQQLDPVTGENLGK----PLKIPPDDLI-NIAGISQVPDGEASWHVTVSKYMDS 

Vv_XM_002265212             TL-----SSHQGWND-QSIHSNISAIWYHVPLDPVSGERIGK----PKAIPPDDQI-NIAGLSQVPDGVASWHVAVSKYTDS 

Pt_XM_002327617.1           TNMFS---SHQAWDD-QSIHSNFSAIWYREPLDPISGEKKGK----ASPIPPDDLI-NIAGLSQVPDGVASWHVAVSKYTDS 

Pt_XM_002303370.1           ANMFL---SHQAWND-QSIHSNFSAIWYREPLDPTSGEKIGK----ASPIPPDDLI-NIAGLSQVPDGVASWHVAVSKYTDS 

Mt_5g022470                 LKSIS---THQAWDD-KTLHGNFSAIWYREPLDPVTGEKIGK----AMKIAPEDLI-NIAGLSQVPDGVATWHVAVSKFTDS 

Mt_8g075340                 ----------------EDTHSNKSAIWYREQLDPVNGEKIGK----AMKIAPEDSI-SIAGLSQVPDGVASWHVSVGKFTDS 

Mp_GI_1026776310            AFFPSPSPSPSGAEDFLPKSTADTFTWFREPVNKRTGHKMGP----AVEIKPYNLTQDFGGVALLKEGDTSWHITVHRSDDT 

Pp_SNLB_XM_001760151.1      SPATDAPAPVTMWPDIPLENGNIT--WYKEPINPYTGKASSPINITPINITSYDLSKNIDYVLALKSTEVSWRLVVTESDDT 

Pp_SNLA_XM_001754627.1      APLTD--APVTTWPDGPVNTSNIT--WYTETVNSYTGGSSSP----PNVTQSYDLSKSIDDVLFLRNTEVTWRVTVSEFEDT 

                                                                          .    .         :  :          :    : 

 

Sc_SLN1                     SIILTDSRVY-GYITIIMSAEGLKSVFNDTTALEHSTIAIISA-VYNSQ--GKASGYHFVFPPYGSRS-DLPQKVFSIKNDT 

Sm_XM_002978682.1           CLLSSAADVRHPVTNELMATVVVTSALSGISNLMKDLARNYSGSFYLTSYDGLLLASSSNHSLVRVLS-HGPKLTPAVDAQD 

Sm_XM_002975442.1           CLLSSAADVRHPVTNELMATVVVTSALSGISNLMKDLARNYSGSFYLTSYDGLLLASSSNHSLVRVLS-HGPKLTPAVDAQD 

At_AHK1                     PLLSAALPVFDASNKSIVAVVGVTTALYSVGQLMRDLVEVHGGHIYLTSQEGYLLATSTDGPLLKNTS-NGPQLMKATDSEE 

Vv_XM_002265212             PLLSAALPVWDPSNQSIVAVVGVTTALYSVGQLMKELVEVHSGHIYLTSQEGYLLATSTNAPLLTNSS-TGPKLMLAIDSED 

Pt_XM_002327617.1           PLLQAALPVWDASNKSIVAVVGVTTSLYSVGQLMRELVEVHSGYIYLTSQEGYLLATSTNAPLLTNST-TRPNLIMAVDTEE 

Pt_XM_002303370.1           PLLSAALPVWDAYNKSIVAVVGVTTALYSVGQLMRELVEVHKGYIYLTSQEGYLLATSTNAPLLTNST--RPNLIMAVDTEE 

Mt_5g022470                 PLLSAALPVWDSSNKSIMAVVGVTTAFYSVGQLMRELVEMHSGHMYLTSQQGYLLATSTSAPLLTNSTKPPPKLKMAVDCED 

Mt_8g075340                 PLLSAALPVWDSSNKSIVAVVGVTTALYSVGQLMKELVDKHSGHMYLTSQEGYLLATSTNDPLLTNST-KKPKLKMAVDCDN 

Mp_GI_1026776310            PFLASGSPVRHPETGEVLAVAGVTQALRGVSQLMQELVTLHSGTIYLTNADGWLLASSTSTPLLKNSS-NGPSLIRAHESTD 

Pp_SNLB_XM_001760151.1      PLLSSATPVRYRDSGIVVAVTGVTAALSSISQFLRELTSSHSGYLYLTTADGQLLATSTNASLIDSSG-PRRTLVLANESSD 

Pp_SNLA_XM_001754627.1      PLLSSAAPIRHQGSDMIVAVTGITTALSSISQFLRELTSTHSGYLYLTTSKGQLLAASTNSSMINTSG-PIRTLVMANESSD 

                             :: :   :       :::.  :.  : .   : ..      . .* :   *  .     .              : .    

 

Sc_SLN1                     FISSA----FRNGKGGSLKQT-NILSTRNTALGYSPCSFNLVNW-------------------------VAIVSQPESVFLS 

Sm_XM_002978682.1           SVIRDGARWLREYHTDSILAQ-KEVHAEDVVLGGKKFYIDSFYWNLTGLPL------------------IGVILLPRSYVLG 

Sm_XM_002975442.1           SVIRDGARWLREYHTDSILKQ-KEVHAEDVVLGGKKFYIDSFYWNLTGLPL------------------IGVILLPRSYVLG 

At_AHK1                     WVIKSGAQWLEKTYGSKRP---HVVHAENVKLGDQRYYIDSFYLNLKRLPI------------------VGVVIIPRKFIMG 

Vv_XM_002265212             RVIRLGAEWLQRTYGYKFPPS-HVVHVENAKLGHEHYYIDSFFLNLKRLPM------------------VGVIIIPRKYIMG 

Pt_XM_002327617.1           PIIRMGARWLEKVYGNKLTPG-QIVQVENAKLGNQQYYIDSFFLNLKRLPI------------------VGVIIIPRRYIMG 

Pt_XM_002303370.1           PTIRMGARWLERVYGNKFPPG-HVVHVENAKLGKQQCYIDSFFLNLKRLPI------------------VGVIIIPRRYIMG 

Mt_5g022470                 EIIRLGAEWLQRTYGNHFPNSTHEVHVENAKLGNQQYYIDSFYLNLKRLPLVIIIKRLVLLTYSLVITKVGVIIIPRKYIMG 

Mt_8g075340                 EVIREGAMWLKKTYENNFPPS-HEVHEENARLGHQQYYIDSFFLILKKLPL------------------VGVIIIPRKHIMG 

Mp_GI_1026776310            SIISAGSMWLRREYGTDLENL-QNVHAEDVVLLGKKYYVDTFVLNLSKLPL------------------VGVIVTPRSFVMG 

Pp_SNLB_XM_001760151.1      PVIKAGAQWLYARHGFEGLVK-TVVHAENVVLEGKRYYIDTFSLSLSGLQM------------------VGVIIIPRTYVMG 

Pp_SNLA_XM_001754627.1      AVIKAGAQWLNERYGFEGLVQ-TVVHAENVVLEGKRYYIDTFCLSLPRLKM------------------VGVIIIPRTYVMG 

                                     :              :   :. *  .   .: .                           :.::  *   .:. 

 

Sc_SLN1                     PATK-----LAKIITGT--VIAIGVFVILLTLPLAHW 

Sm_XM_002978682.1           DVDDRGRTTLIILVSVAISILVVGCLLILIFTS---- 

Sm_XM_002975442.1           DVDDRGRTTLIILVSVAISILVVGCLLILIFTS---- 

At_AHK1                     KVDERAFKTLIILISASVCIFFIGCVCILILT----- 

Vv_XM_002265212             KVEERALKTLIILISASLCILVIGCVCILILT----- 

Pt_XM_002327617.1           KVDERAFKTLVILISASLCILVIGCVCILILT----- 

Pt_XM_002303370.1           KVDERAFKTLVILISASLCILVIGCVFILILT----- 

Mt_5g022470                 QVDERSFKTLVILISASLCIFVIGCVCILILT----- 

Mt_8g075340                 QADERAFKTLVILISASLCIIVIGCVCILILT----- 

Mp_GI_1026776310            AVDRRGHATLAILISISVCILVVGCLFTLIFT----- 

Pp_SNLB_XM_001760151.1      EVDRSGRATLAILIAISCCILFVGCFFIIFFT----- 

Pp_SNLA_XM_001754627.1      EVDRRGKATLAILIAISSCILLVGCVFIIFFT----- 

                             .       *  ::: :  :: :* .  ::       
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CLUSTAL multiple sequence alignment by MUSCLE (3.8) of the amino acid sequences of the 

extracellular domain (ED) of Saccharomyces cerevisiae (Sc) SLN1 (SLN1-ED; aa25-356), 

Arabidopsis thaliana (At) AHK1 (AHK1-ED; aa100-446) and similar sequences from Selaginella 

moellendorffii (Sm), Physcomitrella patens (Pp), Marchantia polymorpha (Mp), Vitis vinifera (Vv), 

Medicago truncatula (Mt) and Populus trichocarpa (Pt). Predicted transmembrane domains (Dinkel et 

al., 2016; AHK1-ED: aa77-99; aa447-469; dark grey) were included in the alignment. Identical 

residues are highlighted with “*”. Highly conserved residues are designated with “:”, weakly conserved 

residues with “.”.  

 

A15: Amino acid sequence alignment of SLN1-ED and CKI1-ED 

Sc_SLN1                  ALVSIVALGSLIILAVTTGVYFTSNYK----NLRSDRLYIAAQLKSSQID--QTLNYLYYQAYYLASRDALQSSLTSYVAGNKSA 

At_CKI1_NM_130311.2      ASRPIVVFCVLAFLVVVFECIWISNWRTTTENLVKEVASFTEDLRTSLVSEIENIGKFTYAKTNLSTI-GLARVIDSYITNNDTG 

                         *  .**.:  * :*.*.    : **:.    ** .:   :: :*.:* :.  :.:. : *    *::  .*   : **::.*.:. 

 

Sc_SLN1                  DNWVDSLSVIQKFLSSSNLFYVAKVYDSSFNAVL----------------NATNNGTGDLIP-EDVLDSLF-PLSTDTPLPSSLE 

At_CKI1_NM_130311.2      FTEIQTQIAPLLFVAYSTILQVSQVSYISRDGLMFSYIAESNTSVAVFANSSSNSSRGDYTWYTQTVDQLTGRLNGNSTKSQSLD 

                          . :::  .   *:: *.:: *::*   * :.::                .::*.. **     :.:*.*   *. ::. ..**: 

 

Sc_SLN1                  TIGILTDPVLNSTDY---LMSMSLPIFANPSIILTDSRVY---GYITIIMSAEGLKSVFNDTTALEHSTIAIIS---AVYNSQGK 

At_CKI1_NM_130311.2      VTHTDWFQAAQSNNYTTAFVGTSLGGEDNETLIQSVVSLYSKKGLVSLGFPVKTLTEVLN-SLNLHGEELYMWTKDGTVLVREGS 

                         .       . :*.:*   ::. **    * ::* :   :*   * ::: :..: *..*:* :  *  . : : :   :*   :*. 

 

Sc_SLN1                  ASGYHFVFPPYGSRSDLPQKVFSIKNDTFISSAFRNGKGGSLKQTNILSTRNTALGYSPCSFNLVNWVAIVSQPESVFLSPATKL 

At_CKI1_NM_130311.2      LNDSFFI-----SNGSI---CFGRESNSLWSQCIPENCSSSGYEVEIKRLRYQAF----CSVIEVSGVPLRYTLMFPNKGGATRI 

                          .. .*:     *...:    *. :.::: *..: :. ..*  :.:*   *  *:    **.  *. *.:         . **.: 

 

Sc_SLN1                  AKIITGTVIAIGVFVILLTLPLAHW------ 

At_CKI1_NM_130311.2      KHQAEKAKYQLIVVMIFLGFGWPVWFVWFMM 

                          :    :   : *.:*:* :  . * 

 

 

CLUSTAL multiple sequence alignment by MUSCLE (3.8) of the amino acid sequences of the 

extracellular domain (ED) of Saccharomyces cerevisiae (Sc) SLN1 (SLN1-ED; aa25-356) and 

Arabidopsis thaliana (At) CKI1 (CKI1-ED; aa10-366). Predicted transmembrane domains (Dinkel et 

al., 2016; dark grey) were included in the alignment. Identical residues are highlighted with “*”. Highly 

conserved residues are designated with “:”, weakly conserved residues with “.”. 

 

A16: Amino acid sequence alignment of SLN1-ED and AHK1-ED  

At_AHK1         ---FVVRLAIMVMLAILIGLLTVLTWHFTRIYTKQSLQTL--AYGLRYELLQRPVLRMWSVLNTTSELTTAQVKLSEYVIKKYDKPTTQEELVE 

Sc_SLN1         ALVSIVALGSLIILAVTTGV------YFTSNYKNLRSDRLYIAAQLKSSQIDQTLNYLYYQAYYLASRDALQSSLTSYVAGN----KSADNWVD 

                    :* *. :::**:  *:      :**  *.:   : *  *  *. . ::..:  ::      :.  : * .*:.**  :    .: :: *:  

 

At_AHK1         MYQAMKDVTWALFASAKALNAITINYRNGFVQAFHRDPASSSTFYIFSDLKNYSISGTG---PEDVSGWNNKSIHGNMSAIWYQQQLDPVTGEN 

Sc_SLN1         SLSVIQK-----FLSSSNLFYVAKVYDSSF-----------------NAVLNATNNGTGDLIPEDV--------------------LDSLFPLS 

                  ..::.     * *:. *  ::  * ..*                 . : * : .***   ****                    **.:   . 

 

At_AHK1         LGKPLKIPPDDLINIAGISQVPDGEASWHVTVSKYMDSPLLSAALPVFDA-----SNKSIVAVVGVTTALYSVGQLMRDLVEVHGGHIYLTS-- 

Sc_SLN1         TDTPL---PSSLETI-GILTDP------VLNSTDY----LMSMSLPIFANPSIILTDSRVYGYITIIMSAEGLKSVFNDTTALEHSTIAIISAV 

                 ..**   *..* .* **   *       :. :.*    *:* :**:*       ::. : . : :  :  .: .::.* . :  . * : *     

 

At_AHK1         ------QEGYLLATSTDGPLLKNTSNGPQLMKATDSEEWVIKSGAQWLEKTYGSKRPHVVHAENVKLGDQRYYIDSFYLNLKRLPIVGVVIIPR 

Sc_SLN1         YNSQGKASGYHFVF----PPYGSRSDLPQKVFSIKNDTFI--SSAFRNGKGGSLKQTNILSTRNTALG---YSPCSFNL----VNWVAIVSQPE 

                       .** :.     *   . *: ** : : ..: ::  *.* .  *  . *..::: : *. **   *   ** *    :  *.:*  *. 

 

At_AHK1         KFIMGKVDERAFKTLIILISASVCIFFIGCVCILILT----- 

Sc_SLN1         SVFLSPATK-----LAKIITGTVIA--IGVFVILLTLPLAHW 

                .::. . :     *  :*:.:*    ** . **:       

 

CLUSTAL multiple sequence alignment by MUSCLE (3.8) of the amino acid sequences of the 

extracellular domain (ED) of Saccharomyces cerevisiae (Sc) SLN1 (SLN1-ED; aa25-356) and 

Arabidopsis thaliana (At) AHK1 (AHK1-ED; aa100-446). Predicted transmembrane domains (Dinkel 
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et al., 2016; dark grey) were included in the alignment. Identical residues are highlighted with “*”. 

Highly conserved residues are designated with “:”, weakly conserved residues with “.”. 

 

A17: Amino acid sequence alignment of AHK1-ED and CKI1-ED 

At_AHK1                  ---FVVRLAIMVMLAILIGLLTVLTWHFTRIYTKQSLQTLAYGLRYELLQRPVLRMWSVLNTTSELTTAQVKLSEY----VIKKY 

At_CKI1_NM_130311.2      ASRPIVVFCVLAFLVVVFECIWISNWRTTTENLVKEVASFTEDLRTSLV--------SEIENIGKFTYAKTNLSTIGLARVIDSY 

                             :* :.::.:*.:::  : : .*. *     :.: ::: .** .*:        * ::. .::* *:.:**      **..* 

 

At_AHK1                  DKPTTQEELVEMYQAMKDVTWALFASAKALNAITINYRNGFVQAFHRDPASSSTFYIFSDLKNYSISGTGPEDVSGWNNKSIHGN 

At_CKI1_NM_130311.2      -ITNNDTGFTEIQTQIAPLLFVAYSTILQVSQVSYISRDGLMFSYIAESNTSVAVFANS------------------SSNSSRGD 

                           ...:  :.*:   :  : :. :::   :. ::   *:*:: ::  :. :* :.:  *                  ..:* .*:  

 

At_AHK1                  MSAIWYQQQLDPVTGENLGKPLKIPPDDLINIAGISQVPDGEASW-HVTVSKYMDSPLLSAALPVFDASNKSIVAVVGVTT--AL 

At_CKI1_NM_130311.2      YT--WYTQTVDQLTGRLNGNSTKSQSLDVTH-----------TDWFQAAQSNNYTTAFVGTSLGG-EDNETLIQSVVSLYSKKGL 

                          :  ** * :* :**   *:. *  . *: :           :.* :.: *:   :.::.::*   : .:. * :**.: :  .* 

 

At_AHK1                  YSVGQLMRDLVEV------HGGHIYLTSQEGYLLATSTDGPLLKN--TSNGPQLMKATDSEEWVIKSGAQWLEKTYGSKRPHVVH 

At_CKI1_NM_130311.2      VSLGFPVKTLTEVLNSLNLHGEELYMWTKDGTVLV--REGSLNDSFFISNGSICFGRESNSLW-----SQCIPENCSSS------ 

                         *:*  :. *.**      **  :*: :::* :*.   :*.* ..    ***.  :   ... *     :* : :. .*.       

 

At_AHK1                  AENVKLGDQRYYIDSFYLNLKRLPIVGVVIIPRKFIMGKVDERAFKTLIILISASVCIFFIG----CVCILILT 

At_CKI1_NM_130311.2      GYEVEIKRLRYQAFCSVIEVSGVPLRYTLMFPNKGGATRIKHQAEKAKYQLI---VVMIFLGFGWPVWFVWFMM 

                         . :*::   **   .  :::. :*:  .:::*.*    .:. .* *:   **   * ::*:*       : :: 

 

 

CLUSTAL multiple sequence alignment by MUSCLE (3.8) of the amino acid sequences of the 

extracellular domain (ED) of Arabidopsis thaliana (At) AHK1 (AHK1-ED; aa100-446) and CKI1 (CKI1-

ED; aa10-366). Predicted transmembrane domains (Dinkel et al., 2016; dark grey) were included in 

the alignment. Identical residues are highlighted with “*”. Highly conserved residues are designated 

with “:”, weakly conserved residues with “.”. 

 

A18: Amino acid sequence alignment of AHK1-ED, SLN1-ED and CKI1-ED 

At_CKI1_NM_130311.2      ASRPIVVFCVLAFLVVVFECIWISNWRTTTENLVKEVASFTEDLRTSLVSEIENIGKFTYAKTNLSTIGLARV-IDSYITNN--- 

At_AHK1                  ---FVVRLAIMVMLAILIGLLTVLTWHFTRIYTKQSLQTLAYGLRYELLQ--RPVLRMWSVLNTTSELTTAQVKLSEYVIKKYDK 

Sc_SLN1                  ALVSIVALGSLIILAVTTGVYFTSNYK----NLRSDRLYIAAQLKSSQID--QTLNYLYYQAYYLASRDALQSSLTSYVAGN--- 

                             :* :  : :*.:        .:.       ..   ::  *. . :.    :  :    :     .  : .*:  :   

    

At_CKI1_NM_130311.2      ---DTGFTEIQTQIAPLLFVAYSTILQVSQVSYISRDGLMFSYIAESNTSVAVF----ANSSSNSSRGDY--------------- 

At_AHK1                  PTTQEELVEMYQAMKDVTWALFASAKALNAITINYRNGFVQAFHRDPASSSTFYIFSDLKNYSISGTG--PEDVSGWNNKSIHGN 

Sc_SLN1                  -KSADNWVDSLSVIQK-----FLSSSNLFYVAKVYDSSFNA-----------------VLNATNNGTGDL--------------- 

                                  .:    :       : :   :  :: ..:                      . : .. *    

 

At_CKI1_NM_130311.2      ---TWYTQTVDQLTGRLNGNSTKSQSLDVTHTDWFQAAQ---------SNNY-TTAFVGTSLGGEDNETLIQSVVSLYSKKGLVS 

At_AHK1                  MSAIWYQQQLDPVTGENLGKPLKIPPDDLINIAGISQVPDGEASWHVTVSKYMDSPLLSAALPVFDA-----SNKSIVAVVGVTT 

Sc_SLN1                  --------IPEDVLDSLFPLSTDTPLPSSLETIGILTDP------VLNSTDY----LMSMSLPIFANPSIILTDSRVYGYITIIM 

                                   : : .     . .    .      :              ..*    ::. :*          :   : .   :      

 

 

At_CKI1_NM_130311.2      LGFPVKTLTEVLNSLNLHGEELYMWT--------KDGTVLVR-----------------EGSLNDSFFISNGSICFGRESNSLWS 

At_AHK1                  ALYSVGQLMR--DLVEVHGGHIYLTS--------QEGYLLATSTDGPLLKNTSNGPQLMKATDSEEWVIKSGAQWLEKTYGSKRP 

Sc_SLN1                  SAEGLKSVFN--DTTALEHSTIAIISAVYNSQGKASGYHFVF----PPYGSRSDLPQKVFSIKNDTFI--SSAFRNGKGGSLKQT 

                             :  :    :   :    : : :         .*  :.                   .  .: :.  ..:    .  .  ..     

 

At_CKI1_NM_130311.2      QCIPENCSSSGYEVEIKRLRYQAFCSVIEVSGVPLRYTLMFPNKGGATRIKHQAEKAKYQLI---VVMIFLGFGWPVWFVWFMM 

At_AHK1                  HVVHAE------NVKLGDQRYYIDSFYLNLKRLPIVGVVIIPRKFIMGKVDERAFKTLIILISASVCIFFIG----CVCILILT 

Sc_SLN1                  NILSTR------NTALG----YSPCSFNLVNWVAIVSQ---PESVFLSPATKLAKIITGTVIAIGVFVILLTLPLAHW------ 

                         : :         :. :        .    :. :.:      * .         *      :*   * ::::   

 

CLUSTAL multiple sequence alignment by MUSCLE (3.8) of the amino acid sequences of the 

extracellular domain (ED) of Saccharomyces cerevisiae (Sc) SLN1 (SLN1-ED; aa25-356); 

Arabidopsis thaliana (At) AHK1 (AHK1-ED; aa100-446) and CKI1 (CKI1-ED; aa10-366). Predicted 

transmembrane domains (Dinkel et al., 2016; dark grey) were included in the alignment. Identical 

residues are highlighted with “*”. Highly conserved residues are designated with “:”, weakly conserved 

residues with “.”. 
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A19: Detection of AHK1-ED in protein extract from transformed Origami2 

(DE3) cells 

 

 

(A) Immune-detection and SDS-gel which was stained with Coomassie revealing abundance of 

AHK1-ED (black arrows) in Origami2 (DE3) cells which were transformed with pMH-Hssumo-AHK1-

ED 26h after induction of protein expression with 0.3M IPTG (ind.) and without IPTG-induction 

(unind.). Untransformed Origami2 (DE3) cells were used as control (ctrl). AHK1-ED was detected with 

the use of α-His-AP. (B) Comparison of samples which were heated (H) and not heated (NH) for 

10min to 95°C after the addition of Lyse and Load (LL)-buffer to the cells for protein extraction. Cells 

were lysed in the volume of LL-buffer which would have been needed to set OD600=4.0. 25µl of 

protein extract were loaded. SpectraTM Multicolor Broad Range Protein Ladder was used as size 

marker.  

 

A20: AHK1-ED and AHK1-ED-Leu298/422Ala expressed by gene cust 

 

 

Immune-detection and SDS-gel which was stained with Coomassie revealing abundance of AHK1-ED 

(A; ED) and AHK1-ED-Leu298/422Ala (B; ED-LA) which was expressed and purified by GeneCust. 

Bovine serum albumin (BSA) was used as quantity control. β-mercaptoethanol (β-ME) was used as 
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reducing agent for AHK1-ED-Leu298/422Ala. AHK1-ED and AHK1-ED-Leu298/422Ala were detected 

with the use of α-His-AP. SpectraTM Multicolor Broad Range Protein Ladder was used as size marker.  

 

A21: Root elongation of ahk1 knock down lines in different ecotypes during 

mannitol stress 

 

The ahk1 knock down alleles in the Nos-0 (A, D, G), Ws-2 (B, E, H) and Col-0 (C, F, I) ecotype were 

grown for four days on half strength MS salts at constant light conditions, were then transferred to 

sorbitol-supplemented media and grown for additional four days. The root elongation was analyzed 

with the method of Kumar et al. (2013) showing the total root elongation (D, E, F) and the method of 

Wohlbach et al. (2008) showing the mean percentage of root elongation based on a non-stressed 

control root (G, H, I). (A) gives the color code for (D) and (G), (B) gives the color code for (E) and (H), 

(C) gives the color code for (F) and (I). The labeling of the y-axis in (D) is also valid for the y-axes in 

(E) and (F) the labeling of the y-axis in (G) is also valid for the y-axes in (H) and (I). Shown are mean 

values and standard deviations of one experiment with at least 20 seedlings per line and treatment. 

Student‘s t-test was used to analyze statistical significance of differences. Stars above the bars 

display statistical significance in comparison to the respective wildtype. *p<0.05; **p<0.01; 

***p<0.001. Brackets around stars display that the significance has been shown in just one 

experiment. 
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A22: Immunodetection of protein expression for mating-based split-ubiquitin 

screens 
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The Cub-fusions were detected with the use of α-VP16 (rabbit) and α-rabbit-AP, the Nub-fusions were 

detected with α-HA (rat) and α-rat-AP. SpectraTM Multicolor Broad Range Protein Ladder was used 

as size marker. Black arrows highlight detected fusion proteins. Not detected proteins are marked with 

„n.d.“.  Untransformed THY.AP4 and THY.AP5 yeast strains were used as control. 

 

A23: Immunodetection of protein expression for yeast-two-hybrid screens 

 

The intracellular part (ICP) of AHK1 (AHK1-ICP) and the extracellular domain (ED) of AHK1 (AHK1-

ED) which were fused with the binding domain (BD) and the ten amino acid comprising c-myc-tag 

encoded in the respective vector pGBKT7 were detected with the antibodies α-c-myc (mouse) and α-

mouse-AP, the proteins  which were fused with the activating domain (AD) and the nine amino acid 

comprising HA-tag which was derived from the Human influenza hemagglutinin glycoprotein and 

which were encoded in the respective vector pGADT7 were detected with the antibodies α-HA (rat) 

and α-rat-AP. SpectraTM Multicolor Broad Range Protein Ladder was used as size marker. Black 

arrows highlight detected fusion proteins. Untransformed Saccharomyces cereviasiae pJ69-4A was 

used as control (ctrl).  
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A24: Gene ontology annotation for the molecular function of the quantified 

phosphopeptides 

 

 

Gene ontology annotation for the molecular function of the quantified phosphopeptides in ahk1-3 

(ahk1) and the wildtype (wt) Ws-2 after 10min treatment with 0.3M mannitol (ahk1.man; wt.man) or 

mock (ahk1; wt). ahk1.man/wt.man and ahk1/wt comprise phosphopeptides which were quantified in 

the experiment with and without metabolic labeling, ahk1.man/ahk1 and wt.man/wt comprise 

phosphopeptides which were quantified in the experiment without metabolic labeling. 
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A25: Mating-based split-ubiquitin assay to test the interaction of AHK1 with 

cytoskeleton-associated proteins, MKKK20 and IAA16 

 

The fusion constructs of AHK1 (A) and MKKK20 (B) with the carboxy terminal part of ubiquitin (Cub) 

including the tags for expression activation (LexA, VP16) in the pMetYC-Dest vector were 

transformed into the S. cerevisiae strain THY.AP4, fusion constructs of CKI1, ERH3 (AT1G80350), 

T914.6 (AT1G72250), LRR-RK (AT1G14390), MKKK20 and IAA16 with the  amino terminal part of 

ubiquitin (Nub) in the pXNubA22-Dest vector as well as the negative control NubG and the positive 

control NubWT were transformed into the S. cerevisiae strain THY. AP5. After the mating the 

interaction of the proteins was tested by dropping of the yeast on CSM minimal medium (CSM) and 

verified by dropping them on CSM supplemented with 50µM Met (CSM+M) whereas CSM-Ade+-His+ 

(CSM+A+H) served as growth control. The growth was recorded after 4d growth at 28°C (C). (D) The 

Cub-fusion proteins were detected with α-VP16 (rabbit) and α-rabbit-AP, the Nub-fusion proteins 

were detected with α-HA (rat) and α-rat-AP.  SpectraTM Multicolor Broad Range Protein Ladder was 

used as size marker. Black arrows highlight the detected protein. Not detected protein is marked with 

“n.d.“. Untransformed THY.AP4 and THY.AP5 were used as control.  
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A26: Yeast-two-hybrid screen to test the interaction of AHK1-ICP with 

cytoskeleton-associated proteins, MAP-kinases, IAA16 and WAK4 

 

The fusion construct of AHK1-ICP with the amino terminal DNA-binding domain in the pGBKT7-Dest 

vector as well as the empty vector as control were co-transformed into the Saccharomyces cerevisiae 

strain pJ69-4A together with the fusion constructs of the amino-terminal activation domain (AD) with 

AHK1-ICP (A; B; C), IAA16 (A; B; C), WAK4 (A; B; C), (A; B; AT1G04780), (A; B; AT1G80350), (A; B; 

AT1G72250), (A; B; AT5G20470), MKKK20 (C), MPK2 (C), MPK3 (C), MPK4 (C), MPK5 (C), MPK6 

(C), MPK7 (C), MPK11 (C), MPK17 (C). pGADT7-Dest was used as control. For the interaction test 

the respectively transformed yeast was plated on the auxotrophy medium CSM-Leu--Trp--Ade- (CSM-

L-T-A) as well as on the growth control medium CSM-Leu--Trp- (CSM-L-T) and grown for four days at 

28°C. The detection of expressed protein is shown in appendix A23. 
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A27: Root elongation of ahk1-3 and Ws-2 upon treatment with CaCl2, flg22, 

different hormones and inhibitors of hormone signal transduction or 

hormone biosynthesis 

 

The diagrams show the root elongation in four days of ahk1-3 (light grey, A) and its wildtype (dark 

grey, A) after the transfer of four day old seedlings to different concentrations of calcium chloride 

(CaCl2, B), different concentrations of the pathogen-associated molecular pattern flg22 (C) as well as 

to different hormones and respective inhibitors (D). Analysed was the root elongation upon treatment 

with indole-3-acetic acid (IAA), the auxin transport inhibitor 1-N-naphthylphthalamic acid (NPA), 

methyl-jasmonate (MeJA), salicylic acid (SA), abscissic acid (ABA), giberellic acid 3 (GA3), 1-

aminocyclopropane-1-carboxylic acid (ACC), the inhibitor of ethylene signal transduction silver nitrate 

(AgNO3) and kinetin (CK). The root elongation was measured using ImageJ. Shown are mean values 

and standard deviation of one experiment with at least 20 (B, C) or ten (D) seedlings per line and 

treatment. Student‘s t-test was used to calculate statistical significance. Stars above the bars display 

statistical significance in comparison to the respective wildtype: *p<0.05; ***p<0.001. Brackets around 

stars display that the significance has been shown in just one experiment. 
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A28: Localization of RFP-IAA16 without transient co-expression with AHK1-

GFP 

 

Transient expression of IAA16 under the control of the CaMV 35S-promoter and tagged with a N-

terminal RFP (RFP-IAA16, red) in N. benthamiana reveals in confokal microscopy that RFP-IAA16 

localizes to the nucleus in general and during osmotic stress applied with 0.8M mannitol. The scale is 

50µm. 

 

A29: Skewing of Ws-2, ahk1-3 and ahk1-4 in the halotropism assay performed 

by Dorota Kawa 

 

Ws-2 (left), ahk1-3 (middle) and ahk1-4 

(right) were exposed to a diagonal 

gradient of NaCl (bottom panel) and a 

control (upper panel). Pictures were 

taken five days after establishing the 

gradient. The scale is 1cm.  

 

 

A30: Number of lateral roots upon mannitol treatment 

 

Mean values and standard deviations of lateral 

root number in twelve day old seedlings after 

eight days growth on mannitol-supplemented 

media. At least 19 seedlings per line and 

treatment were analyzed. Data were averaged 

between three replicates. Student‘s t-test was 

used to determine statistical significance. 

*p<0.05; **p<0.01. 
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A31: Phosphoproteomic study of short-term kinetin treatment of Col-0 and 

ahk2 ahk3 
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The additional supplemental data of this publication can be found on the attached CD. 

Supplemental table 1: ahk2 ahk3 regulated phosphopeptides and ORA 

Supplemental table 2: ahk2 ahk3 quantified phosphopeptides 

Supplemental table 3: overlap of phosphopeptides between mock- and kinetin-treatment 

 

A32: My contribution to the publication Dautel et al. (2016) 

My contribution to the publiclation Dautel et al. (2016) with the title “The Sensor Histidine Kinases 

AHK2 and AHK3 Proceed into Multiple Serine/Threonine/Tyrosine Phosphorylation Pathways in 

Arabidopsis thaliana.” was to produce the growth media and to cultivate the ahk2 ahk3 and Col-0 

seedlings to obtain the samples for protein extraction, phosphoprotein enrichment and phosphoprotein 

quantification. Furthermore I participated in the generation of the figures. 
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A33: Phosphopeptides which were quantified in ahk1-3 and Ws-2 in an 

experiment with a reciprocal metabolic labeling experimental design 

and 10min treatment with 0.3M mannitol 

Phosphopeptides (pPeptides) which were quantified in ahk1-3 (ahk1) and the wildtype (wt) Ws-2 in an 

experiment with metabolic labeling after 10min treatment with 0.3M mannitol, are listed in the tables of 

their respective functional category. The log2-values of the ratio of normalized phosphopeptide ion 

intensities of ahk1-3 and Ws-2 (log2(ahk1/wt)) reveal more pPeptide abundance in ahk1-3 (log2>0) or 

in wt (log2<0). sd gives the standard deviation, p-values show the respective statistical significance. 

Data were obtained from Waltraud X. Schulze. 

 

cell.organisation 
   replicate 1 replicate 2 

accession  pPeptide log2(ahk1/wt) sd p-value log2(ahk1/wt) sd p-value 

AT1G04780  (ac)M(ox)ASS(ph)TIDVTK 10.00   10.00 0.3299  

AT1G08730  RS(s)(s)ATLFGRMSQSFR 4.21 0.5500  2.91   

AT1G08730  DGLAKT(ph)VYSR -43.13      

AT1G14500  M(ox)FVT(ph)FVK 2.12      

AT1G18370  LLDDPEKGT(ph)VVEK 2.32      

AT1G18550  LESLNAS(ph)VS(ph)R 3.88      

AT1G20060  T(ph)FTKVTTTTK -20.21      

AT1G24150  VLAQS(ph)EGDNK 29.50      

AT1G29170  NELPSM(ox)VT(ph)S(ph)APKPEIK 28.99      

AT1G42550  TSFSVPSPKMT(ph)S(ph)R -23.68 0.0932     

AT1G72250  T(ph)LQDKVKELESQLLVER 2.43 0.1200  1.93 0.8203  

AT1G77550  AVFEAAALAHPEM(ox)QS(ph)PK       

AT1G80260  S(ph)RVNSFGIDCLESLK 26.44      

AT1G80350  GGATSKS(ph)TAGAR -41.61      

AT2G22610  DEQS(ph)QEAVLLRQKIK -20.38      

AT2G34730  KTEEKLS(ph)ETK -21.13      

AT2G37080  S(ph)EM(ox)ETM(ox)QSEKNK 7.14 0.2980     

AT2G37420  TAMIS(ph)DASSNIR -19.88      

AT3G44730  ELEEVKS(ph)NFVETR 11.95      

AT4G03830  AAS(ph)VDLLPISK 5.54   4.32 0.0727  

AT4G05190  ENIES(ph)LQEKLS(ph)KEK -21.50      

AT4G16340  EKLSEDFY(ph)FQIQPTEM(ox)QDAK 31.01 0.0313     

AT4G19660  EAFLHFLS(ph)Y(ph)IY(ph)T(ph)GR    0.28   

AT4G25590  M(ox)KMVYAS(ph)SK -19.65      

AT4G27370  FRNAIS(ph)LESKT(ph)IEK -21.83      

AT4G34380  SSSSPHEGS(ph)GAWSSRNVEK -21.28      

AT4G39050  MLAGEIAFS(t)(s)TLK 29.04      

AT5G10470  Y(ph)LGVLAEKSR -20.36 0.0783     

AT5G12320  RLILAGASLS(ph)LLNR 0.88      

AT5G20470  FNEY(ph)LNM(ox)S(ph)LK 2.07   1.83   

AT5G41310  ATSMS(ph)LK 2.44      

AT5G48460  MNATY(ph)VISIAR -9.71      

 

cell.vesicle transport 
   replicate 1 replicate 2 

accession  pPeptide log2(ahk1/wt) sd p-value log2(ahk1/wt) sd p-value 

AT1G04750  IELLVDKT(ph)ENLR -22.04      

AT1G56610  VFS(ph)QATLVTLK -0.73      

AT2G28640  AHNLVT(ph)IAM(ox)K 28.40      

AT2G28650  RS(ph)VGM(ox)M(ox)IIPR 0.25      

AT3G08790  FKKPT(ph)SGRAGSM -2.30      

AT3G11820  (ac)M(ox)NDLFS(ph)SSFSRFR    1.95   

AT3G29400  S(ph)GKSLTKNAK -1.37 0.8000  -3.99  5.99E-02 

AT3G49420  (ac)M(ox)M(ox)S(ph)FEMNDR    -0.76   

AT3G55480  ASAGLLRIGTDAHLYDDPEDVNIAPLLDS(ph)KFESEK -22.62      

AT4G23460  M(ox)ERGTFLET(ph)WK -22.12 0.1661     

AT5G03540  (ac)AVDS(ph)RM(ox)DLLSER -0.13 0.4326 8.69E-02 -1.37 0.3808 8.69E-02 

AT5G16880  LKIGGS(ph)EVSNK 11.16      

AT5G50440  M(ox)LEDSFQSGVAILS(ph)K -0.59   0.18 0.2595 2.96E-01 

         

development. 
   replicate 1 replicate 2 

accession  pPeptide log2(ahk1/wt) sd p-value log2(ahk1/wt) sd p-value 

AT1G30610  PS(ph)PVTYGLIM(ox)EVM(ox)LACEK -10.00   -10.00   

AT1G32400  109.94 AANTPAEYDS(ph)DDEYLAPR b10/y9 . -21.59 0.2287     

AT1G55540  PPMPQSNS(ph)PFTISPIS(ph)AS(ph)K -10.00   -10.00 0.8452  

AT1G72410  RSSIVSDM(ox)S(ph)T(ph)DLASEKK       

AT2G18060  PSS(ph)S(ph)M(ox)S(ph)IT(ph)SMDNNYNYK    -0.33 0.3163  

AT2G19430  T(ph)GKCVKVIGSQDK 0.94      

AT2G32950  M(ox)EEI(s)(t)DPVVPAVKPDPR 4.18      

AT2G41980  NLALY(ph)FS(ph)GSDKEELK 2.98 0.4500  -0.97   

AT2G42200  RRKPQPAS(ph)LS(ph)VLASR 2.02      

AT3G05680  LAVGT(ph)LMGPQK -20.96      

AT3G09090  IT(ph)QSQIY(ph)DRPGK -24.31   0.08   

AT3G12850  NDLESAT(ph)DELEK -0.80      

AT3G19430  VVPIT(ph)M(ox)EDSRIHGY(ph)DVK    -10.00   

AT3G61190  M(ox)M(ox)T(ph)KTLEIDLR -20.73      

AT4G00060  KPTPEAKSDKNVNLS(ph)T(ph)K 0.14      

AT4G01450  LPTNT(ph)VEEEK 0.93 0.0600  1.35   
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   replicate 1 replicate 2 

accession  pPeptide log2(ahk1/wt) sd p-value log2(ahk1/wt) sd p-value 

AT4G13560  AADLT(ph)QS(ph)ARDKT(ph)ADGSHSANK -3.24      

AT4G26370  PT(ph)NLVS(ph)LRT(ph)GNK 10.00   10.00   

AT5G12130  FIPVT(ph)SSYDGNR -20.50      

AT5G14120  REDQEPGLQT(ph)PDLILS(ph)EVEDEKPK       

AT5G16780  T(ph)DEFGRT(ph)LTPK -0.05      

AT5G59460  REISS(ph)TLR -20.29      

AT5G60910  NFMGEDLDS(ph)LSLK 1.26 0.2010 2.16E-01 -0.18 0.6382  

 

protein.degradation 
   replicate 1 replicate 2 

accession  pPeptide log2(ahk1/wt) sd p-value log2(ahk1/wt) sd p-value 

AT1G02980  QAT(ph)EAATDKAASTSGLK -20.45      

AT1G04730  EPHVRQS(ph)ESSDIKGCK -27.21      

AT1G07200  M(ox)EDLT(ph)ASVT(ph)NR -21.20   0.99   

AT1G11750  (ac)M(ox)AGLAISPPLGLSFS(ph)S(ph)RTR    -0.28 1.1657  

AT1G16470  (ac)M(ox)GDSQYSFSLTTFS(ph)PS(ph)GK    0.79 0.3415  

AT1G19460  LGLS(ph)ET(ph)FLY(ph)AAIR    -1.42   

AT1G23260  (ac)M(ox)S(ph)S(ph)EEAKVVVPR    -10.00   

AT1G45000  LIVKAS(ph)SGPR 10.23      

AT1G47350  SART(ph)ENGEILSLARK -21.62      

AT1G49630  GLKLLSAAS(ph)R 28.51      

AT1G50980  ILS(ph)LLPS(ph)KDVVAT(ph)GVLS(ph)K       

AT1G51320  QYKM(ox)LDY(ph)YK 60.57      

AT1G65040  M(ox)ILAT(ph)T(ph)T(ph)VSIIVK    10.00   

AT1G65110  NIS(ph)DDIVLKSIDLLK 28.19      

AT1G70960  (ac)M(ox)VNTS(ph)FETLPR    2.75   

AT1G74370  EGFISKGEEAAT(ph)KPRR 2.31   -2.90   

AT1G75400  QVS(ph)DSQILGLK 0.37      

AT1G77650  WTTRGLDRY(ph)NK -44.88      

AT2G07240  RPRTLS(ph)SKLDGR 4.03   0.60   

AT2G18190  VM(ox)NS(ph)YLSHVVAESEETK -0.68      

AT2G18915  EFT(ph)THEATAWRK -23.22      

AT2G21500  S(ph)PKEIHSPSSLR -20.57      

AT2G24280  NIS(s)(s)IVALVT(ph)KK -19.44      

AT2G24540  LPM(ox)VLAKY(ph)DSAVIGK -0.25   0.90   

AT2G29860  EPVLYAFIGCT(ph)PYTTPRWFILR -2.48      

AT2G39720  ENFVLKS(ph)SAR 10.00   10.00   

AT2G42730  NLM(ox)MLPRAS(ph)SKY(ph)R -22.54      

AT2G43260  KLS(ph)PPPYVVNVGSK -21.73      

AT2G44130  FPDT(ph)SPR 1.53      

AT2G45920  Y(ph)SM(ox)RM(ox)ADLLSTK 0.26      

AT3G12775  EKEGVS(ph)FFVR 0.31      

AT3G16550  (ac)VSRYSRALLPT(ph)IT(ph)IS(ph)SR    -0.63   

AT3G17270  S(ph)LNT(ph)MY(ph)AKLK 10.00   10.00   

AT3G22700  S(ph)ARTWY(ph)TLSER -0.97      

AT3G27110  RS(ph)VS(ph)YIGFGAEKVGR -20.83      

AT3G27330  S(ph)T(ph)IS(ph)FST(ph)AVTAR    -10.00   

AT3G28510  NYLAS(ph)KSTALAKR -3.51      

AT3G28580  LKANTTKGS(ph)K 29.33      

AT3G28600  LTFHRRS(ph)R -20.76      

AT3G42550  DT(ph)S(ph)ILLSALY(ph)YTTVQIGTPPR -20.47      

AT3G49150  RM(ox)VIKQCS(ph)FVNT -19.48      

AT3G53970  LVT(ph)DLQS(ph)EIIDK -23.23      

AT3G60820  M(ox)S(ph)TGYSILSR 0.20      

AT4G02760  SLKLGSISSSAEPTTS(ph)LLT(ph)R 30.12      

AT4G05475  M(ox)ATSTT(ph)LQSLLMK -21.31      

AT4G09920  NYDRHPY(ph)MIENMPK -1.41      

AT4G17510  AT(ph)ASESSSSKR 10.48      

AT4G17740  FSYARS(ph)RSNISR       

AT4G20310  T(ph)SNGS(ph)LYLGGS(ph)RR 10.00   10.00   

AT4G22060  QIFET(ph)QVNYDILM(ox)EK 7.55      

AT4G23580  SLLASTELYQT(ph)R 5.04      

AT4G26350  WGS(ph)LWRWVPK -1.17      

AT4G36550  HS(ph)IIILKNLCS(ph)TEKGR -23.51      

AT5G02310  IENM(ox)INQS(ph)LTR -21.47      

AT5G02880  VLDLPLS(ph)K 2.64      

AT5G05740  GNLRGKPATSY(ph)EK 29.49      

AT5G06460  ENIIAS(ph)AS(ph)SPM(ox)KK -0.01 0.0500  0.10   

AT5G17760  IS(ph)KGHKDK -21.63      

AT5G22010  ST(s)(s)KAGPVKNAAETAPIK -22.39      

AT5G22660  Y(ph)FLENSLVLK 1.51      

AT5G22980  MFY(ph)FFFESRNK 0.20      

AT5G38396  NVQCLDLS(ph)ANTLEMLSLSCES(ph)MPVFK -21.92      

AT5G41490  (ac)MAT(ph)MITNLR    -1.81   

AT5G43060  VVTIDSYEDVPENSEASLK -21.63      

AT5G43060  VVT(ph)IDSYEDVPENSEASLKK -11.30      

AT5G45390  MGTLSLSSSLKPS(ph)LVS(ph)S(ph)R -40.76      

AT5G46210  LRAGNKGT(ph)S(ph)EEELESVLEK 10.56      

AT5G46740  RFT(ph)NDGVTMEK -22.37      

AT5G56430  LIPT(ph)LDY(ph)DGTY(ph)S(ph)AAALEFFGK    2.32   

AT5G56560  LSS(ph)VKLS(ph)VASLLK 5.33      

AT5G57820  AKDDEKTLNM(ox)DS(ph)K -3.02   1.39   

 

protein.posttranslational modification 
   replicate 1 replicate 2 

accession  pPeptide log2(ahk1/wt) sd p-value log2(ahk1/wt) sd p-value 

AT1G03590  LLS(ph)LLNSIKSK 1.06      

AT1G43900  SSLM(ox)ISSRDPNALFS(ph)GGGIS(ph)FLAGVR -21.32      

AT1G61610  TGDLVLCS(ph)DSDR 0.42      

AT1G66700  DKM(ox)T(ph)KAIS(ph)ANLDLDLISNR -0.27 0.0185     

AT1G71530  S(ph)ILQLLPHHPPS(ph)S(ph)SSSSK -13.66   -10.00   

AT2G23080  AAE(s)(s)RLRTQ -23.56      

AT2G25880  (ac)M(ox)GIS(ph)TETQQIAASEAAQKR 1.33   -0.93 0.6411 5.48E-02 

AT2G30020  LRFQKPPS(ph)GFAPGPLS(ph)FGS(ph)ES(ph)VSASSPPGGVLK 29.66   6.99   

AT3G50310  DEDKVLMS(ph)PK 2.84      

AT3G51370  SIGDVY(ph)LKK 28.46      

AT3G53640  RSYS(ph)PSDEVVK 28.93      
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   replicate 1 replicate 2 

accession  pPeptide log2(ahk1/wt) sd p-value log2(ahk1/wt) sd p-value 

AT3G53930  NVTNLTAPMPIASAT(ph)GNNLSR -22.37      

AT3G59110  NSGKMMSY(ph)LGRTK 1.57      

AT4G02710  S(ph)QT(ph)IVLLNESIK -4.19 0.2133  -3.90  1.07E-01 

AT4G24100  EM(ox)VAMCLVKDQT(ph)K -0.21 0.2998     

AT5G21222  QKHFHSLLS(ph)LISK -23.26      

AT5G25510  TAVLVT(ph)PR -40.84      

AT5G26751  DST(ph)GVDKLPEEM(ox)NDMK 0.20 0.0200  -0.57   

AT5G35380  FKAADV(s)(s)TVM(ox)K 0.34      

AT5G35960  (ac)M(ox)LKCVS(ph)VQIQTSFVLS(ph)CLLLLQSIAMK    10.00   

AT5G39420  VS(ph)DLPM(ox)T(ph)TGPASGFAWAVK -2.18 1.3900  -3.90   

AT5G53140  QT(ph)DVAFLESEK 0.53      

AT5G57610  IFLFS(ph)T(ph)PEQDGSLHY(ph)VER -2.68 0.1094     

AT5G57670  Y(ph)DDQQM(ox)NK 0.13  3.11E-01 -0.11   

AT5G59270  DTLMDVVDS(ph)KLGDFKAK 6.96      

AT5G63370  M(ox)KEDRFEEEYGFPLT(ph)S(ph)LR -19.33      

AT5G65530  LT(ph)RHAKEVEER 1.69      

 

RNA.regulation of transcription 
   replicate 1 replicate 2 

accession  pPeptide log2(ahk1/wt) sd p-value log2(ahk1/wt) sd p-value 

AT1G01060  DTNT(ph)SGEELLAK 0.75      

AT1G20900  RPRGRPPGS(ph)KNK -19.58      

AT1G21000  GDLSLTFS(ph)LK 1.65   0.14   

AT1G22985  KQDS(ph)DASGGASEEVV 0.11      

AT1G26680  S(ph)Y(ph)FVGS(ph)VTASSIKKDK -5.60      

AT1G28420  AELS(ph)EKLDLSDR -21.90      

AT1G34410  LFGVT(ph)LDTPPM(ox)IK 4.23   3.12   

AT1G49190  S(ph)DRLDQVK -20.44      

AT1G49900  RNQDEVVPS(ph)RDK -20.82   -0.37   

AT1G58025  VKLKT(ph)S(ph)K 0.79      

AT1G59890  DRNS(ph)TFPGMHPK -23.01      

AT1G61980  ETLLDKSS(ph)KSEK 0.31      

AT1G62110  YS(ph)VILHGRR 10.69      

AT1G63470  S(ph)KDS(ph)SSM(ox)SDPNAPK -11.47      

AT1G72440  FVTALDES(ph)SK 2.20      

AT1G73360  FAS(ph)LSVPASSSR 1.22      

AT1G77800  ESLLKM(ox)AVS(ph)GPPS(ph)EKR    -2.03   

AT1G79430  GLT(ph)LYHLKSHLQK -21.60      

AT1G79700  Y(ph)LNPNAAADK -0.28      

AT2G03710  ARSM(ox)LDQLS(ph)DLKTK -43.95   -0.80   

AT2G20710  FFET(ph)IPM(ox)ERR    10.00   

AT2G23340  (ac)MET(ph)EAAVTATVTAATM(ox)GIGT(ph)R    -0.37   

AT2G23380  TTPTKF(s)(s)K 1.30      

AT2G26780  Y(ph)PKFIEMLEY(ph)ILK 2.18 0.1300  -0.10   

AT2G26780  T(ph)DTEEDSRTTTRETITGK 0.46      

AT2G28090  MDKEKETVT(ph)VM(ox)GT(ph)MDIK -20.28      

AT2G28500  TDAVNS(ph)M(ox)VYEAGAR 0.60      

AT2G28700  KFEM(ox)LPET(ph)QK 0.04      

AT2G36720  LSDS(ph)S(ph)LGIIQTKQER 1.43      

AT2G38950  GPGYTLKSFKNFADT(ph)Y(ph)K 0.51      

AT2G44730  Y(ph)TASPSAGVSSNPR -21.37 0.3879     

AT2G45660  IENATSRQVT(ph)FSK 4.63      

AT2G46020  VAST(ph)S(ph)KLHVSS(ph)PKS(ph)GR 0.40 0.1737  -0.14 0.8169  

AT3G04730  TYQDLSNALS(ph)K -21.57   -8.31   

AT3G05380  S(ph)SETTHK -10.00   -10.00   

AT3G10800  TFNGNTNKPT(ph)SSSSMVVSVLLDPR 29.52      

AT3G18960  MVTTQNT(ph)KAR 10.00   10.00   

AT3G21480  KLS(ph)PEEERGFS(ph)PGGVVTR 12.51      

AT3G21810  FDERRDY(ph)AGGLK -0.85 0.1210     

AT3G24050  KKT(ph)M(ox)T(ph)VAAAALIM(ox)GR -22.40      

AT3G24140  SLM(ox)PGSY(ph)VQR 1.31      

AT3G24490  VEKS(ph)GLGSSK 2.07 0.3517     

AT3G27720  KCEDES(ph)ETVNWMTVNTK 11.34      

AT3G46080  S(ph)FLPETTTVTTLK 1.72      

AT3G47500  S(ph)PEKVT(ph)PELS(ph)DK 1.01   -0.43 1.1176 3.49E-01 

AT3G48050  LWWLT(ph)DQDYIDDRQLEVDK -0.72      

AT3G52250  EEDILPIPS(ph)MK -0.69 0.1000  0.37 0.0612  

AT3G52270  Y(ph)MGKNRQIQVIDNAR 0.27      

AT3G53460  MS(ph)ASASSLSAFNPK 0.07      

AT3G55080  M(ox)LFCIS(ph)TVK -2.19      

AT3G56330  SEVQIERNLEFETGET(ph)FFRHES(ph)AR -20.27      

AT4G08990  T(ph)FQLTM(ox)ASLLEIGY(ph)QVR 28.67      

AT4G11060  IRMIKY(ph)GES(ph)ISK 0.71      

AT4G11140  SPVS(ph)VLESPFSGESTAVK -19.20      

AT4G12040  LCDNGCGFFGS(ph)PS(ph)NM(ox)NLCSK -1.28      

AT4G13980  TTLKSQELNFNS(ph)IE(t)(s)ASEK -21.26      

AT4G13980  LLNFLET(ph)AIR 6.33      

AT4G22745  KSRSENSSVASSGS(ph)K 1.78      

AT4G31610  KT(ph)PSPFLIVK -20.50      

AT4G31800  QSPEIEQT(ph)DIPIKK 2.89      

AT4G38000  IKT(ph)T(ph)AKPPR 60.31      

AT4G39870  (ac)M(ox)GKHKS(ph)FR 0.63   0.39 0.4095 5.82E-01 

AT5G04340  SFAT(ph)GQALGGHK 0.00      

AT5G06550  M(ox)PKCKNLLL(t)(s)K -20.79      

AT5G07350  IGIWQYGDIESDDEDTGPAR -0.95 0.2209     

AT5G09790  M(ox)KS(ph)MAEIM(ox)AK -10.00   -10.00   

AT5G11430  T(ph)ALKDEAAKADNEK 3.20      

AT5G16680  RQRS(ph)S(ph)LLAGAK -22.38      

AT5G18560  HT(ph)LPQTVLPAASFK -0.09      

AT5G19490  IAM(ox)AVPLLVS(ph)K -1.50      

AT5G22260  LKT(ph)FGESGHPAEM(ox)NELSFR -2.56      

AT5G22650  KKGGHT(ph)AT(ph)PHPAK 0.04 0.3028  0.09   

AT5G23150  S(ph)AS(ph)VGERLTVVSK -21.27      

AT5G23150  TTSPVS(ph)ESLEHSSFDPKIK 29.42      

AT5G36670  SEVKVES(ph)KDDR -20.84   -3.89   

AT5G51230  M(ox)PGIPLVS(ph)R 5.03      

AT5G52170  KLT(ph)LESKQIK -20.27      

AT5G58850  T(ph)KISIE(t)R(s)DNK -24.55      
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   replicate 1 replicate 2 

accession  pPeptide log2(ahk1/wt) sd p-value log2(ahk1/wt) sd p-value 

AT5G59800  FRS(ph)LVSVER -4.74      

AT5G60170  IDSSINT(ph)DKK 5.04      

AT5G60200  KPS(ph)PAT(ph)AVTR    10.00   

AT5G65210  ALSSSWAT(ph)RHREPT 3.24      

 

signaling. 
(Ca) calcium; (G) G-proteins; (S) sugar and nutrients; (L) light; (M) MAP kinases; (PI) phoshpoinositides; (RK) receptor kinases; (U) unspecified 

   replicate 1 replicate 2 

accession category pPeptide log2(ahk1/wt) sd p-value log2(ahk1/wt) sd p-value 

AT1G04830 (G) S(ph)RITDEDHPLSLGK 10.60      

AT1G07150 (M) M(ox)LS(ph)S(ph)PSSFWVR   2.36E-01 -1.21  1.99E-01 

AT1G09630 (G) AFQTILS(ph)EVY(ph)RIIS(ph)KK    -10.00   

AT1G09630 (G) ARRPDEEY(ph)DYLFK -0.69      

AT1G10240 (L) MCQS(ph)IKEKDPNFK 4.64      

AT1G14390 (RK) NS(ph)TQNLAQQMEVLSKLR 29.91   3.90   

AT1G18840 (Ca) LQGS(ph)SSPRQLGTT(ph)EK -0.52 0.5668     

AT1G19090 (RK) LLGFLRAM(ox)S(ph)SVNDFITNDK 10.99      

AT1G21210 (RK) HIVSYFASAT(ph)K 0.99   2.39 0.1804 1.07E-01 

AT1G21230 (RK) IMGEERPS(ph)M(ox)K 2.76 0.1000 8.84E-02 3.91 0.1911 4.52E-02 

AT1G23540 (RK) MVQVVRALDCDGDS(ph)GDISNGIK -22.42      

AT1G29020 (Ca) DKAKIT(ph)SDTFSEIYK 11.16      

AT1G51820 (RK) YLFRGY(ph)ISNSSTRIR -44.44      

AT1G53430 (RK) RLGPIPEY(ph)IGS(ph)MS(ph)ELK -2.95 0.0867     

AT1G53510 (M) FS(ph)KADPLALR -1.66      

AT1G56330 (G) Y(ph)HLGLT(ph)NFT(ph)TGK -2.91 3.3600  -3.98  6.69E-02 

AT1G64460 (PI) T(ph)LRIST(ph)M(ox)LLKK -0.87 0.2140 4.16E-01 -0.03 0.6050 4.17E-01 

AT2G03150 (G) GGKDES(ph)RIQVK -21.10 0.2600     

AT2G17930 (PI) M(ox)LDAGKS(ph)LCSLLK -22.01      

AT2G19190 (RK) 
GQIDPAFS(ph)NLT(ph)SIRKLDLSGNTLTGEIPAFLANLPNLTELNVE

GNK 
12.97      

AT2G26420 (PI) FDLKGS(ph)SHGRTIDK 0.30 0.0700  -1.99   

AT2G28960 (RK) MGIT(ph)PENASLPLR -14.56      

AT2G39280 (G) PSLQAIEDLMS(ph)VR    0.20   

AT2G40116 (PI) ETLKVKVY(ph)MGDGWR -23.62      

AT2G41560 (Ca) M(ox)VT(ph)GDNISTAK 11.04      

AT2G43130 (G) (ac)SDDDERGEEYLFK    10.00   

AT3G02880 (RK) LIEEVSHSSGSPNPVSD    -1.57 0.1083 1.56E-02 

AT3G05990 (RK) ELS(ph)VTPAGAVIFASR -0.31 0.0500 3.84E-01 0.09   

AT3G13460 (Ca) QVS(ph)EEKVT(ph)DEKK 28.91      

AT3G19320 (RK) S(ph)FFYLPCGKDPHR 4.76      

AT3G21180 (Ca) M(ox)STSS(ph)S(ph)NGLLLTSM(ox)SGR    -10.00 0.0809  

AT3G45780 (L) (ac)M(ox)EPTEKPSTKPS(ph)SR 1.69   0.03 0.4140 3.16E-01 

AT3G46270 (RK) TKYY(ph)YENYDDK 10.00   10.00   

AT3G50840 (L) VY(ph)DDGLY(ph)RAVDIYFK 10.89      

AT3G51830 (PI) VSTIYGVGGT(ph)IR -22.67      

AT3G55660 (G) T(ph)PTKIDDFGFKR -20.12      

AT3G57830 (RK) Y(ph)VHGNLKSTK -20.22      

AT3G57830 (RK) KL(s)(s)T(ph)VSTPEK 28.76      

AT3G63150 (G) (m)(m)LGGKS(ph)SAGGR 1.42      

AT4G11110 (L) ARNMDQQT(ph)VAS(ph)SGSALVIANTSAK 0.50      

AT4G14750 (Ca) M(ox)QRSSSQLGS(ph)NTAK 1.01      

AT4G17160 (G) Y(ph)IIIGDTGVGK 1.29      

AT4G23270 (RK) KIDLNAS(ph)QSLYGMVR -2.58   -3.91   

AT4G23280 (RK) PTM(ox)SAIVQM(ox)LT(ph)T(ph)SS(ph)IALAVPR    0.02   

AT4G33240 (PI) EY(ph)KQMLNVVK 1.96   2.80   

AT4G35310 (Ca) EM(ox)FQAMDTDNSGAIT(ph)FDELKAGLR -21.00 0.1092     

AT4G36945 (PI) SESSS(ph)LDTMSR -21.69      

AT4G38200 (G) S(ph)SSAEIRELIVR 28.05      

AT4G38430 (G) FPGLPQT(ph)TLDMNK -22.51      

AT5G05160 (RK) AVLEDT(ph)TAVVVK 2.13 0.2016     

AT5G05940 (G) FPSLTQTS(ph)LDISK 1.92      

AT5G05940 (G) M(ox)ENLVKS(ph)CAGIEK 37.18      

AT5G06740 (RK) DIAVKRVS(ph)EK 30.48      

AT5G10530 (RK) GY(ph)LNSLDMMVAIK 0.61      

AT5G16900 (RK) RIT(ph)YSEILLM(ox)TNNFER 25.34      

AT5G17470 (Ca) QT(ph)IAECIAM(ox)VR 1.22      

AT5G17580 (L) LY(ph)EPFM(ox)IRAIKS(ph)R -0.38      

AT5G39030 (RK) ASIPES(ph)KSLIK 4.37      

AT5G39380 (Ca) SLDDNLNETLKPGS(ph)S(ph)KM(ox)KK -22.27      

AT5G39380 (Ca) GTVS(ph)SRVASKK 4.76      

AT5G43310 (L) ET(ph)RVSLDTQNKSVSQTR 11.63 0.6031  4.34   

AT5G43310 (L) LS(ph)EPKMGNT(ph)SAPSSSVRPRR -1.86      

AT5G46330 (RK) M(ox)NLT(ph)FISIGR -19.63      

AT5G48380 (RK) LK(t)F(s)V(s)DNRLVGPIPNFNQTLQFK -47.46 0.2185 5.48E-02 -14.91   

AT5G48410 (S) FNGLS(ph)GDFQLNDK -22.91   3.19   

AT5G54590 (RK) CIS(ph)RAPR -19.76   -10.00   

 

stress. 
(U) unspecified; (a) abiotic; (b) biotic 

   replicate 1 replicate 2 

accession category pPeptide log2(ahk1/wt) sd p-value log2(ahk1/wt) sd p-value 

AT1G21610 (a) M(ox)EPS(ph)TTSNQQPKK 7.30   -3.89   

AT1G33870 (b) M(ox)T(ph)QLLER -21.69      

AT1G33880 (b) GTS(ph)VSKPVK -3.45      

AT1G58390 (b) MVCS(ph)GGGFPQLKK 6.25      

AT1G62320 (a) LM(ox)KS(ph)LIQGFLPGIVLK -1.71  3.16E-01 -12.70   

AT1G63730 (b) M(ox)VET(ph)IARDVSNK 0.62      

AT1G68300 (a) NAGLNRLDEGT(ph)K -21.04      

AT1G77310 (a) KSGSNGRPKYS(ph)TLEK -26.13      

AT3G02840 (b) NQLIS(ph)GDISVVETK -22.12      

AT3G23010 (b) IM(ox)DTFPFWLGS(ph)LPY(ph)LK 10.00   10.00   

AT3G44630 (b) LETLPT(ph)NINLIS(ph)LR -19.92      

AT4G02100 (a) S(ph)ESIAHVLSHIK 28.88   10.00   

AT4G08685 (a) CS(ph)NVSPGHDRARVTLTR 29.50      

AT4G15910 (a) (ac)M(ox)AARS(ph)LSGAVK 0.63   0.29 0.6327 5.74E-01 

AT4G16660 (a) IEKVT(ph)KT(ph)ENTTK 0.21 0.0300  0.01   

AT4G16860 (b) YDVFPS(ph)FSGVDVRK -0.05      

AT4G21100 (a) IFVLPDLT(ph)LIT(ph)K    10.00   
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   replicate 1 replicate 2 

accession category pPeptide log2(ahk1/wt) sd p-value log2(ahk1/wt) sd p-value 

AT4G25200 (a) AS(ph)ALALKRLLSSSIAPR -14.39      

AT4G29920 (a) RT(ph)GAYTVHQT(ph)LTPEAAS(ph)VLK 10.00   10.00   

AT4G39640 (a) SELVAVS(ph)DPR -2.41      

AT5G09590 (a) REVVSSPFSAY(ph)R 1.29 0.1400  1.01   

AT5G11250 (b) RGES(ph)IGPELLR -44.40      

AT5G17890 (b) EIPIFNAT(ph)HPPK -2.30      

AT5G40170 (b) S(ph)LVNC(t)(t)LK -21.10      

AT5G45050 (b) YAGLQEIY(ph)K 5.12      

AT5G51440 (a) VY(ph)KTDEIKAEM(ox)K 33.44      

AT5G64940 (a) FDYEPIAAAS(ph)LGQVHR 1.62      

 

transport. 
(ABC) ABC transorters; (aa) amino acids; (am) ammonium; (Ca) calcium; (cyn) cyclic nucleotide or calcium regulated channels; (H+) H+ transportig pyrophosphatase; (Aq) Major Intrinsic Proteins; (U) 

membrane system unknown; (met) metabolite transporters; (m) metall; (mi) misc; (ni) nitrate; (nu) nucleotides; (ATP) p- and v-ATPases; (pep) peptides; (por) porins; (px) peroxisomes; (P) phosphate; (K) 

potassium; (su) sugars; (S) sulphate; (-) anions; (+) cations 

   replicate 1 replicate 2 

accession category pPeptide log2(ahk1/wt) sd p-value log2(ahk1/wt) sd p-value 

AT1G05030 (su) M(ox)WVTNT(ph)VLLY(ph)R 0.87  7.12E-02 -0.36 0.0817 9.82E-02 

AT1G15990 (cyn) FIPLT(ph)SELK 4.06 0.2100 7.18E-02    

AT1G16780 (H+) GSDS(ph)HKAAVTGDTVGDPFK -20.65      

AT1G17500 (mi) YNLIT(ph)FFPK -0.56   -0.79   

AT1G22530 (mi) EILQSES(ph)FK 0.50  9.63E-01 -0.19 1.0639  

AT1G59870 (ABC) (ac)M(ox)DYNPNLPPLGGGGVS(ph)M(ox)RR    0.29 0.7550  

AT1G59870 (ABC) GT(ph)ADFLQEVTSKK -22.59 0.0312     

AT1G60960 (m) FPFPGFFAMIAALIT(ph)LFVDFM(ox)GTQYYERKQER 10.00   10.00   

AT1G61630 (+) (ac)M(ox)TNPEDIPS(ph)R 1.61  5.13E-01 -0.31 2.0615 6.46E-01 

AT1G67300 (su) LLYS(ph)M(ox)FSTFCLMAVMFVK -21.85  2.24E-02 -5.98  6.69E-02 

AT1G69870 (pep) RISS(ph)PGSILDAEK    3.88   

AT1G69870 (pep) S(ph)SPSELDVVDPYK    10.00   

AT1G71880 (su) KLYS(ph)LGVQS(ph)GAM(ox)GLMFNSIVLGFMSLGVEWIGRK -14.70 0.0859  -1.94   

AT1G72160 (mi) SM(ox)IPQNLGS(ph)FK -2.47 0.1615  -1.31 0.8303 2.52E-01 

AT1G75370 (mi) T(ph)KLM(ox)WS(ph)NM(ox)IK -0.76      

AT2G01980 (+) (ac)MTTVIDAT(ph)MAYR 0.33 0.2040  0.10   

AT2G18960 (ATP) GLDIDTAGHHYT(ph)V 1.00 0.4008 1.57E-01 0.77 0.0778 4.33E-02 

AT2G22500 (met) NY(ph)KSVLDAITQM(ox)IR -22.37      

AT2G31910 (m) (ac)M(ox)ADPAAES(ph)IDASSS(ph)RFGR    1.14   

AT2G31910 (m) T(ph)TASLLIM(ox)NDEAKPK    10.00   

AT2G37170 (Aq) SLGS(ph)FRSAANV -14.94 0.3513 2.95E-01 -1.70 0.8329 1.80E-02 

AT2G39450 (m) IS(ph)NIANM(ox)LLFAAK -0.80      

AT2G40420 (aa) SSLAGES(ph)T(ph)TY(ph)AGVM(ox)K    -0.79   

AT2G47800 (ABC) S(ph)FLGSHIVEDGSK 1.65 0.1926     

AT3G01390 (ATP) (ac)M(ox)ES(ph)NRGQGSIQQLLAAEVEAQHIVNAAR    10.00   

AT3G09030 (K) RGMIS(ph)KIEAGGDR -0.07      

AT3G13090 (ABC) ALLVAMT(ph)GFK -13.38      

AT3G21250 (ABC) LRSTSEILNS(ph)MKVIK 28.52 0.0522     

AT3G27870 (ATP) LLLLS(ph)KGADSVMFKR -13.87      

AT3G28380 (ABC) M(ox)IGKFS(ph)TALR -19.63   -1.01   

AT3G45680 (pep) EVKTSAAMPS(ph)KSFR -21.22      

AT3G47770 (ABC) (ac)M(ox)AKPVAAS(ph)FLT(ph)QANALFK    1.74 0.2495  

AT3G49920 (por) TLDKY(ph)PR -22.21      

AT3G51670 (mi) (ac)M(ox)DASLS(ph)PFDHQKTQNTEPK 0.19   -0.35 1.2180 5.23E-01 

AT3G53420 (Aq) SLGS(ph)FRSAANV -0.50 0.0679 7.64E-03 -1.70 0.8329 5.02E-03 

AT3G60160 (ABC) EVY(ph)LAYLT(ph)T(ph)VK    -10.00   

AT4G11440 (met) GSVKKSS(ph)IK 3.81      

AT4G13510 (am) VEPRS(ph)PSPSGANTTPTPV    0.81   

AT4G21120 (aa) M(ox)AS(ph)GGGDDGLRR -20.06   -4.31   

AT4G23700 (m) M(ox)AEHPGIS(ph)LTVVR -1.99 0.1828     

AT4G30190 (ATP) GLDIETPSHYT(ph)V -9.76 0.1710 1.85E-02 -3.70  1.17E-03 

AT4G32500 (K) RKLS(ph)NFK -20.78      

AT4G32530 (ATP) (ac)SGVVALGHASS(ph)WGAALVR 10.00   10.00   

AT4G35100 (Aq) ALGS(ph)FRSNATN -21.23 0.1060 1.42E-01 -12.98 0.2479  

AT5G06530 (ABC) FRDVTY(ph)KVVIK 0.67      

AT5G16740 (aa) S(ph)LPSTM(ox)TDRTKLVAR 11.06      

AT5G23630 (+) ELILT(ph)T(ph)FK 2.28      

AT5G35730 (P) FSRPSTISNLLY(ph)GR -13.51      

AT5G46050 (pep) FY(ph)VYRAEVTDSVDVK 0.82      

AT5G49890 (-) TTFGS(ph)QILR 27.40 0.3061     

AT5G57350 (ATP) LGMGS(ph)NMYPS(ph)SSLLGK 2.34   3.08 0.2003 1.42E-01 

AT5G60660 (Aq) ALGSFGSFGS(ph)FR    -1.55  8.73E-02 

AT5G64840 (ABC) NGAS(ph)GISSGVKLENIR -23.26      

AT5G67500 (por) IDTDSSVLTTVTLTEILPSTK 3.24      

 

others - amino acid metabolism 
   replicate 1 replicate 2 

accession  pPeptide log2(ahk1/wt) sd p-value log2(ahk1/wt) sd p-value 

AT1G04710  AGFY(ph)DIGIGAGLES(ph)M(ox)TT(ph)NPR    0.12 0.3530  

AT1G22410  DGVKLPS(ph)YR -21.17      

AT1G55880  VKCFLIDPPGSGLY(ph)NK -1.15      

AT1G69523  FNGGADVKKT(ph)S(ph)LSR 1.32      

AT2G14170  RLYKEADDNT(ph)K -42.99      

AT2G20610  RAVADY(ph)MNR -20.98      

AT2G41040  (ac)AMAALT(ph)SSSSAIT(ph)LLNK    10.00   

AT2G43940  (s)(t)KKFS(ph)TLPNAK -21.35      

AT3G04520  (ac)MVTPT(ph)T(ph)IRTVDLRS(ph)DTVTK    -0.66   

AT3G17365  DKGVYILIT(ph)YGAPIYR -0.23      

AT3G53580  (ac)M(ox)EIAAVS(ph)TVS(ph)VAPQSRR    0.19   

AT3G54640  GTNLDS(ph)ILEMLDK 1.33 0.0600  1.01   

AT5G06300  TLM(ox)PREIT(ph)GETIGEVK -21.17   -12.32   

AT5G48060  IM(ox)S(ph)LLS(ph)GYFLVGK       

AT5G63890  MY(ph)SGV(s)LD(s)FLK 0.19      

 

others - cell wall. 
   replicate 1 replicate 2 

accession  pPeptide log2(ahk1/wt) sd p-value log2(ahk1/wt) sd p-value 

AT1G09550  KGS(ph)GYGSSTLMEK 0.72      

AT1G53840  (ac)M(ox)DSVNS(ph)FKGYGK    10.00   

AT3G05610  KT(ph)CEDTLIK 1.50      
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   replicate 1 replicate 2 

accession  pPeptide log2(ahk1/wt) sd p-value log2(ahk1/wt) sd p-value 

AT3G10710  KVADIVVAKDGS(ph)GK -43.38      

AT3G14310  T(ph)RT(ph)IITGSR 7.58      

AT3G19620  DVKCGDQT(ph)LISAAVK -20.31      

AT3G61130  FYLPEVY(ph)PK 2.22      

AT3G61130  NDLLQELQARLKDS(ph)QR 64.95      

AT4G20460  M(ox)LS(ph)FSRARSQGR -20.63      

AT4G30440  PSIEDELFPST(ph)PGK    -10.00   

AT4G35670  GRLT(ph)EESAVAISNVKFVDFR -2.37      

AT4G37800  M(ox)VVSLFS(ph)S(ph)R 1.17   0.93 0.9872 1.00E+00 

AT5G06870  TMTLFLLLS(ph)TLLLT(ph)T(ph)S(ph)LAK    -0.61   

AT5G39280  ISCART(ph)GGVK -21.69      

 

others - cell. 
(c) cycle; (d) division 

   replicate 1 replicate 2 

accession category pPeptide log2(ahk1/wt) sd p-value log2(ahk1/wt) sd p-value 

AT1G65920 (d) QVLVY(ph)NK 0.34   -0.24   

AT1G65920 (d) LS(ph)SVITIVR 10.32      

AT1G70620 (c) QDS(ph)NKPYGK -14.29      

AT2G41830 (c) GM(ox)GLPRS(ph)LSR -19.45      

AT3G13210 (c) EIFDRANT(ph)Y(ph)NK -25.38      

AT5G12350 (d) VGS(ph)SFDIKMDSLLPK -0.37      

AT5G25380 (d) IRMVESLDAS(ph)ASK 5.07      

AT5G45190 (c) SRNVDVGDALIS(ph)QS(ph)PK 0.52 0.3831  0.12   

 

others - DNA. 
(r ) repair; (s) synthesis; (u) unspecified 

   replicate 1 replicate 2 

accession category pPeptide log2(ahk1/wt) sd p-value log2(ahk1/wt) sd p-value 

AT1G03190 (r ) HLGT(ph)QAKILALGLSSR -42.34      

AT1G12370 (r ) FNVDSY(ph)ISYVK 1.23      

AT1G12700 (s) MMIKRS(ph)ITTNMK 1.09      

AT1G26840 (s) MDIS(ph)DIGRK 10.97      

AT1G58050 (s) KS(ph)SGFGKSR -22.07      

AT1G58050 (s) AALPIS(ph)EVK 7.96      

AT1G58050 (s) S(ph)LM(ox)GDFLLIILK 26.66      

AT1G66730 (s) MNLT(ph)KGT(ph)ISPGK -2.83      

AT1G77320 (r ) NT(ph)HDQT(ph)MVY(ph)DS(ph)SSR    1.56 0.2035  

AT2G13720 (u) WTIKFY(ph)K 1.73      

AT2G38810 (s) (t)(t)AAAANKDSVK 3.71      

AT2G45810 (s) YLKIEVM(ox)VT(ph)TGGTSLRDDIMR 27.50      

AT2G45850 (u) GRPPGS(ph)GKK 3.41      

AT3G10270 (r ) GY(ph)IIYSSPWIETK 2.92      

AT3G10690 (s) RVPLS(ph)SFR 12.87      

AT3G20540 (s) ELQM(ox)EDREAWI(s)YS(ph)ALD(s)ISTLKLYESM(ox)K -21.44      

AT3G21430 (u) (ac)M(ox)APS(ph)RSKK -0.20 0.2417  -0.44   

AT3G21430 (u) SS(ph)LGKPRR -20.81      

AT3G27970 (u) (ac)DYRSSM(ox)ESSET(ph)LR -0.69   -0.93  1.00E+00 

AT3G27970 (u) LYT(ph)RMRY(ph)QK 29.13      

AT3G42170 (u) (ac)M(ox)EVYNDDTEM(ox)RS(ph)PETQPIK    0.10   

AT3G42670 (u) WHAQPSVLVM(ox)GY(ph)T(ph)SFLTLMR    1.13   

AT3G42670 (u) RRS(ph)GRPER -0.07      

AT3G53320 (s) SSLDIS(ph)KTQQEK 0.70      

AT4G02070 (r ) ETGS(ph)KDKVVK -20.09      

AT4G12740 (s) M(ox)VVAGT(ph)EGFPNQASS(ph)LM(ox)K    10.00   

AT4G30100 (s) KNVNHIS(ph)E(s)(s)GK 28.03      

AT5G04980 (s) T(ph)PS(ph)FGAGSMFFAKPSLKKISESFR -0.35      

AT5G28740 (r ) LASVLNDDKFY(ph)SIK 1.27      

AT5G37630 (s) FLVAGS(ph)VAANR 1.13      

AT5G41360 (r ) ILEAFKT(ph)S(ph)KT(ph)VNTVFLSK 3.13      

AT5G44635 (s) M(ox)QET(ph)SKEIPAGSLPR 3.53      

AT5G44800 (s) KFLDSLSSLPSK(s)(s)SR -0.76      

AT5G62410 (s) TY(ph)DLSLFLK 0.27      

 

others - gluconeogenesis / glyoxylate cycle. 
   replicate 1 replicate 2 

accession  pPeptide log2(ahk1/wt) sd p-value log2(ahk1/wt) sd p-value 

AT2G42790  IVT(ph)DDS(ph)KES(ph)DKLGQVATSNASR 13.27      

 

others - glycolysis. 
   replicate 1 replicate 2 

accession  pPeptide log2(ahk1/wt) sd p-value log2(ahk1/wt) sd p-value 

AT1G68750  DEDNNKLRDALLIT(ph)INGIAAGMR -23.94      

AT3G52930  GILAADES(ph)T(ph)GT(ph)IGKR 10.00   10.00   

AT4G24620  DIS(ph)HADSKKELLK 3.58      

AT5G08570  VLGSHAKSIM(ox)LMS(ph)K -1.88      

 

others - hormone metabolism. 
(ABA) abscissic acid; (IAA) auxin; (BR) brasinosteroids; (CK) cytokinin; (ET) ethylene; (GA) gibberellic acid; (JA) jasmonate; (SA) salicylic acid 

   replicate 1 replicate 2 

accession category pPeptide log2(ahk1/wt) sd p-value log2(ahk1/wt) sd p-value 

AT1G14020 (IAA) EVRS(ph)ESNITQAR 0.19      

AT1G15360 (ET) S(ph)PSPSLTCLR -0.10      

AT1G22460 (IAA) INEIHKT(ph)R 0.41 1.4700  -0.01   

AT1G79460 (GA) GGVLT(ph)TVVDDFFDVGGSK -0.21      

AT2G01830 (CK) TNGNVHHKS(ph)PKLALFAT(ph)NITNSEFDR -4.55   -8.99   

AT2G17230 (BR) LPPRSLS(ph)LTSSK 27.98      

AT2G27150 (ABA) YIDISNIPEMS(ph)MIK 1.56      

AT2G37980 (IAA) M(ox)S(ph)AAGAS(ph)PLAVAPITAPT(ph)TTTRR    10.00   

AT2G44810 (JA) RAPM(ox)VT(ph)VIS(ph)FGGPR    -10.00   

AT3G02260 (IAA) AAFDS(ph)VS(ph)KSVQTLQGLRR -2.02      

AT3G03850 (IAA) ILGGS(ph)LVKT(ph)SKAPPK 4.62      

AT3G19820 (BR) (ac)M(ox)SDLQT(ph)PLVR    0.12   

AT4G02780 (GA) M(ox)PYVNNNGY(ph)LELAK -20.97      

AT4G09530 (IAA) FVIPT(ph)TFLKSPSFQK -1.55  1.63E-01 -2.90  4.70E-02 
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   replicate 1 replicate 2 

accession category pPeptide log2(ahk1/wt) sd p-value log2(ahk1/wt) sd p-value 

AT4G39400 (BR) S(ph)IEDGGFSTIEM(ox)VDM(ox)SIK 12.82   5.99   

AT5G13350 (IAA) IMFGS(ph)LYR 1.47 0.0800  1.28 0.6968  

AT5G35750 (CK) (ac)SITCELLNLT(ph)S(ph)KK    -0.09   

AT5G37970 (SA) Y(ph)VNYFIVLKR 0.27 0.0700  0.38   

AT5G43830 (IAA) VDS(ph)SQNWAGHI -22.80 0.1497     

AT5G51190 (ET) VWLGT(ph)FDTAM(ox)EAARGY(ph)DK -3.25      

 

others - lipid metabolism. 
   replicate 1 replicate 2 

accession  pPeptide log2(ahk1/wt) sd p-value log2(ahk1/wt) sd p-value 

AT1G01610  SATTVPIES(ph)LK 5.10      

AT1G02390  T(ph)LLDPLYISYALRKK -22.70      

AT1G04010  LT(ph)FETALKLR -0.11 0.0200  0.50   

AT1G55320  FPLYSRVVEAAPS(ph)K -21.05      

AT2G03770  KVMFVMY(ph)EEM(ox)R 1.68      

AT2G19880  (ac)MS(ph)TLDS(ph)IDAILFSLSR    -10.00   

AT2G32260  ETQRTEGI(s)(t)SDIIM(ox)RIVK -20.61      

AT2G42450  RPS(ph)SVTSS(ph)R -10.00   -10.00   

AT3G03520  Y(ph)FKILSAPANDDHPK 11.57 0.3717     

AT3G11670  RSSLEILS(ph)GFK    -10.00   

AT3G23410  QS(ph)IELVT(ph)KRGT(ph)IEAYIATR -0.72      

AT3G48610  GAT(ph)SRFIRAS(ph)K 1.20      

AT3G48990  RALSVS(ph)GKFNLTHAR 29.28      

AT3G51840  ARET(ph)ASLGR 26.98      

AT4G04930  SWSQVIY(ph)M(ox)YIMDTT(ph)VGPYSR 0.48   0.24   

AT4G21540  T(ph)LVYQGPDSK 10.50   5.91   

AT4G28130  Y(ph)KNLSDFLK -1.48      

AT4G36480  ITLEKIM(ox)T(ph)K 3.24      

AT5G06090  AVLPKFFM(ox)DDIS(ph)MDAWRAFGSCDK 2.17      

AT5G07010  AIAELCS(ph)FENLKK -23.97      

AT5G40610  FS(ph)SLSAAM(ox)SPALEK -0.36      

AT5G46290  RGEADMMIAGGT(ph)EAAIIPIGLGGFVACRALS(ph)QR 11.99      

 

others - major CHO metabolism. 
(d) degradation; (s) synthesis 

   replicate 1 replicate 2 

accession category pPeptide log2(ahk1/wt) sd p-value log2(ahk1/wt) sd p-value 

AT1G47840 (d) T(ph)VVAMDGALY(ph)EK 0.03 0.0300  -0.19   

AT1G35580 (d) SVLDT(ph)PLSSAR -3.34 0.6871  -5.98   

AT1G35580 (d) FKLGEGVM(ox)PAS(ph)FK 3.18 0.6871  2.99   

AT1G12240 (d) (ac)M(ox)ASS(ph)DALLPIS(ph)AR    2.39   

AT3G43190 (d) T(ph)LMLNNR 1.61   3.98 0.0561  

AT3G43190 (d) Y(ph)IGDGVEFLNR -20.42      

AT1G77130 (s) (ac)M(ox)IPSS(ph)SPMESR 0.60   0.36 0.2267 2.89E-01 

 

others - minor CHO metabolism. 
   replicate 1 replicate 2 

accession  pPeptide log2(ahk1/wt) sd p-value log2(ahk1/wt) sd p-value 

AT1G06490  DEDLIS(ph)DRER -21.87      

AT3G42850  FEDS(ph)ISILVSSTVPEGK 0.72      

AT5G40390  108.66 SDS(ph)GINGVDFTEK b3/y11 . 0.12 0.1942     

AT5G20250  LT(ph)GIKENEKFK 3.74      

AT5G49650  KGSFVPISNLY(ph)EGK 0.25   0.11   

AT1G35910  GQGFGILVS(ph)KIPK 11.23      

 

others - metal handling. 
   replicate 1 replicate 2 

accession  pPeptide log2(ahk1/wt) sd p-value log2(ahk1/wt) sd p-value 

AT4G14030  YGGPGY(ph)ATPLAAM(ox)S(ph)GPSEK -0.31 0.7012 3.35E-01 -1.53 1.0992 3.35E-01 

AT1G22990  M(ox)HKV(t)V(s)GYVDPK 2.31      

 

others - misc. 
   replicate 1 replicate 2 

accession  pPeptide log2(ahk1/wt) sd p-value log2(ahk1/wt) sd p-value 

AT1G01980  SFY(ph)S(ph)YM(ox)APFVTKNPR 10.00   10.00   

AT1G05240  AEEIVRGVTVQY(ph)VSRQK -19.85      

AT1G07260  ES(ph)YEAWVEIAEK 2.05      

AT1G10290  S(ph)QQVSASALRHSLQDR -21.97      

AT1G16610  AVQES(ph)LVLHVDSLSR 0.09 0.1109  0.26   

AT1G21100  M(ox)LRLLAS(ph)Y(ph)SMVKCGK       

AT1G22370  (ac)M(ox)ADESS(ph)LDT(ph)K    -10.00   

AT1G24110  SLPGDAFDVITRIKT(ph)AVELK -22.88      

AT1G28580  MAYPGS(ph)PILM(ox)K -22.19      

AT1G31550  M(ox)AS(ph)LDS(ph)HVLMK 5.39      

AT1G45130  T(ph)S(ph)HVQM(ox)VPSGSILY(ph)SVARY(ph)DEDIATYGNR 28.19      

AT1G52420  DDAGS(ph)NKRT(ph)DVSLIK 0.01   0.20   

AT1G52420  M(ox)EEIRLS(ph)PLR -45.27 0.0312     

AT1G52420  LSPLRQTSVKSSLS(ph)GR 2.43      

AT1G55560  RENYNLLDAVS(ph)R 26.36   12.98   

AT1G55940  S(ph)VSFQGVVDVK -1.11      

AT1G66540  (ac)M(ox)VSAPYS(ph)EHWRNLR 1.94   1.70 0.6302 1.68E-01 

AT1G69930  LKFNT(ph)SIFK 1.24 0.1900  1.09   

AT1G74550  AVMDEVY(ph)GGR -1.56      

AT1G80410  AAY(ph)AEM(ox)LYILDPSK 0.70      

AT2G04060  M(ox)LY(ph)SFWLK -10.00   -10.00   

AT2G14120  S(ph)IKDALVAEEK -0.34   0.42 0.3909  

AT2G15480  GAKS(ph)TLLTTPINAK 3.69      

AT2G16230  
ALEAVSLGGKIKVSTVHAM(ox)TVLGNSEPPSAGSFAPS(ph)YQAG

LK 
-10.00   -10.00   

AT2G26600  S(ph)LISSSKSAR 11.43      

AT2G30330  (ac)MNT(ph)PMSLSAAR    10.00   

AT2G30330  (ac)NT(ph)PM(ox)SLSAAR 10.00   10.00   

AT2G30575  EEQAVS(ph)QKT(ph)TVSSNAEVK -1.01   -1.00   

AT2G31432  T(ph)QIIVDTGLLVIS(ph)GEDT(ph)RK    10.00   

AT2G37540  (ac)M(ox)GIYGVMT(ph)GK 1.45  3.08E-01 0.18   
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   replicate 1 replicate 2 

accession  pPeptide log2(ahk1/wt) sd p-value log2(ahk1/wt) sd p-value 

AT2G46660  (ac)MAT(ph)KLES(ph)SLIFALLS(ph)K    -0.23   

AT3G01620  YLLPGNCKRES(ph)G 14.58      

AT3G03640  FS(ph)ISWSRIFPHGK -1.63      

AT3G21770  RGLFQS(ph)DSALTT(ph)NS(ph)ATLK 10.00   10.00   

AT3G22250  LS(ph)GFGEKEVEDGLR 2.46      

AT3G24200  M(ox)M(ox)FPLS(ph)LR -1.76      

AT3G46650  LGGIE(s)MI(t)LNK 29.28      

AT3G46680  DLPT(ph)SGVGPLDR -20.70      

AT3G61760  YNDAY(ph)LRR -10.00  1.54E-01 -10.00   

AT3G61880  GLPFVGSM(ox)SLM(ox)(s)N(t)LAHR -21.55      

AT4G15330  TEIMVVS(ph)RR -4.02      

AT4G16220  EVAKAIAQDT(ph)TTDLPK -21.23      

AT4G19850  (ac)M(ox)GIIWS(ph)IFSKT(ph)K    2.58   

AT5G03610  ES(ph)LTASLIK -19.31      

AT5G04660  FM(ox)LGKEDADIT(ph)GIS(ph)GVK -1.13 0.0300  -1.99   

AT5G04885  GVS(ph)TVM(ox)VSYSSWNGEK -6.62      

AT5G07360  DADM(ox)KVVEVLGS(ph)K 28.55      

AT5G11130  DY(ph)IS(ph)LIS(ph)NR       

AT5G11340  (ac)M(ox)GAGREVS(ph)VSLDGVR 0.69   0.46   

AT5G14130  DGLVS(ph)KASRVT(ph)GK -20.67      

AT5G19370  LS(ph)IT(ph)PT(ph)LAIAS(ph)PPHLR -1.88   -2.12  1.00E+00 

AT5G27410  SLST(ph)T(ph)LM(ox)YSFAQR    1.17   

AT5G38450  LGDLT(ph)IPK 10.01      

AT5G44620  RPS(ph)QT(ph)TVVGGFTIPK -23.16      

AT5G45700  YQIVVFT(ph)AGLR -66.12      

AT5G50400  SSPDY(ph)MKTGNAVLK 2.94      

AT5G57920  SVVDAPAPVNIVLS(ph)PNYNR -23.74      

AT5G58390  DFARAM(ox)IKM(ox)GDIS(ph)PLTGSNGQIR -1.62   1.35   

AT5G64100  ISQAS(ph)DVNLPGPSDS(ph)VAKQK -23.60      

AT5G66060  Y(ph)LIELAKPHMEK -0.07 0.0300  -0.20   

AT5G67230  S(ph)PLEIT(ph)VPS(ph)K 10.00   10.00   

 

others - nucleotide metabolism. 
   replicate 1 replicate 2 

accession  pPeptide log2(ahk1/wt) sd p-value log2(ahk1/wt) sd p-value 

AT1G27450  SDAEY(ph)FAKAAASR -20.55      

AT1G63660  SLNVFSLVISGT(ph)SSLK 10.00   10.00   

AT1G68720  NLIRS(ph)PPIK -1.63 0.6227     

AT1G79470  (ac)M(ox)ST(ph)LEDGFPADK    -2.03   

 

others - protein.  
(a) amino acid activation; (as) (f) folding; (g) glycosylation; (s) synthesis; (t) targeting 

   replicate 1 replicate 2 

accession category pPeptide log2(ahk1/wt) sd p-value log2(ahk1/wt) sd p-value 

AT1G01100 (s) KDEPAEESDGDLGFGLFD -0.55 0.7607  0.59   

AT1G07910 (s) KPQS(ph)IM(ox)LADK 29.54      

AT1G09270 (t) MS(ph)LRPSTRAELR 4.45      

AT1G13020 (s) SSGPPGRMS(ph)R -19.12      

AT1G18130 (a) LFAILLEQY(ph)KGK -0.11 0.0400  -0.01   

AT1G36390 (f) DRLS(ph)TESNAK -61.29      

AT1G53880 (s) VVFEILKT(ph)SAQNKK -21.42   -10.00   

AT1G57620 (t) T(ph)GIAAKDWDSIARK -2.88      

AT1G64790 (s) ALLEGGS(ph)DDEGASTEAQGR    0.95   

AT1G65590 (g) IAGVLPLFM(ox)LFIAGTIS(ph)AFEDIER -21.30   -2.89   

AT1G68660 (s) (ac)M(ox)ET(ph)AICGRLALAPS(ph)SLFNSK    0.47   

AT1G71350 (s) KGS(ph)AY(ph)PS(ph)EIHKK 0.78      

AT2G07734 (s) RSFYKEIS(ph)VEK -43.03      

AT2G14720 (t) SLGIDS(ph)RKIDK 1.52 0.1400  0.31   

AT2G17790 (t) LY(ph)LLCT(ph)AGSVYIK -1.05      

AT2G18020 (s) T(ph)GRLRGQAAASAAK 26.10      

AT2G19720 (s) VNDCKALT(ph)Y(ph)RQDVK -0.45   0.23 0.4629  

AT2G25840 (a) INLLDS(ph)KDLIVDKIK 61.65      

AT2G27710 (s) EESDDDM(ox)GFSLFE 0.86   0.12   

AT2G27710 (s) EEKEES(ph)DDDM(ox)GFSLFE 0.48      

AT2G33210 (f) M(ox)IS(ph)TSEEIAQVGTISANGDR -0.54      

AT2G33840 (a) ADKY(ph)WPLVMDIAR -18.43      

AT2G36070 (t) FSAAT(ph)EEVKESFK -1.12      

AT2G36620 (s) SQVKGNIPKS(ph)AAPK -20.29      

AT2G42650 (s) SAVS(ph)GKPDIVKS(ph)K 5.06      

AT2G42710 (s) GTLALPHS(ph)VKKDVK 3.35      

AT2G47020 (s) LINQPEYSPEEFS(ph)RANK 1.20      

AT2G47840 (t) MAS(ph)LCLSLHQT(ph)LT(ph)NPLSAPR -10.00   -10.00   

AT3G01175 (s) RFELIS(ph)FFQVPR -0.16      

AT3G02530 (f) AT(ph)LQFLDTFKTPVVMGDEPDK -21.43      

AT3G05560 (s) ITVTADGQFS(ph)K -21.16 0.1410     

AT3G09200 (s) EESDEEDYGGDFGLFDEE    0.74 1.0830  

AT3G09200 (s) VEEKEES(ph)DEEDYGGDFGLFDEE -1.09 0.2035     

AT3G11250 (s) KEESDEEDYEGGFGLFDEE    0.84   

AT3G12340 (f) KVSILYT(ph)GK 28.49   -3.34   

AT3G48820 (g) WVPS(ph)RSTIRSAR 2.31      

AT3G58140 (a) (ac)T(ph)VFS(ph)VQSTIFSRASVALLS(ph)SNGFKR    -10.00   

AT4G01800 (t) LETEISALSDS(ph)ELR 30.32      

AT4G14455 (t) MDS(ph)ARGIMS(ph)GTINR -22.78      

AT4G25890 (s) KKEESEEEEGDFGFDLFG 0.43      

AT4G26300 (a) FSADHLTFT(ph)T(ph)VT(ph)EK    10.00   

AT4G36420 (s) GVS(ph)KEEAEKIIEK 5.11      

AT5G05670 (t) TDKLT(ph)AHTKEFIR -23.06      

AT5G19620 (t) T(ph)S(ph)PETILRQLTTK 1.77      

AT5G20200 (t) HKEAEVGT(ph)LTVPTHS(ph)SQIART(ph)ILDHLER -10.00   -10.00   

AT5G27640 (s) DGEVSDVEEDEYEAK 1.23 0.1131  1.80   

AT5G47700 (s) KKDEPAEESDGDLGFGLFD    -0.10   

AT5G47700 (s) KDEPAEESDGDLGFGLFD 1.45 0.0809  0.59   

AT5G47700 (s) DEPAEESDGDLGFGLFD    10.00   

AT5G53530 (t) KTY(ph)PFEFSSVEMPYETYNGVNVR 10.26 0.4368     

AT5G66030 (t) SLEVKLDS(ph)T(ph)VAR -19.88      

ATCG00860 (as) IKS(ph)LM(ox)IPS(ph)YM(ox)IELR -4.54      
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others - photosynthesis 
(CC) calvin cycle; (LR) light reaction 

   replicate 1 replicate 2 

accession category pPeptide log2(ahk1/wt) sd p-value log2(ahk1/wt) sd p-value 

AT1G05385 (LR) T(ph)KSGKELPK 29.43      

AT2G21170 (CC) LVSSSSSS(ph)HR -22.11      

AT2G21170 (CC) GPEFATIVN(s)VT(s)K -20.82      

AT2G39730 (CC) GLAYDTSDDQQDITR    -10.00   

AT2G46820 (LR) AT(ph)TEVGEAPATTTEAETTELPEIVK -23.07 0.3715 2.23E-01 -0.71 0.3240 2.23E-01 

AT2G46820 (LR) AT(ph)TEVGEAPATTTEAETTELPEIVK -0.48 0.3715 2.23E-01 -0.71 0.3240 2.23E-01 

AT2G47400 (CC) ATSEGEIS(ph)EKVEK -3.52      

AT3G21055 (LR) VPSAT(ph)GGRR -1.83      

AT3G21740 (LR) Y(ph)VGANALM(ox)AWEK -21.32      

AT4G02630 (LR) NKSLES(ph)S(ph)SKSNHTIVPVVS(ph)K       

AT5G01530 (LR) NLAGDVIGT(ph)RTEAADAK -23.03 0.2282     

AT5G51545 (LR) (ac)M(ox)ALQIHSPCS(ph)FSTR -10.00   -10.00   

ATCG00020 (LR) (ac)T(ph)AILERR 0.78 0.1930 4.54E-01 0.93 0.9974 8.03E-01 

ATCG00270 (LR) (ac)T(ph)IALGKFTK 1.33 0.2712 4.72E-01 0.10 0.3942 7.19E-01 

 

others - redox. 
   replicate 1 replicate 2 

accession  pPeptide log2(ahk1/wt) sd p-value log2(ahk1/wt) sd p-value 

AT1G21750  SASGNVVVYEGDR -21.39   -10.00   

AT1G63940  M(ox)ALAS(ph)T(ph)T(ph)LPTK    -0.68   

AT1G77510  T(ph)EETAAKDEL 10.28      

AT2G04700  FSEQY(ph)ARR 10.00   10.00   

AT3G10130  M(ox)EM(ox)T(ph)TPVIT(ph)S(ph)KAK    -1.38   

AT3G10130  EKM(ox)EMT(ph)TPVVTRK -0.26      

AT3G52960  NRRT(ph)NS(ph)ASATTR 2.36      

AT3G56420  LVGAET(ph)SELQK 1.16      

AT4G23100  S(ph)MLLHSVKRSK 7.95   -0.74   

AT4G23100  VGT(ph)LGLDMMLR -20.04      

AT4G35460  DVLGGLKVKNVVT(ph)GDVS(ph)DLK 3.70      

AT4G39830  S(ph)MS(ph)EKATGLASIPFK -1.05      

AT5G06690  KIMAALAS(ph)NPQM(ox)LTR -23.65      

AT5G39865  Y(ph)LGGVEEIKK 1.78   4.89 0.1105  

 

others - RNA 
(p) processing; (b) binding; (t) transcription 

   replicate 1 replicate 2 

accession category pPeptide log2(ahk1/wt) sd p-value log2(ahk1/wt) sd p-value 

AT1G14220 (p) S(ph)QISDLVS(ph)S(ph)LKK -10.00   -10.00   

AT1G28090 (p) (ac)M(ox)IEDFS(ph)GARGSNK    -10.00   

AT1G30590 (p) IDKKDPS(ph)IVTYVDNLLR -21.37   -0.91   

AT1G43190 (p) I(s)F(s)QLQTI 3.08      

AT1G54590 (p) M(ox)VVS(ph)KSTNSR 10.30      

AT2G24120 (t) S(ph)AKHM(ox)LIPY(ph)VPMLVPPK -0.84      

AT2G25850 (p) FISKIT(ph)ELR 28.96      

AT3G07750 (p) GGEEL(s)(s)ELALALQR -1.18      

AT3G07750 (p) IGGT(ph)DVIASVK 1.91      

AT3G13224 (b) ILPT(ph)S(ph)LPNVRSLSQ -1.66      

AT4G11130 (t) SSFRKLS(ph)LR -22.03      

AT4G21710 (t) M(ox)LARAS(ph)AK -21.08      

AT4G32850 (p) SVSISGT(ph)DSPLLPS(ph)R 1.78      

AT4G35785 (b) S(ph)RS(ph)LPRPVSPSRSR -22.90 0.0070     

AT5G02250 (p) KYT(ph)ALVLR -19.82      

AT5G09920 (t) MLNDLS(ph)LVK -21.78      

AT5G19030 (b) ALS(ph)SSTFQIPFLK -3.58      

AT5G26742 (p) GSS(ph)DDWLIGGRS(ph)S(ph)S(ph)SS(ph)RAPS(ph)R       

AT5G46420 (p) VS(ph)ECNLSVSR 10.72      

AT5G46870 (b) M(ox)S(ph)M(ox)VT(ph)VKVSNVSLEATER -1.62      

AT5G51410 (b) SPHGRS(ph)GHRR -22.08      

AT5G59950 (b) (ac)STGLDMS(ph)LDDM(ox)IAKNRK -1.48 0.0495  -0.72  2.24E-02 

AT5G61140 (p) TLRQVE(s)(t)QT(ph)MIR 2.75      

 

others 
(C1) C1 metabolism; (Co) Co-factor and vitamine metabolism; (f) fermentation (mit) mitochondrial electron transport; (mi) micro RNA; (OPP) OPP; (PAM) polyamine metabolism; (sec) secondary metabolism; 

(TCA) TCA/org transformation; (tet) tetrapyrrole synthesis; (na) not assigned 

   replicate 1 replicate 2 

accession category pPeptide log2(ahk1/wt) sd p-value log2(ahk1/wt) sd p-value 

AT1G03630 (tet) GLASGLNGQNSSM(ox)IDGGEFDGAK -23.18      

AT1G03830 (na) DVRLQM(ox)S(ph)LLNEK -23.06      

AT1G05060 (na) MS(ph)FLGAGRLAGK 5.09      

AT1G08070 (na) LKGVT(ph)NASSLR 0.98      

AT1G08430 (na) EMS(ph)ISLKQM(ox)IK 8.39      

AT1G08580 (na) AIHGDPLT(ph)NK -19.70      

AT1G09450 (na) M(ox)EKYES(ph)AKEAVSDPFFSDM(ox)LM(ox)DQIS 11.18      

AT1G10450 (na) Y(ph)ESFLELMK 1.54 0.0500  2.39   

AT1G10500 (sec) (ac)M(ox)AFATGITTSS(ph)NPTFLGLK 0.21   1.83 0.2233 9.04E-01 

AT1G10690 (na) WVIAGIPS(ph)RSPLK 3.83      

AT1G11320 (na) M(ox)DPIAS(ph)VLEKVKSFT(ph)K -21.86      

AT1G11770 (sec) AKS(ph)FY(ph)SY(ph)M(ox)APFVTKNPR 0.73      

AT1G11940 (na) YS(ph)VKMSPVIPEEK 3.92      

AT1G12150 (na) KET(ph)EAAMIAAEEAEKR 1.17 0.1800  1.10   

AT1G13630 (na) FKELQVILEQLLQEEGT(ph)FRK -23.23      

AT1G15280 (na) QSNNPS(ph)KQPR -25.05 0.1075     

AT1G15370 (na) RLIRLKPPS(ph)EV -22.31      

AT1G15740 (na) I(t)DIGI(s)YLK 1.26      

AT1G15760 (na) KNS(ph)PPLTSR -19.14      

AT1G15940 (na) EDLT(ph)KSNVKK 1.69      

AT1G17940 (na) Y(ph)LTEKIPK 3.52      

AT1G19140 (na) DVGVS(ph)PSIVGSFSR -21.78      

AT1G19360 (na) MLKS(ph)DFVTLSEK -20.42      

AT1G20100 (na) ENVSSAKS(ph)SYKTDEDT(ph)IM(ox)SLQT(ph)SR -0.38   0.38 1.0086 3.07E-01 

AT1G20970 (na) T(ph)QNRDALRADIQK 2.31 0.3579     

AT1G21323 (na) VSY(ph)ETLDRLT(ph)AR 4.49      

AT1G23790 (na) LDPGT(ph)PVPIIK 1.24 0.1100  -0.97 0.3144 3.11E-01 
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   replicate 1 replicate 2 

accession category pPeptide log2(ahk1/wt) sd p-value log2(ahk1/wt) sd p-value 

AT1G23970 (na) T(ph)PFIPHFHGGALGDGIFK 0.66      

AT1G24180 (TCA) ESPIPDASELFTNM(ox)YVK -21.86      

AT1G27752 (na) FNHET(ph)S(ph)IPAVT(ph)K 10.00   10.00   

AT1G27840 (na) T(ph)LQS(ph)KQTGSQSVK -0.63      

AT1G29240 (na) VHS(ph)PVHPSNGK -19.25      

AT1G30140 (na) NYM(ox)S(ph)RLK -0.98 0.3000  -0.31   

AT1G31660 (na) Y(ph)EILKEDK 1.76      

AT1G31910 (sec) TTCI(t)(s)GVSSIHLE -2.59      

AT1G32100 (sec) (ac)M(ox)GES(ph)KRTEK 1.15   -0.09 0.4979 3.94E-01 

AT1G32120 (na) FES(ph)LRTAR -4.20      

AT1G33350 (na) S(ph)HPET(ph)EEIY(ph)M(ox)ILDSLISF    -1.01   

AT1G33400 (na) DAFRDIT(ph)VSMSLESSLVGK 0.07      

AT1G34070 (na) LSLY(ph)GTLT(ph)PK 3.61      

AT1G34350 (na) LAHT(ph)KEE 29.07      

AT1G35190 (sec) T(ph)EM(ox)LGKPIATMR -2.38      

AT1G35220 (na) S(ph)HAVTLYEAGK 6.04   2.91   

AT1G35430 (na) (ac)M(ox)LTDVFWLRT(ph)R    -0.99   

AT1G42430 (na) (ac)S(ph)EM(ox)AAS(ph)SAISLLDIK    -10.00   

AT1G43010 (na) T(ph)VDKAEATFK 0.19      

AT1G43010 (na) M(ox)RDYSVLLS(ph)S(ph)YT(ph)KPVR       

AT1G44170 (f) M(ox)FY(ph)QQRVLVS(ph)LLR       

AT1G45545 (na) ARHLSAVS(ph)ELGT(ph)IR -20.06      

AT1G48560 (na) NKLDSSIIS(ph)AK 1.81      

AT1G48880 (na) ALSSLAIESPRNSSSSVF(t)(s)PIG(s)AFASPR -22.85      

AT1G50120 (na) CLEVS(ph)VT(ph)LET(ph)LETINR 10.00   10.00   

AT1G50790 (na) DDEFIS(ph)FAR -21.45      

AT1G51350 (na) M(ox)PT(ph)TTTSSASSSSSASGNNR 10.91      

AT1G51630 (na) FEDIY(ph)DVDKLIK 2.00      

AT1G51900 (na) DFEPT(ph)LPDYDQVITR -21.21      

AT1G53260 (na) GT(ph)T(ph)T(ph)AKHEPELSGT(ph)S(ph)T(ph)AK -20.98      

AT1G53280 (na) S(ph)FSISATMSSSTKK 2.18      

AT1G61240 (na) S(ph)SM(ox)IPSLLQRK -23.19      

AT1G61690 (na) SQIHAEKGNAET(ph)MSGFR -20.14      

AT1G61690 (na) SDPLNS(ph)RPGKT(ph)AEAQGAY(ph)EVR -18.26      

AT1G61720 (sec) S(ph)CLKSKSVK 0.83      

AT1G62420 (na) NGY(ph)M(ox)QAKWFGFYK -0.16 0.0700  0.89   

AT1G65230 (na) (ac)M(ox)TTS(ph)SFLLPAS(ph)PPSAAFLRRR    -10.00   

AT1G65710 (na) M(ox)IESVKPNS(ph)RTSR -22.44      

AT1G67120 (na) VRIS(ph)SDLGEK -21.85      

AT1G67120 (na) M(ox)AIDGS(ph)FNLK -20.27      

AT1G67540 (na) S(ph)GSVSEEEEEKRNLGTEK 2.27      

AT1G68780 (na) NFLS(ph)GALPLSVGGLYSLLK -0.20 0.0400  0.12   

AT1G69280 (na) KS(ph)NLSFDSSLHNK -1.44      

AT1G69680 (na) NIS(ph)AVAT(ph)TAIGEMAISKGR 0.47      

AT1G70180 (na) DQS(ph)PPRNAGRVTGSPR -20.49      

AT1G70270 (na) YKS(ph)M(ox)VKQTM(ox)NK 0.33      

AT1G70770 (na) M(ox)TAIDSDDDGVVR -53.41 0.0136     

AT1G70770 (na) SNGYGDDGYDFDGSDDEIATLK -21.96 0.0136     

AT1G71460 (na) LVHM(ox)Y(ph)T(ph)ACGSVK 10.00   10.00   

AT1G72020 (na) SVS(ph)KIIASSEASVSR -19.19      

AT1G72270 (na) T(ph)FDFHGFPKQAPRR -1.67      

AT1G72270 (na) DAIAENLS(ph)R 0.53      

AT1G72450 (na) VET(ph)S(ph)ETRPFK -44.03 0.0154     

AT1G73480 (na) M(ox)ICS(ph)SKGT(ph)ILIARGK 0.44   0.21 0.7467 9.62E-01 

AT1G74140 (na) T(ph)LGPLY(ph)LLK -1.34      

AT1G74530 (na) (ac)MATST(ph)TSAIR    -0.72   

AT1G74770 (na) M(ox)SQKVS(ph)QFGPSKK 2.37      

AT1G76780 (na) Y(ph)AKQNKIQEVM(ox)NDEDK -2.79      

AT1G78480 (sec) RM(ox)RY(ph)GEEFL(s)(s)R -2.68      

AT1G78640 (na) HLLPEDS(ph)QKIDK 0.83      

AT1G79750 (TCA) M(ox)IS(ph)LT(ph)PSLFLNK    -2.09 0.0377  

AT1G80280 (na) LS(ph)S(ph)EM(ox)VLPT(ph)QNALSLLK 1.38   -0.78 0.3049 1.85E-02 

AT1G80310 (na) FNYDTATLKPSSS(ph)PR 28.02      

AT1G80770 (na) (ac)MVM(ox)PS(ph)IDLYAS(ph)ALRKSK    0.98   

AT1G80910 (na) (ac)M(ox)GMASM(ox)S(ph)SGTESLR    10.00   

AT1G80970 (na) GRS(ph)VWVAWFK -22.04      

AT2G01340 (na) (ac)M(ox)GNS(ph)LGGKKTTK -0.21   0.12 0.4337 4.07E-01 

AT2G03030 (na) Y(ph)EQRGKDLK 2.57      

AT2G03350 (na) LKGKPLKS(ph)LPDLLK -1.91      

AT2G04930 (na) IY(ph)AKAILEMIDPK -19.06      

AT2G05600 (na) PLTPLTIS(ph)KDT(ph)NKVILS(ph)LT(ph)S(ph)QER       

AT2G07190 (na) M(ox)IKDFWS(ph)RLLK -3.43      

AT2G07640 (na) TREY(ph)MPLYKLGEK 1.16   0.31   

AT2G08986 (na) T(ph)HMGFGYTMKALRS(ph)K -1.67      

AT2G11890 (na) LT(ph)T(ph)LLTPYHLKTLHQR 0.39      

AT2G16005 (na) (ac)M(ox)AISHTQLLLLLLVS(ph)LFFSPALCGPK -10.00   -10.00   

AT2G16500 (PAM) HS(ph)GHFGSTSGEKGKFGLTTVQILR -19.59      

AT2G18520 (na) FSTATGIDS(ph)Q(t)(t)AYPGAITMSK 5.84      

AT2G19710 (na) T(ph)LPPYRM(s)(s)ASSKAEK -20.18      

AT2G20020 (na) NYNHRT(ph)RPR -21.15      

AT2G20635 (na) ANLSS(ph)LQNY(ph)SRNK 2.54      

AT2G20690 (Co) (ac)M(ox)AART(ph)HCINLIPK    2.27   

AT2G22122 (na) (ac)S(ph)SM(ox)GANYAQLQVMQK -10.00   -10.00   

AT2G23360 (na) LIVIKT(ph)ELAGSGKR -19.33      

AT2G23370 (na) LMDLDAY(ph)LLR 0.40      

AT2G23630 (na) ALPPPDGLLINGAS(ph)K 28.43      

AT2G25050 (na) MGAPT(ph)SSLVLK 3.42      

AT2G25260 (na) GKY(ph)FFPILM(ox)T(ph)LSLFLIIR -23.00      

AT2G26050 (na) M(ox)CE(s)(s)NKVR -21.01      

AT2G26550 (tet) (ac)MASLLRPT(ph)PLLS(ph)T(ph)PR    0.74   

AT2G27285 (na) S(ph)KSLEPLEAEQAVSEK -14.10      

AT2G28580 (na) LFEPFS(ph)SNVNTK 2.38      

AT2G29190 (na) LKGS(ph)S(ph)NVLGGVGDR -23.78      

AT2G31110 (na) IRKPVHLLDLT(ph)T(ph)LSEY(ph)RK -0.32      

AT2G31270 (na) LFFDS(ph)SSSSPSKRK -2.18      

AT2G31270 (na) M(ox)S(ph)TPGSSRSIPFKSK 0.00      

AT2G31890 (na) FNQKIT(ph)S(ph)S(ph)FQK -1.86      

AT2G32880 (na) FIT(ph)HTQLK 4.29      

AT2G33400 (na) GGRSKGS(ph)S(ph)AIDK -21.91      
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   replicate 1 replicate 2 

accession category pPeptide log2(ahk1/wt) sd p-value log2(ahk1/wt) sd p-value 

AT2G33490 (na) S(ph)QLLS(ph)KPLITNS(ph)AS(ph)PLPIPPAITR 2.17      

AT2G35460 (na) T(ph)Y(ph)Y(ph)S(ph)HGR    1.44   

AT2G36330 (na) T(ph)M(ox)PS(ph)MSPSSVSTEK -14.17      

AT2G36560 (na) SNST(ph)PCIT(ph)PFPVT(ph)K 0.32   0.08   

AT2G37230 (na) Y(ph)FNKMVSEGVEPTR 4.71      

AT2G37780 (na) VSIQGMFY(ph)K -19.97      

AT2G37940 (na) RFCS(ph)EISTEIGLLAENWK -3.27      

AT2G38320 (na) M(ox)VY(ph)VGDSLNR 1.72      

AT2G39190 (na) RFT(ph)LDLEYALGEVK 0.24 0.0300  -0.40 0.1448  

AT2G40150 (na) KS(ph)LNQTGSLTVFK 30.23      

AT2G40316 (na) FILIT(ph)LLFIS(ph)S(ph)R    -0.01   

AT2G40960 (na) S(ph)VEERKEDY(ph)DR -10.00   -10.00   

AT2G41960 (na) SVFKSDS(ph)DLDVSK -20.23      

AT2G42480 (na) LDS(ph)LKSKLDEISLER -0.18      

AT2G42760 (na) DKENLNGKS(ph)R -0.22      

AT2G43255 (na) Y(ph)ADEHTM(ox)GVDTKK -3.59      

AT2G44200 (na) NRS(ph)PKGGVER -19.27 0.1900  -3.40   

AT2G44200 (na) S(ph)EAG(s)(s)ASEKPDQS(ph)APGALFEEK 27.60      

AT2G44240 (na) ET(ph)KAT(ph)QVWQK 1.91      

AT2G44380 (na) MKS(ph)LMK 3.04      

AT2G45900 (na) IIIGNNGVFET(ph)K -14.68      

AT2G46470 (mit) SSVLNQRIRT(ph)LER -6.46      

AT2G47230 (na) RSLNLEKSAET(ph)LTK -22.60      

AT2G47510 (TCA) LS(ph)GGT(ph)TVTALR -1.46      

AT2G48060 (na) SMWTVLDY(ph)LR 2.09      

AT3G01810 (na) VLGLSS(ph)KNRR 28.27      

AT3G02650 (na) EVLKLM(ox)ES(ph)R 4.23      

AT3G04560 (na) RT(ph)NEDPDAEENKR -22.59      

AT3G04820 (na) IPM(ox)NKPVEKVGS(ph)TEEIEDES(ph)MK -21.37      

AT3G04960 (na) M(ox)RKET(ph)ELM(ox)ETSLK 0.18 0.1038  -1.71   

AT3G05070 (na) ASEDES(ph)IEQKAAAR -0.62      

AT3G05340 (na) RM(ox)KAMGVT(ph)K -9.53   -10.00   

AT3G07530 (na) LISGEPS(ph)FGHLK -21.49      

AT3G07640 (na) KAS(ph)LHYVQVATETET(ph)S(ph)R    -10.00   

AT3G08820 (na) (ac)M(ox)SIVTVPS(ph)AT(ph)S(ph)K    0.58   

AT3G10420 (na) VGDFS(ph)DDNRSGIDRSLHR -0.04      

AT3G11350 (na) SEKKY(ph)LDR -1.50      

AT3G11750 (C1) NLLETVAELIAS(ph)K 0.76      

AT3G13857 (na) FSRS(ph)ISSSSVLR -20.58      

AT3G14190 (na) ALNDITNKS(ph)GIHAKAAAS(ph)S(ph)K       

AT3G14870 (na) FT(ph)ELRSM(ox)KPR 0.42      

AT3G15040 (na) QLQRSKS(ph)GLK 29.46      

AT3G15110 (na) AT(ph)T(ph)QPGDSSSGDNSEVNKSNEDQS(ph)SGD -21.20 0.0605     

AT3G18420 (na) SAILIGAAVSM(ox)T(ph)GK 0.92      

AT3G18779 (na) (ac)M(ox)TVTCS(ph)IRVLHDSSVFLVVNLNR 0.44  2.36E-01 0.21   

AT3G19085 (na) DFLIGIS(ph)SVR -1.64      

AT3G20155 (na) VEAPS(ph)IGTAETK -20.31      

AT3G22150 (na) ELPIVIVNS(ph)LMVMY(ph)SR -22.41      

AT3G22430 (na) ES(ph)KPM(ox)M(ox)IGVQKT(ph)ADK    -10.00   

AT3G23540 (na) AKFDIMELNT(ph)IK 0.10      

AT3G24750 (na) AVKFFT(ph)PKIM(ox)MELK 27.84      

AT3G25570 (PAM) IIIKT(ph)CGTTK 29.58      

AT3G25720 (na) RSSTS(ph)APSTLRK -22.22      

AT3G26240 (na) YS(ph)KPNMVDILNLFK -0.67      

AT3G27300 (OPP) QGS(ph)RGPAEADQLLK -21.91      

AT3G27380 (TCA) MAS(ph)GLIGRLVGT(ph)KPS(ph)K -21.23      

AT3G27470 (na) RPS(ph)QMMR -20.94      

AT3G27600 (na) ASYI(s)(t)GGLVVEKVMR -20.97      

AT3G27610 (na) FLVGGRNVDS(ph)VFK -2.11 1.6400  -2.91   

AT3G29080 (na) RST(ph)IKVAYDEIFM(ox)ELSPSLK -22.34   -10.00   

AT3G29633 (na) (ac)KVPCDPLYT(ph)APR    -10.00   

AT3G30845 (na) ET(ph)IM(ox)NMNMMTLK -0.13      

AT3G32050 (na) FKDVDFWIT(ph)MM(ox)QNK 29.49      

AT3G42800 (na) GS(ph)INENVSSSSSS(ph)PSPNK 31.25      

AT3G43890 (na) YETTQ(t)(s)LDLR -19.70      

AT3G43940 (na) YM(ox)LN(s)DGR(t)M(ox)GALSQEIGK -23.43      

AT3G44960 (na) S(ph)KS(ph)LGASTTNK -1.46      

AT3G46150 (na) (ac)MVT(ph)SSQVM(ox)LMPAHDSAK    3.22   

AT3G47910 (na) SQLS(ph)GTNGER -19.72      

AT3G48680 (mit) Y(ph)VTVGAYSLLR 1.60      

AT3G49290 (na) S(ph)AT(ph)FSFTSTIPKK 27.45   10.00   

AT3G49290 (na) Y(ph)ILPAGEIMT(ph)ATNLEKLK -1.04      

AT3G50380 (na) VGY(ph)EVYADGLTRVIR -21.16      

AT3G50420 (na) T(ph)LLSACVNTR -23.39      

AT3G50740 (sec) T(ph)LKSLQDPK -18.92      

AT3G51760 (na) (ac)ILYLT(ph)VEEMM(ox)DINR    -10.00   

AT3G53010 (na) AAM(ox)AS(ph)GGGGS(ph)YR -1.79      

AT3G53360 (na) VS(ph)VS(ph)NS(ph)QILAT(ph)SSVVST(ph)IK 0.13  3.35E-01 -0.57 0.5252 3.35E-01 

AT3G53700 (na) S(ph)GS(ph)FDDMKKILEDMK 1.26      

AT3G55160 (na) Y(ph)VPLASLT(ph)RRLGAK -22.16      

AT3G56120 (na) M(ox)FDES(ph)KFDVNLK 0.56      

AT3G56360 (na) KRGGS(ph)VVSR -22.63      

AT3G56410 (na) SD(t)(s)(s)EKSILR -3.45      

AT3G56810 (na) RLEVS(ph)PPTTR -21.12      

AT3G56940 (tet) MS(ph)AS(ph)SSPPPPTTATSKSK 10.60      

AT3G57380 (na) IHDELTVE(s)(s)LMLGNK -0.60   0.10   

AT3G57780 (na) QM(ox)VETLET(ph)RVEKLEEELR 0.75      

AT3G59120 (na) LSHTPHLPT(ph)K -22.08      

AT3G59260 (na) (ac)M(ox)KVMVLS(ph)LGKASPSK -0.16   -0.39   

AT3G60100 (TCA) ILPS(ph)AES(ph)GEEPLPESLLWLLLTGK 0.81 0.1300 9.05E-01 0.71 0.8004  

AT3G60920 (na) S(ph)LTSSKDNAAQKSSTKPK -0.78 0.1400  -0.01   

AT3G61170 (na) M(ox)VEIY(ph)SKVDEM(ox)MLLIK -1.36      

AT3G61720 (na) LT(ph)EM(ox)T(ph)PLK -14.65      

AT3G63410 (sec) (ac)M(ox)AS(ph)LM(ox)LNGAITFPK    2.00   

AT4G01150 (na) ASSEETSSIDTNELITDLK    -10.00   

AT4G01290 (na) QPNY(ph)GMPPPGS(ph)QVNR -18.95 0.0465     

AT4G01290 (na) LSSISTPT(ph)EIQGYPIK 4.27 0.0465     

AT4G01535 (na) LM(ox)LIES(ph)LNLLK 29.26      

AT4G02030 (na) M(ox)KDLIS(ph)GWIQK 0.09      
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   replicate 1 replicate 2 

accession category pPeptide log2(ahk1/wt) sd p-value log2(ahk1/wt) sd p-value 

AT4G02110 (na) SS(t)(s)PGSGLIR -20.97      

AT4G02110 (na) S(ph)IRRHSSLA(t)Y(s)R -19.56      

AT4G02550 (na) VKKES(ph)S(ph)HHLNDVK -22.20      

AT4G03070 (sec) Y(ph)STGLFSIPK 2.46      

AT4G03130 (na) SSPVSGAKGCQS(ph)LAK -16.94      

AT4G08320 (na) S(ph)GCQTFDVNSLAETLK -0.41      

AT4G10265 (na) (ac)MS(ph)SAS(ph)KTWM(ox)VAASIGAVEALK    10.00   

AT4G10465 (na) TTAHISY(ph)FRMSRK -2.75      

AT4G12900 (na) (ac)M(ox)ASSSSLASST(ph)K    1.61   

AT4G13030 (na) GGDTFKDDVVDEES(ph)SR 0.16      

AT4G13200 (na) NPDAVVVAS(ph)VT(ph)STSTVES(ph)K -10.00   -10.00   

AT4G14120 (na) YT(t)(s)QNLMASKLR -20.69      

AT4G14180 (na) LLNFLS(ph)LR -17.44      

AT4G16460 (na) S(ph)S(ph)T(ph)STGAESSNTGATDAK 1.92      

AT4G17000 (na) LEKNSAS(ph)RLK 28.34      

AT4G17250 (na) CLVT(ph)AVEVR -1.04      

AT4G17616 (na) M(ox)VLSGY(ph)YK -24.52   -10.00   

AT4G19350 (na) KSFKS(ph)TLR 27.47      

AT4G19460 (na) AWELY(ph)QEENKK 0.94      

AT4G21300 (na) MS(ph)ISSVAKR -14.04      

AT4G22190 (na) M(ox)S(ph)FGAPTTRK -0.98      

AT4G22430 (na) TCEKHMY(ph)KISR 10.00   10.00   

AT4G22670 (na) SFVVEES(ph)DDDMDETEEVKPK 1.30 0.1187     

AT4G23895 (na) 
S(ph)GSGFVSNSWIT(ph)GLLALPAAAFM(ox)LQDQEALAAEM(ox)E

R 
   1.06   

AT4G24150 (na) HVES(ph)S(ph)HQS(ph)SHHNDIRT(ph)AKNDT(ph)S(ph)QLVR       

AT4G24300 (na) FS(ph)RQVLSLLFPSK 2.15      

AT4G24320 (na) HQY(ph)IYLMSKSGRGK -1.22      

AT4G24490 (sec) S(ph)KDLN(s)LV(t)LDR -21.64      

AT4G24972 (na) M(ox)LLLS(ph)PGTGK 0.70      

AT4G25310 (sec) ERLS(ph)VASFHNTGFGK 0.56      

AT4G25770 (na) LYEQPGEVDSLDS(ph)PSK    -10.00   

AT4G25845 (na) M(ox)VLS(ph)S(ph)ICLYPDK    -0.90 0.5851  

AT4G26630 (na) KT(ph)S(ph)PT(ph)AGSSS(ph)S(ph)K    -10.00   

AT4G26965 (mit) FAGLFS(ph)S(ph)KSFIGVDK -22.63      

AT4G27040 (na) T(ph)DMMKEQLSTFR -23.94      

AT4G27585 (na) DHQETQALDETDLEELEDM(ox)GEK    -0.98   

AT4G30790 (na) AS(ph)QYT(ph)ALRASAVK -22.04      

AT4G31080 (na) AAAATVLASKLGADS(ph)GLK 4.25      

AT4G31440 (na) S(ph)M(ox)NGTPGKHSLEK -22.23      

AT4G31520 (na) FYTYLQAY(ph)AK 1.45      

AT4G32130 (na) S(ph)QGVPS(ph)LTSLLPASR -21.16      

AT4G32285 (na) S(ph)FGDVNEIGAR -21.39 0.2122     

AT4G32620 (na) LAVKIS(ph)GTTK -18.87      

AT4G34690 (na) NALYM(ox)HRLDEIT(ph)K -1.48      

AT4G35140 (na) S(ph)PVS(ph)KS(ph)ESSSS(ph)PK 2.47 0.5290  1.24 0.7496 2.24E-01 

AT4G36120 (na) FSIQEM(ox)QGS(ph)S(ph)T(ph)K    10.00   

AT4G36980 (na) QLT(ph)KQIK 5.58      

AT4G38260 (na) EGFQQLLAENGS(ph)GEFPVK -0.38      

AT4G38550 (na) EQIEDFYEQDDDVT(ph)PR    0.90   

AT4G38560 (na) T(ph)PLDKQS(ph)K -14.73      

AT4G39690 (na) SVLELS(ph)S(ph)RLSIK 1.80      

AT5G02060 (na) (ac)MKKM(ox)IGS(ph)PGTMSGLILR 4.56  2.66E-01 3.32 1.2925  

AT5G02520 (na) NLKDNPAES(ph)REK -21.17      

AT5G03495 (na) M(ox)DES(ph)AIKGM(ox)K -2.00      

AT5G03660 (na) DQLSESM(ox)S(ph)FSSQM(ox)K    -10.00   

AT5G03900 (na) MLTERCLS(ph)TR -43.57      

AT5G04750 (mit) (ac)M(ox)SSARS(ph)AITK 1.32  3.63E-01 10.00   

AT5G04810 (na) S(ph)IGS(ph)SSSSSSPSPIPSPKTPLK -1.21      

AT5G07630 (na) LGSLVVRM(ox)VFLPFEES(ph)SY(ph)TIFAR -20.49      

AT5G07630 (na) RDGPES(ph)EENVTRILK 1.84      

AT5G07830 (na) IMDPS(ph)Y(ph)LS(ph)QVSKTFK 0.06      

AT5G07940 (na) ETQS(ph)GHVGSRPSTSRK -20.85      

AT5G08050 (na) SGFSLS(ph)TIER 0.95 0.1543     

AT5G08415 (Co) KS(ph)LMELEGK -20.23      

AT5G08415 (Co) TY(ph)GESIGFR 0.89      

AT5G08720 (na) IALMM(ox)NLS(ph)LAY(ph)K    -10.00   

AT5G08770 (na) ELIS(ph)DTYRLATIGR 10.37      

AT5G10840 (na) VKVNKLT(ph)SIK -0.28      

AT5G11600 (na) AQTTST(ph)VVSLVK 6.83      

AT5G11660 (na) MKPS(ph)FSISKPK 0.61      

AT5G12930 (na) DS(ph)SGSHKR -7.97      

AT5G12930 (na) AVLEAPVDS(ph)VK 2.63      

AT5G14370 (na) KKEPDT(ph)T(ph)PFK 4.83      

AT5G14710 (na) M(ox)ES(ph)LDTNFPVRHRK 1.50      

AT5G18390 (na) Y(ph)ESM(ox)WKILK 2.80      

AT5G19050 (na) L(s)K(s)S(ph)S(ph)MAGGGSGSGDY(ph)GGPIK 28.14      

AT5G19820 (na) SIVDEIKQVMTAS(ph)SSR -21.93      

AT5G19950 (na) S(ph)LVT(ph)EISSLIGGGNK 0.59      

AT5G21005 (na) S(ph)MEKYIVGK 27.88      

AT5G21130 (na) QPAGNVT(ph)VIVTVLK -1.95   -3.90   

AT5G21970 (na) CLM(ox)MS(ph)VDKK 3.20      

AT5G22120 (na) ESEKT(ph)DESLK 0.96      

AT5G23430 (na) ETKSIGRSSTSQN(s)E(s)SMK 31.22      

AT5G24530 (sec) M(ox)KLYS(ph)DDPTKTTR -10.73      

AT5G25280 (na) RRSAY(ph)EPR -2.38      

AT5G25754 (na) EFNKILLY(ph)IFK 4.93      

AT5G25970 (na) KEY(ph)PFNRVPK 29.08      

AT5G26160 (na) VIIVS(ph)NVQAT(ph)RK 3.60      

AT5G27110 (na) (ac)M(ox)ESSKLLS(ph)LLR 10.00   10.00   

AT5G27330 (na) VVALEKT(ph)NEAT(ph)GK 4.52      

AT5G28420 (na) QHPIAHGQYAFNAILS(ph)R 0.03      

AT5G28500 (na) (ac)MLSLTATTLS(ph)SSIFT(ph)QSK    1.22   

AT5G28730 (na) VLSAAIS(ph)DDPLFHVPPDS(ph)KYYLVDSGYANK 28.87      

AT5G28823 (na) S(ph)IQDYFLPAVS(ph)IDS(ph)AT(ph)TK 0.68   0.44   

AT5G34940 (na) VIFGLNALS(ph)GRS(ph)IK 0.00   -0.88   

AT5G35300 (na) M(ox)ALILPY(ph)R -0.54  3.94E-01 -0.77  3.94E-01 

AT5G35405 (na) IGVPVS(ph)FE 0.84      

AT5G37960 (na) LATIIY(ph)KR 29.73      
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   replicate 1 replicate 2 

accession category pPeptide log2(ahk1/wt) sd p-value log2(ahk1/wt) sd p-value 

AT5G38220 (na) RGNEIVAIY(ph)IK -0.78      

AT5G40405 (na) MRET(ph)GLQVHGMTIR -22.06      

AT5G40450 (na) T(ph)ISVLDDSK 1.42 0.6613     

AT5G40530 (na) (ac)TT(ph)EENKT(ph)S(ph)RNR    10.00   

AT5G41470 (na) AS(ph)M(ox)VNVT(ph)SIIVTRNLITK -23.11      

AT5G42680 (na) S(ph)SGSIGGGVLKMFK -24.03      

AT5G43160 (na) RLY(ph)NAWRSIS(ph)NLYNSVSMK -10.00   -10.00   

AT5G43211 (na) (ac)M(ox)ILYY(ph)M(ox)YCCGILVK    0.31   

AT5G47490 (na) LKSS(ph)G(s)VAG(s)R -1.05      

AT5G47890 (mit) (ac)M(ox)AWRGS(ph)ISKSMK -0.22 0.2417  -0.45   

AT5G50510 (na) EALKILT(ph)DASK -21.07      

AT5G50940 (na) (ac)M(ox)SQSDSS(ph)PTKKQK 0.96  8.82E-01 -1.52 6.3209 8.82E-01 

AT5G52680 (na) APAPT(ph)PKPAPAPPSVPAS(ph)VAAY(ph)ANM(ox)R 32.42      

AT5G53120 (PAM) (ac)MEGDVGIGLVCQNT(ph)MDGK    -10.00   

AT5G53730 (na) M(ox)S(ph)QIS(ph)ITSPK -1.98      

AT5G53750 (na) S(ph)VS(ph)SAARM(ox)ARK -0.42      

AT5G54870 (na) VT(ph)WT(ph)WY(ph)FISR    -10.00   

AT5G55210 (na) TS(s)RY(ph)(s)GPAAT(ph)AVFSGRVR -20.74 0.1796     

AT5G55740 (na) (ac)M(ox)ASLPFNTIPNKVPFSVS(ph)SK 0.71   0.48   

AT5G55820 (na) KFAPTWASKS(ph)NVR 28.45      

AT5G55840 (na) M(ox)Y(ph)DPARHILK    10.00   

AT5G57250 (na) FLRYLY(ph)R -19.38      

AT5G57590 (sec) RLGEFNRT(ph) -20.67      

AT5G58780 (na) TVQEIEEAT(ph)RSYKK -21.25      

AT5G58970 (mit) IPT(ph)GDGENLPK -1.24      

AT5G58990 (na) (ac)MAMT(ph)LM(ox)NRAISR 1.06   1.23 0.4342 7.98E-02 

AT5G61020 (na) LGYQSAAYNAKGS(ph)Y(ph)GK -20.49      

AT5G61120 (na) FNING(t)PLLIF(s)SKLLDK -23.28      

AT5G64130 (na) AYFDS(ph)ADWALGK -22.90      

AT5G64190 (na) Y(ph)DVIKLVNEKLMS(ph)R -13.32      

AT5G64910 (na) KAY(ph)QEMRLYK -21.44      

AT5G65560 (na) TYTVLIKS(ph)LCGS(ph)ER 1.94      

AT5G65925 (na) SFT(ph)LNSATTTRER -21.20      

AT5G66200 (na) ENPNS(ph)T(ph)SATALPK 4.78      

AT5G67245 (na) T(ph)LRS(ph)FFSSLIKS -1.38      

ATMG00630 (na) (ac)MPSPILPM(ox)LPIS(ph)HLIGTEVR    4.19   
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A34: Phosphopeptides which were quantified in ahk1-3 and Ws-2 in an 

experiment with a reciprocal metabolic labeling experimental design 

and 10min treatment with mock 

Phosphopeptides (pPeptides) which were quantified in ahk1-3 (ahk1) and the wildtype (wt) Ws-2 in an 

experiment with metabolic labeling after 10min treatment with mock, are listed in the tables of their 

respective functional category. The log2-values of the ratio of normalized phosphopeptide ion 

intensities of ahk1-3 and Ws-2 (log2(ahk1/wt)) reveal more pPeptide abundance in ahk1-3 (log2>0) or 

in wt (log2<0). sd gives the standard deviation, p-values show the respective statistical significance. 

Data were obtained from Waltraud X. Schulze. 

 

cell.organisation 
accession  pPeptide log2 (ahk1/wt) sd p-value 

AT4G14390  FWIS(ph)NM(ox)LIINK -0,7610 0,512 2,26E-01 

AT4G39050  ATHIPY(ph)RDS(ph)K -1,0968 0,302 1,79E-02 

 

cell.vesicle transport 
accession  pPeptide log2 (ahk1/wt) sd p-value 

AT3G11820  (ac)M(ox)NDLFSSSFS(ph)R NaN  1,00E+00 

AT3G11820  ASS(ph)FIRGGTDQLQTAR 0,8621 0,645 2,28E-01 

AT4G12770  FENVFSSIS(ph)SSPTK -0,4244 0,281 7,51E-01 

AT4G12770  FENVFSSISS(ph)SPTK NaN  1,00E+00 

AT4G12770  FENVFSSISSS(ph)PTK 0,6893 0,262 1,33E-01 

 

development. 
accession  pPeptide log2 (ahk1/wt) sd p-value 

AT1G15750  APS(ph)PVNNPLLGGIPK 0,1466 0,043 7,17E-01 

AT1G80490  APS(ph)PVNNPLLGSLPK -0,1908 0,081 5,79E-01 

AT3G18390  GFALIY(ph)YR NaN  1,00E+00 

AT3G48740  LGTVSS(ph)PEPISVVR -0,4667 0,212 9,69E-01 

 

protein.degradation 
accession  pPeptide log2 (ahk1/wt) sd p-value 

AT1G66670  VMIHQPLGT(ph)AGGK NaN  1,00E+00 

AT3G51800  (ac)S(ph)SDDERDEKELSLTSPEVVTK -0,6569 0,191 1,65E-01 

 

protein.posttranslational modification 
accession  pPeptide log2 (ahk1/wt) sd p-value 

AT1G12310  SIIASENLS(ph)SPFDFNRFLDLMAK NaN  1,00E+00 

AT1G22280  TDQAILSNS(ph)SDLGR 0,6573 0,499 2,43E-01 

AT2G17700  VQIESGVMT(ph)AETGTYR -2,2735 1,722 1,82E-01 

 

RNA.regulation of transcription 
accession  pPeptide log2 (ahk1/wt) sd p-value 

AT2G02070  TPNSDAEVIALS(ph)PK NaN  1,00E+00 

AT2G41900  NVVEPIS(ph)PMSAR -0,3590 0,115 5,71E-01 

AT3G61260  IALESES(ph)PAK 0,4002 #DIV/0! 1,00E+00 

AT4G22140  LSLFS(ph)HLLY(ph)R -0,2982 #DIV/0! 1,00E+00 

 

signaling. 
(Ca) calcium; (G) G-proteins; (RK) receptor kinases; (14) 14-3-3 proteins 

accession category pPeptide log2 (ahk1/wt) sd p-value 

AT1G06840 (RK) LAPVPDMEGIS(ph)PQHVSTVVK -0,3949 0,181 2,75E-01 

AT1G34300 (RK) ISEGS(ph)M(ox)LGS 0,1091 0,098 6,50E-01 

AT1G34300 (RK) ISEGSM(ox)LGS(ph) NaN  1,00E+00 

AT1G53430 (RK) LNDDENTHIS(ph)TR 0,5312 0,322 6,28E-01 

AT2G43130 (G) (ac)S(ph)DDDERGEEYLFK 0,7111 0,331 3,15E-01 

AT3G02880 (RK) LIEEVSHSSGS(ph)PNPVSD -1,2614 0,694 1,35E-01 

AT3G14840 (RK) LDEEENTHIS(ph)TR 0,6910 #DIV/0! 1,00E+00 

AT4G13350 (G) DLGSAS(ph)PPVARPVR -0,1432 0,042 9,79E-01 

AT4G29900 (Ca) (ac)SGQFNNS(ph)PRGEDK -0,2562 #DIV/0! 1,00E+00 

AT4G33050 (Ca) SLS(ph)FNSWEVPK 0,6609 #DIV/0! 1,00E+00 

AT4G35310 (Ca) NSLNIS(ph)MRDA 0,2415 0,031 3,62E-01 

AT5G16050 (14) (ac)S(ph)SDSSREENVYLAK -0,4345 0,084 1,67E-01 

AT5G16590 (RK) LIEEVSRSPAS(ph)PGPLSD 0,2222 0,054 1,71E-01 

AT5G20480 (RK) TLANIS(ph)SLER NaN  1,00E+00 

 

stress. 
(a) abiotic; (b) biotic 

accession category pPeptide log2 (ahk1/wt) sd p-value 

AT1G11310 (b) SVENYPSSPS(ph)PR -0,0031 0,001 8,86E-01 

AT5G56030 (a) EIS(ph)DDEEEEEK -0,2300 #DIV/0! 1,00E+00 

AT5G56030 (a) EIS(ph)DDEEEEEKKDEEGK -1,2245 #DIV/0! 1,00E+00 
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transport. 
(ABC) ABC transorters; (am) ammonium; (ATP) p- and v-ATPases; (Ca) calcium; (Aq) Major Intrinsic Proteins; (K) potassium; (su) sugars 

accession category pPeptide log2 (ahk1/wt) sd p-value 

AT1G75220 (su) (ac)S(ph)FRDDNEEAR 0,1006 0,027 4,11E-01 

AT2G18960 (ATP) GLDIDTAGHHYT(ph)V -0,4294 0,225 3,62E-01 

AT3G53420 (Aq) SLGS(ph)FRS(ph)AANV 0,2657 0,141 5,16E-01 

AT3G53420 (Aq) SLGS(ph)FRSAANV 0,1187 0,040 8,24E-01 

AT3G53420 (Aq) SLGSFRS(ph)AANV -0,5718 0,383 9,90E-01 

AT3G58730 (ATP) GIS(ph)INAAR NaN  1,00E+00 

AT3G62700 (ABC) SIS(ph)IESPRQPK 1,0170 0,698 2,47E-01 

AT4G13510 (am) ISSEDEMAGMDMT(ph)R -0,5465 0,245 3,75E-01 

AT4G23640 (K) SIS(ph)EANIAGSSR 0,8788 0,473 2,89E-01 

AT4G30190 (ATP) GLDIETPSHYT(ph)V -0,5369 0,231 2,50E-01 

AT4G30190 (ATP) LKGLDIETPSHYT(ph)V -0,6039 0,154 3,68E-01 

AT4G35100 (Aq) ALGS(ph)FRS(ph)NATN 0,1348 0,043 9,71E-01 

AT4G35100 (Aq) ALGS(ph)FRSNATN 0,1965 0,088 9,87E-01 

AT4G35100 (Aq) ALGSFRS(ph)NATN 0,4956 0,218 4,79E-01 

AT5G17010 (su) SSGEIS(ph)PEREPLIK 0,1720 0,125 6,30E-01 

AT5G57110 (Ca) (ac)TSLLKS(ph)SPGR 0,0588 0,011 3,85E-01 

AT5G57110 (Ca) (ac)TSLLKS(ph)SPGRR 0,3949 #DIV/0! 3,85E-01 

AT5G57110 (Ca) (ac)TSLLKSS(ph)PGR 0,0380 0,005 8,37E-01 

AT5G60660 (Aq) ALGSFGS(ph)FGSFR 0,1400 0,068 2,68E-01 

AT5G60660 (Aq) ALGSFGSFGS(ph)FR NaN  2,68E-01 

 

others - cell wall. 
accession  pPeptide log2 (ahk1/wt) sd p-value 

AT1G53840  (ac)MDSVNS(ph)FKGYGK -0,1986 0,049 5,63E-01 

AT1G65570  SIEEQGVENVT(ph)VK NaN  1,00E+00 

AT3G29360  DLSMNKFDWDHPLHLQPMS(ph)PTTVK 0,2978 0,109 6,64E-01 

AT3G29360  FDWDHPLHLQPMS(ph)PTTVK 0,8033 0,301 8,30E-02 

AT3G51160  (ac)ASENNGS(ph)RSDSESITAPK -0,4611 0,222 2,43E-01 

AT3G51160  (ac)ASENNGSRS(ph)DSESITAPK NaN  2,43E-01 

 

others - cell.division 
accession  pPeptide log2 (ahk1/wt) sd p-value 

AT2G21280  ALLGEGAT(ph)VVLEGQK -0,0254 0,007 4,41E-01 

 

others - DNA.unspecified 
accession  pPeptide log2 (ahk1/wt) sd p-value 

AT3G42170  (ac)MEVYNDDTEMRS(ph)PETQPIK 0,4053 #DIV/0! 1,00E+00 

 

others - gluconeogenesis / glyoxylate cycle. 
accession  pPeptide log2 (ahk1/wt) sd p-value 

AT4G15530  GGM(ox)T(ph)SHAAVVAR 0,3066 0,158 8,02E-01 

AT4G15530  GGMT(ph)SHAAVVAR -0,0510 0,042 9,57E-01 

 

others - glycolysis. 
accession  pPeptide log2 (ahk1/wt) sd p-value 

AT1G07110  SLS(ph)ASSFLIDTK 0,8413 0,648 2,02E-01 

AT1G53310  M(ox)AS(ph)IDVHLR 0,1581 0,088 4,01E-01 

AT1G53310  MAS(ph)IDVHLR 0,3080 0,264 7,20E-01 

AT1G70730  ATGAFILTAS(ph)HNPGGPTEDFGIK 0,6248 0,341 2,29E-01 

AT2G42600  M(ox)AS(ph)IDAQLR 0,2528 0,106 7,51E-01 

AT2G42600  MAS(ph)IDAQLR -0,2353 0,120 8,01E-01 

AT3G52930  LGDGAAES(ph)LHVK -2,1329 1,134 4,40E-02 

 

others - hormone metabolism. 
accession  pPeptide log2 (ahk1/wt) sd p-value 

AT2G34680  PVIS(ph)SNLIK NaN  1,00E+00 

AT2G34680  PVISSNLIK NaN  1,00E+00 

AT4G27450  RGS(ph)EANWSL 0,6969 0,412 1,07E-01 

AT4G27450  VDVYNRVNS(ph)IPR -0,5122 0,335 3,44E-01 

AT5G43830  VDS(ph)SQNWAGHI 0,0545 0,025 8,15E-01 

 

others - lipid metabolism. 
accession  pPeptide log2 (ahk1/wt) sd p-value 

AT3G05630  (ac)S(ph)TDKLLLPNGVK -0,9186 0,336 3,79E-02 

AT5G35360  LLEEAPSPALT(ph)AELRK NaN  1,00E+00 

 

others - major CHO metabolism. 
(d) degradation; (s) synthesis 

accession category pPeptide log2 (ahk1/wt) sd p-value 

AT1G35580 (d) SVLDT(ph)PLSSAR -0,1529 0,113 7,23E-01 

AT1G74910 (s) RVS(ph)SFEALQPATR -0,2181 0,134 9,17E-01 

AT1G74910 (s) VSS(ph)FEALQPATR NaN  1,00E+00 

AT4G34860 (d) SLTELTGS(ph)PQLR -0,6762 0,210 3,23E-01 

AT5G20280 (s) INS(ph)AESMELWASQQK -0,9032 0,375 1,36E-01 

 

others - minor CHO metabolism. 
accession  pPeptide log2 (ahk1/wt) sd p-value 

AT5G40390  SDS(ph)GINGVDFTEK 0,3959 0,180 3,07E-01 

 

others - misc. 
accession  pPeptide log2 (ahk1/wt) sd p-value 

AT1G16610  VSS(ph)PPKPVSAAPK 1,3996 0,941 7,21E-02 

AT1G28030  T(ph)M(ox)TLESFGLEK 0,5867 0,286 4,66E-01 

AT2G30860  VYGPHFAS(ph)PK -0,1379 0,042 5,62E-01 

AT3G45190  IPNGSSSSEGEIS(ph)PR -1,3124 0,570 6,22E-02 

AT4G39480  DTILS(ph)FM(ox)LAGR NaN  1,00E+00 
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others - N-metabolism. 
accession  pPeptide log2 (ahk1/wt) sd p-value 

AT1G37130  SVS(ph)TPFM(ox)NTTAK 0,3633 0,114 1,77E-01 

AT1G37130  SVS(ph)TPFMNTTAK 0,7208 0,405 5,13E-01 

 

others - protein.  
(a) amino acid activation; (f) folding; (g) glycosylation; (s) synthesis; (t) targeting 

accession category pPeptide log2 (ahk1/wt) sd p-value 

AT1G26630 (s) (ac)S(ph)DDEHHFEASESGASK -0,1368 0,073 7,54E-01 

AT1G64790 (s) ALLEGGS(ph)DDEGASTEAQGR -0,0186 0,009 9,84E-01 

AT1G72160 (t) SMIPQNLGS(ph)FKEESSK -0,1296 0,047 6,94E-01 

AT2G41840 (s) ALS(ph)TSKPDPVVEDQA -0,8714 0,541 7,52E-01 

AT2G41840 (s) ALST(ph)SKPDPVVEDQA NaN  1,00E+00 

AT2G41840 (s) ALSTS(ph)KPDPVVEDQA 0,8761 0,332 1,67E-01 

AT3G57150 (s) EEVIEEVAS(ph)PK NaN  1,00E+00 

AT4G02510 (t) VGADDLS(ph)DSEK 0,5564 0,428 6,09E-01 

AT4G31700 (s) S(ph)RLSSAAAKPSVTA -0,1812 0,056 5,25E-01 

AT4G31700 (s) SRLS(ph)SAAAKPSVTA NaN  1,00E+00 

AT5G27640 (s) DGEVS(ph)DVEEDEYEAK 0,7354 0,727 2,54E-01 

 

others - photosynthesis 
(CC) calvin cycle; (LR) light reaction 

accession category pPeptide log2 (ahk1/wt) sd p-value 

AT2G46820 (LR) AT(ph)TEVGEAPATTTEAETTELPEIVK NaN  1,00E+00 

ATCG00020 (LR) (ac)T(ph)AILERR 0,8359 0,586 5,15E-01 

ATCG00270 (LR) (ac)T(ph)IALGKFTK -0,1778 0,145 7,42E-01 

 

others - redox. 
accession  pPeptide log2 (ahk1/wt) sd p-value 

AT1G21750  SADDASEVVS(ph)DKK -0,3846 0,077 1,17E-01 

AT3G08710  VTSIIDSVPES(ph)PQRP -0,5491 0,346 7,10E-01 

 

others - RNA 
(p) processing; (t) transcription 

accession category pPeptide log2 (ahk1/wt) sd p-value 

AT2G29210 (p) LPS(ph)PSIEQR -0,1549 0,073 2,63E-01 

AT3G26560 (p) YSVDMS(ph)PVK 0,1557 0,095 9,01E-01 

AT3G46780 (t) SQPLT(ph)ISDLIEK -0,4046 0,255 9,83E-01 

AT3G46780 (t) SQPLTIS(ph)DLIEK NaN  1,00E+00 

AT3G57660 (t) GVM(ox)NDLLS(ph)DGLLK -0,2418 0,084 8,24E-01 

AT5G52040 (p) ERVAS(ph)PENGAVR 0,1653 0,069 9,47E-01 

 

others 
(f) fermentation; (OPP) OPP; (TCA) TCA/org transformation; (na) not assigned 

accession category pPeptide log2 (ahk1/wt) sd p-value 

AT1G59900 (TCA) YHGHS(ph)MSDPGSTYR 0.3567 0.268 4.17E-01 

AT1G70770 (na) M(ox)TAIDS(ph)DDDGVVR 0.9766 0.684 3.25E-01 

AT1G70770 (na) MTAIDS(ph)DDDGVVR 0.4331 0.149 3.00E-01 

AT1G76850 (na) VALTSLQS(ph)LPR -0.2625 0.111 5.53E-01 

AT1G77120 (f) IIGVDFNS(ph)K 1.1782 0.728 2.24E-01 

AT2G20010 (na) VQMRIS(ph)EQIDSRIR 0.3800 0.340 9.21E-01 

AT2G37970 (na) IEMTS(ph)PVVTK 0.5034  1.00E+00 

AT2G46980 (na) LSQDKGS(ph)NDDPLIK NaN  1.00E+00 

AT3G05900 (na) TSESGSALS(ph)PEK -0.2015 0.111 6.87E-01 

AT3G09560 (na) FYDFQDDPPS(ph)PTSEYGSAR NaN  1.00E+00 

AT3G50620 (na) DIVEY(ph)FNRR -1.1647 0.322 4.42E-02 

AT3G63000 (na) GGPAVTPAGS(ph)FGR NaN  1.00E+00 

AT4G04790 (na) IYM(ox)SLIDAY(ph)AAS(ph)GK -0.5827 0.196 3.75E-01 

AT4G15802 (na) AEMGVEGT(ph)PPPASK 0.4648 0.342 4.12E-01 

AT4G16144 (na) NVVDLY(ph)IM(ox)LLR NaN  1.00E+00 

AT4G20220 (na) ENVSEAKLVVGM(ox)T(ph)IR -0.6395 0.223 2.22E-01 

AT4G32285 (na) S(ph)FGDVNEIGAR 0.5229 0.366 8.83E-01 

AT5G07760 (na) TVLSLY(ph)S(ph)VVGK NaN  1.00E+00 

AT5G35200 (na) VVEEKPAS(ph)PEPVK NaN  1.00E+00 

AT5G40450 (na) S(ph)LSDHIQKEPK -0.2503 0.087 2.82E-01 

AT5G40760 (OPP) STFRNDS(ph)FVR 1.0418 0.646 1.64E-01 

AT5G52290 (na) TEEM(ox)ILHS(ph)VR NaN  1.00E+00 

AT5G53420 (na) LGAGLVQS(ph)PLDR NaN  1.00E+00 

AT5G64430 (na) FSYNSYPDSTDS(ph)SPR -0.6770 0.410 3.54E-01 
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A35: Phosphopeptides which were quantified in ahk1-3 and Ws-2 in an 

experiment without metabolic labeling after 10min treatment with 0.3M 

mannitol or mock 

Phosphopeptides (pPeptides) which were quantified in ahk1-3 (ahk1) and the wildtype (wt) Ws-2 in an 

experiment without metabolic labeling after 10min treatment with 0.3M mannitol (ahk1.m; wt.m) or 

mock (ahk1; wt), are listed in the tables of their respective functional category. The log2-values of the 

ratio of normalized phosphopeptide ion intensities reveal more pPeptide abundance in ahk1-3 (log2>0) 

or in wt (log2<0). p-values show the respective statistical significance. Data were obtained from 

Waltraud X. Schulze. 

 

cell.organisation 
   ahk1.m/wt.m  ahk1/wt ahk1.m /ahk1 wt.m /wt 

accession  pPeptide log2 p-value log2 p-value log2 p-value log2 p-value 

AT1G04780  FEELEAIEDEFVT(ph)PPS(ph)SPTSSVK -1.95 1.11E-01  1.00E+00  1.00E+00 0.55 3.23E-01 

AT1G04780  LDS(ph)PEESSNGESSR 0.81 8.77E-02 0.66 1.35E-01 -0.12 6.15E-01 -0.27 5.49E-01 

AT1G04780  QLELALKLDS(ph)PEESSNGESSR  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT1G04780  VSDLLGDDDS(ph)PSR 0.30 4.58E-01 0.54 1.61E-01 -0.30 4.38E-01 -0.06 9.07E-01 

AT1G04780  VSDLLGDDDS(ph)PSRGGR  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT1G24460  EALTT(ph)DDDDNDDLGTHFNIEK -0.51 1.63E-01  1.00E+00  1.00E+00  1.00E+00 

AT1G42550  GVEFDDDLETEKS(ph)DGT(ph)IGER -1.25 3.77E-02 -0.01 9.92E-01 -0.61 1.64E-01 0.64 4.05E-01 

AT1G42550  NFANS(ph)FGR  1.00E+00 0.39 4.99E-01 -1.39 8.36E-02  1.00E+00 

AT1G42550  SGES(ph)VDDESENYLSDLGK -0.77 1.47E-01 -0.29 4.67E-01 -0.18 7.64E-01 0.31 6.00E-01 

AT1G42550  TSFSVPS(ph)PK 0.45 1.98E-01 0.52 9.90E-01 -0.82 6.97E-01 -0.75 1.22E-03 

AT1G47200  (ac)AETAETINTT(ph)ISSPPPESESSTTISAMTDPTSQEAASK  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT1G52080  DLSTTLS(ph)PTSEEK  1.00E+00 1.74 5.46E-02 -0.43 4.48E-01  1.00E+00 

AT1G63640  LVGPTS(ph)PR  1.00E+00 0.03 8.48E-01 -0.88 4.40E-02  1.00E+00 

AT2G31820  QVS(ph)FQGVNVENYQQSR  1.00E+00 -0.30 2.61E-01 0.01 4.85E-01  1.00E+00 

AT2G37080  TGS(ph)LES(ph)PLR  1.00E+00 0.92 3.11E-02  1.00E+00 -0.40 1.48E-01 

AT2G38750  S(ph)FFVEDEER 0.14 7.55E-01 0.98 5.19E-02 -0.36 5.46E-01 0.48 2.88E-01 

AT2G41740  AAAVAALSQVLVAENKKS(ph)PDT(ph)SPTR -0.57 6.58E-01  1.00E+00  1.00E+00 0.29 4.99E-01 

AT2G41740  ST(ph)SS(ph)NPADDIPLTEAK -0.20 5.68E-01 0.73 8.33E-02 -0.28 4.74E-01 0.65 6.94E-02 

AT2G41740  ST(ph)SS(ph)NPADDIPLTEAKDEEEASEVAGLEAK -1.78 5.16E-02  1.00E+00 1.36 1.39E-01  1.00E+00 

AT3G57410  AEALAALTSAFNS(ph)SPSSKSPPR  4.28E-01  1.00E+00  1.00E+00  4.52E-01 

AT3G57410  AEALAALTSAFNSSPS(ph)SKSPPRR  4.28E-01  1.00E+00  1.00E+00  4.52E-01 

AT3G57410  AEALAALTSAFNSSPSS(ph)KSPPRR  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT3G57410  KKS(ph)PDTSPSAEAK 1.39 2.26E-01 0.74 7.87E-01 -0.02 7.00E-01 -0.67 4.97E-01 

AT3G57410  SGLTSQAS(ph)QR 0.18 2.86E-01 0.25 6.18E-01 -0.96 1.32E-01 -0.90 3.01E-01 

AT3G57890  (ac)TEEQDLIDQS(ph)PPPSAPDPEPNSSTNPNSVIHPR -0.36 9.66E-01  1.00E+00  1.00E+00 0.75 7.67E-01 

AT4G16340  GPVSEGAGS(ph)PK -0.97 2.02E-01 0.45 7.84E-01 -0.35 9.26E-01 1.07 1.59E-01 

AT4G16340  LEGT(ph)PDNGYLWQR  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT4G16340  S(ph)ATIEEDVASISGRPFSDPGSSK -2.75 2.83E-02  1.00E+00  1.00E+00  1.00E+00 

AT4G16340  VNSQLAS(ph)PSQPYSLR  1.00E+00 0.48 3.86E-02 -0.68 9.79E-03  1.00E+00 

AT4G26760  ADPVMAS(ph)P  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT4G27430  DNDS(ph)EPEELLR 0.26 4.63E-01 0.50 1.42E-01 0.03 9.24E-01 0.27 3.53E-01 

AT4G30160  GRS(ph)PAFNALAATFESQNAR -2.10 1.58E-01 -2.31 1.42E-02 1.83 1.85E-02 1.63 2.90E-01 

AT4G30160  NLS(ph)TPPPVVR 0.57 1.63E-01 0.17 6.44E-01 -1.03 6.95E-02 -1.42 2.48E-02 

AT4G30160  S(ph)PAFNALAATFESQNAR -0.95 1.78E-01 -1.59 4.49E-02 1.20 2.10E-01 0.56 5.70E-01 

AT4G30160  SM(ox)SFS(ph)PDRVR  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT4G33200  TLITS(ph)PER 0.08 9.65E-01  1.00E+00  1.00E+00 -0.17 3.30E-01 

AT5G10470  SDAALLNLEEGS(ph)SPIPNPSTAAEDSR -0.48 3.87E-01 -0.09 4.76E-01 0.07 2.79E-01 0.45 2.90E-01 

AT5G20490  ENS(ph)GFGFLLTR 0.11 5.25E-01 -0.50 7.17E-02 1.17 1.17E-03 0.56 6.14E-02 

AT5G20490  GSPQSAGLS(ph)FLNR -0.76 2.12E-01 0.33 5.18E-01 -0.70 2.20E-01 0.38 2.70E-01 

AT5G20490  QQALAIS(ph)PTSR 0.10 2.72E-01  1.00E+00 0.06 7.83E-01  1.00E+00 

AT5G55230  EEAASSPVSGAADHQVPAS(ph)P  1.00E+00 1.69 1.00E+00 -0.70 1.85E-01  1.00E+00 

AT5G65460  SDAALFTLEEGS(ph)SPVQNPSTAAEDSR -0.12 8.13E-01 0.05 3.64E-01 0.33 3.37E-02 0.50 1.74E-01 

AT5G65460  SSSGSS(ph)SPGRSPVR  1.00E+00  3.64E-01  3.37E-02  1.00E+00 

AT5G65460  SVASSTQVSS(ph)PSSK 0.29 6.42E-01 -0.13 7.63E-01 0.24 5.59E-01 -0.18 8.68E-01 

 

cell.vesicle transport 
   ahk1.m/wt.m  ahk1/wt ahk1.m /ahk1 wt.m /wt 

accession  pPeptide log2 p-value log2 p-value log2 p-value log2 p-value 

AT1G06210  IELGLS(ph)S(ph)DEDEK 0.41 9.03E-02 0.84 6.03E-03 0.00 9.71E-01 0.42 1.67E-01 

AT1G08190  EDNNRSS(ph)FSQR 0.47 2.05E-02 0.19 4.08E-01 -0.58 2.45E-02 -0.86 4.83E-03 

AT1G08190  REDNNRS(ph)SFSQR  2.05E-02  1.00E+00  1.00E+00  4.83E-03 

AT1G08820  VTLVPPS(ph)DSPELSPINTPK 0.25 4.05E-01 -0.16 6.14E-01 0.81 5.96E-02 0.40 4.53E-01 

AT1G12360  GS(ph)DDGYSS(ph)DSVLR  1.00E+00 -1.23 9.76E-02 1.32 5.96E-02  1.00E+00 

AT1G12360  GS(ph)DDGYSSDSVLR -0.11 8.37E-01  1.00E+00  1.00E+00 0.72 2.16E-01 

AT1G64180  SQS(ph)PSSLQVK  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT1G76970  APPPVQIVDINHDDEDDES(ph)DDEFAR 0.05 6.04E-01 -0.38 6.84E-02 1.03 8.77E-03 0.61 3.31E-01 

AT2G20790  KGDGDDEES(ph)EDESAENVVNVEDFLVQK  1.00E+00  5.83E-02  7.91E-02 1.46 1.00E+00 

AT2G20790  RKGDGDDEES(ph)EDESAENVVNVEDFLVQK  1.00E+00  5.83E-02  7.91E-02  1.00E+00 

AT2G38410  DSSSIAGSSS(ph)PIPATVSTGK 0.29 3.88E-01 0.99 7.10E-02 -0.71 3.06E-01 -0.01 9.67E-01 

AT2G38410  HDAIASGSPLPVQASGS(ph)PLSVQASKPADSSPK -2.72 4.71E-04  1.00E+00  1.00E+00 2.81 4.64E-02 

AT2G38410  RS(ph)PDASPIITPPVSHPPLR  4.71E-04  1.00E+00  1.00E+00  4.64E-02 

AT2G38410  SLQQSNS(ph)FPTR -0.47 5.41E-01 0.24 6.15E-01 -0.53 3.51E-01 0.18 8.81E-01 

AT2G45200  ASGSM(ox)S(ph)PGVQVLR  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT2G45200  FTQGGYVDTGS(ph)PTVGSGR 0.48 2.00E-01 0.64 1.91E-02 -0.41 1.02E-01 -0.25 5.04E-01 

AT3G10380  ASQHDINT(ph)PR 2.25 7.37E-02  1.00E+00  1.00E+00 -2.14 5.65E-02 

AT3G11820  (ac)M(ox)NDLFSSS(ph)FSR 0.19 6.39E-01 1.17 3.71E-03 -0.41 1.69E-01 0.57 9.12E-02 

AT3G11820  LIS(ph)TGESER 0.59 1.55E-01 1.33 3.66E-02 -1.18 4.74E-02 -0.43 4.63E-02 

AT3G14090  S(ph)TSSIREM(ox)DLISPEAVSDLR -2.24 1.13E-01  1.00E+00  1.00E+00 1.40 1.00E+00 

AT3G17440  ELKDEEARNS(ph)PEVNK  1.00E+00  1.00E+00  1.00E+00 -3.89 1.02E-02 

AT3G52400  (ac)MNDLLSGS(ph)FK 1.10 1.95E-04 1.10 2.23E-04 0.11 4.44E-01 0.11 5.18E-01 
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   ahk1.m/wt.m  ahk1/wt ahk1.m /ahk1 wt.m /wt 

accession  pPeptide log2 p-value log2 p-value log2 p-value log2 p-value 

AT3G52400  TSVADGSS(ph)PPHSHNIEM(ox)SK  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT4G08180  DFLSSS(ph)SFK 1.65 1.00E+00 -0.03 4.80E-01 0.69 1.00E+00 -0.99 1.63E-02 

AT4G11380  TEDEDFAEGSEAGYSSSNPVDSAAS(ph)PPGNIPQPSGR -0.63 1.50E-01 0.29 1.48E-01 0.17 1.41E-01 1.10 2.69E-02 

AT4G11740  EAPVNDDDEM(ox)DIDDVIPAPQS(ph)PLSM(ox)FNAAR  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT4G11740  LAAPSSPFDDDS(ph)DDVDEQPLVR -0.71 2.61E-01 -0.14 8.31E-01 0.48 4.94E-01 1.05 1.18E-01 

AT4G12770  AS(ph)VNSPTASQM(ox)DELDDFSIGR -0.24 6.73E-01 -0.02 1.00E+00 -0.25 4.39E-02 -0.03 3.99E-01 

AT4G12770  FENVFSSISSS(ph)PTK 0.91 8.13E-02 0.35 6.41E-01 0.39 6.03E-01 -0.17 3.61E-01 

AT4G12770  QQQENNNDLDSFFNSVSRPS(ph)SVPR  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT4G12780  QQQENTNDLDS(ph)FFSSISRPNSAPR  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT4G12780  QQQENTNDLDSFFSSISRPNS(ph)APR  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT4G21450  YLAQQQGEGADS(ph)V 0.35 2.76E-01 0.61 5.44E-02 -0.52 1.12E-01 -0.25 4.81E-01 

AT4G23460  TEDEDYVEGSETGYPEASGNPVDGAAS(ph)PSATTGYVTK -0.35 1.47E-01 -0.23 1.00E+00 0.39 1.00E+00 0.52 1.03E-01 

AT5G03540  ILQSSSAQGLTS(ph)SGGGSLEGGNSSGVSR -0.05 8.09E-01  1.00E+00  1.00E+00 0.09 6.88E-01 

AT5G08080  (ac)M(ox)NDLLKGS(ph)FELPR -0.31 4.79E-01 -0.78 2.93E-01 1.41 3.43E-02 0.93 6.23E-02 

AT5G08080  GQS(ph)SREGDVELGEQQGGDQGLEDFFK -1.40 1.00E+00  1.00E+00  1.00E+00 0.69 4.63E-02 

AT5G08080  GQS(ph)SREGDVELGEQQGGDQGLEDFFKK  1.00E+00  1.00E+00  1.00E+00  4.63E-02 

AT5G12370  SSS(ph)VNSVPLILDIEDFK -1.26 1.00E+00  1.00E+00  1.00E+00 -0.38 4.06E-01 

AT5G16880  ISAGVSSM(ox)S(ph)FK  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT5G46860  (ac)S(ph)FQDLESGR 0.23 5.97E-01 1.51 3.20E-03 -1.12 1.82E-02 0.17 5.50E-01 

AT5G58440  S(ph)PSSSSSDYIK 0.07 9.24E-01 0.56 5.28E-01 -0.49 5.98E-01 0.00 9.87E-01 

AT5G63640  ESQSVS(ph)PSSILQK  1.00E+00  4.05E-02  1.00E+00  4.83E-01 

 

development. 
   ahk1.m/wt.m  ahk1/wt ahk1.m /ahk1 wt.m /wt 

accession  pPeptide log2 p-value log2 p-value log2 p-value log2 p-value 

AT1G13980  LELFPDQESSQLGDDETVSNGLS(ph)SPENTTGS  1.00E+00  1.00E+00  3.61E-02  1.00E+00 

AT1G13980  LELFPDQESSQLGDDETVSNGLSS(ph)PENTTGS  1.00E+00  1.00E+00  3.61E-02  1.00E+00 

AT1G15750  APS(ph)PVNNPLLGGIPK 0.14 4.08E-01 0.29 3.74E-01 0.23 4.84E-01 0.38 4.46E-01 

AT1G32400  EKYGLDTSEFTYNPS(ph)ESHR  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT1G32400  QAAPVTGVPVAPTLDQRPS(ph)R -0.99 9.71E-02 1.15 2.74E-02 -0.54 2.01E-01 1.60 1.65E-02 

AT1G32400  QAAPVTGVPVAPTLDQRPS(ph)RSDPWSAR  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT1G32400  YGLDTSEFTYNPSES(ph)HR -0.43 5.69E-01 -0.10 9.69E-01 1.20 4.14E-01 1.52 2.19E-01 

AT1G48410  FYM(ox)EPET(ph)SDSGSM(ox)ASGSM(ox)AR -0.68 1.00E+00 -0.34 3.88E-01 -0.39 1.33E-01 -0.05 1.00E+00 

AT1G72410  NLS(ph)DLSLTDDSK -0.03 9.78E-01 0.89 1.93E-02 -0.63 4.74E-02 0.29 3.37E-01 

AT1G75500  APVSRNS(ph)IK  1.00E+00 0.88 3.63E-01 -1.03 1.63E-01  1.00E+00 

AT1G79280  RAPS(ph)PGGGSSTIVTLADR  1.00E+00  2.50E-01  1.00E+00  1.72E-01 

AT1G79350  FVEENYPLPEQPEPLS(ph)EDDSVK 0.15 2.19E-01 -0.20 3.65E-02 0.81 5.03E-03 0.46 6.93E-03 

AT1G79350  FVEENYPLPEQPEPLS(ph)EDDSVKELQR  1.00E+00  3.65E-02  5.03E-03  1.00E+00 

AT1G80490  APS(ph)PVNNPLLGSLPK 0.00 5.28E-01 0.25 4.80E-01 0.18 6.24E-01 0.43 5.82E-01 

AT1G80530  SS(ph)PLGSSDNLAK 0.35 4.20E-01 0.88 9.42E-02 -0.79 1.27E-01 -0.27 5.35E-01 

AT1G80530  SSPLGS(ph)SDNLAK 0.01 9.27E-01 0.14 7.17E-01 -0.24 4.07E-01 -0.11 7.37E-01 

AT2G19520  (ac)M(ox)ESDEAAAVS(ph)PQATTPSGGTGASGPK 0.19 5.70E-01 0.83 2.03E-02 -1.02 7.48E-03 -0.37 2.85E-01 

AT2G20330  GLGNINDS(ph)DDEGDM(ox)IGPPPPPPAAR -0.31 1.25E-01 -0.35 5.83E-02 0.69 7.91E-02 0.65 2.31E-02 

AT2G34350  TTLLDS(ph)PK 0.08 5.76E-01 1.07 2.71E-01 -0.59 5.26E-01 0.40 9.80E-01 

AT2G34350  TTLLDS(ph)PKLNSSSDVK  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT3G15880  ERPRS(ph)PPTNSLSM(ox)DYQTADSESVLK  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT3G18390  NLGLGS(ph)DDEDDVEDDEGGGINGGDVKPVTGEER  1.00E+00  1.00E+00  1.66E-01  7.44E-03 

AT3G28050  EVALVEDDNKANHEEANEADLDS(ph)PSGSQK  1.00E+00  5.78E-02  1.00E+00  1.00E+00 

AT3G48740  AEIEDGQT(ph)PK  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT3G48740  LGTVSS(ph)PEPISVVR 0.92 9.34E-03 0.64 4.37E-02 -0.36 2.07E-01 -0.64 4.43E-02 

AT4G01450  TNVNNGQLLVIPM(ox)T(ph)P 1.65 7.17E-02 1.60 8.08E-03 -0.31 3.53E-01 -0.36 2.43E-01 

AT4G11270  AAS(ph)LSTSKPSSSQEK -0.14 9.19E-01 -0.08 8.77E-01 -0.51 3.82E-01 -0.45 5.25E-01 

AT4G11270  FDFLHGIDS(ph)PASS(ph)PR -0.73 2.11E-01 -0.57 1.71E-01 -0.75 1.00E+00 -0.59 3.68E-01 

AT4G11270  SLS(ph)GISLNEPK  1.00E+00 0.94 4.59E-03 -0.32 1.66E-01  1.00E+00 

AT4G29860  IIQLPQSSPDES(ph)PNASTK  1.00E+00 0.54 2.30E-01 -0.08 3.64E-01  1.00E+00 

AT4G33400  FM(ox)NDNFAIS(ph)GSPEAPLVIATPM(ox)K  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT4G33400  S(ph)PSSSLDDVEAK 0.47 5.36E-01 0.60 2.57E-01 -0.04 9.36E-01 0.10 6.26E-01 

AT4G37060  (ac)MENES(ph)PSKK 0.55 4.76E-01  1.00E+00  1.00E+00 -0.38 2.95E-01 

AT4G37060  DSS(ph)IGSQEIK 0.25 1.06E-01 0.22 3.15E-01 -0.33 6.05E-02 -0.36 3.10E-01 

AT5G14120  REDQEPGLQT(ph)PDLILS(ph)EVEDEKPK -0.79 3.24E-01  1.00E+00  1.00E+00 0.94 5.64E-01 

AT5G16780  ADYEGS(ph)PVR  1.00E+00 0.10 1.00E+00  1.00E+00  1.00E+00 

AT5G16780  ADYEGS(ph)PVREHR  1.00E+00  1.00E+00  1.00E+00 0.47 1.00E+00 

AT5G46750  QEAAVVSS(ph)PK 3.30 3.13E-02 0.20 2.42E-01 -0.58 1.53E-01 -3.68 3.49E-03 

AT5G63420  AEGKENSRDDDELADAS(ph)DSETK  2.57E-01  1.00E+00  1.00E+00  1.00E+00 

 

protein.degradation 
   ahk1.m/wt.m  ahk1/wt ahk1.m /ahk1 wt.m /wt 

accession  pPeptide log2 p-value log2 p-value log2 p-value log2 p-value 

AT1G09730  LSS(ph)PTGEAEEMEK 0.49 3.40E-01 0.42 9.07E-02 -0.32 1.71E-01 -0.39 3.96E-01 

AT1G12760  RNS(ph)GVQDLSLGHLDTESSSVAK  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT1G20200  DNNTPS(ph)QSIISSSTSTM(ox)QNLK 0.45 6.08E-01  1.00E+00  1.00E+00  1.00E+00 

AT1G20200  TQDVEM(ox)KDNNTPS(ph)QSIISSSTSTM(ox)QNLK  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT1G27750  GLLNQHT(ph)PS(ph)PSAR  1.00E+00 0.68 7.03E-02 -0.45 1.08E-01  1.00E+00 

AT1G43690  SKPIEEEETGSGSQSGGES(ph)PEAK -0.05 8.76E-01 0.32 7.75E-01 -0.44 5.85E-01 -0.06 9.12E-01 

AT1G43910  GEDS(ph)SVEEEGEIEDAETK  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT1G43910  KGEDS(ph)SVEEEGEIEDAETK  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT1G54710  NAELTVDT(ph)SDSEDQTKPLEK  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT1G68070  (ac)SSPES(ph)PSGSDSSTPLLR 0.16 6.68E-01  1.00E+00  1.00E+00 -0.14 6.81E-01 

AT1G68070  SRPGDLEAAQATNQDS(ph)EDEDNDER -0.42 3.18E-01 0.75 1.21E-01 -1.20 2.66E-02 -0.03 9.84E-01 

AT1G70320  ASDNSVSASSS(ph)TAERESDEDSSNALAVR  1.00E+00  4.95E-02  2.42E-01  1.00E+00 

AT1G70320  ASDNSVSASSSTAERES(ph)DEDSSNALAVR  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT1G75990  DNQTPTQSVVS(ph)APTSTLQNLK -0.09 6.90E-01  1.00E+00 0.62 6.73E-01  1.00E+00 

AT2G01470  IIMDPEKS(ph)EDDDESSSSSSSSR 0.57 1.73E-01 -0.42 2.89E-01 0.61 1.37E-01 -0.38 3.54E-01 

AT2G21470  ETENVES(ph)EDDDIM(ox)EVENPM(ox)M(ox)VSK  1.00E+00  1.00E+00 -0.09 1.00E+00  1.00E+00 

AT2G23140  DLSDFS(ph)PK -0.08 3.21E-01 0.99 1.05E-03 -0.99 1.72E-03 0.08 4.89E-02 

AT2G23140  EGASPS(ph)RPASALGASS(ph)PGISGNGYGLDAR 0.40 2.66E-01 -0.29 1.18E-01 -0.30 2.66E-01 -0.98 3.55E-02 

AT2G27210  LIHPLPPAITS(ph)PET(ph)SPER 1.47 5.84E-02 1.65 1.67E-02 0.41 1.47E-01 0.58 1.90E-01 

AT2G27210  LILFGGATALEGNSGGTGT(ph)PTSAGSAGIR -0.08 3.85E-01  1.00E+00  1.00E+00 0.32 4.33E-01 

AT2G32730  ASTEKEGDSM(ox)QVDS(ph)PAAVEK -0.58 3.41E-01 -0.20 3.36E-01 -0.52 2.37E-01 -0.14 8.27E-01 

AT2G32730  EGDSMQVDS(ph)PAAVEK 1.31 3.18E-01 0.98 9.93E-04 -0.22 2.61E-01 -0.55 3.16E-03 

AT2G35330  ALT(ph)LM(ox)GCTVR  4.80E-01  1.00E+00  1.00E+00  6.86E-03 

AT3G02290  VM(ox)EFNET(ph)P 0.25 3.50E-02 0.28 7.77E-01 -0.23 3.81E-01 -0.20 8.74E-01 

AT3G05200  TNS(ph)LLVLPR 0.43 1.27E-01 0.98 4.11E-02 -0.59 1.14E-01 -0.05 4.49E-01 

AT3G51800  (ac)SS(ph)DDERDEKELSLTSPEVVTK -0.24 3.59E-01 -0.58 7.61E-01 0.57 7.81E-01 0.23 3.46E-01 

AT3G58460  LLEDSSSPDRLS(ph)DATVNTVADSR -1.16 5.71E-02  1.00E+00  1.00E+00 0.88 6.42E-02 

AT3G62240  YLQAVGS(ph)FGGGGSR  1.00E+00 0.08 8.45E-01  1.00E+00  1.00E+00 

AT4G00752  YSLDNNPSSVLS(ph)PR 0.67 3.03E-01 0.93 9.32E-02 0.02 9.17E-01 0.28 4.38E-01 
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   ahk1.m/wt.m  ahk1/wt ahk1.m /ahk1 wt.m /wt 

accession  pPeptide log2 p-value log2 p-value log2 p-value log2 p-value 

AT4G04210  TLS(ph)DLNR 0.44 3.12E-01 0.68 2.15E-01 -1.40 3.19E-02 -1.16 6.51E-02 

AT4G30890  LDASRPAS(ph)SDKNNDSDAK 0.91 5.10E-02  1.00E+00  1.00E+00 -0.96 4.73E-02 

AT4G30890  TDPIGLDNLSM(ox)S(ph)DGESDPVYK 0.01 8.11E-01 -0.28 7.09E-02 0.04 7.16E-01 -0.25 9.11E-02 

AT4G38600  SESALKPAAPIGNTEPGTLPSGAGVS(ph)SPSSSTPASTTR  2.09E-01  1.00E+00  1.00E+00  1.00E+00 

AT5G01450  (ac)SLPDSLPSSS(ph)SSPPVTR  1.00E+00  1.67E-02  5.90E-03  1.00E+00 

AT5G22030  SNS(ph)LSFLGK 0.42 1.21E-02 0.98 4.09E-03 -0.58 4.26E-02 -0.02 4.93E-01 

AT5G26860  AVES(ph)DSEVSDSK 1.48 6.74E-03 0.91 4.19E-02 -0.22 5.27E-01 -0.79 1.07E-01 

AT5G55160  (ac)S(ph)ATPEEDKK -0.75 6.46E-02 0.61 4.26E-01 -0.16 9.51E-01 1.20 6.87E-03 

 

protein.posttranslational modification 
   ahk1.m/wt.m  ahk1/wt ahk1.m /ahk1 wt.m /wt 

accession  pPeptide log2 p-value log2 p-value log2 p-value log2 p-value 

AT1G01540  ADFASAAIAT(ph)PPIS(ph)KEIK  1.00E+00 0.10 3.06E-01 -0.56 2.65E-01  1.00E+00 

AT1G03080  LNS(ph)DLQK  1.00E+00  2.05E-02  1.39E-03  1.00E+00 

AT1G03740  AS(ph)SAVVDSDLDIDPK 0.65 1.77E-01 0.50 2.75E-01 -0.36 4.96E-01 -0.52 2.33E-01 

AT1G08420  LIHPLPPALS(ph)SPETSPER 0.45 6.17E-01 0.27 8.93E-01 0.90 1.48E-01 0.73 3.93E-01 

AT1G08420  LVLFGGATALEGNSGGTGT(ph)PTSAGSAGIR -1.22 2.55E-01  1.00E+00  1.00E+00 -0.07 7.98E-01 

AT1G08420  QLS(ph)IDQFENEGR 0.27 3.22E-01 0.31 5.85E-01 -0.29 6.25E-01 -0.25 3.49E-01 

AT1G08420  QLS(ph)IDQFENEGRR  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT1G08420  QM(ox)S(ph)INSVPK  1.00E+00 0.80 2.85E-03 -0.77 5.78E-02  1.00E+00 

AT1G11330  M(ox)EALTS(ph)DNESASNQIK  1.00E+00 1.06 1.00E+00  1.00E+00  1.00E+00 

AT1G11330  MEALTS(ph)DNESASNQIK  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT1G14000  (ac)SSDSPAAGDGGEQAAAGTSVPS(ph)PSYDK 0.67 1.43E-01 1.05 7.16E-02 -0.25 6.59E-01 0.12 9.11E-01 

AT1G14000  (ac)SSDSPAAGDGGEQAAAGTSVPS(ph)PSYDKQK -0.11 7.58E-01 0.54 3.73E-03 -0.53 6.37E-02 0.12 6.98E-01 

AT1G16270  TVS(ph)GGGIETEAR  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT1G22280  TDQAILSNS(ph)SDLGR 0.83 1.32E-01 0.76 4.50E-01 -0.43 6.94E-01 -0.49 2.33E-01 

AT1G34750  AFGDKS(ph)LK  1.00E+00 0.25 2.47E-01 -0.18 9.62E-02  1.00E+00 

AT1G34750  TDQAILSHS(ph)SDLGR  1.00E+00  2.47E-01  9.62E-02  1.00E+00 

AT1G48490  DSLAAVES(ph)PEGM(ox)K  1.00E+00  3.88E-01  1.33E-01  1.00E+00 

AT1G53165  EFS(ph)SNANFSPLAR  1.00E+00 -0.69 4.75E-02 1.03 2.73E-02  1.00E+00 

AT1G67580  NTSQT(ph)PEVGELVR  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT1G67580  S(ph)PDPLEEQR 1.19 5.71E-02 -0.01 4.75E-01 0.09 4.80E-01 -1.11 1.01E-01 

AT1G67580  WAAGNS(ph)SPTDEVEIVEEVGEK -0.99 1.14E-01  1.00E+00  1.00E+00 -0.21 1.00E+00 

AT1G69220  M(ox)STTS(ph)LPDSITR  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT1G71530  GDGDLQLT(ph)SR  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT1G71860  FDLSSADS(ph)PPSK  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT1G73450  HPWLSYPYEPIS(ph)A  6.08E-02  1.00E+00  1.00E+00  1.00E+00 

AT1G74330  S(ph)NSFAWAK  1.00E+00 0.19 5.13E-01 -0.19 4.48E-01  1.00E+00 

AT1G79570  LS(ph)KSDNSLSSQFVTSESPANTAQQDSGK  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT1G79570  NSTLLGLDS(ph)SSANNLAELDVR -0.30 6.64E-01  1.00E+00  1.00E+00 0.12 7.55E-01 

AT1G79570  NTLVS(ph)GGVR 0.25 7.52E-02 -0.06 8.47E-01 -0.08 7.18E-01 -0.39 1.71E-01 

AT1G79570  TPDS(ph)EPKDEKTETR 0.63 2.41E-01 -0.21 8.95E-01 0.43 3.91E-01 -0.40 5.77E-01 

AT2G05940  NGVNS(ph)PLR  1.00E+00  2.66E-01  4.10E-02  1.00E+00 

AT2G17700  AVVAS(ph)PSQENPR 1.46 2.33E-02 0.19 7.59E-01 0.24 5.49E-01 -1.03 6.07E-02 

AT2G17700  VQIESGVM(ox)T(ph)AETGTYR -0.32 2.73E-02 0.91 4.71E-02 -0.54 4.09E-01 0.70 2.70E-02 

AT2G20050  VS(ph)SQFLPPDGSR  1.00E+00 0.23 1.83E-01 -0.60 1.49E-02  1.00E+00 

AT2G22560  LIDEFALSGS(ph)K 1.36 1.50E-01 0.13 8.85E-01 0.12 6.14E-01 -1.12 2.35E-01 

AT2G35050  GAES(ph)TDATLNAGVPLIDFM(ox)AADSGM(ox)R -0.67 1.00E+00  1.00E+00  1.00E+00 0.24 1.97E-01 

AT2G37550  SKS(ph)SEDIYSR  8.33E-02  1.00E+00  1.00E+00  5.55E-02 

AT2G40270  TGLS(ph)GQLQK  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT2G40730  GKPLEQAPLASSSS(ph)APSLAAAASNATSTATEAPSVK  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT2G40730  TVQS(ph)DDEDPWAAIAAPPPTTR 0.66 1.35E-01 -0.54 9.52E-02 1.22 3.86E-02 0.02 8.71E-01 

AT3G01490  SLS(ph)DGEDNVNNTR  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT3G04910  TTS(ph)LPVDAIDS -0.39 1.03E-01 0.76 4.59E-02 -0.85 2.87E-02 0.30 7.22E-02 

AT3G09830  IVEASSGNGS(ph)PQLVPLNSVK 0.64 1.04E-01 -0.30 2.17E-01 0.63 4.95E-02 -0.31 3.88E-01 

AT3G10540  LAPDPASQS(ph)ASPER -0.54 1.00E+00  1.00E+00  1.00E+00 0.05 4.16E-01 

AT3G10540  LAS(ph)IDSFDSR 0.87 2.29E-02 0.94 1.18E-02 -0.34 3.07E-01 -0.27 4.14E-01 

AT3G17420  FVEDIENGDKFS(ph)GSLEK  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT3G17420  SNATT(ph)LPVTQSPR 0.95 0.00E+00  1.00E+00 -0.05 0.00E+00  1.00E+00 

AT3G17850  SLS(ph)PTLPPSGSR -0.11 7.25E-01 0.73 9.92E-02 -0.57 1.47E-01 0.27 4.72E-01 

AT3G19420  (ac)SSESPNLPAAAGTVPDNHPPPPPVVTAAEAGSDDS(ph)PKGVASK -0.52 8.27E-01 0.97 1.00E+00 -0.58 1.06E-01 0.91 3.18E-01 

AT3G19420  ETENPDKDDVFS(ph)DNEGDSTGPTK 0.69 1.93E-01 0.75 2.60E-01 -0.15 6.73E-01 -0.09 5.91E-01 

AT3G19420  VM(ox)AADASVFSFGDEDDFES(ph)D -0.51 4.73E-01 -0.76 5.41E-03 1.12 1.56E-02 0.88 1.13E-01 

AT3G22750  NETKAS(ph)PENNLR  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT3G25840  NEVTPYLVS(ph)R 0.55 1.00E+00 0.57 7.55E-02 -0.39 1.10E-01 -0.36 7.03E-02 

AT3G25840  NQAQAGLGEGS(ph)PK  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT3G25840  TADS(ph)DGES(ph)GEIKFEDNNLPPLGEK -1.49 4.16E-02  1.00E+00  1.00E+00 1.12 1.41E-01 

AT3G26700  NVAIELS(ph)M(ox)R  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT3G48190  SLAPDS(ph)PEVGR  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT3G54030  SASVLES(ph)PDIENGGK  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT3G55270  FSSLSLLPS(ph)QTSPK -2.75 1.82E-03 -0.10 1.84E-01 -2.92 1.13E-03 -0.27 2.22E-01 

AT3G55270  FSSLSLLPSQTS(ph)PKESR  1.00E+00 -2.31 3.19E-02 1.38 1.00E+00  1.00E+00 

AT3G55270  GVNTFLQPS(ph)PNR  1.00E+00 -0.17 6.87E-01  1.00E+00 -0.02 9.26E-01 

AT3G58640  AISLPSS(ph)PQNYR  1.00E+00 -0.66 2.54E-02 0.65 1.00E+00  1.00E+00 

AT3G58640  SIS(ph)ITPEIGDDIVR 0.08 6.84E-01 -0.72 8.14E-02 0.77 6.32E-02 -0.03 8.01E-01 

AT3G58760  DYVNPGGS(ph)NR  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT3G63260  (ac)AS(ph)GGGEADKSLEIGSGTADPK -0.08 7.82E-01 0.37 3.31E-01 -0.28 4.89E-01 0.17 5.87E-01 

AT4G03080  QLS(ph)LDQFQNESR 2.31 2.34E-03 0.87 3.58E-02 -0.87 4.04E-02 -2.31 6.92E-03 

AT4G10730  ASANSLS(ph)APIK 0.05 6.97E-01 0.21 5.34E-01 -0.18 6.25E-01 -0.03 8.00E-01 

AT4G10730  RAPS(ph)FSGPLNLPNR  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT4G10730  SAS(ph)VGNWILDSK  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT4G14350  M(ox)LAYS(ph)TVGTPDYIAPEVLLK -0.61 3.18E-01 -1.03 1.28E-01 1.06 2.47E-01 0.64 4.22E-01 

AT4G22130  SLPLSGT(ph)PEVQEQR 1.38 1.96E-02 -0.62 8.01E-02 1.03 3.46E-02 -0.97 3.54E-02 

AT4G24100  ASSNSLS(ph)APIK -0.52 4.09E-01 -0.32 2.15E-01 0.24 3.53E-01 0.44 4.46E-01 

AT4G24100  RAPS(ph)FSGPLNLSTR  1.00E+00  2.15E-01  3.53E-01  1.00E+00 

AT4G24100  S(ph)DSNGNVEPVASER 0.10 8.51E-02 0.38 5.54E-02 -0.59 1.00E+00 -0.31 2.11E-01 

AT4G29810  FLTQSGT(ph)FK  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT4G29810  IISQLEPEVLS(ph)PIKPADDQLSLSDLDM(ox)VK  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT4G35230  SYS(ph)TNLAYTPPEYLR 0.04 7.15E-01 -0.58 2.72E-02 0.71 9.67E-03 0.09 8.83E-01 

AT4G35600  VGS(ph)GMIVAIK  1.00E+00 1.22 4.29E-02 -0.31 5.56E-01  1.00E+00 

AT4G38470  AQTGVM(ox)T(ph)AETGTYR 0.05 3.68E-01  3.91E-01  3.23E-01 -0.34 1.03E-01 

AT5G13160  LNPVDES(ph)NHGQK 2.23 3.75E-03 -0.54 2.84E-01 0.66 4.10E-02 -2.11 8.38E-02 

AT5G13530  VGFPGAS(ph)R 0.21 4.70E-01 0.10 7.04E-01 -0.07 8.35E-01 -0.19 5.19E-01 

AT5G14720  FKVTSADLS(ph)PK  1.00E+00 -0.26 2.01E-01  1.01E-02  1.00E+00 

AT5G14720  QDESALS(ph)PER 0.72 1.58E-01 0.11 8.81E-01 0.18 5.47E-01 -0.43 4.10E-01 

AT5G14720  QPGS(ph)PETNVDDLLQTPPATSR 0.96 1.42E-01 -0.78 1.78E-01 0.97 1.25E-01 -0.76 1.94E-01 

AT5G14720  SYS(ph)GSLYR -0.76 3.07E-02 0.69 5.27E-02 -0.72 3.39E-02 0.73 1.00E+00 

AT5G14720  TQAALIS(ph)DDDTSHAEEPDFNQK 0.83 6.52E-02 0.13 8.32E-01 1.01 8.26E-02 0.31 6.75E-01 
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   ahk1.m/wt.m  ahk1/wt ahk1.m /ahk1 wt.m /wt 

accession  pPeptide log2 p-value log2 p-value log2 p-value log2 p-value 

AT5G14720  VTSADLS(ph)PK 0.80 7.92E-03 0.11 7.22E-01 -0.18 5.59E-01 -0.87 1.62E-02 

AT5G18500  S(ph)SSNLIPVSR -0.28 2.73E-01 0.34 9.18E-02 -0.34 1.73E-01 0.27 1.35E-01 

AT5G22840  EEEEEAS(ph)DEDKDKEK -2.18 4.93E-02  1.00E+00 -1.98 1.27E-01  1.00E+00 

AT5G23720  NAGLS(ph)SSSLK  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT5G41260  S(ph)NPDVTGLDEEGR 0.20 5.99E-01 1.08 3.21E-02 -0.78 5.98E-02 0.10 8.35E-01 

AT5G41260  S(ph)NPDVTGLDEEGRGESNDLPQFR -0.93 3.64E-01 -1.07 1.02E-01 1.12 9.58E-02 0.98 3.43E-01 

AT5G41260  SYS(ph)TNLAFTPPEYLR 1.07 1.58E-01 -1.93 3.48E-02 2.62 1.47E-02 -0.39 4.09E-01 

AT5G46570  TANLPSSDDPSAPNKPES(ph)VNGDQVDQEIQNFK -0.43 3.96E-01  1.00E+00  1.00E+00 0.33 6.04E-01 

AT5G47070  SETSS(ph)FNLQTPR  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT5G50000  ALT(ph)LEK  1.00E+00 0.01 1.00E+00 -0.20 7.25E-02  1.00E+00 

AT5G55910  SM(ox)S(ph)FVGTHEYLAPEIIK -2.02 1.00E+00  1.00E+00  2.51E-02 1.64 1.00E+00 

AT5G57020  (ac)ADNNS(ph)PPGSVEQK 1.14 1.02E-01 0.33 6.39E-02 0.43 2.41E-01 -0.38 5.69E-02 

AT5G57610  LQQYPDS(ph)PR 1.13 3.07E-03 0.12 2.83E-01 0.49 1.62E-02 -0.53 8.69E-02 

AT5G57610  TFQEFPS(ph)SPSSAR 2.62 1.98E-02 0.97 3.27E-02 -0.39 3.78E-01 -2.05 2.21E-03 

AT5G57610  VGS(ph)GQM(ox)LAQR 0.22 6.61E-01 -0.32 5.27E-01 -0.09 8.19E-01 -0.63 2.19E-01 

AT5G58140  APPS(ph)PLNDAESLSER  1.00E+00 0.81 7.22E-02 -0.46 3.04E-01  1.00E+00 

AT5G58140  S(ph)LEIFNPSSGK  1.00E+00 0.64 2.40E-01 -0.21 7.20E-01  1.00E+00 

AT5G58950  SVS(ph)PSPQM(ox)AVPDVFK -0.67 9.47E-03 -0.41 1.75E-01 -0.01 6.99E-01 0.24 6.23E-02 

AT5G66880  S(ph)TVGTPAYIAPEVLLR -0.09 7.45E-01  1.00E+00  1.00E+00 1.00 7.98E-01 

 

RNA.regulation of transcription 
   ahk1.m/wt.m  ahk1/wt ahk1.m /ahk1 wt.m /wt 

accession  pPeptide log2 p-value log2 p-value log2 p-value log2 p-value 

AT1G02080  QIDLPLDVANS(ph)PNTDVPSK 0.26 6.63E-01 0.41 2.71E-01 0.02 4.83E-01 0.17 6.12E-01 

AT1G04950  LSVDSSENQS(ph)PQK  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT1G04950  LSVDSSENQS(ph)PQKR 0.12 3.40E-01 -0.04 4.97E-01 -0.43 6.91E-02 -0.59 8.36E-02 

AT1G05805  SQLS(ph)FTNHDSLAR  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT1G07000  APDS(ph)FDSDDEFPGEEDNDTSDGVIVAR 1.08 1.47E-01 -0.46 2.42E-01 0.94 1.67E-01 -0.59 1.97E-01 

AT1G07000  APDSFDS(ph)DDEFPGEEDNDTSDGVIVARPITDYK  1.00E+00  1.00E+00  1.00E+00  9.04E-02 

AT1G08680  ASDYSVSS(ph)AGDPFR  1.00E+00 0.86 6.33E-02 -0.87 9.45E-02  1.00E+00 

AT1G08680  ASS(ph)FVYS(ph)PGR 0.41 1.00E+00  1.00E+00  1.00E+00 -0.09 1.48E-01 

AT1G08680  SDIQS(ph)PNFQQEAEFR 0.27 3.02E-01 0.07 8.74E-01 0.08 6.39E-01 -0.12 5.92E-01 

AT1G14510  MS(ph)PPPR  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT1G20110  SIS(ph)FSSSGR -0.10 8.27E-01 0.66 1.28E-01 -0.81 7.24E-02 -0.05 8.67E-01 

AT1G20670  ATDILQGS(ph)PVESGPTTPLPDKK -0.44 6.70E-01 -0.40 4.62E-01 0.24 6.58E-01 0.27 9.28E-01 

AT1G20670  KDFENLRQDS(ph)DDEEPQSQQQQQQQPK  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT1G20696  LEEGPKEDEESDKSVSEVNDEDDAEDGS(ph)EEEEDDD 0.01 4.62E-01 0.44 7.50E-02 0.01 9.70E-01 0.45 1.27E-02 

AT1G20696  SLS(ph)DSEKAPYVAK -0.89 1.38E-01 -0.36 5.18E-01 -1.01 1.04E-01 -0.48 2.44E-01 

AT1G20696  SVSEVNDEDDAEDGS(ph)EEEEDDD  1.00E+00 0.29 5.95E-02 0.19 1.00E+00  1.00E+00 

AT1G29220  LLDGVGASSS(ph)AHGT(ph)PR 0.34 2.67E-01  1.00E+00  1.00E+00 -0.45 1.19E-01 

AT1G32130  YGGDAGDRS(ph)PTHYPQAEEGEDEDEVNNLFK  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT1G32130  YGGDAGDRSPT(ph)HYPQAEEGEDEDEVNNLFK  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT1G33240  SAAFEIAFQS(ph)PANR  7.58E-02  1.00E+00  1.00E+00  4.84E-02 

AT1G51140  AM(ox)S(ph)PISEVDVKPGFSSR -0.74 2.81E-01 0.20 6.98E-01 0.26 6.94E-01 1.20 1.17E-01 

AT1G51140  TLS(ph)GGFNR 1.39 8.81E-02 0.95 1.23E-01 -0.20 3.78E-01 -0.63 1.71E-01 

AT1G51140  TQS(ph)GGLDQYK 0.67 4.75E-02  1.00E+00  1.00E+00 -0.70 1.85E-01 

AT1G55110  NQPGNPDPEAEVMALS(ph)PK 0.23 6.46E-01 -0.49 1.00E+00 0.46 1.54E-01 -0.26 3.09E-01 

AT1G56460  AFDDADYVKDDDEEEEEAVS(ph)DVELENK  1.00E+00  1.00E+00  1.00E+00 0.99 1.00E+00 

AT1G61730  IKS(ph)PSATTAAAPPAK 0.98 9.99E-02 -0.04 9.96E-01 0.02 9.96E-01 -1.00 7.01E-02 

AT1G62300  LGREES(ph)PETESNK 0.66 2.30E-01 -0.39 3.41E-01 1.11 1.21E-02 0.06 9.23E-01 

AT1G63850  S(ph)PGNQFNDPNSSDVK  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT1G65440  EQGNGQGES(ph)S(ph)DDEFDSR  9.67E-02  1.00E+00  1.00E+00  1.19E-01 

AT1G67325  SNGS(ph)PSRAPEENDQ 0.55 4.15E-01 0.19 9.81E-01 0.10 5.85E-01 -0.26 7.50E-01 

AT1G67590  ATTPVGRS(ph)PVTS(ph)PVR  1.14E-01 0.57 1.00E+00 -0.09 1.00E+00  1.00E+00 

AT1G73150  AES(ph)M(ox)TNPVKPAVLPVVPEK -2.67 4.19E-02  1.00E+00  1.00E+00 0.42 2.38E-01 

AT1G73150  AES(ph)MTNPVKPAVLPVVPEK -1.01 6.08E-02  1.00E+00  1.00E+00 1.76 1.00E+00 

AT1G76880  S(ph)PPPQPPAPLPQPIQAVVSTLDTTK  1.00E+00  1.00E+00  1.00E+00 -0.37 1.00E+00 

AT2G02070  TPNSDAEVIALS(ph)PK 0.45 1.27E-01 0.69 4.00E-03 -0.70 4.94E-03 -0.46 1.15E-01 

AT2G02080  NQPGNPNPDAEVVALS(ph)PK -0.27 5.34E-01 0.15 9.95E-01 -0.63 2.47E-01 -0.21 7.41E-01 

AT2G04880  LVPHTVASQSEVDVAS(ph)PVSEK  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT2G17410  RSFLLDDASDGNES(ph)GTEEDQSAFM(ox)K  1.00E+00  1.00E+00  1.00E+00 -0.44 2.30E-01 

AT2G17410  SFLLDDASDGNES(ph)GTEEDQSAFM(ox)K -0.29 2.91E-01 0.12 8.53E-01 0.14 5.19E-01 0.55 7.20E-02 

AT2G17410  SFLLDDASDGNES(ph)GTEEDQSAFMK 0.08 7.46E-01 -0.88 8.15E-02 1.60 5.93E-03 0.65 3.15E-01 

AT2G17560  EEDDSDKSKSEVDEAVS(ph)EEEAEDDD  1.00E+00 0.49 1.05E-01 -0.42 9.72E-02  1.00E+00 

AT2G17560  LASGTNREEDDS(ph)DKSK -2.58 1.18E-01  1.00E+00 -1.63 3.36E-01  1.00E+00 

AT2G17560  SEVDEAVS(ph)EEEAEDDD 0.42 5.18E-01 0.78 9.01E-02 -0.13 7.85E-01 0.23 4.37E-01 

AT2G22300  SENTS(ph)PVSGNDSDLSQLSEK  1.00E+00 1.31 6.06E-02 -0.16 3.35E-01  1.00E+00 

AT2G23740  SLGTEGNTEAGVS(ph)PPLDDSR 1.64 1.00E+00 2.08 1.00E+00 -0.40 3.16E-01 0.03 1.00E+00 

AT2G27040  FEDQS(ph)ETSSSHGGITAPGPISVAQLPR  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT2G27100  DRS(ph)PLPPPRR  1.00E+00  1.00E+00  1.00E+00 0.75 1.00E+00 

AT2G27100  S(ph)T(ph)SSSPPPPPPSSSLPQQEQEQDQQQLPLRR -0.03 9.45E-01 0.41 1.00E+00 -0.14 1.03E-01 0.31 3.27E-01 

AT2G27100  SGRTS(ph)EPNS(ph)EDEAAGVGKR 0.18 9.67E-01 -0.50 3.06E-01 -0.33 5.41E-01 -1.01 1.08E-01 

AT2G27100  TSEPNS(ph)EDEAAGVGKR  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT2G32080  TIDS(ph)PGQEETGMTGVSK  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT2G32700  TEVNLGT(ph)SPR  1.00E+00 -0.12 1.00E+00 -0.34 4.87E-02  1.00E+00 

AT2G33620  VAPTQVLM(ox)TPSS(ph)PQSR 0.67 1.69E-01 0.31 9.07E-02 -0.46 8.63E-02 -0.81 1.10E-01 

AT2G38880  (ac)ADTPS(ph)SPAGDGGESGGSVR  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT2G41070  QGS(ph)LTLPR  1.00E+00 1.13 2.12E-01 -0.14 1.00E+00  1.00E+00 

AT2G41900  NVVEPIS(ph)PM(ox)SAR 0.81 1.73E-02 1.40 3.07E-03 -1.75 3.63E-03 -1.15 3.73E-03 

AT2G41900  SM(ox)PPSNLEDLFSAEGS(ph)SSPR 0.09 3.70E-01 -0.45 4.72E-01 -0.23 1.00E+00 -0.77 8.55E-01 

AT2G44730  QGNES(ph)GDDDDHDDGNYTAR 1.11 1.17E-01  1.00E+00  1.00E+00 -0.88 2.17E-01 

AT2G45820  ALAVVEKPIEEHT(ph)PKK  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT2G45820  ASS(ph)GSADRDVILADLEK  1.00E+00 0.29 3.33E-02 -0.63 8.79E-03  1.00E+00 

AT2G45820  KAS(ph)SGSADRDVILADLEK  1.00E+00  3.33E-02  8.79E-03  1.00E+00 

AT2G45820  VDVES(ph)PAVLAPAKEPTPAPVEVADEK  1.00E+00  3.33E-02  8.79E-03  1.00E+00 

AT2G46020  LVNEPETEPS(ph)SPQR 0.57 9.89E-02 0.57 3.42E-01 -0.37 5.84E-01 -0.36 3.31E-01 

AT2G46020  NIDS(ph)GNEEEGDIR -0.18 8.22E-01 0.63 2.42E-01 -0.69 1.88E-01 0.12 9.55E-01 

AT3G02830  ASFIAS(ph)PR  1.00E+00 0.57 2.23E-02 -0.47 3.55E-02  1.00E+00 

AT3G02830  VFTYDNTAS(ph)ETDEVVETSTGK -0.59 6.70E-01 1.44 1.00E+00 -0.21 3.33E-01 1.82 1.91E-01 

AT3G04740  LIPSLQVVEGVAS(ph)PNKR  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT3G06400  NSNSDEAFS(ph)S(ph)EEEEER  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT3G09670  ANLQTEDPGSPVS(ph)PK -0.39 1.20E-01 -0.09 4.66E-01 0.22 2.04E-01 0.52 8.96E-02 

AT3G13810  NQPGNPDPESEVIALS(ph)PK  1.00E+00 0.89 9.69E-02 -0.91 1.13E-01  1.00E+00 

AT3G18640  TQVS(ph)PTPIR 0.98 4.00E-02  1.00E+00  1.00E+00 -0.91 5.36E-02 

AT3G21810  DVGLDIVS(ph)DEETNGR 0.10 6.20E-01 0.23 4.90E-01 0.14 5.78E-01 0.27 5.33E-01 

AT3G22220  (ac)M(ox)DS(ph)DLEPVALTPQK  1.00E+00 0.13 2.89E-01 -0.19 1.00E+00  1.00E+00 

AT3G24490  (ac)GDS(ph)EDETGYPKK  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT3G24870  AQLVSTGGS(ph)PK 0.84 2.13E-02 -0.24 4.59E-01 -0.17 6.87E-01 -1.25 1.35E-02 
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   ahk1.m/wt.m  ahk1/wt ahk1.m /ahk1 wt.m /wt 

accession  pPeptide log2 p-value log2 p-value log2 p-value log2 p-value 

AT3G26910  EGELS(ph)FDYR 0.95 5.61E-02 1.04 7.00E-02 -0.35 5.02E-01 -0.25 1.89E-01 

AT3G26935  DGELGELS(ph)PDIR 0.53 8.12E-02 0.57 5.66E-02 -0.40 1.73E-01 -0.35 2.18E-01 

AT3G26935  SVAGGFM(ox)S(ph)PNM(ox)GK 0.00 9.76E-01 0.31 3.55E-01 -0.64 1.51E-01 -0.33 4.90E-01 

AT3G43590  HYEESNENDSAT(ph)PER 1.53 8.58E-03  1.00E+00  1.00E+00 -2.19 1.00E+00 

AT3G48430  NPVS(ph)YESEDNGVYQQSGR  3.97E-01  1.43E-01  1.00E+00  1.00E+00 

AT3G48430  TYDQEGS(ph)DGHEEAR 0.21 1.00E+00  1.00E+00  1.00E+00 0.22 1.45E-01 

AT3G48760  TVNGGM(ox)SS(ph)PSLQK 0.18 5.85E-01 0.47 4.24E-01 -0.89 1.48E-01 -0.60 2.17E-01 

AT3G51880  NLEEGS(ph)DES(ph)EKSR 0.76 5.49E-02 0.35 4.97E-01 -0.44 3.74E-01 -0.85 3.62E-02 

AT3G51880  SEINDEDEAS(ph)GEEELLEK 0.53 3.35E-02 0.29 4.49E-01 -0.03 7.39E-01 -0.27 2.55E-01 

AT3G51880  SRSEINDEDEAS(ph)GEEELLEK -0.25 7.34E-01 -0.99 2.41E-02 0.63 1.85E-01 -0.11 6.67E-01 

AT3G51950  ELS(ph)PTGLDS(ph)SPR  1.00E+00 0.46 1.73E-02 -0.42 4.27E-02  1.00E+00 

AT3G53340  (ac)AESQTGGGGGGSHESGGDQS(ph)PR  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT3G54610  DGALTSNDELESIS(ph)AR  1.00E+00 -0.65 1.17E-01 0.22 4.88E-01  1.00E+00 

AT3G61260  (ac)AEEQKIALESES(ph)PAK  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT3G61260  IALES(ph)ESPAKVTTPAPADTPAPAPAEIPAPAPAPTPADVTK -0.56 6.53E-01 -0.45 2.35E-01 1.00 8.32E-02 1.11 2.17E-01 

AT3G61260  IALESES(ph)PAK 0.74 1.81E-01 1.04 2.09E-01 -0.38 4.58E-01 -0.08 4.13E-01 

AT4G00238  SGNNEGATES(ph)PAVK 0.47 5.27E-01  1.00E+00  1.00E+00 -0.86 2.42E-01 

AT4G06634  FGENNEDDDDDEET(ph)EYED  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT4G08350  APAPVPS(ph)SPGR 0.50 1.14E-01 0.50 2.62E-01 0.28 5.65E-01 0.28 1.00E+00 

AT4G08350  SNFIDDYAEEDS(ph)QEEDDDDEDYGSSR  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT4G10710  EATNADREHGVES(ph)DS(ph)EEER 0.24 4.17E-01 0.59 1.82E-01 0.59 1.49E-01 0.94 7.02E-02 

AT4G11560  FAQVS(ph)S(ph)DEEDDVPITR -0.01 7.49E-01 1.03 9.60E-02 -0.14 8.85E-01 0.90 2.10E-01 

AT4G14140  SVDS(ph)DDDVSKER 0.95 1.00E+00  1.00E+00  1.00E+00 -1.41 1.30E-02 

AT4G14540  (ac)ADSDNDS(ph)GGHKDGGNASTR -2.64 2.96E-03  1.00E+00 -1.22 1.32E-02  1.00E+00 

AT4G14920  TNEVSVLET(ph)TSPSR  1.00E+00 0.34 4.07E-01  1.00E+00  1.00E+00 

AT4G17950  AQNTPEPASAPANM(ox)LSFGGVGGPGS(ph)PR -0.69 6.09E-02 -0.30 3.46E-01 -0.24 4.38E-01 0.14 8.11E-01 

AT4G17950  AQNTPEPASAPANMLSFGGVGGPGS(ph)PR -0.13 9.40E-01 -0.50 4.19E-02 1.15 8.09E-03 0.79 2.16E-01 

AT4G20400  GESSLEPDSTPS(ph)SPK 1.43 7.80E-03  1.00E+00  1.00E+00 -0.54 9.17E-02 

AT4G21160  TPAFLS(ph)SSLSK  1.00E+00  1.00E+00 -0.78 2.82E-01  1.00E+00 

AT4G22750  SES(ph)ETEPLQSL  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT4G24630  YETTVSADGRQT(ph)PSVQIPR  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT4G28610  TSS(ph)IPSTQKPSPVEDSFM(ox)R  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT4G29190  NNPLFGFGS(ph)PR  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT4G38900  LSFGDESLKPPPS(ph)PGSM(ox)SR  6.92E-02  1.00E+00  1.00E+00  5.05E-02 

AT4G39680  ADMDAGKGKS(ph)PENK  1.00E+00 -0.23 8.94E-01 -1.36 2.02E-01  1.00E+00 

AT4G39680  LNLDRSS(ph)GDES(ph)MEDEPETK 1.31 9.75E-02 -0.11 6.40E-01 -0.17 8.83E-01 -1.58 7.90E-02 

AT4G39680  NQTTPVTPVEAAFSTETTPVT(ph)AEKTPEPTQTK  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT4G39680  SDS(ph)SVS(ph)EDGPKER 0.26 7.47E-01 0.80 1.65E-02 -1.13 1.37E-01 -0.58 2.17E-01 

AT4G39680  SDS(ph)SVSEDGPK  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT4G39680  VPEAQITNSAT(ph)PTT(ph)TPR -0.51 6.03E-02 1.28 1.13E-01 -1.70 1.00E+00 0.08 7.76E-01 

AT5G07350  IGIWQYGDIES(ph)DDEDTGPAR -0.22 8.40E-01 -1.81 3.68E-04 1.85 2.28E-04 0.26 6.75E-01 

AT5G09850  FNQPGDLEPPSLIADEDS(ph)PVQK -0.33 7.66E-01 -0.84 9.64E-02 1.40 3.47E-02 0.89 3.63E-01 

AT5G11260  EGIES(ph)DEEIR 0.02 9.61E-01 0.24 3.55E-01 0.11 7.36E-01 0.34 2.41E-01 

AT5G14270  GLGTIDLEPM(ox)LDGATSAS(ph)PTR -0.56 9.28E-02 0.37 9.92E-02 -0.42 1.31E-01 0.51 7.33E-02 

AT5G14270  GSSVGGLDQLESAS(ph)PEK  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT5G14540  PLPQGLPM(ox)ASAISSGGSGGGSDS(ph)PR -0.34 3.60E-01 0.42 1.88E-01 -0.41 2.60E-01 0.36 2.86E-01 

AT5G14540  SYGS(ph)M(ox)DSLEPSK  1.00E+00  2.01E-01  1.01E-02  1.00E+00 

AT5G15020  IEKEEGELS(ph)PVGDSEDNFVVYEDR  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT5G18230  NIM(ox)GVESNVQPLT(ph)SPLSK  1.00E+00 -0.09 3.83E-01 -0.05 4.84E-01  1.00E+00 

AT5G18230  VGIPNQPQPSQPPS(ph)PIPANGSR -0.19 4.48E-01  1.00E+00 -0.73 2.89E-01  1.00E+00 

AT5G19520  AS(ph)PSFNPLAS(ph)PDSDAGIEK  1.00E+00 1.34 1.01E-02 -0.57 1.39E-01  1.00E+00 

AT5G19520  ASPSFNPLAS(ph)PDSDAGIEK 0.10 7.23E-01 0.74 3.19E-02 -0.04 9.49E-01 0.59 1.37E-01 

AT5G19520  EQFGAGS(ph)FAR  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT5G22650  GMDVDEDDS(ph)DDDEEEDS(ph)EDEEEEETPK  1.00E+00  1.00E+00 0.27 1.00E+00  1.00E+00 

AT5G22650  GMDVDEDDS(ph)DDDEEEDS(ph)EDEEEEETPKKPEPINK -0.02 8.43E-01 0.47 1.42E-01 0.30 3.59E-01 0.79 2.31E-02 

AT5G22650  SPVNANQS(ph)PK -0.64 2.21E-01 0.97 6.55E-02 -0.63 2.25E-01 0.98 7.33E-02 

AT5G23750  EVEEEKKEGS(ph)VNR  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT5G24450  LPVTS(ph)SPK 1.43 1.52E-02 0.23 6.39E-01 -0.30 5.03E-01 -1.50 8.64E-03 

AT5G27650  DGVVGS(ph)EEEDEIK  1.00E+00 -0.03 1.00E+00 0.06 1.00E+00  1.00E+00 

AT5G28040  DTDFSAES(ph)PDLEEDGGGGGGGR 0.68 4.32E-02 0.34 5.32E-01 -0.06 9.64E-01 -0.40 1.29E-01 

AT5G35330  SSS(ph)PNEDRGENQLVVYDLK -0.19 8.47E-01 -0.60 2.51E-01 1.13 2.14E-01 0.72 1.89E-01 

AT5G40340  KQS(ph)DGEEETQKEPSESTK 0.39 2.99E-02 0.08 9.62E-01 -0.58 1.53E-01 -0.90 8.20E-03 

AT5G42520  EM(ox)EPNDGLPTS(ph)PPAGSTLESAKPK  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT5G45420  VGYGQILEPEQIHDES(ph)STDNERESR  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT5G45420  VGYGQILEPEQIHDESS(ph)TDNER  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT5G46760  SAANDS(ph)DHS(ph)DLEASVVK  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT5G47430  ILEAGNDS(ph)TENVGS(ph)VGHIPDLESAR 0.06 3.18E-01 0.82 1.00E+00 0.28 9.57E-02 1.04 1.00E+00 

AT5G47430  S(ph)PPVVVSDVSEDK -0.88 1.00E+00 1.05 1.04E-01 -2.28 1.00E+00 -0.35 2.82E-01 

AT5G47430  S(ph)PPVVVSDVSEDKLR -0.03 8.35E-01 -0.33 5.11E-02 0.43 3.58E-01 0.14 9.54E-01 

AT5G49400  TKPSVDDLDGS(ph)DDDDEEERPDATNGK  1.00E+00 0.10 9.47E-01 -0.04 8.80E-01  1.00E+00 

AT5G54310  ARS(ph)PPRVEQER -0.38 8.14E-01 -0.50 2.98E-01 0.10 3.20E-01 -0.02 6.52E-01 

AT5G61150  GIES(ph)DEEES(ph)PPR 0.70 5.88E-02 -0.57 1.27E-01 0.87 5.67E-02 -0.41 1.92E-01 

AT5G61150  GKDS(ph)EDEYEEDAEEDEEER  1.00E+00 0.01 4.55E-01 -0.22 2.71E-01  1.00E+00 

AT5G61150  KAVIDDS(ph)DED -0.13 8.04E-01 -0.31 3.19E-01 -0.36 7.48E-01 -0.54 3.51E-01 

AT5G61150  NVFGS(ph)S(ph)DDEDAEEYVR -0.19 6.52E-01 0.50 3.82E-01 0.31 7.19E-01 1.00 1.50E-01 

AT5G61150  S(ph)NRYSDEDEEEEEVAGGR 1.00 1.00E+00 -2.33 1.00E+00 3.13 1.00E+00 -0.20 1.00E+00 

AT5G61150  S(ph)PSEEKEEVQVAQSDVNIR  1.00E+00 0.15 2.72E-01 -0.02 4.08E-01  1.00E+00 

AT5G61780  TGIWEYGDIQS(ph)DDEDNVPVR -0.14 8.17E-01 -1.52 8.55E-04 1.84 1.52E-04 0.46 2.82E-01 

AT5G61780  TGIWEYGDIQS(ph)DDEDNVPVRKPGR  1.00E+00  1.00E+00  1.00E+00 1.58 5.10E-02 

 

signaling. 
(Ca) calcium; (G) G-proteins; (S) sugar and nutrients; (L) light; (M) MAP kinases; (PI) phoshpoinositides; (RK) receptor kinases; (U) unspecified 

   ahk1.m/wt.m  ahk1/wt ahk1.m /ahk1 wt.m /wt 

accession category pPeptide log2 p-value log2 p-value log2 p-value log2 p-value 

AT1G01960 (G) NPPLS(ph)PQGGK  1.00E+00 0.28 1.00E+00  1.00E+00 0.39 6.55E-02 

AT1G05150 (Ca) DNDVPVSYS(ph)GSGGPTK -0.07 7.70E-01 0.51 7.13E-02 -0.53 6.29E-02 0.04 8.73E-01 

AT1G06400 (G) S(ph)VDGGGESADLPGKGETINVK 0.41 4.37E-01 1.11 8.88E-02 0.72 1.60E-01 1.42 3.66E-02 

AT1G06840 (RK) LAPVPDM(ox)EGIS(ph)PQHVSTVVK -0.68 3.73E-01 0.00 9.58E-01 -0.09 7.23E-01 0.59 6.55E-01 

AT1G07650 (RK) SLS(ph)FSTSGPR 0.69 4.22E-02 0.25 6.27E-01 -0.28 9.68E-01 -0.72 4.89E-01 

AT1G09210 (Ca) DAPAES(ph)DAEDEPEDDEGGDDSDSESK  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT1G09210 (Ca) KNEEEESKDAPAES(ph)DAEDEPEDDEGGDDSDSESK  1.00E+00 1.66 2.20E-01  1.00E+00 0.34 4.09E-01 

AT1G09210 (Ca) NEEEESKDAPAES(ph)DAEDEPEDDEGGDDS(ph)DSESKAEETK  1.00E+00 1.39 2.20E-01  1.00E+00 1.62 4.09E-01 

AT1G09210 (Ca) NEEEESKDAPAES(ph)DAEDEPEDDEGGDDSDSESK 0.64 1.00E+00 1.77 2.20E-01 -0.50 1.00E+00 0.63 4.09E-01 

AT1G10870 (G) SGS(ph)LTEGSLGYNTIDLR 0.71 2.45E-01  1.00E+00  1.00E+00 -0.14 8.06E-01 

AT1G10900 (PI) SAS(ph)VNVEELR 0.74 7.48E-03 0.51 5.76E-02 -0.43 1.44E-01 -0.65 3.47E-02 

AT1G16670 (RK) S(ph)GIQFDWSSR 1.45 2.14E-02 0.03 3.83E-01 -0.12 3.10E-01 -1.54 3.90E-02 

AT1G17340 (PI) SGS(ph)NLDIENM(ox)RPLIR -0.68 1.90E-01  1.00E+00  1.00E+00 0.55 5.65E-01 

AT1G18210 (Ca) AMGTS(ph)YTETELNR  1.00E+00  1.00E+00  1.00E+00  1.00E+00 
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   ahk1.m/wt.m  ahk1/wt ahk1.m /ahk1 wt.m /wt 

accession category pPeptide log2 p-value log2 p-value log2 p-value log2 p-value 

AT1G18390 (RK) SGPLVAQS(ph)PDSVIVK 0.99 3.54E-02 1.17 1.86E-02 -0.15 5.88E-01 0.02 9.88E-01 

AT1G18840 (Ca) HEDVS(ph)DDEIQVSEVQPTDSQDVASVPDDSLSESEK  1.00E+00  4.56E-02  1.00E+00  1.00E+00 

AT1G19870 (Ca) DDVLGEEGKTDIDS(ph)PDTTNTIK 0.23 4.61E-01 0.23 1.37E-02 -0.22 5.15E-01 -0.23 1.00E+00 

AT1G19870 (Ca) ETLESALLKSPS(ph)PDNNNVSEK -0.55 7.49E-01 -0.32 2.98E-01 -0.17 2.02E-01 0.05 8.06E-01 

AT1G19870 (Ca) FEELTSSTGS(ph)NK  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT1G19870 (Ca) GTET(ph)EEDDLIGTELQGPSAADAAK  1.00E+00  2.98E-01  2.02E-01  1.00E+00 

AT1G19870 (Ca) IEEDVTS(ph)EVEM(ox)ASK 0.07 9.63E-01 0.81 1.75E-01 -0.23 9.33E-01 0.51 2.61E-01 

AT1G19870 (Ca) SPS(ph)PDNNNVSEK 0.24 6.20E-01 0.98 2.00E-01 -0.38 8.12E-01 0.36 6.15E-01 

AT1G19870 (Ca) TRETLESALLKS(ph)PS(ph)PDNNNVSEK -1.57 4.20E-02  1.00E+00  1.00E+00 1.46 1.56E-01 

AT1G19870 (Ca) VEPEES(ph)ESDDVIIVR 0.78 1.73E-03 0.97 7.82E-04 -0.31 3.07E-01 -0.12 4.88E-01 

AT1G19870 (Ca) VEPEES(ph)ESDDVIIVRK 0.06 4.75E-01 -0.34 1.21E-01 0.63 1.33E-01 0.22 1.60E-01 

AT1G20760 (Ca) FDS(ph)FNTSEAGAGFSSQPER 0.42 4.96E-01 -0.85 1.00E+00 0.71 4.18E-01 -0.56 1.00E+00 

AT1G20760 (Ca) FDS(ph)INSSK  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT1G20760 (Ca) FDS(ph)INSSR 0.09 3.94E-01 0.33 6.63E-01 -0.38 4.78E-01 -0.14 4.60E-01 

AT1G20760 (Ca) FDSINS(ph)SKDFGGPSLSR  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT1G20760 (Ca) FGNS(ph)PPR 0.69 8.04E-02 0.07 9.46E-01 0.21 4.96E-01 -0.41 2.39E-01 

AT1G20760 (Ca) NATEVPS(ph)PDYSQGK 0.07 7.06E-01 -0.09 7.81E-01 0.34 3.77E-01 0.18 7.53E-01 

AT1G20760 (Ca) VSSDES(ph)PTKR  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT1G21630 (Ca) FDS(ph)FNSNNNDAFSLSR -0.12 8.22E-01  1.00E+00  1.00E+00 -0.37 1.97E-01 

AT1G21630 (Ca) FDS(ph)IGSTR 0.66 1.01E-01 -0.11 6.99E-01 0.09 7.09E-01 -0.68 1.18E-01 

AT1G21630 (Ca) GIEADSS(ph)PR -0.24 1.00E+00 0.33 8.14E-01 0.17 3.57E-01 0.74 5.59E-02 

AT1G21630 (Ca) KGIEADS(ph)SPR -0.19 8.14E-01 -0.02 7.38E-01 -0.06 8.82E-01 0.11 9.52E-01 

AT1G21630 (Ca) YDS(ph)FNAQSYDSSSNNNASETPK  1.00E+00 0.48 1.00E+00  1.00E+00  1.00E+00 

AT1G25390 (RK) DNS(ph)KSDVEFSQVFFK -0.63 3.11E-01 -0.69 1.05E-02 0.89 2.56E-02 0.83 1.80E-01 

AT1G30440 (L) FSTPLGS(ph)GNVLSEEEQK 1.32 2.84E-02 -0.52 2.21E-01 0.77 2.46E-01 -1.06 1.00E+00 

AT1G30440 (L) S(ph)GGYVGGPNEGGGGGGGWATAVR  2.84E-02  2.21E-01  1.00E+00  1.00E+00 

AT1G31930 (G) GLNAVEGDS(ph)GGEEANDEGTVTTPQSVYTLNPR -0.24 3.47E-01 0.09 2.00E-01 0.13 1.54E-02 0.46 4.55E-02 

AT1G49340 (PI) LIS(ph)GAFSQAPQPEDDSFNEM(ox)LIAR -0.46 1.00E+00  1.00E+00  1.00E+00 0.62 4.98E-02 

AT1G51805 (RK) VEGTLPSYM(ox)QASDGRS(ph)PR -0.33 6.58E-02 1.26 1.00E-02 -1.67 3.61E-03 -0.08 4.74E-01 

AT1G51890 (RK) ESVEFS(ph)PSSASDFSPLAR 0.05 6.84E-01 -0.70 1.44E-01 1.04 4.62E-02 0.29 6.74E-01 

AT1G52380 (G) LAPAEAVVEDNQKAS(ph)DIEEGDEVDSK -0.32 8.74E-01 0.21 7.29E-01 0.32 6.72E-01 0.85 3.24E-01 

AT1G53210 (Ca) QWLIQAM(ox)GGAPSGPEAGPRT(ph)M(ox)K  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT1G53430 (RK) LNDDENTHIS(ph)TR 0.23 5.45E-01 -0.05 8.96E-01 -0.04 9.76E-01 -0.32 5.39E-01 

AT1G53440 (RK) LLDDLT(ph)DVEIE 0.63 5.89E-02  1.00E+00  1.00E+00 1.16 1.36E-02 

AT1G53730 (RK) NKS(ph)FDDEDSTR 1.40 3.07E-02 0.92 1.00E+00 -0.83 5.84E-02 -1.32 1.00E+00 

AT1G55040 (G) SSFASDEFS(ph)EDEKFPESK  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT1G56340 (Ca) DAPAES(ph)DAEEEAEDDDNEGDDS(ph)DNESKSEETK  1.00E+00 0.28 2.50E-01 0.16 1.00E+00  1.00E+00 

AT1G56340 (Ca) DAPAES(ph)DAEEEAEDDDNEGDDSDNESK 0.07 3.80E-01 1.33 1.99E-01 -0.47 4.31E-01 0.78 4.18E-03 

AT1G56340 (Ca) EEEESKDAPAES(ph)DAEEEAEDDDNEGDDS(ph)DNESKSEETK -2.13 2.48E-02 0.65 4.42E-02 -1.70 1.55E-02 1.09 1.36E-01 

AT1G56340 (Ca) EEEESKDAPAES(ph)DAEEEAEDDDNEGDDSDNESK -1.94 1.00E+00 1.04 1.36E-01 -2.16 8.53E-02 0.82 1.70E-02 

AT1G56340 (Ca) REEEESKDAPAES(ph)DAEEEAEDDDNEGDDSDNESK  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT1G60890 (PI) SLS(ph)ELTTTSGLTR 0.54 8.76E-02 0.71 2.37E-02 -0.19 3.94E-01 -0.02 9.53E-01 

AT1G66880 (RK) SLPITS(ph)YSSR  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT1G67310 (L) GFRQDVESTEDS(ph)EDEDILK -1.82 1.79E-01  1.00E+00  1.00E+00 1.34 1.84E-01 

AT1G67310 (L) QDVESTEDS(ph)EDEDILK 0.56 1.17E-01 0.23 4.83E-01 -0.13 8.01E-01 -0.46 2.45E-01 

AT1G71010 (PI) VQS(ph)FDSAIR  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT1G74690 (Ca) SGGM(ox)LETQNVGPEEIS(ph)DDEIELPEGK -0.49 4.20E-01 -0.70 1.15E-01 0.57 1.54E-01 0.37 5.44E-01 

AT2G03150 (G) DAEKKS(ph)PGDTSGTPTTGTK 1.38 1.16E-02 -0.30 4.80E-01 0.23 2.19E-01 -1.45 1.08E-01 

AT2G03150 (G) SGYVPTLPDS(ph)PK  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT2G03150 (G) TVDVKQET(ph)GSPDTK 0.44 1.00E+00  1.00E+00  1.00E+00 -1.08 1.95E-02 

AT2G17290 (Ca) NSLNIS(ph)M(ox)R -0.19 7.13E-01 0.44 2.57E-01 -1.03 7.86E-02 -0.41 6.04E-01 

AT2G17290 (Ca) NSLNIS(ph)M(ox)RDV 0.82 1.53E-01 0.27 7.85E-01 -0.49 6.76E-01 -1.03 1.21E-01 

AT2G17290 (Ca) STTTTVSSVHS(ph)PTTDQDFSK  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT2G21150 (L) LSFAEDFENGS(ph)DEDDGENK 0.45 4.92E-01 0.20 5.09E-01 0.61 4.22E-01 0.37 3.35E-01 

AT2G21150 (L) LSFAEDFENGS(ph)DEDDGENKSSGTGNLR  1.00E+00  1.00E+00  1.00E+00 0.63 3.75E-01 

AT2G21880 (G) GQYHDS(ph)VTDIIDPDQSR  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT2G23770 (RK) KPPM(ox)S(ph)DQEFDPLDGLSGM(ox)VVESLK  1.00E+00  1.00E+00  3.16E-01  1.00E+00 

AT2G23770 (RK) TQTQEETGNLDS(ph)FM(ox)GK -0.52 5.38E-01 0.21 7.73E-01 -0.81 2.80E-01 -0.08 8.90E-01 

AT2G27060 (RK) IQNS(ph)PDNPTSR 1.18 4.71E-02  1.00E+00  1.00E+00 -1.30 4.88E-02 

AT2G31680 (G) (ac)S(ph)SDDEGGEEYLFK 0.52 1.66E-01 1.12 7.72E-03 -0.40 2.66E-01 0.20 5.22E-01 

AT2G32450 (Ca) DNNVPVSYS(ph)GNGIPTK -0.47 3.00E-01 0.90 1.32E-01 -1.01 6.67E-02 0.36 5.44E-01 

AT2G33990 (Ca) TVS(ph)LSSVPAK  1.00E+00  9.07E-02  8.63E-02  1.00E+00 

AT2G37050 (RK) GGIS(ph)DEFSR 0.15 3.02E-01 0.55 8.42E-03 -0.81 7.18E-02 -0.41 1.48E-02 

AT2G43130 (G) (ac)S(ph)DDDERGEEYLFK 0.80 9.07E-03 0.50 1.68E-01 0.02 7.61E-01 -0.28 2.28E-01 

AT2G43680 (Ca) GPGS(ph)PGGVVLEK  1.00E+00 0.00 9.98E-01 -0.57 9.62E-02  1.00E+00 

AT2G43680 (Ca) LDAPRPTT(ph)PKPPS(ph)PR  1.00E+00 0.53 3.76E-01 -0.34 4.23E-01  1.00E+00 

AT2G43680 (Ca) VAS(ph)PRPT(ph)SPR 1.07 1.49E-02 -0.19 6.84E-01 0.02 7.47E-01 -1.24 1.25E-02 

AT2G45340 (RK) SDES(ph)EFLK -0.95 2.92E-01 1.47 3.91E-02 -1.25 7.01E-02 1.17 1.79E-01 

AT2G46700 (Ca) TES(ph)GIFR 0.51 5.70E-02 0.50 5.10E-02 -0.31 1.83E-01 -0.32 1.81E-01 

AT2G48010 (RK) LDS(ph)MSESTTLVK  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT3G02880 (RK) LIEEVSHSSGSPNPVS(ph)D 0.96 1.50E-02 0.76 5.81E-02 -0.20 3.99E-01 -0.40 2.14E-01 

AT3G08510 (PI) EVPS(ph)FIQR 1.13 6.38E-02 1.10 1.90E-01 -0.95 2.37E-01 -0.99 8.12E-02 

AT3G08680 (RK) ASS(ph)PEM(ox)IR -0.19 4.57E-01  1.00E+00  1.00E+00 0.02 7.60E-01 

AT3G08680 (RK) ASS(ph)PEMIR 1.11 4.54E-05 -0.07 5.16E-01 0.44 6.09E-03 -0.74 4.28E-04 

AT3G13460 (Ca) LSLDS(ph)PAK  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT3G13530 (M) TPS(ph)SVSGNELAR  1.00E+00 0.83 1.18E-01 -0.70 1.30E-01  1.00E+00 

AT3G13530 (M) VRS(ph)GQLDPNNPIFGQNETSSLSM(ox)IDQPDVLK  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT3G13690 (RK) LNLVGS(ph)PK  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT3G14205 (PI) S(ph)FETIPESR 1.20 1.76E-02 1.06 1.21E-02 0.04 9.94E-01 -0.10 9.40E-01 

AT3G14205 (PI) SLS(ph)ESSIISESSPAALGPVGR 0.08 7.52E-01 0.61 1.59E-01 0.78 2.08E-01 1.31 4.68E-03 

AT3G14350 (RK) KLDTSLS(ph)M(ox)NLRPPPSER  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT3G14590 (Ca) STASTS(ph)PNNESSSTDKNQEGK  1.00E+00 -0.19 2.78E-01 -0.07 2.84E-01  1.00E+00 

AT3G14840 (RK) LDEEENTHIS(ph)TR 0.57 1.55E-01  1.00E+00  1.00E+00 0.28 3.13E-01 

AT3G14840 (RK) LLEASVNNEKDEES(ph)VR  1.55E-01  1.00E+00  1.00E+00  3.13E-01 

AT3G14840 (RK) NLDFQIS(ph)SFSLR  1.55E-01  1.00E+00  1.00E+00  3.13E-01 

AT3G17840 (RK) SYVNEYS(ph)PSAVK 0.36 4.28E-01 0.08 9.69E-01 -0.30 5.30E-01 -0.57 2.05E-01 

AT3G20410 (Ca) AAAAAPGLS(ph)PK 0.64 3.44E-01 0.58 3.00E-01 -0.02 9.57E-01 -0.08 8.69E-01 

AT3G20410 (Ca) EVLS(ph)DVDSDNDGR  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT3G20410 (Ca) SNS(ph)ILENAFEDVK  1.00E+00 -0.01 1.00E+00  1.00E+00 -0.26 3.33E-01 

AT3G20410 (Ca) SVEVGVTNQDPPSYT(ph)PQAR  1.00E+00  1.00E+00 -0.28 4.32E-01  1.00E+00 

AT3G22170 (L) SLPDVVTS(ph)PTQGLISVEEDNHSR -0.94 1.00E+00  1.00E+00  1.00E+00 1.43 1.00E+00 

AT3G22190 (Ca) KNS(ph)VDFDFEK  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT3G22380 (L) AGS(ph)FRDSPEEEGPVELPEAAR  1.00E+00  1.00E+00  1.00E+00 0.60 3.65E-01 

AT3G22380 (L) QISSTS(ph)PANR -1.13 8.73E-02  1.00E+00 -1.24 1.00E+00  8.21E-02 

AT3G22380 (L) VS(ph)SPISNPQTLPQSSITLAANSSSSNVSAIAPK  1.00E+00  1.00E+00  1.00E+00 0.65 3.40E-01 

AT3G22380 (L) VSPASILASPSPPAPTS(ph)PSSSSISVR -0.09 6.72E-01 -0.14 2.68E-01 0.06 3.73E-01 0.01 6.07E-01 

AT3G24660 (RK) KSSIES(ph)EDDLEEGDEEDEIGEK  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT3G24660 (RK) SSIES(ph)EDDLEEGDEEDEIGEK -0.28 5.15E-01 1.04 1.75E-02 -0.82 4.47E-02 0.50 2.60E-01 

AT3G24660 (RK) SSIES(ph)EDDLEEGDEEDEIGEKEGGEGK -0.29 4.01E-01 -0.62 3.86E-02 0.42 2.83E-01 0.09 7.65E-01 
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   ahk1.m/wt.m  ahk1/wt ahk1.m /ahk1 wt.m /wt 

accession category pPeptide log2 p-value log2 p-value log2 p-value log2 p-value 

AT3G28450 (RK) S(ph)GLTEVGVSGLAQR 0.37 1.71E-01 0.22 4.59E-01 -0.19 5.25E-01 -0.34 2.03E-01 

AT3G43300 (G) NANEDSAS(ph)TGEPIETK 0.85 2.46E-01 -0.63 8.29E-02 0.99 1.88E-01 -0.49 4.14E-01 

AT3G51550 (RK) SLAS(ph)EDSDGLTPSAVFSQIM(ox)NPK 0.20  -2.04  2.60 0.37   

AT3G52870 (Ca) TLS(ph)GGLGS(ph)PK 0.22 2.53E-01 0.44 2.81E-02 -0.65 4.12E-03 -0.43 3.99E-02 

AT3G55020 (G) GASDIDS(ph)EDEFYDVER 0.45 2.79E-01 0.39 3.87E-01 0.08 6.41E-01 0.01 9.32E-01 

AT3G56760 (Ca) SES(ph)GIFR  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT3G57530 (Ca) EGFQIM(ox)DT(ph)SQR  1.00E+00 0.47 1.67E-01 0.64 1.20E-01  1.00E+00 

AT3G59770 (PI) LGSSSS(ph)VSLDK  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT3G61050 (Ca) SGSST(ph)PVNTVPENDGAK  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT4G04700 (Ca) LGS(ph)NLSK  3.12E-01 0.96 1.00E+00 -1.56 1.00E+00  6.51E-02 

AT4G04700 (Ca) TES(ph)SLQPEGELLPIIN 1.69 2.67E-01 1.32 4.07E-01 1.28 3.40E-01 0.92 5.01E-01 

AT4G08500 (M) S(ph)LEFPEPTSFR  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT4G08850 (RK) GEHPGDLVSTLSS(ph)SPPDATLSLK  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT4G08850 (RK) QIEEHT(ph)DSESGGETLSIFSFDGK -2.37 1.15E-01  1.00E+00  1.00E+00 -0.45 2.01E-01 

AT4G12640 (G) LGS(ph)SEGYLQDR  1.00E+00 -1.10 1.00E+00 1.22 5.52E-02  1.00E+00 

AT4G13350 (G) DLGSAS(ph)PPVAR 1.20 1.39E-01 1.16 1.12E-01 -0.07 7.68E-01 -0.11 8.84E-01 

AT4G13350 (G) DLGSAS(ph)PPVARPVR 1.50 1.07E-01 0.51 7.28E-01 0.36 2.45E-01 -0.63 2.92E-01 

AT4G13350 (G) KTSEEGSQS(ph)PEQVK 2.03 2.09E-05 -0.36 5.34E-01 0.03 7.96E-01 -2.36 2.62E-03 

AT4G13350 (G) S(ph)PGFETGSR 0.92 1.14E-01 -0.02 9.29E-01 0.38 4.67E-01 -0.56 2.87E-01 

AT4G13350 (G) SM(ox)S(ph)APSLQPLQGVPSGGLQSSEVKPSGR  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT4G13350 (G) SS(ph)PGGRS(ph)PGFETGSR 0.81 8.96E-02 0.50 1.00E+00 -0.25 1.78E-01 -0.56 1.11E-01 

AT4G13350 (G) TSEEGSQS(ph)PEQVK 0.86 2.82E-01 0.35 9.82E-01 -0.50 8.19E-01 -1.00 2.43E-01 

AT4G13350 (G) TSEEGSQS(ph)PEQVKDLGS(ph)ASPPVARPVR 0.34 1.93E-01  1.00E+00  1.00E+00 0.02 9.20E-01 

AT4G20940 (RK) LAVATGFS(ph)PSK -0.16 1.46E-02 0.52 1.21E-02 -0.44 2.35E-02 0.24 1.07E-03 

AT4G23650 (Ca) RGS(ph)SGSGTVGSSGSGTGGSR -3.07 2.69E-01 1.33 2.30E-01 -1.41 3.57E-01 2.98 1.78E-01 

AT4G27300 (RK) NVPDISS(ph)SLSLR  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT4G29900 (Ca) (ac)SGQFNNS(ph)PR 0.61 2.65E-03 0.99 9.71E-02 -0.48 3.69E-01 -0.10 4.47E-01 

AT4G29900 (Ca) (ac)SGQFNNS(ph)PRGEDKDVEAGTSSFTEYEDSPFDIASTK -0.59 4.15E-01  1.00E+00  1.00E+00 -0.28 6.34E-01 

AT4G29900 (Ca) GEDKDVEAGTSS(ph)FTEYEDSPFDIASTK -2.28 4.15E-01  1.00E+00  1.00E+00 1.87 1.00E+00 

AT4G29900 (Ca) QAALVLNAS(ph)R  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT4G29900 (Ca) VTGIAS(ph)PLPTPGGGDFGIGQEQIVSISR -1.47 1.00E+00  1.00E+00  1.00E+00 1.13 9.80E-02 

AT4G33240 (PI) SES(ph)M(ox)VVK  1.00E+00  1.00E+00  1.00E+00  3.30E-01 

AT4G35310 (Ca) NSLNIS(ph)MRDA  1.00E+00 0.07 9.97E-01 0.62 1.59E-01  1.00E+00 

AT4G35470 (RK) SDS(ph)QSSLNFSER  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT5G01560 (RK) ISS(ph)TSLISGR 0.50 1.42E-01 0.09 8.63E-01 -0.15 6.83E-01 -0.57 1.01E-01 

AT5G01950 (RK) VELASSSSVLSTSS(ph)SNVTR 0.03 9.92E-01 0.13 7.19E-01 -0.42 4.40E-01 -0.31 7.00E-01 

AT5G03040 (Ca) DLS(ph)PPSTADAVNVTATDVPVVPSSSAPGVVR -0.73 1.54E-01 -1.06 1.00E+00 1.42 1.00E+00 1.10 1.06E-01 

AT5G03040 (Ca) LKPQS(ph)PLGGTTQENEGFTDK 0.15 6.27E-01  1.00E+00  1.00E+00 -0.13 3.69E-01 

AT5G03040 (Ca) NRDLS(ph)PPSTADAVNVTATDVPVVPSSSAPGVVR  1.00E+00  1.00E+00  1.00E+00  3.69E-01 

AT5G03040 (Ca) NSFFSPPT(ph)PSR  1.00E+00 0.83 8.00E-02 -0.80 8.27E-02  1.00E+00 

AT5G03040 (Ca) QSSSS(ph)PPPALAPR -0.01 9.93E-01 0.02 7.94E-01 0.05 8.66E-01 0.09 6.74E-01 

AT5G04870 (Ca) DGDDSASM(ox)SNGDIASEAVS(ph)GELR -1.27 1.57E-01  1.00E+00 -1.09 1.58E-01  1.00E+00 

AT5G07300 (Ca) EMEVLDGDKGEKLES(ph)SSGR  1.00E+00 0.06 3.89E-01 0.26 2.78E-01  1.00E+00 

AT5G10020 (RK) FSDQPVM(ox)LDVYS(ph)PDR -0.37 3.17E-01  1.00E+00 -0.87 8.32E-02  1.00E+00 

AT5G12080 (U) SVGS(ph)PAPVTPSK 0.91 1.58E-03 0.13 2.74E-01 0.17 3.95E-02 -0.61 6.31E-02 

AT5G12480 (Ca) DGS(ph)LQLEGET  1.00E+00 1.70 8.80E-02 -0.82 3.50E-01  1.00E+00 

AT5G16590 (RK) AS(ph)AEVLGK 0.22 7.11E-01 0.80 2.38E-01 -1.10 1.08E-01 -0.51 3.86E-01 

AT5G16590 (RK) SPASPGPLS(ph)D 0.80 1.49E-03 0.82 1.20E-03 -0.59 6.56E-03 -0.57 8.58E-03 

AT5G16590 (RK) WVSSITEQQS(ph)PSDVFDPELTR -0.56 5.72E-01 -1.51 3.01E-02 1.09 6.41E-02 0.14 9.72E-01 

AT5G19320 (G) ELISEDSVS(ph)PR  1.00E+00 0.47 2.35E-01  1.00E+00  1.00E+00 

AT5G19450 (Ca) EGS(ph)LQLEGEN  1.00E+00 1.17 3.06E-02 -0.29 5.94E-01  1.00E+00 

AT5G19450 (Ca) SNPFYSEAYTTNGS(ph)GTGFK 0.36 5.43E-02 -0.04 8.34E-01 0.19 2.92E-01 -0.20 2.13E-01 

AT5G24430 (Ca) TES(ph)AIFR  1.00E+00 0.91 2.55E-02 -0.36 1.62E-01  1.00E+00 

AT5G25930 (RK) TATEAYEAPLLVSLS(ph)GRR  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT5G44460 (Ca) SPS(ph)LNALR -0.14 9.18E-01 0.87 7.71E-01 -0.60 9.94E-01 0.42 7.24E-01 

AT5G46070 (G) GGKDS(ph)PADSASPSPR  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT5G49760 (RK) EIENIMQLAGLNPNSDS(ph)ATSSR -0.54 4.00E-01 -0.83 1.84E-01 1.02 5.92E-02 0.73 2.09E-01 

AT5G49760 (RK) GSGDPYGS(ph)ESFQYSGNFPASK 0.39 2.51E-01  1.00E+00  1.00E+00 0.69 1.08E-01 

AT5G49770 (RK) LVGLNPNADS(ph)ATYEEASGDPYGR 0.27 9.60E-01 -0.09 8.14E-01 0.22 9.06E-01 -0.14 7.56E-01 

AT5G52580 (G) T(ph)LSSLELPSSLPVASGQSVYPLDGGSSSENQR  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT5G55850 (S) TGGKPGS(ph)PGKSSEGHVK  1.00E+00  1.00E+00  1.00E+00  3.88E-02 

AT5G56040 (RK) NLT(ph)SANVIGTGSSGVVYR  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT5G58300 (RK) SPVQS(ph)PSRDDM(ox)VDLPR 0.64 2.16E-01 0.42 4.42E-01 -0.36 3.42E-01 -0.58 2.31E-01 

AT5G58300 (RK) VSDSETTRPS(ph)SDDNSKPK  1.00E+00 -2.78 5.07E-02 2.31 1.00E+00  1.00E+00 

AT5G58350 (M) NRS(ph)LVDVQR  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT5G58670 (PI) EYLQT(ph)QISK  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT5G61790 (Ca) S(ph)GDEAEKKEETAAPR -0.49 7.85E-01 -0.29 8.28E-01 -0.23 8.57E-01 -0.04 9.35E-01 

AT5G62390 (Ca) EIAEGVTQIVQM(ox)LET(ph)EEE -0.82 2.81E-01  1.00E+00  1.00E+00 -0.03 8.59E-01 

AT5G63270 (S) ASGAGPNSLVS(ph)PQR 0.58 2.57E-01  1.00E+00  1.00E+00  1.00E+00 

AT5G64070 (PI) VDDGNES(ph)EGDESPEFSLFK 0.45 3.19E-01 -0.67 1.49E-01 1.01 3.50E-02 -0.10 9.03E-01 

AT5G64070 (PI) VDDGNES(ph)EGDESPEFSLFKR  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT5G64330 (L) APSPSTTNFAGS(ph)SPR -0.16 1.62E-04 0.49 1.00E+00 -0.39 1.00E+00 0.26 9.75E-05 

AT5G64330 (L) LLEHFLVQEQTEGS(ph)SPSR  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT5G64330 (L) LLEHFLVQEQTEGSS(ph)PSR -2.21 1.00E+00  1.00E+00  1.00E+00 0.57 1.97E-01 

AT5G64813 (G) EGTKGS(ph)SGNLVDAAR 0.34 1.49E-01  1.00E+00 0.89 2.98E-02  1.00E+00 

AT5G64813 (G) LDEITS(ph)DDDQFYK  1.49E-01  1.00E+00 2.65 2.98E-02  1.00E+00 

AT5G64813 (G) LDEITS(ph)DDDQFYKR  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT5G65700 (RK) DQPMTESAPESELS(ph)PK 0.54 2.06E-02  1.00E+00 -0.35 4.50E-01  1.00E+00 

AT5G65700 (RK) SGVQS(ph)PPDLLNL -0.06 7.94E-01 0.53 1.83E-02 -0.55 1.79E-02 0.04 8.06E-01 

AT5G66560 (L) GNIS(ph)ATDLQLIPGGAAK  1.03E-02  1.00E+00  1.00E+00  2.56E-02 

 

stress. 
(U) unspecified; (a) abiotic; (b) biotic 

   ahk1.m/wt.m  ahk1/wt ahk1.m /ahk1 wt.m /wt 

accession category pPeptide log2 p-value log2 p-value log2 p-value log2 p-value 

AT1G11310 (b) SVENYPSS(ph)PS(ph)PR 0.18 6.70E-01 0.56 2.72E-01 -0.80 1.20E-01 -0.42 3.47E-01 

AT1G11360 (a) KSPTVVTVQPS(ph)SPRFPISTPTAGAQR  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT1G11360 (a) SPTVVTVQPS(ph)SPR 0.57 3.56E-01 1.85 2.13E-02 -1.35 1.11E-01 -0.07 9.00E-01 

AT1G11360 (a) SPTVVTVQPS(ph)SPRFPISTPTAGAQR -0.94 7.22E-01  1.00E+00  1.00E+00 0.41 4.89E-01 

AT1G20440 (a) SNS(ph)SSSSSSDEEGEEKKEK -2.33 1.00E+00 -0.10 5.84E-01 -1.00 3.62E-01 1.23 1.76E-02 

AT1G50570 (a) M(ox)KLPLDIDSPTQSENSSSSQQT(ph)PK 0.60 1.64E-01 0.09 1.00E+00 0.40 1.00E+00 -0.11 3.71E-01 

AT1G61560 (b) S(ph)RSVDESFANSFSPR  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT1G61560 (b) S(ph)VDESFANSFSPR 0.68 1.89E-01 0.74 9.60E-02 0.04 8.61E-01 0.10 6.81E-01 

AT1G65280 (a) GLADENGLGSNS(ph)ADDVTGPK -0.19 1.00E+00  1.60E-01  1.43E-01  1.00E+00 

AT1G69450 (a) NDSLTSPLLS(ph)FSEV 0.13 7.37E-01 0.39 4.79E-01 0.60 1.23E-01 0.85 4.43E-02 

AT1G74250 (a) AHEGEDEGAGLS(ph)ELEEEDDDAK 1.78 1.00E+00  1.00E+00 1.07 1.00E+00  1.00E+00 

AT1G74250 (a) AHEGEDEGAGLS(ph)ELEEEDDDAKRK  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT1G76180 (a) SDSSSSSSSEEEGS(ph)DGEKR  1.00E+00 1.37 1.48E-01 -1.23 9.27E-02  1.00E+00 
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   ahk1.m/wt.m  ahk1/wt ahk1.m /ahk1 wt.m /wt 

accession category pPeptide log2 p-value log2 p-value log2 p-value log2 p-value 

AT2G17480 (b) LGGDGSAS(ph)PTASTVR -0.30 5.38E-01 0.86 9.01E-02 -0.74 1.71E-01 0.42 2.86E-01 

AT2G26890 (a) ILEISLNNVS(ph)SDDLNR -0.63 1.15E-01 -1.53 1.36E-03 1.23 5.88E-03 0.33 3.47E-01 

AT2G32120 (a) (ac)AEAAYTVAS(ph)DSENTGEEK  1.00E+00  2.61E-01  4.85E-01  1.00E+00 

AT2G39200 (b) SLDQQTSFTASPS(ph)PPR 0.80 1.55E-02 0.33 2.99E-01 -0.02 7.61E-01 -0.50 1.59E-01 

AT3G06340 (a) VSYNENLS(ph)DDDVDLVNDNGEGSGK  2.55E-01  1.00E+00  1.00E+00 -0.05 1.00E+00 

AT3G10980 (U) FGLGSS(ph)PK -0.34 1.61E-01 0.62 6.02E-02 -0.62 5.65E-02 0.34 9.88E-02 

AT3G10980 (U) NISGASS(ph)PS(ph)PSR  1.00E+00 0.81 2.04E-02 -1.11 1.13E-01  1.00E+00 

AT3G10980 (U) NISGASSPS(ph)PSR  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT3G10980 (U) NM(ox)VS(ph)PNLVSPLPR 0.93 1.17E-02 1.24 8.66E-03 -1.14 1.18E-02 -0.83 2.03E-02 

AT3G18690 (b) LASTENAS(ph)PR -0.42 7.50E-01  1.00E+00  1.00E+00 0.87 4.54E-01 

AT3G25070 (b) ADES(ph)PEKVTVVPK -0.06 4.53E-01 0.73 2.74E-01 -0.93 1.61E-01 -0.15 2.80E-01 

AT3G25070 (b) ASQNNSYDNKS(ph)PLHK 0.26 3.54E-01 0.08 9.13E-01 -0.19 8.73E-01 -0.37 3.27E-01 

AT3G25070 (b) SSGANVSGS(ph)SRTPTHQSSR 0.17 4.17E-01 -0.49 4.93E-01 0.49 4.27E-01 -0.17 4.94E-01 

AT4G19040 (b) NSLLM(ox)DEDS(ph)DDDDEFQIAESEQEPETSKPETDVK -0.46 2.50E-01  1.00E+00 1.48 6.56E-02  1.00E+00 

AT4G23630 (b) IHHGGDSSSSSSSS(ph)DDEDEK  1.00E+00  1.00E+00 -0.70 8.80E-01  1.00E+00 

AT4G23630 (b) KPSS(ph)PSSSMK  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT4G27320 (a) IHHPS(ph)SPR -1.16 3.62E-01 0.65 2.19E-01 -0.75 3.65E-01 1.06 2.36E-01 

AT4G27320 (a) S(ph)RRDDDDDDDEDHEAK  1.00E+00 -2.58 1.89E-02 0.92 4.19E-02  1.00E+00 

AT5G45490 (b) LLAERDPVFVDDEVGPVGS(ph)THGQTDSSNR  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT5G47910 (b) DIINNM(ox)KGPDRDS(ph)DIENNNSNNNSK  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT5G47910 (b) GANSDTNS(ph)DTESIASDR -0.30 9.12E-02  1.00E+00  1.00E+00 -0.71 1.68E-01 

AT5G47910 (b) GNS(ph)SNDHELGILR  9.12E-02  1.00E+00  1.00E+00  1.00E+00 

AT5G47910 (b) GPDRDS(ph)DIENNNSNNNSK 1.00 4.98E-02 0.25 5.93E-01 0.23 5.57E-01 -0.52 2.30E-01 

AT5G47910 (b) ILSQM(ox)LS(ph)QK 0.18 7.33E-01 0.23 3.37E-01 -0.41 4.61E-02 -0.36 7.19E-01 

AT5G48620 (b) SLS(ph)LQER 0.37 2.15E-02 0.97 8.87E-03 -1.23 4.70E-03 -0.63 9.73E-02 

AT5G52640 (a) EIS(ph)DDEDEDEPK  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT5G54430 (a) IHHPPS(ph)PR -1.79 9.39E-02 0.78 3.27E-01 -0.55 4.99E-01 2.03 5.99E-02 

AT5G55530 (a) (ac)M(ox)DS(ph)PQSVVSPFK -0.47 6.13E-02 0.68 9.83E-03 -0.63 1.22E-02 0.52 4.97E-02 

AT5G55530 (a) SENSSSDSQKLPT(ph)PK 1.03 1.62E-01 -0.29 8.31E-01 0.65 3.52E-01 -0.68 4.25E-01 

AT5G56030 (a) EIS(ph)DDEEEEEK 1.21 4.06E-01 1.32 2.60E-01 0.08 7.64E-01 0.19 9.48E-01 

AT5G56030 (a) EIS(ph)DDEEEEEKK 2.04 6.87E-02  1.00E+00  1.00E+00 -1.20 7.36E-02 

AT5G56030 (a) EIS(ph)DDEEEEEKKDEEGK 0.73 1.43E-01 1.11 2.55E-01 -0.41 5.70E-01 -0.04 3.22E-01 

AT5G56030 (a) TIEKEIS(ph)DDEEEEEK  1.00E+00 0.49 6.10E-01 -0.32 5.56E-01  1.00E+00 

 

transport. 
(ABC) ABC transorters; (aa) amino acids; (am) ammonium; (Ca) calcium; (H+) H+ transportig pyrophosphatase; (Aq) Major Intrinsic Proteins; (U) membrane system unknown; (met) metabolite transporters; (m) 

metall; (mi) misc; (ni) nitrate; (nu) nucleotides; (ATP) p- and v-ATPases; (pep) peptides; (px) peroxisomes; (P) phosphate; (K) potassium; (su) sugars; (S) sulphate; (-) anions; (+) cations 

   ahk1.m/wt.m  ahk1/wt ahk1.m /ahk1 wt.m /wt 

accession category pPeptide log2 p-value log2 p-value log2 p-value log2 p-value 

AT1G02520 (ABC) TSELSSGS(ph)SFR -0.06 9.50E-01 0.39 2.36E-01 -0.93 1.10E-01 -0.49 1.81E-01 

AT1G08090 (ni) EQSFAFSVQS(ph)PIVHTDK  4.22E-02  1.00E+00  1.00E+00  4.89E-01 

AT1G11670 (mi) (ac)GSEATTAVNNLQQPLLESTKS(ph)EADFR -1.72 8.97E-02  1.00E+00  1.00E+00 1.36 1.00E+00 

AT1G15210 (ABC) NM(ox)EDIFNT(ph)SSR  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT1G15210 (ABC) NM(ox)EDIFNTSS(ph)R  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT1G15210 (ABC) NMEDIFNT(ph)SSR  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT1G15500 (met) AS(ph)SVKIPVVSQEDAPSGETTSQLSEK  1.00E+00  1.00E+00  1.00E+00  2.04E-01 

AT1G15690 (H+) LTSDLGASS(ph)SGGANNGK 0.39 7.04E-01 -0.41 1.00E+00 0.54 2.43E-01 -0.26 3.01E-02 

AT1G16010 (+) SNDGLSVSAPVS(ph)PVSS(ph)PPDSR 0.91 1.23E-01 0.35 1.28E-01 -0.74 1.15E-01 -1.29 8.63E-02 

AT1G17840 (ABC) NGTQNTTVAPDGLTQSPS(ph)LR 0.46 1.11E-01 0.76 2.29E-02 -0.36 1.98E-01 -0.07 7.84E-01 

AT1G18880 (pep) TSAEFDKVS(ph)V  1.00E+00  1.00E+00 -0.79 1.67E-01  1.00E+00 

AT1G19450 (su) (ac)S(ph)FRDDNTEEGR 0.76 2.30E-01 0.58 2.77E-01 -0.35 5.77E-01 -0.52 4.88E-01 

AT1G19450 (su) (ac)S(ph)FRDDNTEEGRNDLR 0.46 5.23E-01 0.79 1.52E-01 -0.33 3.61E-01 0.00 9.80E-01 

AT1G19450 (su) QSSM(ox)LES(ph)SQVIR 0.52 2.80E-01 0.85 1.94E-01 -0.24 5.84E-01 0.09 9.96E-02 

AT1G20840 (su) DNDDYATDDGAGDDDDS(ph)DNDLRSPLM(ox)SR 0.23 5.34E-01 1.22 1.54E-02 -0.97 4.16E-02 0.02 9.05E-01 

AT1G20840 (su) LYGTHENQSYLARPVPEQNS(ph)SLGLR  1.00E+00  1.00E+00  3.52E-02  1.00E+00 

AT1G20840 (su) PVPEQNS(ph)SLGLR 0.59 2.22E-01 1.70 3.11E-02 -0.82 1.66E-01 0.29 2.03E-01 

AT1G20840 (su) YYLKEDGAES(ph)R  1.00E+00 0.73 1.56E-01 -0.93 1.25E-01  1.00E+00 

AT1G22530 (mi) EILQSES(ph)FKEEGYLASELQEAEK -3.00 1.00E+00  1.00E+00  1.00E+00 0.59 1.00E+00 

AT1G22530 (mi) TFGSIIT(ph)SPR  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT1G22530 (mi) TFGSIITS(ph)PR  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT1G25530 (aa) VSSS(ph)PVS(ph)PSKETDRK 0.34 6.80E-01 0.03 1.00E+00 -0.32 6.47E-01 -0.63 4.19E-01 

AT1G30450 (-) SMTGEQIQAPS(ph)SPR 0.68 6.80E-02 -0.25 3.95E-01 0.44 1.76E-01 -0.49 1.47E-01 

AT1G30560 (U) LGDTITES(ph)FLSSR -0.55 1.16E-01 1.97 2.18E-02 -0.06 8.30E-01 2.47 7.26E-03 

AT1G31830 (aa) (ac)SQYENNEVPYSSVGADEVPS(ph)SPPKATDK 0.09 9.31E-01 0.62 9.39E-02 -0.01 4.48E-01 0.52 2.37E-01 

AT1G31830 (aa) (ac)SQYENNEVPYSSVGADEVPSS(ph)PPK 0.14 6.44E-01 0.91 6.52E-02 -0.25 4.99E-01 0.51 2.54E-01 

AT1G48370 (pep) QIEEHELQETGIS(ph)PDIER 0.36 4.28E-01 -0.13 3.88E-01 0.64 1.33E-01 0.15 7.80E-01 

AT1G53390 (ABC) TQS(ph)QIFK  1.00E+00 0.18 1.00E+00 -0.13 3.45E-01  1.00E+00 

AT1G57980 (nu) M(ox)VEFNQS(ph)ENNVEV 0.27 1.90E-02 1.00 1.82E-02 -0.96 1.63E-02 -0.23 2.68E-01 

AT1G59870 (ABC) (ac)M(ox)DYNPNLPPLGGGGVS(ph)M(ox)RR -0.78 3.15E-02 0.99 1.02E-02 -1.20 3.91E-03 0.56 8.87E-02 

AT1G59870 (ABC) LPT(ph)YSR 0.66 2.58E-01 0.61 3.53E-01 -0.08 9.87E-01 -0.13 7.89E-01 

AT1G59870 (ABC) NIEDIFSS(ph)GSRR 0.39 6.37E-01 -0.61 5.41E-01 0.23 9.23E-01 -0.77 3.07E-01 

AT1G59870 (ABC) NIEDIFSSGS(ph)R 0.52 1.59E-01 0.68 4.34E-02 -0.50 9.37E-02 -0.34 3.04E-01 

AT1G59870 (ABC) SLS(ph)TADGNR -0.30 3.71E-01 1.15 5.78E-01 -0.90 6.84E-01 0.55 4.52E-01 

AT1G59870 (ABC) SLS(ph)TADGNRR 0.19 3.75E-01 -0.45 7.04E-02 -0.24 2.11E-01 -0.88 1.34E-03 

AT1G59870 (ABC) TQS(ph)VNDDEEALK 0.81 7.58E-02 0.65 7.38E-02 -0.07 3.37E-01 -0.23 5.30E-01 

AT1G59870 (ABC) TQS(ph)VNDDEEALKWAAIEK -1.65 3.19E-01  1.00E+00  1.00E+00 1.30 6.72E-01 

AT1G64780 (am) ISAEDEMAGMDMT(ph)R  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT1G69870 (pep) ISS(ph)PGSILDAEK 1.05 1.61E-01 1.62 3.15E-02 -0.23 7.64E-01 0.34 5.99E-01 

AT1G69870 (pep) ISS(ph)PGSILDAEKVEK -0.45 1.57E-01 0.51 4.12E-01 1.05 2.67E-01 2.02 1.09E-01 

AT1G69870 (pep) SGS(ph)FSKS(ph)SPSELDVVDPYKR 0.14 7.17E-01 -0.17 7.03E-01 0.82 1.87E-01 0.51 5.05E-01 

AT1G69870 (pep) VGLPIEDFEEDKS(ph)SDDVEM(ox)TSK -0.38 1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT1G71090 (mi) VFNSISSFSQTSFPEVDLGGEYGGESSS(ph)PR  1.00E+00  4.71E-01  1.00E+00 0.05 1.00E+00 

AT1G71880 (su) DAAALETQS(ph)PEDFDQPSPLR 0.11 4.40E-01 0.40 4.50E-02 0.32 1.48E-01 0.61 9.77E-03 

AT1G71880 (su) DAAALETQS(ph)PEDFDQPSPLRK 0.03 8.10E-01 -0.18 6.71E-01 0.30 4.59E-01 0.09 9.32E-01 

AT1G75220 (su) (ac)S(ph)FRDDNEEAR 0.10 8.39E-01 -0.98 8.98E-02 1.04 6.86E-02 -0.05 9.77E-01 

AT1G75220 (su) (ac)S(ph)FRDDNEEARNDLR  1.00E+00 -0.90 6.67E-02 0.60 1.19E-01  1.00E+00 

AT1G75220 (su) QSSM(ox)M(ox)GS(ph)SQVIR  1.00E+00 -0.51 1.20E-01  1.00E+00 -0.47 1.37E-01 

AT1G80830 (m) S(ph)FSNSPLIENSDSNQIIVSEK -1.01 1.53E-01  1.00E+00 1.32 1.44E-01  1.00E+00 

AT2G01980 (+) SVS(ph)FGGIYNNK 0.40 4.88E-01 1.05 7.31E-02 -0.63 2.97E-01 0.02 7.82E-01 

AT2G03240 (P) AFS(ph)GLIS(ph)TSPK  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT2G04100 (mi) TSS(ph)FGNGLA 0.39 2.62E-01 1.07 9.49E-03 -0.26 5.38E-01 0.42 2.14E-01 

AT2G16850 (Aq) ALAS(ph)FRS(ph)NPTN -0.22 6.00E-01 0.72 2.24E-02 -1.04 3.86E-03 -0.10 5.49E-01 

AT2G18960 (ATP) (ac)S(ph)GLEDIKNETVDLEK -0.48 1.28E-01  1.00E+00 1.92 1.77E-02  1.00E+00 

AT2G18960 (ATP) EDVNIFPEKGS(ph)YR 0.20 7.09E-01 0.83 2.35E-01 -0.42 6.14E-01 0.20 7.20E-01 

AT2G18960 (ATP) GLDIDTAGHHYT(ph)V 0.08 2.64E-01 -0.64 7.07E-01 2.04 2.35E-01 1.32 9.53E-01 

AT2G18960 (ATP) T(ph)LHGLQPK 0.35 4.81E-01 0.10 6.57E-01 1.09 1.54E-02 0.84 5.66E-02 

AT2G25520 (met) VQAS(ph)DDEAGKLLEER  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT2G26910 (ABC) STS(ph)FKDEIEDEEELR  1.00E+00  1.00E+00  1.00E+00 0.55 3.93E-01 
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   ahk1.m/wt.m  ahk1/wt ahk1.m /ahk1 wt.m /wt 

accession category pPeptide log2 p-value log2 p-value log2 p-value log2 p-value 

AT2G28910 (Ca) SLS(ph)ES(ph)EDEEEGR 0.15 8.15E-01 0.41 5.88E-01 -0.50 5.77E-01 -0.24 8.04E-01 

AT2G30070 (K) LSTYATGS(ph)PGETR 0.02 4.09E-01  1.00E+00  1.00E+00 -0.67 9.62E-02 

AT2G36380 (ABC) S(ph)FRDVFAPPTDDVFGR -1.44 2.45E-01  1.00E+00  1.00E+00 0.71 6.32E-01 

AT2G36910 (ABC) NSVSS(ph)PIM(ox)TR 0.15 6.19E-01 0.26 3.35E-01 -0.63 5.75E-02 -0.51 1.58E-01 

AT2G38940 (P) SLEEM(ox)SGENEDNENS(ph)NNDSR 0.90 3.62E-02 0.69 8.14E-02 -0.07 5.79E-01 -0.28 3.36E-01 

AT2G39010 (Aq) S(ph)QLHELHA -0.18 6.93E-01 1.12 4.99E-02 -0.60 2.29E-01 0.70 1.49E-01 

AT2G39010 (Aq) TKDELTEEES(ph)LSGK -1.73 1.00E+00 0.93 1.10E-01 0.17 1.00E+00 1.03 1.00E+00 

AT2G39130 (aa) FGSSFLS(ph)SGLIR  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT2G39130 (aa) LSS(ph)QGLLSPIPSR 0.31 2.98E-01 0.91 9.76E-03 -0.53 8.40E-02 0.08 8.31E-01 

AT2G39130 (aa) LSSQGLLS(ph)PIPSR -0.03 8.97E-01 0.69 1.92E-02 -0.65 1.41E-02 0.07 8.26E-01 

AT2G39480 (ABC) GFQEPSS(ph)PK 1.03 4.61E-03 0.00 4.55E-01 0.04 9.39E-03 -0.99 6.11E-03 

AT2G39480 (ABC) RQDS(ph)FEM(ox)R 1.01 8.37E-03 0.10 9.67E-01 -0.47 5.45E-01 -1.38 2.92E-02 

AT2G39480 (ABC) SNGSDPES(ph)PISPLLISDPQNER 0.74 7.52E-02 -0.08 6.48E-01 0.40 2.23E-01 -0.42 2.16E-01 

AT2G39970 (px) DQTAAPES(ph)PSSNAEALVAVEPR 0.22 3.88E-01 0.86 1.33E-02 -0.31 3.30E-01 0.34 2.58E-01 

AT2G39970 (px) DQTAAPES(ph)PSSNAEALVAVEPRPYGTFNTIR -1.21 4.02E-02  1.00E+00  1.00E+00 0.36 2.51E-01 

AT2G47000 (ABC) (ac)AS(ph)ESGLNGDPNILEEVSETKR -0.19 8.15E-01 -0.15 3.98E-01 0.69 1.50E-01 0.73 3.62E-01 

AT2G47000 (ABC) GNS(ph)S(ph)RHS(ph)FNM(ox)FGFPAGIDGNVVQDQEEDDTTQPK -1.16 1.52E-01  1.00E+00  1.00E+00  1.00E+00 

AT2G47000 (ABC) M(ox)SSIES(ph)FKQS(ph)SLRK -0.70 2.70E-01  1.00E+00  1.00E+00 0.38 3.83E-01 

AT2G47000 (ABC) MSSIES(ph)FKQS(ph)SLR 1.41 2.23E-02 0.77 1.89E-01 -0.05 8.75E-01 -0.68 1.59E-01 

AT2G47160 (-) SLSQVFS(ph)PR  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT2G47800 (ABC) GITGLVTAET(ph)NSPTKPSDAVSVEK  1.00E+00 0.29 8.41E-01  1.00E+00 0.47 7.56E-01 

AT2G47800 (ABC) TPT(ph)SPHASSPR 2.82 4.90E-04 0.71 6.42E-02 0.16 6.37E-01 -1.96 1.13E-02 

AT3G06450 (-) VVS(ph)FQNPR -0.03 4.35E-01 0.38 6.28E-01 -0.48 6.18E-01 -0.07 4.75E-01 

AT3G12100 (m) SIS(ph)FNPR 0.49 3.00E-02 -0.37 1.93E-01 -0.30 4.92E-02 -1.16 3.11E-02 

AT3G17650 (pep) TSFTLEEDPHAS(ph)PLS(ph)PK -0.94 2.48E-01 0.15 9.47E-01 -0.09 8.40E-01 1.01 2.94E-01 

AT3G21250 (ABC) GNS(ph)SQNLQL -0.01 9.47E-01 0.10 1.56E-01 -0.28 2.05E-01 -0.17 4.90E-01 

AT3G23870 (nu) DTPVFTNS(ph)GSGR 1.32 1.01E-01 0.88 4.23E-02 0.32 3.23E-01 -0.12 4.32E-01 

AT3G24300 (am) ISEQHEM(ox)QGM(ox)DM(ox)T(ph)R  1.00E+00 -0.29 2.98E-01 1.06 2.45E-02  1.00E+00 

AT3G24300 (am) SAT(ph)PPRV 1.10 4.52E-02 0.79 1.14E-01 -0.53 2.71E-01 -0.83 1.01E-01 

AT3G24300 (am) VDPGS(ph)PFPR 0.52 1.69E-01 1.11 4.09E-01 0.11 7.19E-01 0.70 2.56E-01 

AT3G25610 (ATP) S(ph)GGSPLVNEDLDVVVDQSGPK -0.61 9.61E-01 -1.87 7.19E-02 1.44 2.08E-01 0.19 7.96E-01 

AT3G28345 (ABC) SSS(ph)ANSVTGPSTIK 0.04 4.25E-01  1.00E+00  1.00E+00 -0.95 7.17E-02 

AT3G28860 (ABC) DFSNPS(ph)TRR 1.11 1.09E-02 -0.51 2.25E-01 0.21 1.84E-01 -1.41 4.61E-02 

AT3G28860 (ABC) DFSNPST(ph)R -0.30 5.58E-02 -0.90 1.00E+00 0.50 3.39E-02 -0.10 1.00E+00 

AT3G28860 (ABC) NLSYSYS(ph)TGADGR  5.58E-02  1.00E+00  3.39E-02  1.00E+00 

AT3G47420 (U) DEVLDSS(ph)SEK 0.65 1.91E-01 1.57 1.00E+00 -1.10 5.43E-02 -0.18 1.00E+00 

AT3G47420 (U) IGNSVNEPLLLSSS(ph)DSETDDKKR 0.12 9.81E-01 0.25 4.90E-01 0.75 6.78E-01 0.88 2.09E-01 

AT3G53420 (Aq) SLGS(ph)FRS(ph)AANV 0.72 8.82E-02 0.72 3.44E-01 -0.94 1.94E-01 -0.94 4.56E-02 

AT3G53480 (ABC) S(ph)TLLDDGDESM(ox)TEK  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT3G53720 (m) DLSASQDS(ph)TKEELR  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT3G54820 (Aq) ALGS(ph)FRS(ph)QPHV 1.64 1.19E-01 -0.22 4.91E-01 -0.28 8.57E-01 -2.14 5.87E-02 

AT3G55320 (ABC) SNGSEPES(ph)PVS(ph)PLLTSDPK -0.70 7.70E-02 0.78 1.76E-02 -1.72 4.32E-04 -0.24 2.14E-01 

AT3G58730 (ATP) GIS(ph)INAAR -0.02 9.40E-01 1.19 4.73E-02 -1.03 6.00E-02 0.18 8.07E-01 

AT3G59140 (ABC) FDESGESSLYEPLNAGDS(ph)NGFSEK  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT3G62150 (ABC) (ac)M(ox)DSVIESEEGLKVDS(ph)PNR 0.26 5.25E-01 1.08 3.55E-03 -0.80 2.07E-02 0.03 8.24E-01 

AT3G62150 (ABC) (ac)M(ox)DSVIESEEGLKVDS(ph)PNRADAETSNSK -0.41 2.34E-01 0.43 2.25E-01 -0.38 2.91E-01 0.47 1.83E-01 

AT3G62150 (ABC) S(ph)SSFSM(ox)FGFPAGIDTNNEAIPEKDIK -0.70 3.74E-01  1.00E+00  1.00E+00 -0.81 2.27E-01 

AT3G62150 (ABC) SSSFS(ph)M(ox)FGFPAGIDTNNEAIPEK -0.84 8.11E-02  1.00E+00  1.00E+00 1.33 3.63E-02 

AT3G62270 (-) NLS(ph)QVFS(ph)PR -0.12 2.86E-03 0.41 5.93E-02 -0.36 1.73E-01 0.17 1.00E+00 

AT3G62700 (ABC) SIS(ph)IES(ph)PR 0.41 3.65E-01 1.62 4.93E-03 -1.65 3.90E-03 -0.43 2.76E-01 

AT3G62700 (ABC) SIS(ph)IES(ph)PRQPK -0.14 5.31E-01 0.78 5.21E-03 -0.87 2.88E-03 0.05 9.40E-01 

AT3G62700 (ABC) SIS(ph)IES(ph)PRQPKS(ph)PK  1.00E+00 0.06 3.94E-01  1.00E+00 0.03 4.27E-01 

AT3G62700 (ABC) SIS(ph)IESPRQPK -1.05 5.29E-01 0.11 9.64E-01 -1.31 3.43E-01 -0.16 6.23E-01 

AT3G62700 (ABC) TTS(ph)MESPR -0.68 2.74E-01 1.44 1.00E+00 -0.70 1.00E+00 1.42 1.46E-01 

AT3G62770 (mi) IAPDATPSS(ph)PSSSLSLFK  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT4G00630 (K) LQVALESLEAEGYNTS(ph)EESEVR  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT4G13510 (am) HGGFAYM(ox)YFDDDES(ph)HK  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT4G13510 (am) ISSEDEM(ox)AGM(ox)DM(ox)T(ph)R 0.64 9.09E-02 0.93 1.34E-02 -1.00 1.52E-02 -0.71 1.01E-01 

AT4G13510 (am) ISSEDEMAGMDMT(ph)R 1.62 2.53E-03 1.10 1.01E-02 0.54 1.12E-01 0.02 8.72E-01 

AT4G13510 (am) RVEPRS(ph)PS(ph)PSGANTTPTPV  1.00E+00 0.82 1.18E-01 -0.76 1.56E-01  1.00E+00 

AT4G13510 (am) S(ph)PS(ph)PSGANTTPTPV 0.62 4.01E-01 1.62 4.22E-02 -0.89 2.58E-01 0.10 8.30E-01 

AT4G18910 (Aq) SGS(ph)FLK  1.00E+00 1.02 6.79E-02 -0.68 1.25E-01  1.00E+00 

AT4G23640 (K) SIS(ph)EANIAGSSR -0.15 3.37E-01 0.11 3.37E-01 -0.40 1.40E-01 -0.13 3.23E-01 

AT4G23700 (m) NVTTEESLVEDSES(ph)P 0.95 7.77E-02 1.14 1.13E-01 -0.76 2.98E-01 -0.57 2.13E-01 

AT4G30190 (ATP) EAVNIFPEKGS(ph)YR -0.30 5.62E-01 0.22 5.74E-01 -0.09 7.11E-01 0.43 4.30E-01 

AT4G30190 (ATP) GLDIETPSHYT(ph)V 0.74 1.40E-01 0.48 4.88E-01 0.95 3.57E-02 0.69 2.50E-01 

AT4G33530 (K) TSPAVDS(ph)FDVDALEIPGTQK 0.71 1.21E-02 -0.15 9.72E-02 0.75 2.33E-02 -0.11 5.98E-01 

AT4G35100 (Aq) ALGS(ph)FRSNATN -0.34 1.69E-01 -0.14 8.41E-01 -0.80 1.03E-01 -0.60 9.32E-02 

AT4G35300 (su) GGS(ph)TM(ox)SVLSR  1.00E+00 0.09 3.38E-01 0.05 4.98E-01  1.00E+00 

AT4G38640 (mi) FAAIYDSSS(ph)PSHPLLSKPSTSALDS(ph)PR  2.09E-01  1.00E+00  1.00E+00  1.00E+00 

AT4G38640 (mi) PSTSALDS(ph)PR 1.14 6.92E-02 0.82 2.70E-01 -0.46 6.22E-01 -0.78 5.05E-02 

AT4G39080 (ATP) ET(ph)ESQQAGEDLLESPLLQEEK 0.66 1.66E-01 -0.80 1.83E-01 1.52 3.51E-02 0.06 6.07E-01 

AT4G39080 (ATP) ETESQQAGEDLLES(ph)PLLQEEK 0.17 6.58E-01 -0.34 2.63E-01 0.86 4.88E-02 0.35 5.28E-01 

AT5G01490 (Ca) TVS(ph)ASSLIR 2.05 7.10E-03 0.94 9.47E-02 0.12 7.91E-01 -0.99 1.00E+00 

AT5G02170 (aa) QSSVFGSFT(ph)SSPSK  1.00E+00  1.00E+00 0.16 8.52E-02  1.00E+00 

AT5G03280 (m) AAPTSNFTVGSDGPPS(ph)FR 0.03 6.75E-01 0.93 6.19E-03 -0.90 8.14E-03 0.01 7.78E-01 

AT5G03280 (m) KYS(ph)SM(ox)PDISGLSM(ox)SAR  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT5G03280 (m) SLSGEGGS(ph)GTGS(ph)LSR -0.51 8.33E-02 0.67 1.76E-01 -0.85 1.01E-01 0.32 1.56E-01 

AT5G03280 (m) SLSGEGGS(ph)GTGSLSR -0.24 5.21E-01 -0.06 4.96E-01 -0.47 7.48E-02 -0.29 5.26E-01 

AT5G03280 (m) SLSGEGGSGTGS(ph)LSR 0.28 2.82E-01 -0.24 3.07E-01 0.15 1.39E-01 -0.37 2.39E-01 

AT5G04930 (ATP) EVTFGDLGS(ph)K -0.16 9.05E-01 1.17 9.39E-02 -0.86 1.98E-01 0.47 4.82E-01 

AT5G04930 (ATP) EVTFGDLGS(ph)KR -0.14 3.33E-01 0.61 5.28E-01 -1.36 6.23E-02 -0.61 3.53E-02 

AT5G09400 (K) SLESDGNDDS(ph)DS(ph)EEDFPGSR 0.29 7.72E-01 0.58 3.55E-01 -0.80 9.50E-02 -0.51 3.17E-01 

AT5G09400 (K) VDS(ph)FDVEALEVPGAPR -0.13 8.97E-01 0.26 2.81E-01 0.26 1.28E-01 0.66 2.39E-01 

AT5G13550 (S) (ac)SYASLS(ph)VK  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT5G13550 (-) YGGSNNNSS(ph)SSNALLKEPLLSVEK  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT5G14880 (K) SDKPLNYS(ph)PDPENESGINER 0.63 2.64E-01 0.07 7.78E-01 0.20 8.21E-01 -0.36 5.09E-01 

AT5G17010 (su) SSGEIS(ph)PEREPLIK 1.38 3.75E-04 1.25 6.71E-04 -0.37 2.05E-01 -0.50 7.77E-02 

AT5G20650 (m) SSS(ph)GVSAPLIPK 0.48 2.39E-01 1.25 2.03E-01 -0.15 8.91E-01 0.62 9.80E-01 

AT5G24030 (met) NVS(ph)SENIENYLK -0.26 4.81E-01 0.01 4.68E-01 -0.05 1.00E+00 0.21 9.94E-01 

AT5G24380 (m) TNS(ph)ISTLVEVPEDSTK  1.00E+00  1.00E+00 -0.41 1.27E-01  1.00E+00 

AT5G27150 (+) GFVPFVPGS(ph)PTER 0.35 1.89E-02 0.74 1.32E-04 0.17 3.28E-01 0.56 4.85E-03 

AT5G27150 (+) GFVPFVPGS(ph)PTERNPPDLSK -1.12 2.90E-01 -1.15 9.60E-02 0.93 3.02E-01 0.90 6.15E-01 

AT5G27150 (+) GFVPFVPGS(ph)PTERNPPDLSKA -1.46 8.35E-02 -2.32 3.23E-03 1.76 1.08E-02 0.90 3.38E-01 

AT5G40890 (-) TLS(ph)STPLALVGAK 0.01 6.05E-01 1.16 3.08E-02 -0.20 6.54E-01 0.94 1.39E-01 

AT5G43370 (P) SLEELSGEAEVS(ph)HDEK 0.19 7.16E-01 0.67 3.90E-01 -0.31 9.30E-01 0.16 6.71E-01 

AT5G44240 (ATP) DLS(ph)PISITQPK 1.51 1.78E-02 1.79 4.84E-03 -0.48 3.24E-01 -0.21 6.98E-01 

AT5G44240 (ATP) SPVYEPLLS(ph)DSPNATRR  1.00E+00  1.00E+00 0.33 2.15E-01  1.00E+00 

AT5G44240 (ATP) SPVYEPLLSDS(ph)PNATRR -0.99 3.38E-01  1.00E+00  1.00E+00 0.80 7.39E-01 
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   ahk1.m/wt.m  ahk1/wt ahk1.m /ahk1 wt.m /wt 

accession category pPeptide log2 p-value log2 p-value log2 p-value log2 p-value 

AT5G45380 (+) VVEAYAS(ph)GDEDVDVPAEELREEK -0.83 1.00E+00  1.00E+00  1.00E+00 0.55 1.00E+00 

AT5G49890 (-) KIS(ph)GILDDGSVGFR -1.69 2.14E-01 -0.93 2.29E-03 0.86 1.14E-01 1.62 3.89E-01 

AT5G49890 (-) TTFGS(ph)QILR 1.57 4.36E-03 1.46 1.34E-02 -0.47 3.89E-01 -0.58 1.31E-01 

AT5G57110 (Ca) (ac)TSLLKS(ph)SPGRR  1.00E+00 -1.30 1.00E+00  8.00E-02  1.00E+00 

AT5G57110 (Ca) (ac)TSLLKSS(ph)PGR -0.72 1.61E-01 -2.45 2.36E-03 1.61 1.65E-01 -0.12 3.10E-01 

AT5G57110 (Ca) GGDVESGKSEHADS(ph)DSDTFYIPSK  1.61E-01  2.36E-03  1.65E-01  3.10E-01 

AT5G57110 (Ca) S(ph)EHADSDSDTFYIPSK  1.00E+00 -0.64 4.12E-02 1.16 5.49E-02  1.00E+00 

AT5G59520 (m) SGVDVS(ph)QALIR  1.00E+00 -0.11 6.32E-01 0.47 1.44E-01  1.00E+00 

AT5G60660 (Aq) ALGS(ph)FGS(ph)FGSFR -0.38 1.62E-01 0.57 1.20E-01 -0.29 2.43E-01 0.66 7.74E-02 

AT5G60660 (Aq) ALGSFGS(ph)FGS(ph)FR -0.13 4.69E-01 0.70 9.30E-01 0.03 7.05E-01 0.86 6.59E-01 

AT5G61520 (su) DIQETTILS(ph)H  1.00E+00 0.65 2.31E-01 0.12 4.95E-01  1.00E+00 

AT5G62670 (ATP) GLDIETIQQAYT(ph)V 0.24 1.81E-01 0.23 2.32E-01 1.17 1.18E-04 1.16 1.41E-04 

AT5G62670 (ATP) LKGLDIETIQQAYT(ph)V -0.88 5.05E-01  1.00E+00  1.00E+00 0.48 9.28E-01 

AT5G64410 (pep) (ac)ATADEFS(ph)DEDTSPIEEVR 0.40 4.77E-02 1.14 4.85E-06 -0.31 9.30E-02 0.44 3.17E-02 

 

others - amino acid metabolism 
   ahk1.m/wt.m  ahk1/wt ahk1.m /ahk1 wt.m /wt 

accession  pPeptide log2 p-value log2 p-value log2 p-value log2 p-value 

AT1G17745  FSTVGS(ph)DSDEYNPTLPKPR -0.43 4.50E-01 0.33 4.96E-01 0.22 7.40E-01 0.97 1.01E-01 

AT1G17745  TVEQTTLTEDNRFS(ph)TVGSDSDEYNPTLPKPR  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT2G39800  QLVNSS(ph)FADLQKPQTELDGK -0.83 6.76E-01 -1.45 8.40E-02 1.79 5.24E-02 1.17 4.54E-01 

AT3G55610  QLVNSS(ph)FADLQKPQM(ox)ELDGK -1.27 1.94E-01 -1.71 2.30E-02 1.34 4.69E-02 0.90 3.65E-01 

AT4G10760  ASYPEIDVQPPS(ph)PPR -0.28 6.43E-01 0.08 9.98E-01 0.68 4.71E-01 1.04 7.73E-01 

 

others - cell wall. 
   ahk1.m/wt.m  ahk1/wt ahk1.m /ahk1 wt.m /wt 

accession  pPeptide log2 p-value log2 p-value log2 p-value log2 p-value 

AT1G53840  (ac)M(ox)DSVNS(ph)FKGYGK 0.07 4.14E-01 0.45 2.20E-01 -0.66 1.01E-01 -0.28 2.26E-01 

AT2G46630  APPT(ph)SPPQER  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT2G46630  SSYTS(ph)PPS(ph)PK  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT3G03050  M(ox)GGDS(ph)DDDEEM(ox)NLSLVPK -0.09 9.09E-01 0.54 8.18E-02 -0.54 1.00E-01 0.09 8.33E-01 

AT3G07330  SSS(ph)DSGLTELSK 0.26 6.94E-01  1.00E+00  1.00E+00 -0.41 5.05E-01 

AT3G28180  NS(ph)ESGLELLSK 0.12 7.83E-01 -0.07 7.53E-01 -0.19 8.36E-01 -0.38 4.36E-01 

AT3G28180  RNS(ph)ESGLELLSK  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT3G28180  S(ph)SESDLLAFAEK  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT3G28180  SS(ph)ESDLLAFAEKEEK  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT3G48530  VEDLWDEQKPQLS(ph)PNEK -0.69 5.50E-01 0.42 1.00E+00 0.67 1.28E-01 1.77 7.37E-02 

AT3G53520  DEETIPM(ox)SQSSPYS(ph)PK  1.00E+00 -1.22 1.97E-02  9.67E-02 -1.85 1.00E+00 

AT3G53520  RDEETIPM(ox)SQSSPYS(ph)PK  1.00E+00 0.74 4.43E-01 -0.51 3.36E-01  1.00E+00 

AT4G28300  SSVFPTSSYS(ph)PPEDSLSQDITDTVER  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT4G32410  NAISS(ph)PYIDPR 1.06 9.79E-02 0.79 3.49E-01 -0.40 6.08E-01 -0.67 1.80E-01 

AT4G32410  SDS(ph)NAPLFNM(ox)EDIDEGFEGYDDER -1.53 5.43E-02 -4.46 1.36E-02 2.93 1.00E+00 0.00 9.76E-01 

AT4G32410  TTS(ph)GPLGPSDR 0.91 1.43E-01 0.50 5.92E-01 -0.50 6.21E-01 -0.91 1.53E-01 

AT5G05170  GGVDIDAS(ph)TDILADEALLNDEAR 0.51 2.08E-01  1.00E+00  1.00E+00 0.77 2.49E-01 

AT5G05170  LPYSSDVNQS(ph)PNR 0.14 1.00E+00 0.35 3.25E-01 -0.36 1.97E-01 -0.15 1.65E-01 

AT5G05170  LPYSSDVNQS(ph)PNRR 0.57 2.59E-01 0.85 1.00E+00 -1.52 1.00E+00 -1.25 1.67E-01 

AT5G05170  NTGPVSTQAAS(ph)ER 0.68 2.28E-01 0.11 8.04E-01 -0.34 5.39E-01 -0.92 1.39E-01 

AT5G05170  QDTSGEFSAAS(ph)PER 1.08 5.05E-02 0.88 9.38E-02 -0.32 5.27E-01 -0.51 3.74E-01 

AT5G05170  QDTSGEFSAAS(ph)PERLSVSSTIAGGK  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

 

others - cell. 
(c) cycle; (d) division; (u) unspecified 

   ahk1.m/wt.m  ahk1/wt ahk1.m /ahk1 wt.m /wt 

AGI category pPeptide log2 p-value log2 p-value log2 p-value log2 p-value 

AT1G17130 (c) KSDGAANTSLASLFQNYGS(ph)DEDED -0.56 3.43E-01 -1.22 7.74E-02 0.88 1.80E-01 0.23 7.14E-01 

AT1G49040 (d) QQAISAGLPS(ph)PRPK  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT2G20000 (d) LHVPDEIDES(ph)P 0.88 1.35E-01 0.29 1.00E+00 0.43 2.49E-01 -0.17 1.00E+00 

AT2G20190 (d) ENS(ph)LFGGDADITEKPIEPIK  1.00E+00  1.00E+00  1.00E+00 0.47 4.16E-01 

AT2G20190 (d) SSS(ph)LDLGVDPPSSR -0.15 1.00E+00 0.23 1.28E-01 -0.75 1.00E+00 -0.36 8.08E-02 

AT2G35110 (d) QYYPSQDESM(ox)S(ph)PTSVR 0.50 4.80E-01  1.00E+00  1.00E+00 -1.19 6.86E-03 

AT3G03790 (d) (ac)MELSVS(ph)PQTQK  1.00E+00 2.03 1.35E-01 -0.35 1.00E+00  1.00E+00 

AT3G10530 (c) VLPPVEQES(ph)DVELETK 0.67 8.40E-02 0.03 8.22E-01 0.20 4.98E-01 -0.43 1.81E-01 

AT3G12280 (d) VSVFPSVPDM(ox)S(ph)PK 0.24 2.24E-01 0.20 6.51E-01 -0.38 2.05E-01 -0.42 4.03E-01 

AT3G63400 (c) NFS(ph)PGDVS(ph)DR 0.37 4.62E-01 0.79 9.38E-02 -0.27 5.41E-01 0.15 7.15E-01 

AT3G63400 (c) NFS(ph)PGDVS(ph)DREAK 0.66 3.83E-03 -0.16 3.95E-01 0.09 6.58E-01 -0.74 1.57E-03 

AT4G19600 (c) IVGTADVTVS(ph)QSPK 0.64 3.86E-02 0.71 5.25E-02 -0.35 8.98E-02 -0.28 1.29E-01 

AT4G28980 (c) LEDKDGETSEPPEVIPDYENS(ph)PR -1.06 7.60E-02 -0.25 1.00E+00 0.01 3.86E-01 0.81 1.00E+00 

AT4G32420 (c) RES(ph)PGS(ph)EEKGR -2.16 6.41E-02 0.28 7.00E-01 -1.69 1.46E-01 0.75 3.14E-01 

AT4G33060 (c) SFSVSDTVGNS(ph)DDDDDGEDETKFDAK -0.53 7.53E-02  1.00E+00  1.00E+00 0.30 2.19E-01 

AT5G12350 (d) SDGTPSEANS(ph)PR  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT5G13850 (u) IDLDKPEVEDDDDNDEDDS(ph)EDDDEAEGHDGEAGGR 0.02 7.79E-01 0.61 2.24E-02 0.48 1.06E-01 1.07 2.87E-04 

AT5G13850 (u) LEEQKIDLDKPEVEDDDDNDEDDS(ph)EDDDEAEGHDGEAGGR -2.07 4.31E-02 -0.22 8.23E-01 0.42 6.45E-01 2.26 1.43E-02 

AT5G45190 (c) NVDVGDALISQS(ph)PK 1.16 1.98E-03 0.21 6.75E-01 -0.13 8.35E-01 -1.07 3.11E-03 

AT5G61960 (d) VIHNSIGS(ph)PVNSFIER  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT5G64960 (c) EIVTS(ph)PGR 0.59 7.43E-02 0.60 3.04E-01 -0.23 6.65E-01 -0.21 3.21E-02 

AT5G64960 (c) SYSHDHTGNLT(ph)NR  7.43E-02  1.00E+00  1.00E+00  3.21E-02 

 

others - DNA. 
(r ) repair; (s) synthesis; (u) unspecified 

   ahk1.m/wt.m  ahk1/wt ahk1.m /ahk1 wt.m /wt 

accession category pPeptide log2 p-value log2 p-value log2 p-value log2 p-value 

AT1G30480 (r ) SSS(ph)PPGNVDGFSIGK -0.09 7.93E-01 0.37 2.19E-01 -0.14 7.48E-01 0.32 2.76E-01 

AT1G48620 (s) RVDAGGASSVAPPPPPPTNVES(ph)GGEEVAVK -0.46 1.62E-01  1.00E+00  1.00E+00 1.26 4.04E-03 

AT1G77180 (s) ASGS(ph)PPVPVMHS(ph)PPRPVTVK -0.05 6.11E-01 -0.37 4.18E-01 0.96 1.37E-01 0.64 6.81E-01 

AT2G19490 (s) LIADEAADKETES(ph)ES(ph)EEEDSLR -0.08 8.54E-01 0.47 3.91E-01 -0.06 8.52E-01 0.50 2.33E-01 

AT2G25170 (u) KPVYNLDDS(ph)DDDDFVPK -0.31 8.31E-01 -0.13 5.58E-01 0.07 5.82E-01 0.25 8.03E-01 

AT2G25170 (u) KPVYNLDDS(ph)DDDDFVPKK  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT2G30620 (s) (ac)S(ph)IEEENVPTTVDSGAADTTVK -0.51 2.52E-01 0.30 6.34E-01 -1.00 4.74E-02 -0.19 6.93E-01 

AT2G42320 (s) GYT(ph)SDEELEELDSPLTSIVDK  1.00E+00  1.00E+00  1.00E+00 0.28 3.08E-01 

AT2G42320 (s) KGYT(ph)SDEELEELDSPLTSIVDK  1.00E+00  1.00E+00  1.00E+00 1.06 3.08E-01 

AT2G42320 (s) NVS(ph)M(ox)IQR  1.00E+00  1.00E+00  1.00E+00 -0.78 1.36E-01 

AT2G47330 (s) AVDAGM(ox)LDYDS(ph)DDNPIVVDKR -0.82 4.47E-02 -0.61 7.31E-02 0.51 1.16E-01 0.72 7.17E-02 

AT3G14890 (r ) FFTPEEYFIPSSTS(ph)PGT -0.62 2.30E-01 -0.07 4.89E-01 -0.02 3.53E-01 0.53 4.10E-01 

AT3G42170 (u) (ac)M(ox)EVYNDDTEM(ox)RS(ph)PETQPIK 0.65 2.06E-01 0.88 2.75E-01 -0.88 2.45E-01 -0.66 1.82E-01 

AT3G60600 (u) (ac)S(ph)NIDLIGM(ox)SNR  1.00E+00 0.65 2.58E-01 -0.94 1.05E-01  1.00E+00 

AT3G60600 (u) ASVS(ph)DNGHGSEFSFER  1.00E+00  1.00E+00  1.00E+00  1.00E+00 
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   ahk1.m/wt.m  ahk1/wt ahk1.m /ahk1 wt.m /wt 

accession category pPeptide log2 p-value log2 p-value log2 p-value log2 p-value 

AT3G60600 (u) VTYVAPPRPPS(ph)PVHEGS(ph)EEGS(ph)SPR 0.17 6.39E-01 0.39 7.07E-01 0.32 2.27E-01 0.53 2.48E-01 

AT5G55300 (s) EDGT(ph)DDDDDDDVPISK 0.63 3.79E-01 0.37 6.27E-01 -0.71 3.23E-01 -0.97 1.88E-01 

AT5G55300 (s) IIKDES(ph)DDETPISSMFR -1.27 2.66E-01  1.00E+00  1.00E+00 1.14 4.75E-01 

AT5G57160 (s) IGGDES(ph)DENDELDGNNNVSADAEEGNAAGR -0.47 1.13E-01 -0.28 8.09E-02 0.20 2.81E-01 0.39 1.91E-01 

 

others - gluconeogenesis / glyoxylate cycle. 
   ahk1.m/wt.m  ahk1/wt ahk1.m /ahk1 wt.m /wt 

accession  pPeptide log2 p-value log2 p-value log2 p-value log2 p-value 

AT4G15530  GGM(ox)T(ph)SHAAVVAR 1.10 6.15E-03 -0.42 4.85E-01 0.47 3.38E-01 -1.05 1.28E-02 

AT4G37870  S(ph)APTTPINQNAAAAFAAVSEEER -0.35 6.47E-01 -1.64 5.64E-02 1.95 3.48E-02 0.66 4.25E-01 

AT4G37870  S(ph)APTTPINQNAAAAFAAVSEEERQK -0.72 3.77E-01  1.00E+00  1.00E+00 0.30 9.93E-01 

 

others - glycolysis. 
   ahk1.m/wt.m  ahk1/wt ahk1.m /ahk1 wt.m /wt 

accession  pPeptide log2 p-value log2 p-value log2 p-value log2 p-value 

AT1G07110  SLS(ph)ASSFLIDTK 0.38 9.99E-02 0.53 5.82E-02 -0.01 9.65E-01 0.14 7.69E-01 

AT1G07110  SLSASGS(ph)FR 0.30 3.71E-01 0.84 2.10E-01 -0.35 4.16E-01 0.20 2.54E-01 

AT1G12000  DLTAVGS(ph)PENAPAK  1.00E+00 0.81 2.30E-03 -0.34 8.10E-02  1.00E+00 

AT1G13440  AAS(ph)FNIIPSSTGAAK 1.69 5.11E-02 0.31 9.27E-01 -0.05 7.20E-01 -1.43 3.79E-04 

AT1G13440  LTGM(ox)S(ph)FR  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT1G23190  ATGAFILTAS(ph)HNPGGPTEDFGIK -1.30 2.80E-01  1.00E+00  1.00E+00 0.25 8.18E-01 

AT1G53310  M(ox)AS(ph)IDVHLR  1.00E+00 0.73 7.95E-02 -0.69 6.75E-02  1.00E+00 

AT3G14940  M(ox)AS(ph)IDAQLR 0.57 3.01E-01 0.51 2.01E-01 0.02 8.07E-01 -0.04 9.32E-01 

AT3G14940  MAS(ph)IDAQLR 2.20 4.13E-03 0.70 2.92E-01 0.83 2.31E-01 -0.67 1.61E-01 

AT3G14940  S(ph)AQELVK 1.60 2.54E-02 0.86 1.70E-01 -1.10 1.12E-01 -1.83 1.00E-02 

 

others - hormone metabolism. 
(BR) brassinosteroids; (ET) ethylene; (IAA) auxin; (JA) jasmonate  

   ahk1.m/wt.m  ahk1/wt ahk1.m /ahk1 wt.m /wt 

accession category pPeptide log2 p-value log2 p-value log2 p-value log2 p-value 

AT1G23080 (IAA) PSNLTGAEIYS(ph)LNT(ph)TPR -0.64 1.00E+00 0.34 9.52E-01 0.50 2.88E-01 1.48 7.36E-02 

AT1G68370 (IAA) AQGDESKGDGDS(ph)AGEEGGTENR 1.16 4.76E-02 0.50 3.43E-01 -0.16 8.55E-01 -0.82 1.41E-01 

AT1G68370 (IAA) AQGDESKGDGDS(ph)AGEEGGTENRDK 0.52 3.14E-02 -0.08 6.63E-01 0.21 3.13E-01 -0.40 8.84E-02 

AT1G70940 (IAA) M(ox)LIM(ox)EQFPETAASIVS(ph)FK -0.42 1.00E+00  1.00E+00  1.00E+00 -0.53 1.00E+00 

AT1G70940 (IAA) PSNLTGAEIYS(ph)LST(ph)TPR  1.00E+00 0.23 4.71E-01  1.00E+00  1.00E+00 

AT3G04580 (ET) SILAGNAPELQHPNS(ph)NSILR  2.83E-01  1.00E+00  1.00E+00  1.00E+00 

AT3G04580 (ET) SILAGNAPELQHPNSNS(ph)ILR  2.83E-01  1.00E+00  1.00E+00  1.00E+00 

AT3G16460 (JA) (ac)S(ph)WDDGSHAK  1.00E+00 -0.02 9.85E-01 1.22 2.38E-02  1.00E+00 

AT3G19820 (BR) (ac)S(ph)DLQTPLVRPK 0.49 2.07E-01 0.84 2.78E-02 -0.10 7.40E-01 0.25 3.06E-01 

AT3G22850 (IAA) VGS(ph)VQNWSK 0.23 1.00E+00  1.00E+00  1.00E+00 0.13 3.24E-01 

AT4G27450 (IAA) VNS(ph)IPR 0.06 2.17E-01 -1.09 1.19E-01 0.30 5.48E-02 -0.86 1.73E-01 

AT5G07120 (IAA) SPS(ph)SLSSDYIK 0.07 8.19E-01 -0.11 2.44E-01 0.18 2.08E-01 0.00 9.60E-01 

AT5G09410 (IAA) MQS(ph)FQR 0.86 4.76E-02  1.00E+00  1.00E+00 -0.38 1.54E-02 

AT5G43830 (IAA) TVANSPEALQS(ph)PHSSESAFALK 0.10 5.30E-01 -0.14 4.24E-01 0.48 3.43E-02 0.25 9.87E-01 

AT5G43830 (IAA) VDS(ph)SQNWAGHI 0.97 3.81E-02 0.35 4.39E-01 0.34 4.36E-01 -0.27 1.86E-01 

 

others - lipid metabolism. 
   ahk1.m/wt.m  ahk1/wt ahk1.m /ahk1 wt.m /wt 

accession  pPeptide log2 p-value log2 p-value log2 p-value log2 p-value 

AT1G13580  LSEDVRS(ph)DS(ph)EGEDEHED  1.00E+00 0.76 1.00E+00 0.26 3.61E-02  1.00E+00 

AT1G31480  SADNLDEM(ox)EET(ph)DDEKDDR -0.23 1.57E-01 0.05 9.20E-01 -0.07 9.58E-01 0.21 2.53E-01 

AT1G31480  SADNLDEMEET(ph)DDEKDDR 0.94 1.72E-01 0.65 5.70E-01 -0.27 8.27E-01 -0.56 4.62E-02 

AT2G18730  (ac)M(ox)DS(ph)PVSKTDASK 0.69 4.13E-01 -0.61 3.65E-01 0.24 8.63E-01 -1.07 1.59E-01 

AT2G18730  (ac)MDS(ph)PVSK  1.00E+00 -0.28 1.00E+00 0.68 2.62E-02  1.00E+00 

AT2G32260  (ac)SNVIGDRTEDGLSTAAAASGSTAVQSS(ph)PPTDRPVR  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT2G38040  ELAAEES(ph)DGSVKEDDDDDEDSSESGK 0.34 8.19E-01 0.81 3.55E-01 -0.12 7.07E-01 0.35 6.81E-01 

AT2G38040  ELAAEES(ph)DGSVKEDDDDDEDSSESGKSEMVNPSFA  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT2G42010  EM(ox)VDGIDNS(ph)GTGSPSNANTPQALSR  1.00E+00 1.43 1.05E-01  1.00E+00 0.26 3.12E-01 

AT2G42010  EMVDGIDNS(ph)GTGSPSNANTPQALSR 0.51 1.00E+00 0.12 1.05E-01 0.17 1.00E+00 -0.22 3.12E-01 

AT2G42010  EMVDGIDNSGT(ph)GSPSNANTPQALSR  1.00E+00 -1.54 1.00E+00 1.01 3.37E-01  1.00E+00 

AT3G03520  SNPLSTS(ph)DPNSAQIFFGK  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT3G03520  VEETS(ph)SGGGSSASPIK  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT3G03530  WFASVPAS(ph)TQPNR  1.00E+00 0.53 1.61E-02 0.91 5.34E-03  1.00E+00 

AT3G05420  DIES(ph)EVEVSQEGR 0.96 9.22E-03 0.37 6.00E-01 -0.17 9.59E-01 -0.75 2.62E-02 

AT3G05420  TLEAPLPGS(ph)LSAVNNATTR -0.10 9.78E-01 -0.11 7.23E-01 0.37 2.97E-01 0.36 4.27E-01 

AT3G05630  (ac)S(ph)TDKLLLPNGVK 1.52 2.45E-02 1.42 8.57E-02 -0.25 7.73E-01 -0.35 3.01E-01 

AT3G05630  HDSFS(ph)SAS(ph)PPQEIPLLLPQETDADFAGR 0.14 3.62E-01  1.00E+00  1.00E+00  1.00E+00 

AT3G07020  TVVASIADETVAESSGTGNKS(ph)FSR -1.75 4.67E-01 0.90 5.90E-03 -1.01 1.47E-01 1.63 5.26E-01 

AT3G19260  VGEDIRS(ph)DS(ph)EDDDD 0.73 1.60E-01 0.74 1.63E-01 -0.22 7.69E-01 -0.21 6.78E-01 

AT4G00550  DLGLSLNTPS(ph)PNTR 0.76 1.38E-01 0.71 2.65E-01 0.15 8.07E-01 0.10 7.17E-01 

AT4G11850  EVPVGTVSVYNS(ph)PR 0.56 3.33E-02 0.69 3.26E-02 -0.57 6.53E-02 -0.44 6.45E-02 

AT4G11850  LGGM(ox)LS(ph)GLGR  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT4G25970  LSRPGS(ph)GSVSGLASQR  1.00E+00 0.42 3.43E-02 0.39 1.00E+00  1.00E+00 

AT5G01220  EDDES(ph)EIDAPLLDPESLSKPR -0.18 7.28E-01 -1.34 1.67E-02 2.27 5.90E-03 1.11 5.25E-02 

 

others - major CHO metabolism. 
(d) degradation; (s) synthesis 

   ahk1.m/wt.m  ahk1/wt ahk1.m /ahk1 wt.m /wt 

accession category pPeptide log2 p-value log2 p-value log2 p-value log2 p-value 

AT1G35580 (d) HDGIHDS(ph)PR 2.22 1.00E+00 -0.15 3.64E-01 -1.33 1.89E-01 -3.70 1.00E+00 

AT1G35580 (d) KRS(ph)FDER  1.00E+00 0.81 4.07E-01 -1.45 1.36E-01  1.00E+00 

AT1G35580 (d) RS(ph)ASWPQL  1.00E+00 1.97 4.70E-02 -0.87 3.88E-01  1.00E+00 

AT1G35580 (d) S(ph)MSELST(ph)GYSR  1.00E+00  1.11E-01 1.53 1.00E+00  1.00E+00 

AT1G35580 (d) SAS(ph)WPQL 0.39 1.87E-01 1.40 1.63E-05 -0.68 9.14E-03 0.33 2.36E-01 

AT1G35580 (d) SVLDT(ph)PLSSAR 0.63 1.76E-01 0.71 1.11E-01 -0.73 9.51E-02 -0.65 1.55E-01 

AT1G74910 (s) RVS(ph)SFEALQPATR -0.82 2.64E-01 0.33 8.00E-01 -0.54 3.81E-01 0.61 5.60E-01 

AT1G74910 (s) VSS(ph)FEALQPATR 0.00 1.00E+00 0.89 6.81E-02 -0.48 1.27E-01 0.40 1.04E-01 

AT3G23920 (d) AHGTDPS(ph)PPMS(ph)PILGATR 0.98 1.01E-01  4.23E-02 1.33 3.23E-01  4.32E-01 

AT3G23920 (d) SGEM(ox)TDSSLLSIS(ph)PPSAR 0.14 8.79E-01 -0.33 1.00E+00 -0.05 4.15E-01 -0.52 2.30E-01 

AT4G10120 (s) VPEELTS(ph)DSLR  1.00E+00  1.00E+00  1.50E-02  1.13E-01 

AT4G10120 (s) VPEELTS(ph)DSLRDVDDISLR  1.00E+00  1.00E+00  1.50E-02  1.13E-01 

AT4G15210 (d) T(ph)SNSQLTLEDIADAAQPSGAFK -0.44 4.05E-01 -1.68 1.00E+00 1.64 6.68E-02 0.40 1.69E-01 

AT4G34860 (d) SLTELTGS(ph)PQLR  1.00E+00 0.92 3.40E-03 -0.86 4.89E-03  1.00E+00 

AT5G11110 (s) S(ph)GSNNGVDTNLDAEDR 0.20 3.06E-01  1.00E+00  1.00E+00 -0.35 2.30E-01 

AT5G16150 (d) AQASS(ph)DGDEEEAIPLR  1.00E+00 -0.03 3.84E-01 -0.09 1.00E+00  1.00E+00 
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   ahk1.m/wt.m  ahk1/wt ahk1.m /ahk1 wt.m /wt 

accession category pPeptide log2 p-value log2 p-value log2 p-value log2 p-value 

AT5G16150 (d) AQASS(ph)DGDEEEAIPLRSEGK  1.00E+00  3.84E-01  1.00E+00  1.00E+00 

AT5G20280 (s) DIQDIS(ph)LNLK 1.30 5.80E-04 0.84 3.27E-03 0.52 3.64E-02 0.06 7.83E-01 

AT5G20280 (s) FS(ph)FDGSGNDNYM(ox)NQEGSSM(ox)DR  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT5G20280 (s) FSFDGS(ph)GNDNYM(ox)NQEGSSM(ox)DRK  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT5G20280 (s) HPQWQSDDGGDNS(ph)EPES(ph)PSDSLR 1.14 8.58E-03 0.64 4.67E-02 0.38 6.82E-02 -0.12 2.11E-01 

AT5G20280 (s) INS(ph)AESM(ox)ELWASQQK 0.51 4.81E-01 0.93 1.96E-01 -0.71 1.27E-01 -0.28 4.99E-01 

AT5G20280 (s) S(ph)SPSLLLR  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

 

others - minor CHO metabolism. 
   ahk1.m/wt.m  ahk1/wt ahk1.m /ahk1 wt.m /wt 

accession  pPeptide log2 p-value log2 p-value log2 p-value log2 p-value 

AT1G06410  S(ph)YTNLLDLASGNFPVM(ox)GR -0.43 3.68E-01  1.00E+00  1.00E+00 -0.22 6.24E-01 

AT1G06410  VM(ox)TVPGNVSEFDEDQAYSVSS(ph)DNPSSVSSDR  3.68E-01  1.00E+00  1.00E+00 1.21 1.00E+00 

AT1G34120  IKSHS(ph)DPPS(ph)PSK -0.16 8.56E-01 0.27 2.20E-01 0.82 6.42E-01 1.25 3.58E-01 

AT1G34120  S(ph)QEFDPISSGVTNPR 0.58 2.17E-01 0.63 3.33E-01 -0.28 7.06E-01 -0.23 6.17E-01 

AT1G70290  VLSLSPS(ph)FR  1.00E+00 0.37 4.95E-02 -0.22 2.42E-01  1.00E+00 

AT1G71710  SYS(ph)DPPS(ph)PGR 0.57 1.04E-01 -1.08 5.84E-02 0.91 6.68E-02 -0.74 8.42E-02 

AT4G03550  ASS(ph)SVSTLYK -0.21 1.70E-01 0.79 1.26E-01 -1.25 3.47E-02 -0.24 1.40E-01 

AT5G40390  SDS(ph)GINGVDFTEK 0.11 7.68E-01 1.35 4.16E-03 -0.82 4.24E-02 0.41 2.64E-01 

AT5G57330  LELSAVPS(ph)SYSSGQLDPK  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

 

others - metal handling. 
   ahk1.m/wt.m  ahk1/wt ahk1.m /ahk1 wt.m /wt 

accession  pPeptide log2 p-value log2 p-value log2 p-value log2 p-value 

AT1G30470  ASGIEPTES(ph)SPK  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT1G30470  TPGVPGDETTEKLPDESGVEPTENS(ph)PK  1.00E+00 0.62 1.00E+00  1.00E+00 -0.42 1.00E+00 

AT5G19140  (ac)M(ox)LGIFSGAIVSPPEELVAAGSRT(ph)PSPK  1.00E+00  9.18E-02  1.00E+00 -0.30 1.35E-01 

 

others - misc. 
   ahk1.m/wt.m  ahk1/wt ahk1.m /ahk1 wt.m /wt 

accession  pPeptide log2 p-value log2 p-value log2 p-value log2 p-value 

AT1G07990  T(ph)YNANTSSSDDDEVVVGEEDDDLTGNPK  4.22E-02 0.74 1.00E+00  1.00E+00  4.89E-01 

AT1G10290  AAAASSYSDNSGTESS(ph)PR 0.26 7.13E-03 0.23 7.61E-01 -0.41 3.15E-01 -0.44 2.24E-01 

AT1G10290  ATS(ph)PQPDGPTAGGSLK 0.00 9.92E-01 -0.86 1.42E-02 1.05 3.96E-03 0.19 3.56E-01 

AT1G16610  GRS(ph)PPPPPSK 0.98 2.23E-01 -0.31 2.09E-01 0.27 2.03E-01 -1.02 2.28E-01 

AT1G16610  GRS(ph)PSS(ph)PPPRR -2.93 5.53E-04 -0.95 1.08E-01 0.07 9.39E-01 2.05 2.83E-03 

AT1G16610  IRGS(ph)PVR -1.12 8.95E-02 -0.46 4.73E-01 -0.06 7.76E-01 0.60 3.39E-01 

AT1G16610  RGRS(ph)PPPPPSK -1.24 7.17E-01 -0.75 2.93E-01 0.40 4.01E-01 0.89 8.77E-01 

AT1G16610  S(ph)PLPLR 0.20 5.97E-01 0.50 2.81E-01 -0.17 7.21E-01 0.13 8.54E-01 

AT1G16610  S(ph)PPRRS(ph)PIR 1.63 7.25E-03 -0.68 1.07E-01 0.50 1.90E-01 -1.82 1.73E-02 

AT1G16610  VSS(ph)PPKPVSAAPK 0.61 2.06E-02 -0.16 8.04E-01 -0.24 8.00E-01 -1.02 7.53E-03 

AT1G16610  YRS(ph)PPRGS(ph)PR 1.02 1.36E-03 -0.10 8.10E-01 0.26 2.35E-01 -0.87 9.31E-03 

AT1G33990  TLS(ph)DPFSNGK 0.30 3.23E-01 0.72 4.03E-02 -0.35 2.77E-01 0.06 9.00E-01 

AT1G59610  AAAASSWSDNSGTESS(ph)PR  1.00E+00 0.85 1.75E-01 0.55 2.99E-02  1.00E+00 

AT1G59610  ATS(ph)PQPDGPSSTGGSLK 0.30 3.56E-01 -0.43 9.64E-02 0.48 6.61E-02 -0.24 4.88E-01 

AT1G59610  QLS(ph)IHDNR  1.00E+00 -0.18 1.00E+00 0.71 1.35E-02  1.00E+00 

AT1G59610  QSLS(ph)EGSLDK 1.33 9.26E-02 -0.42 7.54E-01 0.84 5.03E-01 -0.92 1.78E-01 

AT1G59610  RYS(ph)DPAQNGEDSSGSGGSSR 0.63 4.93E-01  1.00E+00  1.00E+00 -0.32 9.75E-01 

AT2G01180  GVPVTSS(ph)QNGDALR 0.04 1.00E+00 -0.59 6.70E-02 0.21 1.00E+00 -0.43 1.14E-01 

AT2G28890  GFLS(ph)GPIER  1.00E+00 -1.02 1.16E-02 0.09 1.00E+00  1.00E+00 

AT2G34410  VHS(ph)DNNLVELGEVK  1.00E+00 -0.69 3.54E-01 1.67 2.64E-01  1.00E+00 

AT3G26180  S(ph)PVDLSK 0.38 2.11E-01 0.36 2.18E-01 -0.08 6.77E-01 -0.10 7.10E-02 

AT3G45190  IPNGSSSSEGEIS(ph)PR 0.02 4.27E-01 -0.59 1.00E+00 -0.43 1.00E+00 -1.04 3.29E-02 

AT3G45190  S(ph)PPVPSLFGK 3.44 4.75E-04 0.73 8.15E-03 -0.44 5.97E-02 -3.15 7.26E-05 

AT3G45190  T(ph)RDSDDDEVHDR -1.30 4.75E-04 0.26 1.00E+00 0.18 1.00E+00 1.74 7.26E-05 

AT3G45190  TRDS(ph)DDDEVHDR -4.83 9.04E-02 1.44 2.38E-01 -2.42 2.76E-01 3.85 1.00E+00 

AT4G10020  VPAS(ph)PPR 1.24 4.31E-02 1.58 1.00E+00 -1.18 1.50E-02 -0.84 1.13E-01 

AT4G33650  TIEEVSGETPPS(ph)T(ph)PPSSSTPSPSSSTTNAAPLGSSVIPIVNK  1.00E+00  9.72E-02  2.33E-02  1.00E+00 

AT5G15070  QGS(ph)GIIGTFGQSEELR 0.13 4.33E-01 -0.61 1.86E-02 1.05 5.31E-04 0.31 4.57E-01 

 

others - N-metabolism. 
   ahk1.m/wt.m  ahk1/wt ahk1.m /ahk1 wt.m /wt 

accession  pPeptide log2 p-value log2 p-value log2 p-value log2 p-value 

AT1G37130  SVS(ph)TPFMNTTAK 0.41 1.93E-01 -0.26 3.81E-01 0.35 2.42E-01 -0.33 2.94E-01 

AT3G53180  LNIDTDSSSPQNIIS(ph)PK 0.32 1.46E-01 0.42 1.89E-01 0.36 1.88E-01 0.46 1.63E-01 

AT5G67220  DGQIEETVDTAPASLGS(ph)PSR 0.06 7.15E-01 0.55 5.30E-02 -0.13 7.54E-01 0.36 1.25E-01 

 

others - nucleotide metabolism. 
   ahk1.m/wt.m  ahk1/wt ahk1.m /ahk1 wt.m /wt 

accession  pPeptide log2 p-value log2 p-value log2 p-value log2 p-value 

AT1G26190  LSLDEDLVSS(ph)SSPK  1.00E+00 0.61 5.50E-02 -0.65 4.17E-02  1.00E+00 

AT1G68720  VLPQEAPSLHQVEVGQT(ph)SPR  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT1G73980  APAS(ph)PATLPNQGFITQLSDQISTLNER  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT1G73980  LSLDDDTVS(ph)SPKEALSR -0.60 1.83E-01 0.80 1.88E-01 -0.64 1.80E-01 0.76 1.92E-01 

AT1G73980  LSLDDDTVSS(ph)PK -0.51 3.13E-01 0.86 4.63E-01 -1.25 9.64E-02 0.12 9.14E-01 

AT2G38280  EVISDPS(ph)TPKPNTEPFAHYPQGK  1.00E+00 0.71 1.00E+00  1.00E+00 2.34 1.00E+00 

AT2G38280  KVNDQYGRS(ph)PASLPDATPFTDGGGGGGGDTGR  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT2G38280  S(ph)PASLPDATPFTDGGGGGGGDTGR 0.36 3.61E-01 1.20 3.96E-02 -1.00 7.40E-02 -0.16 5.69E-01 

AT2G38280  SHS(ph)VSGDLHGVQPDPIAADILR  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT2G38280  TGS(ph)FVRPIS(ph)PK -0.14 6.22E-01 0.02 9.45E-01 -0.67 8.13E-02 -0.51 3.54E-01 

AT2G38280  VNDQYGRS(ph)PASLPDATPFTDGGGGGGGDTGR -0.96 5.21E-02 -0.11 6.55E-01 -0.12 8.48E-01 0.72 1.79E-01 

AT3G27190  LDGLLSS(ph)PSK 1.00 1.92E-02 0.83 4.81E-02 -0.34 2.62E-01 -0.51 5.46E-03 

AT5G18280  SPSSTELLESGNHS(ph)PTSDSVDGGK 0.81 4.37E-01 0.36 6.10E-02 0.28 4.78E-01 -0.17 8.03E-01 

AT5G40870  FDGLLS(ph)SSPPNSSVVSSLR 0.54 1.23E-01 -0.50 4.40E-01 0.45 1.60E-01 -0.59 4.02E-01 

 

others - protein.  
(a) amino acid activation; (f) folding; (g) glycosylation; (s) synthesis; (t) targeting 

   ahk1.m/wt.m  ahk1/wt ahk1.m /ahk1 wt.m /wt 

accession category pPeptide log2 p-value log2 p-value log2 p-value log2 p-value 

AT1G01100 (s) DEPAEES(ph)DGDLGFGLFD  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT1G01100 (s) KDEPAEES(ph)DGDLGFGLFD -0.62 4.50E-02 -0.86 2.80E-03 1.33 7.79E-05 1.09 1.49E-03 

AT1G01100 (s) KKDEPAEES(ph)DGDLGFGLFD -2.11 9.53E-03 -2.06 1.08E-03 1.88 9.08E-04 1.92 8.10E-03 

AT1G12920 (s) TFDELS(ph)DTEVYEDSD 0.53 3.89E-01 0.73 2.57E-01 -0.15 9.68E-01 0.05 8.29E-01 

AT1G12930 (t) LVDEDAESS(ph)GRQSPATYTR -0.88 1.00E+00  1.00E+00 -1.71 2.38E-02  1.00E+00 
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   ahk1.m/wt.m  ahk1/wt ahk1.m /ahk1 wt.m /wt 

accession category pPeptide log2 p-value log2 p-value log2 p-value log2 p-value 

AT1G15930 (s) (ac)S(ph)GDEAAPVVVPPPVAEPAAIPEDM(ox)DLM(ox)TALELTLRK  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT1G18950 (a) GSSSDIVPDRS(ph)PADDVAPVTDTK -0.18 6.68E-01 0.34 1.04E-01 0.08 8.59E-02 0.60 1.31E-01 

AT1G25260 (s) EDLS(ph)DVETS 0.36 3.03E-01 0.80 3.43E-02 -0.43 2.21E-01 0.02 9.76E-01 

AT1G25260 (s) EDLSELYREDLS(ph)DVETS -0.64 1.07E-01 -1.01 4.07E-02 1.15 5.57E-03 0.78 3.83E-02 

AT1G26170 (t) SSIDGAEDSYDGRYDS(ph)DGEEK 0.94 2.71E-02 -0.39 1.22E-01 -0.24 1.70E-01 -1.57 9.81E-03 

AT1G26630 (s) (ac)S(ph)DDEHHFEASESGASK 0.34 7.80E-01 0.11 6.66E-01 0.15 5.26E-01 -0.08 9.31E-01 

AT1G30230 (s) ISGVSAEGSGVIVEGSAPITEEAVAT(ph)PPAADSK -0.23 7.95E-01  1.00E+00  1.00E+00 0.77 1.41E-01 

AT1G31970 (s) ITFDNS(ph)DDED  1.00E+00 0.06 7.99E-01 -0.35 3.66E-01  1.00E+00 

AT1G36730 (s) SLSDENDQADS(ph)EEDDDDVQWQTDTSR 0.14 5.93E-01 0.13 6.39E-01 0.34 3.01E-01 0.33 3.30E-01 

AT1G48920 (s) AASSSDSSDEDS(ph)DEESEDEKPAQK  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT1G48920 (s) GFDASLS(ph)EDDIK 1.06 1.10E-01 1.36 1.09E-01 -0.66 1.18E-01 -0.36 3.47E-01 

AT1G48920 (s) GFDASLS(ph)EDDIKNTLR -1.25 1.48E-01 -2.23 4.65E-03 1.53 4.97E-02 0.55 6.88E-01 

AT1G64790 (s) ALLEGGS(ph)DDEGASTEAQGR 0.61 3.36E-02 0.12 8.36E-01 -0.27 6.44E-01 -0.77 1.94E-02 

AT1G69410 (s) (ac)S(ph)DDEHHFESSDAGASK 0.94 8.78E-03 0.32 3.01E-01 0.12 5.63E-01 -0.51 9.16E-02 

AT1G72160 (t) KSM(ox)IPQNLGS(ph)FKEESSK -1.44 2.19E-01 0.89 2.98E-01 -1.34 1.67E-01 0.99 3.60E-01 

AT1G72160 (t) LPS(ph)PSLTPSEVSESTQDALPTETETLEK -1.03 3.94E-01  1.00E+00  1.00E+00 2.69 1.18E-01 

AT1G72160 (t) SM(ox)IPQNLGS(ph)FKEESSK -0.22 4.12E-01 0.14 4.33E-01 -0.14 4.70E-01 0.22 3.77E-01 

AT1G72340 (s) SPS(ph)FILDER  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT1G72340 (s) SSNS(ph)PPM(ox)ADTTR  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT1G76810 (s) AHDS(ph)EPEAEKPTAK 0.68 3.06E-01  1.00E+00  1.00E+00 -0.96 2.06E-01 

AT1G76810 (s) S(ph)WGTVDLNLK 0.64 1.16E-01 -0.26 4.14E-01 1.08 1.28E-02 0.17 7.16E-01 

AT1G80680 (t) LM(ox)YAAS(ph)DNEEDVM(ox)QDVKEDSAK -0.95 1.60E-01 -0.03 9.65E-01 -0.61 3.27E-01 0.31 6.12E-01 

AT2G17980 (t) SLNASFAAT(ph)SANSASR  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT2G18240 (t) (ac)M(ox)EDEPGS(ph)ENEADTIVASPLAK 0.05 3.99E-02 0.75 3.97E-02 -0.69 5.32E-02 0.01 9.15E-01 

AT2G27720 (s) EEKEES(ph)DDDM(ox)GFSLFE 0.49 8.80E-02 0.66 3.04E-02 0.12 5.70E-01 0.30 4.26E-01 

AT2G27720 (s) EES(ph)DDDM(ox)GFSLFE 0.02 7.27E-01 1.75 3.61E-02 -0.58 3.57E-01 1.15 2.74E-01 

AT2G27720 (s) KEEKEES(ph)DDDMGFSLFE -1.79 3.00E-02 -1.56 3.79E-03 1.71 1.38E-03 1.93 1.17E-02 

AT2G27720 (s) LASVPSGGGGGVAVAS(ph)ATSGGGGGGGAPAAESK 0.22 1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT2G28800 (t) DTVELVEESQSESEEGS(ph)DDEEEEAR -0.04 9.57E-01 0.25 4.23E-01 0.20 5.59E-01 0.49 2.00E-01 

AT2G34970 (s) DKLSEITQAIDDDDT(ph)DDESVVPTSGELK -2.19 2.32E-01  1.00E+00  1.00E+00 1.01 8.73E-01 

AT2G34970 (s) LSEITQAIDDDDT(ph)DDESVVPTSGELK -0.31 4.20E-01 0.10 3.09E-01 0.46 1.80E-01 0.87 7.14E-02 

AT2G34970 (s) VSLLQQPTTEDS(ph)DEELEYADSSSGTADHLSGLNLQM(ox)ESK  1.00E+00  3.09E-01  1.80E-01 0.75 1.00E+00 

AT2G41840 (s) ALS(ph)TSKPDPVVEDQA -0.24 4.23E-01 0.29 1.91E-01 -0.37 2.06E-01 0.17 4.52E-01 

AT2G45140 (t) AS(ph)VSDNGNASDFTAAPR -0.06 4.07E-01 -0.04 3.55E-01 -0.53 5.65E-01 -0.50 1.00E+00 

AT2G45140 (t) FS(ph)ADRVDAQDNSSEAR 0.57 3.41E-01 0.32 7.62E-01 -0.70 5.28E-01 -0.94 2.09E-01 

AT2G45140 (t) VVYVAPPRPPS(ph)PVR 0.23 4.92E-01 0.25 9.97E-01 0.69 2.45E-01 0.71 5.14E-01 

AT2G45140 (t) VVYVAPPRPPS(ph)PVREGSEEGS(ph)SPR -0.42 6.19E-01 0.07 4.16E-01 0.28 6.48E-01 0.78 9.83E-02 

AT3G06700 (s) KHNVKAGENAS(ph)AEE  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT3G09200 (s) EES(ph)DEEDYGGDFGLFDEE -0.57 1.08E-01 -0.48 1.08E-01 1.20 4.07E-03 1.29 2.27E-03 

AT3G09200 (s) VEEKEES(ph)DEEDYGGDFGLFDEE -0.41 4.03E-01 -2.06 1.15E-05 2.22 4.67E-06 0.57 2.20E-01 

AT3G11250 (s) KEES(ph)DEEDYEGGFGLFDEE -0.40 3.22E-01 -1.82 3.63E-05 2.17 4.84E-06 0.75 5.95E-02 

AT3G11250 (s) VEEKKEES(ph)DEEDYEGGFGLFDEE -0.58 1.61E-01 -1.36 6.35E-02 0.20 1.00E+00 -0.58 2.87E-01 

AT3G12390 (s) IDLDKPEVEDDDDNEDDDS(ph)DDDDKDDDEADGLDGEAGGK -0.30 3.61E-01 0.35 3.37E-01 0.22 6.30E-01 0.86 1.39E-02 

AT3G18480 (t) KYVEDLESGFSS(ph)DVESK -0.46 4.74E-01  1.00E+00  1.00E+00 1.86 1.99E-01 

AT3G18480 (t) YVEDLESGFSS(ph)DVESK -0.01 9.64E-01 -0.09 5.22E-01 -0.07 7.97E-01 -0.15 4.40E-01 

AT3G19770 (t) AES(ph)ISDLENK 1.00 9.41E-02  1.00E+00  1.00E+00 -0.49 2.02E-01 

AT3G19770 (t) S(ph)SDSLSGTNELLNINSETPM(ox)K -0.34 5.13E-01 0.14 1.43E-01 0.42 3.52E-01 0.90 1.75E-01 

AT3G19770 (t) S(ph)SDSLSGTNELLNINSETPM(ox)KK -0.45 5.27E-01 0.50 3.58E-01 0.18 6.01E-01 1.14 6.08E-02 

AT3G20050 (f) (ac)S(ph)ISAQNPDISGDR  1.00E+00  1.00E+00  2.42E-01  1.00E+00 

AT3G26618 (s) TFDELS(ph)DGEVYEDSD 0.40 5.69E-01 0.79 3.60E-01 -0.17 8.44E-01 0.23 6.59E-01 

AT3G27530 (t) LLEDIGDESEAQAES(ph)EED 0.30 3.51E-01 1.08 3.89E-03 -0.48 1.51E-01 0.30 2.91E-01 

AT3G49010 (s) AGDS(ph)TPEELANATQVQGDYLPIVR -0.25 4.59E-01 -0.47 5.84E-01 0.56 2.91E-01 0.34 1.82E-01 

AT3G49010 (s) VKAGDS(ph)TPEELANATQVQGDYLPIVR  1.00E+00  1.59E-02  2.26E-02 1.38 1.00E+00 

AT3G56150 (s) FFTQVGSESEDES(ph)DYEVEVNEVQNDDVNNR  1.00E+00  3.40E-01  2.59E-01  1.00E+00 

AT3G56150 (s) YLQS(ph)GS(ph)EDDDDTDTK 0.28 5.54E-01 0.46 3.86E-01 -0.31 5.22E-01 -0.13 7.27E-01 

AT3G56150 (s) YLQS(ph)GS(ph)EDDDDTDTKR 0.06 6.20E-01 -0.04 7.88E-01 -0.06 5.31E-01 -0.16 1.66E-01 

AT3G57150 (s) DKKEEVIEEVAS(ph)PK  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT3G57150 (s) DTEAAVDAEDES(ph)AAEK  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT3G57150 (s) DTEAAVDAEDES(ph)AAEKSEK  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT3G57150 (s) EEVIEEVAS(ph)PK 0.76 1.24E-01 0.49 3.55E-01 0.08 6.20E-01 -0.19 7.02E-01 

AT3G57150 (s) HDDSSDS(ph)PAPVTTKK 1.97 2.11E-02 -2.07 1.00E+00 1.50 3.59E-02 -2.54 1.00E+00 

AT3G57150 (s) KHDDSSDS(ph)PAPVTTK  1.00E+00 0.86 2.76E-02 0.47 1.33E-01  1.00E+00 

AT3G57150 (s) SKDTEAAVDAEDES(ph)AAEK -0.01 4.28E-01  1.00E+00  1.00E+00 0.28 4.52E-01 

AT3G57490 (s) ISEVVVDKS(ph)VE  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT3G60240 (s) QVLQGPSATVNS(ph)PR 0.68 3.03E-02 0.66 3.61E-02 -0.70 2.71E-02 -0.72 2.35E-02 

AT4G00100 (s) S(ph)SPSWLK  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT4G00810 (s) EEKKDEPAEES(ph)DGDLGFGLFD -1.48 2.20E-01 -1.13 4.12E-01 1.28 1.35E-01 1.63 6.61E-02 

AT4G02510 (t) ELDSSSEAVSGNSDKVGADDLS(ph)DSEK 0.33 9.86E-01 1.44 1.53E-01 -1.38 9.11E-02 -0.26 6.66E-01 

AT4G02510 (t) IDGQIVT(ph)DSDEDVDTEDEGEEK -0.10 8.78E-01 1.19 9.57E-02 -0.40 7.11E-01 0.89 1.72E-01 

AT4G02510 (t) KVVEGDS(ph)AEEDENKLPVEDIVSSR -0.89 4.64E-01  1.00E+00  1.00E+00 0.95 2.37E-01 

AT4G02510 (t) VDGS(ph)ES(ph)EEETEEM(ox)IFGSSEAAK -0.88 5.03E-02 0.71 1.28E-01 -0.73 9.55E-02 0.86 6.80E-02 

AT4G02510 (t) VGADDLS(ph)DSEK 0.85 3.11E-01 1.06 3.39E-01 0.01 9.75E-01 0.22 7.94E-02 

AT4G02510 (t) VGADDLS(ph)DSEKEKPNLVGDGK 0.25 8.36E-01 0.73 1.95E-01 -0.23 7.65E-01 0.25 5.34E-01 

AT4G02510 (t) VVEGDS(ph)AEEDENKLPVEDIVSSR  1.00E+00  1.00E+00  1.00E+00 0.58 5.29E-01 

AT4G20980 (s) NLSNPSARPNT(ph)GSK 0.93 9.58E-02 -0.51 9.08E-02 0.53 1.35E-01 -0.91 9.62E-02 

AT4G25340 (f) QIVAIEGAHVPVLES(ph)EDEDEDGLPIPK  1.00E+00  1.00E+00  1.00E+00 0.94 1.00E+00 

AT4G31180 (a) DPQRLS(ph)P 0.15 3.34E-01  1.00E+00  1.00E+00 -0.18 3.87E-01 

AT4G31700 (s) DRRS(ph)ESLAK  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT4G31700 (s) LS(ph)SAAAKPSVTA 0.47 2.23E-02 0.56 1.35E-02 -0.24 1.44E-01 -0.15 2.89E-01 

AT4G31700 (s) SRLS(ph)SAAAKPSVTA -0.52 1.69E-01 0.90 6.58E-02 -1.35 9.21E-03 0.07 8.47E-01 

AT5G06140 (t) NISGS(ph)M(ox)QSPR -0.34 7.49E-01 2.02 1.42E-02 -1.54 2.62E-02 0.83 9.94E-01 

AT5G08180 (s) GS(ph)DTEAEKSIQK  1.00E+00 -0.90 1.64E-01 -0.58 1.00E+00  1.00E+00 

AT5G10360 (s) LS(ph)SAPAKPVAA 1.23 6.05E-02 1.18 5.79E-02 -0.50 4.15E-01 -0.55 3.68E-01 

AT5G10360 (s) S(ph)RLS(ph)SAPAKPVAA 0.19 6.25E-01 0.90 6.37E-02 -0.85 7.64E-02 -0.14 7.37E-01 

AT5G14050 (s) KQYEDVEDEEEIGS(ph)DDDLTR 0.14 8.50E-01 -0.39 4.51E-01 0.61 2.59E-01 0.09 8.26E-01 

AT5G14050 (s) QIPDYEDDGDDDEELS(ph)DEENGQVVAIR  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT5G14050 (s) QYEDVEDEEEIGS(ph)DDDLTR 0.43 1.49E-01 -0.60 1.88E-02 1.17 3.96E-03 0.13 9.31E-01 

AT5G15200 (s) DLLTLDEKS(ph)PR  1.00E+00 0.43 6.14E-01 0.38 6.07E-01  1.00E+00 

AT5G19980 (g) VS(ph)EKDSEKGEEDEELTQLVPGK  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT5G27640 (s) DGEVS(ph)DVEEDEYEAK 1.06 1.03E-02 0.38 6.65E-01 0.04 8.82E-01 -0.63 3.63E-02 

AT5G27640 (s) QNLRDGEVS(ph)DVEEDEYEAK -0.24 4.60E-01 -0.58 2.21E-01 0.39 5.94E-01 0.04 9.38E-01 

AT5G38640 (s) DFPDGSTTAS(ph)PGR  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT5G38640 (s) VAVAGAAASAVS(ph)PSSFSYSSR  1.00E+00 -0.97 1.00E+00  1.00E+00 -0.69 2.23E-01 

AT5G40930 (t) APELHTGGTAGPSS(ph)NSAK  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT5G45775 (s) VLEQLSGQT(ph)PVFSK  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT5G52280 (t) NS(ph)PENSFQR 1.01 1.92E-02  1.00E+00  1.00E+00  1.00E+00 

AT5G57290 (s) KEES(ph)EEEEGDFGFDLFG  1.00E+00  8.09E-02  2.81E-01 1.31 1.00E+00 

AT5G57290 (s) KKEES(ph)EEEEGDFGFDLFG -4.04 7.73E-02  1.00E+00  1.00E+00 2.88 1.09E-01 
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others - photosynthesis 
(CC) calvin cycle; (LR) light reaction 

   ahk1.m/wt.m  ahk1/wt ahk1.m /ahk1 wt.m /wt 

accession category pPeptide log2 p-value log2 p-value log2 p-value log2 p-value 

AT1G68830 (LR) T(ph)VTET(ph)IDEISDGRK  1.00E+00 0.10 7.93E-01 -1.12 3.18E-01  1.00E+00 

AT2G28000 (CC) NVVLDEFGS(ph)PK  1.00E+00 0.69 9.43E-01 -0.54 8.21E-01  1.00E+00 

AT2G34420 (LR) GPSGS(ph)PWYGSDR  1.00E+00  3.54E-01  2.64E-01  1.00E+00 

AT2G39730 (CC) GLAYDT(ph)SDDQQDITR  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT2G46820 (LR) AT(ph)TEVGEAPATTTEAETTELPEIVK -1.04 1.82E-01 -1.04 1.24E-01 -0.24 6.88E-01 -0.24 4.15E-01 

AT3G61470 (LR) WADIIKPGS(ph)VNTDPVFPNNK  1.81E-01  1.00E+00  1.00E+00 -0.50 4.13E-01 

AT4G02630 (LR) NSGGGGGGIEQGRS(ph)PR 1.07 9.19E-02 0.54 5.66E-01 -0.25 8.93E-01 -0.78 2.14E-01 

AT5G01530 (LR) NLAGDVIGT(ph)RTEAADAK 0.70 1.01E-01  1.00E+00  1.00E+00  1.00E+00 

atcg00020 (LR) (ac)T(ph)AILER 0.22 7.84E-01 1.26 8.20E-02 -0.92 1.89E-01 0.12 8.25E-01 

atcg00020 (LR) (ac)T(ph)AILERR 0.07 7.98E-01 -0.57 3.18E-01 -0.11 5.61E-01 -0.75 2.54E-01 

atcg00270 (LR) (ac)T(ph)IALGK -0.54 1.79E-02 0.36 6.00E-01 0.06 7.75E-01 0.96 2.75E-02 

atcg00560 (LR) (ac)T(ph)QSNPNEQSVELNR  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

atcg00710 (LR) AT(ph)QT(ph)VEDSSR -0.62 4.14E-01 0.59 6.11E-01 -0.05 6.65E-01 1.16 1.24E-01 

atcg00710 (LR) AT(ph)QTVEDSSR -0.72 6.47E-02 0.19 7.37E-01 -1.07 1.29E-02 -0.15 6.59E-01 

atcg00710 (LR) ATQT(ph)VEDSSR -0.84 1.94E-01 0.28 9.17E-01 -0.64 4.36E-01 0.48 4.80E-01 

 

others - redox. 
   ahk1.m/wt.m  ahk1/wt ahk1.m /ahk1 wt.m /wt 

accession  pPeptide log2 p-value log2 p-value log2 p-value log2 p-value 

AT1G06620  APPATLT(ph)SPKPPSSSDFSIPTIDLK -1.92 1.00E+00  1.36E-01  4.92E-01 1.80 1.00E+00 

AT3G08710  GDDDS(ph)VHNVEFSGGNVHLITTK  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT3G08710  GKGDDDS(ph)VHNVEFSGGNVHLITTK  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT3G08710  KVTSIIDSVPES(ph)PQRP -0.71 4.99E-01 -0.12 8.42E-01 0.50 3.84E-01 1.09 1.37E-01 

AT3G08710  VTSIIDSVPES(ph)PQRP 0.31 4.78E-02 0.66 1.11E-03 -0.33 8.68E-02 0.02 9.17E-01 

AT3G48890  DVAT(ph)DDDDAAKE 0.00 9.98E-01 -0.89 1.12E-01 0.96 6.82E-02 0.07 7.28E-01 

AT3G48890  KDVAT(ph)DDDDAAKE 0.34 3.26E-01 -0.57 8.63E-02 0.61 7.26E-03 -0.30 4.11E-01 

AT3G48890  TAS(ph)AEGLSTNTGEEASAITHDETSR  1.00E+00  8.63E-02  7.26E-03 0.93 1.00E+00 

 

others - RNA 
(p) processing; (b) binding; (t) transcription 

   ahk1.m/wt.m  ahk1/wt ahk1.m /ahk1 wt.m /wt 

accession category pPeptide log2 p-value log2 p-value log2 p-value log2 p-value 

AT1G02840 (p) S(ph)RS(ph)PLPSVQK -0.24 5.51E-01 -1.34 2.05E-02 1.47 1.39E-03 0.37 2.55E-01 

AT1G20920 (p) AWTLEGES(ph)DDEEGHPEEK  1.00E+00  1.56E-01  1.25E-01  1.00E+00 

AT1G20920 (p) EVGNEES(ph)DDDVKR 0.16 5.40E-01 -0.37 2.56E-01 -0.17 5.07E-01 -0.71 3.25E-02 

AT1G20920 (p) EYGFEEDKS(ph)DS(ph)EDENDVVR -0.35 3.67E-01 0.50 2.19E-01 -0.28 5.07E-01 0.57 1.66E-01 

AT1G20920 (p) SREVGNEES(ph)DDDVKR  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT1G23860 (p) S(ph)PDYGYAR 0.13 1.00E+00 0.13 4.97E-01 -0.41 2.99E-01 -0.41 1.00E+00 

AT1G23860 (p) S(ph)VT(ph)PPRR 0.50 2.49E-01 -0.18 4.18E-01 -0.04 6.58E-01 -0.72 1.18E-01 

AT1G27650 (p) RGGS(ph)PGGGREGS(ph)EER -0.81 3.24E-01 -2.55 3.76E-02 1.30 2.51E-01 -0.44 9.16E-01 

AT1G29400 (b) NMDLLDS(ph)QLSDDDGRER -0.02 8.23E-01 -0.89 1.68E-01 1.37 5.70E-02 0.51 6.01E-01 

AT1G29400 (b) S(ph)PVFGLS(ph)PTR 0.14 6.14E-01 1.09 9.37E-03 -0.85 3.12E-02 0.11 8.16E-01 

AT1G30460 (p) NEES(ph)ES(ph)EDEDEAPR  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT1G30460 (p) NEES(ph)ES(ph)EDEDEAPRR  1.00E+00 -0.49 1.87E-01 1.16 5.32E-02  1.00E+00 

AT1G32490 (p) SGQSDES(ph)DGEVAVR 1.44 7.58E-02 0.05 9.62E-01 0.17 7.30E-01 -1.21 4.84E-02 

AT1G51510 (b) (ac)ANIESEAVDFEPEEDDLM(ox)DEEGTAIDGADVS(ph)PR -1.29 1.92E-02  1.00E+00  1.00E+00 0.28 8.85E-01 

AT1G54080 (p) SVVELTNGS(ph)SEDGR  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT1G55310 (p) GRS(ph)LT(ph)PVR  1.00E+00 0.90 4.15E-02 -0.26 2.41E-01  1.00E+00 

AT1G55310 (p) S(ph)GDYYS(ph)PPPR  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT1G55310 (p) S(ph)YT(ph)PEPAR 0.34 6.56E-01 0.92 2.02E-01 -0.54 4.54E-03 0.05 7.37E-01 

AT1G55310 (p) S(ph)YT(ph)PS(ph)PPR  1.00E+00 1.50 2.02E-01 -1.07 4.49E-01  1.00E+00 

AT1G55310 (p) SYT(ph)PEPAR 1.36 6.16E-02 1.61 6.18E-03 -1.25 6.47E-02 -1.00 1.67E-02 

AT1G55310 (p) SYT(ph)PS(ph)PPRGYGR  1.00E+00 -0.58 5.47E-03 0.43 1.02E-01  1.00E+00 

AT1G60200 (p) ILSGQAAIGSETVQTS(ph)PIENDHK -0.53 9.58E-01  1.00E+00  1.00E+00 1.81 1.42E-01 

AT1G80930 (b) DHRAS(ph)DDDEEGEIR 0.48 3.48E-01 -0.09 7.97E-01 0.66 1.98E-01 0.09 8.79E-01 

AT1G80930 (b) ERS(ph)PDVRR 0.62 7.75E-01 -1.02 2.03E-01 -1.08 1.05E-01 -2.72 1.47E-02 

AT1G80930 (b) ETS(ph)DDEELAR 0.30 6.17E-01 0.19 6.80E-01 -0.11 7.85E-01 -0.22 7.06E-01 

AT1G80930 (b) IEVDS(ph)DGDGER 0.85 2.88E-02 -0.56 1.47E-01 0.57 1.05E-01 -0.84 3.96E-02 

AT1G80930 (b) IEVDS(ph)DGDGERR 0.52 2.00E-02 -0.41 4.70E-02 0.23 1.86E-01 -0.71 4.04E-03 

AT1G80930 (b) RIEVDS(ph)DGDGER  1.00E+00 -0.07 9.90E-01 -0.27 7.36E-01  1.00E+00 

AT1G80930 (b) RKETS(ph)DDEELAR -0.56 6.44E-01 0.20 6.70E-01 -0.47 5.55E-01 0.29 7.54E-01 

AT1G80930 (b) VIADKPS(ph)DEEDDRQR 0.46 1.11E-01 -0.31 8.96E-01 -0.24 7.92E-01 -1.01 5.23E-02 

AT1G80930 (b) VRVS(ph)DDEDRK -1.13 8.17E-02 -0.77 1.29E-01 0.43 2.65E-01 0.80 1.59E-01 

AT2G16940 (b) EKS(ph)LEIEPK 0.27 1.58E-01 -1.01 4.29E-05 1.30 7.40E-03 0.02 8.86E-01 

AT2G24590 (p) NYS(ph)RS(ph)PPPYR 0.06 9.20E-01 -0.22 5.77E-01 -0.62 4.23E-01 -0.90 2.08E-01 

AT2G29210 (p) AGLPS(ph)PM(ox)R 0.27 3.25E-01 0.53 1.00E+00 -1.08 1.00E+00 -0.82 1.98E-01 

AT2G29210 (p) HHGSQM(ox)S(ph)PVENSEGR -2.17 1.00E+00  1.00E+00  1.00E+00 2.81 2.48E-02 

AT2G29210 (p) HRS(ph)PT(ph)PPAR  1.00E+00 0.65 3.39E-01 -3.22 3.40E-03  1.00E+00 

AT2G29210 (p) IHS(ph)PFRS(ph)R  1.00E+00  1.00E+00  3.40E-03  1.00E+00 

AT2G29210 (p) LPS(ph)PPPR 0.33 1.93E-01  1.00E+00  1.00E+00 0.21 6.26E-01 

AT2G29210 (p) LPS(ph)PPVAQR 4.50 3.18E-03 0.58 1.63E-01 -0.30 5.20E-01 -4.22 4.18E-05 

AT2G29210 (p) LPS(ph)PPVAQRLPS(ph)PPPR -0.48 4.13E-01 -1.01 9.93E-02 0.66 2.62E-01 0.12 8.43E-01 

AT2G29210 (p) LPS(ph)PSIEQR 0.23 2.09E-01 -0.01 9.96E-01 -0.03 8.25E-01 -0.27 1.88E-01 

AT2G29210 (p) RRS(ph)PS(ph)PPAR -6.62 1.00E+00  1.00E+00 0.06 1.00E+00  1.00E+00 

AT2G29210 (p) S(ph)LT(ph)PDEERVSLSQGGR  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT2G29210 (p) SPS(ph)PLYR 0.46 5.97E-02  1.00E+00  1.00E+00 -0.23 1.00E+00 

AT2G34750 (p) IRPSTS(ph)PES(ph)L  1.00E+00 -0.11 1.88E-02 -0.02 3.64E-01  1.00E+00 

AT2G37340 (p) ARDRS(ph)PVLDDEGS(ph)PK  1.00E+00 -0.43 3.06E-01 -0.13 8.01E-01  1.00E+00 

AT2G37340 (p) DRS(ph)PVLDDEGS(ph)PK 0.64 1.24E-03 -0.28 2.46E-01 0.29 8.75E-02 -0.63 8.10E-03 

AT2G37340 (p) EVGS(ph)DRDGGS(ph)PQDNGR 0.88 4.10E-02 0.15 7.08E-01 0.37 8.15E-02 -0.36 3.84E-01 

AT2G37340 (p) EVGSDRDGGS(ph)PQDNGR 1.27 1.86E-04 -0.35 1.74E-01 -0.05 7.53E-01 -1.66 5.43E-06 

AT2G37340 (p) IIDGS(ph)PPPS(ph)PK 0.92 8.85E-03 0.04 8.18E-01 0.37 1.97E-01 -0.51 7.82E-02 

AT2G37340 (p) MDDS(ph)LS(ph)PR 0.65 3.14E-01 0.68 4.14E-01 -0.03 8.17E-01 -0.01 9.36E-01 

AT2G37340 (p) NSVVS(ph)PVVGAGGDSSK 0.34 5.00E-01 0.66 1.14E-01 -0.47 2.10E-01 -0.15 7.50E-01 

AT2G37340 (p) NSVVS(ph)PVVGAGGDSSKEDR 0.64 1.59E-01 -0.60 4.11E-01 0.05 9.29E-01 -1.18 6.00E-02 

AT2G37340 (p) RM(ox)DDS(ph)LS(ph)PR 0.73 2.31E-02 0.44 1.91E-01 -0.72 6.61E-02 -1.02 6.57E-03 

AT2G37340 (p) SPVLDDEGS(ph)PK 0.46 8.33E-02  1.00E+00  1.00E+00 -0.66 5.55E-02 

AT2G40650 (p) KSVLEDDFEEEEEKEENEGIADGS(ph)EDEM(ox)DQR  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT2G41630 (t) EEDLKNLSS(ph)P  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT2G43410 (b) DGS(ph)VDGFTPM(ox)GVDER -0.08 3.19E-01 -0.22 4.41E-01 -0.53 1.99E-01 -0.66 2.60E-02 

AT3G01540 (p) APPPS(ph)STGSPPR  1.00E+00 0.47 2.39E-01  1.00E+00 0.52 2.25E-01 

AT3G01540 (p) APPPSS(ph)TGSPPR  1.00E+00 -0.39 1.00E+00 0.66 7.56E-02  1.00E+00 

AT3G01540 (p) APPPSST(ph)GSPPR 1.15 1.00E+00  1.00E+00 -0.48 7.56E-02  1.00E+00 

AT3G01540 (p) VPLPSSAPASELS(ph)PEAYSR 0.60 5.11E-02 0.24 4.44E-01 0.33 3.15E-01 -0.03 7.72E-01 

AT3G08620 (b) (ac)SGLYNYNNFS(ph)PSR -0.82 4.44E-02 1.00 1.73E-02 -1.89 1.73E-03 -0.08 8.15E-01 
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   ahk1.m/wt.m  ahk1/wt ahk1.m /ahk1 wt.m /wt 

accession category pPeptide log2 p-value log2 p-value log2 p-value log2 p-value 

AT3G13300 (p) S(ph)ESANKLSFPSAEATSQAIVPPNGEPK -0.52 5.62E-01  1.00E+00  1.00E+00 1.20 1.01E-01 

AT3G13300 (p) SKDSNVTPDDDVS(ph)GM(ox)RSPSAFFK  1.00E+00  1.00E+00  1.00E+00  1.01E-01 

AT3G13300 (p) TLSYPTPPLNLQS(ph)PR -0.32 3.82E-01 -0.88 6.16E-02 0.68 2.40E-01 0.13 8.64E-01 

AT3G13300 (p) TSGLPSQTSGAGSAYATLPQLPLS(ph)PR 0.00 4.30E-01 -2.56 4.24E-02 2.71 1.00E+00 0.14 6.53E-01 

AT3G13570 (p) S(ph)YTPEQAR 1.03 1.09E-02 0.79 3.36E-02 -0.40 5.57E-02 -0.64 5.69E-02 

AT3G14100 (b) GATSGDDKLS(ph)SDGK 0.53 1.18E-01 -1.12 6.66E-02 0.97 1.00E+00 -0.69 3.02E-01 

AT3G26560 (p) YSVDM(ox)S(ph)PVK 0.10 7.44E-01 -0.01 9.74E-01 -0.28 2.80E-01 -0.38 2.24E-01 

AT3G27700 (b) (ac)M(ox)ELSVS(ph)SPK  1.00E+00 0.60 4.10E-01 -1.06 1.77E-01  1.00E+00 

AT3G50670 (p) ELS(ph)HEQPR  1.00E+00 1.15 3.04E-02 -0.09 3.26E-01  1.00E+00 

AT3G50670 (p) TSQS(ph)EEPSRPR 0.63 7.58E-02 0.27 3.63E-01 -0.39 2.72E-01 -0.74 3.76E-02 

AT3G53500 (b) GRDQS(ph)LS(ph)PDRK 0.20 7.86E-01 -1.21 1.71E-03 0.85 1.53E-02 -0.56 2.52E-01 

AT3G53500 (b) KVIDAS(ph)PK  1.00E+00 -0.10 4.50E-01  1.00E+00  1.00E+00 

AT3G53500 (b) S(ph)PIDDEAELSRPS(ph)PK 0.03 3.86E-01 0.80 2.11E-01 -0.70 1.30E-01 0.07 2.31E-01 

AT3G53500 (b) VIDAS(ph)PK  1.00E+00  1.97E-02  9.67E-02  1.00E+00 

AT3G55460 (p) GRS(ph)PPPPPPR 0.09 3.70E-01 -0.21 4.39E-01 0.43 1.09E-01 0.13 9.05E-01 

AT3G55460 (p) RYS(ph)PPYYS(ph)PPR 0.06 4.27E-01 0.56 2.79E-01 -0.30 6.25E-01 0.20 8.91E-01 

AT3G55460 (p) S(ph)PPPPPPR 0.49 3.93E-01 0.75 2.81E-01 -0.15 9.30E-01 0.12 8.37E-01 

AT3G55460 (p) S(ph)VEVS(ph)PR  1.00E+00  1.00E+00  1.00E+00 -0.58 1.22E-01 

AT3G55460 (p) S(ph)YS(ph)PGYEGAAAAAPDR 0.16 9.02E-01 0.80 6.38E-02 -0.69 2.20E-01 -0.04 6.80E-01 

AT3G55460 (p) S(ph)YS(ph)PGYEGAAAAAPDRDR 0.14 4.63E-01 -0.35 6.53E-01 0.23 7.53E-01 -0.25 3.80E-01 

AT3G61860 (p) QRS(ph)PGYDR  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT3G61860 (p) RPS(ph)PDYGR 0.53 1.19E-01 0.05 9.75E-01 -0.05 7.92E-01 -0.53 1.83E-01 

AT3G61860 (p) RS(ph)LS(ph)PVYR -0.03 9.58E-01 0.56 7.34E-01 -0.44 8.69E-01 0.16 9.13E-01 

AT4G12610 (t) SSGGDEEEGNVS(ph)DRGDEDEEEEASR 0.94 1.33E-01 -0.62 5.70E-02 0.82 1.00E+00 -0.75 2.84E-01 

AT4G12610 (t) SSGGDEEEGNVS(ph)DRGDEDEEEEASRK  1.00E+00  1.00E+00  1.00E+00 -0.51 4.42E-01 

AT4G17720 (b) LSES(ph)PEAK 0.10 3.89E-01 1.48 1.00E+00 -0.73 1.00E+00 0.65 2.82E-01 

AT4G17720 (b) VHLSES(ph)PK 0.30 6.79E-02 1.16 1.85E-02 -0.24 8.04E-02 0.62 5.42E-02 

AT4G20910 (p) SSS(ph)PNVFAAPPILQK  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT4G25500 (p) DSDGGYDGAES(ph)PM(ox)QK  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT4G25500 (p) GAS(ph)PVAAYR  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT4G25500 (p) NGVGEVES(ph)PIER 1.06 1.37E-03 0.12 5.02E-01 -0.07 7.36E-01 -1.01 1.92E-03 

AT4G25500 (p) NGVGEVES(ph)PIERR  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT4G25500 (p) RGS(ph)PEYGRDR  1.00E+00 -1.56 1.07E-02 0.06 2.23E-01  1.00E+00 

AT4G25500 (p) SRS(ph)PRS(ph)PPADE 0.89 3.41E-02  1.00E+00  1.00E+00 -0.55 6.20E-01 

AT4G28990 (b) DYS(ph)PPLAR 0.37 9.62E-01 0.42 6.30E-01 -0.30 3.94E-01 -0.25 7.64E-01 

AT4G28990 (b) YAPANS(ph)PPLPR 1.39 2.36E-02 0.21 3.60E-01 0.28 3.34E-01 -0.90 2.33E-02 

AT4G31200 (p) EIGEVNPSEGPMGSESQDDYDNYERDS(ph)PQRK  3.34E-01  1.00E+00  1.00E+00  3.87E-01 

AT4G31580 (p) ARS(ph)PPPPR -2.32 4.75E-01 -1.44 4.32E-01 -0.49 6.82E-01 0.38 6.63E-01 

AT4G31580 (p) RRS(ph)PS(ph)PPPAR -0.93 1.71E-02 -0.16 4.61E-01 0.12 5.30E-01 0.89 1.98E-02 

AT4G31580 (p) SYS(ph)RS(ph)PPPYR -0.50 1.45E-02  1.00E+00  1.00E+00 0.23 6.37E-01 

AT4G35785 (b) S(ph)LPRPVS(ph)PSR 0.13 6.05E-01 -0.07 1.00E+00 -0.36 6.46E-01 -0.56 3.50E-01 

AT4G35785 (b) T(ph)PTPGHYLGLK 0.68 2.60E-01  1.00E+00  1.00E+00 -0.46 5.32E-01 

AT4G35800 (t) YS(ph)PSIAYS(ph)PSNAR  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT5G04430 (b) (ac)M(ox)ESTESYAAGS(ph)PEELAKR 0.50 1.36E-01 0.59 1.29E-01 -0.52 1.00E-01 -0.43 1.34E-01 

AT5G04430 (b) (ac)MESTESYAAGS(ph)PEELAK 0.20 4.65E-01 1.00 2.08E-02 -0.47 2.23E-01 0.32 4.57E-01 

AT5G06160 (p) EGEEANTELES(ph)DDEDGLIYNPLK 0.09 8.99E-01 -0.63 2.34E-01 1.40 4.48E-02 0.69 2.04E-01 

AT5G15270 (b) SEDS(ph)PEGEKQVTAK 0.72 3.23E-01 -0.67 3.02E-01 0.28 1.47E-02 -1.11 2.24E-01 

AT5G15270 (b) VVADDARS(ph)EDS(ph)PEGEK 2.38 3.79E-03 0.85 3.69E-01 0.13 6.14E-01 -1.40 1.00E+00 

AT5G16260 (b) ASS(ph)PPEGEDEFTDDDGTK 0.32 3.54E-01 0.24 1.04E-01 0.07 4.58E-01 0.00 9.86E-01 

AT5G23080 (p) SSS(ph)S(ph)RYSSDEEQKESR 1.36 1.00E+00 -1.26 8.95E-02 1.36 4.48E-02 -1.26 4.01E-02 

AT5G37370 (p) NGGDEVQQRS(ph)PR  1.00E+00 -1.49 3.39E-04 1.29 7.43E-02  1.00E+00 

AT5G38600 (p) NSLES(ph)GNGSPEANSLVGNDENVK  1.00E+00 0.94 2.27E-01 -1.12 1.48E-01  1.00E+00 

AT5G44200 (p) FRESGDS(ph)DDDGEDDR 0.98 3.39E-01 0.51 7.25E-01 -0.18 8.02E-01 -0.66 3.86E-01 

AT5G44200 (p) FRESGDS(ph)DDDGEDDRK -0.38 1.00E-01  1.00E+00  1.00E+00 0.92 1.05E-01 

AT5G51300 (p) TLS(ph)GNDKDQS(ph)GGEEETTSR 0.06 4.25E-01 -0.46 5.21E-01 0.17 9.92E-01 -0.36 2.33E-01 

AT5G52040 (p) ARLS(ph)PDYK 0.39 2.49E-01 -0.76 5.00E-03 0.28 6.32E-02 -0.87 1.87E-02 

AT5G52040 (p) ARLS(ph)PDYKR  1.00E+00  5.00E-03  6.32E-02 0.73 1.00E+00 

AT5G52040 (p) DDDSRGNGYS(ph)PER 0.52 1.63E-01 -0.52 5.00E-02 0.23 3.24E-01 -0.81 3.96E-02 

AT5G52040 (p) DDDSRGNGYS(ph)PERR 1.07 3.06E-02 -0.11 9.77E-01 0.00 9.91E-01 -1.18 1.92E-01 

AT5G52040 (p) ERGS(ph)PDYGR -0.76 2.73E-03 0.16 2.79E-01 -0.50 2.21E-02 0.42 3.88E-02 

AT5G52040 (p) ERT(ph)SPDYGR 0.02 7.49E-01 -1.08 8.24E-02 0.74 2.43E-01 -0.36 6.26E-01 

AT5G52040 (p) ERVAS(ph)PENGAVR 0.75 1.64E-01 -0.97 1.54E-01 0.81 1.95E-01 -0.91 1.26E-01 

AT5G52040 (p) GES(ph)RS(ph)PPPYEK 0.29 6.75E-01 -0.83 8.11E-01 0.83 4.39E-01 -0.29 7.84E-01 

AT5G52040 (p) GNGYS(ph)PER  5.06E-02  4.35E-01  1.41E-01 1.40 1.81E-01 

AT5G52040 (p) GYDGADS(ph)PIRES(ph)PSRS(ph)PPAEE 1.13 1.52E-01 -0.23 9.04E-01 0.26 8.07E-01 -1.09 1.83E-01 

AT5G52040 (p) LS(ph)PDYK  1.00E+00 0.37 2.99E-01 -0.67 2.63E-02  1.00E+00 

AT5G52040 (p) RES(ph)RS(ph)PPPYEK 0.14 7.50E-01 -0.43 3.50E-01 0.11 6.65E-01 -0.46 4.37E-01 

AT5G52040 (p) S(ph)PPPYEKR 2.04 1.00E+00  1.00E+00  1.00E+00 -2.88 1.00E+00 

AT5G52040 (p) SKSS(ph)PENGQVES(ph)PGQIMEVEAGR  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT5G52040 (p) VAS(ph)PENGAVR 1.33 3.08E-03 -0.01 8.10E-01 0.18 4.93E-01 -1.15 3.33E-02 

AT5G62190 (p) LKLS(ph)DS(ph)DEEESEK  1.00E+00  1.00E+00  1.00E+00 -0.48 1.32E-01 

AT5G62190 (p) LSDS(ph)DEEESEKKK -2.82 1.03E-02 -0.28 8.66E-01 -0.38 4.17E-01 2.16 4.73E-02 

 

others 
(Co) Co-factor and vitamine metabolism; (mi) micro RNA; (sec) secondary metabolism; (TCA) TCA/org transformation; (na) not assigned 

   ahk1.m/wt.m  ahk1/wt ahk1.m /ahk1 wt.m /wt 

accession category pPeptide log2 p-value log2 p-value log2 p-value log2 p-value 

AT1G01320 (na) SPS(ph)YKEVALAPPGSIAK  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT1G02870 (na) EFEPIDS(ph)GS(ph)ELEEDDLK  1.00E+00  2.05E-02  1.39E-03  1.00E+00 

AT1G02870 (na) EFEPIDS(ph)GS(ph)ELEEDDLKTALGK  1.00E+00  2.05E-02  1.39E-03  1.00E+00 

AT1G03350 (na) SGGS(ph)PNRAELR -0.38 1.24E-02 -0.17 6.62E-01 -0.02 9.49E-01 0.19 2.23E-01 

AT1G03910 (na) LEQLS(ph)EGEDDVEVNPGLTR 0.19 3.55E-01 -0.38 5.04E-02 0.99 5.37E-05 0.42 5.08E-02 

AT1G04080 (na) SQVDGST(ph)EQSPK -1.44 1.00E+00 1.49 1.17E-01 -1.34 1.29E-01 1.59 1.00E+00 

AT1G04080 (na) SQVDGSTEQS(ph)PK -0.05 1.00E+00 -0.61 5.18E-02 1.17 1.00E+00 0.61 5.16E-02 

AT1G04080 (na) SQVDGSTEQS(ph)PKLESASSTEPEELK  1.00E+00  5.18E-02  1.00E+00  5.16E-02 

AT1G04080 (na) SQVDGSTEQS(ph)PKLESASSTEPEELKK -0.01 4.47E-01  1.00E+00  1.00E+00 0.39 4.92E-02 

AT1G04510 (na) IFGLPDDDNTEDS(ph)AQDS  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT1G05500 (na) VLKNDTTDEENAS(ph)SR  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT1G06190 (na) AELVELLGSDSS(ph)  1.00E+00 0.24 1.38E-01  1.00E+00  1.00E+00 

AT1G06190 (na) KAELVELLGSDS(ph)S 0.16 7.82E-01 -1.00 7.34E-02 0.74 4.64E-02 -0.42 5.06E-01 

AT1G06890 (na) ESEKDPLIAAENGSGVLS(ph)DGGGGVQQK  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT1G07090 (na) SDPVKGDDPGPSFVSS(ph)PPATPSR  1.00E+00  1.00E+00  1.00E+00  9.04E-02 

AT1G08800 (na) GIEFLS(ph)PR  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT1G10990 (na) TNS(ph)PPPSALPK -0.35 1.47E-01 0.06 9.85E-01 -0.51 2.56E-01 -0.10 8.05E-01 

AT1G11700 (na) QLAS(ph)SAPVNVPDWSK  8.97E-02 -0.93 1.00E+00 -0.12 1.00E+00  1.00E+00 

AT1G12530 (na) TDFNTS(ph)PASK  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT1G13030 (na) LDTTEES(ph)PDER  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT1G13030 (na) LDTTEES(ph)PDERENTAVVSNVVK -0.68 3.28E-01 -0.15 7.23E-01 -0.17 8.16E-01 0.36 6.29E-01 
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   ahk1.m/wt.m  ahk1/wt ahk1.m /ahk1 wt.m /wt 

accession category pPeptide log2 p-value log2 p-value log2 p-value log2 p-value 

AT1G13380 (na) S(ph)SSNIGM(ox)AGYA -0.35 2.40E-01 1.21 6.79E-02 -1.01 1.51E-01 0.55 1.00E+00 

AT1G14170 (na) VHDM(ox)VVADADQDDGT(ph)DDDNDLGEK 0.55 1.83E-01 0.56 9.70E-04 -0.19 1.55E-01 -0.18 4.68E-01 

AT1G14170 (na) VHDMVVADADQDDGT(ph)DDDNDLGEK 0.57 5.83E-02 0.12 7.52E-01 0.59 4.46E-02 0.13 6.32E-01 

AT1G15280 (na) (ac)ATSEAEYES(ph)DPEELNR 0.00 9.54E-01 0.98 5.29E-03 -0.89 8.67E-03 0.10 8.88E-01 

AT1G15280 (na) AVVDS(ph)DLS(ph)DEEVGTVK 0.00 8.60E-01 0.44 1.39E-01 0.14 5.56E-01 0.57 9.55E-02 

AT1G15280 (na) RREAS(ph)DDDS(ph)DDDDAVR 0.46 1.17E-01 0.47 7.58E-01 0.12 6.42E-01 0.13 2.64E-01 

AT1G15280 (na) YDNDEDGEDS(ph)YEDDEEESGGGIDNDK  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT1G15400 (na) QGS(ph)SGIVFDDR 0.34 3.11E-01 0.54 7.48E-02 -0.23 4.63E-01 -0.03 9.36E-01 

AT1G15400 (na) RQGS(ph)SGIVFDDR  1.00E+00 1.30 4.54E-02  1.00E+00  1.00E+00 

AT1G15400 (na) STIS(ph)FR -0.03 9.30E-01 0.23 5.85E-01 0.19 6.90E-01 0.46 3.87E-01 

AT1G15400 (na) TTGRVS(ph)PAVDPPS(ph)PR 0.01 9.56E-01 0.59 3.63E-01 0.04 8.24E-01 0.62 2.94E-01 

AT1G15400 (na) VS(ph)PAVDPPS(ph)PR 0.78 7.47E-02 0.85 4.25E-02 0.08 8.84E-01 0.15 5.92E-01 

AT1G15400 (na) VSPAVDPPS(ph)PR 0.26 4.76E-01 0.51 2.03E-01 -0.18 7.07E-01 0.07 7.83E-01 

AT1G15440 (na) GLES(ph)DEEGDDDDEEYMHR 0.60 4.48E-01 -0.06 4.78E-01 0.61 1.85E-01 -0.05 9.45E-01 

AT1G15440 (na) KM(ox)TEAGPIDLIDDDNS(ph)DEEGGIDK  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT1G15440 (na) M(ox)TEAGPIDLIDDDNS(ph)DEEGGIDK -0.11 5.55E-01 0.54 1.11E-02 -0.17 3.41E-01 0.48 2.03E-02 

AT1G15440 (na) M(ox)TEAGPIDLIDDDNS(ph)DEEGGIDKQSR -1.00 1.00E+00  1.00E+00  1.00E+00 0.60 3.41E-02 

AT1G15630 (na) (ac)M(ox)ES(ph)PLLTK  1.00E+00  1.00E+00 -0.02 4.01E-01  1.00E+00 

AT1G15950 (sec) PVDVAS(ph)PAGK  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT1G16170 (na) VLDGLVS(ph)SPSR  1.00E+00 1.10 5.14E-03 -1.28 1.66E-02  1.00E+00 

AT1G16180 (na) AGSSTTLLSPPDS(ph)PR 0.06 1.00E+00 0.23 2.74E-01 0.26 1.00E+00 0.43 1.85E-01 

AT1G16520 (na) IISTSVS(ph)PR 0.67 5.65E-02 -0.44 1.00E+00 0.17 2.29E-01 -0.95 2.37E-02 

AT1G16860 (na) KVS(ph)GPLDSSGLM(ox)K  1.00E+00 1.25 7.87E-03 -2.62 1.00E+00  1.00E+00 

AT1G16860 (na) QNS(ph)GSIPILPATGLITSGPITSGPLNSSGAPR -1.36 1.00E+00  1.00E+00  1.00E+00 2.33 9.58E-02 

AT1G16860 (na) S(ph)GPIPGAPSR 0.19 6.12E-01 0.42 2.94E-01 -0.35 4.00E-01 -0.12 7.90E-01 

AT1G17210 (na) ADS(ph)VEGTVVDR  1.00E+00  7.74E-02  1.80E-01  1.00E+00 

AT1G18740 (na) SLS(ph)WSVSR  1.00E+00 0.59 4.56E-02  1.00E+00  1.00E+00 

AT1G20770 (na) DFSTDTDSEIGSPLS(ph)PQLR  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT1G20970 (na) SELES(ph)TDDGPEEVVEIPK 0.25 6.88E-01 1.76 1.00E+00 -0.09 3.84E-01 1.41 1.19E-01 

AT1G21170 (na) VVLTSLQS(ph)FPR 1.67 1.88E-02 0.17 9.51E-01 0.51 3.10E-01 -0.99 8.51E-02 

AT1G22060 (na) SVVSGDLSGLAQS(ph)PQKEK  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT1G24190 (na) VEREEGELS(ph)PNGDFEEDNFAVYAK  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT1G24267 (na) TLSLPPAS(ph)PR 2.15 1.73E-03  1.00E+00  1.00E+00 -1.98 2.21E-03 

AT1G24300 (na) NNS(ph)LLSGIIDGGR 0.38 3.02E-01 -2.35 2.36E-03 2.76 1.58E-03 0.03 5.00E-01 

AT1G24560 (na) (ac)ANGADEDAVLS(ph)DVESDEPAPVVLK 0.04 9.82E-01  1.00E+00  1.00E+00 0.40 4.45E-02 

AT1G26300 (na) IGNS(ph)DVEDEK 0.98 1.00E+00 0.46 1.00E+00 0.74 1.00E+00 0.21 1.00E+00 

AT1G27100 (na) FASLGLSTS(ph)PR  1.00E+00 0.10 4.72E-01  1.00E+00  1.00E+00 

AT1G28280 (na) LLPLFPVT(ph)SPR  1.00E+00 -0.36 7.03E-02 0.79 1.08E-01  1.00E+00 

AT1G28380 (na) S(ph)GVFSM(ox)ISTR  1.00E+00 2.24 7.03E-02  1.08E-01  1.00E+00 

AT1G31810 (na) SLLS(ph)R 0.07 7.40E-01 0.20 8.81E-01 -0.44 5.70E-01 -0.32 4.13E-01 

AT1G31870 (na) QVDPEEDENEDDS(ph)AEETPLVDEDIEVKR  1.00E+00  2.93E-01  1.33E-01  1.00E+00 

AT1G31870 (na) RDS(ph)SPPQISK 0.18 4.45E-02  1.00E+00  1.00E+00 -0.14 2.66E-01 

AT1G31870 (na) SFGSNADLS(ph)PPGR 0.33 7.09E-02 -0.83 1.25E-02 0.76 8.02E-04 -0.40 4.18E-02 

AT1G31870 (na) SNDLS(ph)PPR  1.00E+00 -0.91 3.08E-01 1.66 1.00E+00  1.00E+00 

AT1G31870 (na) SSNFDSS(ph)PPR  1.00E+00  3.08E-01  1.00E+00  1.00E+00 

AT1G31870 (na) YHS(ph)PS(ph)PEPARR 0.58 2.57E-01  1.00E+00  1.00E+00 0.47 4.70E-01 

AT1G31870 (na) YLS(ph)EDLS(ph)PPR -0.72 5.08E-01 1.83 2.43E-02 -0.45 5.57E-01 2.09 1.44E-01 

AT1G33050 (na) S(ph)TDDLSGFR  7.58E-02  1.00E+00  1.00E+00  4.84E-02 

AT1G34020 (na) LGAAS(ph)DS(ph)DDNEDKA 0.08 8.63E-01 -0.46 1.83E-01 0.16 3.24E-01 -0.38 4.79E-01 

AT1G34320 (na) S(ph)QEFETVAK 0.62 3.00E-01 1.07 9.46E-02 -0.45 4.13E-01 0.00 9.56E-01 

AT1G35510 (na) INIPSPS(ph)PPS(ph)SPR 1.79 1.00E+00 0.29 4.93E-01 -0.24 9.91E-02 -1.74 7.53E-02 

AT1G44910 (na) ANLS(ph)PAGDKANVEEPM(ox)VYATK -0.36 2.24E-01 0.02 9.69E-01 -0.25 3.16E-01 0.12 7.81E-01 

AT1G44910 (na) KHANS(ph)PES(ph)ESENR -0.54 4.59E-01 -0.16 9.46E-01 0.40 8.51E-01 0.79 4.96E-01 

AT1G45688 (na) TDSEVTSLAASSPARS(ph)PR  1.00E+00 0.05 8.30E-01 -0.12 7.11E-01  1.00E+00 

AT1G47330 (na) DLDEQEQS(ph)PETSENGIER  1.00E+00 0.74 1.79E-03 -0.27 5.38E-02  1.00E+00 

AT1G47900 (na) VSGYES(ph)DSKLQEIEELR 0.47 4.31E-01  1.00E+00  1.00E+00  1.00E+00 

AT1G47970 (na) AEDEEDAS(ph)DFEPEENGVEEDIDEGEDDENDNSGGAGK -0.31 3.72E-01 0.24 3.68E-01 0.26 5.46E-01 0.81 9.09E-03 

AT1G47970 (na) APEEDEEDS(ph)GDEDDDRPPK 0.46 7.33E-01 0.72 2.30E-01 -0.17 5.94E-01 0.09 7.56E-01 

AT1G47970 (na) APEEDEEDS(ph)GDEDDDRPPKR -0.02 2.77E-01 -0.16 6.71E-01 -0.02 8.20E-01 -0.16 1.99E-01 

AT1G47970 (na) EEPEIQVLS(ph)DDDS(ph)DEEQVK 0.71 5.45E-01 0.28 7.15E-01 0.66 4.51E-01 0.22 6.89E-01 

AT1G47970 (na) NFKEEPEIQVLS(ph)DDDS(ph)DEEQVK  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT1G47970 (na) RAPEEDEEDS(ph)GDEDDDRPPK  1.00E+00 -0.16 4.36E-01  1.00E+00 -0.54 6.79E-01 

AT1G47970 (na) TGVNDDDDKNFKEEPEIQVLS(ph)DDDS(ph)DEEQVK -0.45 4.66E-01 -0.03 4.49E-01 0.72 4.89E-02 1.13 1.08E-01 

AT1G50120 (na) TFGSSLS(ph)LNSGPR  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT1G52200 (na) GRVTTPSEEDSNNGLPVQQPGT(ph)PNQR 0.59 5.21E-02 0.42 3.81E-01 -0.77 1.01E-01 -0.94 1.24E-02 

AT1G52200 (na) VTTPSEEDSNNGLPVQQPGT(ph)PNQR 0.11 7.71E-01 0.86 1.25E-04 -0.37 3.73E-02 0.38 3.85E-02 

AT1G52220 (na) AS(ph)GESSDSSTDLDVVSTIQNVWDK  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT1G52320 (na) VSS(ph)PPRVPNPAIQK  1.00E+00 1.16 9.22E-02 -0.57 3.84E-01  1.00E+00 

AT1G52780 (na) VM(ox)S(ph)ESEM(ox)VSGAR 0.09 8.27E-01 -0.06 7.90E-01 -0.21 5.85E-01 -0.36 3.57E-01 

AT1G53590 (na) EEFLIGSIEEESQSQS(ph)PR -0.61 4.29E-01 -0.43 3.36E-01 0.72 1.41E-02 0.89 2.13E-01 

AT1G53590 (na) KEEFLIGSIEEESQSQS(ph)PR -1.89 2.19E-01  1.00E+00  1.00E+00 0.56 9.62E-01 

AT1G56230 (na) SLS(ph)EISEVDAVR 1.05 7.53E-02 0.36 7.41E-01 0.10 5.57E-01 -0.59 2.59E-01 

AT1G57680 (na) SGALLLAPNSSQTDEGLS(ph)LR -0.50 5.96E-02 0.01 3.99E-01 0.09 3.89E-01 0.61 1.01E-01 

AT1G59710 (na) QESTDSLAVGS(ph)PPK  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT1G59710 (na) QESTDSLAVGS(ph)PPKSEGR -0.52 9.02E-01 0.65 5.41E-01 -1.91 1.12E-01 -0.74 3.19E-01 

AT1G59900 (TCA) YHGHS(ph)M(ox)SDPGSTYR  3.19E-01  1.00E+00  1.00E+00  1.00E+00 

AT1G65010 (na) SEVS(ph)PERETELDSVEEEVDSK -0.09 8.06E-01 -0.56 1.60E-01 0.40 1.43E-01 -0.07 6.77E-01 

AT1G65320 (na) SIGFNPTS(ph)PT(ph)RLSIGR  1.00E+00 -1.63 1.22E-05 2.02 1.95E-03  1.00E+00 

AT1G65320 (na) SIGFNPTS(ph)PTR 0.45 9.67E-02 1.55 4.11E-03 -0.89 4.25E-02 0.21 1.19E-01 

AT1G65370 (na) TVWLQQWIM(ox)AAT(ph)KAR  9.67E-02  1.00E+00  1.00E+00  1.19E-01 

AT1G66680 (na) AAAAVTTTTTDSLAS(ph)DDDR 0.31 2.31E-01 0.63 2.62E-01 -0.26 5.79E-01 0.07 1.13E-01 

AT1G67230 (na) ADS(ph)DGEDDES(ph)DAEHPGK  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT1G67230 (na) ALYGESINLYEPNDS(ph)TENVDDSTK -0.06 9.69E-01 -0.27 1.47E-01 0.36 5.09E-04 0.15 6.55E-01 

AT1G67230 (na) AQEVAADS(ph)LSNLDVDGQSR 0.29 1.49E-01 0.18 3.81E-01 -0.36 1.02E-01 -0.46 2.93E-02 

AT1G67230 (na) AQEVAADSLS(ph)NLDVDGQSR 0.12 4.23E-01 0.22 3.32E-01 -0.16 5.82E-01 -0.06 7.50E-01 

AT1G67230 (na) DIS(ph)PTAAGLGLPVTGGK 0.55 1.28E-02 0.63 8.44E-03 0.08 6.76E-01 0.16 4.95E-01 

AT1G67230 (na) EVEVTNVNS(ph)DGDQSDINSK 0.71 2.01E-01 1.25 1.98E-02 -0.82 9.80E-02 -0.28 6.23E-01 

AT1G67230 (na) S(ph)VKDVVDDAK -0.48 2.67E-01 0.49 2.27E-01 -0.86 6.98E-02 0.11 8.09E-01 

AT1G68790 (na) ITESEQAAGDS(ph)DEGVDSITTGGR 0.56 2.21E-01 0.70 2.18E-01 -0.53 3.26E-01 -0.39 3.31E-01 

AT1G69070 (na) DDFDSGLLS(ph)DEDLQDDDLEASASK  1.00E+00  1.00E+00  1.00E+00 0.50 1.88E-01 

AT1G69070 (na) M(ox)QETEELS(ph)DGDEEIGGEESTKR  1.00E+00 0.42 1.17E-01 -0.74 1.86E-01  1.00E+00 

AT1G70180 (na) DIS(ph)PPR  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT1G70180 (na) DRS(ph)PPRSDGR 1.13 1.00E-01 -0.52 7.41E-01 -0.62 6.79E-01 -2.27 3.61E-02 

AT1G70770 (na) MTAIDS(ph)DDDGVVR 1.43 4.66E-02 -0.03 9.78E-01 0.77 4.26E-01 -0.68 1.62E-01 

AT1G70770 (na) SNGYGDDGYDFDGS(ph)DDEIATLK 0.00 8.30E-01 -1.35 1.40E-03 1.16 2.88E-03 -0.20 5.39E-01 

AT1G71940 (na) DEELGVISDDDDS(ph)PSGKR  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT1G72390 (na) ISTELATPDS(ph)PK 1.70 3.80E-02  1.00E+00  1.00E+00 -1.45 5.17E-02 

AT1G72390 (na) LSAGGPPQS(ph)PLSSK  1.00E+00  1.00E+00  1.00E+00 -0.16 6.81E-01 

AT1G72690 (na) S(ph)PNVFER  1.00E+00 0.58 4.52E-02 -0.29 1.00E+00  1.00E+00 
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   ahk1.m/wt.m  ahk1/wt ahk1.m /ahk1 wt.m /wt 

accession category pPeptide log2 p-value log2 p-value log2 p-value log2 p-value 

AT1G72790 (na) SVSS(ph)YPDLR  1.00E+00 0.59 2.69E-01 -0.50 3.83E-01  1.00E+00 

AT1G76070 (na) GYYS(ph)DDDTR 0.71 1.97E-01 -0.07 4.72E-01 0.29 2.57E-01 -0.49 3.37E-01 

AT1G76070 (na) SIFS(ph)FSPASGR  1.00E+00  4.72E-01  2.57E-01  1.00E+00 

AT1G76660 (na) LTAPSS(ph)PDVPYAR  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT1G76850 (na) (ac)S(ph)SDSNDLDEDELLQMALK  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT1G76850 (na) GSEDTVS(ph)DDKQSVSADDLLALTK -0.86 3.07E-01  1.00E+00  1.00E+00 1.92 4.58E-02 

AT1G76850 (na) GSEDTVSDDKQS(ph)VSADDLLALTK -0.17 4.53E-01 0.17 3.56E-01 0.80 1.00E+00 1.14 5.01E-01 

AT1G76850 (na) LITESSGS(ph)PSK 1.03 2.40E-01 0.46 7.11E-01 0.10 7.26E-01 -0.47 5.59E-01 

AT1G76850 (na) LITESSGS(ph)PSKAEK 0.38 5.62E-02 -0.77 5.46E-04 0.23 2.24E-01 -0.92 1.51E-04 

AT1G76850 (na) VALTSLQS(ph)LPR 0.28 6.91E-01 -0.14 4.22E-01 0.46 2.60E-01 0.04 9.63E-01 

AT1G78880 (na) ISGPLDYSGS(ph)M(ox)K  1.00E+00 0.50 2.89E-01  1.00E+00 0.91 4.00E-01 

AT1G78880 (na) M(ox)SGNLASAGSNS(ph)M(ox)KK -2.47 4.02E-02 -0.03 9.82E-01 -1.54 6.53E-02 0.90 1.33E-01 

AT1G78880 (na) QNS(ph)GPIPILPTTGLITSGPITSGPLNSSGAPR -1.04 2.69E-01  1.00E+00  1.00E+00 1.24 3.86E-01 

AT1G78880 (na) S(ph)GAQSGPVPNATGR 0.28 6.45E-01 0.05 9.98E-01 0.25 5.61E-01 0.03 9.10E-01 

AT1G79090 (na) S(ph)SSSGNYDGM(ox)LGFGDLR -0.99 8.12E-02  1.00E+00 -0.68 2.76E-01  1.00E+00 

AT1G79090 (na) SSFVSYPPPGSIS(ph)PDQR  8.12E-02  1.00E+00  1.00E+00  1.00E+00 

AT1G79090 (na) SSS(ph)SGNYDGM(ox)LGFGDLR -1.07 1.00E+00 0.28 2.50E-01 -0.86 1.00E+00 0.49 1.72E-01 

AT1G79150 (na) VIPPPLLPPDVAEEDIEFS(ph)DEDLK  1.00E+00  2.50E-01  1.00E+00  1.72E-01 

AT1G80180 (na) NTGRVS(ph)PAVDPPS(ph)PR -0.01 9.47E-01 0.90 3.69E-02 -0.14 6.92E-01 0.78 8.70E-02 

AT1G80810 (na) QLANES(ph)EEETPK 0.44 1.31E-01 -0.11 3.07E-01 0.30 1.04E-01 -0.25 3.75E-01 

AT2G04410 (na) SDS(ph)PGKDEPGYNK 0.36 2.91E-02 -0.26 1.64E-01 -0.13 4.37E-01 -0.75 4.93E-04 

AT2G07360 (na) SYES(ph)DDEEPR 0.23 3.60E-01 -0.55 1.98E-02 -0.18 1.95E-01 -0.96 1.07E-02 

AT2G07360 (na) SYES(ph)DDEEPRK 0.03 9.38E-01 -0.33 2.91E-01 0.20 5.65E-01 -0.16 7.07E-01 

AT2G07360 (na) SYES(ph)DDEEPRKS(ph)TGTR 0.05 9.22E-01 -0.73 2.73E-01 0.32 5.03E-01 -0.46 5.73E-01 

AT2G07360 (na) TSS(ph)ISAGPGR 0.92 1.67E-01 -0.17 6.48E-01 0.06 6.68E-01 -1.03 1.61E-01 

AT2G07360 (na) YQSTYEGYGS(ph)PIREEPPPPYSYSEPQSR  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT2G15860 (na) EEEKTEEADTEQDS(ph)DDENAK -0.10 1.49E-01  1.00E+00  1.00E+00  1.00E+00 

AT2G15860 (na) LENSVQQGSS(ph)PR 0.86 7.69E-02 0.37 3.31E-01 -0.24 6.41E-01 -0.73 1.60E-01 

AT2G16405 (na) TPSLLSS(ph)PGNSGR  1.00E+00 -0.26 5.05E-01  1.00E+00  1.00E+00 

AT2G16485 (na) AIAPPELS(ph)PR -0.44 2.43E-01 0.37 2.61E-01 -0.39 2.17E-01 0.42 2.86E-01 

AT2G16900 (na) ILSLPGS(ph)FGK 0.17 7.91E-01 1.43 2.91E-02 -0.82 1.04E-01 0.45 3.97E-01 

AT2G16900 (na) NDTASEISLFNVVS(ph)PPR 0.28 5.29E-01 -0.32 1.92E-01 1.58 7.23E-02 0.99 2.55E-01 

AT2G16900 (na) TVPLS(ph)PNSMADR 1.14 1.00E+00  1.00E+00 -0.28 1.24E-01  1.00E+00 

AT2G18690 (na) DVEYM(ox)ALS(ph)STTLTE  3.99E-02  1.00E+00 1.97 5.32E-02  1.00E+00 

AT2G20740 (na) HYDS(ph)DDEYNVSTVALLQDAR  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT2G20760 (na) VTEEKRPS(ph)PAK  1.00E+00  5.83E-02  7.91E-02  1.00E+00 

AT2G20960 (na) RPQT(ph)PETRPR  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT2G20960 (na) SKT(ph)PEPQPTYFEPSSR  1.00E+00 0.39 1.13E-01  1.00E+00 -0.78 8.83E-02 

AT2G20960 (na) SKT(ph)PEPSPR  1.00E+00 0.73 3.01E-01 -3.15 2.94E-02  1.00E+00 

AT2G22400 (na) STDSTEKS(ph)PSKESVVTVDAGVPDESAVEK  1.00E+00  6.06E-02  3.35E-01  1.00E+00 

AT2G23520 (na) DVFETDLLEDNAS(ph)DR  1.00E+00  1.00E+00 0.89 1.66E-01  1.00E+00 

AT2G23520 (na) EGSLPTVIEEEAEDSET(ph) 0.17 1.00E+00  1.00E+00 0.08 3.16E-01  1.00E+00 

AT2G25430 (na) SGVSVNS(ph)GGNSSHHSNNDDR  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT2G25670 (na) ESQEQQANNNADAVDEAAGS(ph)EPTEEESPIDVK -0.72 6.83E-02  1.00E+00  1.00E+00 0.35 2.33E-01 

AT2G25730 (na) ASFTSSLS(ph)NFQR  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT2G25800 (na) S(ph)SSM(ox)SSDLPPSPLGQLAVQLSDSDLR -0.06 4.46E-01  1.00E+00  1.00E+00 -0.19 5.65E-01 

AT2G26570 (na) FSGS(ph)PVSTGTPK 0.15 7.63E-01 0.49 4.28E-01 -0.59 3.18E-01 -0.25 5.93E-01 

AT2G27090 (na) EES(ph)RDSDDDEFDEPTSDTLVR 0.54 2.01E-01 0.66 9.82E-02 -0.26 5.10E-01 -0.15 7.54E-01 

AT2G29140 (na) NGT(ph)PDPQGIAR 0.38 2.61E-01 0.06 4.05E-01 -0.45 6.56E-02 -0.77 6.74E-02 

AT2G29200 (na) NGT(ph)PDPQAIAR -0.13 3.25E-01 0.33 7.20E-01 -0.40 5.97E-01 0.06 1.98E-01 

AT2G30530 (na) AFLDEDDPNQLPQS(ph)PK 0.70 6.75E-03 0.72 1.96E-03 -0.40 6.56E-02 -0.38 7.65E-02 

AT2G30930 (na) ATS(ph)ALSEAK 0.97 9.64E-02 1.32 3.46E-02 -1.07 8.51E-02 -0.73 2.12E-01 

AT2G30930 (na) LVGGVTNLVSGASSS(ph)TVANR 0.13 5.43E-01 1.02 2.90E-01 0.66 5.15E-01 1.55 2.15E-01 

AT2G30930 (na) S(ph)LLQTFEAK  1.00E+00 1.13 3.86E-02 0.06 3.58E-01  1.00E+00 

AT2G32240 (na) DIDLSFS(ph)SPTKR  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT2G32240 (na) DIDLSFSS(ph)PTK 0.90 6.04E-02 0.72 2.18E-01 -0.73 1.96E-01 -0.91 5.39E-02 

AT2G32910 (na) EILVRNS(ph)PDPPDSAVTLDSYR  3.18E-01  9.93E-04  2.61E-01  3.16E-03 

AT2G32910 (na) NS(ph)PDPPDSAVTLDSYR 1.26 1.90E-02  1.00E+00 -0.44 9.93E-01  1.00E+00 

AT2G34310 (na) DPS(ph)PPPLSSLGK 3.51 1.10E-02  1.00E+00  1.00E+00 -3.90 2.34E-02 

AT2G34310 (na) DSDGNLSSPGSQGNEEFGTRDPS(ph)PPPLSSLGK -0.36 7.60E-01 0.54 2.59E-01 -0.01 9.85E-01 0.89 9.43E-02 

AT2G34310 (na) S(ph)AEETNKEIK -0.75 8.81E-02 1.37 1.59E-02 -0.90 5.11E-02 1.21 2.63E-02 

AT2G34310 (na) SDEKEEILS(ph)PR 0.10 8.98E-01 0.52 2.00E-01 -0.71 7.20E-02 -0.28 4.71E-01 

AT2G34357 (na) KADS(ph)DEEAEFDVEGR  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT2G34585 (na) SLNPDYDPDDQDVDS(ph)SSDVR 0.97 1.09E-02 1.13 7.48E-03 -0.43 1.95E-01 -0.26 2.54E-01 

AT2G35880 (na) (ac)AS(ph)EDLNIVAESK  4.80E-01  1.00E+00  1.00E+00  6.86E-03 

AT2G35880 (na) S(ph)SVGSASGFSFR  1.00E+00 0.14 4.78E-01 -0.05 9.65E-01  1.00E+00 

AT2G36630 (na) ANM(ox)VNS(ph)RGELLIDTEYEPLYPR -2.01 1.00E+00  1.00E+00  1.00E+00 1.57 1.00E+00 

AT2G37970 (na) ESEKIEMTS(ph)PVVTK  1.00E+00 0.48 1.00E+00 -0.07 4.00E-01  1.00E+00 

AT2G37970 (na) IEM(ox)TS(ph)PVVTK 0.04 9.37E-01 1.24 6.74E-02 -1.19 9.03E-02 0.01 9.26E-01 

AT2G38770 (na) NM(ox)QQLNQS(ph)PDIDGELSK 0.55 8.00E-02 1.06 8.28E-03 -0.96 1.67E-02 -0.45 9.74E-02 

AT2G40430 (na) TELGPAPVPLTIEGDTLS(ph)EDER 0.06 9.15E-01 -0.46 2.11E-01 1.14 3.78E-02 0.62 2.66E-01 

AT2G40430 (na) YFLDVDNFS(ph)EGEDNENVENEVSEAGIK  1.00E+00  1.00E+00  1.00E+00 0.93 1.00E+00 

AT2G40980 (na) FQQS(ph)TM(ox)SPEIVEVQEESTK 0.20 7.18E-01 0.98 7.09E-02 -0.73 2.02E-01 0.05 9.14E-01 

AT2G40980 (na) MPS(ph)PVYASSSNALEAK  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT2G43160 (na) ADDNS(ph)QDGRGGLQR 0.87 1.41E-01 -0.21 5.40E-01 0.21 4.78E-01 -0.87 1.61E-01 

AT2G43160 (na) FSEQNIGAPPSYEEAVSDS(ph)RSPVYSER -1.30 6.18E-02  1.00E+00  1.00E+00 1.42 7.77E-02 

AT2G43160 (na) KFS(ph)EQNIGAPPSYEEAVSDSR -0.59 3.69E-01 -0.84 6.61E-02 0.49 2.04E-01 0.24 8.41E-01 

AT2G43160 (na) S(ph)RSVDNYGSR 1.14 2.78E-02 -0.24 4.95E-01 -0.19 7.48E-01 -1.57 7.56E-03 

AT2G44440 (na) LGDIS(ph)DGENEGAFR  1.00E+00 0.20 4.98E-02 -0.52 1.96E-02  1.00E+00 

AT2G44440 (na) LGDIS(ph)DGENEGAFRR  1.00E+00 0.06 4.43E-02 0.01 9.33E-01  1.00E+00 

AT2G45540 (na) AFKDDDFEQVS(ph)LGDQEK  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT2G45540 (na) LSS(ph)PGPER  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT2G47980 (na) (ac)M(ox)EDS(ph)PQGLKR 0.04 3.94E-01 -0.59 1.99E-01 0.16 1.55E-01 -0.48 2.94E-01 

AT2G47980 (na) S(ph)SDQIELDDDDFQETRPKPK -0.80 5.70E-01  1.00E+00  1.00E+00  1.00E+00 

AT2G47980 (na) SRDPDQDQDDDS(ph)GEAGKADGSGGENQER  1.00E+00  1.00E+00  1.00E+00 -0.91 1.00E+00 

AT3G01160 (na) NDAS(ph)DDEDEEEEEDEDVINQK  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT3G01780 (na) IEEES(ph)ENEEEEEGEEEDDDEEVK 0.87 2.05E-01  1.00E+00  1.00E+00 0.02 4.23E-01 

AT3G01780 (na) IEEES(ph)ENEEEEEGEEEDDDEEVKEK 0.15 6.92E-01 0.04 9.21E-01 0.31 5.13E-01 0.21 7.15E-01 

AT3G01780 (na) IEEES(ph)ENEEEEEGEEEDDDEEVKEKK 1.42 1.12E-01  1.00E+00  1.00E+00 -0.20 3.42E-01 

AT3G02860 (na) KTEEESPS(ph)DEEDDEDSAVDWR  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT3G03320 (na) (ac)M(ox)EQPM(ox)S(ph)PGTK  1.00E+00  1.00E+00  6.70E-02  1.00E+00 

AT3G03570 (na) YSLVLDPNLDAGT(ph)PR 0.20 5.40E-01 0.11 3.56E-01 0.35 1.25E-01 0.26 6.56E-01 

AT3G05090 (na) GGS(ph)FLAGNLS(ph)FNR 0.29 3.98E-01 -0.13 6.58E-01 0.05 7.92E-01 -0.38 3.12E-01 

AT3G05090 (na) TVGS(ph)SNNISVQSSPSHGYTPTIAK  1.00E+00  1.00E+00  1.00E+00 -0.01 4.01E-01 

AT3G05090 (na) VGS(ph)AGSNGGSVR -1.22 5.05E-02  1.00E+00  1.00E+00  1.00E+00 

AT3G05090 (na) WPAEVQS(ph)PK  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT3G05900 (na) TSESGSALS(ph)PEK 1.43 2.40E-02 1.31 4.11E-02 -0.66 1.99E-01 -0.77 1.84E-01 

AT3G05900 (na) VVPTNQDS(ph)DTEPKKETEGDVPSPADVIEK  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT3G06170 (na) AGSSTTFLS(ph)PPS(ph)SPR 0.83 1.81E-01 1.20 7.31E-02 -0.60 1.86E-01 -0.23 5.23E-01 
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   ahk1.m/wt.m  ahk1/wt ahk1.m /ahk1 wt.m /wt 

accession category pPeptide log2 p-value log2 p-value log2 p-value log2 p-value 

AT3G06550 (na) ALLIEDGGGLQSAS(ph)PR 0.89 2.37E-04 1.13 2.64E-06 -0.76 1.39E-04 -0.52 1.04E-02 

AT3G06550 (na) DFVKEDDKALLIEDGGGLQSAS(ph)PR -2.04 1.00E+00  1.00E+00  1.00E+00 0.46 1.53E-01 

AT3G06550 (na) EDDKALLIEDGGGLQSAS(ph)PR 0.24 5.48E-01 -0.24 6.38E-01 0.40 4.61E-01 -0.08 7.42E-01 

AT3G06670 (na) ALEKEEEDYFNEDS(ph)DEEDSASASNTQK -0.24 6.26E-01 -0.32 4.34E-01 0.62 2.28E-01 0.55 3.24E-01 

AT3G06868 (na) S(ph)FSGDFFER  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT3G07030 (na) VAKPKPES(ph)PINENEIR  8.69E-02  1.00E+00  1.00E+00  1.00E+00 

AT3G07660 (na) AVDSLPLPRPS(ph)SSEVR -0.59 3.93E-01 -0.15 9.12E-01 0.34 8.00E-01 0.78 4.63E-01 

AT3G09560 (na) FYDFQDDPPS(ph)PTSEYGSAR 0.32 1.01E-01 -0.02 9.12E-01 0.64 1.65E-02 0.30 2.85E-01 

AT3G10730 (na) (ac)SASTVSITAS(ph)PR  1.00E+00 0.93 1.41E-01 -0.80 2.09E-01  1.00E+00 

AT3G11330 (na) LPS(ph)FTAK 0.42 6.91E-02 0.66 1.81E-02 -0.44 8.09E-02 -0.20 3.20E-01 

AT3G13062 (na) VALAYFLS(ph)K  4.55E-02  2.55E-03  7.14E-02  2.27E-02 

AT3G13360 (na) RAS(ph)EERGDIEK  1.00E+00  1.00E+00  1.00E+00 0.67 6.45E-01 

AT3G13990 (na) NGPPNAHRPS(ph)SPTSK 0.70 1.00E+00 0.08 3.96E-01 -0.47 1.00E+00 -1.09 1.73E-01 

AT3G13990 (na) S(ph)DSPVSAVSEPQLPEQK  1.00E+00 0.72 3.96E-01 -0.62 1.00E+00  1.73E-01 

AT3G14120 (na) M(ox)SQLELQEELSS(ph)P 0.11 5.18E-01 0.36 3.98E-01 -0.28 5.05E-01 -0.04 6.43E-01 

AT3G15160 (na) (ac)S(ph)DQEGDWDFYLR  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT3G16270 (na) SLT(ph)M(ox)ENENFSR  1.00E+00 -0.34 6.97E-01 -0.82 1.51E-01  1.00E+00 

AT3G16310 (na) SDFSPESGIADYSAS(ph)PDAK  1.00E+00  1.00E+00 -0.24 8.44E-01  1.00E+00 

AT3G16890 (na) ESEAREMFS(ph)S(ph)IER  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT3G17160 (na) EKPLVQVLS(ph)DDDS(ph)EVK  1.00E+00 -0.62 3.61E-01 0.78 1.81E-02  1.00E+00 

AT3G17160 (na) EKPLVQVLS(ph)DDDS(ph)EVKEAK -1.45 1.37E-01 0.59 6.64E-01 -0.55 5.62E-01 1.48 2.23E-01 

AT3G18230 (na) SVAVQQPIDGS(ph)PR 0.01 8.53E-01 0.30 4.31E-01 -0.67 8.59E-02 -0.38 2.10E-01 

AT3G18370 (na) ILRGS(ph)PSK -2.34 9.26E-02 0.39 1.00E+00 -1.23 1.66E-01 1.50 7.44E-03 

AT3G19670 (na) LTLTSDLKQPASVPGSS(ph)SPVENVDR  1.77E-01  1.00E+00  1.00E+00  2.50E-01 

AT3G19895 (na) GGGLQAQPVESNS(ph)L  1.00E+00  1.00E+00 -0.37 2.42E-01  1.00E+00 

AT3G20250 (na) ET(ph)DSLSSDAIASEDPFTTDLASQSFTNAQTER  1.00E+00  1.00E+00  2.42E-01  1.00E+00 

AT3G20250 (na) FEQLFGEES(ph)EVS(ph)EEGTEG 0.46 4.76E-01  1.00E+00  1.00E+00 0.78 4.85E-01 

AT3G20250 (na) QASHEDNNLSVFGAS(ph)PPSSVASR 0.29 5.79E-01  1.00E+00  1.00E+00 0.31 4.85E-01 

AT3G20250 (na) SES(ph)APPSMEGSFAALR  1.00E+00  1.00E+00  1.00E+00  4.85E-01 

AT3G20550 (mi) GGS(ph)EEPNVEEDSVAR 0.82 3.27E-02 -0.06 9.69E-01 0.14 8.29E-01 -0.74 4.45E-02 

AT3G21290 (na) NVSGLSIGS(ph)SPLDSQR  1.00E+00  1.54E-01  1.41E-01  1.00E+00 

AT3G21520 (na) (ac)S(ph)ETSLLIPK -0.09 9.10E-01 0.91 6.28E-02 -0.74 1.42E-01 0.25 6.49E-01 

AT3G24080 (na) AEGNES(ph)GEDDDFLR 0.22 4.88E-01 0.06 7.71E-01 0.10 7.87E-01 -0.06 8.39E-01 

AT3G25500 (na) STFISIS(ph)PSMS(ph)PK 0.68 3.79E-02  1.00E+00 0.13 6.27E-01  1.00E+00 

AT3G27210 (na) GSS(ph)SPAPLPR 0.63 3.00E-01 1.21 1.09E-01 -0.26 2.73E-01 0.32 4.64E-01 

AT3G27390 (na) IFS(ph)QRS(ph)FR  1.00E+00 0.10 9.11E-01 0.03 8.92E-01  1.00E+00 

AT3G27390 (na) LSEDLDLKDNNS(ph)AKDESITEPPAPVK  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT3G27390 (na) SSNAISAS(ph)PPLTER 0.14 2.65E-01 0.72 1.66E-02 -0.29 2.28E-01 0.29 1.24E-01 

AT3G29075 (na) DGNNS(ph)EDDEFKK  1.00E+00 -0.16 6.82E-01 0.21 7.26E-01  1.00E+00 

AT3G29075 (na) DGNNS(ph)EDDEFKKK  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT3G29075 (na) KDGNNS(ph)EDDEFKK 0.85 5.57E-02 -1.10 4.06E-02 0.36 3.91E-01 -1.58 8.88E-03 

AT3G44190 (na) (ac)M(ox)EKTES(ph)VSGK -0.15 9.20E-01 -0.17 6.15E-01 0.43 3.25E-01 0.40 5.81E-01 

AT3G47200 (na) (ac)ADKTDIISSSS(ph)DKASPPPPSAFR  1.00E+00  1.00E+00 0.31 1.00E+00  1.00E+00 

AT3G47210 (na) (ac)AEKTEIFSSPS(ph)SPPPSFYMVDK  1.00E+00  1.00E+00  1.00E+00 0.38 1.00E+00 

AT3G47210 (na) LSS(ph)PSLPSS(ph)PPPSYYM(ox)GEK 0.08 8.78E-01 1.15 8.31E-02 -1.19 4.99E-02 -0.13 8.41E-01 

AT3G47210 (na) LSSPSLPS(ph)SPPPSYYM(ox)GEK 0.05 7.34E-01 1.24 3.67E-02 -0.71 1.85E-01 0.48 4.42E-01 

AT3G47210 (na) TEIFSSPS(ph)SPPPSFYM(ox)VDK 0.94 7.49E-02 0.42 3.68E-01 0.30 4.24E-01 -0.22 7.20E-01 

AT3G47210 (na) YSSPSS(ph)PPPSFYR 1.03 4.30E-02 1.42 2.95E-02 -0.49 4.78E-01 -0.10 6.29E-01 

AT3G49210 (na) KDDEEEVEEEQPLS(ph)PAAR 1.01 1.15E-01  1.00E+00  1.00E+00 -0.85 1.54E-01 

AT3G49590 (na) FSGVLSS(ph)SDSPR  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT3G49590 (na) IITDYVGS(ph)PATDPM(ox)R -0.19 3.53E-01 0.99 2.08E-01 -1.45 8.08E-02 -0.27 1.92E-01 

AT3G49590 (na) S(ph)PSSQDSLPGIALYR  1.00E+00  1.00E+00  1.00E+00 0.32 2.49E-01 

AT3G49590 (na) YISGGNS(ph)PR  1.00E+00  1.00E+00  1.00E+00  2.49E-01 

AT3G49601 (na) AARDS(ph)DDS(ph)EIEYQNKK 0.83 1.26E-01 -0.51 4.37E-01 0.51 1.00E+00 -0.83 6.48E-01 

AT3G49800 (na) S(ph)SDLAEGDEDLIAGIR -0.24 9.64E-01 -0.38 1.00E+00 0.89 6.53E-02 0.75 3.48E-01 

AT3G50370 (na) NPLS(ph)PNSGQANLK  1.00E+00 -0.15 1.00E+00 1.12 1.00E+00  1.00E+00 

AT3G51890 (na) (ac)SSTLS(ph)NEESGLGDSNR 0.37 4.76E-01 0.74 1.46E-01 -0.56 3.32E-01 -0.18 7.06E-01 

AT3G52230 (na) EATGDDDQKDDDEDDQSS(ph)DGHED 1.10 1.42E-01 0.12 8.66E-01 0.44 4.38E-01 -0.54 1.18E-01 

AT3G52230 (na) KEATGDDDQKDDDEDDQS(ph)SDGHED 1.31 2.89E-02  1.00E+00  1.00E+00 -1.28 2.35E-01 

AT3G54760 (na) AASQM(ox)AGS(ph)PSVLK  1.00E+00  1.00E+00  1.00E+00 -0.05 9.83E-01 

AT3G54760 (na) KDNADM(ox)TSDLTGTIESADSAIPNS(ph)PTEDAAPGNIQDLK -1.22 6.42E-02  1.00E+00  1.00E+00 0.78 1.96E-01 

AT3G55600 (na) IEDEPRS(ph)PT(ph)SPQLR  1.00E+00 1.03 7.58E-02 -1.36 1.00E+00  1.00E+00 

AT3G55600 (na) SPTS(ph)PQLR 0.87 4.11E-02 1.29 1.16E-01 -0.22 4.23E-01 0.20 6.38E-01 

AT3G55970 (sec) VQS(ph)LSESNLGAIPNR  1.00E+00 1.14 1.01E-02 -1.13 4.18E-02  1.00E+00 

AT3G56720 (na) (ac)M(ox)DTELNS(ph)PPHDDGGDTTTAFR 0.25 2.26E-01 0.42 7.71E-02 -0.32 1.60E-01 -0.16 4.66E-01 

AT3G58110 (na) (ac)AS(ph)SPPSDPTDRDAETLSQNPSLIEKPSVVEQGSLSVENVAEK  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT3G58110 (na) (ac)ASSPPSDPT(ph)DRDAETLSQNPSLIEKPSVVEQGSLSVENVAEK  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT3G60450 (na) (ac)MES(ph)PKSNVDDGYQNIFVM(ox)R 0.16 4.69E-01 0.23 1.08E-01 0.41 6.23E-03 0.48 2.05E-01 

AT3G61480 (na) DIEQAPTES(ph)DSLSPK  1.81E-01  1.00E+00  1.00E+00  4.13E-01 

AT3G61480 (na) QIGLTST(ph)SSPK 0.04 9.97E-01 -0.03 9.41E-01 0.03 9.59E-01 -0.03 9.76E-01 

AT3G61690 (na) S(ph)SPELTETHGEALLQSR  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT3G62900 (na) GIS(ph)SPLVAGNHVISAQNR  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT3G63160 (na) DKS(ph)DSDDATVPPPSGA 0.39 7.35E-01 1.62 7.10E-02 -0.75 4.96E-01 0.49 3.38E-01 

AT3G63460 (na) DFM(ox)PS(ph)DTDFSTK 0.11 9.39E-01  1.00E+00  1.00E+00  1.00E+00 

AT3G63460 (na) DFMPS(ph)DTDFSTK 0.65 3.36E-01  1.00E+00  1.00E+00 -0.27 1.00E+00 

AT3G63460 (na) DQAVDGLS(ph)SDLNGIR 0.63 8.57E-02 0.72 9.15E-02 -0.06 9.25E-01 0.04 9.58E-01 

AT4G01150 (na) AS(ph)SEETSSIDTNELITDLK -0.12 9.08E-01 -0.53 1.52E-01 0.31 5.80E-02 -0.10 7.63E-01 

AT4G01290 (na) S(ph)IGELSQR 0.31 3.78E-01  1.00E+00  1.00E+00 0.82 5.46E-02 

AT4G05150 (na) ASS(ph)ISSLLDSSVNR -0.19 8.50E-01 0.30 1.69E-01 0.47 5.72E-01 0.96 2.03E-01 

AT4G05150 (na) EVSTLS(ph)DPGS(ph)PR 0.13 4.52E-01 0.32 4.49E-01 -0.14 6.05E-01 0.05 3.11E-01 

AT4G05150 (na) EVSTLSDPGS(ph)PRR 0.30 3.43E-01 0.54 6.79E-02 -1.01 2.24E-02 -0.76 2.08E-01 

AT4G05150 (na) IST(ph)PELPPPVFIKPES(ph)PEPVSTPK 0.26 5.60E-01 -2.01 1.77E-02 1.60 3.13E-02 -0.67 2.83E-01 

AT4G08330 (na) APEYALVTQNSDPT(ph)SPR 0.25 6.78E-01  1.00E+00 -0.40 7.29E-01  1.00E+00 

AT4G08330 (na) APEYALVTQNSDPTS(ph)PR -0.29 1.65E-01 0.90 2.02E-03 -0.81 1.48E-02 0.37 1.58E-01 

AT4G08540 (na) LDSPGS(ph)NSFK  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT4G10750 (na) DVDDEKYWS(ph)E  1.00E+00 0.45 2.33E-01 0.05 1.00E+00  1.00E+00 

AT4G11790 (na) QDHSDDADGGDEQSQPSS(ph)PSVK 0.79 1.20E-01  1.00E+00  1.00E+00 0.27 1.00E+00 

AT4G11860 (na) S(ph)FDDSPPAAAELR 1.45 7.78E-02 1.09 2.25E-01 -0.24 3.79E-01 -0.60 2.54E-01 

AT4G11860 (na) S(ph)FDDSPPAAAELRR  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT4G11860 (na) T(ph)RSFDDSPPAAAELR  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT4G12070 (na) FQEIPFTNES(ph)L  1.00E+00 -0.36 1.00E+00 0.61 2.12E-01  1.00E+00 

AT4G14280 (na) (ac)VDRPTDVVVEVGS(ph)SGR 0.77 1.00E+00 0.94 3.10E-03 0.72 4.35E-02 0.88 2.26E-03 

AT4G14465 (na) QIHGGGDS(ph)PPR 1.81 1.00E+00 0.41 1.28E-01 0.51 2.47E-01 -0.89 1.00E+00 

AT4G15545 (na) (ac)S(ph)EIEEEEEEGSASAITGSR 0.37 2.19E-01 1.02 2.17E-01 -0.09 3.91E-01 0.56 1.79E-01 

AT4G15545 (na) TTSRPIS(ph)PR  1.00E+00 0.28 4.62E-02 -0.25 2.94E-01  1.00E+00 

AT4G15610 (na) GYETKST(ph)LDTER -0.33 1.23E-01  1.00E+00  1.00E+00 0.16 3.48E-01 

AT4G15790 (na) (ac)ADQTSDSTSPVAPLS(ph)VSSPTATKK -0.35 1.00E+00 2.38 1.06E-03 -0.01 1.72E-01 2.71 1.00E+00 

AT4G15790 (na) (ac)ADQTSDSTSPVAPLSVS(ph)SPTATKK  1.00E+00 -0.66 1.37E-01  1.00E+00 -0.45 7.83E-02 

AT4G15802 (na) AEM(ox)GVEGT(ph)PPPASK -0.24 3.48E-01 0.09 4.51E-01 -1.17 2.19E-01 -0.85 1.69E-01 
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   ahk1.m/wt.m  ahk1/wt ahk1.m /ahk1 wt.m /wt 

accession category pPeptide log2 p-value log2 p-value log2 p-value log2 p-value 

AT4G17060 (na) VSADFDADS(ph)DDEIVLVPK -0.92 9.47E-03 -1.28 1.60E-03 1.01 1.16E-02 0.64 4.63E-02 

AT4G17140 (na) ASGSAPIAGLSDTSS(ph)DSEESETEQK 1.23 8.84E-02 0.92 5.31E-02 0.06 8.91E-01 -0.24 2.35E-01 

AT4G17140 (na) ELSSSSS(ph)VSDDKK 0.37 2.44E-01 0.17 6.58E-01 -0.10 7.57E-01 -0.31 3.48E-01 

AT4G17140 (na) LDPTSS(ph)EGEEK 1.19 9.94E-02 0.93 5.66E-02 -0.12 6.97E-01 -0.38 1.47E-01 

AT4G17140 (na) SFIQSSEM(ox)LPSFEDAES(ph)RSPER -1.37 5.19E-02  1.00E+00  1.00E+00 0.52 5.45E-01 

AT4G17140 (na) SFIQSSEM(ox)LPSFEDAES(ph)RSPERLDPTSSEGEEK -2.19 1.00E+00  1.00E+00  1.00E+00 0.98 1.04E-02 

AT4G17140 (na) TPS(ph)FSR  1.00E+00  1.00E+00  1.00E+00  1.04E-02 

AT4G17330 (na) KPEDQNISGFM(ox)SAGS(ph)PVLNR -0.13 4.34E-01 -0.29 7.67E-01 1.02 1.27E-02 0.87 5.87E-01 

AT4G17330 (na) TDDGQEQVLVKDDS(ph)PTAVEEASVEEK -1.41 4.34E-01  1.00E+00  1.27E-02 0.88 1.00E+00 

AT4G17620 (na) DLFGS(ph)DNEEYTK 1.34 1.00E+00 0.61 3.82E-01 -0.33 4.74E-01 -1.06 1.00E+00 

AT4G18070 (na) SQGDKES(ph)DDGVNER 0.38 2.66E-01 -0.10 4.97E-01 -0.08 9.25E-01 -0.56 1.05E-01 

AT4G18120 (na) SPIFGNLS(ph)PTK  1.00E+00 0.45 6.74E-02 0.20 2.41E-01  1.00E+00 

AT4G18905 (na) NVEGS(ph)NEDEEEEIEEDGEEISEVDHAK  1.00E+00  6.74E-02  2.41E-01 1.51 1.00E+00 

AT4G19490 (na) SIS(ph)DASSQSLSSILNNPHGGK  1.00E+00  1.00E+00  6.56E-02  1.00E+00 

AT4G22270 (na) GNAIET(ph)SDDEEGEGDDDLDNTK  1.00E+00  1.00E+00 -0.60 1.64E-01  1.00E+00 

AT4G22670 (na) SFVVEES(ph)DDDMDETEEVKPK -0.21 9.83E-01 -0.39 4.53E-01 0.61 1.93E-01 0.44 5.98E-01 

AT4G22670 (na) VEEEEEEDEIVES(ph)DVELEGDTVEPDNDPPQK -0.45 4.78E-01 -1.09 2.92E-03 1.62 3.17E-04 0.98 9.68E-02 

AT4G22980 (na) FTSQES(ph)LPR 0.25 3.32E-01  1.00E+00  1.00E+00 0.49 6.40E-01 

AT4G24275 (na) S(ph)VSASAQAVPSPIK -0.01 1.00E+00  1.00E+00  1.00E+00 0.25 2.81E-01 

AT4G24680 (na) SSLNAWGTSSLS(ph)PR  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT4G24840 (na) (ac)SDLVATS(ph)PSPSSAPR 0.61 1.25E-01 0.57 2.71E-01 0.00 9.91E-01 -0.04 6.85E-01 

AT4G24840 (na) (ac)SDLVATSPS(ph)PSSAPR 0.43 1.61E-01 0.49 1.06E-01 -0.25 4.20E-01 -0.19 5.21E-01 

AT4G25070 (na) FDDES(ph)EDDETR -0.23 2.75E-01  1.00E+00  1.00E+00 -0.46 3.08E-01 

AT4G25070 (na) FDDEYDS(ph)DEITEDVPR 0.14 6.02E-01  1.00E+00  1.00E+00 0.33 6.66E-01 

AT4G25070 (na) FDDEYDS(ph)DEITEDVPRNPVEIR  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT4G25770 (na) LYEQPGEVDSLDS(ph)PSKEK -0.27 4.19E-01 0.46 2.74E-01 -0.73 6.68E-02 -0.01 8.95E-01 

AT4G25880 (na) IPS(ph)PPIYYPTEYQFIDNR  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT4G25880 (na) LS(ph)PGSQSLADFR  1.00E+00 0.49 3.85E-01 0.84 2.04E-01  1.00E+00 

AT4G25880 (na) S(ph)GSAPPNM(ox)EGSFLAVDNLLSR  1.00E+00 -1.33 3.43E-02 -0.56 1.00E+00  1.00E+00 

AT4G26130 (na) TTS(ph)IGDGGEEGVDDK 0.84 1.88E-01 0.00 9.17E-01 0.29 6.06E-01 -0.56 3.63E-01 

AT4G26130 (na) TTS(ph)IGDGGEEGVDDKASNFINK -0.30 8.59E-01 -0.21 5.58E-01 -0.13 9.22E-01 -0.03 7.92E-01 

AT4G26630 (na) AEVDESKVEDEKEGS(ph)EDENDNEK -0.55 2.44E-01 0.67 4.05E-01 -0.18 9.89E-01 1.04 1.00E+00 

AT4G26630 (na) SLAHS(ph)DDES(ph)EEEKEEEEK  1.00E+00 -0.65 3.72E-01  1.00E+00 0.14 3.67E-01 

AT4G26630 (na) SLAHS(ph)DDES(ph)EEEKEEEEKQEEEK  1.00E+00  1.00E+00  1.00E+00 -0.18 2.78E-01 

AT4G26630 (na) VEDEKEGS(ph)EDENDNEK 0.65 1.00E+00  1.00E+00  1.00E+00 -0.09 2.78E-01 

AT4G26630 (na) VEDEKEGS(ph)EDENDNEKVESK -0.08 7.17E-01 0.04 9.18E-01 0.11 7.20E-01 0.23 9.14E-01 

AT4G27500 (na) KTGGNTETETEEVPEAS(ph)EEEIEAPVQEEKPQK  2.17E-01  1.19E-01  5.48E-02  1.73E-01 

AT4G27500 (na) TGGNTETETEEVPEAS(ph)EEEIEAPVQEEKPQK -0.72 6.90E-02 -0.07 8.15E-01 0.71 2.64E-02 1.36 5.81E-04 

AT4G27585 (na) DHQETQALDET(ph)DLEELEDM(ox)GEK -0.34 4.02E-01  1.00E+00 0.29 1.00E+00  1.00E+00 

AT4G27870 (na) GS(ph)AAELTEPTTGTEK  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT4G27900 (na) AFS(ph)ESDIQTLGTGNTGLVQSQLDR -0.34 1.70E-01  1.00E+00  1.00E+00 0.18 6.06E-01 

AT4G28080 (na) DAGDSNSGLS(ph)PKPK 1.17 5.75E-03 0.20 5.09E-01 0.17 6.53E-01 -0.80 3.16E-02 

AT4G28080 (na) ESGSTDGDSPTEKDAGDSNSGLS(ph)PKPK  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT4G28080 (na) STNFTS(ph)PR -0.51 8.57E-02 -0.85 9.30E-03 0.14 5.74E-01 -0.20 3.19E-01 

AT4G28080 (na) TVDGETENLPNGDS(ph)SPK -0.05 8.92E-01 0.43 1.47E-01 -0.59 1.09E-01 -0.10 7.00E-01 

AT4G29440 (na) FDDYDRDS(ph)ES(ph)EEDNLGR -0.22 5.12E-01 0.55 2.04E-01 0.01 7.58E-01 0.78 1.37E-01 

AT4G29440 (na) FGPLASGLENETTLPSYGS(ph)SPPR  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT4G29440 (na) FGPLASGLENETTLPSYGSS(ph)PPRDK -0.86 2.40E-01  1.00E+00  1.00E+00 0.79 4.56E-01 

AT4G31130 (na) EDHFDEVES(ph)R -0.31 4.91E-02 0.16 3.31E-01 0.18 8.52E-02 0.65 1.47E-01 

AT4G31160 (na) QLTFSPS(ph)FSSQSR 0.27 3.27E-01 0.55 4.19E-02 -0.54 5.70E-02 -0.26 2.70E-01 

AT4G31160 (na) VHEGAPDTEVLLAS(ph)PR -0.37 8.08E-01 0.59 4.99E-01 0.14 9.85E-01 1.09 3.49E-01 

AT4G31880 (na) (ac)SDS(ph)DKELENQIIEAGEK 1.96 1.47E-01 0.32 5.96E-01 -0.17 5.45E-01 -1.80 5.44E-04 

AT4G31880 (na) AAEIST(ph)PER 0.86 4.02E-02  1.00E+00  1.00E+00 -0.65 2.82E-01 

AT4G31880 (na) QTVEES(ph)PNSNTK 0.46 7.43E-01 0.48 1.36E-01 -0.30 3.20E-01 -0.28 7.59E-01 

AT4G31880 (na) QTVEES(ph)PNSNTKR 1.07 4.57E-02 -2.10 5.17E-03 1.54 6.44E-03 -1.63 1.12E-02 

AT4G31880 (na) TSGDETANVSS(ph)PSM(ox)AEELPEQSVPK  1.00E+00 -0.07 4.02E-01  1.00E+00 -0.52 4.12E-02 

AT4G31880 (na) TSGDETANVSS(ph)PSM(ox)AEELPEQSVPKK -0.71 1.70E-01 0.03 3.65E-01 -0.12 3.77E-01 0.62 3.17E-02 

AT4G31880 (na) WSPLDESELS(ph)QDEEAADQTGQEEDASTVPLTK -0.45 1.95E-01 -3.69 6.19E-06 3.27 3.07E-03 0.04 9.11E-01 

AT4G32180 (Co) SGS(ph)RPQLDLSK -1.05 8.03E-03  1.00E+00  1.00E+00 0.77 3.90E-02 

AT4G32285 (na) S(ph)FGDVNEIGAR 1.28 8.29E-02 0.68 5.65E-01 -0.20 8.77E-01 -0.80 1.62E-01 

AT4G32285 (na) S(ph)RSFGDVNEIGAR -2.55 1.28E-01 1.25 2.05E-01 -3.56 6.35E-02 0.24 3.11E-01 

AT4G32285 (na) SRS(ph)FGDVNEIGAR 0.66 1.90E-01 -1.86 5.55E-03 2.05 1.71E-03 -0.47 4.44E-01 

AT4G35110 (na) LLS(ph)FS(ph)GSFGR  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT4G35140 (na) SSSS(ph)PEREGESSSATGR 1.46 5.27E-02 -1.51 1.47E-01 1.33 1.46E-01 -1.64 1.02E-01 

AT4G35240 (na) FVASGGANVGDS(ph)PR 0.35 3.69E-01 0.44 5.75E-01 0.15 8.68E-01 0.24 2.23E-01 

AT4G35890 (na) (ac)ASATSNNPASSS(ph)MSPR  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT4G35890 (na) GESEPIAAAAAVAGPS(ph)SPQSR 0.43 2.30E-01 0.98 7.05E-02 -0.54 1.17E-01 0.01 2.42E-01 

AT4G36630 (na) GSSGISDDM(ox)ESSS(ph)PR 0.27 1.55E-01 0.13 9.85E-01 -0.45 3.61E-01 -0.58 2.51E-01 

AT4G36850 (na) SLAGS(ph)GT(ph)PPLR 0.48 3.03E-01 0.96 7.49E-02 -0.72 9.98E-02 -0.24 5.38E-01 

AT4G36850 (na) TM(ox)GSAIS(ph)IPGGSYK  9.06E-02  1.00E+00  1.00E+00  4.74E-01 

AT4G37120 (na) NNNENGDDATS(ph)DGEEDLDDLRVDEAK 0.11 5.77E-01 0.65 2.21E-02 0.03 2.95E-01 0.57 2.23E-01 

AT4G37700 (na) IDEAS(ph)PLISFGSK 0.82 1.86E-01 0.35 3.50E-01 0.75 1.22E-01 0.28 3.71E-02 

AT4G38360 (na) GIDDPLLNGSFS(ph)DSGVTR 0.17 3.68E-01 -0.09 3.91E-01 -0.07 3.23E-01 -0.33 1.03E-01 

AT4G38550 (na) EQFEDLYEQDGDVT(ph)PR 0.20 1.00E+00 -0.53 3.29E-01 0.12 3.14E-01 -0.61 3.88E-02 

AT4G38550 (na) EQIEDFYEQDDDVT(ph)PR 0.28 6.49E-02 0.16 3.09E-01 0.17 2.94E-01 0.05 8.69E-01 

AT4G38550 (na) S(ph)PPPSYLSNK 0.21 1.88E-01 -0.22 1.14E-01 0.11 3.29E-01 -0.33 7.93E-02 

AT4G38550 (na) S(ph)PPPSYLSNKR  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT4G38550 (na) SNYDKEQFEDLYEQDGDVT(ph)PR -0.46 2.09E-01  1.00E+00  1.00E+00 0.04 8.70E-01 

AT5G02850 (na) LGLTGPGS(ph)PSVQNPTPTR 0.58 1.25E-03 0.74 9.62E-02 -0.15 7.77E-01 0.01 3.33E-01 

AT5G03700 (na) NLGSDS(ph)FNSVEM(ox)SR 0.66 1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT5G03700 (na) VLEEDNGLS(ph)PGPYK 0.50 4.61E-02 0.85 1.32E-01 -0.56 3.26E-01 -0.21 1.44E-01 

AT5G04420 (na) LKTES(ph)SSADNIQEDDGSSLR  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT5G04420 (na) QRS(ph)ASDEEEDGTVQR 1.16 2.23E-02  1.00E+00  1.00E+00 -2.14 1.27E-02 

AT5G04420 (na) SAS(ph)DEEEDGTVQR 0.60 3.05E-01 0.09 9.89E-01 -0.07 8.51E-01 -0.58 3.53E-01 

AT5G04420 (na) TES(ph)SSADNIQEDDGSSLR  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT5G04550 (na) M(ox)SDFLSGSLS(ph)AESPK  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT5G04990 (na) (ac)S(ph)ASTVSITANTAAATR -0.32 1.16E-01 0.62 1.73E-01 -0.47 2.83E-01 0.48 4.73E-02 

AT5G04990 (na) GEATLDRS(ph)QGQDLGPVTR 0.19 5.26E-01 0.41 8.97E-02 -0.21 1.33E-01 0.01 8.86E-01 

AT5G04990 (na) S(ph)QGQDLGPVTR  1.00E+00  8.97E-02  1.33E-01  1.00E+00 

AT5G04990 (na) SVS(ph)AATGTNTTATQR  1.00E+00 -1.50 1.00E+00  1.00E+00 -0.27 2.38E-01 

AT5G05190 (na) AQANEPQSVPETNNVSSSSGQDTVLPSS(ph)PGR  1.00E+00  1.00E+00  1.00E+00 0.08 4.40E-01 

AT5G05600 (sec) VQS(ph)LAESNLSSLPDR -0.18 4.72E-01 1.32 8.42E-05 -0.79 4.20E-03 0.71 1.50E-02 

AT5G06440 (na) NITPVPETEELS(ph)PNRADDQAK -0.09 6.09E-01 0.71 3.19E-01 -0.45 4.89E-01 0.35 8.51E-01 

AT5G06560 (na) LDFSNDS(ph)PR  1.00E+00  1.00E+00  1.00E+00 -1.29 1.00E+00 

AT5G06560 (na) NPS(ph)FTQPTGDVSGGR  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT5G06970 (na) SES(ph)FDSPK 0.26 5.68E-01 0.03 8.53E-01 -0.20 8.88E-01 -0.43 3.98E-01 

AT5G08050 (na) SGFSLST(ph)IER 0.46 2.95E-01 -0.02 9.83E-01 -0.89 6.04E-02 -1.38 1.05E-01 

AT5G08660 (na) S(ph)QDFDSEYSR 0.55 1.89E-01 0.53 9.37E-02 0.05 4.36E-01 0.02 8.70E-01 

AT5G08660 (na) S(ph)SEYFR 0.06 4.79E-01 0.59 1.66E-01 -0.22 4.59E-01 0.31 9.92E-02 
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   ahk1.m/wt.m  ahk1/wt ahk1.m /ahk1 wt.m /wt 

accession category pPeptide log2 p-value log2 p-value log2 p-value log2 p-value 

AT5G09390 (na) SAANDTEMDDDS(ph)GNEKAGDDLSQDEIGVR  1.00E+00  1.00E+00  1.00E+00 1.23 4.99E-02 

AT5G09620 (na) FSYNSYPDS(ph)AESSPR 0.33 2.00E-01 0.98 1.00E+00 -1.52 1.37E-02 -0.88 1.00E+00 

AT5G09960 (na) AS(ph)LGNEEELIKPPESATSTAELTTVQSENQR  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT5G09960 (na) DPS(ph)RASLGNEEELIKPPESATSTAELTTVQSENQR -0.95 2.01E-01  1.00E+00  1.00E+00 1.14 3.67E-01 

AT5G10950 (na) ADKDEDEEENET(ph)S(ph)DDEAEPK 0.94 6.58E-03 -0.21 4.13E-01 0.37 1.42E-01 -0.78 1.69E-02 

AT5G11040 (na) LPVLDGSFFTKDPPPGS(ph)PSSSR -0.21 9.62E-01 -1.18 1.00E+00 1.56 7.50E-03 0.58 3.96E-01 

AT5G11970 (na) SYS(ph)ASYGTR  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT5G13020 (na) EIS(ph)PGDIR 0.49 9.94E-01  1.00E+00  1.00E+00  1.00E+00 

AT5G13020 (na) LEEIS(ph)DGESGNI 0.38 1.90E-01 0.62 6.41E-02 -0.45 1.62E-01 -0.21 4.06E-01 

AT5G13260 (na) LSDIELKS(ph)PGGPK  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT5G13560 (na) QQFESIARPTLEIEIPS(ph)PR -3.34 1.00E+00  1.00E+00  1.00E+00 1.79 1.84E-01 

AT5G14240 (na) VVKDHEDKDNDDGGYNS(ph)D 2.22 1.00E+00 -0.14 3.03E-01 0.73 1.00E+00 -1.63 6.69E-03 

AT5G15680 (na) S(ph)ASGPLSPM(ox)PPELNIVPVATGR 0.50 3.10E-01 -1.13 1.37E-01 0.14 4.86E-01 -1.49 1.04E-01 

AT5G15680 (na) S(ph)GQLLPSLVNASGPLM(ox)GVR  3.10E-01  1.37E-01  4.86E-01  1.04E-01 

AT5G15680 (na) TLVPQTS(ph)FK  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT5G15680 (na) VPFGYS(ph)PADPR  1.00E+00 1.05 2.65E-02 0.23 3.27E-01  1.00E+00 

AT5G15680 (na) VPFGYS(ph)PADPRT(ph)PSYSK  1.00E+00 0.74 2.79E-01 -0.76 5.31E-01  1.00E+00 

AT5G19390 (na) GFVADDS(ph)DIES(ph)PRDTNGPR -0.60 1.46E-01 -0.45 1.00E+00 0.09 1.00E+00 0.24 2.94E-01 

AT5G21010 (na) (ac)SESVIQGSNPDRVLS(ph)PTSSK -0.96 1.00E+00 0.39 1.00E+00 -0.49 1.00E+00 0.87 1.00E+00 

AT5G21160 (na) STSAETIGDGDKDS(ph)PK 0.73 3.29E-01  1.00E+00  1.00E+00 -0.81 2.97E-01 

AT5G23060 (na) S(ph)GTKFLPSSD  1.00E+00  1.00E+00  1.00E+00 0.27 4.82E-01 

AT5G23060 (na) SGT(ph)KFLPSSD  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT5G23890 (na) SPVPESTDGSKDELNIYS(ph)QDELDDNR  1.00E+00  1.00E+00  1.00E+00 1.09 7.33E-02 

AT5G24290 (na) SLS(ph)DSEEKSNLEK  1.00E+00 -0.63 3.59E-01 -0.23 6.21E-01  1.00E+00 

AT5G24890 (na) S(ph)FGNLGEIGSVK  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT5G24890 (na) SKS(ph)FGNLGEIGSVK  1.00E+00  1.00E+00  1.00E+00 0.78 1.00E+00 

AT5G26610 (na) VAIASVFGNDS(ph)DED  1.00E+00 0.30 2.70E-01 -0.60 7.47E-02  1.00E+00 

AT5G35180 (na) QSS(ph)TLVNDVR -0.15 6.39E-01 0.59 1.01E-01 -1.01 2.62E-02 -0.28 4.25E-01 

AT5G35430 (na) TSS(ph)LLSSSVASDTLR 0.04 8.21E-01 1.39 6.14E-03 -1.38 3.75E-03 -0.03 9.12E-01 

AT5G39570 (na) KKYGGNDS(ph)DEDEEK 8.08 2.89E-05 1.15 1.41E-01 -0.41 8.01E-01 -7.34 1.02E-04 

AT5G39570 (na) KYGGNDS(ph)DEDEEK -1.54 1.20E-02 -1.33 1.00E+00 0.26 1.00E+00 0.47 3.89E-02 

AT5G39570 (na) NRS(ph)GSGDDEEGSYGRK  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT5G39570 (na) NRSGS(ph)GDDEEGSYGR 0.09 7.46E-01 -0.30 7.82E-01 -1.32 2.26E-01 -1.71 5.41E-02 

AT5G39570 (na) SEEQEEGS(ph)YR -0.13 9.16E-01 0.28 8.74E-01 -0.39 8.65E-01 0.02 9.25E-01 

AT5G39570 (na) SGS(ph)GDDEEGSYGR 0.31 6.51E-01 -0.04 8.00E-01 0.14 7.25E-01 -0.21 7.15E-01 

AT5G39570 (na) SGS(ph)GDDEEGSYGRK 0.57 1.85E-01 -0.38 1.02E-01 0.21 2.40E-01 -0.74 8.03E-02 

AT5G39570 (na) YGGNDS(ph)DEDEEK -0.39 8.32E-01 1.11 3.96E-01 -0.46 9.20E-01 1.04 3.81E-01 

AT5G39570 (na) YGGNDS(ph)DEDEEKK -0.76 1.30E-01 1.16 3.57E-01 -0.69 4.89E-01 1.23 1.55E-02 

AT5G39570 (na) YGGNDS(ph)DEDEEKKK -3.46 4.05E-11 -0.07 4.07E-01 0.04 4.74E-01 3.43 5.11E-11 

AT5G40300 (na) QDQS(ph)SPINFEM(ox)SSR  1.00E+00 0.01 3.90E-01 -0.85 3.94E-01  1.00E+00 

AT5G40450 (na) S(ph)LSDHIQK  1.00E+00 -0.34 1.00E+00 0.26 4.66E-01  1.00E+00 

AT5G40640 (na) IFS(ph)QKS(ph)FK  1.00E+00  1.00E+00  4.66E-01  1.00E+00 

AT5G40640 (na) NEEGASTAFSGGLS(ph)RPNSFK  1.00E+00  1.00E+00  4.66E-01  1.00E+00 

AT5G40640 (na) NEEGASTAFSGGLSRPNS(ph)FK  1.00E+00  1.00E+00  4.66E-01  1.00E+00 

AT5G41950 (na) NLS(ph)GKAETM(ox)STNVER 0.04 5.26E-01 0.43 6.78E-01 -1.18 2.29E-01 -0.78 1.64E-01 

AT5G42860 (na) TDSEVTSLSAS(ph)S(ph)PTRSPR 1.11 4.57E-02 0.33 3.51E-01 -0.07 8.60E-01 -0.85 3.00E-02 

AT5G42870 (na) LDLREDESS(ph)SGGLDAESVAESSPK  4.57E-02  1.00E+00  1.00E+00  3.00E-02 

AT5G42870 (na) LVGS(ph)LPIM(ox)R  1.00E+00 0.91 2.38E-02 -0.90 2.48E-02  1.00E+00 

AT5G42920 (na) KYEDDLDLVLDDDS(ph)EIDEPTGR -1.45 4.14E-02  1.00E+00  1.00E+00 0.43 1.35E-01 

AT5G45510 (na) EDT(ph)DGEDEIR  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT5G45510 (na) GNPSDQESSS(ph)ESPKK -2.16 2.50E-02 -0.14 4.68E-01 0.30 4.71E-02 2.32 1.58E-02 

AT5G45510 (na) KEDT(ph)DGEDEIR 1.11 3.08E-02 0.40 2.62E-01 0.35 5.39E-01 -0.36 4.16E-01 

AT5G45510 (na) SGEHAEGEANDS(ph)QSGEK  1.00E+00 2.57 1.75E-02 -0.38 4.68E-01  1.00E+00 

AT5G47480 (na) ESNIVDGSGS(ph)PGVK 0.56 4.17E-01 0.85 2.11E-01 -0.26 5.42E-01 0.03 9.79E-01 

AT5G47480 (na) SEVDDM(ox)ALTETGKESNIVDGS(ph)GSPGVK  1.00E+00 0.03 1.00E+00  1.00E+00  6.30E-02 

AT5G47480 (na) SVS(ph)EPDFSR -0.11 3.38E-01 -0.82 3.77E-02 0.20 2.90E-01 -0.51 8.70E-02 

AT5G47690 (na) EAEENAETS(ph)DNETLGAWK 0.30 5.56E-01 -0.36 7.95E-01 0.41 3.46E-01 -0.24 8.81E-01 

AT5G47690 (na) EAEHDDS(ph)DTEGKQENNEM(ox)ER 0.96 1.02E-03 -0.43 1.20E-01 0.27 2.20E-01 -1.12 6.10E-04 

AT5G47690 (na) LESHADASVIPQTSENEVM(ox)IDGES(ph)DGNEIPLGK  1.00E+00  1.00E+00  1.00E+00 0.96 7.08E-02 

AT5G47690 (na) M(ox)LESIS(ph)PR  1.00E+00 0.32 4.27E-01 -0.62 2.06E-01  1.00E+00 

AT5G47690 (na) SSALPIETEYSGEAGEEKS(ph)ESEGK  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT5G48240 (na) DYNS(ph)DDDEEEDDESKKQPEVTIR  1.00E+00 0.53 7.92E-02 -0.53 1.11E-01  1.00E+00 

AT5G48370 (na) (ac)M(ox)NS(ph)PRPISVVSTFASPSSTSDPTR -0.19 8.87E-01 0.07 8.74E-01 0.34 5.18E-01 0.61 3.24E-01 

AT5G50640 (na) S(ph)SISLSGER -0.29 1.89E-01 0.15 7.23E-01 -0.57 1.59E-01 -0.13 2.69E-01 

AT5G52200 (na) TVSGTS(ph)S(ph)SSSPELI  3.08E-03  1.00E+00  1.00E+00  3.33E-02 

AT5G53420 (na) AFS(ph)EGDIQK 0.06 7.64E-01 0.55 5.04E-01 -1.03 1.27E-01 -0.54 4.84E-01 

AT5G53420 (na) LGAGLVQS(ph)PLDR 1.23 5.05E-02 0.90 2.78E-01 -0.16 8.68E-01 -0.48 3.64E-01 

AT5G53440 (na) DGRRS(ph)PDYQDYQDVITGSR  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT5G53440 (na) EVAELS(ph)GGS(ph)ER  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT5G53440 (na) KGANDGEEAEADDGDGDGSVVVGDVS(ph)PK 0.51 2.80E-01 0.29 5.43E-01 -0.41 3.54E-01 -0.62 1.08E-01 

AT5G53440 (na) S(ph)PDYQDYQDVITGSR 0.06 7.60E-01 0.40 4.31E-01 -0.55 1.55E-01 -0.21 3.49E-01 

AT5G53440 (na) S(ph)PGTENYTEKR -0.16 2.97E-01 -0.37 3.77E-02 -0.14 3.03E-01 -0.35 4.46E-02 

AT5G53800 (na) GS(ph)DRDGAPPENTKR -2.28 2.26E-03 -0.46 2.13E-01 0.35 3.09E-01 2.17 3.01E-03 

AT5G54440 (na) AS(ph)LSTGNIPEM(ox)FDGRPSFTEGSGLEASPR  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT5G54440 (na) TNS(ph)SPGNFESPLDRPM(ox)R 0.77 9.04E-02 1.18 1.81E-02 -0.29 4.52E-01 0.12 8.11E-01 

AT5G55210 (na) DSEIEETEEFDTES(ph)PLPK -0.06 7.84E-01 -0.25 2.21E-01 0.72 7.49E-03 0.52 2.60E-02 

AT5G55210 (na) VISKDSEIEETEEFDTES(ph)PLPK  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT5G55660 (na) SVAHS(ph)DDES(ph)EEEKEDDEEEEK 0.29 1.00E+00 -1.38 1.00E+00 0.92 1.00E+00 -0.75 1.00E+00 

AT5G55660 (na) TAVPTKS(ph)SPPKK  1.00E+00 -1.21 1.00E+00  1.00E+00 -0.72 2.20E-01 

AT5G55660 (na) TAVPTKSS(ph)PPK 1.28 1.00E+00  1.00E+00  1.00E+00 -1.96 3.88E-02 

AT5G55860 (na) M(ox)AS(ph)ESSPQQHYK  1.00E+00 0.13 5.09E-01 0.51 2.51E-02  1.00E+00 

AT5G55860 (na) RDS(ph)SDSSPIVEVGEIDTSAPFQSVK  1.00E+00  1.00E+00  2.51E-02  1.00E+00 

AT5G55860 (na) VLM(ox)PNLS(ph)GIFNR  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT5G56980 (na) APS(ph)ILER  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT5G56980 (na) STS(ph)FGDGEDGVDAK  1.00E+00  1.00E+00  1.00E+00 -0.49 4.96E-01 

AT5G57000 (na) SLS(ph)PEKER 1.11 1.66E-02 0.26 4.69E-01 0.10 7.79E-01 -0.76 6.53E-02 

AT5G57370 (na) RRS(ph)PS(ph)PDAPSR 1.03 9.66E-03 -0.22 3.73E-01 0.31 2.46E-01 -0.94 1.43E-02 

AT5G57830 (na) DASLETPILS(ph)PK 1.15 1.36E-02 0.88 3.08E-01 -0.54 5.43E-01 -0.80 1.22E-02 

AT5G57830 (na) NLS(ph)SPFDGISSER 0.57 4.92E-02 0.59 3.42E-02 -0.35 1.83E-01 -0.33 2.19E-01 

AT5G58220 (na) VISETDSS(ph)SSPVSTKPQAEAK 1.38 1.00E+00 0.93 6.56E-02 -1.40 4.40E-02 -1.84 1.00E+00 

AT5G59960 (na) VSS(ph)PSSSFSR  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT5G60620 (na) LVT(ph)SKSELDLDHPNIEDYLPSGSSINEPR  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT5G61450 (na) SFSSVPS(ph)SPR 0.59 1.38E-01 0.10 8.56E-01 0.22 4.91E-01 -0.26 9.23E-02 

AT5G62820 (na) YVS(ph)PEGS(ph)PFKIENPK 1.37 1.36E-02 0.46 4.23E-01 -0.43 4.12E-01 -1.34 7.56E-02 

AT5G63220 (na) VPVPPHLVDVS(ph)DDEDVQNLQESLGEAR -1.36 2.57E-01  1.00E+00  1.00E+00 0.72 7.56E-01 

AT5G63550 (na) (ac)ATETLDEKTPEVNS(ph)PAKEEIDVVPK -0.58 5.52E-01 -0.02 4.50E-01 0.13 2.54E-01 0.69 3.97E-01 

AT5G63550 (na) DKEDDVES(ph)EEEEEEEEGSGSK 1.35 1.96E-01 1.20 2.50E-01 -0.25 1.27E-01 -0.40 3.79E-01 

AT5G63550 (na) DKEDDVES(ph)EEEEEEEEGSGSKK  1.96E-01  1.00E+00  1.27E-01  1.00E+00 

AT5G63550 (na) TPEVNS(ph)PAKEEIDVVPK -0.33 7.83E-01 0.52 4.05E-02 -0.60 3.06E-01 0.25 4.83E-01 
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   ahk1.m/wt.m  ahk1/wt ahk1.m /ahk1 wt.m /wt 

accession category pPeptide log2 p-value log2 p-value log2 p-value log2 p-value 

AT5G63550 (na) TPEVNS(ph)PAKEEIDVVPKEEK  1.00E+00  4.05E-02  1.00E+00  4.83E-01 

AT5G63550 (na) VLEFLES(ph)PKETR  1.00E+00  4.05E-02  1.00E+00  4.83E-01 

AT5G64010 (na) GALLQDS(ph)EEEDG  1.00E+00 -0.21 5.37E-01 0.19 5.04E-01  1.00E+00 

AT5G64090 (na) S(ph)LEIEEDFDR  1.00E+00  1.00E+00 1.25 3.14E-02  1.00E+00 

AT5G64160 (na) (ac)SLTLLQGYS(ph)SAEEEEAEER  1.00E+00 -0.77 1.00E+00  3.14E-02  1.00E+00 

AT5G64160 (na) AFGDYDNS(ph)DEDGDNDVR  1.00E+00 0.05 3.24E-01 -0.82 3.83E-02  1.00E+00 

AT5G64160 (na) AFGDYDNS(ph)DEDGDNDVRR 0.60 2.40E-01 -0.24 2.85E-01 0.16 3.27E-01 -0.67 1.73E-01 

AT5G64430 (na) FSYNSYPDSTDS(ph)SPR 0.68 1.49E-02 0.62 1.55E-02 -0.43 8.76E-02 -0.50 5.49E-02 

AT5G64430 (na) LFLFPASS(ph)GFGSQSSTQSDRDR  1.00E+00  1.00E+00  1.00E+00  1.00E+00 

AT5G64500 (na) YNEDS(ph)EPDAVTR 1.06 6.15E-02 1.18 4.62E-02 -0.32 5.12E-01 -0.19 8.50E-01 

AT5G65687 (na) DS(ph)PAKEEAPPATK 0.29 3.57E-01 0.17 6.86E-01 -0.08 9.65E-01 -0.20 5.04E-01 

AT5G65687 (na) SNEVS(ph)EDDEVEEDKLESK 1.03 9.39E-02 0.34 5.55E-01 0.18 7.47E-01 -0.52 3.90E-01 

AT5G65687 (na) VGQRDS(ph)PAKEEAPPATK 0.69 2.29E-01 -0.24 8.93E-01 0.50 7.93E-01 -0.43 2.80E-01 

AT5G65950 (na) INLVDVGGGGLFS(ph)PR -0.45 2.85E-01 -1.24 1.38E-01 1.45 1.00E+00 0.67 4.35E-01 

AT5G65950 (na) T(ph)SSFRDPLSVSDSASPIPSR -1.54 1.03E-02  1.00E+00  1.00E+00 1.96 2.56E-02 

AT5G66950 (na) QGTLPTVIEEDDSSET(ph) 0.06 1.50E-01 1.11 1.75E-02 -0.73 6.11E-02 0.33 2.36E-01 

AT5G67470 (na) LVTGGGDGGGS(ph)RR  1.00E+00 -0.18 2.44E-01 -0.27 5.78E-01  1.00E+00 
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