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Summary 

Intelligent tutoring systems are software environments that aim to simulate a human tutor. 

While current systems show effectiveness comparable to human tutors, they still suffer from 

the ‘assistance dilemma’. This drawback refers to the inability to infer the ongoing user state 

which can lead to situations where the system provides no or inadequate support. To alleviate 

this situation, user state detection has been implemented in some systems. However, at the 

current time, only behavioral indicators are used to infer the ongoing user state. Such overt 

behaviors are not specific enough to provide a detailed representation of the user state. This 

is the reason why I suggest to investigate the potential use of the electroencephalogram to 

infer the ongoing user state. This combination of an intelligent tutoring system and an 

EEG-based user state detection is called a neurotutor. EEG-based user state detection usually 

focusses on narrow user states which can be detected in controlled lab environments. I 

assume that real-life environments like a classroom evoke complex user states which consist 

of multiple different components. I therefore propose a three component framework that 

enables the tracking of different processes that are active during a complex user state. The 

first two studies focus on the separation of working memory load and affective valence in a 

highly controlled setting with the use of established measures from classical neuroscience. I 

found that measures used to infer working memory load can be used to track changes in 

working memory load under different affective valence. Furthermore, I found that said 

measures were also sensitive to changes in affective valence. Surprisingly, I found that 

measures used to infer affective valence were not sensitive to changes in affective valence 

under working memory load. Additional analyses revealed that working memory load and 

affective valence can be automatically detected with accuracies sufficient for the use in a 

neurotutor. The third study successfully replicated the findings from the first two studies in a 

more realistic, although less controlled setting. A simplified learning game was used to induce 

the complex user state of perceived loss of control that simultaneously evoked cognitive as 

well as affective processes. With the help of the framework I was able to integrate the findings 

from three different studies that all analyzed the same dataset. This would not have been 

possible without an adequate theoretical framework.  

 

  



 

 
 

Zusammenfassung 

Intelligente Tutorensysteme sind EDV-Programme, welche versuchen einen menschlichen 

Tutor zu simulieren. Obwohl derzeit erhältliche Systeme ähnlich effektiv sind wie menschliche 

Tutoren, leiden sie immer noch unter dem ‚Assistenzdilemma‘. Dies referenziert auf die 

Unfähigkeit den aktuellen Nutzerzustand zu erkennen, was dazu führen kann, dass das 

System keine oder inadäquate Unterstützung anbietet. Um diesen Umstand zu beseitigen 

wurde in manchen Systemen bereits eine Nutzerzustandserkennung implementiert. Derzeit 

werden jedoch nur beobachtbare Verhaltensweisen verwendet, um den aktuellen 

Nutzerzustand abzuleiten. Solch offenkundige Verhaltensweisen sind jedoch nicht spezifisch 

genug, um ein detailliertes Bild des Nutzers zu erfassen. Deshalb schlage ich vor, dass man 

das Elektroenzephalogramm verwenden soll, um den aktuellen Nutzerzustand zu erkennen. 

Diese Kombination eines intelligenten Tutorensystems mit einer EEG-basierten 

Zustandserkennung nennt man einen Neurotutor. Normalerweise fokussiert sich EEG-basierte 

Zustandserkennung jedoch nur auf begrenzte Zustände, welche innerhalb kontrollierter 

Laborumgebungen erkannt werden. Ich nehme an, dass realistische Settings wie ein 

Klassenzimmer komplexe Zustände hervorrufen, welche aus mehreren verschiedenen 

Komponenten bestehen. Daher stelle ich ein Bezugssystem mit drei Komponenten auf, 

welcher die Zuordnung der verschiedenen Prozesse, die während eines komplexen 

Nutzerzustandes aktiv sind, ermöglicht. Die ersten beiden Studien befassen sich mit der 

Separation von Arbeitsgedächtnisbelastungen und affektiver Valenz durch die Verwendung 

von etablierten EEG Maßen in einem hoch kontrollierten Setting. Dabei habe ich 

herausgefunden, dass Maße, welche zum Erkennen von Arbeitsgedächtnisbelastungen 

verwendet werden, auch geeignet sind, um Veränderungen in der Belastung des 

Arbeitsgedächtnisses unter gleichzeitiger emotioneller Stimulation zu erkennen. Außerdem 

habe ich entdeckt, dass die erwähnten Maße auch sensitiv gegenüber Veränderungen in der 

affektiven Valenz sind. Überraschender Weise hat sich herausgestellt, dass Maße, welche 

zum Erkennen von affektiver Valenz verwendet werden, nicht sensitiv gegenüber 

Veränderungen in der affektiven Valenz sind, wenn gleichzeitig das Arbeitsgedächtnis belastet 

wird. Zusätzliche Analysen haben aufgedeckt, dass Arbeitsgedächtnisbelastungen und 

affektive Valenz mit einer Genauigkeit erkannt werden kann, welche für den Gebrauch in 

einem Neurotutor ausreichend sind. In der dritten Studie konnten die Ergebnisse der ersten 

beiden Studien erfolgreich in einem relevanteren, aber weniger kontrollierten Kontext repliziert 

werden. Dabei wurde ein vereinfachtes Lernspiel verwendet, um einen wahrgenommenen 

Kontrollverlust zu induzieren. Durch Verwendung des Bezugsrahmens war es mir möglich die 

Ergebnisse von drei verschiedenen Studien zu integrieren, welche alle denselben Datensatz 

analysierten. Dies wäre nicht ohne adäquaten theoretischen Rahmen möglich gewesen. 
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Overview 

In this doctoral thesis I investigated the potential of the electroencephalogram (EEG) 

for the detection of complex user states that could arise during realistic 

human-machine interaction in educational settings.  

The first four sections describe the background and motivation of this thesis. In 

the first section I will give an overview on Intelligent Tutoring Systems (ITS), their 

historical development as well the effectiveness and real-life applicability of ITS. It will 

describe different tutoring designs and a prominent example of a current ITS, yet it will 

also highlight the main limitation of current ITS. This will lead toward the second section 

of this thesis which will present a short introduction into the novel research field of 

neuroeducation. There I will outline the application of the EEG for user state detection, 

an approach that could have the potential to address an important issue in the 

development of ITS, the so-called assistance dilemma. The section will further contain 

a short overview of the EEG, the main method used in this thesis. The third section will 

describe a newly adopted approach in the field of neuroeducation, which focuses on 

the automatic detection of user states and is called a brain-computer interface (BCI). 

This will bring readers to the concept of neurotutors, describing recent efforts toward 

the development of such systems, but also emphasizing current challenges for the 

development of robust systems which can be used in natural environments like 

classrooms. As the classroom represents an environment that could elicit complex 

user states, containing different mixtures of cognitive processes as well as affective 

processes, the fourth section will focus on the description of such complex user states. 

In this section of the thesis the main components of a proposed framework will be 

described, including related theoretical frameworks, paradigms used to investigate 

such complex user states, induction methods as well as EEG measures used to infer 

specific components of the proposed framework.  

The next three sections will focus on the research conducted as part of this 

thesis. The fifth section of this thesis will center on the aim of this research and the 

corresponding research questions (RQs). After that, the sixth section will contain three 

manuscripts, which represent the main body of empirical evidence of this doctoral 

thesis. This section will also contain additional sub-sections which will present results 

from the analysis of subjective measures used in the first study, the automatic detection 
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of affective valence in a complex user state, additional analyses related to the third 

study as well as results from a related study that analyzed the same dataset that was 

used in the third study. All this additional content has not been included in the submitted 

manuscripts. Following this, the seventh section is an attempt to integrate and discuss 

all relevant findings.  

The last two sections will present an outlook for future research. In the eight 

section, the next necessary steps, which are required to bring neurotutors into natural 

environments, will be discussed. Finally, the ninth section will focus on the practical 

relevance, briefly describing the enormous potential for neurotutors in the educational 

context and for lifelong learning. 
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1. Intelligent Tutoring Systems 

ITS are computer systems designed to simulate a human tutor with the aim to provide 

access to high quality education to each and every student, and therefore likely to 

reform the entire education system sometime in the future. While ITS are expensive to 

develop (Murray, 1999), they could help create engaging learning situations using 

customized instruction and feedback, usually via simulation of discourse patterns and 

pedagogical strategies of a human tutor (Russell, Moran, & Jordan, 1988).  

 

1.1 A short History of Intelligent Tutoring Systems 

First attempts to utilize machines for instructional purposes date back to 1924. The 

Pressey machine was a metal box with several buttons and a window that was used 

to present questions. Users could select their response by pressing a button and the 

machine then provided immediate feedback concerning their performance by counting 

and then displaying the score (Shute & Psotka, 1985).  

Based on advances in computer science in the 1960s and 1970s many new 

computer-assisted instruction (CAI) programs were initiated in countries like the US, 

the UK, as well as Canada (Chambers & Sprecher, 1983). While CAI was gaining 

interest, Carbonell (1970) suggested that computers could act more like a teacher 

rather than a mere tool. Based on this new perspective on the potential of educational 

machines, intelligent computer-assisted instruction, currently known as ITS would 

emerge. This new approach focused on the use of computers to intelligently support 

students in their learning progress. While CAI programs were based on a behaviorist 

perspective, grounded in learning based on Skinner's theories (Ormrod, 2011), ITS are 

based on interdisciplinary developments in cognitive psychology, computer science, 

and especially artificial intelligence (Larkin & Chabay, 1992).  

Since computers were still expensive and not as available as expected at the 

end of the 1970s, interest in ITS technologies was fading. However, the microcomputer 

revolution in the early 1980s, changed this situation by reducing costs and thereby 

helped to revive development of ITS (Anderson, 1986). This can be seen as the 

foundation of current ITS. 
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1.2 Effectiveness and real-life Applicability of Intelligent Tutoring 

Systems 

Effectiveness of ITS is commonly assessed by comparing them with human tutors. 

While different ITS vary in their effectiveness, a recent review by VanLehn (2011) found 

similar effect sizes when comparing ITS with human tutors in general. While most 

studies using ITS are still conducted in laboratory settings, some studies already 

highlight the potential of ITS in real-life settings like classrooms.  

For instance, a study by Koedinger, Anderson, Hadley, & Mark (1997) 

investigated the applicability of ITS in a large-scale approach, involving multiple urban 

high schools. The authors found that ITS could help to improve performance on 

standardized math tests by as much as fifteen percent.  

 

1.3 Different Tutoring Designs 

Current ITS track the progress of students by comparing their problem solving 

approach with those of experts. There exist two different approaches to do this. Firstly, 

there are approaches like the Cognitive Tutor that implement pure knowledge tracing 

(Anderson & Corbett, 1995). Such systems track the progress of a student using an 

expert knowledge module and a student model module (Nwana, 1990). The expert 

knowledge module contains all the necessary steps toward a problems solutions. The 

student model module can be seen as an overlap of the expert knowledge module. 

Potential deviations from the expert knowledge module are used to indicate errors. 

While such systems are able to identify when a student has troubles with a specific 

problem, they are not capable to identify potential causes for those troubles.  

This led to the design of dialogue-based affective tutors. Such systems try to 

detect the current learner state with the intent to identify moments where conceptual 

change is possible (e.g., during states of confusion; D’Mello, Lehman, Pekrun, & 

Graesser, 2014). Conceptual change refers to the change of concepts when one is 

getting rid of misconceptions (Duit & Treagust, 2003). One prominent example for such 

an affective tutoring system is the AutoTutor (Graesser et al., 2004). 
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1.4 The AutoTutor: An Example of an Affective Intelligent Tutoring 

System 

Currently available ITS have been designed to help students learn amongst other 

topics, geography, medical diagnosis, computer programming, mathematics and 

physics. One well known example is the AutoTutor (Graesser, 1999) which was 

designed to help college students in an introductory computer literacy course. In 

contrast to the Cognitive Tutor, The AutoTutor is focusing on natural language 

dialogue. It is formulating dialogue responses using production rules based on learner 

contributions as well as the detection of the current learner state (Graesser et al., 

2004).  

The current version is able to detect different cognitive as well as affective states 

via conversational cues, gross body language and facial features (D’Mello et al., 2008; 

D’Mello, Picard, & Graesser, 2007). Furthermore, the AutoTutor can provide emotional 

feedback via an embodied emotional agent that uses facial expressions (e.g., showing 

delightful facial expressions, when a student solves a problem) as well as modulated 

speech (e.g., changing intonation based on the quality of the current answer from a 

student). Figure 1 shows a sample screenshot of the AutoTutor interface and Figure 

2 shows the different sensors used for detection of the current learner state used in 

the student model. 
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Figure 1. The AutoTutor interface. At the top the current question is displayed. The embodied 
emotional agent can be seen at the left side and the right side shows an illustration related to 
the current question. In the middle of the screenshot one can see the last responses from the 
AutoTutor. The input window at the bottom of the screen can be used to enter responses 
(https://commons.wikimedia.org/wiki/File:AutoTutor.png). 
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Figure 2. Sensors used for detection of learner state in the AutoTutor. The AutoTutor 
uses pressure pads to detect the current posture of the user as well as eye-tracking to extract 
facial features. Furthermore, the AutoTutor analyzes the responses of the user via a text log 
(D’Mello et al., 2008). 

 

While the detection of different user states is definitely an improvement over the 

black box approach implemented in approaches that only use knowledge tracing, such 

systems still cannot infer why a user is experiencing a certain state. If one looks at the 

example of a frustrated student. It might be that he or she is frustrated because the 

task is too difficult and the student experiences mental overload. However, it might also 

be the case that the student is bored because the task is too easy. Both cases would 

require opposing interventions to get the student back on the optimal learning track. 

Furthermore, currently implemented sensors like pressure pads and cameras are not 

specific enough to make reliable judgments about the ongoing user state. One can 

imagine a case where a student furrows his or her brows. This could indicate a 

concentrated state, frustration or even anger. The ambiguity of such sensor 

measurements leads us to the core of the ‘assistance dilemma’, which is the question 

how learning environments should balance assistance giving and withholding to 

achieve optimal student learning (Koedinger & Aleven, 2007). On one hand, if the 

system provides help and the student is concentrated, then this would interfere with 

deep learning. On the other hand, if the system does not provide help and the student 
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is frustrated, then this could lead to task disengagement. These examples shows that 

a meaningful modeling of the current user state needs to account for cognitive as well 

as affective aspects, something that cannot be done with currently implemented sensor 

modalities. Therefore I propose that we need to find sensor modalities that could allow 

such improved user state detection, something that might be possible with methods 

from the novel research field of neuroeducation. 
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2. The novel Research Field of Neuroeducation 

The investigation of brain activity in the context of education and learning has received 

increased interest in the last couple of years. This is reflected in the formation of the 

new research field called neuroeducation, also known as educational neuroscience 

(Ansari, Smedt, & Grabner, 2011; Sigman, Peña, Goldin, & Ribeiro, 2014). 

Neuroeducation aims to apply neuroscientific methods to study the neural causes and 

correlates of cognitive as well as affective processes, which are relevant to knowledge 

acquisition. This interdisciplinary synergy of fields like neuroscience, educational 

science as well as cognitive psychology aims to produce novel findings that help to 

better understand and thereby potentially improve educational practice (Ansari & Coch, 

2006).  

To give a concrete example, Kim, Lee, Chung, & Bong (2010) found that for 

low-competence learners norm-referenced feedback (i.e. comparing a student with 

other students in the class) can activate brain areas associated with negative 

emotions, even if the feedback was not negative. This finding, only possible through 

the use of neuroscientific methods, indicates that normative assessment should be 

used with caution, especially for low-competence students, since this feedback method 

might evoke negative emotions regardless of the actual performance.  

Most studies in neuroeducation focus on basic processes, which has led to 

some criticism toward the field (Bowers, 2016). However, recently there have been 

more intervention-like approaches that could help to create individualized educational 

environments that support learners coping with the increasing demands of our 

educational systems (Walter, Schmidt, Rosenstiel, Bogdan, & Gerjets, 2013). Such 

approaches typically use the EEG to infer the ongoing user state due to its properties 

which will be described in the next section. 

 

2.1 An Overview of the EEG 

Biosignals like the EEG could offer some advantages for the detection of covert user 

states when compared to movement analysis and analysis of facial expressions (Broek 

et al., 2010). For instance, movement analysis is rather crude like in the case of 

pressure pads or requires cost-intensive motion tracking sensors and ample free 

space. This might not be very practical for target scenarios like classrooms. The 
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analysis of facial expressions can be difficult, especially in dark environments or if the 

user is changing position. Furthermore, most current approaches for the detection of 

facial expressions are based on exaggerated expressions staged by actors and 

therefore it seems difficult to determine performance of such approaches under 

realistic conditions (Zeng, Pantic, Roisman, & Huang, 2009).  In contrast to that, the 

EEG is difficult to manipulate intentionally and could therefore provide objective 

measures for the detection of the current user state (Broek et al., 2010). Accordingly, 

the EEG could help to solve the assistance dilemma by revealing aspects of the 

ongoing user state that are not accessible by analysis of overt behaviors alone. This 

could help to create a more differentiated picture if the current learner state. 

The following section will provide a brief summary of key elements in 

EEG-based research (for a more detailled description see Niedermeyer, Schomer, & 

da Silva, 2011). The EEG is a relatively cost-efficient brain imaging method when 

compared to other methods like functional magnetic resonance imaging (fMRI), 

magnetoencephalography (MEG) or functional near-infrared spectroscopy (fNIRS). 

Recordings of the EEG are derived from electrodes that are placed on the scalp and 

measure voltage fluctuations due to ionic currents resulting from synchronous 

oscillations of large numbers (>10.000) of neurons in the brain. The activity of neural 

assemblies can change extremely fast and therefore the EEG can record with high 

temporal resolution, which is in the range of milliseconds. The EEG provides a direct 

measure of neural activity and not indirect, metabolic measures like the fMRI and 

fNIRS. It has been thoroughly studied since first recordings have been conducted by 

Berger (1929). Due to this vast knowledge base, which contains investigations of 

various different mental states and processes, it could enable the unobtrusive real-time 

monitoring of multiple different affective as well as cognitive states and processes 

which are reflected in changes of oscillatory activity. Furthermore, cost-efficient EEG 

systems are already available, which is very important in the context of ITS, since large 

scale applications in a school context require that the necessary hardware is affordable 

(see section 8.5). However, there are also some drawbacks. The EEG mainly records 

activity from pyramidal cells with a specific orientation toward the scalp and therefore 

activity from subcortical regions can be hard to detect using this method. Furthermore, 

the EEG has a rather bad spatial resolution, which is in the range of cm². Additionally, 

the EEG is susceptible to artifacts, which can be induced by movements, muscle 
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activity or unrelated electrical signals. While systems with dry electrodes that do not 

require extensive preparation are already available (Yeung et al., 2015), traditional 

EEG systems still take considerable time before they can be used (mounting of the 

cap and positioning of the electrodes). The analysis of EEG signals is commonly 

divided into two main categories, approaches based on the time-domain and 

approaches based on the frequency-domain.  

 

2.1.1 Time-Domain based Approaches for the EEG 

EEG approaches that focus on the time-domain investigate the impact of different 

mental states and processes on so-called event-related potentials (ERPs; for an 

detailed description see Kappenman & Luck, 2012). ERPs are deflections in the 

recorded EEG signals which are time- and phase-locked to a specific stimulus event 

(e.g., presentation of a picture stimulus). EEG recordings also contain noise due to 

artifacts not related to the event of interest (e.g., background noise in the EEG). To 

reduce these unwanted aspects of the signal, multiple repetitions of the same stimulus 

are commonly used to get an averaged, also called prototypical response.  

The averaged ERP response is called the ERP curve, which shows positive and 

negative deflections with regard to a baseline. Specific components of the ERP curve 

are categorized by a letter in front of the description (‘P’ for positive deflections and ‘N’ 

for negative deflections). Furthermore, the approximate latency after stimulus onset is 

indicated by a number (e.g., the P300 is a positive deflection occurring on average 

300 ms after stimulus onset). ERP curves are further grouped into early and late 

potentials. Early potentials are loosely defined as occurring before 300 ms and related 

to automatic processes in response to a specific stimulus (e.g., automatic perceptual 

processing of stimulus properties). ERPs occurring later than 300 ms after stimulus 

onset are called late potentials and correspond to higher level processes in the brain. 

In realistic settings averaging across several instances of the same stimulus is rarely 

feasible, since it would require to present the same stimuli repeatedly. Although single-

trial ERP classification approaches have been shown to provide comparable 

classification accuracies in certain cases (Blankertz, Lemm, Treder, Haufe, & Müller, 

2011) and recently developed approaches even work without being time-locked to a 

stimulus (Krumpe, Walter, Rosenstiel, & Spüler, 2016), ERP-based approaches cannot 
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provide continuous, fine-graded measurements and therefore the usefulness of ERPs 

for adaptive learning environments is likely to be limited.  

 

2.1.2 Frequency-Domain based Approaches for the EEG 

The frequency-domain might offer an alternative to time-domain based approaches 

that can provide continuous measurements without the need for repetitive external 

stimulation. Analyses in the frequency domain use two, fundamentally different power 

extraction methods, resulting in evoked or induced responses (Tallon-Baudry & 

Bertrand, 1999). An evoked frequency response applies a frequency transform (e.g., 

via fast Fourier transform) on the averaged EEG signal and thereby creates a 

frequency-domain representation of the ERP signal. In an induced frequency response 

the frequency transform is applied on single trials of EEG data before averaging and 

therefore also captures parts of the EEG signal which are not phase-locked to the 

stimulus.  

Frequency responses extracted from the EEG signal are grouped into distinct 

frequency bands which are assumed to be roughly related to different types of mental 

processes and states (Krause, 2003). Oscillations within the lowest frequency range 

are part of the delta band which ranges from 0.5 to 4 Hz. Delta band activity is 

commonly associated with slow wave sleep, but has also been found in babies during 

wake phases (Torres & Anderson, 1985). The second slowest frequency range is 

called the theta frequency band, ranging from 4 to 8 Hz. Activity in the theta band is 

related to a number of cognitive processes and is particularly relevant in the context of 

working memory load (WML; Klimesch, 1996; see also section 4.3.3.2.1). The alpha 

frequency band ranges from 8 to 13 Hz, displaying peak activity around 10 Hz over 

parietal-occipital brain areas. It was one of the first frequency bands identified in the 

human brain and therefore it is also the most thoroughly investigated frequency band 

(Berger, 1929). Activity in the alpha band is related to cortical inactivity, induced, for 

example, due to a closing of the eyes. In contrast, opening of the eyes reduces alpha 

band activity and is therefore called alpha-blocking. Alpha activity is related to a wide 

range of different mental processes. In central areas, alpha-blocking has been shown 

to be related to sensorimotor activity (Pfurtscheller & Brunner, 2006). Since oscillatory 

activity over central areas relates to different mental processes than in other brain 
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regions it is referred to as rolandic mu-rhythm rather than alpha rhythm. Frontal alpha 

asymmetries are related to different affective states (Allen, Coan, & Nazarian, 2004) 

and parietal alpha activity is related to changes in WML (Klimesch, 1999). All of these 

different phenomena will be discussed later in greater detail (see section 4.5 for motor 

related functions, section 4.4.3.2 for affect related functions and section 4.3.3.2.2 for 

workload related functions). The beta frequency band ranges from 13 to 30 Hz and is 

likewise related to multiple different processes. For instance, at central areas beta 

activity is associated with somatosensory responses. Finally, the gamma frequency 

band represents the highest frequencies recordable via the EEG, comprising 

oscillations between 30 and 200 Hz. These types of high-frequency oscillations are 

assumed to be involved in the integration of information in different sensory and 

non-sensory cortical networks. However, muscle artifacts also tend to exhibit activity 

in higher frequencies which makes this frequency band especially prone to artifact 

contamination. Approaches based on the time-domain as well as the 

frequency-domain usually tend to consider signals only as they are recorded at the 

scalp or electrode level. Yet, such approaches fail to account for the fact that the 

electrodynamic properties of brain matter can lead to volume conduction which can 

spread neural signals across large brain areas. It is therefore assumed that EEG 

electrodes record a mixed sum of underlying cortical activity, not only originating from 

brain regions directly under the electrode site. To differentiate between these different 

sites of origin and to detect cortical sources related to specific brain functions, 

EEG-based source localization methods have been developed recently. 

 

2.1.3 Source Analysis of the EEG Data 

Recently developed source localization approaches may add to classical approaches 

based on the time-domain as well as the frequency-domain. Such approaches try to 

identify cortical sources that create activity recorded at the scalp level. This new 

approach is based on the observation that changes in activity of small cortical sources 

can have a significant impact on the EEG via volume conduction. A simulation created 

by Zeynep Akalin Acar at the Swartz Center for Computational Neuroscience 

(University of California San Diego) attempts to illustrate this phenomenon. Figure 3 

shows a snapshot of the simulation, composed of two small cortical sources and their 

corresponding EEG scalp projections.  
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Figure 3. Simulation of two cortical sources and the corresponding EEG scalp 
projections. The left side shows a red and a blue blob, representing two cm-scale, spatially 
static cortical EEG sources. These cortical sources are animated with simulated alpha band 
activity at 9 Hz and 10 Hz respectively. The image on the right displays the summed projections 
of the two brain sources onto the scalp surface, which is equal to the scalp EEG dynamics 
produced by these sources (the full video can be accessed via 
http://www.youtube.com/watch?v=7TP-xrVokXk). 

 

With the help of this simulation it can easily be observed that even small 

fluctuations in cortical activity can have a large impact on the signals that are recorded 

via electrodes at the scalp. Since this effect is present in all scalp-based EEG analyses, 

considering only the signal as it is recorded at the scalp might result in misleading 

conclusions considering specific cortical activity (Makeig, Bell, Jung, & Sejnowski, 

1996).  

One approach to get from sensor space to source space is via equivalent dipole 

modeling based on topographies of independent components (ICs). Independent 

component analysis (ICA) attempts to separate the scalp signal into multiple 

statistically independent components, based on the assumption that EEG data is a 

linear sum of underlying cortical activity. These ICs usually exhibit scalp-projections 

which are ‘dipole-like’ (Delorme, Palmer, Onton, Oostenveld, & Makeig, 2012) and 
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therefore dipole modeling can be used to locate the three-dimensional position of the 

ICs. This allows an approximate localization of the cortical sources. Multiple different 

approaches used to estimate these cortical sources exist and are usually selected 

based on the available computational resources (Oostenveld, Fries, Maris, & 

Schoffelen, 2011). However, the precision of the location of the cortical sources is in 

any case limited due to the underdeterminedness of the inverse solution (Onton, 

Westerfield, Townsend, & Makeig, 2006). This requires that results based on this, 

rather qualitative method have to be checked for psychological and neurophysiological 

validity to make them applicable in the field of neuroeducation. While the last section 

was focusing on different approaches to measures user states with the EEG, the 

combination with an ITS also requires the automatic use of such measures to detect 

the ongoing user state.  
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3. Automatic Detection of User States 

The automatic detection of user states via brain imaging techniques like the EEG is 

the main idea behind BCIs. BCIs were first proposed by Vidal in 1973. They can 

provide a new information channel directly from the brain which can be used for direct 

or indirect control of a given technical system (Wolpaw, Birbaumer, McFarland, 

Pfurtscheller, & Vaughan, 2002). BCIs are closed-loop systems that work in the 

following way. They record activity from the brain using brain imaging methods like the 

EEG. After that features like band power are extracted from these brain signals. The 

extracted features are then translated into control signals via machine learning 

algorithms that allow a computer to learn without being explicitly programmed. Such 

control signals are then used to provide feedback to the user in multiple different user 

scenarios (see Figure 4 for an illustration of the main components).  
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Figure 4. The basic components of a brain-computer interface (BCI) (modified from Nijholt 
et al., 2008). 

 

Originally, such systems were developed for people that lack voluntary muscle 

control due to severe impairments in the motor system, resulting from amyotrophic 

lateral sclerosis or central nervous system stroke. First applications consisted of simple 

spelling devices that helped to re-establish lost communication, but future BCI systems 

are designed to be used in a wide range of application scenarios. BCIs have the 

potential to further replace functions that are lost due to injury or disease (e.g., two-

dimensional cursor control; Allison et al., 2011), restore lost functions (e.g., muscle 

stimulation in paralysis; Daly & Wolpaw, 2008), improve functions (e.g., stroke 

rehabilitation; Wang et al., 2009) and be used as research tool to study brain functions 

in general (e.g., optimizing neurocognitive hypothesis testing; Sanchez, Lecaignard, 
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Otman, Maby, & Mattout, 2016). Finally, they could also help to enhance functions 

(e.g., measuring attention in distance learning settings; Li et al., 2011). 

BCIs can be grouped into three different categories. Firstly, there exist reactive 

BCIs that require external stimuli to elicit a detectable brain response (e.g., P300 

spellers; Krusienski et al., 2006). Secondly, there exist active BCIs which are based 

on voluntary brain activity like motor imagery (e.g., Brunner, Naeem, & Leeb, 2007). 

Such systems do not need external stimulation, but in certain cases require extensive 

training to achieve performance rates which are satisfactory (e.g., BCIs based on slow 

cortical potentials; Birbaumer, 2006). Finally, there are passive BCIs that combine 

mental state monitoring with the BCI feedback loop (Zander & Kothe, 2011; Zander, 

Kothe, Jatzev, & Gaertner, 2010). Passive BCIs utilize the continuous assessment of 

user states via the EEG in order to provide adaptive feedback. Thus, in contrast to 

active and reactive BCIs, passive BCIs do not require that users intentionally control 

the BCI system with their thoughts. Ideally, passive BCIs could improve the flow of 

information in human-machine systems without any additional mental effort (Zander et 

al., 2010). Passive BCIs appear especially useful if one wants to assess covert aspects 

of the current user state, which cannot be inferred based on behavioral cues (Reissland 

& Zander, 2009). See Figure 5 for an illustration of a passive BCI that provides 

adaptive feedback based on an individual learners emotions, which is also called a 

neurotutor. 
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Figure 5. Basic principle behind a neurotutor, a passive BCI system used in an 
educational context. Users are working on a learning task (e.g., using an intelligent tutoring 
system). Simultaneously, the brain activity of the users is measured via the 
electroencephalogram (EEG). A classifier derived from machine learning methods is used to 
assess their current affective state. This affective state evaluation is fed back into the system 
to be used for automatic adaption of the learning environment (modified from Zander, 2011). 

 

3.1 Neurotutors 

Previous research already hinted at the potential of the use of the EEG in educational 

settings. For instance, Heraz and Frasson (2007) used brain waves recorded with the 

EEG to predict the three major dimensions of learner’s emotions, pleasure, arousal 

and dominance (see section 4.4.1.2 for a more detailed description of these affective 

dimensions). Emotions were induced via affective pictures and the authors concluded 

that EEG recordings could be utilized to infer different emotional dimensions in an 

educational context. A more recent investigation by Wang et al. (2011) used the EEG 

with the aim to improve massive open online courses (MOOC) by providing additional 

information about the users while they are studying the course material. In their study 

they presented video clips and used EEG recordings to detect when students were 
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confused by the course material. They found weak, but above chance classification 

rates for EEG-based confusion detection. Nevertheless, their approach was still 

performing comparable to human observers who monitored body language to infer 

student’s confusion levels. A study by Mostow, Chang, and Nelson (2011) used the 

EEG in combination with a reading tutor and found that simple and complex sentences 

can be distinguished with better than chance accuracy. Additionally, they were able to 

identify which EEG components might be sensitive to which particular lexical features. 

Azcarraga, Marcos, and Suarez (2014) used EEG for the prediction of academic 

emotions like frustration, confusion, boredom as well as interest. The authors recorded 

the EEG of young learners (aged 12 to 16) while answering algebra problems using 

the Aplusix algebra learning software and found accuracies for emotion prediction as 

high as seventy-five percent. While these studies show the potential of such an 

approach, they all suffer from methodological flaws. All of the mentioned studies used 

cheap consumer equipment to record the EEG, which is known to produce worse 

results than medical grade equipment, even when recording strong signals like ERPs 

(Duvinage et al., 2013). Furthermore, all but one study (Azcarraga et al., 2014) used 

only one or two EEG sensors, which does not allow for appropriate artifact removal. 

This makes the obtained results highly questionable. Nevertheless these studies can 

still be seen as a precursors on the way toward a neurotutor, a new and promising 

application of BCI methodology in the field of neuroeducation (Galway, McCullagh, 

Lightbody, Brennan, & Trainor, 2015).  

A neurotutor combines an ITS with a passive BCI approach and aims to monitor 

the learner state with the intend to adapt the learning environment based on brain 

activity. This approach could allow to extract markers for multiple cognitive and 

affective user states which might be used to adapt and optimize the learning strategy 

of an individual learner, thereby potentially avoiding the ‘assistance dilemma’. When 

studying a new subject, complex concepts would only be explained when users are 

experiencing states impeding the learning progress, like frustration or mental overload. 

Therefore, neurotutors may help to optimize the learning process by constantly 

directing the learner toward the zone of proximal development (Wass & Golding, 2014).  

Some researchers have already shown the potential of such technologies. A 

study by Szafir and Mutlu (2013) used EEG recordings in a paradigm based on 

adaptive content review. They monitored student’s attention while presenting different 
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lecture topics taken from an online art lesson and later presented those lessons which 

received the least attention for a second time. The authors found that adaptively 

reviewing lesson content improved recall by twenty-nine percent when compared to a 

baseline measure. Additionally, their approach was able to match recall gains achieved 

by a full lesson review, but took significantly less time. However, the authors also used 

a consumer grade headset which does not allow the recording of data with sufficient 

quality. 

A recent study by Spüler et al. (2016) used EEG-based workload detection 

during addition tasks and found that cognitive workload estimation is possible at an 

above chance level. Furthermore, they found that their model was able to perform on 

a between-subjects basis. This is of particular interest, since commonly used 

approaches require that each single subjects provides training data for calibration of 

the system. Cross-subject approaches could get rid of this requirement and thereby 

significantly reduce preparation time. Even though neurotutors open up a promising 

new possibility for improving the individualized learning process, some challenges still 

need to be addressed. This will be outlined in the following section. 

 

3.2 Current Challenges in the Development of robust Neurotutors 

Most currently available BCIs try to identify specific mental states or processes, as for 

example processes related to action and perception (e.g., motor imagery; Lotte et al., 

2010), cognitive processes (e.g., mental workload; Gerjets, Walter, Rosenstiel, 

Bogdan, & Zander, 2014) or affective processes (e.g., affective valence; Mühl, Heylen, 

& Nijholt, 2014). However, systems that only focus on such process-specific user 

states typically do not account for external influences that might arise during the use 

of such systems. In line with this reasoning, previous work suggests that 

spontaneously occurring declines in BCI reliability could be related to modulations in 

unaccounted mental processes and states (Zander & Jatzev, 2012; Myrden & Chau, 

2015). Such performance declines could partly be due to the fact that most currently 

used classification algorithms assume stationary signal properties, which are derived 

from a single calibration session. Therefore, these algorithms are incapable to track 

shifts in the feature space (i.e., changes in statistical signal properties used for BCI 

classification called non-stationarities). Such classification approaches require the 
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user’s to adapt to unexpected or erroneous behaviors of the system, for instance by 

trying to produce brain signals similar to those used in the calibration session 

(Krauledat, Tangermann, Blankertz, & Müller, 2006).  

Newly developed, adaptive classification approaches try to reduce this problem 

using methods from machine learning (Faller, Vidaurre, Solis Escalante, Neuper, & 

Scherer, 2012; Shenoy, Krauledat, Blankertz, Rao, & Müller, 2006). While such 

approaches appear to work well in controlled lab environments, we assume that most 

natural environments for BCI applications (e.g., classroom or workplace settings; cf. 

Gerjets et al. 2014) contain a multitude of different factors that potentially induce and 

influence various different mental states and processes. Thus, such application 

scenarios might easily evoke a variability in different mental states that are not directly 

related to the core mental state or process that is in the focus of a certain BCI 

application. Consequently, such factors might induce changes in EEG signals that are 

picked up by the system, but cannot be interpreted correctly due to the limited 

framework of the system, which usually only consists of a single mental state or 

process.  

One way to avoid the resulting decline in BCI performance might be the 

introduction of more realistic frameworks. Such extended frameworks should account 

for several aspects of the user state, also including potential interactions between 

different components of the ongoing user state. Up to now, however, only a few studies 

were even investigating the influence of interactions between different types of mental 

states and their impact on the classification accuracy of BCI systems. Mühl, Jeunet, 

and Lotte (2014), for example, tried to estimate mental workload during social stress 

using features from the frequency domain as well as the time domain. The authors 

were able to transfer their classification methods across affective contexts, but only 

with diminished performance. To the best of my knowledge, nobody has yet attempted 

to formulate a framework that tries to investigate classification problems in BCI 

systems that involve multiple components of complex user states. While there remain 

other challenges like accessible hardware, reduction of calibration time and reduction 

of movement related artifacts, this thesis will focus on the description and 

measurement of complex user states. 
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4. Describing Complex User States 

User states in the context of BCIs are usually represented as values on a 

one-dimensional continuum, focusing for example on WML (Gerjets, Walter, 

Rosenstiel, Bogdan, & Zander, 2014) or affective valence (Mühl, Heylen, & Nijholt, 

2014). Such simple representations cannot capture the full complexity of an ongoing 

user state and therefore might limit the potential for adaption. More advanced 

frameworks already use two dimensions to reflect cognitive as well as affective aspects 

of a given user state. For instance, the framework proposed by Fairclough (2009) uses 

the task engagement dimension to reflect cognitive aspects and the distress dimension 

to reflect affective aspects (see Figure 6 for an illustration). These two dimensions 

form quadrants which can be related to specific user states. Low task engagement and 

low distress could be related to boredom, which might arise during simple monotonous 

tasks like vocabulary learning. Low task engagement and high distress could be 

related to experiences of frustration, which might arise if the task at hand is too difficult. 

High distress and high task engagement could be related to stress, which might arise 

during challenging tasks that are straining the limits of an individual capacities. High 

task engagement and low distress could be related to the experience of flow, which 

represents a desirable state of optimal performance (Csiksczentmihalyi, Kolo, & Baur, 

2004). 
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Figure 6. An example for a two-dimensional framework (adapted from Fairclough, 2009). 

 

While this framework seems useful to illustrate the necessity to account for 

different aspects of a complex user state, it uses higher level concepts which currently 

have no direct representation in EEG measures. Furthermore, it also does not account 

for factors related to the type of learning material used as well as factors related to the 

interaction with the system, like keyboard input.  

While recent research (e.g., Brandl, Frølich, Höhne, Müller, & Samek, 2016) has 

begun to understand the importance of context factors for BCI performance, I do not 

know of any study that tried to formulate a framework that allows to address this issue 

in more detail. In this dissertation, I want to propose a framework that accounts for 

three basic aspects of a given complex user state and try to investigate them as they 

are currently addressed in BCI research (see Figure 7 for an illustration of the 

proposed framework). Furthermore, I collected empirical evidence to test whether the 

components of the theoretical framework can be separated using the EEG.  
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Figure 7. The proposed framework with three components.  

 

The three components of the proposed framework relate to three basic aspects 

of an ongoing user state, namely cognitive processes, affective processes and 

perception and action. 

The cognitive processes component of my framework reflects cognitive aspects 

of the current user state. Specifically, this component will refer to the detection of WML. 

WML refers to the cognitive load imposed onto a user due to the complexity of the 

cognitive demands involved in task processing.  

The affective processes component relates to aspects of the user state that are 

associated with affective states, like emotions. Affective states have long been 

neglected in many research fields (e.g., economics), but recently have received 

increased attention (Tao & Tan, 2005), especially since approaches focusing on 

cognitions alone have turned out to be insufficient to explain many aspects of the 

behavior and experiences of users (Steel & König, 2006). In the field of economics, 

research has shown that humans generally act less rational than generally assumed 

(Lopes, 1994). Some researchers even go so far to conclude that the assumption of 
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rationality is violated by the behavior of every single person (Albanese, 1987). In this 

thesis this component will focus on the detection of affective valence and dominance. 

The perception and action component refers to aspects directly related to 

perceptual interaction with a system like a neurotutor. This component should try to 

account, for instance for the modality of the presented learning material (e.g., text or 

videos) as well as the input modality (e.g., responding to questions via keyboard or 

mouse). Most available active and reactive BCIs are used in a context where direct 

control of an application via brain activity is required, therefore such BCIs primarily 

focus on user states that are part of the perception and action component. Due to the 

fact that only visual material was used in this dissertation this component will mainly 

account for the motor execution response that occurs due to a keyboard press.  

The framework with its emphasis on the interaction of different mental states 

aims at visualizing complex user states one can assume to arise in real-life 

environments. Previous research has already shown that affective processes can have 

an effect on cognitive processes (Fraser et al., 2012). However, before such 

interactions and possible interferences can be addressed in detail, a framework is 

needed. To the best of my knowledge nobody has yet attempted to evoke complex 

user states with the intention to separate different components with neural signatures 

used in cognitive neuroscience. We assume that cognitive processes and affective 

processes are most important for educational settings, therefore the main focus of the 

studies of this dissertation is on these two components as well as their potential 

interactions.  

 

4.1 Potential Interactions between Working Memory Load and 

Affective Valence 

While different frameworks for the interaction between cognitive and affective 

processes exist (Power & Dalgleish, 2015), I will shortly mention two that are of specific 

interest in this context. The theory of hot and cold cognition (Zelazo & Muller, 2002), 

the capacity model from Ellis and Ashbrook (1989) and the effect of attentional capture 

(Hodsoll, Viding, & Lavie, 2011). 



Describing Complex User States 

Page 27 of 178 

 

The theory of hot and cold cognition is based on concepts related to executive 

function (Zelazo & Muller, 2002). On one hand, cold cognition is based on rational 

thinking and critical analysis (Roiser & Sahakian, 2013), on the other hand, hot 

cognition refers to circumstances where a person´s thinking is influenced by their 

affective state (Brand, 1986). Hot cognition seems able to overpower cold cognition in 

certain situations and has been shown to impair decision making (Huijbregts, Warren, 

De Sonneville, & Swaab-Barneveld, 2008).  

The capacity model from Ellis and Ashbrook (1989) assumes that there is a 

limited pool of attentional resources that can be used to complete specific tasks. 

Affective states can have an influence on the allocation of available attentional 

resources, drawing from the pool of limited attentional resources and by that potentially 

impairing task performance.  

Attentional capture refers to the automatic diversion of attention toward strongly 

valenced stimuli (Huang, Baddeley, & Young, 2008). This effect can reduce attentional 

resources necessary to perform the primary task and should impair task performance 

especially under difficult conditions. 

However, to the best of my knowledge, these theories have not been validated 

by neuroscience studies that try to infer different components of complex user states 

for automatic user state detection. Therefore it is unclear in which contexts one can 

expect interactions between cognitive and affective aspects of a user state in the EEG. 

Before we look deeper into each of the three components, we have to address the 

paradigms used to induce complex user states that contain cognitive and affective 

aspects. 

 

4.2 The Paradigms used to induce User States with cognitive and 

affective Components 

The following sections will shortly describe the two paradigms used to for the studies 

in this thesis. For a more detailed description see the manuscripts in section 6. 
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4.2.1 The Emoback Paradigm 

The first two studies focused on the separation of cognitive processes and affective 

processes, the two main components of the proposed framework. This was done using 

a highly controlled task combination of a standard WML induction (N-back task) with a 

standard affect induction (affective picture stimuli taken from the IAPS database). This 

task combination is called the emoback paradigm, which has been used to induce 

different mixtures of WML and affective valence.  

The first emoback study used established measures from cognitive 

neuroscience to separate WML from affective valence. The induction of complex user 

states was used to assess the context-sensitivity of EEG measures commonly used to 

infer certain mental states. Furthermore, the induction of differently valenced emotions 

allowed to check for potential influences of affective processes on cognitive processes.  

The second emoback study focused on the automatic detection (classification) 

of WML as well as affective valence elicited through the emoback paradigm. The 

emoback task allowed to investigate the potential influence of affective processes on 

the automatic detection of cognitive processes and vice versa.  

 

4.2.2 The Loss-of-Control Paradigm 

The loss-of-control (LOC) paradigm tries to simulate a simplified learning scenario that 

elicits a complex user state, namely the feeling of perceived LOC. LOC is assumed to 

contain all three components of the proposed framework during natural 

human-machine interaction. It seems therefore ideally suited to investigate if the 

proposed framework can be applied in a less controlled, but more realistic setting. 

Furthermore, previous work already investigated the influence of LOC on the motor 

response (Zander & Jatzev, 2012). A related study (briefly summarized in section 

6.3.2) was focusing on the detection of WML in the LOC data. The LOC study focused 

on the identification of affective processes and the separation from other components 

from the complex user state of LOC. Using these related findings all three components 

of the proposed framework could be addressed. 
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4.3 Working Memory Load 

Our capacity to activate information from long-term memory, process and integrate it 

using attentional resources is limited. The limits of our capacity to process information 

is related to the experience of cognitive load (Ellis & Ashbrook, 1989; Plass, Moreno, 

& Brünken, 2010; Sweller & Sweller, 1994; Wickens, 2008). Different limits of cognitive 

load or working memory (WM) capacity are related to performance in real-world task 

settings, which makes it an important concept for educational settings (Cowan, 2014; 

St. Clair-Thompson & Gathercole, 2006). The next section will shortly describe two 

relevant WM models. 

 

4.3.1 Theoretical Frameworks for Working Memory Load 

Some widely used concepts and theoretical frameworks in the context of WML are the 

Multi-Component Model (MCM) and Executive Functions (EFs). They will be briefly 

outlined in the following sections. 

4.3.1.1 The Multi-Component Model 

The MCM is one widely used theoretical frameworks in the field of WM research and 

comprises of four components (Baddeley, 2012). The central executive component is 

related to attention and responsible for the control and regulation of cognitive 

processes. It is usually seen as the location of EFs that are required to solve different 

tasks. All other sub-systems are conceptualized as short term memory structures with 

limited capacity. The visuospatial-sketchpad represents the component where visual 

information is stored and manipulated. The episodic buffer represents the component 

used to integrate information from the different sub-systems and link it with 

chronological information. The phonological loop represents the component that is 

responsible for the storage and manipulation of phonological information and is 

therefore mainly engaged in language processing (see Figure 8 for a visualization). 
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Figure 8. The multi-component model (Baddeley, 2000). 

 

4.3.1.2 Executive Functions 

EFs are a central aspect of most theoretical frameworks used in WM research and 

describe a set of cognitive processes required to solve complex tasks (Diamond, 

2013). They range from rather basic cognitive functions, as for example updating, 

shifting and inhibition (Miyake et al., 2000), called core EFs, to complex, higher order 

EFs like planning (Jurado & Rosselli, 2007). Most WM processes are closely related 

to the core EF of updating, which has been associated with the continuous monitoring 

and manipulation of content in WM. Shifting refers to a change in attentional direction 

toward relevant information and inhibition refers to the suppression of information that 

is no longer relevant for the completion of the current task. All these EFs are important 

for processes related to controlled attention, which is assumed to represent the general 

factor that includes all core EFs and therefore represents the main limiting factor for 

WM capacity (Engle, 2002). Interestingly, the relation of WM and EFs seems to depend 

on the focus of a specific theoretical framework. While the MCM regards EFs as part 

of WM, attention focused theories consider WM as one EF from many (Diamond, 

2013). 
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4.3.2 Induction of Working Memory Load – The N-back Task 

WML is usually modulated via two different approaches. Via changes in task difficulty 

or via limits of the time made available to complete a certain task (Galy, Cariou, & 

Mélan, 2012). There are many different tasks used to induce WML (Wilhelm, 

Hildebrandt, & Oberauer, 2013). One, widely used, way to induce WML in 

neurophysiological studies is via the N-back task (Jaeggi, Buschkuehl, Perrig, & Meier, 

2010; Kirchner, 1958; Scharinger, Soutschek, Schubert, & Gerjets, 2015). The N-back 

task is a continuous performance task where subjects are presented with a series of 

stimuli for which they have to indicate via key-press whether the current stimulus is 

identical to the stimulus presented N-steps before, or not. Hence, the load factor ‘N’ 

allows to adjust the difficulty of the task, thereby manipulating WML. The zero-back 

condition can be seen as a pure matching task, since the target stimuli is already 

known from the beginning of the task. However, all other load conditions require EFs, 

mostly updating, since the stimuli list kept in short term memory changes with each 

newly presented stimulus. Furthermore, the N-back task seems to require inhibition as 

well, since reactions with regard to the old stimuli have to be suppressed. One can 

even argue that task switching plays a role in the N-back task. During presentation of 

the current stimulus, this stimulus has to be matched with stimuli in short term memory, 

which can be seen as a matching task. After the subjects responded toward the current 

stimulus, the task switches from matching to updating and inhibition. However, a fine 

graded discrimination based on this categorization does not seem feasible using 

established EEG measures at this moment and current approaches only allow for a 

general estimate of WL load. 

 

4.3.3 EEG Features related to Working Memory Load 

The following sections will describe important features for the automatic detection of 

WML in the EEG. 

4.3.3.1 Working Memory Load Features in the Time-Domain – The P300 

The P300 represents a positive deflection of the ERP curve which peaks between 250 

to 500 ms after stimulus onset and is most prominent over parietal areas (Polich, 2007). 

The P300 has been linked to different processes relevant for WM tasks like 

context-updating or attentional factors (e.g., within an oddball paradigm where a new 
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stimulus creates a novel context and therefore draws more attention; Kappenman & 

Luck, 2012). Furthermore, a study by Watter, Geffen, and Geffen (2001) found that 

increased load levels in the N-back task resulted in decreased P300 amplitudes. Still, 

since approaches based on the time-domain cannot provide continuous 

measurements of WML (see section 2.1.1), this thesis will focus on features from the 

frequency-domain. 

4.3.3.2 Working Memory Load Features in the Frequency-Domain 

The automatic detection of WML, necessary for the development of a neurotutor, has 

already been widely studied in brain-based human-machine interaction research 

(Berka et al., 2007; Kohlmorgen et al., 2007; Walter, Schmidt, Rosenstiel, Bogdan, & 

Gerjets, 2013). The most widely used frequency features in this context are 

modulations in frontal theta activity and parietal alpha activity. 

4.3.3.2.1 Frontal Theta Activity 

The central attentional control system responsible for EFs is assumed to be mainly 

located in frontal regions of the brain like the dorsolateral prefrontal cortex. Cognitive 

processes used to integrate different sources and types of information located in this 

area are usually reflected in changes of theta band activity (Klimesch, Freunberger, 

Sauseng, & Gruber, 2008; Mizuhara & Yamaguchi, 2007). Furthermore, theta band 

activity also seems relevant for memory encoding and may be used to infer individual 

limits in short-term memory (Jacobs, Hwang, Curran, & Kahana, 2006; Kaminski, 

Brzezicka, & Wrobel, 2011). Increases in frontal theta band activity are associated with 

higher WM demands which has been repeatedly found using various different 

experimental paradigms (e.g., Gruber, Tsivilis, Giabbiconi, & Müller, 2008; Jensen & 

Tesche, 2002; Osipova et al., 2006).  

4.3.3.2.2 Parietal Alpha Activity 

The content of different short term memory components is assumed to be maintained 

in parietal brain areas like the intraparietal sulcus (Klingberg, 2009; Scharinger et al., 

2015). Alpha band activity in parietal areas has been found to change in relation to 

cognitive demands (Klimesch, 1996). More specifically, several studies using a wide 

range of different stimuli have found that increases in WML are usually reflected in 

decreased parietal alpha band activity (Gevins & Smith, 2000; Krause et al., 2000; 

McEvoy, Pellouchoud, Smith, & Gevins, 2001). The function of alpha band activity 
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could be explained via cortical idling which is seen as the deactivation of a global 

rest-network due to activation of specific brain areas required to complete a specific 

task (Pfurtscheller, Stancák, & Neuper, 1996). Hence, alpha band activity is often seen 

as a counterpart to theta band activity, showing the opposite activation pattern 

(Klimesch, 1999).  

4.3.3.3 Source Space Analysis in the Context of Working Memory Load 

Currently, identifying the exact localization of all cortical functions related to WML is 

not feasible (e.g., the episodic buffer is resulting from the interplay of different 

components). However, there exists some agreement on the approximate localization 

of main WM components that are commonly associated with specific sub-components 

of the MCM (Baddeley, 2003; see Figure 9).  

 

 

Figure 9. Important components involved in working memory and their approximate 
locations in the human brain (modified from Baddeley, 2003). 

 

Processes related to the central executive (CE) are usually associated with 

activity of the dorsal frontal lobe. The left temporal and parietal lobe is mainly related 

to processes of the phonological loop (articulatory rehearsal [AR] and phonological 

store [PS]). The right hemisphere is more prevalent for processes related to the 

visuospatial sketchbook (inner scribe [IS] and visual cache [VC]). Since most WM 

related studies focus on the presentation of visual material (located in parietal and 
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occipital areas) and activity in frontal and parietal areas is accessible via the EEG (in 

contrast to structures located deeper inside the brain), these areas are targeted by 

most EEG-based WM studies. The rather specific location of functions related to WM 

makes them ideal candidates for EEG-based source localization methods.  

 

4.4 Affective Valence and Dominance 

Affective processes play a major role in human life. Our daily economic decisions are 

influenced by emotions evoked by marketing campaigns, affective disorders like 

depression and anxiety influence our health and well-being and, most important for 

educational settings, achievement emotions like enjoyment and boredom can have a 

strong impact on learning outcomes (D’Mello et al., 2007; Pekrun, 2006).  

Important affective concepts like attitudes, moods and emotions can be 

distinguished along a temporal axis (Broek et al., 2010; Gross, 2010). Attitudes are 

beliefs about the goodness or badness of something or someone and therefore 

relatively stable over time. They can bias how a person will feel, think and behave 

towards an object or a person (Frijda, 1994). Moods are less stable over time, and in 

contrast to attitudes, usually do not focus on specific objects. Furthermore, moods 

seem to mainly influence cognitive processes (Siemer, 2005). Finally, emotions exhibit 

the fastest response pattern from all affective processes, making it an ideal candidate 

for the investigation with the EEG. Giving exact definitions on the term ‘emotion’ can 

be difficult (Hendelman, 2005). A review by Kleinginna and Kleinginna (1981) 

represents a good exemplification of various concepts and definitions related to 

emotions. The basic elements commonly agreed upon are that emotions include 

physiological change (e.g., induced by basic drives like thirst or sexual behavior), 

expressive behavior (e.g., facial expressions) and corresponding changes in mental 

states (e.g., psychological reaction toward a stimulus, called subjective experience; 

Luay & Revett, 2011). Consequently, emotions can be seen as fast reactions in 

experiential, behavioral as well as physiological response channels to the perception 

of a specific, relevant (internal or external) stimulus (Levenson, 1999). Figure 10 

illustrates the key terms used in affective science. 
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Figure 10. Key terms in affective science (Gross, 2010). 

 

4.4.1 Theoretical Frameworks for Emotions 

There are various theoretical frameworks that describe emotions. The two most widely 

used in affective neuroscience are discrete or basic emotion models and dimensional 

emotion models.  

4.4.1.1 Discrete Emotion Models 

The oldest theoretical frameworks used to describe emotions in the context of affective 

neuroscience are the basic or discrete emotion models (see Dalgleish, 2004 for a short 

review). These models are rooted in the language of daily life and use discrete 

categories to describe different emotions (Tomkins, 2008). The most popular emotion 

categories are happiness, sadness, fear, anger, disgust, and surprise for which 

cross-cultural research has provided evidence to their universal validity (Ekman et al., 

1987). The main advantage of this theoretical framework is the labeling scheme. It is 

based on daily experiences that can be observed (e.g., happiness is usually 

accompanied by a smile) and this labeling scheme is therefore very intuitive. Though, 

due to the focus on strong, prototypical emotion categories, discrete models are often 
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unable to convey all the different nuances of emotional experiences occurring in our 

daily lives. This led to the development of dimensional emotion models. 

4.4.1.2 Dimensional Emotion Models 

Dimensional models try to explain emotional experiences along a small number of 

latent dimensions (Zeng, Pantic, Roisman, & Huang, 2009). Accordingly, such 

frameworks allow to represent each emotion as point in a coordinate system, even if 

there is no label or expression available to define it. Additionally, such dimensional 

models allow to represent the intensity of an emotion. A point in the middle of such a 

coordinate system would represent a low intensity or neutral emotion, while points at 

the outer border would represent emotions with strong intensity. 

4.4.1.2.1 The Circumplex Model 

The most widely used dimensional framework for the description of emotions is the 

circumplex model, which uses two dimensions to describe the affective space (Russell, 

1980). The first dimension is the valence dimension which relates to the pleasantness 

or unpleasantness of an emotional experience. This valence or evaluation dimension 

measures how an individual feels and ranges from extreme happiness (ecstasy) to 

complete sadness. The second dimension is the arousal or activation dimension which 

is associated with the responsiveness of an individual. It indicates if a person is likely 

to take action (Zeng et al., 2009). The arousal dimension can range from total 

relaxation (or sleep) to frenzied excitation. A specific emotion can be seen as a mixture 

of these two dimensions (e.g. excitation has high arousal and positive valence). The 

angle from the middle of the space (= the intersection of both dimensional axes) 

defines the quality of the experienced emotion and the distance from the middle can 

be used to measure the intensity of the experienced emotion (see Figure 11 for an 

illustration). Different emotions are arranged along the two-dimensions forming a circle, 

hence the name of the model - circumplex.  
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Figure 11. The two-dimensional affective space of the circumplex model (based on 
Russell (1980) and modified from Chanel (2009).  

 

While Russell, Weiss, and Mendelsohn (1989) argued that the emotional 

dimensions of valence and arousal are independent, Lang, Bradley, and Cuthbert 

(2005) observed that when people judge their own emotion while watching affective 

pictures, their judgements tend to follow a distorted ‘U’ or banana shape (see Figure 

12). This distribution of self-judgements is due to the difficulty of eliciting emotions with 

high valence and low arousal as well as emotions with high arousal and low valence.  
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Figure 12. Self-assessments using the valence-arousal framework. (modified from 
Olofsson, Nordin, Sequeira, & Polich, 2008)  

 

Since the circumplex model originated from the analysis of emotional 

expressions it is possible to project emotional labels from discrete emotional models 

onto the continuous valence-arousal space (Russell, 1980). Unfortunately, this can 

result in similar points for quite distinct emotions. The most important case is the 

distinction between anger and fear, since both have negative valence and high arousal. 

This is an important distinction for neurotutors, because test anxiety plays a major role 

in the educational context. 

4.4.1.2.2 Test Anxiety as an Example for the Importance of the Distinction of 

Anger and Fear 

Test or achievement anxiety is a prevalent issue in modern societies. Our occupational 

careers strongly depend on our academic performance which is the principle of the 

meritocratic societies we currently live in. Educational careers depend on individual 

achievements, which leaves only small room for error if one wants to avoid failure. 

Hence, the anxiety of failure is one of the most frequently experienced emotions in 

achievement settings like the classroom (Pekrun, Goetz, Titz, & Perry, 2002). Test 

anxiety can have detrimental effects on performance during difficult tasks, motivation 
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and personal health and well-being (Hembree, 1988). Its relevance for educational 

outcomes has been recognized early, with scientific investigations dating back to 1936 

(Stengel, 1936). Over the years a multitude of different theories have been developed 

and more than thousand empirical studies have been conducted on the topic of test 

anxiety (Zeidner, 1998). It is thus, the most intensively studied emotion in educational 

and achievement settings. This highlights the relevance of test anxiety for educational 

settings. To successfully detect test anxiety with a neurotutor, one needs to distinguish 

it from other affective concepts like anger. This is something which might be achieved 

using the pleasure-arousal-dominance model proposed by Mehrabian (1996). 

4.4.1.2.3 The Pleasure-Arousal-Dominance Model 

The distinction between fear or anxiety on one hand and anger on the other hand can 

be established with the introduction of a third factor or dimension, the so-called 

dominance or control dimension. First evidence for a three factor solution was already 

discovered in 1977 by Russell and Mehrabian. The dominance dimension can be 

defined by ‘feelings of control and influence over everyday situations, events, and 

relationships versus feelings of being controlled and influenced by circumstances and 

others (Mehrabian, 1994). When an individual is anxious or afraid, he (or she) does 

not have control over the situation, while during the experience of anger there usually 

is the experience of a certain amount of control. The dominance can also be used to 

distinguish self-confidence (moderate dominance) from arrogance (high dominance) 

and awe (low dominance). While self-confidence and awe are desired states in an 

educational setting, arrogance could lead to misjudgments concerning ones abilities.   

This extension of the two-dimensional circumplex model led to the construction 

of the pleasure-arousal-dominance model (PAD), where pleasure is seen synonymous 

to the valence dimension of the circumplex model (Mehrabian, 1996). To enable easier 

reading of the text, all future instances related to the pleasure dimension will be termed 

valence dimension. An illustration of the PAD can be seen in Figure 13. 
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Figure 13. The pleasure-arousal-dominance model (Mehrabian, 1996). 

 

4.4.2 Induction Methods for Emotions 

A variety of different emotion induction methods have been used in the past in the field 

of emotion research. Gerrards-Hesse, Spies, and Hesse, (1994) provide an overview, 

using five different categories to describe these different approaches. One way to 

induce emotions is the free mental generation of emotional states via hypnosis or 

imagination (e.g., Makeig et al., 2011). Another way to induce emotions is the guided 

mental generation of emotional states via stories, music or movies accompanied by 

additional instructions on how to enter the target state (e.g., Onton & Makeig, 2009). 

Furthermore, emotions can be induced via the presentation of affective situations that 

activate certain needs (e.g., the need for achievement), which is usually induced by 

manipulation of success or failure in experimental settings (e.g., Jatzev, Zander, 

Filippis, & Kothe, 2008; see also study in section 6.3). Additionally, emotions can be 

induced via the generation of emotionally relevant physiological states (e.g. via the 

facial feedback paradigm; Mikhail, El–Ayat, Coan, & Allen, 2013). Finally, one widely 

used way to induce emotions is via the presentation of emotion inducing material like 

affective pictures (Lang, Bradley, & Cuthbert, 1997). Affective pictures allow for a fast 

and efficient induction of affective responses, which is necessary to investigate 
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emotions with the EEG and were therefore chosen for the first paradigm used in this 

thesis (see studies in section 6.1 and section 0). 

4.4.2.1 The International Affective Picture System 

The International Affective Picture System or IAPS is a database which is widely used 

to induce emotional experiences. It consists of more than eight hundred emotionally 

laden color pictures which are rated along the three important emotional dimensions 

of valence, arousal and dominance by a large number of participants using a visual 

analog rating scale (Lang et al., 2005). This emotion induction is easy to implement 

and very effective for inducing negative emotions.  

 

4.4.3 EEG Features related to Emotions 

The next section will describe EEG features from the time-domain as well as the 

frequency-domain, used to infer affective user states.  

4.4.3.1 EEG Features to infer Affect in the Time-Domain 

A significant amount of affective EEG research investigated the impact of emotional 

processes on ERPs (see Olofsson et al., 2008, for a review). The two most widely used 

potentials in this context are the P300 and the late positive potential (LPP). The P300 

is associated with the orientation toward very salient (or rare) stimuli (Polich, 2007). It 

has been shown to be influenced by motivation (Kleih, Nijboer, Halder, & Kübler, 2010) 

and in response to strongly negative stimuli (Briggs & Martin, 2009). The LPP is a 

positive deflection in response to an emotionally arousing visual stimuli (Schupp et al., 

2000). It has been associated with increased perceptive evaluation of emotionally 

salient stimuli which is reflected in higher activity in posterior visual brain areas 

(Sabatinelli, Lang, Keil, & Bradley, 2007). While this thesis will focus on the valence 

and dominance dimension, the LPP is mostly related to the arousal dimension. 

Additionally, as mentioned in section 2.1.1, ERPs might not be well-suited for the use 

in neurotutors, due to their missing capability to provide continuous measures. I 

therefore focus on signals from the frequency-domain to infer affective valence in my 

dissertation. 
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4.4.3.2 EEG Features to infer Affect in the Frequency-Domain 

The most prominent EEG feature in the frequency domain with regard to affective 

processes is a frontal asymmetry in the alpha range, called Frontal Alpha Asymmetry 

(FAA; Demaree, Everhart, Youngstrom, & Harrison, 2005). It is assumed that the 

different lateralization of frontal alpha power during affective processing is due to the 

different roles the left and the right prefrontal structures play in the processing of 

affective material. This assumption is reflected in the valence model which proposes 

that the left hemisphere is specialized for positive emotions and the right hemisphere 

is active when negative emotions are processed (Mills, 1912, as cited in Dalgleish, 

2004). Most studies that used brain lateralization as a measure of affective states or 

processes focused on the valence dimension (Davidson, 1992; Davidson & Tomarken, 

1989; Huang et al., 2012; Lin, Wang, Wu, Jeng, & Chen, 2008; Ramirez & 

Vamvakousis, 2012; Silberman & Weingartner, 1986). Left frontal activity is seen in 

this context as a tendency toward positive emotions like happiness (e.g., Ahern & 

Schwartz, 1985). Yet, several studies showed that emotions with negative valence can 

also activate the left hemisphere which is reflected in the approach-withdrawal model 

developed by Schneirla (Schneirla, 1959, as cited in Dalgleish, 2004). This model 

states that the left hemisphere is active in emotions associated with approach 

behaviors like engagement or anger and the right hemisphere is related to avoidance 

behaviors like anxiety. Furthermore, recent evidence indicates that the FAA can be 

used to measure activity related to emotional responses along the dominance 

dimension (Demaree et al. 2005). In this particular context left-frontal activation is 

associated with increased dominance. Interestingly, a study by Reuderink, Mühl, & 

Poel (2013) found that dependent on the type of alpha band, the FAA responded 

differently to affective valence and dominance. This reactivity towards affective 

responses with regard to the valence as well as dominance dimension underscores 

the potential of the FAA for the EEG-based detection of emotions within the PAD. This 

thesis will focus on the FAA with the intention to infer affective responses relating to 

the affective dimensions of valence and dominance. 

4.4.3.3  Analysis of the Source Space in the Context of Emotions 

While it is hard to pinpoint specific brain regions underlying functional asymmetries in 

the human brain (Wager, Phan, Liberzon, & Taylor, 2003), first successful attempts 

using ICA-based approaches for affect detection have already been made. A study by 
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Onton and Makeig (2009) used an eyes-closed emotion imagination task and was able 

to reconstruct the valence-arousal space using ICA. Another example is the study by 

Makeig, Leslie, and Mullen (2011) which associated feelings with musical sounds for 

a live demonstration of an emotion BCI. Analysis of source signals using an ICA 

approach showed that different emotion imaginations were related to specific brain 

dynamics. This indicates that EEG-based source localization can help to further 

identify the underlying brain dynamics behind established EEG features. 

 

4.5 Perceptual Interaction 

The main focus of this thesis is on the separation of cognitive (i.e. WML) and affective 

processes (affective valence and dominance). Nevertheless, use of a neurotutor also 

requires active interaction between the user and the system which is usually achieved 

via mouse or keyboard input. Additionally, responses in the EEG are depending on the 

stimulus modality used in the system. A study by Mühl et al. (2011), for example, used 

visual, auditory and audio-visual stimuli for affect induction and found opposing 

patterns for visual and auditory affective stimulation. The authors concluded that a 

classifier trained on stimuli from a specific modality will be limited in its capacity for 

generalization toward other stimulus types. Additionally, one can take the case of the 

induction of WML using visual stimuli, as is the case in this thesis. Increases in WML 

are accompanied by decreased parietal alpha activity. However, visual stimulation due 

to the presentation of complex stimuli also usually results in decreased occipital activity 

(i.e., alpha-blocking), which could spread to parietal areas via volume conduction. 

Accordingly, to be able to develop robust systems two additional aspects need to be 

accounted for. Firstly, different stimulus modalities have to be taken into account, 

which is reflected in the perception component of the proposed framework. Secondly, 

motor responses related to interaction with the system need to be accounted for. This 

is reflected in the action component of the proposed framework. EEG responses 

related to activity of the sensorimotor cortex are reflected in alpha band changes (mu-

rhythm, see section 2.1.2; Pfurtscheller, Neuper, Andrew, & Edlinger, 1997) in central 

areas. This could result in overlaps with signals used for the detection of cognitive 

processes reflected in parietal alpha responses due to changes in WML (see section 

4.3.3.2.2) and affective processes like FAA responses due to changes in emotional 
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experience (see section 4.4.3.2). Such potential overlaps at the scalp level might be 

addressed with source localization approaches, but before one can attempt this one 

needs to account for such aspects of the ongoing user state. I therefore included the 

perception and action component in the proposed framework. 
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5 Aim of the Dissertation Project 

In this dissertation I want to investigate the potential of the EEG for the detection of 

complex user states that consist of mixtures of different cognitive as well as affective 

processes. EEG measures commonly used to infer these aspects will be tested for 

robustness in paradigms that evoke complex user states. To be more specific, I want 

to investigate if WML and affective valence or dominance can be identified using EEG 

measures usually associated with them under conditions that more closely resemble a 

realistic situation. Futhermore, said states should be automatically detectable using 

methods from a BCI framework.  

 

5.1 Research Questions 

Based on the assumption that natural environments elicit complex user states that 

consist of a mixture of different basic components I proposed a framework which 

should help to investigate such complex user states with the intent to automatically 

detect them via the EEG. Accordingly, I formulated the following research questions 

(RQs). 

 

RQ1: Can established EEG measures from the frequency-domain be used to 

separate WML from affective valence or dominance using paradigms that evoke 

complex user states?  

I will try to answer this RQ in two steps. Firstly, I used a controlled study (emoback) 

that allowed to independently modulate WML and affective valence. Secondly, I used 

a paradigm that simulates a simple learning scenario which evoked the complex user 

state of perceived LOC. This second paradigm is less controlled, but much closer to 

the target scenario. 

RQ1a: Can EEG-based source localization methods be used to identify cortical 

sources of the signals recorded at the electrode level? 

I applied ICA-based source localization methods to identify cortical sources of EEG 

responses that are recorded at the electrode level in the LOC study. 
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RQ1b: Are affective processes related to the valence dimension separable from 

affective processes related to the dominance dimension? 

I tried to separate affective responses related to the valence dimension from affective 

responses related to the dominance dimension in the LOC study. This was done via a 

separate analysis of the lower and the upper alpha band. 

 

RQ2: Are there interactions between the EEG measures used to infer WML and 

affective processes related to the valence or the dominance dimension? 

The second research question focuses on potential interactions between WML and 

affective valence, which will be addressed with the first paradigm (emoback). 

Additionally, I want to investigate if the proposed framework can help to integrate the 

findings from multiple studies that relate to different aspects of a complex user state. 

This will be done using the results from three different studies that all investigated the 

same LOC dataset. 

 

RQ3: Are WML and affective valence automatically detectable (classifiable) with 

accuracies significantly higher as chance in paradigms that evoke complex user 

states? 

Since measuring different aspects of a complex user state does not necessarily mean 

that those aspects can be used during human-machine interaction, the third RQ 

addresses the automatic detection of WML and affective valence as components of a 

complex user state. 
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6 The three Manuscripts describing the Studies of this Thesis 

The next sections will contain all three manuscripts used as basis for this thesis and 

additional results which were not part of the submitted manuscripts. 
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Abstract 

Up to now, most brain-based measures of the electroencephalogram (EEG) are used 

in lab environments and only focus on narrow mental states (e.g. WML). However, we 

assume that outside the lab complex multidimensional mental states are evoked. This 

could potentially create interference between EEG signatures used for identification of 

specific mental states. In this study, we investigated interactions between WML and 

affective valence to reveal potential interferences in EEG measures. To induce 

changes in WML and affective valence, we used a paradigm which combines an N-

back task (for WML manipulation) with a standard method to induce affect (affective 

pictures taken from the International Affective Picture System or IAPS database). As 

expected, we found that behavioral performance decreased with increasing workload 

as well as negative valence, showing that affective valence can have an effect on 
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cognitive processing. These findings are supported by changes in frontal theta and 

parietal alpha power, parameters used for measuring of WML in the EEG. However, 

these EEG measures are influenced by the negative valence condition as well and 

thereby show interactions between WML and affective valence. Unexpectedly, we did 

not find any effects for EEG measures typically used for affective valence detection 

(frontal alpha asymmetry or FAA). Therefore we assume that the FAA measure might 

not be usable if cognitive workload is induced simultaneously. We conclude that future 

studies should account for potential context-specifity of EEG measures. 

 

Introduction 

Investigating Complex User States with the Electroencephalogram 

Most studies using the electroencephalogram to measure mental states focus on very 

specific states like working memory (Klimesch, 1999) or affective valence (Ahern & 

Schwartz, 1985), which are investigated in well controlled lab environments. Therefore, 

the indicators used in such studies might not provide robust measurements outside the 

lab, since real world environments tend to evoke much more complex and 

multidimensional mental states that involve different cognitive, emotional and 

motivational components (Gerjets et al., 2014). Furthermore, many measures used to 

infer mental states from the ongoing EEG are known to have many-to-many relations, 

meaning that several physiological variables are associated with multiple psychological 

elements (Fairclough, 2009). Hence, it is necessary to systematically investigate the 

relationship between different mental states and the different EEG measures that are 

widely used in neuroscientific studies, to investigate if such measures can be used 

outside the lab. In this paper we systematically investigate the relation between two 

types of mental states, namely WML and affective valence, to study the interaction of 

the brain responses typically associated to these mental states 

Working Memory Load 

There are many different ways to induce mental states characterized by high levels of 

WML (Wilhelm et al., 2013). One way to induce WML that has been widely used in the 

context of cognitive neuroscience is the N-back task (Kirchner, 1958; Scharinger et al., 

2015). The N-back task is a continuous performance task where subjects are 

presented with a series of stimuli and have to indicate whether the current stimulus is 
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identical to the stimulus presented N-steps before, or nor. Hence, the load factor ‘N’ 

allows to adjust the difficulty of the task, thereby manipulating WML.  

WML is commonly defined as the interplay of controlled attentional processes 

and short term memory structures that handle different representational codes via 

various temporal storage components (Baddeley, 2003, 2012). The central attentional 

control system is assumed to be mainly located in frontal regions of the brain like the 

dorsolateral prefrontal cortex, while content in short term memory is thought to be 

maintained via parietal brain areas like the intraparietal sulcus (Klingberg, 2009; 

Scharinger et al., 2015). Accordingly, increases in WML usually result in increased 

frontal theta activity as well as decreased parietal alpha activity (Gevins et al., 1995; 

Klimesch, 1999; Smith & Gevins, 2005). However, previous research has shown that 

other mental states can also have an effect on measures used for workload detection. 

Roy et al. (Roy, Bonnet, Charbonnier, & Campagne, 2013), for example, induced 

fatigue and found that with increasing time on task the discriminability of WML was 

decreased.   

Affective Valence 

There are multiple ways to induce affective mental states in lab settings 

(Gerrards-Hesse et al., 1994). One effective way is the use of affective picture stimuli. 

The most prominent picture database is the International Affective Picture System 

(IAPS; Lang, Bradley, & Cuthbert, 1997) which comprises a large set of standardized 

and emotionally evocative color photographs. All stimuli of the database have been 

rated along the dimensions of valence and arousal as described in the two-dimensional 

circumplex model of emotion (Russell, 1980).  

The valence dimension reflects the pleasantness of a situation and ranges from 

sadness to happiness. The arousal dimension reflects the responsiveness of the 

organism and ranges from sleep to frenzied excitement. Several studies have used the 

EEG to study affective states in the past (Kim, Kim, Oh, & Kim, 2013; Olofsson et al., 

2008). The two most widely used EEG measures to infer affective states are the late 

positive potential (LPP) and the so-called frontal alpha asymmetry or FAA. The LPP is 

an EEG feature in the time domain and represents a positive deflection in the ERP-

curve, reflecting the activity related to the arousal dimension (Schupp et al., 2000). The 

FAA represents the individual hemispheric contributions which is related to the 
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affective valence dimension (Ahern & Schwartz, 1985; Huang et al., 2012; Tomarken, 

Davidson, & Henriques, 1990). Increased right frontal activity is an indicator of a mental 

state characterized by negative affective valence. Usually, this measure is used during 

resting (with closed eyes) or passive viewing conditions (Davidson, 1992). 

Interestingly, previous work has shown that WML can result in lateralized activity as 

well. For instance, a study by Baldwin and Penaranda (Baldwin & Penaranda, 2012) 

used several tasks to induce mental workload and found more left hemispheric activity 

during increased cognitive load. This might result in potential interferences between 

affective valence and WML in the FAA measure. Analyzing this type of interaction 

between WML and affective valence is the main goal of this paper. 

Investigating Interactions between Working Memory Load and Affective 

Valence: The Emoback Task 

Previous research on the use of neural signatures of mental states has largely ignored 

the problem of potential interference between WML and affective states. Only one 

recent study addressed the effect of an affective state on the identification of WML. In 

this study, Mühl, Jeunet, & Lotte (Mühl, Jeunet, et al., 2014) used an N-back task to 

manipulate WML while social stress was induced with a stress-induction protocol 

based on the Trier Social Stress Task (Kirschbaum, Pirke, & Hellhammer, 1993). The 

authors attempted to detect mental workload during stress using features from the 

frequency domain as well as the time domain. They concluded that it is possible to 

transfer classification methods across affective contexts, but only with diminished 

performance. However, these results are limited to one specific affective context 

(social stress). Furthermore, the authors were focusing on the identification of WML 

alone. The current paper wants to extend these findings using a more general affective 

response and also account for the interaction of cognitive and affective components. 

In order to collect suitable data for this objective we used a combination of an 

N-back task with a standard affect induction, called the emoback task. Interactions 

between cognitive and affective processes in the EEG have been previously 

investigated with the affective flanker task (see Alguacil, Tudela, & Ruz, 2013). 

However, the affective flanker task can be seen as a simple stimulus-response task 

that only requires perceptual inhibition and therefore does not represent a working 

memory task. The emoback task does involve memory components and, to our 
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knowledge, has only been used twice in combination with the EEG. First, a study by 

MacNamara, Ferri, & Hajcak (2011) used the emoback task with affective pictures as 

distractors and found that the LPP was modulated not only by affective responses 

towards emotional pictures, but also by WML. Second, a study by Kopf et al. (2013) 

used a N-back task with emotional words and recorded data from EEG and fNIRS. 

They found more errors during the negative condition, especially for high task difficulty. 

An ERP-analysis also revealed that the LPP is influenced by the difficulty in the working 

memory task and that this influence is further modulated by affective valence. 

However, both these studies used the LPP, as feature commonly associated with the 

arousal dimension. We want to investigate affective responses related to the valence 

dimension, which allows to make more general discriminations of affective states into 

positive and negative states. Moreover, the study by MacNamara, Ferri, & Hajcak 

(2011) only used affective stimuli as distractors, while we want to use a paradigm that 

inherently activates cognitive as well as affective processes. Finally, while the study by 

Kopf et al. (2013) used emotional words to induce affective reactions, we assume that 

affective pictures can elicit stronger affective reactions. We therefore decided to use 

an emoback task with affective pictures from the IAPS database to investigate 

interactions between WML and affective valence using frontal theta activity, parietal 

alpha activity as well as the FAA. 

Research Questions and Hypotheses 

We investigated the influence of WML and affective valence on behavioral measures 

as well as the corresponding EEG measures. Furthermore, we investigated potential 

interactions between EEG measures used to infer WML and EEG measures used to 

infer affective valence.  

More specifically, we investigated potential effects of load levels in the emoback 

task on accuracies and reaction times, which might also be reflected in the 

corresponding EEG measures. Additionally, we investigated potential effects of the 

affective valence inductions in the emoback task on behavioral measures as well as 

EEG measures.  

Beyond the main effects of WML and affective valence on behavioral measures 

and EEG measures, we also analyzed whether EEG measures used for mental 
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workload detection are sensitive to different affective contexts and whether EEG 

measures used to infer affective valence are sensitive to WML. 

 

Methods 

Sample 

We collected data from 27 female subjects who were recruited from an online 

database. Female subjects were used in this study because they tend to show stronger 

reactions toward affective stimuli (Lang, Greenwald, Bradley, & Hamm, 1993) and also 

exhibit more stable responses (Ahern & Schwartz, 1985). Three subjects had to be 

removed due to bad data quality. All of the participants were university students, aged 

above 18 years (mean: 23.0 years; range: 19 to 32 years), right handed and had no 

blood phobia to avoid extreme responses toward the experimental stimuli. All subjects 

provided written informed consent and were paid 20 € for participation in the 

experiment. The study was approved by the ethic committee of the Knowledge Media 

Research Center Tuebingen. 

Recording of Physiological Data 

Sixty channels of EEG were recorded using an ActiCHamp amplifier and active Ag/Cl-

electrodes (Brainproducts GmbH, Gilching, Germany). Electrodes were placed 

according to the extended 10-20 system. The electrooculogram (EOG) was recorded 

with four EEG electrodes located at the left and right canthi as well as above 

(channel Fp1) and below the left eye. All channels were referenced to channel FCz. 

Impedances were kept below 10 kΩ. The data were sampled at 1 kHz. For later 

processing the data was downsampled to 250 Hz. During the recordings subjects were 

instructed to sit in a relaxed posture to avoid artifact contamination of the data. 

Preprocessing 

To automatically reject time windows that are contaminated by artifacts, a time window 

was removed if channel power at more than six channels exceeded five times the 

standard deviation. After computing independent components using the CUDAICA 

implementation (Raimondo, Kamienkowski, Sigman, & Fernandez Slezak, 2012) of the 

Infomax independent component analysis (Bell & Sejnowski, 1995), eye movement 

artifacts were removed (reduced) using the ADJUST approach (Mognon, Jovicich, 
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Bruzzone, & Buiatti, 2011) which is implemented as plug-in in the EEGLAB toolbox 

(Delorme et al., 2011). Finally the EEG signal was bandpass filtered between 1 and 

45 Hz. 

Stimuli 

For the positive, neutral and negative valence conditions we selected 96 stimuli each. 

The stimuli were taken from the IAPS database (Lang et al., 1997) and selected based 

on the valence and arousal ratings provided with the database. Valence and arousal 

ratings are usually confounded, meaning that stimuli with strong (positive or negative) 

valence ratings usually also have high arousal ratings. To improve discriminability 

between affective conditions we made sure that stimuli for the positive condition had 

the highest valence ratings while stimuli for the negative conditions had the lowest 

valence ratings. Furthermore, stimuli for the neutral condition were selected based on 

the lowest arousal ratings. All selected stimuli had a quadratic shape and were centrally 

presented on a standard 23 inch display. To avoid unnecessary eye-movements the 

size of the stimuli was scaled to fill 60 % of the height of the display. 

Study Design and Block Structure 

The affective valence conditions were presented in groups of four trial blocks with 

identical affective valence. The affective valence conditions being either positive, 

neutral or negative. Load levels of the emoback task were alternated block wise. The 

load factor of the emoback task had two levels, one-back and two-back. We avoided 

the use of a zero-back condition, because this would require to repeatedly use the 

same affective target stimuli. This repetition of the same stimuli might have resulted in 

affective habituation with regard to the target stimuli, thereby diminishing the affect 

induction (Leventhal, Martin, Seals, Tapia, & Rehm, 2007). We also avoided a 3-back 

condition because some studies showed that this load level can lead to task 

disengagement (Ayaz, Izzetoglu, Bunce, Heiman-Patterson, & Onaral, 2007). Target 

response hand as well as starting load level of the emoback task were balanced across 

the subject sample (see Figure 14).  
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Figure 14. Illustration of emoback study design: The three affective valence conditions 
were presented grouped and permutated across the whole sample. Each affective condition 
consisted of four workload blocks, resulting in 12 blocks for each subject. Workload blocks 
were presented in an alternating fashion and balanced across the whole sample.  

 

All participants performed 12 blocks in total. Each block started with a 10 second 

baseline where subjects were instructed to relax and visually fixate a centrally 

presented light grey fixation cross (see Figure 15). After the baseline the first trial 

started with a stimulus presentation. There were 72 trials in one block, consisting of 24 

target stimuli and 48 distractors. The 24 target stimuli were randomly selected for each 

subject from 96 unique stimuli (four blocks with 24 target stimuli per affective condition). 

Targets and distractors were sometimes interleaved in the 2-back condition, meaning 

that two target stimuli could appear right after each other. Here is an example: 

Distractor (e.g. table), distractor (e.g. chair), target (table) and target (chair). After the 

last trial, another baseline phase, also with a duration of 10 seconds, was recorded. 

Between blocks there were short brakes between one and three minutes.  

 



The three Manuscripts describing the Studies of this Thesis   

Page 55 of 178 

 

 

Figure 15. Schematic representation of emoback block structure. Top: 1-back condition. 
Bottom: 2-back condition. Hand symbols indicate key press. Left hand press was used for 
target stimuli and right hand press for distractors in this example Pictures in this illustration are 
taken from https://pixabay.com/ and only serve as an example. 

 

Trial Structure 

Each trial started with a stimulus presentation phase of 1500 ms. The duration of the 

stimulus presentation was selected based on tests using pilot subjects and should 

ensure that enough trials can be recorded to get reliable estimates for the EEG 

measures used and the desired affective responses are evoked. During the stimulus 

presentation phase the subjects had to indicate if the current stimuli was a target (i.e. 

identical to the stimulus one step before in the 1-back condition and two steps before 

in the 2-back condition) or if the current stimulus was a distractor. Left and right control 

keys of a standard keyboard were used as inputs. The subjects were instructed to react 

as quickly as possible to ensure an effect in performance measures. Between stimuli 

there were interstimulus intervals (ISI) of 1500 ms duration including one to 500 ms of 

jitter at the end of the ISI to avoid periodic responses in the EEG data. During the ISI 

the same grey crosshair as in the baseline conditions was presented on the screen. 
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From psychological perspective, the N-back task can be divided into two 

phases. The first phase starts with the stimulus presentation and ends after the 

stimulus response. In this phase subjects had to perform a simple matching task by 

comparing the current stimulus with the stimulus stored in short term memory. In the 

second phase, ranging from the stimulus response to the next stimulus onset multiple 

executive functions are required for a correct response. Inhibition, shifting and updating 

represent the core executive functions as identified by Miyake and colleagues (Miyake 

et al., 2000). Inhibition is seen as the ability to suppress automatic responses that might 

arise during task processing. Shifting is referring to the concept of cognitive flexibility, 

making us capable to switch between different tasks. Updating refers to the continuous 

monitoring and changing of content in working memory. Content in short term memory 

needs to be updated via inhibition of the last stimuli in the stimuli list. Furthermore, the 

participants need to switch from a simple matching task to a working memory task and 

back. We therefore assume that the second phase is more relevant for the 

measurement of WML. Concerning the affective reaction we first assumed that it would 

be stronger right after stimulus onset, since the stimulus was fresh. However, pilot 

measurements revealed that subjects tend to focus first on the response toward the 

stimuli and only then direct their attention toward the affective content of the presented 

stimuli. We therefore decided to focus our analyses on the second phase. 

 

Analysis 

The window of analysis was 1400 ms wide. It started 1100 ms after stimulus onset to 

exclude post-motor responses in the EEG and ended 2500 ms after stimulus onset. 

The second time window also included 1000 ms of the ISI. 

All spectra for the EEG analysis were computed using the Welch method 

(Welch, 1967) implemented in the EEGLAB toolbox (Delorme & Makeig, 2004). Theta 

bands were computed between 4 and 7 Hz and alpha bands were computed between 

8 and 12 Hz. Power of the frontal (AFz, Fz) and parietal (CPz, Pz, POz) electrodes 

was averaged. Power for FAA computation was averaged across channels AF3, F3 

and FC1 for the left hemisphere and across channels AF4, F4 and FC2 for the right 

hemisphere. We followed the approach from Allen, Coan, & Nazarian (Allen, Coan, & 

Nazarian, 2004) and computed FAA as difference score (see Equation 1).  
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Equation 1: Frontal Alpha Asymmetry Index (Allen et al., 2004) 

FAA = 𝑟𝑖𝑔ℎ𝑡 𝑎𝑙𝑝ℎ𝑎 𝑝𝑜𝑤𝑒𝑟 − 𝑙𝑒𝑓𝑡 𝑎𝑙𝑝ℎ𝑎 𝑝𝑜𝑤𝑒𝑟 

To evaluate the influence of affective valence and WML on the EEG, we 

performed repeated measures ANOVAs with two factors. The first factor was affective 

valence with three levels (positive, neutral and negative). The second factor was WML 

with two levels (1-back and 2-back). All analyses were conducted at the group level. 

 

Results 

Behavioral Performance Measures 

Accuracies 

Using accuracies as dependent variable we found a significant main effect for WML, 

F(1, 23) = 32.70, p<.001, η2 = 0.59. Higher WML resulted in decreased accuracies. 

Additionally, there was a significant main effect for affective valence, F(2, 46) = 3.73, 

p < .035, η2 = 0.14. A Post Hoc test using the Šidák correction revealed that the 

negative condition resulted in a decreased accuracy when compared to the positive 

condition (p<.03), but not when compared to the neutral condition (n.s.). Interestingly, 

there was a significant interaction between affective valence and WML, F(2, 46) = 3.68, 

p<.035, η2 = 0.14. The negative condition had a negative impact on accuracy, but only 

under high WML. Box plots showing the different conditions can be seen in Figure 16 

(left). 

Reaction Times 

There was a significant main effect for WML, F(1, 23) = 60.53, p<.001, η2 = 0.73. 

Higher load resulted in longer reaction times. Moreover, there was a significant main 

effect for affective valence, F(2, 46) = 10.94, p<.001, η2 = 0.32. The negative condition 

resulted in longer reaction times than the positive condition (p<.01) as well as the 

neutral (p<.005) condition. However, there was no significant interaction between 

affective valence and WML, F(2, 46) = 1.02, n.s. Median values for all conditions are 

shown via box plots in Figure 16 (right). 
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Figure 16. Box plots showing median values for accuracies and reaction times: Blue 
boxes show accuracies (left) and reaction times (right) for the 1-back conditions. Green boxes 
show accuracies (left) and reaction times (right) for the 2-back conditions. Median values are 
indicated by black horizontal lines within the boxes. Top and bottom borders of the boxes 
represent the middle 50% of the data. Whiskers represent the smallest and largest values not 
classified as outliers (between 1.5 and 3 times the height of the boxes) or extreme values 
(more than three times the height of the boxes). Circles indicate outliers and stars show 
extreme values. 

 

EEG Working Memory Load Measures 

Frontal Theta Activity 

Using frontal theta activity as dependent variable there was a significant main effect 

for WML, F(1, 23) = 9.00, p<.01, η2 = 0.28. Frontal theta power was higher in the 2-

back conditions.  Figure 17 (left) illustrates this effect. Interestingly, there was a 

significant main effect for affective valence, F(2, 46) = 8.28, p<.001, η2 = 0.27. A Post 

Hoc test using the Šidák correction revealed that frontal theta power was lower in the 

negative condition, when compared to the neutral condition (p<.005) as well as the 

positive condition (p<.01). Figure 18 (left) shows a topographic plot displaying this 

frontal theta effect. However, there was no significant interaction between affective 

valence and WML, F(2, 46) = 0.87, n.s. Median values for all conditions can be seen 

in Figure 19 (left). 
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Figure 17. Topographic plots showing difference in EEG workload measures between 
2-back and 1-back conditions. Left: Frontal theta for the post-motor time window showing 
increased frontal theta activity for the 2-back conditions. Right: Parietal alpha for the Post motor 
time window showing decreased in parietal alpha power for the 2-back conditions. Nose is at 
the top. Values are averaged across all three affective conditions. Electrodes used for analysis 
are marked with black rectangles. 

 

Parietal Alpha Activity 

Using parietal alpha activity as dependent variable we found a significant main effect 

for WML, F(1, 23) = 4.22, p=.05, η2 = 0.16. Higher WML resulted in decreased parietal 

alpha power. This effect can be seen in Figure 17 (right). Interestingly, there was also 

a significant main effect for the factor affective valence in the post-motor window, F(2, 

46) = 5.27, p<.01, η2 = 0.19. The negative condition exhibited lower parietal alpha 

power than the neutral condition (p<.03), but not lower than the positive condition (n.s.). 

Figure 18 (right) shows a topographic plot displaying this parietal alpha effect. There 

was no significant interaction between affective valence and WML, F(2, 46) = 1.52, n.s. 

Figure 19 (middle) shows box plots for all conditions. 
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Figure 18. Topographic plots showing difference in EEG workload measures between 
negative and neutral conditions. Left: Frontal theta showing decreased frontal theta activity 
for the negative conditions when compared to the neutral conditions. Right: Parietal alpha 
showing widespread decrease in parietal alpha power for the negative conditions when 
compared to the neutral conditions. Nose is at the top. Values are averaged across both N-
back levels. Electrodes used for analysis are marked with black rectangles. 

 

EEG Affective Valence Measures – Frontal Alpha Asymmetry 

Unexpectedly, there were no significant main effects with regard to FAA. Neither for 

affective valence, F(2, 46) = 1.87, n.s. nor for WML, F(1, 23) = 0.96, n.s. Finally, there 

was also no significant interaction between affective valence and working memory, 

F(2, 46) = 0.08, n.s. Median values for all conditions are summarized in Figure 19 

(right). 
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Figure 19. Box plots showing median values for frontal theta activity, parietal alpha 
activity and Frontal Alpha Asymmetry (FAA): Blue boxes show frontal theta activity (left), 
parietal alpha activity (middle) and FAA (right) for the 1-back conditions. Green boxes show 
frontal theta activity (left), parietal alpha activity (middle) and FAA (right) for the 2-back 
conditions. Median values are indicated by black horizontal lines within the boxes. Top and 
bottom borders of the boxes represent the middle 50% of the data. Whiskers represent the 
smallest and largest values not classified as outliers (between 1.5 and 3 times the height of 
the boxes) or extreme values (more than three times the height of the boxes). Circles indicate 
outliers. Please note the strong variability in the data due to large inter-individual differences. 

 

Discussion 

Using the emoback paradigm, we found that increased WML had a negative impact on 

task performance, as reflected in decreased accuracies and increased reaction times. 

These effects were also reflected in corresponding EEG measures. Increased WML 

was accompanied by increases in frontal theta activity as well as decreases in parietal 

alpha activity.  

We found that negative affective valence had a negative impact on accuracies 

as well as reaction times. Interestingly, measures used for WML estimate also 

appeared sensitive to changes in affective valence. In contrast to that, FAA, a measure 

typically used to infer affective valence, did not show any effects in our paradigm, 

neither with regard to affective valence, nor with regard to increases in WML. In the 

following sections we will discuss these results in detail. 

Performance 

Our analyses revealed that increased WML induced via the emoback task did result in 

decreased performance. The 2-back conditions had reduced accuracy as well as 

increased reaction times. We also found that inducing negative affective valence had 
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detrimental effects on accuracies as well as reaction times. Similar results have been 

found in a study by Passarotti et al. (2011). The authors used face stimuli in an affective 

N-back task and found slower reaction times for angry faces. These negative effects 

of affective stimuli on cognitive processing can be explained within the theory of hot 

and cold cognition, concepts related to executive function (Zelazo & Muller, 2002). Hot 

cognition refers to a process where a person´s thinking is influenced by their affective 

state (Brand, 1986), while cold cognition is more based on rational thinking and critical 

analysis (Roiser & Sahakian, 2013). Hot cognition is able to overpower cold cognition 

in certain situations and has been shown to impair decision making (Huijbregts, 

Warren, De Sonneville, & Swaab-Barneveld, 2008). Processing of negative stimuli can 

divert cognitive resources from the primary task, and thereby lead to decreased 

performance. A study by Levens & Gotlib (2010) found that strongly valenced stimuli 

tend to stay longer active in working memory, which might interfere with different core 

executive functions necessary during the emoback task (Miyake et al., 2000). In the 

emoback task, subjects constantly needed to update content in working memory by 

replacing (inhibition) previous stimuli. Additionally, the subjects also needed to shift 

between these updating tasks and a rather simple identity-matching task. Negative 

stimuli could catch the attention, slowing down reorganization of stimuli in working 

memory and thereby impairing task performance.  

Interestingly, we also found an interaction for accuracy between WML and 

affective valence. Negative affective valence resulted in decreased accuracies, but 

only during increased WML. These results are in line with findings from the study by 

Kopf et al. (2013) who found more errors for the difficult task during the negative 

condition using an affective word N-back task. These results seem to indicate that both, 

cognitive and affective processing, compete for limited cognitive resources and this 

dual strain on mental resources leads to decreased performance. Similar results have 

also been found in the study by MacNamara et al. (2011). The authors used emotional 

pictures as distractors in an emoback task and found that the emotional content of 

negative valenced stimuli increased the negative impact of WML on performance. 

These findings could be explained using the capacity model from Ellis & Ashbrook 

(1989). Their model assumes that there is a limited pool of attentional resources that 

can be used to complete a certain task. Affective states can influence the allocation of 

available attentional resources toward the task, thereby potentially impairing task 
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performance. However, based on performance measures alone, we can only vaguely 

assume how negative valence impaired task performance. 

EEG Working Memory Load Measures 

Frontal Theta Activity 

Increased WML was reflected in EEG measures as well. Frontal theta activity was 

increased during high WML. Interestingly, the negative affective valence condition 

exhibited decreased frontal theta after the motor response. Additional WML due to the 

processing of negative affective stimuli should have been reflected in increased frontal 

theta activity. Decreased frontal theta activity seems to imply decreased processing in 

frontal executive areas. 

Parietal Alpha Activity 

Our analyses revealed that parietal alpha activity was decreased under high WML (2-

back) condition. We also found that the parietal alpha activity was reduced for the 

negative condition. An fMRI study by Rämä et al. (2001) used different affective voices 

and found similar results. The authors discovered that the parietal cortex is bilaterally 

involved in active maintenance of emotional content. Affective stimuli are more salient 

and usually carry more relevant information (Carretié, 2014). We therefore assume 

that negative valenced stimuli result in stronger processing in the storage areas of the 

parietal cortex, which seems reflected in increased parietal activity (i.e. reduced alpha 

power). 

EEG Affective Valence Measures – Frontal Alpha Asymmetry 

Unexpectedly, we did not find any effect using the FAA measure. We used the FAA 

measure during the induction of WML, while most other studies used brain laterality 

responses during rest or passive viewing (Ahern & Schwartz, 1985; Davidson & 

Wheeler, 1992; Huang et al., 2012; Lin, Wang, Wu, Jeng, & Chen, 2009; Ramirez & 

Vamvakousis, 2012). Use of the FAA in combination with other tasks is further 

complicated because the FAA is known to be also influenced by other factors like 

seating position and WML (Briesemeister, Tamm, Heine, & Jacobs, 2013). A study by 

Baldwin et al. 2012 (Baldwin & Penaranda, 2012) found that increased task difficulty 

resulted in increased left frontal activity. It appears that the negative condition 

increased task difficulty, since it did impair task performance. Negative affective 

valence in passive conditions usually results in increased right frontal activity. It is 

therefore conceivable that both, affective and workload related, processes acted on 
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the same FAA measure, but in opposing directions. This could mean that both effects 

canceled each other out and thereby masked any potential effects. 

Limitations and Outlook 

We did not find any effects using the FAA measure. We assume that was due to the 

WML elicited through our paradigm. It would be interesting to test this assumption by 

developing a study design that contrasts an active condition with a passive viewing 

condition.  

Furthermore, future studies should explore how well these findings generalize 

to male individuals as well as other stimulus modalities. 

Conclusion 

We demonstrated that negative valenced stimuli can have an effect on performance 

measures. Additionally, when using established EEG measures we found that 

increased WML can be detected in the EEG, even when affective valence is induced 

at the same time. Although FAA did not prove useful for identification of emotional 

states, our analyses revealed interactions between affective valence and WML. Future 

studies should further investigate the context sensitivity and applicability of EEG 

measures in various contexts to identify the ramifications in which such measures can 

be used to identify different states and processes. 
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6.1.1 Additional Chapter: Subjective Measures Results 

In this chapter I will present the results from the analysis of the subjective ratings 

recorded in the emoback study. 

Workload Ratings 

Subjective experience of WML was measured using one (modified) item taken from 

the NASA task load index (Hart & Staveland, 1988). The item asked participants how 
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cognitively demanding they experienced the last experimental run. The rating scale 

ranged from zero (absolutely no mental demand) to one-hundred (highest possible 

mental demand). 

As expected, using workload ratings as dependent variable, we found a 

significant main effect for WML, F(1, 23) = 22.7, p<.001, η2 = 0.50. Higher WML 

resulted in the increased subjective experience of WML. Additionally, there was a 

significant main effect for affective valence, F(2, 46) = 11.6, p < .001, η2 = 0.34. A Post 

Hoc test using the Šidák correction revealed that the negative valence condition 

resulted in an increase of subjective WML when compared to the positive valence 

condition (p<.001) as well as the neutral valence condition (p<.02). There was no 

significant interaction between affective valence and WML, F(2, 46) = 0.8, n.s. Box 

plots showing the different conditions can be seen in Figure 21 (left).  

Affective Valence Ratings 

Emotional experiences within the PAD are commonly judged with the help of rating 

scales. The most widely used is a visual analog scale called the Self-Assessment 

Manikin (SAM; Bradley & Lang, 1994). It enables fast and reliable judgements about 

the current emotional state. Due to the use of simple depictions it can also be utilized 

with children, which could be an additional benefit in the context of the development of 

a neurotutor. Figure 20 shows a depiction of the three SAM scales for valence, arousal 

and dominance. 
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Figure 20. The Self-Assessment Manikin. Top: The valence dimension ranging from 
extreme displeasure (left) to extreme happiness (right). Middle: The arousal dimension ranging 
from extreme relaxation (or sleep) to frenzied excitement (right). Bottom: The dominance or 
control dimension ranging from low dominance (left) to high dominance (right; Bradley & Lang, 
1994). 

 

Arousal ratings were not analyzed, since the main focus of this thesis are 

responses related to the valence or dominance dimension. Additionally, participants 

reported strong difficulties with regard to the dominance dimension and therefore 

mostly chose the middle category. Accordingly, I only analyzed ratings from the 

valence dimension. 

As anticipated, using the affective valence ratings as dependent variable, there 

was a significant main effect for affective valence, F(1.4, 33) = 55.7, p<.001, η2 = 0.71. 

Decreased affective valence due to the emotion induction resulted in decreased 

subjective valence ratings. The neutral condition resulted in more positive valenced 

ratings than the negative condition (p>.001) and more negative valenced ratings than 

the positive condition (p>.01). However, there was neither a significant main effect for 

WML, F(1, 23) = 0.1, n.s., nor was there a significant interaction between affective 
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valence and WML, F(2, 46) = 1.0, n.s. Median values for all conditions are shown via 

box plots in Figure 21 (right). 

 

 

Figure 21. Box plots showing median values for workload ratings (left) and valence 
ratings (right): Blue boxes show workload ratings (left) and valence ratings (right) for the 1-
back conditions. Green boxes show workload ratings (left) and valence ratings (right) for the 
2-back conditions. Median values are indicated by black horizontal lines within the boxes. Top 
and bottom borders of the boxes represent the middle 50% of the data. Whiskers represent 
the smallest and largest values not classified as outliers (between 1.5 and 3 times the height 
of the boxes) or extreme values (more than three times the height of the boxes). Circles 
indicate outliers. 
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Abstract 

State of the art brain computer interfaces (BCIs) largely focus on detecting single, 

specific, often experimentally induced or manipulated aspects of the user state. We 

argue, that in a less controlled, more naturalistic environment, a larger variety of mental 

processes may be active and possibly interacting. When moving BCI applications from 

the lab to real-life applications, these additional unaccounted mental processes could 

interfere with user state decoding, thus decreasing system efficacy and decreasing 

real-world applicability. Here, we assess the impact of affective valence on 

classification of WML, by re-analyzing a dataset that used an affective N-back task 

with picture stimuli. Our analyses showed that classification of WML under affective 

valence can lead to good classification accuracies (> 70%), which can be further 

improved via integration over time. However, positive as well as negative affective 

valence resulted in decreased classification accuracies. Furthermore, classifiers failed 

to generalize across affective contexts, highlighting the need for frameworks that can 

account for different contexts or new, context-independent, EEG features. 
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Introduction 

Brain-based Adaptive Systems 

The electroencephalogram (EEG) represents an interesting method for the evaluation 

of human machine interaction (Frey, Mühl, Lotte, & Hachet, 2014) by enabling the 

design of adaptive, brain-based human-machine interaction systems. Such adaptive 

systems could allow us to tailor future workspaces to the individual needs of users. 

Passive brain-computer interfaces (BCIs) represent a good example for such adaptive 

systems. Passive BCIs utilize mental state monitoring to establish an implicit control 

loop and therefore do not rely on awareness of the user about this communication. 

This implicit control loop could use additional context information about the user to 

potentially improve a given human-machine interaction. Passive BCIs have been 

previously applied to adaptive learning environments (Walter et al., 2013) or even 

detection of covert user states like bluffing in a game context (Reissland & Zander, 

2009). 

Challenges when moving out of the Lab 

Most current passive BCIs are used in lab environments and focus on narrow user 

states like WML (Spüler et al., 2016) or affective valence (Smedt & Menschaert, 2012). 

Therefore, such systems might not be able to provide stable performance outside the 

lab, since real world environments tend to evoke a combination of multiple basic mental 

processes (Gerjets et al., 2014). Furthermore, many measures used to infer mental 

states from the ongoing EEG are known to have many-to-many relations, meaning that 

several physiological variables are associated with multiple psychological elements 

(Fairclough, 2009). Previous work suggests that contextual changes, as expected to 

arise in natural environments, could be related to spontaneously occurring decrements 

in passive BCI performance (Myrden & Chau, 2015; Zander & Jatzev, 2012). Most 

available classification algorithms are based on stable signal properties, which are 

derived from a single calibration session. Such classification approaches therefore 

require the user´s brain to adapt to the new behavior of the system, which can be very 

challenging, since we are usually not aware how to  directly modulate EEG-features 

used for BCI classification without extensive training (Birbaumer, 2006). Therefore 

such classification approaches might have difficulties to track shifts in the feature 

space due to contextual changes of the current user state. Newly developed 

approaches try to mitigate this issue with methods from machine learning like adaptive 
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classification schemes (Faller, Vidaurre, Solis Escalante, Neuper, & Scherer, 2012; 

Shenoy, Krauledat, Blankertz, Rao, & Müller, 2006; Spüler, Rosenstiel, & Bogdan, 

2012). Such approaches usually work well in controlled lab environments, but to make 

them feasible outside the lab, we want to investigate if and how certain EEG features 

used for mental state detection are influenced by specific contexts. To identify such 

context-sensitivity in EEG features used for passive BCI classification we investigated 

a combination of two important mental states used in passive BCIs, WML and affective 

valence. 

Working Memory Load 

Automatic detection of WML has already been studied extensively for brain-based 

adaptive systems (Berka et al., 2007; Kohlmorgen et al., 2007; Walter et al., 2013). 

Working memory is usually defined as the interaction of short term memory structures 

that handle different representational codes with controlled attentional processes 

(Baddeley, 2003, 2012). Content in short term memory is thought to be maintained via 

parietal brain areas like the intraparietal sulcus, while the central attentional control 

system is assumed to be mainly located in frontal regions of the brain like the 

dorsolateral prefrontal cortex (Klingberg, 2009; Scharinger et al., 2015). Accordingly, 

increases in mental workload commonly result in decreased parietal alpha activity as 

well as increased frontal theta activity (Gevins et al., 1995; Klimesch, 1999; Smith & 

Gevins, 2005). However, previous research has shown that other mental states can 

also have an effect on measures used for workload detection. For instance, Roy et al. 

(2013) induced fatigue and found that with increasing time on task the discriminability 

of WML was decreased.  

Affective Valence 

The circumplex model (Russell, 1980) is a popular, theoretical framework that 

describes affective states with the dimensions valence and arousal. On one hand, the 

arousal dimension reflects the responsiveness of the organism and ranges from sleep 

to frenzied excitement. On the other hand, the valence dimension reflects the 

pleasantness of a situation and ranges from sadness to happiness. 

The Emoback Paradigm 

To experimentally modulate WML and affective valence separately we decided to use 

the Emoback paradigm. The emoback paradigm combines an N-back task with an 
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affect induction. The N-back task is a continuous performance task where subjects are 

presented with a series of stimuli and have to indicate whether the current stimulus is 

identical to the stimulus presented N-steps before, or not (Kirchner, 1958; Scharinger 

et al., 2015). Hence, the load factor ‘N’ allows to adjust the difficulty of the task, thereby 

manipulating WML.  

There are various ways to induce emotions in lab settings (Gerrards-Hesse et 

al., 1994). One efficient method is the use of affective picture stimuli. One very popular 

picture database is the International Affective Picture System (IAPS; Lang, Bradley, & 

Cuthbert, 1997) which comprises a large set of standardized and emotionally evocative 

color photographs. All stimuli of the database have been rated along the dimensions 

of valence and arousal using the self-assessment manikin (SAM; Bradley & Lang, 

1994).  

Other paradigms, like the affective flanker (see Alguacil, Tudela, & Ruz, 2013) 

have been used in the past to investigate potential influences of affect on EEG 

features. However, the affective flanker task only requires perceptual inhibition and 

does not involve a memory component. Furthermore, the emoback paradigm has, as 

far as we know, only been used three times in combination with the EEG. First, a study 

by MacNamara, Ferri, & Hajcak (2011) used the emoback task with affective pictures 

as distractors and found that the late positive potential (LPP) was modulated not only 

by affective responses toward the emotional pictures, but also with regard to changes 

in WML. However, the LPP is an EEG feature in the time domain and responds mainly 

to affective stimuli related to the arousal dimension (Schupp et al., 2000). Additionally, 

the study by MacNamara, Ferri, & Hajcak (2011) only used affective distractors, while 

we want to investigate a task which intrinsically activates cognitive and affective 

processes. 

Second, a study by Kopf et al. (2013) used a N-back task with emotional words 

and recorded data from the EEG and the fNIRS. They found more errors during the 

negative condition, especially for the difficult task. An ERP-analysis also revealed that 

the LPP could be influenced by the difficulty in a working memory task and that this 

influence is further modulated by affective valence. However, we assume that 

emotional words evoke rather weak responses and cannot convey the complexity of 

real-life emotions.  
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Third, Grissmann et al. (under review) used an emoback task with affective 

picture stimuli and found that performance decreased with increasing workload as well 

as negative valence. These findings were reflected in changes in frontal theta and 

parietal alpha power. Interestingly, these EEG measures were also influenced by 

negative affective valence. However, the authors did not find any effects for EEG 

measures typically used for affective valence detection.  

These studies show that EEG features can be context-sensitive and prone to 

influences not related to the primary mental state of interest. To extend these findings 

to measures used for detection of WML we decided to re-analyze the data from 

Grissmann et al. (under review) and investigate the automatic detection of WML under 

affective valence. 

Research Questions 

To be more precise, we investigated if classification of WML under affective valence 

can lead to useful classification accuracies. Additionally, we investigated if accuracies 

can be improved via data integration over time, which has been shown to work in a 

previous study (Brouwer et al., 2012). Finally, we also investigated the context-

specificity of the resulting workload classifiers.  

 

Methods 

Sample 

We re-analyzed data from Grissmann et al. (under review). They collected data from 

27 female, college-aged (mean: 23.0 years; range: 19 to 32 years), right handed 

volunteers and rejected three data sets due to insufficient data quality. Subjects with 

blood phobia were excluded to avoid extreme responses toward the experimental 

stimuli. All subjects provided written informed consent and were paid 20 € for their 

participation. The study was approved by the ethics committee of the Knowledge 

Media Research Center Tübingen. 

Recording of Physiological Data 

Sixty channels of EEG were recorded using an ActiCHamp amplifier and active 

Ag/Cl-electrodes (Brainproducts GmbH, Gilching, Germany). Electrodes were placed 

according to the extended 10-20 system. The electrooculogram (EOG) was recorded 
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with four EEG electrodes located at the left and right canthi as well as above 

(channel Fp1) and below the left eye. All channels were referenced to channel FCz 

and impedances were kept below 10 kΩ. The data were sampled at 1 kHz. For later 

processing the data was downsampled to 500 Hz. During the recordings subjects were 

instructed to sit in a relaxed posture to avoid artifact contamination of the data. 

Preprocessing 

To automatically reject time windows that are contaminated by artifacts, a time window 

was removed if channel power at more than six channels exceeded five times the 

standard deviation. After computing independent components using the CUDAICA 

implementation (Raimondo, Kamienkowski, Sigman, & Fernandez Slezak, 2012) of the 

Infomax independent component analysis (Bell & Sejnowski, 1995), eye movement 

artifacts were removed (reduced) using the ADJUST approach (Mognon, Jovicich, 

Bruzzone, & Buiatti, 2011) which is implemented as plug-in in the EEGLAB toolbox 

(Delorme et al., 2011). After visual inspection of the resulting data, we decided to 

exclude channels located on the outer circumference of the electrode cap (channels 

Fp1, Fp2, AF7, AF8, F7, F8, FT7, FT8, T7, T8, TP7, TP8, P7, P8, PO7, PO8, O1, Oz 

and O2) from later analysis, since those channels showed artifactual activity. Finally 

the EEG signal was bandpass filtered between 1 and 45 Hz. 

Stimuli 

For the positive, neutral and negative valence conditions we selected 96 stimuli, each 

taken from the IAPS database (Lang et al., 1997). Valence and arousal ratings are 

usually confounded, meaning that stimuli with strong (positive or negative) valence 

ratings usually also have high arousal ratings (Olofsson, Nordin, Sequeira, & Polich, 

2008). To improve discriminability between affective conditions we made sure that 

stimuli for the positive condition had the highest valence ratings while stimuli for the 

negative conditions had the lowest valence ratings using valence and arousal ratings 

provided with the database. Furthermore, stimuli for the neutral condition were 

selected based on the lowest arousal ratings. All selected stimuli had a quadratic shape 

and were centrally presented on a standard 23 inch display. To avoid unnecessary 

eye-movements the size of the stimuli was scaled to fill 60 % of the height of the 

display. 
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Study Design and Experimental Run Structure 

All affective valence conditions (positive, neutral and negative) were presented in 

groups of four blocks with identical affective valence. Load levels (1-back and 2-back) 

of the emoback task were alternated run-wise. We avoided the use of a zero-back 

condition, because this would require to repeatedly use the same affective target 

stimuli. Such repetitions of the same stimuli might have resulted in affective habituation 

with regard to the target stimuli, thereby diminishing the intensity of the affect induction 

(Leventhal, Martin, Seals, Tapia, & Rehm, 2007). We also avoided a 3-back condition 

because some studies showed that this load level can lead to task disengagement 

(Ayaz, Izzetoglu, Bunce, Heiman-Patterson, & Onaral, 2007). Target response hand 

as well as starting load level of the emoback task were balanced across the subject 

sample (see Figure 22). 

 

 

Figure 22. Illustration of emoback study design: The three affective valence conditions 
were presented in a block design and permutated across the whole sample. Each affective 
condition consisted of four workload runs, resulting in 12 runs for each subject. Workload runs 
were presented in an alternating fashion and balanced across the whole sample.  

 

All participants performed 12 runs in total. Each run started with a 10 second 

baseline where subjects were instructed to relax and visually fixate a centrally 

presented light grey fixation cross (see Figure 23). After the baseline the first trial 

started with a stimulus presentation. There were 72 trials in one run, consisting of 24 

target stimuli and 48 distractors. The 24 target stimuli were randomly selected for each 

subject from 96 unique stimuli (four blocks with 24 target stimuli per affective condition). 

Targets and distractors were sometimes interleaved in the 2-back condition, meaning 

that two target stimuli could appear right after each other. Here is an example: 

Distractor (e.g. table), distractor (e.g. chair), target (table) and target (chair). After the 

last stimulus (i.e. trial), another baseline phase, also with a duration of 10 seconds, 

was recorded. Between runs there were short brakes between one and three minutes.  
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Figure 23. Schematic representation of emoback run structure. Top: 1-back condition. 
Bottom: 2-back condition. Hand symbols indicate key press. Left hand press was used for 
target stimuli and right hand press for distractors in this example. Pictures in this figure are 
taken from https://pixabay.com/ and only serve as illustration. 

 

Trial Structure 

Each trial started with a stimulus presentation phase of 1500 ms. The duration of the 

stimulus presentation was selected based on tests using pilot subjects and should 

ensure that enough trials can be recorded to get reliable estimates for the EEG 

measures used and the desired affective responses are evoked. During the stimulus 

presentation phase the subjects had to indicate if the current stimuli was a target (i.e. 

identical to the stimulus one step before in the 1-back condition or two steps before in 

the 2-back condition) or if the current stimulus was a distractor. Left and right control 

keys of a standard keyboard were used as inputs. The subjects were instructed to react 

as quickly as possible to increase chances for a potential effect in performance 

measures. Between stimuli there were interstimulus intervals (ISI) of 1500 ms duration 

including one to 500 ms of jitter at the end of the ISI to avoid periodic responses in the 
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EEG data. During the ISI the same grey crosshair as in the baseline conditions was 

presented on the screen. 

Offline Analysis 

The time window used for analysis was 2400 ms wide. It started 100 ms after stimulus 

onset to minimize exogenous responses and ended 2500 ms after stimulus onset. The 

time window also included 1000 ms of the ISI. All spectra for the EEG analysis were 

computed using an autoregressive model of order 32 with the Burg method (Priestly, 

1982). Band power between 1 15 Hz in 1 Hz bins was used in the offline analysis. To 

determine which features might allow a good discrimination between different WML 

conditions, r2-values (Sheikh, McFarland, Sarnacki, & Wolpaw, 2003) were calculated 

between all relevant combinations of two WML conditions for each frequency bin at 

each electrode. Theta bands were computed between 4 and 7 Hz and alpha bands 

were computed between 8 and 12 Hz.  

For classification a Support Vector Machine (SVM; Vapnik, 1999) implemented 

in the LibSVM Toolbox (Chang & Lin, 2011) with a linear kernel and the regularization 

parameter set to 1 was used. To estimate accuracies a 10x10-fold cross-validation in 

which the data was permuted and partitioned into 10 blocks of equal size was used. In 

each of the 10 folds, we used nine blocks for training the classifier and tested on the 

one remaining block. Each block was used for testing once. This procedure was 

repeated 10 times, and the accuracy was averaged over all folds. For the majority 

voting we used the probability estimate from the resulting SVM classifier and later 

averaged across multiple trials to get an improved workload estimate. 

To evaluate the influence of affective valence on WML classification in the EEG, 

we performed a repeated measures ANOVA with two factors and classification 

accuracies as dependent variable. The first factor was affective valence with three 

levels (positive, neutral and negative). The second factor was number of trials with five 

levels, representing single trial classification as well as majority voting across multiple 

(up to five) trials. This factor was used to investigate potential improvements on 

classification accuracies when using larger time segments for classification. Especially 

passive BCI approaches could benefit from such an approach, since stable state 

prediction is usually more important than fast reaction times of the system. All 
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classifications were conducted at the single subject level and results were later 

averaged across the whole sample.  

To further investigate how workload classification is influenced by a specific 

context (in this case affective valence) we used a cross-valence classification 

approach, where we trained the SVM classifier on WML within one affective context 

and later tested the classifier under a different affective context. More specifically, we 

trained a workload classifier under positive affective valence and tested the resulting 

workload classifier under negative affective valence, and vice versa. Furthermore, we 

wanted to investigate if the decision of the workload classifier is biased by the 

underlying affective condition. We therefore trained a workload classifier under low 

affective valence (neutral conditions) and later tested it on two affective valence 

conditions (positive 1-back Vs negative 1-back). 

 

Results 

All mean WML classification accuracies were above 70 %, even with single trial 

classification and did go as high as 87.7 % via data integration across five trials (all 

median values are shown via box plots in Figure 24). 
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Figure 24. Box plots showing median values for accuracies: Blue boxes show accuracies 
for WML under positive affective valence. Green boxes show accuracies for WML under 
neutral affective valence. Beige boxes show accuracies for WML under negative affective 
valence. Median values are indicated by black horizontal lines within the boxes. Top and 
bottom borders of the boxes represent the middle 50% of the data. Whiskers represent the 
smallest and largest values not classified as outliers (between 1.5 and 3 times the height of 
the boxes) or extreme values (more than three times the height of the boxes). Circles indicate 
outliers and stars show extreme values. 

 

For the discrimination of workload conditions under positive affective valence, 

parietal alpha features were most important, however frontal alpha features were 

involved as well. Discrimination of workload conditions under neutral affective valence 

was mainly based on parietal alpha features (see Figure 26), while discriminability for 

the workload conditions under negative affective valence depended on frontal theta 

features as well as parietal alpha features (see Figure 27). Interestingly, we found that 

r² plots for the workload conditions under positive as well as neutral affective valence 

showed some parietal theta and frontal alpha activity (see Figure 25 and Figure 26).  
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Figure 25. R² plot for the 1-back and 2-back conditions under positive affective valence. 
Rows show individual EEG channels and Columns show individual frequency bins. R² values 
are color coded (see colorbar on the right side of figure for scaling). 
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Figure 26. R² plot for the 1-back and 2-back conditions under neutral affective valence. 
Rows show individual EEG channels and Columns show individual frequency bins. R² values 
are color coded (see colorbar on the right side of figure for scaling). 
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Figure 27. R² plot for the 1-back and 2-back conditions under negative affective valence. 
Rows show individual EEG channels and Columns show individual frequency bins. R² values 
are color coded (see colorbar on the right side of figure for scaling). 

 

Interestingly, using classification accuracies as dependent variable there was a 

significant main effect for affective valence, F(2, 46) = 5.0, p<.015, η2 = 0.18. A Post 

Hoc test using the Šidák correction revealed that the neutral condition resulted in 

higher accuracies than the negative condition (p<.05) as well as the positive condition 

(p<.05). As expected, we found a significant main effect for number of trials, F(2.8, 

64.6) = 254.1, p<.001, η2 = 0.92. Accuracies were significantly increased the more 

trials were used to make the class predictions. However, there was no significant 

interaction between affective valence and number of trials, F(8, 184) = 1.3, n.s.  

Cross-valence classification using workload conditions under positive affective 

valence as training data and workload conditions under negative affective valence as 
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test data resulted in an accuracy of 53.9 % (sd = 4.9 %), while classifier training on 

workload conditions under negative affective valence and classifier testing with 

workload conditions under positive affective valence yielded a  mean accuracy of 54.0 

% (sd = 5.6 %). Moreover, when using the workload conditions under neutral affective 

valence for classifier training, mean cross-valence classification accuracies were 54.3 

% (sd = 5.3 %) for workload conditions under positive affective valence and 52.7 % (sd 

= 3.7 %) for workload conditions under negative affective valence. Finally, using the 

workload conditions under neutral affective valence for classifier training affective 

valence conditions under low WML (positive 1-back Vs negative 1-back) resulted in a 

mean accuracy of 52.2 % (sd = 5.0).  

 

Discussion 

Our investigation revealed that classification of WML under affective valence can lead 

to useful classification accuracies. Furthermore, we found that data integration over 

time yielded improved classification accuracies. However, resulting workload 

classifiers were context-specific and did not generalize to different affective contexts.  

We found that classification of workload memory load under affective valence is 

possible, but only with diminished performance. Both, positive as well as negative 

affective valence resulted in decreased classification accuracies. Similar results have 

been found in a study by Mühl, Jeunet, & Lotte (2014), who used an N-back task to 

manipulate WML while social stress was induced with a stress-induction protocol, 

based on the Trier Social Stress Task (Kirschbaum, Pirke, & Hellhammer, 1993). The 

authors attempted to detect mental workload during stress using features from the 

frequency domain as well as the time domain. They concluded that it is possible to 

transfer classification methods across affective contexts, but only with diminished 

performance.  

Mean classification accuracies found in our study exceeded the 70 % threshold 

commonly used for active BCIs (Kübler et al., 2001) already on the single-trial level 

and accuracies were further improved via integration over time to almost 90 % (87.7), 

which is comparable to previous research (e.g., Brouwer et al., 2012). Interestingly, 

our analyses revealed that data integration over two trials already resulted in the 

largest gains for classification accuracies. This indicates that workload classification 
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under affective valence can reach levels of accuracy that allow the use in natural 

environments.  

As expected, we found that overall the frontal theta and parietal alpha features 

showed strong relevance for the distinction of WML. However, different EEG features 

were more or less relevant depending on the particular affective context. Activity in the 

alpha band appeared to be the most relevant feature for workload classification, 

especially under neutral affective valence (see Figure 26). Frontal theta activity 

appeared most relevant under negative affective valence, which might be due to the 

influence of frontal activity usually associated with affective valence reactions (see 

Figure 27). However, there were strong inter-individual differences in the data, which 

makes it difficult to draw strong conclusions. These strong inter-individual differences 

also highlight the necessity of individualized systems that are customized toward 

individual EEG patterns.  

Cross-valence classification revealed that a classifier trained under low affective 

valence (neutral 1-back vs neutral 2-back conditions) was not sensitive toward 

changes in affective valence which did not involve changes in WML (positive 1-back 

vs negative 1-back). However, we also found that the resulting workload classifiers 

were highly context-specific, indicating that our classifiers cannot be used in different 

settings, which seems highly problematic of one wants to design brain-based human-

machine systems that are robust to changes in the application setting. Surprisingly, 

these results are in conflict with results from the study by Mühl, Jeunet, & Lotte (2014), 

since their classifiers did generalize to different affective contexts. One reason for this 

conflicting results could be found in the use of additional frequency bands in their 

approach. We deliberately decided to exclude frequency bands not commonly 

associated with changes in WML to limit the effect of external factors (like muscular 

artifacts) on the results. Another reason for the different results might be the type of 

affect induction used in both studies. Our study used affective pictures as stimulus 

material, while the study by Mühl, Jeunet, & Lotte (2014) used a single change in 

external context (stress induction via performance evaluation) as affect induction. 

Limitations and Outlook 

EEG measures used to detect WML have shown to be sensitive to changes in affective 

valence. This failure to generate classifiers that generalize well under different affective 
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contexts raises various concerns. Future studies need to investigate if results 

generalize to different samples, since female subjects tend to show stronger reactions 

toward affective stimuli (Lang, Greenwald, Bradley, & Hamm, 1993) and also exhibit 

more stable responses (Ahern & Schwartz, 1985). Furthermore, it would be interesting 

to see if changes in stimulus material also impact our results. A study by Mühl et al. 

(2011) used visual, audio and audiovisual material for affect induction and found 

modality-specific responses in the EEG.  

Finally, most EEG features used to infer the current user state suffer from many 

to many relations, meaning that different processes can influence the accuracy of 

mental state detections.  Roy et al. (2013), for example, induced fatigue and found that 

with increasing time on task the discriminability of WML was decreased. Equivalent 

dipole fitting of independent components (Jung et al., 2001; Kothe & Makeig, 2011; 

Makeig, Bell., Jung, & Sejnowski, 1996; Makeig, Leslie, & Mullen, 2011; Oostenveld, 

Fries, Maris, & Schoffelen, 2011) has proven to be a useful approach that can be 

utilized to identify brain regions involved in the processing of different tasks. This 

method might therefore provide alternative measures that can be used to infer WML.  

To cope with the failure to develop classifier models that are robust under 

different contexts, we either have to develop models that allow to account for such 

context-sensitivity, or find new, context-independent features. Otherwise, it seems, we 

will be forced to limit the use of such brain-adaptive systems to very specific application 

scenarios. 
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6.2.1 Additional Chapter: Valence Classification Results 

Affective valence classification was based on the approach used for classification of 

WML, however only features in the alpha range (7-13 Hz) were used. Additionally, to 
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investigate if frontal asymmetries can be used to automatically detect changes in 

affective valence on the single subject level, I computed difference scores for all frontal 

channel pairs (AF4 – AF3, F6 – F5, F4 – F3, F2 – F1, FC6 – FC5, FC4 – FC3, FC2 – 

FC1) and used them as classification features in the FAA approach. 

All mean classification accuracies in the normal approach were above 

seventy-five percent, even with single trial classification and almost reached ninety 

percent (89.4%) via data integration across five trials. Classification accuracies from 

the FAA approach almost passed the seventy percent threshold (68.4%) and data 

integration over time even resulted in accuracies as high as eighty percent (80.5%). 

Median values are shown via box plots in Figure 28 (left). 

 

 

Figure 28. Box plots showing median values for accuracies for the normal approach 
(left) and the FAA approach (right): Blue boxes show accuracies for valence classification 
under low WML (1-back). Green boxes show accuracies for valence classification under high 
WML (2-back). Median values are indicated by black horizontal lines within the boxes. Top and 
bottom borders of the boxes represent the middle 50% of the data. Whiskers represent the 
smallest and largest values not classified as outliers (between 1.5 and 3 times the height of 
the boxes) or extreme values (more than three times the height of the boxes). Circles indicate 
outliers and stars show extreme values. 

 

Surprisingly, for the discrimination of affective valence conditions under different 

WML, parietal alpha features were most important. However frontal alpha features 

were involved as well, as can be seen in the FAA approach (see Figure 31 and Figure 

32). Interestingly, discrimination of affective valence conditions under WML was mainly 
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based on features in the upper alpha range (see Figure 29, Figure 30, Figure 31 and 

Figure 32). 

 

 

Figure 29. R² plot for the positive and negative affective valence conditions (normal 
approach) under low working memory load (1-back). Rows show individual EEG channels 
and Columns show individual frequency bins. R² values are color coded (see colorbar on the 
right side of figure for scaling). 
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Figure 30. R² plot for the positive and negative affective valence conditions (normal 
approach) under high working memory load (2-back). Rows show individual EEG channels 
and Columns show individual frequency bins. R² values are color coded (see colorbar on the 
right side of figure for scaling). 
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Figure 31. R² plot for the positive and negative affective valence conditions (FAA 
approach) under low working memory load (1-back). Rows show individual EEG channels 
and Columns show individual frequency bins. R² values are color coded (see colorbar on the 
right side of figure for scaling). 

 

 

 



The three Manuscripts describing the Studies of this Thesis   

Page 89 of 178 

 

 

Figure 32. R² plot for the positive and negative affective valence conditions (FAA 
approach) under high working memory load (2-back). Rows show individual EEG 
channels and Columns show individual frequency bins. R² values are color coded (see 
colorbar on the right side of figure for scaling). 

 

Interestingly, using classification accuracies in the normal approach as 

dependent variable there was a significant main effect for WML, F(1, 23) = 7.1, p<.015, 

η2 = 0.24. Affective valence classification under high WML (2-back) resulted in higher 

classification accuracies than affective valence classification under low WML in the 

normal approach. As expected, we found a significant main effect for number of trials, 

F(2.6, 59.2) = 96.4, p<.001, η2 = 0.81. Accuracies were significantly increased the 

more trials were used to make the class predictions. Though, this effect was only 

present for up to three trials, after that data integration did not significantly improve 

classification accuracies. There was no significant interaction between WML and 

number of trials, F(4, 92) = 0.9, n.s. Median values are shown via box plots in Figure 

28 (left). 

In the FAA approach there was also a significant main effect for WML showing 

increased classification accuracies under high workload, F(1, 23) = 4.4, p<.05, η2 = 

0.16. As expected, we also found a significant main effect for number of trials in the 

FAA approach, F(2.8, 64.7) = 59.6, p<.001, η2 = 0.72. Accuracies were significantly 



The three Manuscripts describing the Studies of this Thesis   

Page 90 of 178 

 

increased the more trials were used to make the class predictions, but again, only up 

to three trials. There was also no significant interaction between WML and number of 

trials, F(4, 92) = 1.9, n.s. Median values are shown via box plots in Figure 28 (right). 

Cross-workload classification using affective valence conditions under low WML 

(1-back) as training data and affective valence conditions under high WML (2-back) as 

test data resulted in an accuracy of sixty-four percent (sd = 7.8 %), while classifier 

training on affective valence conditions under high WML and classifier testing using 

affective valence conditions under low WML also yielded a mean accuracy of around 

sixty-four percent (64.8%; sd = 7.5%). Additionally, when using affective valence 

conditions under low WML for classifier training, mean cross-workload classification 

accuracies were around fifty percent (49.6%; sd = 4.5%) for workload conditions under 

neutral affective valence.  
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Abstract 

Most brain-computer interfaces (BCIs) focus on detecting single aspects of user states 

(e.g. motor imagery) in the electroencephalogram (EEG) in order to use these aspects 

as control input for external systems. This communication can be effective, but 

unaccounted mental processes can interfere with signals used for classification and 

thus impede BCI performance. To improve BCI performance, we propose deploying a 

heuristic approach that allows to describe different mental states influencing BCI 

performance. To test this approach, we analyzed neural signatures of potential 

affective states in data collected in a paradigm where the complex user state of 

perceived loss of control was induced. In this paper, source localization methods were 

used to identify brain dynamics with source located outside but affecting the signal of 

interest originating from the primary motor areas, pointing to interfering processes in 

the brain during natural human-machine interaction. In particular, we found affective 

correlates which were related to perceived loss of control. We conclude that additional 

context information may help to improve the applicability of BCIs to real-world 

scenarios. 
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Introduction 

Traditionally, BCIs have been developed to translate measured brain activities into 

commands for technical systems in real-time. By using measures of neural activity like 

the electroencephalogram (EEG), BCIs therefore offer additional communication 

channels for human-machine interaction (Wolpaw et al., 2002). The primary goal in 

developing BCI systems was to support persons with severe behavioral impairments 

like amyotrophic lateral sclerosis (ALS, also known as Lou Gehrig's disease). However, 

recently there have been developments toward systems that can benefit users without 

disabilities as well.  

From a user perspective, there are three main types of BCIs (Zander and Kothe, 

2011): Firstly, reactive BCIs, tracking users` attention towards stimuli that are 

externally presented and encode direct control commands. Secondly, active BCIs 

relying on voluntarily induced changes in brain activity, e.g. by imagining motor 

activities. Both active and reactive BCIs are used to control devices through directed 

commands (e.g. P300 speller; Belitski, Farquhar, and Desain, 2011, or motor imagery 

based BCIs; Pfurtscheller and Neuper, 2006). Thirdly, passive BCIs apply mental state 

monitoring to establish an implicit control loop. Passive BCIs do not rely on a user`s 

awareness about the concrete information exchanged during this interaction. An 

example can be found in Zander et al.  (2014), where ERP-based error detection was 

used to improve cursor movements toward targets in a 2d-grid. The participants of the 

study did not know, that they provided information to the system, but still recognized 

that system performance was improved. Other possible application scenarios for 

passive BCIs are adaptive learning environments (Gerjets et al., 2014), automatic 

correction of errors (Parra et al., 2003) or even the detection of mental states like 

bluffing in a game context (Reissland and Zander, 2009). 

The Relevance of Complex Mental User States to BCI Performance: The Case 

of Loss of Control 

Most available BCIs try to identify specific, narrow mental states or processes, as for 

example motor imagery (Lotte et al., 2010), working-memory load (Gerjets et al., 2014) 

or affective responses (Mühl, Heylen, et al., 2014). However, such systems typically 

do not account for contextual fluctuations in other mental states and processes that 
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arise during use. In line with this reasoning, previous work suggests that spontaneously 

occurring decrements in BCI reliability could be related to modulations in unaccounted 

mental processes and states (Zander and Jatzev, 2012; Myrden and Chau, 2015).  

Natural environments for innovative BCI applications (e.g. classroom or 

workplace settings; cf. Gerjets et al. 2014) usually contain various factors that can 

potentially evoke complex mental states in a user. Therefore, such application 

scenarios might easily induce a variability of different mental states that are not directly 

related to the core mental state or process that is in the focus of a certain BCI 

application. Accordingly, such factors can produce changes in EEG signals that are 

picked up by a system, but cannot be interpreted correctly due to the limited framework 

(usually consisting of a single mental state or process) the system is built upon.  

As many available classification algorithms assume stationary signal properties, 

which are learned from a single calibration session, these algorithms are unable to 

track shifts in the feature space (called non-stationarities) and rather require users to 

adapt to unexpected or erroneous behavior of the system, for instance by trying to 

produce brain signals similar to those used during calibration (Krauledat, Tangermann, 

Blankertz, and Müller, 2006).  

Future systems should automatically adapt to contextual changes in the EEG 

and provide stable performance even in noisy environments outside the lab. To 

facilitate the development of such systems it is necessary to investigate complex user 

states with the aim to separate contextual and potentially interfering states from the 

primary interaction mode.  

In this paper, we address the role of interfering mental states on BCI 

performance in a paradigm that was designed to experimentally manipulate an 

important complex user state in the context of BCI systems, namely the perceived 

feeling of a loss of control (LOC). The LOC paradigm used in our study has already 

been hypothesized to evoke affective as well as cognitive responses (Zander & Jatzev, 

2009) and thereby appears to be particularly suited to study different basic components 

of complex user states. In this paradigm, the feeling of LOC is evoked by means of a 

feedback manipulation: Subjects were first trained to use a fixed set of rules (color-

angle associations) to control a simple letter rotation task by means of button presses 

with the left versus right hand. Later in the experiment, the previously learned rules 
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were temporarily violated, thus eliciting the feeling of LOC. This paradigm allows to 

study the neural signatures of motor executions with and without LOC in order to 

analyze what happens to a specific BCI signal of interest (in this case motor execution 

responses) when other cognitive or affective mental states overlap with this signal. 

Contrary to standard BCI approaches, we decided to analyze motor execution 

responses rather than motor imagery responses in order to better control for the 

perceived LOC. Input based on motor imagery can be rather unreliable, whereas 

button presses are an extremely accurate input modality thereby not yielding 

unintended LOC experiences. Moreover, earlier work by Pfurtscheller and Neuper 

(1997) has demonstrated that that motor execution responses are structurally similar 

to motor imagery responses with respect to their neural signature. Therefore, for the 

purpose of the current study, namely to investigate the role of interfering mental states 

on the stability of BCI performance, we assumed that using a button-press paradigm 

would yield similar results than using a paradigm based solely on motor imagery. 

In earlier work it has already been demonstrated that EEG signature of motor 

execution responses changed under LOC, thereby leading to a BCI performance 

degradation when the interface was controlled by EEG signals (Zander and Jatzev, 

2012). However, in this work it remained unclear, which aspects of the complex user 

state contributed to the altered signature of motor responses in the EEG signal. 

Following previous work by Zander and Jatzev (2009), we assume in this paper 

that LOC might involve affective processes. According to this reasoning, the feeling of 

losing control over an interface should provoke negative emotions like irritation, worry, 

frustration, anger or helplessness (Reuderink et al. 2009). The aim of the current paper 

is to provide additional evidence for this assumption by comparing LOC trials to correct 

trials in our experimental paradigm with regard to potential neural signatures of 

affective user states. For this purpose we will not only analyze sensor-based EEG 

measures but also conduct an EEG-based source analysis. 

Neural Signatures of potential Affective User States in the Loss of Control 

Paradigm 

Several studies used EEG measures to investigate the neural basis of affective 

processes (Davidson, 1992; Kim et al., 2013; Olofsson et al., 2008). Laterality in the 

alpha band measured in frontal regions, also called Frontal alpha asymmetry (FAA), is 
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widely used in these studies as a measure for affective processing. However, this 

measure seems to capture a wide variety of affective responses. Many studies that 

used brain lateralization as a measure of affective states or responses focused on one 

particular dimension of emotional experience, namely the valence dimension (Ahern & 

Schwartz, 1985; Davidson & Tomarken, 1989; Huang et al., 2012; Lin et al., 2008; 

Ramirez & Vamvakousis, 2012). The valence dimension reflects the pleasantness or 

unpleasantness of an affective event and ranges from extreme pain (or unhappiness) 

to ecstasy (or extreme happiness). Left frontal activity in this context often indicates a 

tendency toward positive emotions like happiness (e.g. Ahern & Schwartz, 1985). 

However, the equivalence of left frontal activity with positive emotions is not 

unequivocal. Several studies showed that some emotions with negative valence might 

also activate the left hemisphere. An interpretation of this apparent contradiction has 

been provided by the Approach-Withdrawal model, first proposed by Schneirla 

(Schneirla, 1959, as cited in Dalgleish, 2004). It states that the left hemisphere is active 

in emotions associated with pleasant or unpleasant approach behaviors like anger or 

engagement whereas the right hemisphere is related to avoidance behaviors like fear. 

As an alternative explanation it has been proposed that FAA can be used to measure 

emotional responses along the dominance dimension (Demaree, Everhart, 

Youngstrom, and Harrison, 2005). Dominance has been specified as ‘feelings of 

control and influence over everyday situations, events and relationships versus 

feelings of being controlled and influenced by circumstances and others’ (Mehrabian, 

1994). In this context left-frontal activation is related to more dominant emotions that 

can also be of positive and negative valence. Whichever of these interpretations is 

correct, FAA should in any case be sensitive to affective responses we expect to be 

modulated during perceived loss of control. Interestingly, a recent study by Reuderink, 

Mühl, and Poel (2013) found that activity in the lower alpha band was related to the 

valence dimension, while activity in the upper alpha band was related to the dominance 

dimension, which might be of important in this analysis, since it seems plausible that 

LOC might have an effect on the dominance as well as the valence dimension.  

Thus, in a first step to explore whether the complex LOC user state contains 

affective components besides motor activities, we focused on examining a potential 

FAA shifts occurring during phases of reduced control. Specifically, using the FAA 
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measure, we investigated each individual experience of LOC during phases with loss 

of control (as compared to trials within these phases that do not reflect a LOC).  

In a second step, to further substantiate potential affective correlates found 

using the FAA, we conducted an additional cluster analysis to explore whether the 

corresponding brain dynamics can be attributed to specific neuroanatomical structures. 

In order to provide evidence for specific structures as sources of a FAA we used 

equivalent dipole modeling of independent components derived from an independent 

component analysis (ICA; Makeig et al., 1996; Oostenveld & Oostendorp, 2002). 

However, due to the novelty of the experimental paradigm used it is difficult to make 

concise predictions about specific brain areas involved, especially since the previous 

literature on brain laterality concluded that most theories underlying frontal 

asymmetries lack anatomical specifity (Wager et al., 2003). Nonetheless, potentially 

revealed brain sources of a FAA are expected to be interpretable as affective structures 

in the context of the paradigm used in this study. 

Material and Methods  

Experimental Task 

A simple game (called ‘Rotation-Left-Right or RLR’) was used to modulate LOC over 

the course of the experiment. Subjects had to discretely rotate a letter stimulus until it 

was aligned to a target letter with regard to its rotation angle. The basic principles of 

the task are illustrated in Figure 33 and a full description of the experimental task can 

be found in Zander and Jatzev (2012). 
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Figure 33. The Rotation-Left-Right (RLR) game used as experimental task. Left: Stimulus 
display showing stimulus to be rotated and target position. Letter R indicated clockwise rotation 
with right hand button press. Letter L indicated anti-clockwise rotation with left hand button 
press. Right: Experimental conditions. In the normal trials condition the color-rotation angle 
mapping was fixed. In the loss of control (LOC) trials condition was distorted with a maximal 
occurrence rate of 30%. Hence, during LOC the subjects did not know how the system 
responded to a button press. Adapted from Zander (2011) 

 

The stimuli were the two capital letters R and L. The capital letter R indicated 

clockwise rotations after a button press of the right hand and the capital letter L 

indicated counterclockwise rotations after a button press of the left hand.  

The color of the stimulus changed to indicate an expected rotation angle with 

the color being either, green for 30, yellow for 60 or red for 90 degrees. For each 

stimulus rotation, subjects could decide whether they wanted to rotate the letter 

stimulus according to the angle indicated by the color by pressing a button or not. A 

training phase was provided to allow subjects to develop better strategies to finish the 

task successfully in a shorter period of time. Usually, better strategies resulted from 

waiting for a rotation opportunity with a larger rotation angle. All colors and 

corresponding rotation angles occurred with the same probability and each stimulus 

had to be rotated for at least 90 degrees in order to be aligned with a target letter. In 
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the first part of the experiment, the contingencies between letters, colors and rotations 

were trained for approximately 30 minutes. In the second part of the experiment the 

previously learned rule system of color-angle mapping was systematically violated by 

rotating the stimulus by a different than expected angle with a chance of up to 30%. 

These violations resulted in trials with unexpected rotations (LOC trials), forced 

subjects to reconsider and potentially modify their previously formed strategies and 

induced – according to our hypothesis – a complex user state, namely the feeling of a 

perceived LOC.  

Experimental Setup 

The Dataset 

The dataset comprised eighteen healthy subjects (age range: 19 to 40 years) that were 

recorded in a previous experiment to investigate the effect of perceived LOC on EEG 

features related to motor response (Jatzev et al., 2008). The recordings have been 

conducted in line with the Declaration of Helsinki. Out of these eighteen subjects, three 

subjects had to be removed from the analysis due to strong artifact contamination. 

EEG-data was recorded with 32 active Ag/Cl-electrodes (positioned according to the 

extended 10% system) and a biosignal amplifier (Brainproducts GmbH., Gilching, 

Germany). All channels were referenced to the nasion. Impedances were kept below 

20 kΩ. The data were sampled at 1 kHz. The EEG recording sessions lasted for about 

sixty-six minutes. Our analysis was focused on data from the second part of the 

experiment where trials with expected stimulus rotation (normal trials) and trials with 

erroneous stimulus rotation (LOC trials) were mixed. At the beginning of the analyzed 

data segment with an overall duration of fifteen minutes, the incidence of trials where 

previously learned rules were violated was linearly increased from 0 to 30% over four 

minutes. Then the occurrence of LOC trials stayed at a maximum of 30% for 7 minutes, 

before the incidence of trials with incorrect rotation (LOC trials) was linearly decreased 

over the next 4 minutes. The experiment ended with 7 minutes consisting only of 

normal trials. 

Preprocessing 

First, the data was bandpass filtered between 1 and 30 Hz. Then it was down-sampled 

to 250 Hz and re-referenced to the common average (CAR) to suppress artifactual 

activity that spread over all channels (e.g. muscle activity or outside electrical noise; 
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see McFarland, McCane, David, and Wolpaw, 1997). To ensure that our findings could 

be applied to an online application scenario no further manual artifact rejection was 

performed. A logarithmic transformation was applied before computing the spectra to 

better fit the data to a Gaussian distribution. Based on the literature and the available 

data, the electrode pairs F3 / F4 and FC1 / FC2, respectively, were analyzed with 

regard to potential FAAs. All data processing was done via MATLAB and Statistics 

Toolbox Release 2013b ( The MathWorks, Inc., Natick, Massachusetts, United States) 

and EEGLAB (Delorme & Makeig, 2004).  

 

Analysis 

Each rotation trial started with the presentation of a letter stimulus (L or R, either 

colored in green, yellow or red) together with a target letter in grey to which the stimulus 

letter had to be aligned to by means of an appropriate rotation. Subsequently, subjects 

had a time window of 1000 ms to react (or not) with a left hand (for the letter L) or right 

hand (for the letter R) button press, resulting in a stimulus rotation (or not). After 300 

ms of the subsequent 850 – 950 ms interstimulus interval the color of the letter stimulus 

turned to grey. Following the interstimulus interval, a new letter stimulus was presented 

in color to start the next rotation trial. Only rotation trials with button press were used 

for analysis. The time window for analysis started 100 ms after the rotation of the 

stimulus and ended 700 ms later (50 – 150 ms before the interstimulus interval ended) 

to ensure that the data was not contaminated by effects related to expectancy of the 

next rotation opportunity (see Figure 34, left).  
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Figure 34. Window of analysis (left) and topografic difference plot illustrating the 
difference in alpha power between normal and LOC trials (right). Left: Time is on the 
horizontal axis. Vertical line indicates onset of letter rotation. Right: Topographic difference 
plot showing frontal alpha (8-12 Hz) asymmetry effect. Nose is at the top. Channel labels 
indicate channel location. Electrodes of interest are marked with black circles. Colorbar 
indicates value range of alpha power (after logarithm). Blue color shows low alpha power (top 
left and bottom left). Red color shows high alpha power. 

 

Power spectral density (PSD) of the EEG signal was used as basis for FAA 

estimation between 8 and 10 Hz for the lower alpha band and between 10 and 12 Hz 

for the upper alpha band. FAAs were computed as difference score (ln(Right alpha 

power) − ln(Left alpha power)), following the approach from Allen, Coan, and Nazarian 

(2004).  

For the analysis, we performed a three-way repeated measures ANOVA using 

the grand average (summing across all trials) FAA as dependent variable. The first 

factor was trial type with two levels (normal and LOC). The second factor was electrode 

pair, also with two levels (F4 – F3 and FC2 – FC1). The third and last factor was alpha 

band (lower alpha = 8 to 10 Hz and upper alpha = 10 – 12). Effects only appearing in 

the data of individual subjects were not taken into account. 

For the cluster analysis, equivalent dipole modeling based on topographies of 

independent components (ICs) was used to estimate the location of cortical sources 

underlying potential effects at the sensor level. Dipole fitting was done using a simple 

three-shell spherical head model implemented in the DIPFIT-plugin from the EEGLAB 

toolbox (Delorme et al., 2011; Oostenveld, Fries, Maris, and Schoffelen, 2011). To 
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increase location accuracy of the resulting component clusters, all independent 

components that contained dipole coordinates with residual variance greater than 15 

% have been automatically removed before clustering. Component clustering was 

done based on mean IC log spectra, equivalent dipole locations as well as scalp maps 

as determining factors. Principal component analysis (PCA; Law & Jolliffe, 1987) was 

used to compress these measures (excluding dipole locations) to their first 10 principal 

components. The dipole locations were naturally three-dimensional. To extract closely 

spaced component cluster these three-dimensional dipole locations were weighted by 

a factor of 20. All these measures were finally compacted into 10 dimensions via PCA, 

since clustering algorithms may not work well with measures having more than 10 

dimensions. K-means clustering (Ding & He, 2004) was used and any outlier ICs were 

automatically removed if the distance to any cluster centroid in joint measure space 

was greater than three standard deviations from the mean. The resulting IC clusters 

were inspected and ICs that exhibited activity that seemed to originate from non-brain 

artifacts were removed based on their activation spectra, scalp topographies and 

dipole location. Anatomical regions were assigned to the resulting component cluster 

centroids using the Talairach web client (Lancaster et al., 2000). Only clusters 

exhibiting a significant (p<.05) difference in the alpha band (8-12 Hz) between 

conditions were used for analysis. 

 

Results  

Scalp-based Analysis: 

As expected, we found a main effect for trial type, F(1, 14) = 9.46, p<.01, η2 = 0.40. 

LOC trials showed stronger left frontal activation (due to higher right frontal alpha 

power) than normal trials. There was no significant main effect for electrode pair, F(1, 

14) = 2.15, n.s. Furthermore, there was no significant main effect for alpha band, F(1, 

14) = 0.65, n.s. Finally, none of the interactions exhibited significant effects (all F-

values < 1.5). A topographic difference plot that illustrates the effect across both alpha 

bands at the electrode level can be seen in Figure 34 (right side), median values are 

shown in Figure 35 and channel spectra for all electrodes are shown in Figure 36. 
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Figure 35. Box plots showing median values for electrodes (left) and alpha bands (right). 
Median values are indicated by black horizontal lines within the boxes. Top and bottom borders 
of the boxes represent the middle 50% of the data. Whiskers represent the smallest and largest 
values not classified as outliers or extreme values. 
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Figure 36. Channel spectra between 1 to 30 Hz for all four channels used in the analysis. 
Top left: Channel F3. Top right: Channel F4. Bottom left: Channel FC1. Bottom right: Channel 
FC2. Significant differences (p<.05) are indicated with black bars. Please note that only 
channel FC2 shows significant activity in the alpha range (8-12 Hz; marked in red). 

 

Cluster Analysis: Identifying Sources underlying the FAAs found at the 

Sensor Level 

The cluster analysis yielded an IC cluster that showed spectral activity likely related to 

frontal laterality responses. The spectral activity of the component cluster projected 

strongly onto an area close to electrode FC2 (see Figure 37, bottom left). The scalp 

projection of this cluster showed the highest correlation (r=0.64, p <.001, sig.; see 

Table 1) with the topographical difference plot (see Figure 34, right), when compared 

with all other component clusters that exhibited a significant effect in the alpha band. 

Hence, the topographies show a unique, high similarity. 
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Table 1. Correlation coefficients between difference plot and all component clusters 
with significant activity in the alpha band. Please note that the right BA6 cluster displays 
the highest correlation coefficient (marked in red), indicating the largest overlap between the 
component cluster and the difference plot.  

Cluster right BA39 left BA6 right BA6 right BA10 right BA37 

ρ -0,24 0,17 0,64 0,38 -0,43 

All correlations significant at p<.001 

 

This component cluster was located in or near the right supplementary motor 

area (SMA) in Brodmann Area 6 (BA6; see Figure 37) and showed decreased lower 

alpha activity (p <.05) and increased upper alpha activity (p <.05) during LOC trials.  

 

 

Figure 37. Component cluster in or near right Brodmann Area 6 (BA6). The spectrum 
shows a significant decrease (p<.05) in the lower alpha range (black horizontal bar marked in 
red) and a significant increase (p<.05) in the upper alpha range (black horizontal bar marked 
in green) during LOC. Top right shows the location of individual dipoles as well as the cluster 
centroid (red). Bottom left shows the corresponding scalp projection (red colors indicate higher 
cluster weights). Bottom middle shows the right BA6 as a whole (image taken from 
https://www.wikimedia.org). 
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Figure 38. Component cluster in or near left Brodmann Area 6 (BA6). Note that the 
spectrum does not show a significant increase (p<0.05) in the alpha range during LOC. Top 
right shows the location of individual dipoles as well as the cluster centroid (red). Bottom left 
shows the corresponding scalp projection. Bottom middle shows the left BA6 as a whole 
(image taken from https://www.wikimedia.org). 

 

The homologous cluster located in or near the left BA6 (see Figure 38) did not 

show significantly increased alpha power during LOC. A visual inspection of the 

activation spectra of both clusters did not show any indication of electromyographic 

contamination. 

 

Discussion  

We could demonstrate that the complex user state in the focus of this paper, namely 

the feeling of perceived loss of control, displays some of the characteristic neural 

signatures of affective processes. In particular, our scalp based analysis revealed a 

frontal asymmetry in the alpha band, indicating an increase in left frontal activity (due 

to an increase in right frontal alpha power) for incorrect stimulus rotation (LOC trials) 

as compared to normal trials with correct stimulus rotation. We further approximated 

the cortical sources that seem to contribute to the LOC-related FAA using equivalent 
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dipole fitting of independent components, revealing opposing effects that could not be 

found at the electrode level. 

Frontal Alpha Asymmetry indicates affective Responses during perceived 

Loss of Control 

We found that trials with incorrect stimulus rotation (LOC) were accompanied with 

increased left frontal activity (due to increased right frontal alpha power). Such 

responses are commonly related to increased dominance, emotions associated with 

approach behaviors, as well as positive valence. While a shift toward positive valence 

would seem quite puzzling, an emotional shift toward more dominance and approach 

behaviors could be well explained with feelings of anger, hostility and contempt 

(Demaree et al., 2005), which possibly were experienced by subjects during LOC trials. 

These approach related responses would reflect engagement (Harmon-Jones, Gable, 

and Peterson, 2010), indicating that subjects made efforts to regain control of the 

system. This interpretation appears most likely, especially since no behavioral 

alternative was available (subjects could only press one button), previously formed 

strategies to solve the task did not work anymore due to the violation of task rules and 

the random nature of the occurring LOC trials made it difficult to adapt those strategies. 

Interestingly, the fact that the system did not respond properly anymore, impeding task 

performance, did not seem to result in task disengagement, since task disengagement 

should have been reflected in decreased left frontal activation, thereby implying 

avoidance behaviors resulting in feelings like frustration.  

Component Cluster Analysis  

Scalp electrodes record a mixed sum of cortical activity which can distort results and 

lead to incorrect conclusions. Independent component analysis uses a linear 

transformation of the scalp signal to separate the recorded activity into different data 

sources. In combination with equivalent dipole fitting it is possible to investigate the 

cortical dynamics that underlie the signals recorded at the sensor level. We found a 

component cluster that was located in or near BA6 displaying a scalp projection (see 

Figure 37, bottom left) closely resembling the laterality effect found in the alpha power 

difference plots (see Figure 34, right). This cluster exhibited an alpha band activity 

during LOC trials that was decreased in the lower alpha band (p<.05) and increased 

in the upper alpha band (p<.05; see Figure 37). Similar results have been found in a 
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study by Reuderink, Mühl, and Poel (2013). The authors found that activity in the lower 

alpha band was related to the valence dimension, while activity in the upper alpha band 

was related to the dominance dimension. However, our investigation did not exhibit 

this effect at the electrode level which is the basis of most other FAA related analyses. 

The reason for this discrepancy is probably due to the fact that scalp electrodes record 

a mixture of multiple different cortical sources, which can distort effects based on single 

cortical sources. However, the sample was too small to put a strong emphasis on the 

results of the cluster analysis and further studies are needed to support these findings. 

Nevertheless, we see this as further evidence that that the FAA effect might be more 

complex than previously assumed. A separate analysis of different alpha bands in 

combination with source based analyses might allow to disentangle different 

responses that are usually associated with this measure. 

The component cluster that we found to be related to the FAA induced by LOC 

was located in or near BA6, which plays a plays a major role in the planning of motor 

responses. In line with this function of BA6, previous research has indicated that 

emotional experiences are always associated with certain motor response tendencies 

(e.g., Önal-Hartmann, Pauli, Ocklenburg, and Güntürkün, 2012), for instance, we reach 

for positive stimuli or push away negative ones. BA6 is composed of the premotor 

cortex and, medially, the supplementary motor area (SMA). The right BA6 cluster 

centroid was located closest to the SMA (see Figure 37, top right). The SMA has been 

shown to be active during motor action under affective influence. For example, SMA 

activation was found for emotional conflict in a study by Ochsner, Hughes, Robertson, 

Cooper, and Gabrieli (2009) in an affective flanker task. Another study by Oliveri et al. 

(2003) found enhanced motor evoked potentials in the SMA when using emotional 

stimuli. The authors conclude that the SMA plays a role when emotional experiences 

are transformed into motor actions. This evidence is in line with our expectations 

concerning the emotional effects of the paradigm used in our study.  

Our findings are further supported by the fact that the homologous component 

cluster located on the left hemisphere and projected onto electrodes F3 and FC1 (see 

Figure 38) did not show a significant increase in the alpha band during LOC trials. 

Furthermore, the scalp projection of this component cluster did not exhibit a strong 

similarity (r=0.17, p <.001, sig.; see Table 1) with the topographical difference plot (see 
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Figure 34, right). We therefore conclude that the right BA6 component cluster is the 

main contributor to the laterality effect (measured via FAA) we found at the sensor 

level. 

Limitations and Outlook 

Although we were able to identify affective responses in the LOC task as expected, 

this work has two main limitations. First, no classification has been conducted on the 

discovered laterality response. Future studies would need to adapt the LOC paradigm 

to make it suitable for a real-time classification approach. Such a paradigm should use 

motor imagery instead of button presses as input and implement a passive BCI for the 

automatic detection of affective processes that might interfere with the primary 

interaction mode. However, building such a system is not trivial, since both the 

classification of motor imagery as control input as well as the detection of affective 

responses will not be 100% reliable and a separation of both influences on the scalp 

recorded EEG might prove difficult. Using ICs as classifier features might turn out to 

be a viable approach, but up to now it is quite unclear whether IC cluster remain stable 

when using them in such a dynamic system. 

Second, future studies should try to obtain more online measures of the 

subjective user states during interaction with the system. Since classification is done 

on a trial by trial basis, non-intrusive approaches would be ideal (e.g., heart rate or 

electrodermal activity). However, such approaches pose their own difficulties and 

usually do not work perfectly (Mauss & Robinson, 2009). Due to the necessary 

temporal density of user state measures, subjective ratings that can only be acquired 

in retrospect do also not seem very suitable for this paradigm. Nevertheless, they might 

provide an approximation of the general experience during the experiment and it is 

strongly recommended that future studies should implement them (e.g. affective 

ratings for all three dimensions from the PAD model using the self-assessment 

manikin; Bradley and Lang, 1994). With such measures it might become possible to 

uncover inter-individual differences, thereby enabling a more differentiated 

perspective. For instance, we assume, that even if most subjects were not discouraged 

by the erratic behavior the system exhibited, some subjects might have been.  

Furthermore, the current paradigm does not manipulate cognitive and affective 

processes separately and therefore these processes are confounded to a certain 
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degree. Future studies should use paradigms that allow for such a manipulation to 

further disentangle the specific brain responses related to cognitive as well as affective 

responses. Potential candidates are the affective flanker task (Alguacil, Tudela, and 

Ruz, 2013) or the affective n-back task (Passarotti, Sweeney, and Pavuluri, 2011).  

Conclusion 

Using FAA in combination with source localization approaches, we described brain 

responses in the EEG during naturalistic human-machine interaction that appear to be 

related to affective components of a complex user state (LOC). Our analyses helped 

to distinguish these responses from those related to the primary interaction mode 

(button press).  

This is further evidence that complex user states involve multiple factors. Such 

factors might be used as additional context information in future BCI systems by 

extracting a multi-facetted framework from the ongoing EEG. Such a framework might 

help to increase reliability in uncontrolled settings by providing information which is 

usually hard to access.  

 

Acknowledgments 

This research was funded by the LEAD Graduate School [GSC1028], a project of the 

Excellence Initiative of the German federal and state governments, as well as by the 

Department of Human-Machine Systems at TU Berlin. 

 

6.3.1 Additional Section analyzing Activity of the right BA6 Cluster 

Additional analysis of activity of the right BA6 cluster over the course of the second 

half of the experiment revealed that this cluster exhibited increased alpha activity at 

the end of the experiment (normal condition after LOC) when both trial types (normal 

and LOC) were combined (see Figure 39). 
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Figure 39. Activity of the right BA6 cluster over the course of the second half of the 
experiment. I divided the data from the second half of the experiment into three parts (top 
right) and found that the overall activity (including normal trials and loss of control [LOC] trials) 
in the cluster exhibited increased alpha activity in the last part of the experiment, which was 
during a phase where LOC already disappeared.  

 

This finding indicates that, in addition to the affective responses during the LOC 

phase of the experiment there was another dominance related effect that appeared 

with some time delay. It appeared when the LOC was already decreasing again and 

thereby does not represent an emotional response, but more of a mood related 

phenomenon. This finding will be further discussed in section 7.3.4. 

 

6.3.2 Additional Chapter: Examining Cognitive Load during perceived Loss 

of Control 

In cooperation with Dr. Zander and colleagues (Zander et al., in preparation), WML 

was investigated using the above mentioned dataset. According to established findings 

in the context of EEG WML detection (Klimesch, 1999; Scharinger, Kammerer, & 

Gerjets, 2012; Walter et al., 2013), the authors could show that changes in brain activity 

due to LOC can be attributed to an increase in WML as reflected in increased frontal 

theta activity as well as decreased parietal alpha activity (see Figure 40).  
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Figure 40. Spectra of channels Fz (left) and Pz (right) computed with EEGLAB’s fast 
Fourier transformation (FFT) and an indicator for statistical significance (p<.05). It can 
be seen that in the loss of control condition (LOC) theta power on Fz is significantly higher, 
while alpha activity on Pz is significantly lower than in the condition of full control. 

 

Corresponding electrocortical activity was traced back using ICA and dipole 

modeling to areas within BA 24 (anterior cingulate cortex or ACC; see Figure 41) and 

BA 31 (posterior cingulate cortex; see Figure 42), which are often associated with 

changes in WML.  

Prominently, the ACC has been linked to ERP components reflecting error 

processing, said to be induced by unexpected action outcomes (Falkenstein, 

Hoormann, Christ, & Hohnsbein, 2000; Holroyd & Coles, 2002). Bush, Luu, & Posner 

(2000) argue that the generation of such error signals is not only a sign of top-down 

processing, but also of affective mental processing. This is in accordance with the LOC 

paradigm used here: LOC is induced by (unexpected) machine errors, and it can be 

expected that these lead to an affective reaction (anger, frustration). 

The location of the parietal alpha cluster was reconstructed in or near the border 

of the posterior cingulate cortex and the cuneus, not far from the intraparietal sulcus. 

A number of findings relate this area to WML, supporting its identification in this study. 

In an fMRI study, Leech, Kamourieh, Beckmann, & Sharp (2011) showed that the 

activity of the posterior cingulate cortex reflects task complexity in workload tasks such 
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as the N-back task. The cuneus has been shown to have different spectral properties 

in the alpha band during workload tasks (Michels, Moazami-Goudarzi, Jeanmonod, & 

Sarnthein, 2008). MacDonald, Cohen, Stenger, & Carter (2000) reasoned that this 

specific area (BA24) might house a mechanism for performance monitoring during 

repetitive tasks with a specific regard to incongruence in stimuli. 

 

 

Figure 41. Scalp projection and spectral power of frontal cluster. 
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Figure 42. Scalp projection and spectral power of parietal cluster. 

 

A passive BCI discriminated phases with full control from that with perceived 

LOC, achieving a mean classification accuracy of more than seventy percent (72.3%). 

The classifier output indicated that WML increased during LOC, but did not return to 

normal after full control was restored. These findings therefore do not appear to be 

specific to LOC itself. In the final, full-control phase of the experiment, participants may 

have been occupied adjusting once again to a changed situation. This indicates that 

affective responses and their interactions with WML need to be considered as well, 

which will be part of section 7.3.4 in the general discussion.  

 



General Discussion   

Page 114 of 178 

 

7 General Discussion 

This section will start with a discussion of all findings related to WML, affective valence 

and dominance. Following this, the interactions between these processes will be 

reviewed. This also contains an attempt to integrate findings from three different 

studies into the proposed framework. This section will finish with a conclusion that tries 

to answer all RQs.  

 

7.1   Working Memory Load 

At the beginning I will review the results from the subjective and performance 

measures. After that I will explain the EEG measures for WML like frontal theta activity 

and parietal alpha activity. Finally, I will reflect on the limitations of these findings and 

also provide a short outlook for future research. 

 

7.1.1 Subjective and Performance Measures related to Working Memory 

Load 

As expected, I found that increased WML, due to an increase in the load factor of the 

emoback task, resulted in higher subjective workload ratings. This finding is 

reassuring, especially since some subjects reported difficulties judging the WML with 

regard to the difficulty of the emoback task. Some subjects even reported that they 

experienced the 1-back conditions as more demanding, due to their monotonous 

nature.  

As predicted, my analyses revealed that task performance was impaired due to 

an increase in WML in the difficult (2-back) conditions. This was reflected in reduced 

accuracies as well as increased reaction times.  

 

7.1.2 EEG Working Memory Load Measures 

Increased WML as induced by the difficult conditions was also reflected in EEG 

measures used to infer WML. As found in previous studies (Klimesch, 1999; 

Scharinger et al., 2012), frontal theta activity was increased during high WML (2-back). 
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Interestingly, the negative affective valence conditions also had an effect on 

EEG features used to infer WML in the participants. However, contrary to WML, the 

negative affective valence conditions resulted in decreased frontal theta activity. This 

finding will be further discussed in section 7.3.3. 

I will now review the findings for the second workload related EEG measure, 

parietal alpha activity. As hypothesized, I found that parietal alpha activity was reduced 

during increased WML. Furthermore, my analyses revealed that negative affective 

valence also resulted in decreased parietal alpha activity, which will also be further 

discussed in section 7.3.3. In the following section, I will discuss the classification of 

WML. 

 

7.1.3 Classification of Working Memory Load 

The results of the second emoback study demonstrate that WML can be classified 

under affective valence, providing classification accuracies which can be used in the 

context of neurotutors. Overall, classification accuracies for WML passed the seventy 

percent performance threshold, which is widely used for the evaluation of active BCIs 

(Kübler et al., 2001). This classification performance was already achieved at the 

single-trial level. Integration over time, using multiple (up to 5) trials to make a given 

class label estimate, further improved classification performance to almost ninety 

percent (87.7%). This performance level is comparable to previous research that also 

used data integration over time to boost performance (see Brouwer et al., 2012). 

Notably, my results show that using only two trials to integrate data over time led to the 

most substantial improvements. These two trials represent just five seconds of data, 

which highlights that our approach is usable in the context of neurotutors, since a 

robust estimate of the current user state every couple of seconds seems sufficient in 

such settings. 

In line with previous research (see section 4.3.3.2), my analyses revealed that 

frontal theta and parietal alpha features were most important for the discrimination of 

WML, even under different affective valence. Nevertheless, the relevance of different 

EEG features strongly depended on the specific affective context. Activity in the frontal 

theta band appeared most relevant for the discrimination of WML under negative 

affective valence (see Figure 27). This might be explained by the effects found in the 
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first emoback study, which indicated that negative affective valence led to reduced 

frontal theta activity (see section 6.1). The overall reduced frontal theta activity might 

have improved the discriminability of the frontal theta features, via a reduction of the 

variance in this measure. Somewhat similar results have been found in a study 

presented at the Berlin BCI Workshop 2012 (Grissmann et al., 2012). The authors used 

motor imagery as well as steady-state-visually evoked potentials (SSVEPs) to train a 

BCI intended for two-dimensional cursor control and found that classification 

performance was improved when using the mixed conditions as training data. Their 

analyses revealed that the signal produced by the SSVEPs did overlap with signals 

originating from the sensorimotor cortex due to the imagery of motor actions. The 

authors applied a common spatial pattern filter (Ramoser, Müller-Gerking, & 

Pfurtscheller, 2000), which could have helped to prune the features in the motor cortex 

and thereby improved the classification performance.  

In contrast to the classification of WML under negative affective valence, WML 

discrimination under neutral affective valence mostly depended on alpha band activity 

(see Figure 26). The markedly different patterns found for each specific affective 

context already display the impact of the different affective valence on the features 

used to infer WML. This was also reflected in the reduced classification performances 

that were found under positive as well as negative affective valence. These findings 

are partially comparable to research conducted by Mühl, Jeunet, & Lotte (2014). They 

used an N-back task to generate WML while social stress was induced using a stress 

induction protocol based on the Trier Social Stress Task (Kirschbaum et al., 1993). 

EEG features from the frequency-domain as well as the time-domain have been used 

to infer WML. The authors concluded that classification methods can be transferred 

across affective contexts, although only with reduced classification accuracies. In 

contrast to that, I found that the classifiers used in my study were highly 

context-specific. The classifiers did not generalize well across different affective 

contexts. One potential reason for these conflicting results might be the use of 

additional frequency bands in the study by Mühl, Jeunet, & Lotte (2014). I deliberately 

avoided the use of frequency bands commonly not used to infer WML to avoid a bias 

in the results which might occur due to external factors like muscular artifacts. A second 

reason for the different results could be the type of affect induction used in their 

paradigm. While I chose to use a task that is inherently activating cognitive as well as 
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affective processes, the affect induction used by Mühl, Jeunet, & Lotte (2014) was 

based on a change of the context due to the simulation of an evaluation scenario.  

Additionally I found strong inter-individual differences in the recorded EEG data. 

They highlight the current need for customized systems which are individualized for 

each single subject and context. The next section will shortly describe the limitations 

of these findings.  

 

7.1.4 Limitations and Outlook for the Detection of Working Memory Load 

The failure to generate WML classifiers that generalize well under different affective 

contexts raises various concerns, which affect the applicability of such approaches in 

the context of neurotutors. The creation of training data that is required by machine 

learning approaches is usually quite tedious. If it turns out that robust detection of WML 

using the approach described above indeed requires the creation of training data for 

each specific context, then it seems that we are either forced to focus on very specific 

application scenarios or develop new approaches that are not so context sensitive. 

These topics will be further addressed in section 7. 

 

7.2 Affective Valence and Dominance 

At the beginning I will review the results from the subjective measures concerning the 

valence and dominance dimension in the emoback studies. After that results from the 

performance measures in relation to affective valence in the emoback paradigm will 

be discussed. Following that, I will review the EEG measure for affective valence and 

dominance, namely the FAA. After that the results from the affective valence 

classification will be discussed. Finally, this section will describe the limitations 

concerning these findings and also provide a brief outlook for future studies. 
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7.2.1 Subjective Measures related to the Valence and the Dominance 

Dimension 

As hypothesized, I also found a significant effect of affective valence on ratings from 

the valence dimension of the SAM. Notably, the successful induction of positive 

affective valence shows that the emoback paradigm worked in the intended way. The 

induction of positive emotions can be very difficult to achieve in laboratory 

environments, since positive emotions usually arise in a specific context which is 

difficult to represent in a single picture (Kim & Hamann, 2007).   

Unfortunately, I could not acquire reliable subjective dominance ratings during 

the experiment (see section 6.1.1). The subjects were too unfamiliar with the concept 

of dominance and therefore mostly chose the middle category.  

 

7.2.2 Performance Measures in the Context of Affective Valence 

In the emoback studies, I found that negative affective valence resulted in decreased 

performance, as reflected in the results of both performance measures. These results 

can be seen as further evidence showing that cognitive and affective components of 

the proposed framework interact with each other.  

This finding is in line with research by Passarotti et al. (2011) who used face 

stimuli in an affective N-back task. More precisely, the authors found that angry faces 

used as stimuli resulted in increased reaction times. Such results could be explained 

through the concept of hot cognition which states that decision making can be impaired 

by stimuli with strong emotional meaning or content (Huijbregts, Warren, De 

Sonneville, and Swaab-Barneveld, 2008). Thus, this framework assumes that the 

processing of stimuli with strong positive or negative affective valence can divert limited 

cognitive resources from the primary task and thereby decrease performance.  

One example for such a diversion of cognitive resources would be the process 

of the automatic capturing of attention, which has been found in a study by Levens and 

Gotlib (2010). The authors found that strongly valenced stimuli have a tendency to stay 

longer active in WM. This might potentially interfere with different EFs required by the 

emoback paradigm (Miyake et al., 2000), mainly with the core EFs of updating and 

inhibition. The emoback paradigm demands that participants constantly refresh 
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(update) the content in WM by adding new stimuli and replacing (inhibit) old ones. 

Furthermore, participants were also required to switch (shift) between a simple 

identity-matching task (before reacting to the stimulus) and an updating task (after 

reacting to the stimulus). Strongly negative valenced stimuli could have caught the 

attention of the subjects, diverting it to the negative valenced stimuli and away from 

the primary task. This could have slowed down the rearrangement of stimuli in WM, 

thereby resulting in impaired task performance.  

 

7.2.3 EEG Measure for Affective Valence – Frontal Alpha Asymmetry 

The results from the subjective measures as well as the performance measures clearly 

demonstrate that the paradigm worked in the intended way. I was able to successfully 

induce WML and affective valence. Nevertheless, I could not find any significant effect 

using the FAA measure to detect affective valence during the emoback task. Despite 

a large body of evidence supporting this phenomenon, this study does not represent 

the first incidence where researchers unsuccessfully attempted to use this measure to 

infer changes in affective valence. Various studies found that the FAA is not always 

observable in response to affective stimulation (Fairclough & Roberts, 2011; Kop et al., 

2011; Sarlo, Buodo, Poli, & Palomba, 2005; Schutter, Putman, Hermans, & Van Honk, 

2001; Winkler, Jäger, Mihajlovic, & Tsoneva, 2010).  

For instance, recent research conducted by Hettich, Bolinger, Matuz, 

Birbaumer, and Spüler (2016) used auditory stimuli from the international affective 

digitized sounds database (IADS-2; Bradley & Lang, 2007) to induce affective valence. 

They used the LPP and the FAA as indicators for affective valence and found that only 

the LPP produced brain responses that could be used to automatically detect the 

affective valence during human-machine interaction. Their conclusion is similar to 

mine, stating that EEG measures used to infer the ongoing user state are highly 

context-specific and therefore depend on a given experimental paradigm. This leads 

to another potential cause for the non-responsiveness of the FAA under WML. Brain 

laterality responses have been measured during rest or passive viewing in most 

previous studies (Ahern & Schwartz, 1985; Davidson & Wheeler, 1992; Huang et al., 

2012; Lin, Wang, Wu, Jeng, and Chen, 2009; Ramirez & Vamvakousis, 2012). The 

paradigm used in my studies tried to infer affective valence using the FAA while 



General Discussion   

Page 120 of 178 

 

participants were simultaneously engaged in a WML task. This could have created 

interference, especially since the FAA is known to be influenced by WML 

(Briesemeister, Tamm, Heine, and Jacobs, 2013). For instance, a study by Baldwin 

and Penaranda (2012) found that increased task difficulty resulted in increased left 

frontal activity. My analyses revealed that performance was impaired by negative 

affective valence. However, this impairment should have resulted in increased right 

frontal activity, since right frontal activity is related to the experience of negative 

affective valence. I therefore assume that it might be possible that both influences, 

WML and negative affective valence, influenced the same FAA measure. However, 

these influences could have pointed in opposing directions, thereby potentially 

canceling each other out and masking any effects.  

This finding further highlight the need for frameworks that enable us to account 

for such specific contexts. Additionally, it underscores the necessity for a re-evaluation 

of results from studies which were highly controlled and therefore did not account for 

the potential influence of such context factors. Only with the help of such studies can 

we discover which results can be used in more natural environments outside the lab.  

 

7.2.4 Frontal Alpha Asymmetry as Indicator of Affective Dominance 

Responses  

The analyses of the LOC study revealed that trials with incorrect stimulus rotation 

(LOC) were accompanied with increased left frontal activity due to increased right 

frontal alpha activity. Left frontal activity is usually associated with increased affective 

dominance as well as positive affective valence. While the shift towards positive 

affective valence seems puzzling at first, the shift toward more dominance could be 

explained with feelings of anger (Demaree et al., 2005), which might have been 

experienced by participants during LOC. Such approach-related responses appear to 

reflect engagement (Harmon-Jones et al., 2010), which could indicate that subjects 

made efforts to regain control of the system after LOC. As previously learned strategies 

that were used to solve the task did not work anymore, it is highly likely that anger 

arose that fueled the desire to regain control. Figure 43 helps to better understand the 

typical learning trajectory over the course of the experiment.  
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Figure 43. Strategies developed during the LOC paradigm. Time is displayed horizontally 
and the vertical axis shows the angle of rotation (color coded). At the top the full control mode 
and the ‘taking everything’ strategy is displayed. The middle shows the more efficient ‘waiting 
on red’ strategy in the full control mode. At the bottom the potential behavior of somebody who 
tries to implement the ‘waiting on red’ strategy during LOC is displayed. However, as this 
example illustrates, this strategy does not work during LOC, requiring the user to rethink his 
strategy accordingly (Zander, 2011). 

 

At the beginning of the experiment, most subjects took all presented rotation 

opportunities. After a while the participants realized that they can reach the goal faster 

if they waited for red, which indicated a larger rotation angle. However, during LOC the 

subjects could not apply the learned strategies anymore, since the system did not 

respond in the expected manner. This seems to have forced the subjects to either try 

to regain control or withdraw fully from the task instead. Additionally, related analyses 

from Zander et al. (in preparation; see section 6.3.2) further support this assumption, 

since they found that WML was increased during LOC. The seemingly erroneous 

behavior of the system did not appear to result in task disengagement, since task 

disengagement should have been reflected in decreased left frontal activation as well 



General Discussion   

Page 122 of 178 

 

as reduced WML. This finding further supports the assumption of additional efforts on 

behalf of the subjects that usually accompany high dominance behavior.  

Nonetheless, the discovered laterality effect could also be interpreted as shift 

toward positive valence, which appears to be counter-intuitive, since approach-related 

emotions due to LOC should have been accompanied by a shift toward negative 

affective valence. Results from the source localization analysis will help to resolve this 

apparent inconsistency.   

 

7.2.5 Source Localization Analysis of the LOC Data 

Analyses of the component cluster activities revealed that the laterality effect found in 

the alpha power difference plots (see Figure 34; right) most closely resembled the 

scalp projection of a component cluster that was located in or near the right BA6 (see 

Figure 37). Interestingly, this BA6 cluster showed decreased alpha activity in the lower 

alpha band and increased activity in the upper alpha band during LOC. This differential 

effect supports the assumption that the potential experience of anger during LOC trials 

was likely accompanied by emotional responses with high dominance and negative 

valence. This interpretation is in line with Reuderink, Mühl, and Poel (2013) who found 

similar results in related research that also manipulated the interaction in a 

human-machine system. The authors measured valence and dominance during game 

play and found that activity in the lower alpha band was related to affective valence 

and activity in the upper alpha band was related to affective dominance. Such findings 

suggest that the FAA response is more complex than previously assumed. A separate 

analysis of different alpha bands in future studies might help to disentangle different 

responses that are usually associated with the FAA measure. 

As indicated by previous research, emotions are often related to certain motor 

response tendencies (Önal-Hartmann et al., 2012). Humans generally push away 

negative stimuli and reach for positive stimuli. One region of the brain which is 

assumed to play a major role in the planning of such motor responses is BA6 which 

includes the premotor cortex as well as the SMA. The centroid of the right BA6 cluster 

was located closest to the right SMA (see red dot in individual dipole locations in Figure 

37; top right). In past research, the SMA has been shown to be active in response to 

unclear stimuli (Watson et al., 2013). I assume that due to the random nature of the 
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LOC paradigm the interpretation of the stimuli color was affected during LOC, leading 

to an uncertainty about which response could be expected from the system. 

Furthermore, SMA activity was also found during unimanual and stimulus-cued 

movements (Picard & Strick, 2003). Such response behavior is also part of the LOC 

paradigm, which required participants to react via unimanual key press to letter stimuli. 

Additionally, a study by Oliveri et al. (2003) revealed that the use of emotional stimuli 

resulted in enhanced motor evoked potentials in the SMA. Since I assume that the 

LOC was accompanied by affective reactions, one can expect that the LOC stimuli did 

function as emotion evoking stimuli. This could further explain the increased activity in 

the right BA6 cluster. Finally, the SMA has been shown to exhibit increased activity 

during emotional conflict, which was found in a study using an affective flanker task 

(Ochsner, Hughes, Robertson, Cooper, & Gabrieli, 2009). The random nature of the 

occurring experience of LOC makes it highly plausible to assume that some kind of 

emotional conflict was induced via the LOC paradigm, further indicating that this 

component cluster was the main contributor to the laterality effect I found at the 

electrode level.  Additional support for my interpretations is provided by the results of 

the analysis of the homologous BA6 component cluster located on the left hemisphere. 

This component cluster did not exhibit increased alpha band activity, which suggests 

that it did not contribute to the laterality effect found at the electrode level. Furthermore, 

correlational analyses revealed that the scalp projection of this component cluster did 

not show a strong similarity with the difference plot (r=0.17, p <.001, sig.; see Table 1, 

Figure 38 and Figure 34; right), which is additional evidence for a main contribution 

of the right BA6 cluster to the found laterality effect. The next section will discuss the 

findings from the affective valence classification from the second emoback study. 

 

7.2.6 Classification of Affective Valence 

In the first emoback study I only analyzed effects on the group level and the large 

variance in EEG measures hinted at substantial inter-individual differences in the 

recorded data sample (see Figure 19). Accordingly, I cannot rule out laterality effects 

that existed on an individual level. Classification approaches commonly used in the 

field of BCIs usually operate on a single subject level (Allison et al., 2011; Hwang, Kim, 

Choi, & Im, 2013; Leeb et al., 2007) and therefore might help reveal individual 
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responses, which cannot be found at the group level. This analysis of individual EEG 

responses was part of the second emoback study (see section 6.2), which will be 

discussed in this section. 

My analyses revealed that affective valence can be classified under WML, 

resulting in classification accuracies which indicate that our approach is feasible in the 

context of neurotutors. Mean classification accuracies were above the seventy percent 

threshold (Kübler et al., 2001) for single-trial classification using the normal approach 

that used global alpha power changes as features. Performance of the normal 

approach was further improved via data integration over time, resulting in peak 

accuracies of close to ninety percent (89.4%). To further investigate the potential use 

of FAAs in the context of neurotutors, I created additional features based on difference 

scores that resemble the FAA measure (see section 6.2.1). Using the FAA approach 

resulted in overall classification results that just failed to exceed the seventy percent 

threshold at the single-trial level under low WML (68.4%). However, data integration 

over time helped to improve performance in this approach as well, reaching accuracies 

as high as eighty percent (80.5%). The achieved performance level is comparable to 

previous research that tried to classify pure affective states (Kim et al., 2013). Similar 

to the classification of WML, data integration over time using two trials provided the 

largest improvements for both valence classification approaches.  

Surprisingly, I found that parietal alpha activity was most relevant for the 

discrimination of affective valence in the normal approach (see Figure 29 and Figure 

30). This finding seems to indicate that the normal approach was most sensitive toward 

changes in WL features which reacted to the specific affective context, something that 

could prove highly problematic if one wants to differentiate between WML and affective 

valence, since both seem to modulate the same EEG response. Such findings highlight 

the necessity to limit data input for the classifier, which was the intention behind the 

FAA approach. Surprisingly, I found that discrimination of affective valence in the FAA 

approach was mostly due to frontal alpha activity in the upper alpha band (see Figure 

31 and Figure 32). Reuderink, Mühl, and Poel (2013) also used laterality measures in 

a related investigation that also manipulated control over a human-machine interaction 

system. They used a variant of the popular Pacman game and induced frustration by 

ignoring a certain amount of keyboard input. With the use of the SAM scales (Bradley 
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& Lang, 1994) they found that activity in the lower alpha band was related to the 

valence dimension, while activity in the upper alpha band was related to the dominance 

dimension. Similar results have also been found in my third study that also manipulated 

the level of control during human-machine interaction (LOC study; see section 0). The 

subjects in the emoback study primarily reported feelings of disgust in response to the 

negative valenced stimuli (e.g., mutilations). Since there was no way to avoid exposure 

with the stimuli without stopping the experiment, one could assume that the experience 

of negative valence was accompanied by feelings of low dominance. Nevertheless, 

since I could not acquire reliable subjective dominance ratings during the experiment 

(see section 6.1.1), I can only make assumptions about potential causes for these 

results. Furthermore, one has to keep in mind that, to the best of my knowledge, only 

one study (besides study 3 from this thesis) simultaneously investigated valence and 

dominance using FAAs. It is therefore difficult to draw any definite conclusions without 

further research. 

Interestingly, I found that affective valence classification was improved under 

high WML for both approaches. This finding might result from the monotonous nature 

of the task in the low WML conditions. Subjects reported the 1-back conditions as very 

boring, which could have decreased the level of emotional reactivity, thereby interfering 

with the intended emotion induction. Nevertheless, this assumption is not backed up 

by the subjective ratings, since I did not find an effect of WML on affective valence 

ratings. Therefore, this assumption would need further verification as well. 

Cross-task classification revealed that my classifiers were task specific and did 

not respond to changes in WML that did not involve changes in affective valence. 

Furthermore, I found that the classifiers did generalize well across different cognitive 

contexts. However, I do not want to draw premature conclusions since I found that the 

affective valence conditions were confounded with time on a single-subject level, which 

will be discussed in the next section.  

 

7.2.7 Limitations and Outlook for the Detection of Affective Valence and 

Dominance 

Based on the reasoning outlined above, I assume that the reason for the inability to 

find effects at the group level in the first emoback study using the FAA measure was 
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the concurrent induction of WML in our paradigm. To test this assumption one could 

introduce a passive viewing condition into the paradigm I developed. If such an 

experiment would find that the FAA measure can be used during phases without 

additional cognitive processing, one could account for this in the design of a 

human-machine system like a neurotutor. This could be done, for example, by 

introducing short breaks between tasks that could then be used to infer the current 

affective user state.  

Unfortunately, the affective valence conditions in the emoback paradigm turned 

out to be confounded with time-on-task on a single-subject level. The use of the FAA 

approach should have eliminated most of this influence, because the FAA only 

measures differences between the left and the right hemisphere and time-on-task 

effects are assumed to occur at a global level. Nonetheless, since it is impossible to 

fully disentangle effects which are due to the affective induction from those which might 

occurred due to the time-on-task, I abstain from further interpretations of the findings 

from the affective valence classification.  

I chose to induce emotions block-wise in my paradigm because it can be difficult 

to induce strong affective reactions repeatedly without risking habituation toward the 

emotion induction. Nevertheless, I suggest that future research should use short blocks 

(up to 10 stimuli) of trials from a specific combination of N-back levels and affective 

valence instead of the block design used in this study. Such an approach would allow 

randomization of all conditions, thereby eliminating the time-confounds present in this 

dataset. 

 

7.3 Interactions between Working Memory Load and Affective 

Processes related to the Valence and Dominance Dimension 

While the previous sections have already shown that WML and affective valence do 

interact with each other, this section will further elaborate on those findings. At the 

beginning I will review the results from the subjective measures. After that performance 

measures will be discussed. Then I will discuss the findings from the EEG measures. 

Finally, I will attempt to use the proposed framework to integrate the findings from three 

studies that all analyzed the same LOC dataset.  
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7.3.1 Subjective Ratings indicating Interactions between Working Memory 

Load and Affective Valence 

There was a significant effect of negative affective valence on WML ratings, indicating 

that negative affective valence led to the subjective experience of increased WML. This 

can be seen as further evidence that indicates that WML can be influenced by affective 

valence and that this influence was strong enough to be subjectively perceivable by 

the subjects. However, based on such subjective measures alone, one does not know 

much about the potential causes of such interactions. 

 

7.3.2 Performance Measures in the Context of an Interaction between 

Working Memory Load and Affective Valence 

My analyses revealed a significant interaction effect for accuracy between WML and 

affective valence. I found that increased WML resulted in decreased accuracies 

(d=0.50), especially during negative affective valence (d=0.69). Our results are in line 

with previous findings from a study by Kopf, Dresler, Reicherts, Herrmann, and Reif 

(2013) who used affective words as stimuli in a N-back task. They also found 

decreased accuracies in the difficult conditions during negative affective valence. This 

is also in line with a study by MacNamara, Ferri, and Hajcak (2011) that used emotional 

pictures as distractors in an emoback task. The authors also found that the emotional 

content of negative valenced stimuli further aggravated the negative impact of WML 

on performance. Such results seem to demonstrate that WML as well as negative 

affective valence compete for limited cognitive resources. It appears that such an 

increased drain from a limited pool of mental resources can result in decreased 

performance. These findings could also be explained using the capacity model from 

Ellis and Ashbrook (1989). It seems that negative affective valence influenced the 

allocation of available attentional resources toward the task and thereby impaired task 

performance. However, I only found a small (η2=0.14) interaction effect for accuracies, 

thus the available evidence for this interpretation is rather limited. Additionally, as was 

the case with the results from the subjective ratings, it is difficult to draw any strong 

conclusions based on performance measures alone. Based on such measures one 

can only make vague assumptions on how negative affective valence might have 
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impaired task performance. I will now turn to the results from the EEG analysis, which 

will help to develop a more conclusive picture. 

 

7.3.3 EEG Measures in the Context of an Interaction between Working 

Memory Load and Affective Valence 

The analysis of the emoback studies have shown that both WML and affective valence 

interact with each other. However, these interactions appear quite differently for both 

components of the proposed framework. While the detection of WML was limited under 

different affective valence, the detection of affective valence under WML was not 

possible at the group level using established EEG measures.  

Furthermore, negative affective valence had an influence on measures used to 

infer WML. Negative affective valence resulted in decreased frontal theta activity as 

well as decreased parietal alpha activity. If negative affective valence would impair 

performance via the production of additional WML, one would expect to find increased 

frontal theta activity during negative affective valence. However, the decreased frontal 

theta activity under negative affective valence indicates that the detrimental effect on 

performance likely has different reasons than the performance decrease under high 

WML. Accordingly, I assume that the negative affective valenced stimuli in the 

emoback study interfered with task processing through a reduction of activity in the 

frontal attentional control network.  

The findings of the meta-analysis conducted by Krain, Wilson, Arbuckle, 

Castellanos, and Milhama (2006) could provide an explanation for this frontal theta 

effect. The authors found that the orbitofrontal cortex seems more involved in hot 

cognitions, while the dorsolateral prefrontal cortex appears to be more relevant for cool 

cognitions. The orbitofrontal cortex is located directly behind the eyes, which makes it 

very difficult to detect brain activity that originates from this brain area with the EEG. 

Accordingly, one could assume that EEG instead mostly captures activity from the 

dorsolateral prefrontal cortex. As a result, the reduced frontal theta power for negative 

affective valence found in my study might reflect reduced activity of the dorsolateral 

prefrontal cortex. Nevertheless, since both regions are in close vicinity and no source 

localization analysis has been conducted yet, this assumption needs to be tested 

through additional research.  
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A different explanation for the reduced activity of the frontal attention network 

could be the reduced allocation of attentional resources toward the criterion task, as 

implied by the capacity model from Ellis and Ashbrook (1989). Negative emotions can 

induce negative thoughts and thereby reduce resources available for task performance 

(Ellis & Ashbrook, 1988). Frontal brain regions like the ACC are assumed to be 

involved in EFs (Corbetta & Shulman, 2002; Weissman, Gopalakrishnan, Hazlett, & 

Woldorff, 2005), which is also reflected in the increased frontal theta activity which was 

found during LOC (see section 6.3.2). Additionally, this part of the brain also seems 

to interact with other brain structures which are related to affective processing (Bush 

et al., 2000). According to Pessoa (2009) the resulting brain network integrates control 

signals with affective information, which can either boost or, as in our case, impair 

performance.  

Finally, this interference could also be explained by the so-called attentional 

capture effect as found in a study by Hodsoll, Viding, and Lavie (2011). The authors 

used irrelevant emotional distractor faces in a search task and found that distractor 

faces slowed down reaction times. Furthermore, previous research has also found that 

affective stimuli usually carry more relevant information and are therefore more salient 

(Carretié, 2014), which could be one of the causes for such an attentional capture 

effect. 

Parietal alpha activity was also influenced by negative affective valence, which 

seems to indicate that negative valenced stimuli can lead to increased processing in 

parietal storage areas. Similar results have been found in a study by Rämä et al. (2001) 

who used affective voices in an N-back task. The authors concluded that the parietal 

cortex is involved in the active maintenance of emotional material. Accordingly, I 

assume that parietal alpha activity was reduced due to the increased processing of the 

negative valenced picture stimulus material. 

These findings show that studies that only focus on single components of the 

proposed framework are prone to produce misleading results. The next section will try 

to provide an example case for the potential benefits of a framework that includes 

multiple components of an ongoing user state.  
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7.3.4 Integration of Findings into the proposed Framework 

I will now integrate the findings from three studies that analyzed the same LOC dataset 

into the proposed framework by considering the following three steps: As first step I 

want to integrate the findings from Zander and Jatzev (2012) into the perception and 

action component. As second step I will integrate the findings from Zander et al. (in 

preparation) into the cognitive processes component. As third and final step I will 

integrate my LOC findings into the affective processes component of the proposed 

framework. 

Analyzing the same dataset, Zander and Jatzev (2012) found a shift in the 

feature space that was used to detect the motor response that was associated with 

input during the LOC paradigm. These non-stationarities in the feature space were 

measured using the Kullback-Leibler divergence (KLD; see Figure 44; left), a measure 

for the difference between two distributions. Furthermore, the non-stationarities that 

were induced by the LOC were accompanied by decreased pseudo online 

classification (POC) accuracies of the motor execution response (keyboard press; see 

Figure 44; right).  

 

 

Figure 44. Kullback-Leibler divergence (KLD; left) and pseudo online classification 
(POC; right) during LOC (modified from Zander & Jatzev, 2012).  
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Accordingly, the authors concluded that LOC induced non-stationarities in the 

feature space which then resulted in decreased classification performance. These 

input related processes are part of the perception and action component of the 

proposed framework (see Figure 45, bottom left).  

 

 

Figure 45. LOC results from Zander and Jatzev (2012) in the context of the proposed 
framework. The analyses from Zander and Jatzev (2012) focused on the effect of LOC on 
features used for the detection of user input (keyboard). Since, these effects relate to the 
interaction with the system, they are part of the perception and action component of the 
proposed framework (KLD = Kullback-Leibler divergence; POC = pseudo online classification). 

 

Next I want to integrate the results from Zander et al. (in preparation) into the 

proposed framework. The authors also re-analyzed the same dataset and discovered 

WML related effects (see section 6.3.2), which are part of the cognitive processes 

component of the proposed framework (see Figure 47, left). The authors found 

increased frontal theta activity (see Figure 40; left) as well as reduced parietal alpha 

activity (see Figure 40; right) during LOC. Additionally, the authors found a component 

cluster with decreased alpha activity located in or near Brodmann Area 31 that 

projected to areas used for detecting motor responses, contributing to the effect found 

in Zander & Jatzev (2012; see Figure 48; left).  
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Figure 46. Scalp projection of the parietal alpha cluster during LOC (left) and 
performance of the working memory load classifier over the course of the experiment 
(right) (modified from Zander et al., in preparation). 

 

Furthermore, the authors were able to classify the increased WML during LOC 

by means of a passive BCI. The classifier showed a clear increase of WML with the 

introduction of LOC, but it exhibited high levels of WML even after LOC (see Figure 

46; right). This result suggests that the classifier still shows increased WML, even after 

the signal distributions investigated in Zander and Jatzev (2012) went back to their 

original state (no LOC). Therefore, the authors concluded that additional processes 

must have played a role for the non-stationarities found in the signal distributions used 

for the motor classifier.  
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Figure 47. LOC results from Zander et al. (in preparation) in the context of the proposed 
framework (KLD = Kullback-Leibler divergence; WML = working memory load).  

 

Finally I will make use of the results from the additional section (6.3.1) of the 

LOC study (Grissmann et al., under review) to try to explain why the workload classifier 

still indicated higher levels of workload at the end of the experiment, but the 

classification of the motor execution response worked properly again. This is part of 

the affective processes component of the proposed framework. When inspecting the 

component cluster that was located in or near the right BA6 (see Figure 37) I found 

that the scalp projection of this cluster also overlapped with scalp areas used for 

detection of the motor response. However, activity found in this cluster showed 

increased upper alpha power during and after LOC, while activity in the WML cluster 

showed reduced alpha power. Thus, it seems likely that the activity in the WML cluster 

and the activity in the BA6 cluster counter-balanced each other, resulting in a recovery 

of the KLD as well as the POC. Therefore I conclude that my findings help explain why 

the KLD and the POC recover after LOC, while the decreased alpha activity induced 

by increased WML is still present (see Figure 48; right).  
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Figure 48. Results from Grissmann et al. (under review) in the context of the proposed 
framework (SMA = supplementary motor area; WML = working memory load).  

 

Similar interactions have been found between WML and fatigue. Increased 

WML resulted in decreased alpha band power, while fatigue led to increases in alpha 

band power, thereby interfering with WML detection (Roy et al., 2013).  

I hereby presented empirical evidence for the necessity to include multiple 

components into a framework if one wants to track ongoing changes in the brain during 

natural human-machine interaction. However, additional research is needed to further 

substantiate these claims. The following section will integrate all of my findings and 

thereby illustrate how my findings provided answers to the research questions. 

 

7.4  Conclusion 

In this dissertation I wanted to investigate if the EEG can be used to infer complex user 

states that are assumed to arise during natural human-machine interaction. With this 

aim in mind I investigated if basic components of such complex user states can be 

separated using measures commonly used in EEG studies. Furthermore, I wanted to 

test, if said measures are robust or context-specific due to interactions between 

different basic components of a complex user state. 
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In the studies of my dissertation, I was able to use established EEG measures 

to separate cognitive processes from affective processes of the proposed framework 

in paradigms that evoke complex user states (RQ1). More specifically, I was able to 

detect WML and affective valence in a controlled study that used an N-back task with 

affective pictures as stimuli. However, only EEG measures commonly used to infer 

WML were sensitive to changes in WML as well as affective valence. Additionally, I 

was able to replicate my findings while inducing complex user states in a less controlled 

study that used a simplified learning scenario as paradigm. To be more specific, I was 

able to detect EEG responses related to affective dominance during LOC. In addition 

to this, I was able to use EEG-based source localization methods to identify cortical 

sources that were related to the affective dominance response (RQ1a). Analyses 

conducted in cooperation with colleagues identified WML-related responses in the 

same dataset and were also able to identify cortical sources associated with these 

responses (RQ1a). Furthermore, the source localization approach enabled me to 

separate affective processes related to the valence dimension from affective 

processes related to the dominance dimension (RQ1b). This helped to reveal effects 

that were not visible at the sensor level, thereby indicating that the measures used to 

infer affective responses might exhibit differential effects, which are commonly not 

accounted for.  

Furthermore, I found that EEG measures used to infer certain user states were 

sensitive to specific context (RQ2). More precisely, I found that EEG measures used 

to infer WML were sensitive to affective valence, while EEG measures used to infer 

affective valence were not sensitive to changes in affective valence when WML was 

imposed simultaneously. With the use of the proposed framework I was able to 

integrate findings from multiple studies that analyzed the same dataset, thereby 

demonstrating that the use of such frameworks can help to identify context-sensitivity 

in EEG measures which is usually not accounted for. More specifically, I was able to 

integrate findings from three different studies that all analyzed the same LOC dataset. 

This helped to explain interactions between different processes that are active during 

the experience of a complex user state. This could not have been achieved without the 

proposed framework as studies in this field usually only focus on single, narrow user 

states, thereby neglecting complexity that arises through the interaction of different 

processes that arise in natural environments.  
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My analyses revealed that it is possible to automatically detect WML and 

affective valence with accuracies significantly higher than chance using paradigms that 

evoke complex user states (RQ3). In detail, I was able to classify WML with accuracies 

greater than seventy percent at the single-trial level, which was further improved with 

data integration over time. However, the classification approaches failed to generalize 

across different affective contexts, indicating the necessity to train specific approaches 

for each setting. Furthermore, I was able to classify affective valence, achieving 

accuracies greater than seventy percent at the single-trial level for all but one 

approach. As was the case with classification of WML, data integration over time did 

further improve classification performance. Additionally, my analyses revealed that 

measures used to infer affective valence, which did not exhibit effects at the group 

level, did show effects at the individual level. However, due to time-confounds in the 

recorded data, I cannot be certain concerning the validity of these results. 

Despite all these interesting findings, my research should only be seen as a first 

step into a new direction that tries to investigate more realistic human-machine 

interaction. Before we can fully incorporate such technologies into our daily lives, many 

important issues still need to be resolved. The next section will discuss some of these 

issues. 
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8 Next important Steps towards a reliable Neurotutor 

In this section I will discuss crucial steps that need to be taken to develop robust 

neurotutors that can be used in everyday classrooms. This will be done in seven 

segments. Firstly, I will discuss the necessity to validate and (hopefully) replicate the 

findings of this thesis. Secondly, I will shortly describe alternative analytical 

approaches that might reveal additional aspects in the EEG response. Thirdly, I will 

point to the necessity to investigate features which are not as established as the ones 

I used in this thesis. Fourthly, I will shortly illustrate the potential of adding peripheral 

signals to EEG recordings. Fifthly, I will discuss the need for new, more accessible 

sensor technology. Sixthly, I will describe potential extensions of the proposed 

framework. Finally, I will write about real-time adaptability and the need for production 

rules in this context.  

 

8.1 Testing the Generalizability of my Findings 

I strongly believe that this thesis represents an important step into the right direction. 

Nevertheless, due to the large amount of resources required to study the brain, 

neuroscientific research is usually limited to relatively small sample sizes. Additionally, 

the large variance in the data usually found in EEG studies (e.g. studies in section 6.1 

and section 0) hints at significant inter-individual differences. The situation is further 

complicated by findings that show that brain patterns can change over a short period 

of time. This becomes apparent, when one looks at the results from BCI studies that 

include more than one session. For instance, a study by Christensen, Estepp, Wilson, 

and Russell (2012) used a complex multitask to induce WML and found that classifier 

performance was significantly reduced by classifying across different days. 

Furthermore, previous research has shown that the type of modality used to induce 

mental states can have an impact on EEG signals used to infer the current user state. 

For example, a study by Mühl et al. (2011) used visual, auditory and audiovisual 

material to induce emotions and found opposing effects for visually and auditorily 

induced affective responses. The authors conclude that a classifier trained on one 

specific modality might poorly generalize to different modalities.  

All this considerations make it difficult to assess in which settings one can rely 

on the findings from my as well as from other studies. This circumstance is especially 
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difficult in the case of the FAA, as my research already demonstrated that this feature 

is highly dependent on a specific context (compare study 1 in section 6.1 and study 3 

in section 0). Additionally, previous research has found that this laterality metric can 

be influenced by unilateral hand contractions (Harmon-Jones et al., 2010) as well as 

the individual seating position (Harmon-Jones, Gable, & Price, 2011). In this thesis I 

investigated two different emotion inductions (presentation of emotion inducing 

material in the first two studies and presentation of need-related affective situations in 

the third study) and found that only the presentation of a need-related situation 

produced an effect that could be found at the group level.  

Therefore, I strongly recommend that my findings need to be further 

substantiated by validation studies that use different materials to induce complex 

mental states. Potential candidates are auditory material (e.g. using the IADS 

database; Bradley & Lang, 2007), audiovisual material (e.g. using the DEAP database;  

Koelstra & Mühl, 2012) or even more sophisticated approaches using virtual reality 

environments (e.g., Brouwer & Neerincx, 2011). The use of such different approaches 

for the induction of complex user states could shed additional light on the applicability 

and robustness of findings from previous neuroscience studies.  

Additionally, I propose that future studies need to explicitly take the actual 

application setting into account. Such realistic scenarios are assumed to evoke more 

complex user states than normally addressed in controlled lab studies. Furthermore, 

previous work has shown that brain patterns can change due to the increased 

relevance in realistic scenarios (Mcdowell et al., 2013). The videogame industry seems 

to have already picked up on this idea, which is reflected in the development of 

EEG-based videogame controllers (Singer, 2008). In the case of a neurotutor, the most 

realistic setting would be the use of an actual ITS like the AutoTutor. To reach such an 

ambitious goal, I assume that one needs to develop and investigate methods that can 

be used in such realistic scenarios.  

 

8.2 Other Analytical Approaches  

As my analyses only focused on evoked frequency responses, I did not account for 

potential responses that were contained in the non-phase-locked part of the EEG 

signal. Approaches using induced activity like the ERD/S approach might reveal 
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additional aspects of the cognitive or affective responses in complex user states 

(Pfurtscheller & Lopes da Silva, 1999; Scharinger et al., 2015). However, to the best 

of my knowledge, nobody has yet compared evoked and induced approaches in the 

context of mental state detection. Furthermore, ERD/S approaches measure the 

activity relative to a preceding baseline. This might work well in a classical trial-based 

paradigm, but it is questionable how such approaches work in realistic environments 

where the user does not operate in repeated chunks of activity, but rather continuously. 

Even if such approaches might help to improve the approaches utilized in this 

dissertation, it appears implausible to assume that induced activity approaches do not 

suffer from context-sensitivity. Therefore, it is highly likely that one still has to search 

for other features that can be used to infer the user state during the use of a neurotutor. 

 

8.3 The Need for new Features and Feature Extraction Methods 

To be able to accurately detect a specific mental state via ‘inverse inference’, such 

EEG measures would need to be specific (Poldrack, 2006). Otherwise, one does not 

know if the state of interest is the cause of changes in a specific measure, or not, which 

makes the use of such measures for the detection of certain states highly problematic. 

However, most features used to infer the ongoing user state suffer from many-to-many 

relations (Cacioppo & Tassinary, 1990; Cacioppo, Tassinary, & Berntson, 2000). This 

means that multiple different processes can have an influence on a specific EEG 

measure. For instance, a study by Roy et al. (2013) induced fatigue and found that 

with increasing time-on-task the discriminability of WML was decreased. Especially in 

realistic scenarios that are assumed to evoke multiple different components of a 

complex user state such many-to-many relations could make it extremely difficult to 

detect specific user states. Furthermore, currently used classification approaches 

require training data for them to work. If the features used to infer a certain user state 

react different under each specific context than this would require that training data for 

each context is generated. The effort required for such an operation would probably 

outweigh potential gains promised via such systems by far. However, some lesser 

used approaches that do not only focus on band power modulations at specific brain 

locations might not suffer from this limitation. The next section will start with lesser 

utilized features that operate at the electrode level. 
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8.3.1 Feature Alternatives 

Some researchers implemented approaches that are not as commonly used for the 

detection of mental states. For instance, a study by Aftanas, Reva, Varlamov, Pavlov, 

and Makhnev (2004) used the average energy over brain areas to assess emotions 

elicited by the presentation of emotional images. Their approach resulted in a complex 

feature space that consisted of six frequency bands for twelve (2 times 6 to account 

for hemispheric differences) different brain regions. The authors found a correlation 

between arousal and EEG responses in specific brain areas and frequency bands. 

Future studies would need to investigate if this approach is also sensible to changes 

in affective valence. 

An even more exotic feature, called absolute logarithmic recoursing energy 

efficiency, was proposed by Murugappan, Ramachandran, and Yaacob (2010). This 

newly proposed feature outperformed other conventional features in a study that used 

an audiovisual emotion induction. Other, more widely used, approaches analyze the 

synchronization between different brain regions. Lorist et al. (2009), for example, 

induced fatigue via continuous task performance over two hours. After that they 

provided monetary reward as well as a positive social comparison to induce motivation. 

The authors found widespread coherence effects between regions of interest (following 

the approach by ten Caat, Maurits, & Roerdink, 2008) of mental fatigue which were 

independent from specific task manipulations. However, due to the effects of volume 

conduction an analysis of the band power could produce misleading results, therefore 

coherence analyses should only focus on phase information in EEG signals. 

Nonetheless, future research also needs to check these approaches for usability in 

affective valence detection. 

Some analyses focus on modulations in the gamma band range to infer mental 

states (Makeig et al., 2011; Julie Onton & Makeig, 2009). For instance, a study by 

Müller, Keil, Gruber, & Elbert, 1999) used picture stimuli from the IAPS database and 

found right hemispheric gamma modulations in response to the affective valence 

stimulation. However, analyses of high frequency recordings can be quite challenging, 

due to the low amplitude of signals in this frequency range which seems to hardly pass 

the skull with sufficient energy. Additionally, muscle activity is known to produce 
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significant contributions to the scalp EEG in such frequency ranges (Whitham et al., 

2007). This makes it difficult to separate cortical activity from artifactual activity due to 

muscle activity. EEG-based source localization approaches could help to identify high 

frequency responses in EEG data and separate them from artifacts.  

 

8.3.2 Feature Extraction using advanced EEG-based Source Localization 

Methods 

Unfortunately, the mapping of EEG signals to specific brain processes is usually 

ambiguous, meaning that EEG patterns evoked by different processes can look very 

similar. This is due to the fact that volume conduction spreads a specific brain signal 

across the whole cortex and therefore only superpositions of different processes can 

be recorded (Makeig et al., 1996). The third study of my thesis (see section 0) was 

already implementing source localization methods and thereby revealed effects that 

could not be found at the electrode level. Nonetheless, this should only be seen as 

initial attempt into a novel direction. Future studies need to acquire high-density EEG 

recordings with large data samples to obtain results that are more robust. Furthermore, 

the underdetermined nature of this approach requires that results be validated with 

other brain imaging methods. Ideally, this would include simultaneous recordings of 

EEG and fMRI as was done in a study by Wu, Eichele, and Calhoun (2010). However, 

to fully utilize the potential of such approaches, large datasets are necessary that allow 

large-scale analysis of EEG data. Efforts toward this goal are already underway, as 

reflected in projects like BigEEG (http://www.bigeeg.org/), the EEG Study Schema 

(http://www.eegstudy.org/) as well as the iNeuro project 

(https://mdcune.psych.ucla.edu/modules/ineuro; Bigdely-Shamlo, Makeig, & Robbins, 

2016; Grisham, Lom, Lanyon, & L. Ramos, 2016). The analysis of such large datasets 

could also produce far more robust results and therefore help alleviate problems 

usually occurring in neuroscientific studies (see section 8.1). 

While hopes are high for big data approaches in the context of EEG data, one 

should not forget about alternatives that already demonstrated some potential in the 

past. Most prominently the use peripheral signal used in combination with the EEG. 
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8.4  Peripheral Signals as a potential Addition to the EEG 

The most commonly used biosignals in the context of user state detection are 

recordings of the heart rate, the electrodermal activity, respiration as well as the EEG 

(Broek et al., 2010). Heart rate sensors, like the photoplethysmograph, can be easy to 

deploy and are also cost efficient (Haag, Goronzy, Schaich, & Williams, 2004). A 

photoplethysmograph measures the blood flow (blood volume pulse) using a light 

source and a photo sensor which are attached to the skin. This signal can then be used 

to infer the heart-rate as well as the heart-rate-variability. Both have been shown to 

respond to changes in emotional as well as cognitive factors, however this unspecifity 

of the response makes it difficult to infer specific user states (Luay & Revett, 2011). 

Electrodermal activity (EDA) measures the conductivity of the skin via electrodes 

placed on the hands or feet, which is increased with higher perspiration (Broek et al., 

2010; Koelstra et al., 2010). The EDA signal has been shown to be a good and 

sensitive indicator for stress, but, unfortunately, this signal is also influenced by other 

factors like outside temperature (Haag et al., 2004). Furthermore, the EDA could help 

reveal covert user states which even the user is not aware of, like stress responses 

(Norman, Mendolicchio, & Mordeniz, 2016). Respiration belts are tied around the chest 

and can record how deep and fast a person is breathing (Haag et al., 2004). Deep and 

slow breathing is usually related to relaxation, while shallow, quick and irregular 

respiration patterns are linked to anger or fear (Koelstra et al., 2010). However, 

breathing patterns also change with regard to other factors like olfactory stimulation 

(Homma & Masaoka, 2008). 

Peripheral signals like the electrocardiogram, EDA and respiration were 

recorded in addition to the EEG in the emoback studies. Re-analysis of this data 

conducted as part of a bachelor thesis revealed that analyses of all three peripheral 

signal modalities achieved classification accuracies higher than seventy percent for 

the discrimination of affective valence (Bizu, 2016). However, due to potential 

time-confounds in the data, we did not further analyze these peripheral recordings.  

Sensor fusion across different modalities appears to be an interesting approach 

which might be helpful in boosting classification performance. However, currently 

available evidence is ambiguous. While some studies find that sensor fusion using 

EEG and peripheral signals can improve classification performance (e.g., Chanel, 
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Kronegg, Grandjean, & Pun, 2006), other studies conclude that sensor fusion does not 

provide additional performance improvements (e.g., Hogervorst, Brouwer, & van Erp, 

2014). Nonetheless, studies that include multiple different sensors could also have the 

benefit of allowing to compare different sensor approaches. This could enable the 

potential identification of circumstances where cost-effective sensor modalities (like 

heart-rate) provide similar results as high-end systems that are usually required for 

recordings of the EEG. Such potential reductions in hardware costs are an important 

issue if one wants to get technologies like neurotutors into classrooms. These 

ambitions are further supported by the development of cost-efficient EEG sensors, 

which will be described in the next section. 

 

8.5 The Need for new EEG Recording Hardware 

Making the technology required for the use of a neurotutor accessible is an essential 

goal if one wants to apply such approaches on a large scale. During my PhD I was 

already able to make first attempts in this direction. As part of two intramural research 

grant projects (LEAD IMRF: 19110516 and GriGerWa_523) we were able to 

investigate two EEG headsets and compare them with results obtained from clinical 

EEG systems. In the first project we were able to acquire a prototype of the Muse 

headband (http://www.choosemuse.com/) for validation purposes. Affective pictures 

were used to induce changes in affective valence in a pilot study. Our analyses found 

a peak accuracy of sixty-two percent, which was deemed insufficient for the use in a 

neurotutor. We concluded that the main factor for the poor performance was the low 

number (6) as well as the position of the electrodes (placed on the forehead as well as 

behind the ears, both areas are prone to artifact contamination). Accordingly, we 

decided to investigate a different headset in the second project, which would improve 

on these points. Therefore, we modified the Epoc headset 

(https://www.emotiv.com/epoc/) following the approach proposed by Debener, Minow, 

Emkes, Gandras, and de Vos (2012). The use of this EEG headset increased the 

amount of channels to fourteen and also allowed free placement of electrodes 

according to our requirements. Preliminary results have been very promising, 

achieving WML classification accuracies over seventy percent in real-time for a single 
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subject. However, future studies still need to further investigate the potential of this 

piece of hardware.  

Nevertheless, previous research has already shown that cost-efficient EEG 

headsets can be used successfully in certain contexts (Pinegger, Wriessnegger, Faller, 

& Müller-Putz, 2016). After focusing primarily on technical considerations in the last 

sections, I will next focus on the proposed framework, which needs to be expanded 

and refined in future studies. 

 

8.6  Expanding the proposed Framework 

It is difficult to draw exact lines between different components of a complex user state. 

Therefore, one can argue about the assignment of different mental states to certain 

components of the proposed framework. An example is the case of attention, since all 

different components of the proposed framework require some form of attention. This 

is even more complicated since one can assume that most components exhibit strong 

interactions. For instance, affective processes can activate cognitive processes (e.g. 

worries due to negative emotions) and the other way around (e.g. negative emotions 

resulting from negative thoughts). However, even though the proposed framework is 

not able to account for all these complexities, it is a helpful framework to guide future 

research on the development of robust BCIs applications that are usable in settings 

outside the lab, as it explicitly assumes interactions between different components. 

Nevertheless, future studies should also investigate other complex user states. 

Especially user states important in academic contexts like test anxiety, interest, 

motivation and flow. All those concepts appear to be highly relevant for a learning 

system like a neurotutor. In addition to extending the proposed framework and thereby 

adding additional complexity, one should consider application of previous results in a 

real-time scenario to see whether the findings hold under such conditions.  

 

8.7  Real-time Application of Results in an Educational Context 

The implementation of real-time detection of complex user states require different 

analytical approaches, as some offline preprocessing methods might be too slow to be 

used in a real-time scenario. Furthermore, some thought needs to be put on the 
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adjustments that are indicated when undesirable user states are present. This 

introduces the need for production rules that describe the exact behavior of such 

systems. 

 

8.7.1 The Need for Production Rules to adapt towards the desired Learner 

State 

Broadly speaking, adaptability of a given system in response to an undesirable state 

can be grouped into three categories (Gilleade, Dix, & Allanson, 2005). Firstly, systems 

can offer assistance if the user is stuck or unable to perform the task due to an 

inappropriate difficulty. Secondly, emotional elements can be incorporated into the 

display to promote positive emotions and avoid negative ones. For instance, 

encouragement and positive feedback as provided by the avatar implemented in the 

AutoTutor. Thirdly, the difficulty can be adjusted if the user experiences mental 

overload or to increase task engagement if the user is bored. The management of 

different levels of WML is the main objective of the cognitive load theory (CLT). 

8.7.1.1 Cognitive Load Theory 

According to CLT limitations in memory storage are the main determinant for learning 

in complex, real-world scenarios, and therefore act as a bottleneck for information 

processing (Sweller, Van Merrienboer, & Paas, 1998). Hence, CLT puts a special 

emphasis on the careful management of limited WM capacity (Cowan, 2014). In CLT 

WML is divided into three categories: intrinsic, extraneous and germane load.  
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Figure 49. Different types of cognitive load according to cognitive load theory 
(http://www.simulations.co.uk/images/Cognitive%20Load%20Types.gif). 

 

According to CLT, intrinsic load is directly related to the specific task at hand. 

Extraneous load is related to the way in which a specific task is presented and can be 

optimized via instructional design. Germane load is used for the processing, 

construction and automation of schemas and therefore beneficial for the learning 

progress. CLT is widely used in educational research, especially in the context of 

instructional design (Sweller & Sweller, 1994), where the main goal is to reduce 

extraneous load and promote germane load. WM as seen in CLT is conceptualized 

based on the MCM by Baddeley (2000; see section 3.1.1.3). Previously, CLT has 

already been used with the aim to induce a state which could be interesting in the 

context of neurotutors, called flow (Chanel, 2009). 

8.7.1.2  Adapting a Learning Environment to induce a Flow State 

Although education is a vital part of modern society, not all learning experiences are 

joyful. A study by Csikszentmihalyi and Larson (1987) found that, on average, students 

feel bored during thirty-two percent of classroom instruction time. This can lead to 

impaired performance as well as reduced motivation. Adaptive learning environments 

like ITS could help to alleviate this problem by creating individualized learning 

environments that keep the learner in the zone of proximal development and thereby 
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improve the learning process (Kirschner & Gerjets, 2006). One very simple framework 

which could allow for such an adaption would be the flow channel proposed by 

(Csikszentmihalyi, 1990). Flow is a state in which one is engaged in a task that 

challenges just with the optimal intensity (Csiksczentmihalyi et al., 2004). People call 

it ‘being in the zone’, ‘rapture’ or ‘ecstasy’. It is distinct from mere pleasure by an active 

component. While one can find pleasure in passive activities like watching TV or doing 

drugs, the flow state requires conscious will and an eagerness to grow. It is goal 

directed and gives a sense of mastery, which makes the flow state an optimal target 

state for adaptive learning. The flow channel tries to induce this state by simply 

changing the difficulty of the task. If the task is too difficult for the learner the system 

presents tasks with a lower difficulty and thereby tries to avoid feelings of anxiety. If 

the tasks are not difficult enough (e.g., due to changes in the learners´ competence) 

the system switches to more challenging tasks to avoid feelings of boredom (see 

Figure 50). 

 

 

Figure 50. The flow channel (Csikszentmihalyi, 1990). 
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While this simple framework provides a viable starting point, one could argue 

that changes in task difficulty alone will not suffice to induce a complex user state like 

flow, as it presumably consists of multiple different basic mental states. The flow 

channel only tracks the affective components of the ongoing user state. Cognitive 

components are influenced by changes of task difficulty, but not actively tracked 

through this framework. The three-dimensional framework I proposed in this 

dissertation would allow to track cognitive as well as affective aspects that are 

assumed to be part of the flow state. Furthermore, the framework would also allow to 

account for additional context factors that could potentially influence system 

performance. While the flow channel only offers limited ways to induce a desired target 

state, more sophisticated approaches have already been developed for existing ITS 

(D’Mello et al., 2008). Such approaches, however, would need to be adapted for the 

use in neurotutors. While the previous section focused on all the work that still needs 

to be done before we can all profit from the research in this field, the next section will 

try to take a look into the distant future and illustrate the enormous potential of such 

technologies in the educational context. 
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9 The potential Use of Findings in the Educational Context 

Due to the innovative and inherently interdisciplinary nature of this research project 

there was a lot of risk involved. To the best of my knowledge, to date no framework 

that tries to describe complex user states in the context of EEG-based human-machine 

interaction was developed. Even though a lot of further research is still required, it 

seems likely that the research in this field could profit from a broader view on user 

states that includes different aspects. 

In the future, I see at least three different contexts for potential applications of 

the findings from this thesis. The first context relates to the research conducted in the 

field of brain-based human-machine interaction. I’m convinced that it is necessary to 

test experimental approaches and methods under more realistic conditions if one 

wants to produce findings that are robust in settings outside the lab. This means that 

we have to identify the most relevant user states for a specific target scenario and then 

optimize paradigms and classification approaches for this specific context.  

The second context relates to the application of brain-based learner state 

detection in the context of macro adaption to optimize learning material for specific 

student types. Once, we are able to develop systems that can reliably detect certain 

learner states, then we can potentially identify which learning material is suited for what 

type of students. One can imagine a case where additional learning material in the 

form of animations could benefit or hurt learners. If a certain learner has sufficient 

cognitive capacities to process such animations without drawing mental resources 

from the primary task than this would probably help to facilitate memory encoding. If a 

learner does not have such additional resources available then the presentation of 

additional material could be detrimental to the learning progress. Since introspection 

is a highly unreliable method, the use of brain-based detection methods seems very 

promising in such a context. Additionally, the reliable detection of different user states 

during learning could identify factors that are associated with high and low 

achievement on an individualized level that is not possible with currently applied 

methods like large-scale questionnaires.  

The third and final context relates to the real-time adaptation in the form of a 

Neurotutor. Neurotutors could provide individualized learning environments that 

challenge those gifted while supporting those lacking capabilities. Thus, once 
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expenses are reduced through the introduction of cost-efficient hardware, we could be 

able to provide ever more members of society with high-quality education currently 

only accessible for those with a wealthy background. Furthermore, individual tracking 

of the learning progress could be used to identify deviations from an optimal learning 

course early, thereby potentially avoiding significant drops in key factors like motivation 

and thereby potentially preventing detrimental cognitive as well as affective 

developments. Newly adopted learning schemes like flip teaching (Mason, Shuman, & 

Cook, 2013) and MOOC (Yuan & Powell, 2013) are strongly dependent on 

self-regulation. Neurotutors have already been shown to be able to support users in 

this context by providing adaptability that can optimize the learning process (see 

section 3.1). In the future one can imagine the widespread availability of free 

education, which currently too many people on this planet are lacking. 

If such systems are implemented at a large scale, the use of these systems 

could create large datasets that could be analyzed using big data approaches. This 

could potentially reveal additional aspects of the learning process that are not 

accessible via other means, thereby further improving the quality of the teaching 

material. However, it has to be noted that the collection of this kind of personal data 

also forces us to think about the ethical implications and the potential misuse of such 

data. Issues that will become more and more important as we venture deeper into the 

digital age. 

As a closing remark I want to state that research that is channeled in this 

direction holds the promise of creating immensely powerful tools. However, with great 

power… comes great responsibility! 
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