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Abbreviation 

Cp Ti                              commercially pure titanium  

OHI                               oral hygiene instructions  

CHX                               chlorhexidine  

PDT                               photodynamic therapy  

BOP                              bleeding on probing 

Ti                                    titanium 

TiO2                               titanium dioxide   

UV                                  ultraviolet  

ROS                               reactive oxygen species  

QCM-D                           quartz crystal microbalance with dissipation  

VIS                                 visible  

HSA                               human serum albumin  

PBS                               phosphate-buffered saline  

S. gordonii                     Streptococcus gordonii  

OD                                optical density  

f                                     frequency   

D                                   dissipation   



E. coli                             Escherichia coli  

EPS                               extracellular polymeric substances    

F-D                                Frequency-Dissipation  
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1. Introduction 

1.1 Implant materials 

1.1.1 Titanium and its alloys 

After the introduction by Brånemark in the 1970s, dental implantation has 

become a popular treatment strategy for the replacement of missing teeth 

(Brånemark et al. 1977). To ensure the clinical outcome of implant therapy, the 

properties of implant materials are essential factors to take into consideration 

(Smith 1993). Generally speaking, the ideal implant material should be 

biocompatible, with adequate toughness, strength, corrosion, wear and 

fracture resistance (Parr et al. 1985). 

Among the various implant materials, titanium (Ti) has been regarded as “gold 

standard” material for the fabrication of dental implants and the reported long-

term clinical survival rates supported this application (Adell et al. 1990, Jemt et 

al. 1996, Niinomi 1998). There are six types of titanium available as implant 

biomaterials: four grades of commercially pure titanium (cp Ti) and two 

titanium alloys. The cp Ti materials, also called unalloyed titanium, are 

classified into Grade I, Grade II, Grade III and Grade IV. This gradation is 

related to the amount of oxygen residuals in the metal and higher amounts of 

oxygen are found from Grade I to IV. The two alloys are Ti-6Al-4V and Ti-6Al-

4V-ELI (“extra-low interstitial”, a higher-purity version of Ti-6Al-4V) (Osman 

and Swain 2015). Titanium and its alloys have a good specific strength and 

acceptable corrosion resistance; then, the allergic evidence is relatively low; 

finally, the amorphous passive titanium oxide layer on the surface endows this 

material the best biocompatibility among metallic materials (Niinomi 2003).  
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1.1.2 Titanium modification 

The high success rate of titanium dental implants for oral reconstruction has 

been attributed to its ability for osseointegration, which means a direct 

structural and functional connection between bone and implant and no 

intervening soft tissues (Brånemark et al. 1969). However, it is always 

challenging to ensure successful osseointegration in face of advanced bone 

resorption and poor bone quality. One way to solve this problem is to use 

implants with modified surfaces (Assender et al. 2002). It has been suggested 

that the physiochemical properties, crystal structure, and surface morphology 

of titanium oxide films on dental implant surfaces play an important role in the 

biocompatibility and osseointegration of implants (Bowers et al. 1992, Martin 

et al. 1995, Rupp et al. 2004, Busquim et al. 2010).  

The process of biomolecular adsorption onto materials is regarded as a 

dynamic process modulated by the physico-chemical interactions between 

material surfaces and macromolecules (Puleo and Nanci 1999). At cellular 

level, some biological responses, such as the orientation and migration of cells 

and the cellular production of organized cytoskeletal arrangements, are 

supposed to be directly influenced by the surface topography (Flemming, 

Murphy et al. 1999). The osteoblast differentiation, proliferation and matrix 

production as well as the production of local growth factors and cytokines are 

affected by surface roughness (Martin, Schwartz et al. 1995, Kieswetter, 

Schwartz et al. 1996). Among the large amount of ways of surface 

modifications, anatase coatings on Ti surface has been regarded a promising 

way to enhance the interactions between the material and the surrounding 

biological environment (Sollazzo et al. 2007).  
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Besides, although there is good response between Ti-based materials and the 

human body, bacteria also may colonize on its surface resulting in biomaterial-

centered infections, or, more specifically, in prosthetic implant infections, 

which might lead to prosthetic implant loosening and failure (Gristina, Naylor et 

al. 1988, Brady, Calhoun et al. 2009). It has been reported that the anatase 

surface could decrease the bacterial attachment in comparison with the 

amorphous titanium, while having no adverse effects on the normal cell 

metabolism (Del Curto et al. 2005).  In a recent study by Lorenzetti M 

(Lorenzetti, Dogsa et al. 2015), the surface of titanium was hydrothermally 

treated to be coated with nanostructured anatase coatings. Using Escherichia 

coli (E.coli) as a model bacterium, the effects of surface topography, 

roughness, and charge on the bacterial adhesion were investigated. It has 

been found that the macroscopic surface topography and the microroughness 

influenced bacterial attachement. Macroscopic grooves provided a favorable 

place for bacterial deposit within the valleys, and the microscopic roughness 

determined the actual interaction surface between bacteria and the substrate. 

On the nontreated titanium, the so-called “interlocking” effect exists and 

resulted in high bacterial adhesion. In contrast, on the anatase-coated surface 

the distance between the microasperities was reduced by the nanocrystals 

and thus the contact area between the bacteria and the crystalline surface. Up 

to 50% less bacterial adhesion was observed on the anatase-coated samples 

in comparison to the nontreated titanium (Lorenzetti et al. 2015). In another 

study by Delcurto B. (Del Curto, Brunella et al. 2005), the crystalline anatase 

layer converted from the amorphous titanium oxide showed a stimulation of 

apatite precipitation. By using several kinds of bacteria from Streptococcus 
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strains for the bacterial adhesion study, the bacterial attachment showed a 

higher reduction on anatase surfaces compared with that on pure titanium. 

What’s more, the crystalline surface also showed a stimulation of apatite 

precipitation when placed in simulated body fluid.  

To sum up, anatase coating is a promising method for surface modification of 

titanium implants. In this study, we adopted the reactive pulse magnetron 

sputtering method to deposit crystalline anatase layers on the quartz crystal 

surface. Beside possible advantages discussed above, the main purpose to 

use anatase here as the surface modification on the samples is to evaluate 

photocatalytic antibacterial effects on this special semiconductor. 

1.2 Peri-implantitis 

1.2.1 Etiology of peri-implantitis 

Although dental implantation has become a common therapy in different 

clinical situations, it also brought about some potential risks (Renvert et al. 

2009). Peri-implant infections have become a rising complication after the 

surgical treatment (Lindhe and Meyle 2008, Zitzmann and Berglundh 2008). 

The term “peri-implantitis” was put forward decades ago to represent the 

infectious conditions of peri-implant tissues and was specifically utilized to 

describe the condition of non-reversible inflammation in adjacent tissues 

around osseointegrated implants, which might lead to the regression and loss 

of bone support (Heitz-Mayfield 2008, Mombelli et al. 2012). 

Bacterial infections play the most important role in this peri-implant 

inflammation. Bacterial floras, which are associated with periodontitis and peri-

implantitis, are found to be similar (Heydenrijk et al. 2002). Since the epithelial 

fibers around the implant are longitudinally directed and circumferential, they 
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cannot form tight connection with the implant body and, as a result, the 

bacteria are easier to get infiltrated and lead to infection. Excessive 

mechanical stress, complex design of the implant, and some local or systemic 

factors, such as diabetes mellitus, osteoporosis and smoking, are also 

important factors in the onset and development of peri-implantitis 

(Prathapachandran and Suresh 2012). 

1.2.2 The treatment of peri-implantitis 

Since the development of peri-implantitis can result in signs of inflammation, 

the destruction of surrounding bone structure, and further implant loss, it is 

important to investigate possible effective ways to deal with such cases 

(Esposito et al. 1999, Quirynen et al. 2002). In general, the treatment methods 

of peri-implantitis include nonsurgical and surgical ways. According to the 

review by Schwarz et al. (Schwarz et al. 2015), the treatment methods could 

be summarized as followed: 

Nonsurgical treatment of peri-implantitis: 

1. Alternative measures for biofilm removal:   

Oral hygiene instructions (OHI) + mechanical debridement / ultrasonic 

device with polish / Er:YAG laser device / air abrasive device ± 

chlorhexidine (CHX) irrigation and CHX gel  

2. Adjunctive antiseptic therapy: 

OHI + mechanical debridement + matrix containing CHX chips  

3. Adjunctive antibiotic therapy: 

OHI + mechanical debridement ± CHX irrigation + local application of 

antibiotics 

Surgical treatment of peri-implantitis: 
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1. Alternative measures for surface decontamination: 

OHI + open flap surgery ± resective therapy + surface debridement ± 

decontamination by CHX  

2. Adjunctive resective therapy: 

Full mouth disinfection / mechanical debridement + resective therapy + 

decontamination by antibiotics 

3. Adjunctive augmentative therapy 

OHI + open flap surgery + mechanical debridement / air polishing + 

decontamination + autogeneous bone / bone substitute material + 

barrier membrane 

Besides, nowadays, the photodynamic therapy (PDT) also served as a 

treatment protocol against peri-implantitis (Schaer et al. 2013, Bombeccari et 

al. 2013). 

Considering the outcomes of these various ways treating peri-implantitis, it 

could be concluded that OHI combined with mechanical debridement was 

effective to treat peri-implantitis. However, since the configuration or 

morphology on the implant surfaces were often complex structured, the 

mechanical biofilm removal procedures might not access the whole exposed 

surface (Sahrmann et al. 2015). What’s more, the mechanical debridement 

might lead to destruction of implant surface structure and introducing new 

scratches which might enhance bacterial adhesion. In the nonsurgical 

treatment of peri-implantitis, the adjunctive local antiseptic, antibiotic, laser or 

powder air polishing therapy were shown to improve the efficacy of treatments 

by reducing bleeding on probing (BOP) scores. But the nonsurgical methods 

failed to reduce the quantity of microbiota in peri-implantitis lesions. In the 
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surgical treatment protocols, it has indicated that the clinical, radiographical 

and microbiological outcomes were not influenced by the decontamination 

protocol and no conclusions on the superiority of augmentation treatment 

could be drawn out (Schwarz et al. 2015, Froum et al. 2016). Regarding PDT 

therapy, it could be applied as an adjunctive method of mechanical 

debridement in the cases of initial peri-implantits. However, the complete 

recovering from the inflammation could not be achieved with this way alone 

(Bombeccari et al. 2013, Schaer et al. 2013). Based on these, it is also 

desirable to explore new possibilities to treat this complication and get rid of 

the pathogenic bacteria colonization effectively and harmlessly. 

1.3. Photocatalysis 

1.3.1 General concept 

Photocatalysis is a term that combines the basic notion of a catalyst as a 

material that enhances the rate of a reaction to approach equilibrium without 

being consumed with the notion that the reaction is accelerated by photons 

(Langford 2012). Generally, photocatalysis occurs through photon absorption 

rather than by thermal activation, which is normal in conventional catalysis. It 

involves the absorption of light by a solid photocatalyst, and then the activation 

state of at least one reactant adsorbed on the catalyst surface would be 

modified, thus producing a new reaction path with a lower activation barrier 

than that for the thermal reaction proceeding in the absence of light (Howe 

1998). 

Today, semiconductor materials are usually selected as photocatalysts, due to 

their band gap structure. The band gap lies between the top of the valence 

band and the bottom of conduction band, while in metal the electronic state is 
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continuous and there’s no such gap structure. When the photon energy of the 

irradiation light is equal to or more than its energy gap, an electron from the 

valence band will be excited to the conduction band. This movement of 

electrons forms negatively charged electron/positively charged hole pairs and 

the photoinduced electron and holes will be transferred to the semiconductor 

surface. When some electron donor or acceptors, e.g., water, oxygen, exist in 

the surrounding environment at the same time, oxidative and reduction 

reactions will undergo on the conduction band and on the valence band, 

respectively (Benedix et al. 2000). 

1.3.2 Photocatalysis and anatase 

The concept photocatalysis can be traced back to the discovery of water 

splitting on titanium dioxide (TiO2) electrodes by Fujishima and Honda 

(Fujishima and Honda 1972). Since then, a series of studies on TiO2 or other 

semiconductor materials have been conducted aiming to utilize or improve 

their photocatalysis (Kaneva, Stambolova et al. 2010). So far, this property 

has already been applied in many fields, such as energy conversion, 

environmental purification, self-cleaning and antifogging surfaces (O'Regan 

and Gratzel 1991, Wang et al. 1998). With respect to biological and biomedical 

applications, the decomposition of organic compounds, antibacterial effects 

driven by photocatalysis, and an increase in hydrophilicity of biomaterial 

surfaces upon irradiation of these materials have also been extensively 

studied (Muszkat et al. 2002, Ditta et al. 2008, Hayashi et al. 2012). As 

described in 1.1.2, among the three crystalline forms of TiO2, anatase displays 

best bone-bonding ability and photocatalytic properties (Sclafani and 

Herrmann 1996, Barbour et al. 2009, Luttrell et al. 2014). Ultraviolet (UV) light 
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with a photon energy (λ < 385 nm) exceeding the band gap of anatase of 3.2 

eV can excite electrons into the valence band and leave holes in the 

conduction band.  Furthermore, in the presence of O2 and H2O, these 

electrons and holes generate various active oxygen species which can 

decompose organic molecules through a series of oxidization reactions (Tran, 

Nosaka et al. 2006). 

Specifically, the reduction reaction progresses in the conduction band (CB) 

and lead to the formation of superoxide radicals (O2
· ֿ◌) (Equation. 2) and 

hydroxyl radicals (·OH) (Equations. 3-6). 

O2 + e-   O2
· ֿ◌                               (2) 

H2O   OH- + H+                           (3) 

O2
· ֿ◌ + H+   HOO·                        (4) 

HOO· + H+    H2O2                     (5) 

H2O2 + e-  ·OH + OH-                 (6) 

On the other hand, oxidation reactions occur on the valence band (VB) and 

lead to the formation of hydroxyl radicals (Equations. 7-8) 

H2O + h+   ·OH + H+                  (7) 

OH- + h+   ·OH                          (8) 

When these reactive oxygen species (ROS) have been formed, the oxidation 

of organic substances starts (Equation. 9) 

·OH + O2 + CnOmH(2n-2m+2)   nCO2 + (n-m+1) H2O      (9) 

Through these chain reactions, the organic compounds can be 

photocatalytically decomposed and transferred to inorganic substances 

(Figure 1). 
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Figure 1:  The basic mechanism of photocatalysis on TiO2 surface 

*This figure was modified from the image which was taken from:  

http://sangakukan.jp/journal/journal_contents/2010/06/articles/1006-03-2/1006-03-

2_earticle.html 

1.3.3 The photocatalytic bactericidal effect                                                                                                          

Mastsunaga et al. reported for the first time the photocatalytic antibacterial 

effect of TiO2 (Matsunaga, Tomoda et al. 1985). Since then, photocatalytic 

disinfection has become a research focus of TiO2 photocatalysis, especially in 

the medical realm. The photocatalytic bactericidal effect of anatase has been 

thought to lie in the generation of active radicalic and anionic oxygen species 

during light illumination (Kikuchi, Sunada et al. 1997, Maness, Smolinski et al. 

1999, Rupp, Haupt et al. 2010). These active groups could initiate the 

peroxidation reactions in bacterial plasma membranes and disrupt the cell 

structure (Joost, Juganson et al. 2015).   

http://sangakukan.jp/journal/journal_contents/2010/06/articles/1006-03-2/1006-03-2_earticle.html
http://sangakukan.jp/journal/journal_contents/2010/06/articles/1006-03-2/1006-03-2_earticle.html
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Sunada et al (Sunada et al. 2003) put forward a 3-step mechanism to explain 

the general process of photocatalytic antibacterial performance on TiO2 

surfaces (Figure 2): (1) Attack of the cell walls by ROS. During this stage the 

outer membrane of the cells can be partially damaged and thus lead to the 

change of the permeability of the bacteria. This creates some passages in the 

cell walls for the ROS to enter into the cells easily. (2) Disordering of the inner 

cytoplasmic membrane and killing of the cell. In this stage the cell membrane 

undergoes lipid peroxidation and the structural and functional disordering of 

the cytoplasmic membrane takes place. (3)  Decomposition of the toxic 

ingredients of bacteria. After longer reaction times, the dead bacteria are 

completely mineralized to CO2 and H2O. 

 

Figure 2: The three-step mechanism of photocatalytic bactericidal process on 

irradiated TiO2 surfaces.  

*This figure was modified from Fig.3 in publication Visai et al. 2011 

1.4 Quartz crystal microbalance with dissipation 

In this study,a quartz crystal microbalance with dissipation (QCM-D) device 

was used to detect the loading situation of bacteria on anatase surface.  
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The QCM-D is a nanogram sensitive technique that utilizes acoustic waves 

generated by oscillating a piezoelectric, single crystal quartz plate to measure 

surface mass and also characterize viscoelastic properties of bound masses 

via energy dissipation measurements. 

The basis of QCM-D lies in the piezoelectricity, i.e., by applying alternating 

current to the quartz crystal an alternating expansion and contraction of the 

crystal lattice is induced. Normally, the shear quartz crystal is sandwitched 

between two metal electrodes, and the resonance would be excited when a 

sufficient AC voltage is applied with a frequency close to the resonant 

frequency of the crystal.  

QCM-D is a popular technique to study the adsorption kinetics and mechanical 

properties of thin molecular films at the solid-liquid interface (Macakova 2010). 

In general, the amount of adhering mass on the oscillating quartz crystal is 

shown by the shifts in resonance frequency. What’s more, when the adsorbed 

mass is viscous and sufficiently soft which doesn’t follow the sensor oscillation 

perfectly (e.g., in the cell adsorption), this leads to internal friction in the 

adlayer and energy dissipation. Therefore, in biomolecular studies, QCM-D 

offers the ability to monitor viscoelastic film adsorption (e.g. proteins, DNA, 

lipids and cells) on different types of surfaces, by means of online 

measurements of resonant frequency and dissipation factor (Dixon 2007, 

Olsson 2011). 
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1.5 Aim of the study 

Although a wide range of bacteria, fungi, algae and viruses were observed to 

be killed on UV-responsive TiO2, there is a big drawback of this approach 

when intended to be applied in clinical situations. There, the high energy of UV 

irradiation might be harmful for living tissues and cells, thus limiting this 

antimicrobial approach to in vitro applications. Therefore, for specific 

applications, e.g., for peri-implantitis treatments adjacent to host tissues, it is 

important to clarify if the photocatalytic antimicrobial effects can also be 

excited in the visible (VIS) light region instead higher energetic UV. 

In a previous study, we have reported about photocatalytic protein 

decomposition on anatase surfaces (Wu et al. 2015). It was found that pre-

adsorbed human serum albumin (HSA) thin films could be photocatalytically 

decomposed not only in the usually applied UV-A range, but also under > 390 

nm light irradiation, which lay in the transition region between UV-A and visible 

light, and this wavelength range was more clinically acceptable. Since proteins 

are basic components in the structure of bacteria, it can be supposed that 

bacteria may also get photocatalytically decomposed when irradiated by this 

clinically more acceptable light. Therefore, the idea for the present study was 

to investigate if light emitted at UV/VIS threshold wavelengths would be able to 

initiate a bactericidal attack on a pre-adhered early oral colonizer. In order to 

simulate the clinical oral situation in this in vitro study, human salivary pellicle 

films served as conditioning intermediate films at the implant/bacteria interface. 

In detail, the aims of this study were as follows: 
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1) To detect online changes of bacterial attachment on anatase surface in 

different irradiation situations in a model system (QCM); 

2) To observe qualitatively the photocatalytic antibacterial effects of anatase in 

different irradiation situations by Live/Dead staining and microscopic 

examination; 

3) To quantitatively determine the photocatalytic antibacterial effects of anatase 

in different irradiation situations by analyzing the microscopic images. 

2. Materials and methods 

2.1 Preparation of samples 

AT-cut 5-MHz quartz crystals (14 × 0.3 mm, Q-Sense, Sweden) served as the 

substrates for anatase coatings. The polycrystalline anatase layers with a 

thickness of 700 nm were prepared by reactive pulse magnetron sputtering at 

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma 

Technology (FEP, Dresden, Germany) (Figure 3). The reactive pulse coating 

technique has been investigated for the past few years and the phase of 

growing films can be tailored to a large extent by choosing proper process 

conditions and pulse parameters (Zywitzki, Modes et al. 2004, Frach, Glöß et 

al. 2006). Ultrapure and nanostructured layers of anatase could be produced 

by this technique (Rupp, Haupt et al. 2010). 

The procedure of reactive pulse magnetron sputtering was like this: after 

charging and evacuation of the deposition chamber, the substrates were 

preheated in vacuum to a temperature of 200 °C and exposed to a short 

plasma-etching process to support layer adhesion. Subsequently, anatase 

layers were deposited in a reactive magnetron-sputtering process in bipolar 
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pulse mode with a frequency of 20 kHz. The reactive working point of the 

process was stabilized by a closed-loop feedback control on the optical 

plasma emission signal in a region where fully transparent, stoichiometric TiO2 

films grow on the substrates. The working pressure was kept at 1 Pa for these 

depositions and the process conditions have been reproduced in several 

deposition runs for a multitude of coatings. A duration of deposition between 9 

and 15 min was chosen to account for the different substrate geometries and 

movements during deposition. After the deposition, substrates were allowed to 

cool down to 100 ℃ before venting of the chamber for decharging (Rupp, 

Haupt et al. 2010). 

 

Figure 3:  The reactive pulse magnetron-sputtering machine for anatase coating. 



16 

 

In this study, beside the anatase-coated quartz crystals, Ti-coated quartz 

crystals were also utilized as reference surfaces. 

2.2 Surface Characterization 

The polycrystalline morphology of the anatase films was scanned by electron 

microscopy (Ultra high-resolution field-emission SEM; SU8000, Hitachi High-

Technologies, Krefeld, Germany). A fracture of the film was produced by a 

deep scratch and cross-sections of the films were observed along the exposed 

edges. 

2.3 Human sterile saliva 

After collecting the human whole saliva from one healthy volunteer in sterile 

50-mL polypropylene falcon tubes, the saliva was filtered through a 70 μm cell 

strainer (BD Falcon, BD Biosciences, Durham, USA), centrifuged at 4 °C and 

14,000 g for 30 min, and finally sterile-filtered by subsequent use of 5 μm 

(repeat 2 times) and 0.45 μm (repeat 10 times) low protein binding syringe 

filters (Acrodisc Syringe Filters with Supor PES membrane; Pall, Cornwall, UK). 

The filtrates obtained were diluted 1:5 with phosphate-buffered saline (PBS; 

DPBS, Gibco®, life technologies, Germany) and stored at −18 °C. After 

thawing and sonicating for homogenization, the saliva samples were used 

without further treatments for the experiments. 

2.4 Bacteria suspension 

In this study, Streptococcus gordonii (S. gordonii), which is a member of 

viridians streptococci, was chosen as model bacterium.  

In the process of oral biofilm formation, S. gordonii serves as a pioneer 

organism and plays an integral role in initiating colonization by creating 
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adhesion sites for other colonizers (Plummer and Douglas 2006). In this study, 

the S. gordonii strain DL1 originated from S. Ruhl (Department of Oral Biology, 

State University of New York at Buffalo, USA) was utilized. After growing as 

stationary suspension culture in Schaedler medium (Beckton Dickinson GmbH, 

Germany) at 37 °C for 18 h, bacteria deposit was harvested by centrifugation 

for 5 min at 170 g and discarding the supernatant liquid. Then, the bacteria 

deposit was resuspended in PBS and further diluted until an optical density 

(OD) of 0.54 was reached, indicating a final bacterial concentration of 1×108 

ml-1. To measure the OD value, 200 μl bacteria suspension was loaded in one 

well of a 96-well plate and the plate was laid into the detect chamber of an 

ELISA immunosorbent device (SLT, Germany), the OD value was measured 

at a wavelength of 620 nm and recorded by the BIOLISE software.  

2.5 Protocols of light irradiation 

To seek for possible photocatalytic effects under different light regimes, 

several irradiation conditions (Bluepoint, Hoenle, Germany) have been 

established: 

A. UV-A, Mercury lamp > 320nm, with 365 nm peak wavelength, 25 mW cm-2, 

3 min (bluepoint 2 easycure, Hoenle, Germany) 

B. UV-A/VIS, LED > 380nm, with 405 nm peak wavelength, 1050 mW cm-2, 

10 min, (bluepoint LED, Hoenle, Germany) 

C. UV-A/VIS, LED same as B, 1050 mW cm-2, an additional 390 nm cutoff-

filter (LongPass Color Filter, THORLABS, Germany) was placed under the 

light source to exclude wavelengths below 390 nm, 10 min. 
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D. VIS, LED same as B, 1050 mW cm-2, an additional 405/10 nm band-pass 

filter (BandPass Color Filter, ahf, Germany) was placed in the light path to 

limit the irradiation to 400-410 nm, 10 min. 

The radiant exitance (UVA  25 mW cm-2; UV-A/VIS 1050 mW cm-2) utilized in 

this study was fixed according to the previous reports (Rupp et al. 2010, Rupp 

et al. 2012) and some pilot studies, which was proved to be able to induce the 

photocatalytic decomposition of organics. 

Up till now, the threshold between UV-A and VIS wavelength range is not yet 

clearly defined. On the one hand, the VIS range has been defined by 

wavelengths from 380-780 nm (Asahi et al. 2001); on the other hand, a VIS 

range of 400-780 nm has been reported (Wang et al. 2014). Accordingly, UV-

A ranges from 315 nm till 380 or 400 nm, dependent on the literature. Due to 

this imprecisely defined UV-A/VIS threshold value, we defined in our study the 

wavelength range 380 nm < λ <400 nm as UV-A/VIS threshold irradiation to 

consider this transition zone between UV-A and visible light. 

2.6 QCM tests 

The quartz-crystal microbalance device (QCM-D; D-300, Q-Sense, Sweden) 

was used for the QCM tests (Figure 4). This online system consists of 3 main 

parts: electronics unit for monitoring the experimental conditions, a flow cell for 

loading the acoustic sensors, and Q-Sense Software for recording the 

frequency (f) and dissipation (D) signals of the quartz oscillation. Since in this 

study the saliva and bacteria suspension was needed to be driven across the 

sensor surface at a certain speed, the peristaltic pump (ISMATEC, Germany) 

was used to control the flow rate.  
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 Figure 4: The equipment setting of the QCM-tests. 

Anatase-coated AT-cut piezoelectric quartz crystal sensors of 14 mm diameter 

(Q-Sense, Sweden) (Figure 5) were sandwiched between gold electrodes that 

provide an electrical connection via pins in the flow cell to the electronics unit 

(Figure 6). 

 

Figure 5: Both sides of the quartz-crystal. 

Q-Sense Software 

Peristaltic pump 

 

QCM-D flow cell 
QCM-D electronics unit 

Measuring side Gold electrode 
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Figure 6: The combination of light irradiation and QCM-D. The window flow cell 

is part of QCM equipment, as shown in Figure 4. 

These sensors were excited to oscillate by applying an alternating current 

across the electrodes at its fundamental resonant frequency (5 MHz), and at 

the 3rd, 5th and 7th overtones (Ash, Mulholland et al. 2014). Based on 

piezoelectricity, the applied voltage would lead to resonance of the crystal and 

results in an evanescent wave extending into the adjacent medium. In QCM 

measurements, the Sauerbrey equation (Equation 1) is the theoretical basis to 

analyze changes in the adsorbed mass by frequency changes (Sauerbrey 

1959). 

                  (1) 

in which C is the mass sensitivity constant (C = 17.7 ng cm-2 Hz-1 at 5 MHz) 

and n is the frequency overtone number (1, 3, 5, 7) (Jordan and Fernandez 

2008). The lowest value of hydrated pellicle mass could be estimated through 

optic fiber for irradiation 

 
QCM 

window 

flow cell 
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this method, while other models might overestimate the amount of pellicle 

adhesives (Ash et al. 2014). According to the Sauerbrey equation, a decrease 

in the resonant frequency (Δf) is proportional to mass deposition (Δm). 

However, if the adsorbed film develops visco-elastic properties, such as often 

observed during bio-macromolecular or bacterial interactions, the amplitude of 

oscillation is also influenced by dissipative energy losses of the adsorbed film 

and in this case the dissipation should be taken into consideration to evaluate 

the adsorbed mass (Vogt et al. 2004): 

             (2) 

In which Edissipated refers to the energy dissipated during one oscillatory cycle 

and E stored indicates the energy stored in the oscillating system.  

After all, biomaterial/biosystem interactions can be observed in real-time from 

the acquired frequency and dissipation signals if the sensor is integrated in 

flow-systems. 

In our experiments, the anatase-coated quartz crystals were placed into a 

window flow cell (QS-QWIC 301 Q-Sense, Sweden) to form the base of the 

flow chamber. Stable signal baselines under PBS rinsing at a basic injected 

flow rate of 110 µl min-1 were defined as a prerequisite to start the experiment. 

Then, the saliva solutions were pumped over the quartz surface for 30 min, 

followed by a 30 min PBS rinsing step. Subsequently, the S.gordonii 

suspension was perfused through the flow cell for 10 min, followed by a 30 

min PBS rinsing step to remove loosely attached bacteria. After salivary 
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conditioning and bacterial interaction, the sensor surfaces were irradiated by 

the respective light fiber (UV-A, VIS) from top, meanwhile, the PBS rinsing 

continued and its flow rate was modified according to one of the following four 

schemes: 

1) The light irradiation was combined with increased PBS flow rate (2700 µl 

min-1). The irradiation was repeated 3 times according to the conditions in 

section Protocols of light irradiation, with an intermediate break interval of 

15 min without irradiation and a basic flow rate (110 µl min-1).  

2) Reference test I: this test was conducted without irradiation, but with the 

increased flow rate (2700 µl min-1), i.e., 3 times of 10 min rinsing with 

increased flow rate (2700 µl min-1) and with 15 min intermediate interval at 

a basic flow rate (110 µl min-1). 

3) Reference test II: this test was conducted with UV-A/VIS, LED > 380 nm 

irradiation, but at the basic flow rate (110 µl min-1). The irradiation was also 

repeated for 3 times of 10 min, with 15 min intermediate interval. 

4) Reference test III: this test was conducted by using Ti-coated quartz 

crystals combined with UV-A irradiation, also with the increased flow rate 

(2700 µl min-1). The irradiation was repeated 3 times for 3 min, also with 15 

min intermediate interval at a basic flow rate (110 µl min-1). 

2.7 Hydrodynamic Calculations 

It has been reported that when fluid flow exceeds a critical limit, the resulting 

wall shear rates may become high enough to stimulate microbial detachment 

from surfaces (Christersson et al. 1988). The purpose of the study was to 

focus on the antibacterial performance of photocatalytic effects; however, the 
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flow rate of solution might be an interfering factor since it might also induce 

microbial detachment. Therefore, in the experimental protocol, the flow rate of 

injected PBS was modulated between a higher (2700 µl min-1) and the basic 

(110 µl min-1) value and the reference tests I and II were designed, as 

described in Chapter 2.6. Through this design, the respective influence of 

irradiation and flow rinsing on antibacterial effects could be observed and 

analyzed. 

In addition, to analyze a possible antibacterial effect induced by rinsing at an 

increased flow rate, the hydrodynamic situation in the QCM-D flow cell was 

evaluated.  

Based on the report by Vanoyan N ( Vanoyan et al. 2010), since the fluid 

velocities differed at varied locations in the flow cell, the shear stress profile 

Gsh  in the QCM-D could be calculated according to the equation:  

                 (4)                             

Vm is the mean fluid velocity, b is half the flow cell height and z is the distance 

coordinate perpendicular to the surface (z=b in the middle of the flow cell and 

z=0 at the surface). Vm was estimated according to the average cross-

sectional area, which was assumed by dividing the maximum cross-sectional 

area by 2, in this study, the height of the circular flow cell was 0.50 cm and the 

diameter was 1.08 cm, so the maximum cross-sectional area would be 0.54 

cm2 and the average area would be 0.27 cm2. Based on this average area 

value, Vm was calculated to be 0.0068 cm s-1 and 0.17 cm s-1 with the injected 
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flow rate at 110 µl min-1 and 2700 µl min-1, respectively. The highest shear 

stress in the flow cell would be near the surface and in this study, the 

maximum shear rate Gsh value would be 0.0816 s-1 and 2.04 s-1 with the 

injected flow rate at 110 µl min-1 and 2700 µl min-1, respectively.   

2.8 Live/Dead staining and microscopic examination 

A Molecular Probes LIVE/DEAD® BacLightTM Bacterial Viability Kit (catalog 

number: L-7007, Molecular Probes, Life Technologies GmbH, Germany) was 

used. The LIVE/DEAD® BacLightTM Bacterial Viability Kits utilizes two kinds of 

dyes, i.e., SYTO® 9 green-fluorescent nucleic acid stain and the red-fluorescent 

nucleic acid stain, propidium iodide. 

These stains differ in their spectral characteristics and in their ability to 

penetrate healthy bacterial cells. When used alone, the SYTO® 9 stain 

generally labels all bacteria in a population — those with intact membranes or 

with damaged membranes. In contrast, propidium iodide penetrates only 

bacteria with damaged membranes, causing a reduction in the SYTO® 9 stain 

fluorescence when both dyes are present. Thus, with an appropriate mixture of 

the SYTO 9 and propidium iodide stains, bacteria with intact cell membranes 

are stained fluorescent green, whereas bacteria with damaged membranes are 

stained fluorescent red.  

In this kit, both dyes exist in the form of powder and are respectively stored in 

the plastic pipettes. To prepare the dye solution, 2.5 ml distilled water 

(Ampuwa®, Fresenius Kabi France) was first transferred into a dish, then the 

pipette was cut open and the distilled water was drawn into and drained out of 

the pipette repeatedly. When all the powder dissolved, the dye solution in the 

dish was distributed into eppendorf tubes (Eppendorf AG, Hamburg, Germany), 
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and each tube was loaded with 100 µl dye solution. The eppendorf tubes 

loaded with dye solution were stored at -20 °C in darkness. Before staining, 

the eppendorf tubes were brought out from the freezer and thawed, then, the 

mixture of the dye solution was prepared, that is, 1 ml distilled water + 100 µl 

SYTO 9 solution + 100 µl Propidium iodide solution. The excitation/emission 

maxima for these dyes are about 480/500 nm for SYTO 9 stain and 490/635 

nm for propidium iodide. The background remains virtually nonfluorescent. 

After the QCM tests, the quartz sensors were demounted from the flow cell 

and immersed in the dye mixture for 15 min. Then the quartz crystals were 

rinsed with water to get rid of the redundant dye solution. The samples were 

examined with a fluorescence microscope (Optiphot-2, Nikon) equipped with a 

remote control DSLR (Nikon 550D). To visualize the organisms, a filter 

combination with 450-490 nm excitation bandpass and a 520 nm highpass 

emission filter (Nikon B2 Filtercube) were used. 

2.9 Image analysis 

From the fluorescent microscopic images, the red- (indicating the dead 

bacteria) and green- (indicating the live bacteria) colored regions on the 

images were selected and the corresponding pixels were calculated by GIMP 

software (Gimp 2.8, General Image Manipulaton Program, The GIMP 

Development Team, USA). First, the pixel numbers of the fluorescent red and 

green areas were calculated respectively. Then, the pixel proportion of dead 

bacteria was calculated by dividing the pixel numbers of red areas by the sum 

of the pixel numbers of red and green areas. By calculating the pixel 

proportion of dead bacteria in the whole colored region, the respective 

antibacterial effects could be compared. 
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2.10 Statistical analysis 

The QCM experiments were repeated at least three times for each irradiation 

or reference case and typical frequency and dissipation curves are exemplarily 

shown in the results section. For each QCM run, three representative 

fluorescent images were chosen for the statistical analysis, and the pixel 

proportions were expressed as means with standard deviations. Differences 

among means of these data were statistically analyzed by one-way analysis of 

variance (ANOVA) followed by Student-Newman-Keuls (SNK) test. 

Differences were regarded as statistically significant when P < 0.05 (SPSS 

17.0, IBM, USA).  

3. Results  

3.1 Surface properties 

Figure 7 shows the scanning electron microscopy image of the cross-section 

of the polycrystalline anatase films on Ti-precoated quartz crystals. The films 

showed a column structure and pronounced facetted faces at the surface, with 

100 -200 nm lateral size at the top surface. In growth direction, the crystallites 

extended over nearly the entire film thickness. The Ti basis appeared as a 

bright layer at the substrate interface. On top of that, anatase growth began 

with a relatively small lateral scale length, which then coarsens by competitive 

growth of individual crystallites. 
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Figure 7: SEM image of the fracture of anatase film on a Ti-coated quartz crystal 

(× 50,000). 

3.2 QCM online experiments 

During the QCM experimental runs, frequency and dissipation were recorded 

in real-time, and the signal development at the 7th overtone for frequency and 

dissipation are exemplarily shown in Figures 8a-g. The standard noises of the 

frequency and dissipation signals in PBS medium are < 1 Hz and < 0.06 E-6, 

respectively. The preconditioning of the sensor surfaces with saliva and the 

following loading of bacteria resulted in a frequency decrease and an increase 

in the dissipation signals. The frequency and dissipation shifts before and after 

3 times of irradiation were summarized in Table 1. The baseline value of 

frequency (or dissipation) before infusing saliva were defined as F1 (or D1), 

and the stable levels acquired just before irradiation were defined as F2 (or 

D2). Likewise, the stable levels acquired after irradiation procedure were 

defined as F3 (or D3) (Figure 7a). ΔF (or ΔD) before and after irradiation were 

calculated by F2-F1 (or D2-D1) and F3-F1 (or D3-D1), respectively. The 

frequency (or dissipation) reversions described the reversion extent of 
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frequency (or dissipation) signals to the baseline level, after 3 times of 

irradiation. When the value of reversion had a positive sign, this indicated that 

the signals moved in the direction towards the baseline; In contrast, a negative 

sign indicated that the signals moved in the opposite direction away from the 

baseline.  

In case of irradiation with UV-A source (Figure 8a), the frequency level rose 

sharply to the baseline after the first irradiation and remained at this level for 

another two irradiations reaching an average reversion of 91% after 3 times of 

irradiation. Simultaneously, the dissipation signals descended gradually after 

each irradiation reaching eventually the initial dissipation baseline level. 

Upon UV-A/VIS irradiation > 380 nm (Figure 8b), the frequency shifts were 

very similar to that observed upon UV-A. Also here, the frequency quickly rose 

after the first irradiation and finally reached an average reversion of 87%. 

However, in contrast to the effects of UV-A, there was no explicite change of 

dissipation signals. A partly-reversion shift was shown in Figure 8b, while in 

several other replicate tests the dissipation signals showed a rising tendency, 

so the mean dissipation reversion was negative (-13 %). 

A different behavior in the frequency development was observed at longer 

irradiation wavelength. Figure 8c showed the results when applying 

wavelengths > 390 nm. Here, the frequency signal rose step by step and a 

mean value of 68 % reversion to the baseline could be observed after the third 

irradiation. Likewise, the dissipation development differed from that observed 

under UV-A irradiation, that is, the dissipation values increased stepwise after 

each irradiation and the mean dissipation reversion reached finally -94 %. 
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Finally, when limiting the irradiation to wavelengths between 400 and 410 nm, 

a stepwise increase of the frequency signals to a mean value of 88 % 

reversion after the third irradiation appeared. Figure 8d showed an example of 

100 % reversion. Besides, no apparent changes occurred in the dissipation 

when irradiation wavelengths < 400 nm were now excluded.   

In the reference tests I, which were conducted without irradiation, no obvious 

changes of frequency and dissipation signals could be observed (Figure 8e). 

In the reference tests II, the bacterial films were irradiated with UV-A/VIS, 

LED > 380 nm, but the runs were conducted with the basic flow rate. Although 

it seemed here that the frequency signals didn’t reach the baseline level 

directly after the first irradiation, a complete frequency reversion could also be 

attained after the following irradiation (97%). The dissipation signals showed 

here an increase after the first irradiation and didn’t return to the basic level at 

the end (Figure 8f). 

In the reference tests III (Figure 8g), which were conducted on titanium 

surface, the gradual reversion of frequency signals was also observed after 

UV-A irradiation and reached a mean value of 64.5 % after the third irradiation. 

What’s more, the dissipation signals did not show any reversibility but 

increased in course of three irradiations. 
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Figure 8a  UV-A  (> 320 nm), with higher flow rate (2700 µl min-1) rinsing 

 

Figure 8b  VIS (> 380 nm), with higher flow rate (2700 µl min-1) rinsing 
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Figure 8c  VIS (> 390 nm), with higher flow rate (2700 µl min-1) rinsing 

 

 

Figure 8d  VIS (400-410 nm), with higher flow rate (2700 µl min-1) rinsing 
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Figure 8e  no irradiation, with higher flow rate (2700 µl min-1) rinsing 

Figure 8f  VIS (> 380 nm) irradiation, with basic flow rate (110 µl min-1) rinsing 
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Figure 8g  UV-A (> 320 nm) but on Ti surface, with higher flow rate (2700 µl min-1) 

rinsing 

Figures 8 a-g: Real-time QCM-D data under various irradiation protocols. (The 

arrows in Figures a-g indicate the start point of irradiation with or without flow 

rate change, and the arrows in e indicate the start point of flow rate change.) 

Figure a served as an example and was added with some indexes to show the 

reference levels to calculate ΔF (or ΔD). 
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Sur-
face 
Ma-

terial 

Irradia-
tion 

ΔF7/7 (Hz)  ΔD (E-6)  

Before 
irradia-

tion 

After 
irradia-

tion 

Fre-
quency 
Rever-
sion 
(%) 

Before 
irradia-

tion 

After 
irradia-

tion 

Dissipa-
tion 

Rever-
sion 
(%) 

 
 
 
 
 
 
 

Ana-
tase 

 

UV-A 
(>320 
nm) 

-16 (1.4) -1.5 (2.1) 91 (12.7) 2.2 (0.3) 
-0.3 

(0.1) 
113 (4.2) 

VIS 
(> 380 
nm) 

-24 (4.6) -3 (3.6) 
86.7 

(15.3) 
2.2 (0.6) 

2.5 

(1.2) 

-12.7 

(37.8) 

VIS 
(> 390 
nm) 

-26 (6) -7.7 (2.5) 67.7 (17) 2.5 (0.4) 
5.0 

(1.8) 

-94.3 

(43.5) 

VIS 
(400-410 

nm) 
-20 (1) -2.3 (3.2) 

87.7 

(17.2) 
2.0 (0.1) 

1.8 

(0.5) 

7.3 

(15.4) 

no 
irradia-

tion 
-20 (8.7) -18 (9.5) 

11.7 

(11.7) 
2.6 (1.6) 

2.6 

(1.5) 

-9.2 

(11.8) 

VIS 
(> 380 
nm) 

basic 
flow rate 

-44 

(18.5) 
-1.7 (4.7) 

96.7 

(8.5) 
4.6 (1.9) 

3.2 

(1.4) 

20.3 

(54.8) 

 
Ti 

 

UV-A 
(>320 
nm) 

-31 (8.5) -14 (9.9) 
64.5 

(10.6) 
4.3 (0.8) 

5.5 

(0.5) 

-29.1 

(13.2) 

Table 1: The frequency and dissipation shifts before and after 3 times of irradiation. 
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3.3 Microscopic analysis after Live/Dead staining 

In Figures 9a-g, the bacterial layers of the different experimental runs after 

live/dead staining are shown respectively. In the reference group I (Figure 9e ), 

multilayers of S. gordonii could be observed and numerous vital bacteria 

(fluorescent green) covered nearly the complete sensor surface, with only a 

small proportion of dead cells (fluorescent red) scattering among live ones. In 

contrast, upon UV-A irradiation, the quantity of S. gordonii decreased in general 

and the bacterial layer became thinner. Dead bacteria constitute the greatest 

proportion here and only minute amount of live cells could be observed (Figure 

9a). 

After UV-A/VIS irradiation > 380 nm, the photocatalytic bactericidal activity was 

similar as observed upon UV-A irradiation: the amount of bacteria also 

considerably declined and the majority of the remaining ones appeared to be 

dead (Figure 9b). 

No bactericidal effect could be microscopically verified when the irradiation 

wavelengths were limited to longer than 390 nm. Here, the bacterial layers 

remained dense and live cells dominated in the visual field (Figure 9c). The 

same was observed when the higher energetic wavelengths were restricted 

further by band-pass-filtering to 400-410 nm, with nearly no different 

appearance compared with the reference tests I without irradiation. Most of the 

surface areas were occupied here by living cells and dead bacteria were only 

scattered sporadically (Figure 9d and 9e). 
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In the reference tests II, the results seemed to be the same as what could be 

observed in the situations with UV-A irradiation or UV-A/VIS irradiation > 380 

nm, the dead bacteria occupied the surfaces to a large extent and only a few 

live cells dispersed among them (Figure 9f ). 

In the reference tests III, in which Ti surface were utilized and irradiated under 

UV-A, the bacteria layers were also dense and the dead bacteria were hardly to 

be seen on the fluorescent images (Figure 9g).  

 

Figure 9a  UV-A  (> 320 nm), with higher flow rate (2700 µl min-1) rinsing 

 

Figure 9b  VIS (> 380 nm), with higher flow rate (2700 µl min-1) rinsing 



34 

 

 

Figure 9c VIS (> 390 nm), with higher flow rate (2700 µl min-1) rinsing 

 

Figure 9d VIS (400-410 nm), with higher flow rate (2700 µl min-1) rinsing 

 

Figure 9e no irradiation, with higher flow rate (2700 µl min-1) rinsing 
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Figure 9f VIS (> 380 nm) irradiation, with basic flow rate (110 µl min-1) rinsing 

 

Figure 9g UV-A (> 320 nm) but on Ti surface, with higher flow rate 

(2700 µl min-1) rinsing 

Figures 9 a-g: Microscopic images after Live/Dead staining (400×). 

3.4 Image evaluation 

Figure 10 shows the results of the quantitative evaluation of images as shown in 

Figures 9a-g. Mean pixel proportions of regions with fluorescent red are shown 

for each irradiation situation. In the studies with increased rinsing flow rate 
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during irradiation (2700 µl min-1), significantly higher bactericidal effects were 

statistically proven under UV-A and UV-A/VIS > 380 nm irradiation compared to 

the other irradiation protocols (P < 0.05). There is no statistical significance 

between the mean values shown here for the UV-A and UV-A/VIS > 380 nm 

protocols (P > 0.05). What’s more, the photocatalytic antibacterial effect under 

UV-A/VIS > 380 nm irradiation and with basic rinsing flow rate (110 µl min-1) 

showed also no significant difference in comparison with the results from UV-A 

and UV-A/VIS > 380 nm irradiation conducted at an increased flow rate (P > 

0.05). On Ti surface, the fluorescent red cells only occupied 0.12 % among the 

stained region, which is significantly lower than the other experimental 

situations (P < 0.05).  

Figure 10: Pixel proportions of dead bacteria, calculated by dividing the pixels of 

red region (indicating dead cells) by the pixels of the whole colored region (red + 
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green, including dead and live cells). Each bar represented the mean proportion 

value from 9 analyzed images in the triplicate tests.  

In Figure 10, the high standard deviation could be explained according to the 

discussion by other researchers, (Parmar et al. 2011, Yao et al. 2013), i.e., it 

might be resulted from the inhomogeneous distribution of living and dead 

bacteria in the bacterial layer and the subjective selection of the representative 

fluorescent images. 

To sum up, in the present work, the salivary layer could be decomposed under 

each irradiation protocol, while the antibacterial effects could only be triggered 

upon UV-A or UV-A/VIS threshold illumination (> 380 nm). (Figure 11) 

 

 

Figure 11: Effective spectrum region for inducing photocatalytic pellicle 

decomposition or antibacterial effects on anatase surfaces. In this study, 

photocatalytic antibacterial effects could be observed when the irradiation was < 

390 nm; while the photocatalytic decomposition of salivary pellicle could take 

place even under 400-410 nm visible light irradiation. 
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4. Discussion 

4.1 Analysis of the photocatalytic antibacterial performance   

4.1.1 Analysis of the experimental results on Ti surface 

Since the electronic state in pure metal is continuous, no band gaps exist 

between conductance and valence bands in Titanium (Jafari et al. 2012). As a 

result, there should be no photocatalytic effect shown on the pure titanium, even 

irradiated under UV light. In this study, only traces of dead bacteria could be 

observed in the fluorescent images after irradiating the Ti surface with UV-A 

and the pixel proportion of dead cells on Ti surface was significantly lower than 

any of other test situations (only 0.12 %). In comparison with the staining results 

in the other groups, it indicated that photocatalytic performance was material-

related and no photocatalytic antibacterial effect could be observed on Ti 

surface. 

However, when the QCM-D diagram was taken into consideration, some 

interesting phenomena could be noticed. In a previous study (Rupp et al. 2012), 

which dealt with the photocatalytic decomposition of salivary pellicle on anatase 

surface, Ti surface served as reference implant material and also received UV-

A irradiation after conditioning with saliva pellicle. As the result, the frequency 

signals of Ti in the QCM-D experiments didn’t show any visible rise even after 

UV-A irradiation, which indicated nearly no mass loss occurred on the surface 

and the attached pellicle film could hardly be photocatalytically decomposed on 

Ti surface. However, in this study, in the reference tests on Ti surface, 

frequency signals kept gradually rising after each UV-A irradiation and the 

dissipation signals also kept rising. Based on the principles of QCM-D, the 
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reversion of frequency indicated there was mass loss on the surface of quartz 

crystals and the rising of dissipation signals indicated the viscoelasticity of the 

adlayer was increasing, however, no obvious bacteria removal could be 

observed from the corresponding fluorescent images, which suggested the 

ascent of frequency curve here didn’t simply display the change of adherent 

mass.  

It has been pointed out in the literature, that bacterial adhesion cannot be totally 

explained by the conventional mass-loading theory. Bacteria like S. gordonii 

have filamentous structures and can excrete extracellular polymeric substances 

(EPS), which complicate the explanation of QCM results (Olsson et al. 2011, 

Krajewski et al. 2014). Up till now, there are still no specific reports aiming to 

figure out the relation between Frequency-Dissipation (F-D) signals in QCM and 

the photocatalytic antibacterial progress on the sensor surface. On the basis of 

the acquired results, it could be assumed that under UV-A irradiation some 

changes of the binding took place between the bacteria and the coated surface, 

which were independent of photocatalysis, e.g., the increasing viscoelasticity of 

the adlayer might be caused by local detachment of the filamenteous 

connection, however, this needs more experiments to elaborate.  

4.1.2 Analysis of the experimental results on anatase surface (irradiation 

with higher flow rate 2700 µl min-1) 

From the images of Live/Dead staining it was obvious that when the light 

wavelength was < 390 nm, the majority of bacteria on the anatase coating 

would be photocatalytically killed and get rid off from the surface. In contrast, 

when the irradiation wavelength was > 390 nm, the vitality of the bacteria 

seemed to be affected more faintly and the majority of bacteria still kept alive 
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and densely covered the surface. In combination with the appearance of F-D 

signals in QCM-D tests, more speculations could be produced regarding the 

condition of bacteria-substratum interface. In a pilot study, the photocatalytic 

decomposition of salivary pellicle, which formed on the anatase surface, was 

also investigated in QCM-D under different light irradiation. This pilot study 

showed that even under 400-410 nm light irradiation, > 60 % pellicle proteins 

could be decomposed. Based on this knowledge, it could be inferred that in all 

the irradiation cases in this study, the observed frequency reversions were 

partly attributed to the photocatalytic decomposition of salivary pellicle. And in 

the cases with wavelength < 390 nm, the loss of adhered mass  caused by 

bacterial removal could also lead to frequency increase. In addition, the 

photocatalysis-independent frequency increase, which was shown in Ti 

reference tests, might also play a role in the frequency reversion on anatase 

surface.  

Regarding the change of dissipation signals in different conditions, total 

reversion could always be observed after UV-A irradiation, which suggested a 

substantial loss of visco-elastic binding sites of the bacteria to the substrate. 

However, upon UV-A/VIS threshold irradiation, the dissipation shift became 

irregular and the signal either rose or changed little. Since the salivary pellicle 

should be photocatalytically decomposed in these situations, it could be 

hypothesized that the dead space at the anatase-pellicle interface formed by 

photocatalysis could serve as a breaking point for bacterial detachment; 

however, this hypothesis was not supported by the fluorescent staining results. 

Combined with the dissipation changes, it could be shown that the bacteria-

surface interfacial connections were not disrupted and the binding sites might 
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be altered after the decomposition of salivary pellicle, thus increasing the 

viscoelasticity of the adlayer. After all, the photocatalytic antibacterial process 

appeared more complicated than the photocatalytic decomposition of protein 

layers; it might be influenced by a combination of factors, such as the property 

of the coating material, the connection situation of the bacteria-substratum 

interface, and the irradiation light. 

Considering the sites on the bacteria where photocatalytic attack was observed, 

lipids and proteins in the cell membrane turned out to be the main targets in 

antibacterial photocatalytic treatment (Carré et al. 2014). The active oxygen 

species can initiate the peroxidation of fatty acids, which exist abundantly in 

bacterial plasma membranes, and cause their decomposition or structural 

changes. Consequently, the cell membranes were damaged and led to the 

leakage of cytoplasm (Joost et al. 2015). 

Bacterial cells themselves have evolved some defensive methods to resist 

oxidative stress by radicalic oxygen species. Some self-produced enzymes 

such as catalase and superoxide dismutase can defend the microorganisms 

from fatal attack (Bonetta et al. 2013). On the other hand, since there is a thick 

peptidoglycan layer in the cell wall of Gram-positive bacteria, which might retard 

the diffusion of oxidants to the underlying phospholipid bilayers, Gram-negative 

bacteria (e.g. E.coli) are easier to be attacked under photo-illumination than the 

Gram-positive ones (e.g. S. gordonii) as a result of differences in cell wall or 

membrane structures (Gopal et al. 2004, Mitoraj et al. 2007). What’s more, the 

penetration depth of generated oxygen species can be blocked by multiple 

bacterial layers and the limited lifetime of these reactive oxygen species might 

make it really hard to take effect inside the bacterial layer (Cai et al. 2014). 
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It is worthy to note that the photocatalytic antibacterial effects are also 

influenced by the material surface which serves as the photocatalyst. For 

example, the microtopography can also have some influence on photocatalytic 

antifouling effects (Ramya et al. 2010, Vucko et al. 2013). Smaller particle size 

and increased homogeneity of the surface are supposed to inhibit biofilm 

formation and allow more effective biofilm control. 

Besides the photocatalysis-induced attack, it has been reported that under UV 

irradiation (300-400 nm), in some kinds of bacteria (e.g. E.coli), O2
- and singlet 

oxygen 1O2 are generated inside the cells itself by photosensitization and lead 

to self-damage of bacteria, such as the DNA strand breakage or the 

autoxidation of lipids or other cell components (Hollaender 1943, Fujihira et al. 

1982). 

To make an anticipation for the future study, since UV-A/VIS light in the range 

of 380-495 nm has been widely used in medicine, it is of clinical interest to 

develop potential photocatalytic antibacterial effects in this wavelength region 

under therapeutically acceptable intensity and dosage (Vandersee et al. 2015). 

It should be noted that the radiant exitance (UVA  25 mW cm-2; UV-A/VIS 1050 

mW cm-2) in this in vitro study was far above the normal therapeutical settings in 

the medical divices (UV  3.7 mW cm-2; UV-A/VIS 100 mW cm-2). Considering 

that UV light could lead to DNA-mutation, immunosuppression, photoaging and 

especially carcinogenesis (Kelly et al. 2000, Poon et al. 2014), and UV-A/VIS 

light could also cause the production of reactive oxygen species to diminish 

antioxidative ability of human skin (Vandersee et al. 2015). It is also worthwhile 

in the future to figure out if the irradiation parameters in this study need to be 
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modified to adapt to clinical requirement. In addition, it should be noted that, 

although in theory, the photon energy of the irradiation light > 385 nm is not 

enough to trigger photocatalysis on anatase, however, in the pilot study, the 

decomposition of saliva pellicle was also observed even under irradiation > 390 

nm. One explanation is that, maybe the anatase coating contained certain 

impurities, which might have changed the photocatalytic property of the material 

(Shymanovska et al. 2011). Further experiments need to be done to clarify this 

point. 

4.2. The influence of rinsing flow rate 

Based on what has been shown on the microscopic fluorescent images of the 

reference tests I and II, it could be inferred that in this study the elevated rinsing 

flow rate during the irradiation period had no obvious influence on the bacterial 

removal. The observed bactericidal effect and bacterial removal could be 

attributed to the light irradiation. 

Despite of this, this didn’t mean that rinsing flow rate took little effect in 

antibacterial performance. In a study published by Sharma et al. (Sharma, 

Gibcus et al. 2005), it was indicated that lift forces due to fluid flow are generally 

too weak to cause microbial detachment. Only when the flow exceeds a critical 

threshold, then the resulted shear rates may be high enough to stimulate 

microbial detachment. However, the detachment depends on the microbial 

strain. In study of Sharma et al. (Sharma, Gibcus et al. 2005), fluid flow rates of 

200, 235, and 300 ml min-1, corresponding to wall shear rates of 11,000, 13,000 

and 16,000 s-1, were found being effective in detaching a hydrophilic 

streptococcus but not in detaching a hydrophobic actinomycetes. The cell 
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hydrophobicity was thought to be one factor contributing to the tenacious 

adhesion of actinomycetes. Similarly, the adhesive fibrils of S. gordonii strain 

DL1, which was used in our study, also conveyed the hydrophobic properties to 

the cell surface (McNab et al. 1999) and this might serve as one potential 

reason for the negligible bacterial detachment in reference I tests. What’s more, 

in our study, the shear rate at 2700 µl min-1 injected fluid flow was calculated to 

be 2.04 s-1, which was relatively too small to produce an effective microbial 

detachment. These might explain why the influence of the rinsing flow rate was 

negligible in this study. 

5. Conclusions 

In this study, photocatalytic antibacterial effects were investigated under 

different irradiation protocols on anatase. The results showed that, under UV-A (> 

320 nm) and UV-A/VIS threshold (> 380 nm) irradiation, the photocatalytic 

antibacterial performance, i.e., bactericidal effects and a decreased number of 

adherent bacteria, could be observed by the fluorescent microscopic images. 

However, when the wavelength of irradiation light was limited to > 390 nm, the 

corresponding antibacterial performance became not obvious. Considering also 

the results of reference tests, which were conducted on Ti surface and under 

UV-A irradiation, the photocatalytic antibacterial effect could be attributed to the 

specific property of anatase. What’s more, considering the results from a pilot 

study, in which the photocatalytic decomposition of saliva pellicle could be 

observed even under 400-410 nm visible light irradiation, it is suggested that the 

specific photocatalytic process at the bacteria-substratum interface is more 

complicated and might be influenced by different factors. 
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Besides, it appeared that, in this study, the flow rate didn’t contribute to the 

antibacterial performance. By calculating the hydrodynamic parameters and 

comparing with other reports, the shear rate values in this study were 

comparatively small, and this might explain its negligible influence on the 

bacterial adherence and detachment. 

Since UV-A/VIS light in the range between 380 and 390 nm - found to attack 

bacteria similarly as UV-A - is much more acceptable in clinical applications 

than the potentially harmful, higher energetic UV-A light, it is of substantial 

interest to further investigate photocatalytic antibacterial effects in this 

wavelength region in order to develop clinically acceptable treatment protocols. 

6. Summary 

Anatase is a well-known photocatalytic material, in which active oxygen species 

can be generated under UV irradiation, and the adhered organic molecules can 

be decomposed through a series of oxidization reactions. The main purpose of 

this study was to investigate if there is sufficient photocatalytic antibacterial 

activity on anatase if the irradiation wavelength is shifted towards the visible 

light region. The quartz-crystal microbalance device (QCM-D; D-300, Q-Sense, 

Sweden) was used in this test and it consists of 3 main parts: electronics unit for 

monitoring the experimental conditions, a flow cell for loading the acoustic 

sensors, and Q-Sense Software for recording the frequency (f) and dissipation 

(D) signals of the quartz oscillation. In this study, after the online deposition of 

salivary pellicle and Streptococcus gordonii (S. gordonii) on the anatase sensor 

surface, different irradiation protocols (UV-A > 320 nm; UV-A/VIS > 380 nm, > 

390 nm; VIS 400-410 nm) were utilized to excite photocatalysis. Besides, the 

flow rate during the irradiation period was modulated between a higher (2700 µl 
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min-1) or basic (110 µl min-1) value and two reference tests have been designed 

to investigate the respective influence of irradiation and shear rate on the 

antibacterial effect. In addition, reference tests on Ti-coated quartz crystals were 

conducted under UV-A irradiation and increased flow rate (2700 µl min-1) to 

determine if antibacterial effects are restricted to photocatalytic activity or occur 

also directly upon UV-A. After irradiation, the quartz crystals were demounted 

and adhering bacteria were stained with LIVE/DEAD® BacLightTM Bacterial 

Viability Kit. The fluorescent staining results on the quartz crystal surfaces were 

microscopically analysed and documented by DLSR camera. The mean 

proportion of dead bacteria on the surfaces was calculated by image processing 

for each group. As the results, under UV-A (> 320 nm) and UV-A/VIS threshold 

(> 380 nm) irradiation, a photocatalytic antibacterial performance, i.e., 

bactericidal effects and decreased numbers of adherent bacteria, could be 

observed. However, when the wavelength of irradiation light was limited to > 

390 nm, a significant antibacterial performance could not be observed. The 

photocatalytic antibacterial effect could be attributed to the specific property of 

anatase. Since UV-A/VIS light in the range between 380 and 390 nm - found to 

attack bacteria similarly as UV-A - is much more acceptable in clinical 

applications than the potentially harmful, higher energetic UV-A light, it is of 

substantial interest to further investigate photocatalytic antibacterial effects in 

this wavelength region in order to develop clinically acceptable treatment 

protocols. 

7. Zusammenfassung 

Anatas ist ein bekanntes fotokatalytisches Material, in dem aktive 

Sauerstoffspezies unter UV-Einstrahlung generiert werden können und die 
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angehafteten organischen Moleküle können über eine Reihe von 

Oxidierungsprozessen zerlegt werden. Die Hauptaufgabe dieser Studie war es, 

zu untersuchen, ob ausreichend fotokatalytische antibakterielle Aktivitäten auf 

Anatas vorhanden sind, wenn die Wellenlänge der Einstrahlung zur sichtbaren 

Lichtregion verschoben wird. Das Mikrowaagengerät mit Quarzkristallen (QCM-

D; D-300, Q-Sense, Schweden) wurde in diesem Test verwendet und es 

besteht aus 3 Hauptteilen: einer Elektronikeinheit zur Überwachung der 

experimentellen Bedingungen, einer Durchflusszelle für das Laden der 

akustischen Sensoren und der Q-Sense Software zur Aufzeichnung der 

Frequenz (f) und der Dissipationssignale (D) der Quarzschwingung. In dieser 

Studie, nach der angeschlossenen Ablage von Speichelpellikel und der 

Streptococcus gordonii (S. Gordonii) auf der Sensoroberfläche von Anatas, 

wurden verschiedene Einstrahlungsprotokolle (UV-A > 320 nm; UV-A/VIS > 380 

nm, > 390 nm; VIS 400 – 410 nm) verwendet, um eine Fotokatalyse anzuregen. 

Außerdem wurde der Durchfluss während der Einstrahlungsperiode zwischen 

einem höheren (2700 µl min-1) und einem regulären (110 µl min-1) Wert 

angepasst. Zwei Referenztests wurden entworfen, um den jeweiligen Einfluss 

der Einstrahlung und der Scherrate auf den antibakteriellen Effekt zu 

untersuchen. Zusätzlich wurden Referenztests auf Quarzkristalle mit Ti-

Beschichtung unter UV-A-Einstrahlung und einem höheren Durchfluss (2700 µl 

min-1) durchgeführt, um zu bestimmen, ob antibakterielle Effekte nur auf die 

fotokatalytische Aktivität beschränkt sind, oder ob sie auch direkt während der 

UV-A auftreten. Nach der Bestrahlung wurden die Quarzkristalle abgebaut und 

die angehafteten Bakterien wurden mit dem bakteriellen Viabilitätsbausatz 

LIVE/DEAD® BacLightTM eingefärbt. Die fluoreszenten Färbeergebnisse auf 
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den Oberflächen des Quarzkristalls wurden mikroskopisch analysiert und von 

einer Spiegel-Reflex-Kamera dokumentiert. Der Anteil der toten Bakterien auf 

den Oberflächen wurde für jede Gruppe durch Bildbearbeitung kalkuliert. Als 

Ergebnis dessen konnte man, unter UV-A (> 320 nm) und UV-A/VIS (> 380 nm) 

Einstrahlung und einer fotokatalytischen antibakteriellen Performance, 

bakterientötende Effekte und verminderte Zahlen von angehefteten Bakterien 

feststellen. Wenn allerdings die Wellenlänge der Einstrahlung auf > 390 nm 

beschränkt war, konnte keine signifikante antibakterielle Performance 

festgestellt werden. Der fotokatalytische antibakterielle Effekt konnte der 

besonderen Eigenschaft von Anatas zugeteilt werden. Da das UVA-A/VIS-Licht 

im Bereich zwischen 380 und 390 nm – es wurde herausgefunden, dass es 

Bakterien angreift, ähnlich wie UV-A – in klinischen Anwendungen wesentlich 

akzeptable ist, als das potenziell schädliche und energischere UV-A-Licht, 

besteht ein erhebliches Interesse, fotokatalytische antibakterielle Effekte in 

diesem Wellenbereich weiter zu untersuchen, um klinisch akzeptable 

Behandlungsprotokolle zu entwickeln. 

 

8. References 

Asahi R, Morikawa T, Ohwaki T, Aoki K and Taga Y (2001) Visible-light 
photocatalysis in nitrogen-doped titanium oxides. Science 293:269-271. 

Adell R, Eriksson B, Lekholm U, Brånemark PI and Jemt T (1990) A long-term 
follow-up study of osseointegrated implants in the treatment of totally 
edentulous jaws. Int J Oral Maxillofac Implants 5: 347–359.  

Ash A, Mulholland F, Burnett GR and Wilde PJ (2014) Structural and 
compositional changes in the salivary pellicle induced upon exposure to SDS 
and STP. Biofouling 30: 1183-1197. 



49 

 

Assender H, Bliznyuk V and Porfyrakis K (2002) How surface topography 
relates to materials’ properties. Science 9: 973-976. 

Barbour ME, Gandhi N, el-Turki A, O'Sullivan DJ and Jagger DC (2009) 
Differential adhesion of streptococcus gordonii to anatase and rutile titanium 
dioxide surfaces with and without functionalization with chlorhexidine. J Biomed 
Mater Res Part A 90A: 993-998. 

Benedix R, Dehn Frank, Quaas J and Orgass Marko (2000) Application of 
Titanium Dioxide Photocatalysis to Create Self-Cleaning Building Materials. 
LACER 5: 157-168. 

Bombeccari GP, Guzzi G, Gualini F, Gualini S, Santoro F and Spadari F (2013) 
Photodynamic therapy to treat periimplantitis. Implant Dent 6: 631-638. 

Bonetta S, Bonetta S, Motta F, Strini A and Carraro E (2013) Photocatalytic 
bacterial inactivation by TiO(2)-coated surfaces. AMB Express 3: 59-59. 

Bowers K, Keller J, Randolph BA, Wick DG and Michaels CM (1992) 
Optimization of surface micromorphology for enhanced osteoblast responses in 
vitro. Int J Oral Maxillofac Implants 7: 302–310. 

Brady R, Calhoun J, Leid J and Shirtliff M (2009) Infections of orthopaedic 
implants and devices, 3: 15-55, M. Shirtliff and J. Leid, The Role of Biofilms in 
Device-Related Infections. Springer- Verlag Berlin Heidelberg.  

Brånemark PI, Hansson BO, Adell R, Breine U, Lindström J, Hallén O and 
Ohman A (1977) Osseointegrated implants in the treatment of the edentulous 
jaw. Experience from a 10-year period. Scand J Plast Reconstr Surg 16: 1–132. 

Brånemark PI, Adell R and Breine U (1969) Intra-osseous anchorage of dental 
prostheses. I Exp Stud Scand J Plast Reconstr Surg 3: 81-100. 

Busquim TP, May JE, Kuri SE, Nascente PAP (2010) Titanium oxide layer on 
the surface of anodized dental implants, 60-65, ASM International, Medical 
Device Materials V: Proceedings from the Materials & Processes for Medical 
Devices Conference. 



50 

 

Cai Y, Stromme M, Melhus A, Engqvist H and Welch K (2014) Photocatalytic 
inactivation of biofilms on bioactive dental adhesives. J Biomed Mater Res B 
Appl Biomater 102: 62-67. 

Carré G, Hamon E, Ennahar S, Estner M, Lett MC, Horvatovich P, Gies JP, 
Keller V, Keller N and Andre P (2014) TiO2 photocatalysis damages lipids and 
proteins in escherichia coli. Appl Environ Microbiol 80: 2573-2581. 

Christersson CE, Glantz PO and Baier RE (1988) Role of temperature and 
shear forces on microbial detachment. Scand J Dent Res 96: 91-98. 

Crawford RJ, Webb HK, Truong VK, Hasan J and Ivanova EP (2012) Surface 
topographical factors influencing bacterial attachment. Advances in Colloid and 
Interface Science 179–182: 142-149. 

Del Curto B, Brunella MF, Giordano C, Pedeferri MP, Valtulina V, Visai L and 
Cigada A (2005) Decreased bacterial adhesion to surface-treated titanium. Int J 
Artif Organs 28: 718-730. 

Ditta IB, Steele A, Liptrot C, Tobin J, Tyler H, Yates HM, Sheel DW and Foster 
HA (2008) Photocatalytic antimicrobial activity of thin surface films of TiO(2), 
CuO and TiO (2)/CuO dual layers on Escherichia coli and bacteriophage T4. 
Appl Microbiol Biotechnol 79: 127-133. 

Dixon MC (2008) Quartz Crystal Microbalance with Dissipation Monitoring: 
Enabling Real-Time Characterization of Biological Materials and Their 
Interactions. Journal of Biomolecular Techniques : JBT 19: 151–158. 

Esposito M, Hirsch J, Lekholm U and Thomsen P (1999) Differential diagnosis 
and treatment strategies for biologic complications and failing oral implants: a 
review of the literature. Int J Oral Maxillofac Implants 14: 473-490. 

Flemming RG, Murphy CJ, Abrams GA, Goodman SL and Nealey PF (1999) 
Effects of synthetic micro- and nano-structured surfaces on cell behavior. 
Biomaterials 20: 573-588. 



51 

 

Frach P, Glöß D, Metzner C, Modes T, Scheffel B and Zywitzki O (2006) 
Deposition of photocatalytic TiO2 layers by pulse magnetron sputtering and by 
plasma-activated evaporation. Vacuum 80: 679-683. 

Froum SJ, Dagba AS, Shi Y, Perez-Asenjo A, Rosen PS and  Wang WC (2016) 
Successful surgical protocols in the treatment of peri-implantitis: A narrative 
review of the literature. Implant Dent 3: 416-426. 

Fujihira M, Satoh Y and Osa T (1982) Heterogeneous Photocatalytic Reactions 
on Semiconductor Materials. III. Effect of pH and CuIons on the Photo-Fenton 
Type Reaction. Bulletin of the Chemical Society of Japan 55: 666-671. 

Fujishima A and Honda K (1972) Electrochemical Photolysis of Water at a 
Semiconductor Electrode. Nature 238: 37-38. 

Gopal J, George RP, Muraleedharan P and Khatak HS (2004) Photocatalytic 
Inhibition of Microbial Adhesion by Anodized Titanium. Biofouling 20: 167-175. 

Gristina AG, Naylor P and Myrvik Q (1988) Infections from biomaterials and 
implants: a race for the surface. Med Prog Technol 14: 205-224. 

Hayashi M, Jimbo R, Lindh L, Sotres J, Sawase T, Mustafa K, Andersson M 
and Wennerberg A (2012) In vitro characterization and osteoblast responses to 
nanostructured photocatalytic TiO2 coated surfaces. Acta Biomaterialia 8: 2411-
2416. 

Heitz-Mayfield LJ (2008) Peri-implant diseases: diagnosis and risk indicators. J 
Clin Periodontol 35: 292-304. 

Heitz-Mayfield L and Mombelli A (2014) The therapy of peri-implantitis: a 
systematic review. Int J Oral Maxillofac Implants 29: 325-345. 

Heydenrijk K, Meijer JA, Van der Reijden WA, Raghoebar GM, Vissink A and 
Stegenga B (2002) Microbiota around root-form endosseous implants: A review 
of the literature. Int J Oral Maxillofac Implants 17:829–38.  



52 

 

Hollaender A (1943) Effect of long ultraviolet and short visible radiation (3500 to 
4900Å) on escherichia coli. Journal of Bacteriology 46: 531-541. 

Howe RF (1998) Recent Developments in Photocatalysis. Developments in 
Chemical Engineering and Mineral Processing 6: 55-84. 

Jafari M, Jamnezhad H and Nazarzadeh L (2012) Electronic properties of 
titanium using density functional theory. Iranian Journal of Science & 
Technology A4: 511-515. 

Jemt T, Chai J, Harnett J, Heath MR, Hutton JE, Johns RB, McKenna S, 
McNamara DC, van Steenberghe D, Taylor R, Watson RM and Herrmann I 
(1996) A 5-year prospective multicenter follow-up report on overdentures 
supported by osseointegrated implants. Int J Oral Maxillofac Implants 11: 291–
298.  

Jones CG (1997) Chlorhexidine: is it still the gold standard? Periodontol 2000 
15: 55-62. 

Joost U, Juganson K, Visnapuu M, Mortimer M, Kahru A, Nõmmiste E, Joost U, 
Kisand V and Ivask A (2015) Photocatalytic antibacterial activity of nano-TiO2 
(anatase)-based thin films: Effects on Escherichia coli cells and fatty acids. J 
Photochem Photobiol B 142: 178-185. 

Jordan JL and Fernandez EJ (2008) QCM-D sensitivity to protein adsorption 
reversibility. Biotechnology and Bioengineering 101: 837-842. 

Kaneva N, Stambolova I, Blaskov V, Dimitriev Y, Vassilev S and Dushkin C 
(2010) Photocatalytic activity of nanostructured ZnO films prepared by two 
different methods for the photoinitiated decolorization of malachite green. J 
Alloys Compd 500: 252-258. 

Kelly DA, Young AR, McGregor JM, Seed PT, Potten CS and Walker SL (2000) 
Sensitivity to sunburn is associated with susceptibility to ultraviolet radiation-
induced suppression of cutaneous cell-mediated immunity. J Exp Med 3: 561-
566. 



53 

 

Kieswetter K, Schwartz Z, Hummert TW, Cochran DL, Simpson J, Dean DD and 
Boyan BD (1996) Surface roughness modulates the local production of growth 
factors and cytokines by osteoblast-like MG-63 cells. J Biomed Mater Res 32: 
55-63. 

Kikuchi Y, Sunada K, Iyoda T, Hashimoto K and Fujishima A (1997) 
Photocatalytic bactericidal effect of TiO2 thin films: dynamic view of the active 
oxygen species responsible for the effect. J Photochem Photobiol A Chem 106: 
51-56. 

Krajewski S, Rheinlaender J, Ries P, Canjuga D, Mack C, Scheideler L,  
Schaffer TE, Geis-Gerstorfer J, Wendel HP and Rupp F (2014) Bacterial 
interactions with proteins and cells relevant to the development of life-
threatening endocarditis studied by use of a quartz-crystal microbalance. Anal 
Bioanal Chem 406: 3395-3406. 

Langford CH (2012) Photocatalysis—A Special Issue on a Unique Hybrid Area 
of Catalysis. Catalysts 2: 327. 

Lindhe J and Meyle J (2008) Peri-implant diseases: Consensus Report of the 
Sixth European Workshop on Periodontology. J Clin Periodontol 35: 282-
285.Luttrell T, Halpegamage S, Sutter E and Batzill M (2014) Photocatalytic 
activity of anatase and rutile TiO2 epitaxial thin film grown by pulsed laser 
deposition. Thin Solid Films 564: 146-155. 

Macakova L, Yakubov GE, Plunkett MA and Stokes JR (2010) Influence of ionic 
strength changes on the structure of pre-adsorbed salivary films. A response of 
a natural multi-component layer. Colloids Surf B Biointerfaces 77: 31-39. 

Machtei EE, Frankenthal S, Levi G, Elimelech R, Shoshani E, Rosenfeld O, 
Tagger-Green N and Shlomi B (2012) Treatment of peri-implantitis using 
multiple applications of chlorhexidine chips: a double-blind, randomized multi-
centre clinical trial. J Clin Periodontol 39:1198–1205. 

Maness PC, Smolinski S, Blake DM, Huang Z, Wolfrum EJ and Jacoby WA 
(1999) Bactericidal activity of photocatalytic TiO2 reaction: toward an 
understanding of its killing mechanism. Appl Environ Microbiol 65: 4094-4098. 



54 

 

Martin J, Schwartz Z, Hummert TW, Schraub DM, Simpson J Jr, Dean DD, 
Cochran DL, Boyan BD (1995) Effect of titanium surface roughness on 
proliferation, differentiation, and protein synthesis of human osteoblast-like cells 
(MG63). J Biomed Mater Res 29: 389-401. 

Matsunaga T, Tomoda R, Nakajima T and Wake H (1985) 
Photoelectrochemical sterilization of microbial cells by semiconductor powders. 
FEMS Microbiology Letters 29: 211-214. 

McNab R, Forbes H, Handley PS, Loach DM, Tannock GW and Jenkinson HF 
(1999) Cell Wall-Anchored CshA Polypeptide (259 Kilodaltons) in Streptococcus 
gordonii Forms Surface Fibrils That Confer Hydrophobic and Adhesive 
Properties. Journal of Bacteriology 181(10): 3087-3095. 

Mitoraj D, Janczyk A, Strus M, Kisch H, Stochel G, Heczko PB and Macyk W 
(2007) Visible light inactivation of bacteria and fungi by modified titanium 
dioxide. Photochem. Photobiol. Sci 6: 642-648. 

Mombelli A, Muller N and Cionca N (2012) The epidemiology of peri-implantitis. 
Clin Oral Implants Res 23 Suppl 6: 67-76.Muszkat L, Feigelson L, Bir L and 
Muszkat KA (2002) Photocatalytic degradation of pesticides and bio-molecules 
in water. Pest Manag Sci 58: 1143-1148. 

Niinomi M (1998) Mechanical properties of biomedical titanium alloy. Mat Sci 
Eng A 243: 231–236. 

Niinomi M (2003) Recent research and development in titanium alloys for 
biomedical applications and healthcare goods. Sci Technol Adv Mater 4: 445-
454. 

Olsson AL, van der Mei HC, Busscher HJ and Sharma PK (2011) Acoustic 
sensing of the bacterium-substratum interface using QCM-D and the influence 
of extracellular polymeric substances. J Colloid Interface Sci 357: 135-138. 

Oplaender C, Deck A, Volkmar M, Kirsch M, Liebmann J, Born M, van Abeelen 
F, van Faassen EE, Kroencke KD, Windolf J and Suschek CV (2013) 
Mechanism and biological relevance of blue-light (420-453 nm) 



55 

 

induced nonenzymatic nitric oxide generation from photolabile nitric oxide 
derivates in human skin in vitro and in vivo. Free Radic Biol Med 65: 1363-1377. 

O'Regan B and Gratzel M (1991) A low-cost, high-efficiency solar cell based on 
dye-sensitized colloidal TiO2 films. Nature 353: 737-740. 

Osman RB, Swain MV (2015) A critical review of dental implant materials with 
an emphasis on titanium versus zirconia. Materials 8: 932-958. 

Parmar D, Hauman CHJ, Leichter JW, McNaughton A and Tompkins GR (2011) 
Bacterial localization and viability assessment in human ex vivo dentinal tubules 
by fluorescence confocal laser scanning microscopy. Int Endod J 44: 644-651. 

Parr GR, Gardner LK and Toth RW (1985) Titanium: The mystery metal of 
implant dentistry. Dental materials aspect. J Prosthet Dent 54: 410-414. 

Plummer C and Douglas CWI (2006) Relationship between the ability of oral 
streptococci to interact with platelet glycoprotein Ibα and with the salivary low-
molecular-weight mucin, MG2. FEMS Immunology & Medical Microbiology 48: 
390-399. 

Poon F, Kang S and Chien AL (2015) Mechanisms and treatments of 
photoaging 2: 65-74. 

Prathapachandran J and Suresh N (2012) Management of peri-implantitis. 
Dental Research Journal 9: 516–521. 

Puleo D A and Nanci A (1999) Understanding and controlling the bone–implant 
interface. Biomaterials 20: 2311-2321. 

Ramya S, George RP, Subba Rao RV and Dayal RK (2010) Effect of biofouling 
on anodized and sol-gel treated titanium surfaces: a comparative study. 
Biofouling 26: 883-891. 

Rupp F, Scheideler L, Rehbein D, Axmann D and Geis-Gerstorfer J (2004) 
Roughness induced dynamic changes of wettability of acid etched titanium 
implant modifications. Biomaterials 25: 1429-1438 



56 

 

Quirynen M, De Soete M and van Steenberghe D (2002) Infectious risks for oral 
implants: a review of the literature. Clin Oral Implants Res 13: 1-19. 

Renvert S, Polyzois I and Maguire R (2009) Re-osseointegration on previously 
contaminated surfaces: a systematic review. Clin Oral Implants Res 20: 216-
227. 

Rupp F, Haupt M, Klostermann H, Kim HS, Eichler M, Peetsch A, Scheideler L, 
Doering C, Oehr C, Wendel HP, Sinn S,  Decker E, von Ohle C and Geis-
Gerstorfer J (2010) Multifunctional nature of UV-irradiated nanocrystalline 
anatase thin films for biomedical applications. Acta Biomaterialia 6: 4566-4577. 

Rupp F, Scheideler L, Rehbein D, Axmann D and Geis-Gerstorfer J (2004) 
Roughness induced dynamic changes of wettability of acid etched titanium 
implant modifications. Biomaterials 25: 1429-1438. 

Rupp F, Haupt M, Eichler M, Doering C, Klostermann H, Scheideler L, 
Lachmann S, Oehr C, Wendel HP, Decker E, Geis-Gerstorfer J and von Ohle C 
(2012) Formation and photocatalytic decomposition of a pellicle on anatase 
surfaces. J Dent Res 91: 104-109. 

Sahrmann P, Ronay V, Hofer D, Attin T, Jung RE and Schmidlin PR (2015) In 
vitro cleaning potential of three different implant debridement methods. Clin Oral 
Implants Res 26: 314-319. 

Sauerbrey G (1959) Verwendung von Schwingquarzen zur Wägung dünner 
Schichten und zur Mikrowägung. Zeitschrift für Physik 155: 206-222. 

Schaer D, Ramseier CA, Eick S, Arweiler NB, Sculean A and Salvi GE (2013) 
Anti-infective therapy of peri-implantitis with adjunctive local drug delivery or 
photodynamic therapy: six-month outcomes of a prospective randomized 
clinical trial. Clin Oral Implants Res 1: 104-110. 

Schwarz F, Schmucker A and Becker J (2015) Efficacy of alternative or 
adjunctive measures to conventional treatment of peri-implant mucositis and 
peri-implantitis: a systematic review and meta-analysis. Int J Implant Dent 1: 22. 



57 

 

Sclafani A and Herrmann JM (1996) Comparison of the photoelectronic and 
photocatalytic activities of various anatase and rutile forms of titania in pure 
liquid organic phases and in aqueous solutions. J Phys Chem 100: 13655-
13661. 

Sharma PK, Gibcus MJ, van der Mei HC and Busscher HJ (2005) Influence of 
fluid shear and microbubbles on bacterial detachment from a surface. Appl 
Environ Microbiol 71(7): 3668-3673. 

Shymanovska V, Kernazhitsky L, Puchkovska G, Naumov VV, Khalyavka T and 
Kshnyakin V (2011). The impurity ion influence on the optical and photocatalytic 
properties of anatase and rutile. Journal of Nano- and Electronic Physics: JNEP 
3: 63-73.  

Smith DC (1993) Dental implants: Materials and design considerations. Int J 
Prosthodont 6: 106-117.Sunada K, Watanabe T and Hashimoto K (2003) 
Studies on photokilling of bacteria on TiO2 thin film. J Photochem Photobiol A 
156: 227-233. 

Tran TH, Nosaka AY and Nosaka Y (2006) Adsorption and photocatalytic 
decomposition of amino acids in TiO2 photocatalytic systems. J Phys Chem B 
110: 25525-25531. 

Truong VK, Lapovok R, Estrin YS, Rundell S, Wang JY, Fluke CJ, Crawford RJ 
and Ivanova EP (2010) The influence of nano-scale surface roughness on 
bacterial adhesion to ultrafine-grained titanium. Biomaterials 31: 3674-3683. 

Vandersee S, Beyer M, Lademann J and Darvin ME (2015) Blue-violet light 
irradiation dose dependently decreases carotenoids in human skin, which 
indicates the generation of free radicals oxidative medicine and cellular 
longevity 2015: 7. 

Vanoyan N, Walker SL, Gillor O and Herzberg M (2010) Reduced Bacterial 
Deposition and Attachment by Quorum-Sensing Inhibitor 4-Nitro-pyridine-N-
oxide: The Role of Physicochemical Effects. Langmuir 26: 12089-12094. 



58 

 

Visai L, De NL, Punta C, Melone L, Cigada A, Imbriani M and Arciola CR (2011) 
Titanium oxide antibacterial surfaces in biomedical devices. International 
Journal of Artificial Organs 34: 929-946. 

Vogt BD, Lin EK, Wu WI and White CC (2004). Effect of film thickness on the 
validity of the Sauerbrey equation for hydrated polyelectrolyte films. J Phys 
Chem B 108: 12685-12690. 

Vucko MJ, Poole AJ, Sexton BA, Glenn FL, Carl C, Whalan S and de Nys R 
(2013) Combining a photocatalyst with microtopography to develop effective 
antifouling materials. Biofouling 29: 751-762. 

Wang D, Zhang Z, Li Y and Xu C (2014) Highly transparent and durable 
superhydrophobic hybrid nanoporous coatings fabricated from polysiloxane. 
ACS Appl Mater Interfaces 9:10014-10021. 

Wang R, Hashimoto K, Fujishima A, Chikuni M, Kojima E, Kitamura A,  
Shimohigoshi M and Watanabe T (1998) Photogeneration of Highly Amphiphilic 
TiO2 Surfaces. Advanced Materials 10: 135-138. 

Wilken R, Botha SJ, Grobler A and Germishuys PJ (2001) In vitro cytotoxicity of 
chlorhexidine gluconate, benzydamine-HCl and povidone iodine mouthrinses on 
human gingival fibroblasts. SADJ 56: 455-460. 

Wu Y, Klostermann H, Geis-Gerstorfer J, Scheideler L and Rupp F (2015) 
Photocatalytic effects of reactively sputtered N-doped anatase upon irradiation 
at UV-A and UV-A/VIS threshold wavelengths. Surface & Coatings Technology 
272: 337-342. 

Yao CS, Waterfield JD, Shen Y, Haapasalo M and MacEntee MI (2013) In vitro 
antibacterial effect of carbamide peroxide on oral biofilm. J Oral Microbiol. 5: 
10.3402/jom.v3405i3400.20392. 

Zitzmann NU and Berglundh T (2008) Definition and prevalence of peri-implant 
diseases. J Clin Periodontol 35: 286-291. 



59 

 

Zywitzki O, Modes T, Sahm H , Frach P, Goedicke K and Glöß D (2004) 
Structure and properties of crystalline titanium oxide layers deposited by 
reactive pulse magnetron sputtering. Surface and Coatings Technology 180–
181: 538-543. 

9. Erklärung zum Eigenanteil 

Die Arbeit wurde in der Sektion Medizinische Werkstoffkunde und Technologie, 

Universitätsklinikum Tübingen unter verantwortlicher Betreuung von Prof. Dr. J. 

Geis-Gerstorfer durchgeführt. 

Die wissenschaftliche Betreuung der Arbeit erfolgte durch PD Dr. Frank Rupp. 

Sämtliche Experimente wurden von mir in Zusammenarbeit mit Frau Ingrid 

Stephan durchgeführt. 

Die Verwendung der Software GIMP erfolgte nach Einarbeitung durch Herrn B. 

Sci. Magnus Walter. 

Die statistische Auswertung erfolgte eigenständig durch mich. 

Ich versichere, das Manuskript selbstständig verfasst zu haben und keine 

weiteren als die von mir angegebenen Quellen verwendet zu haben. 

Tübingen, den 

Yanyun Wu 

 

 



60 

 

10. Publication of the content of the dissertation 

I would like to declare, the Figures 8, 9, 10, 11 and some relevant text content 

in this dissertation have already been published in “Wu YY, Geis-Gerstorfer J, 

Scheideler L and Rupp F (2016) Photocatalytic antibacterial effects on TiO2-

anatase upon UV-A and UV-A and UV-A/VIS threshold irradiation. Biofouling 32: 

583-595.”, before the finish of writing this doctor dissertation.  

11.  Acknowledgment 

I would like to express my most sincere gratitude to the following people or 

organizations: 

Professor Dr. rer.nat. Jürgen Geis-Gerstorfer provided me the opportunity to 

finish my doctoral research in this department, and he supervised all of my work. 

PD Dr. Frank Rupp introduced this research topic to me and guided the 

experimental work and publications, and he made a lot of great suggestions to 

improve my doctoral thesis.  

PD Dr. Eva Engel reviewed my dissertation as the second reviewer. 

Dr. Lutz Scheideler provided a lot of support in the biological assessment part of 

this work, and he also made a lot of great suggestions to improve my doctoral 

thesis.  

Ms. Ingrid Stephan gave me great assistance in finishing all of the 

measurements in this study. 



61 

 

Ms. Cornelia Fueger and Ms. Evi Kimmerle-Mueller helped me in finishing the 

biological experiments. 

B.Sci Magnus Walter introduced and taught me how to use the image analysis 

software. 

My parents and brother gave me advice and encouragement all the time. 

The Fraunhofer Institute for Organic Electronics, (FEP) Dresden prepared the 

anatase coating for this research. 

The Chinese Scholarship Council provided me the financial support to pursue 

my study in Germany.  

This work was partly supported by the International Team for Implantology 

Foundation ( ITI, Basel, Switzerland) in the research project ITI 860-2012. 

 

 


	QCM-D is a popular technique to study the adsorption kinetics and mechanical properties of thin molecular films at the solid-liquid interface (Macakova 2010). In general, the amount of adhering mass on the oscillating quartz crystal is shown by the sh...
	1.5 Aim of the study
	Although a wide range of bacteria, fungi, algae and viruses were observed to be killed on UV-responsive TiO2, there is a big drawback of this approach when intended to be applied in clinical situations. There, the high energy of UV irradiation might b...
	In a previous study, we have reported about photocatalytic protein decomposition on anatase surfaces (Wu et al. 2015). It was found that pre-adsorbed human serum albumin (HSA) thin films could be photocatalytically decomposed not only in the usually a...
	Macakova L, Yakubov GE, Plunkett MA and Stokes JR (2010) Influence of ionic strength changes on the structure of pre-adsorbed salivary films. A response of a natural multi-component layer. Colloids Surf B Biointerfaces 77: 31-39.
	Niinomi M (2003) Recent research and development in titanium alloys for biomedical applications and healthcare goods. Sci Technol Adv Mater 4: 445-454.
	Olsson AL, van der Mei HC, Busscher HJ and Sharma PK (2011) Acoustic sensing of the bacterium-substratum interface using QCM-D and the influence of extracellular polymeric substances. J Colloid Interface Sci 357: 135-138.
	Oplaender C, Deck A, Volkmar M, Kirsch M, Liebmann J, Born M, van Abeelen F, van Faassen EE, Kroencke KD, Windolf J and Suschek CV (2013) Mechanism and biological relevance of blue-light (420-453 nm) induced nonenzymatic nitric oxide generation from p...

