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1 Abstract 

 

A fast and economic pilot study for measuring the neuroenergetic dynamics in an ADHD-diagnosed sample 

is performed. Based in a simplified connectome version, a graph theory application for neural connectivity, 

the performance and subjective states are linked through brain activity analysis during a behavioral attention 

test. 

  

ADHD is a neurobehavioral disorder related to a deficient filtering of stimuli, inefficacy performing in  

sustained activities and difficulties responding to unpredictable situations. There are two main strategies to 

evaluate this disorder: (1) behavioral tests and (2) neural biomarkers. 

  

Behavioral tests provide a criterion for classifying responses in a collection of tasks, looking for unstructured 

and inconsistent responses to given instructions or rules. Hyperactivity, inattention and impulsivity are some 

criteria analyzed. 

  

By the other hand, neural biomarkers are measurable indicators for particular states or diseases set up from 

EEG data. Since 2013, the theta/beta ratio was accepted as the ADHD biomarker, suggesting a misbalance 

of electrical brain activity.  In this study, brain connectivity on sustained attention task performed by 

children between 7 to 13 years old from a public school. Ten participants were ADHD-diagnosed and five 

were selected for the control group to compare EEG signals collected with low-cost neuroheadset. 

 

 Graphs show different connectivity dynamics in both groups for Theta (4-8 Hz), SMR (12-15 Hz) and Beta 

(15-20 Hz), indicating connectivity variations in brain regions according to the neuroenergetics theory. The 

connectivity in the ADHD group is reduced in lower frequencies first (Theta), then SMR and finally Beta. 

In contrast, the control graphs for Theta and SMR brainwaves are closer to the small-world networks and it  

can be noticed by comparing the measurements of the different graphs among themselves. The decay 

process corresponds to the bottom-up approach, where random stimuli trigger transitions from one state to 

the other, which is in this case the transition from attention to inattention.  

  

The declining of resources placed for disposal at the randomized SART stage might imply a limitation 

regulating the production of the required resources for the tasks fulfillment, as it has been reported in 

previous studies where other techniques are implemented. 

 

 

 

 

 

 

 



2 Introduction 
 

Engineering develops designs, models and techniques by means of mathematics and physics for 

solving the problems of humanity, such as the construction of infrastructure, transportation systems 

and hydraulic systems. These findings are known as technology.  

 

The greater number of technological advances in the history of humanity are recognized during the 

Industrial Revolution, a time when the civilization went from a rural economy with low capital 

available to a technicized society, where the possibility of acquiring goods increased thanks to the 

incorporation of machines that reduced the requirement of manpower and speeded-up the 

production times. The industry emerges as the economy basis, giving place to the transition to a 

new type of social model, thus defining the information and service-oriented society. 

  

 As the industrial production was stablished, engineers focused on other necessities for improving 

the living conditions of the people, like health care. The rate mortality in industrialized societies 

decreased due to an increased knowledge in every fields, resulting in an enhanced alimentation and 

sanitary progress. Some of the most significant inventions, regarding to health are the blood 

transfusion, the x-rays and the antiseptic techniques.  

 

There were some advances health-related using electricity too, such as the electrocardiogram and 

the electroencephalogram for recording the electrical activity of the heart and the brain, giving the 

possibility of detecting electrical changes on the skin arising from the respective organ.  

 

Emphasizing on brain, neurocognitive functions and electroencephalography (EEG) were allied for 

the first time in Hans Berguer “Über das elektrenkephalogramm des menschen”[1], characterizing 

alpha and beta rhythms and recording the first electroencephalogram. Before EEG there were not 

techniques for measuring the electrical activity of the brain and therefore, indicate the general 

person consciousness since each state (i.e. wakefulness or dreaming) is related to particular EEG 

patterns. The electric signals in an EEG are wavy lines with peaks and valleys that with a 

professional interpretation it can be noticed if there are abnormal patterns in brain activity. Some 

might occur due disorders or injuries. 

 

The advances in informatics on the Third Industrial Revolution started in 1945, when the state 

became a heavy funder of R&D. The global scientific leadership shifted from Western Europe to 

the United States. After war and depression, global trade and investment flows reemerged 

producing the expansion of international flows of technology [2].  

 

All the findings where enhanced once the processing and the storing capacity in computers became 

sophisticated enough [3]. It made possible to obtain and analyze big amounts of data in short time, 

transforming them into information[4]. Brain sciences have taken great advantage due to this 

integration[5], making possible the appearance of less invasive treatments, biotechnology and 

earlier diagnosis.  

 



3 Project Definition 

 

The human brain has a larger cerebral cortex than any other animal and utilizes 25% of the total 

glucose production. Despite it is only a 2% of the completely human body's weight.  

 

Brain neurons input nutrients for signalizing and transmitting information through electro-chemical 

processes, giving rise to functional connectivity. Due to their expansive dendritic arbors and long-

range projecting axons, neurons should maintain the connectivity required for supporting 

perception, action, language, thinking, social behavior and other neurocognitive functions. 

 

Nowadays, there are many invasive and non-invasive methods for obtaining 

electroencephalographic (EEG) signals: Invasive methods imply to cut across the skin and place 

electrodes for sensing electroencephalographic (EEG) activity; on the other hand, for non-invasive 

methods, there is a wide variety of instruments, going from hoods full of electrodes to single-

electrode neuroheadsets. For non-clinical professionals the latter ones are more appropriated.  

 

Once an EEG (invasive or non-invasive) device is selected and the EEG signals are recorded, the 

real question emerges how to interpret the signals. A strong knowledge is needed for understanding 

them and what their variations mean, but almost no clinical or non-clinical professional has it due 

the low and centralized economic resources for neurosciences in Colombia, and the lack of 

cooperation between engineers and clinicians. 

 

The graphs and their measurements from the small-networks approach bring crucial information 

allowing a very easy, fast and visual interpretation, and provide a good solution for non-experienced 

professionals in EEG signals with little time for studying the tendency of the signals.  

 

The proposed methodology utilizes a low-cost portable EEG (costs USD $400 + shipping), an 

Emotiv Epoc device [6-8]. This device has only 14 electrodes, but still gives the possibility to build 

14-node graphs displaying relevant information. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



4 Project Justification 
 

Thanks to Resolution 2565 of 2003 [9], public schools must include students with special 

necessities. In the case of intellectual disabilities and autism, the percentage of integrated students 

has to be maximum 10% per group, and for motor, visual or auditory disabilities, this percentage 

have to be less than 40%. On the other hand, expansion does not mean inclusion and that is why 

even if public institutions must create an academic alternative for these students, there are not 

enough resources assigned by the Government and limitations prevail.  

 

ADHD (Attention Deficit Hyperactivity Disorder) children are fuzzily included in this resolution, 

even when previous studies like [10] and [11] have shown an ADHD index is higher in Colombian 

inhabitants than other populations, making them a crucial target of study for generating solutions. 

 

ADHD is considered a neurodevelopmental disorder according to DSM-V (The Diagnostic and 

Statistical Manual of Mental Disorders, Fifth Edition) [12], and associated to great risks in low 

school performance, addictions, depression, aggression, anxiety, and other difficulties in social, 

academic and working contexts[13].  

 

In Colombia, there are very few EEG options, and the ones available are expensive and/or placed in 

laboratories. Furthermore, all the equipment has to be imported from USA, Taiwan, Germany… 

owing to there is not any industry producing them in Latin America and it carries also importation 

taxes, having most of the EEG devices prices greater than USD $1000 and going to USD $80.000 

and more. Some of these devices are not even exported from their home countries, adding an extra 

impediment.  

 

Health professionals need engineers for assisting them in the use of technology because generally, 

they are not skilled enough in the use of certain tools or devices, or they do not know what to do 

with the collected data. On the other hand, engineers are skilled in the use of tools, but usually they 

are focus more in have a good tool than in the practical use the tool might have.  

 

For these reasons, there is urgency to develop not-pharmacologic low-cost methods using 

technology for supporting ADHD people and therefore, understand their differences and track their 

progress assessment and therapy. 

 

As the implementation proposed is very cheap compared to other methods and devices and implies 

no risk of radiation (as MRI or MEG), it might be the first step for alternative tool for neuroscientists, 

clinicians and non-clinicians with low-resources to understand ADHD. If additional theories are 

developed according to this system, other conditions, diseases and disorders related to brain 

functionality will be studied using the system. 

   

 

 

 

 

 

 



5 Objectives 

5.1 Main Objective 

 

To analyze functional connectivity differences between ADHD children and control children using 

an electroencephalographic low-cost neuroheadset. 

 

 

5.2 Specific Objectives  
 

 To process the EEG signals into a graph representation of functional connectivity. 

 

 To use a validated statistical method for analyzing the synchronization phenomena in electric 

signals. 

 

 To establish behavioral and connectivity differences between ADHD children and non-

ADHD children through the behavioral responses and the EEG signals. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



6 Structural and Functional Connectivity 

 

Structural and functional connectivity are the two main kinds of brain connectivity.  

 

 Structural Brain Connectivity 
Represents structural associations among different kinds of neural elements, including both 

morphometric correlation and authentic anatomical connectivity [14-16].  

o Morphometric correlation: It is applied relating the different brain regions of MRI 

structural data and it might be obtained examining the statistical interdependencies 

of morphologic descriptors e.g. the area surface, the cortical thickness or the regional 

volume of gray matter. 

o Authentic anatomical connectivity: It might be obtained examining the white 

matter fiber connections via diffusion. 

 

 Functional Brain Connectivity  

Represents the functional associations among the brain regions and might be obtained 

measuring temporal correlations between spatially remote neurophysiological events and the 

data acquired using fMRI and EEG/MEG techniques. Once brain connectivity information 

is extracted from the neuroimaging or signals data, graph theoretical approaches might be 

applied to brain networks models and analyze their topological subjacent properties [17]. 

 

Human cognition is associated to the rapidly changing activation neuron patterns and are vastly 

distributed, involving numerous cortical and sub-cortical regions activated given different 

combinations and contexts. Two fundamental and organizational principles of the neural cortex are 

the functional segregation and the functional integration, allowing a fast data information and the 

coherent brain states generation [18]. 

 

There have been meaningful advancements related to the understanding of the structural properties 

of networks and their dynamical nature, e.g. synchronization capability of the complex networks 

depicted in coupled oscillators might be determined using graph spectral analysis.  

 

New applications for neurosciences have been inspired using the theory of graph analysis for 

complex networks. Graph analysis has been implemented for neural networks model, anatomic 

connectivity and functional connectivity based in fMRI, EEG and MEG. The studies suggest the 

human brain modeled as a complex network, with appropriate allowance to a small-world structure 

in both anatomical and functional levels, hypothetically reflecting an optimal situation associated to 

rapid synchronization and information transference, minimum wiring costs, as well as an 

equilibrium between local processing and global integration. The topologic structure of functional 

networks might be restricted by genetic and anatomic factors, but also modified while tasks are 

being performed. The evidences for mental diseases such as Alzheimer, schizophrenia, brain tumors 

and epilepsy indicate an existent relation with the optimal small-world pattern deviation of the 

neural network topology[19]. 

 

The neural network topology critically affects the neural signaling and information. Despite the 

importance of the neural information processing, the cortical networks topology is only partially 



understood. There is still extremely vague and rudimentary information about the connectivity 

matrix in any specie [20], especially the human brain cortex [21]. 

 

The augmenting volume of connectional information requires the development of new methods for 

computational neuroanatomy, including new ways for reunite, store and file connectivity datasets 

[18]. 

 

6.1 Functional Brain Connectivity 

 

In 2010, guided for the connectivity maps potential, the NIH (National Institute of Health) launched 

to developing technologies that might provide a precise map of mammals’ brain in the neural level. 

 

The Human Connectome mapping offers a unique opportunity for understanding the complete 

details of the neural connectivity [22-24]. The Human Connectome Project (HCP) [25, 26] is a 

Project for building a full map of the structural and functional neural connections in vivo, inside and 

outside of them. The HCP presents the first large-scale attempt for gathering and sharing data with 

enough detail and scope, thus profound fundamental questions are encompassed for analyzing the 

human connectivity and its variation. 

 

Brain connectivity can refer to different concepts depending on the study, and that is because the 

connectivity network encodes important information about brain structure and brain functioning. 

 

Talking about structural connectivity, physical connections through synaptic contacts communicate 

distant brain regions. These connections are fiber tracts called white matter, consisting mostly of 

glial cells and myelinated axons. The set of connections is visualized using data collected by 

Diffusion Tensor Imaging and then a 3D model is obtained thanks to the tractography technique 

[27-29]. 

 

In functional connectivity, similar patterns of brain activity among different brain regions are 

detected. Neurons are connected to other neurons generating synaptic activity, where each synaptic 

impulse is an electrochemical signal generated primarily via the activation of voltage-gated calcium 

channels placed along the cell membrane. 

 

Synaptic activity can be detected using functional magnetic resonance imaging (fMRI) but also in 

electroencephalography (EEG). Both excitatory postsynaptic potentials and inhibitory postsynaptic 

potentials contribute to the synaptic activity recorded as EEG. Scalp electrodes record potential 

differences generated by postsynaptic potentials in the cell membrane of cortical neurons [30].  

 

The signals collected by the electrodes are statistically analyzed pair-by-pair as temporal 

dependencies of neural activation patterns. The statistical measure utilized could be correlation, 

phase locking, synchronization or spectral coherence. The statistical values obtained for each pair 

of EEG signals are the input for the functional-connectivity matrix. 

 

 

 



6.2 Graph Theory 

 

Graph theory (GP) is a useful tool for analyzing brain connectivity [31]. The nodes are represented 

by electrodes placed on the scalp or brain regions (if there are neuroimaging techniques involved), 

and the edges are the relations among them using i.e. synchronization, coherence or correlation 

measurements[14]. Its applications vary depending on the research approach  [32], permitting an 

easier and faster understanding of the results obtained compared to other methods.  

 

GP has been used for characterizing different brain-related diseases and disorders i.e. Alzheimer 

[33-35], epilepsy [35-37] and Parkinson [38, 39] from the structural and the functional 

perspectives. From the structural perspective the physical connections are identified among the 

regions of the brain, from the functional perspective the synaptic ones are the relevant connections.   

 

In recent years, some theories have been developed for explaining attention from the 

neurobiological substrates, but there is still no evidence of how mind-wandering states are 

visualized in terms of connectivity nor the changes on a patient subjected to therapy.  

 

There are different techniques for sensing brain activity, going from imaging techniques to 

functional techniques like EEG (see Figure 6.1). EEG is the most acceptable technique for 

analyzing global functional connectivity related to cognitive tasks in real time for its low spatial 

resolution, which is compensated with its high temporal resolution [40]. 

 

EEG data should be compared with the data obtained using another process. For measuring the 

participants’ evolution, the signals studied through graph theory are contrasted with the results of 

a paradigm for sustained attention.  

 

For study attention, there are several biomarkers such as the theta/beta ratio approved by the FDA 

or synchronization and phase measurements [41-43] like Phase Lag Index (PLI), Phase-Locking 

Value (PLV) and Synchronization Likelihood (SL). A biomarker is a biological measure that senses 

objectively a biological process, helping to predict health states and thanks to them, know if an 

intervention is working or if there are differences in different subjects or groups of people.  

 

These biomarkers can be found using a neuroheadset. The neuroheadset is an Emotiv Epoc, a low 

cost peripheral with only 14 electrodes designed mainly for recreational purposes, but also useful 

for research purposes [8, 44, 45].  

 



 
Figure 6.1. Rendering of different signals from the brain potentially usable for brain machine 

interface. The graphic illustrates the temporal and spatial scales for each signal. Courtesy of: 

[46]. 

 

6.3 Network Properties 

 

Stam et al. [32] proposed a simple definition for small-network properties, very close to the one 

proposed by Onnela et al. [47] but adding the symmetry concept for an edge 𝑤 connected to nodes 

𝑖 and 𝑗 (𝑤𝑖𝑗 = 𝑤𝑗𝑖) and maintaining 0 ≤ 𝑤𝑖𝑗 ≤ 1. 

 

Degree (𝒌): Equals to the number of links connected to a node, which is also equal to the number 

of neighbors of the node, as it is shown in 6.1. 

 

 

 

 

Where 

𝑁 is the set of all the nodes in the network. 

𝑛 is the number of nodes. 
(𝑖, 𝑗) is a link between nodes 𝑖 and 𝑗, (𝑖, 𝑗 ∈ 𝑁). 
𝑎𝑖𝑗 is the connection status between 𝑖 y 𝑗: 𝑎𝑖𝑗 = 1 when link (𝑖, 𝑗) exists (when 𝑖 and 𝑗 are 

neighbors); 𝑎𝑖𝑗 = 0 otherwise (𝑎𝑖𝑗 = 0 for all 𝑖). 

 

𝑘𝑖 =∑𝑎𝑖𝑗
𝑗∈𝑁

 6.1 



 Number of triangles (𝒕): It is a basic measure of integration that returns the number of 

triangles around a node 𝒊, as it is shown in 6.2. 

 

 Clustering coefficient (𝑪): The weighted clustering coefficient is defined as a real number 

between 0 and 1, where 0 represents no clustering and 1 maximal clustering [48]. The average 

clustering coefficient for a network is defined as 6.3 and 6.4:  

Where 

  

 Characteristic path length (𝑳): It is always positive because the weight link is calculated 

using a phase synchronization measure, in this case Phase Locking Value (PLV).  

 

It is the average shortest path length between every pair of nodes in the network. A trajectory 

length is weighted between two nodes, and defined as the sum of the nodes length for this 

trajectory. The shortest trajectory 𝑙𝑖𝑗 between two nodes i and j is the trajectory between i and 

j with the shortest length. Similarly to 6.3, the average weighted length of the trajectory for 

the whole graph is calculated with 6.5 and 6.6: 

Where 

 

 Global efficiency (𝑬): It is the average of the inverse shortest path length and is inversely 

related to the characteristic path length. Unlike 𝑳, 𝑬 might meaningful computed on 

disconnected networks as paths between disconnected nodes are defined to have infinite 

length, and correspondingly zero efficiency [32]. It is a measure of how efficiently a network 

exchanges information [49] according to 6.7 and 6.8. 
 

Where 

𝑡𝑖 =
1

2
∑ 𝑎𝑖𝑗𝑎𝑖ℎ𝑎𝑗ℎ
𝑗,ℎ∈𝑁

 6.2 

𝐶 =
1

𝑛
∑𝐶𝑖
𝑖∈𝑁

 6.3 

𝐶 =
1

𝑛
∑

2𝑡𝑖
𝑘𝑖(𝑘𝑖 − 1)

𝑖∈𝑁

 6.4 

𝐿 =
1

𝑛
∑𝐿𝑖
𝑖∈𝑁

 6.5 

𝐿𝑖 =
1

𝑛
∑

∑ 𝑑𝑖𝑗𝑗∈𝑁,𝑗≠𝑖

𝑛 − 1
𝑖∈𝑁

 6.6 

𝐸 =
1

𝑛
∑𝐸𝑖
𝑖∈𝑁

   6.7 



 

 Local efficiency: It is the global efficiency computed on node neighborhoods, and it is 

related to the clustering coefficient. It is calculated from the efficiency of connections 

between first-degree networks of each node [50], as in 6.9 and 6.10: 

Where 

 

6.4 Small-World Problem  

 

The easiest way for starting with the small-world problem is starting with each pair of people in 

the world. What is the probability that they know each other? According to Milgram [51], there is 

a more sophisticated formulation, however, it considers the fact that while people 𝑋 and 𝑍 might 

not know each other directly, they could be related to a unique same person. There is the possibility 

of a chain relation with 𝑋 knowing 𝑌 and 𝑌 knowing 𝑍. Besides, it is possible to imagine 

circunstances where 𝑋 is connected to 𝑍 but not for an only link, but for a series of them: 𝑋 − 𝑎 −

𝑏 − 𝑐 − ⋯𝑦 − 𝑍. It means that the person 𝑋 knows the person 𝑎, who knows the person 𝑏, who 

knows the person c… who knows the person 𝑦, who knows the person 𝑍. 

 

Thus, another question emerges: Given any two people in the world, person 𝑋 and person 𝑍, how 

many intermediate-links relations are needed before 𝑋 and 𝑍 are connected? 

 

6.4.1 Why We Should Perceive the World as a Small-World Phenomenon? 

 

There are four criteria needed for making the small-world phenomenon memorable: 

 

 The network is numerically big in the sense that the world contains 𝑛 ≫ 1 people. In the real 

world, 𝑛 is in the order of thousands of millions. 

 The network is sparse in the way that every person is connected to an average of another 𝑘 

people, which is at least in the order of thousands [52], thousands of millions less times than the 

planet population. 

  

𝐸 =
1

𝑛
∑

∑ 𝑑𝑖𝑗
−1

𝑗∈𝑁,𝑗≠𝑖

𝑛 − 1
𝑖∈𝑁

 
6.8 

𝐸𝑙𝑜𝑐 =
1

𝑛
∑𝐸𝑙𝑜𝑐,𝑖
𝑖∈𝑁

 6.9 

𝐸𝑙𝑜𝑐 =
1

𝑛
∑

∑ 𝑎𝑖𝑗𝑎𝑖ℎ[𝑑𝑗ℎ(𝑁𝑖)]
−1

𝑗,ℎ∈𝑁,𝑗≠𝑖

𝑘𝑖(𝑘𝑖 − 1)
𝑖∈𝑁

 6.10 

  



 The network is decentralized. Then there is not any dominant vertex to which most of the 

vertices are directly connected. It implies a more important condition than the shortage: not only the 

average grade 𝑘 should be less than 𝑛, but the maximum grade 𝑘𝑚𝑎𝑥 above every vertex should be 

less lower than 𝑛. 

 The network is highly clustered when most of the friendly circles are strongly overlaid. That 

is to say, it is expected that many of our friends are friends with each other. 

 

If the world does not have many people, then it should not be shocking that every people are tightly 

associated (like in a small town). If most of the people know the vast majority of people, then again 

it would not be surprising that two strangers know each other. If the network is highly centralized 

–like a star-, then a short trajectory might exist between your center and every pair of vertices. 

 

If the network is not clustered –i.e. if every person chooses their friends independently to their 

friends’ choices- it will follow the random graph theory [53], where most of the people will be just 

a few degrees of separation even for huge 𝑛 values, but are these criteria satisfied in the real world? 

Being the world population of thousands of millions and being generous estimating how many 

familiar people may someone have, it is possible to say that an average person might have only a 

few thousands of knowns, fulfilling the first two criteria.  

 

The last two criteria are more difficult to guarantee and are certainly harder to measure even when 

are reasonable from the everydayness perspective. 

 

6.5 Graph Theory and Small-World Networks 

 

Graph theory is a formal representation of networks. Graphs comprise two elements: (1) nodes or 

vertices, representing the elements in the study and (2) edges, representing the relations among the 

elements. In the context of neuroheadsets, the nodes are electrodes and the edges are 

synchronizations among the signals generated. Small-world properties such as clustering coefficient 

and characteristic path length are measured and its relation determines how ordered or disordered a 

network is [17, 54, 55]. 

 

Recently, graph theory has attracted considerable attention to the brain networks researchers for the 

powerful way it quantitatively describes the topological organization of brain connectivity. 

According to the theory, the brain might be represented as composed graphs of nodes representing 

electrodes, regions or voxels, and the edges represent structural or functional connectivity [17]. 

 

6.5.1 Types of Networks:  

 

In [56], the authors proposed an algorithm for explaining the interpolation between regular 

and random networks using a random rewiring procedure. Starting with a lattice ordered 

network, with probability 𝑝 a link is reconnected to a randomly chosen vertex. If a network 

is totally ordered or lattice, then it has a probability of rewiring of 𝑝 = 0, but as long as 𝑝 is 

getting approached to 1, the network is going to be more random. The small-world networks 



arise in the middle of ordered and random networks, and they compound the high clustering 

coefficient of ordered networks and the characteristic path length of random networks. 

 

The three basic network measures are depicted in Figure 6.2 according to the model of Watts 

and Strogatz [56] and described below: 

 

 Ordered or lattice: This network has a high clustering coefficient 𝐶 and a long path 

length 𝐿. The degree of every node in the network is the same because every node is 

connected to its 𝑘 neighbours.  

 

 Small world: It is characterized for a high 𝐶 and a low 𝐿, making it effective. It is 

an ordered network with few randomly rewired links and regarding that most nodes 

can be reached from every other node by few steps. Thus, small-world networks 

introduce the concept of hub node, a better-connected node that reduces dramatically 

the distance among the other nodes in the network. 

 

 Random: The 𝐶 and 𝐿 are low. A random network is the opposite of an ordered 

network due to the way its links are connected is completely random. These networks 

have the particularity that the information travels easy but if any link is lost, the 

network will possibly be vulnerable. 

 

 

 

 

Figure 6.2. Three basic network types in the model of Watts and Strogatz [56]. The three 

networks have 16 vertices (N=16). 

 

6.6 Small-world Networks in Neuroscience 

 

Small-world networks are optimal, allowing an efficient information processing using a minimum 

connection links. Here to fore, it has been proven that many types of networks, going from metabolic 

and genetics to social networks, are small-world networks [57, 58]. 

 

As Bassett and Bullmore [15] have exposed before, there are theoretical and experimental reasons 

explaining beforehand why small-networks present an attractive model for brain network 

connectivity: 



 

 The brain is a complex network with multiple time and spatial scales. This fact alone might 

motivate a small-world analysis for brain networks, given the extensive occurrence of small-world 

properties in many other complex networks through a physic scale manifold. 

 The brain supports the processing of both types of information: distributed and segregated. 

The network architecture is considered a key substrate for sensorimotor and cognitive processes, 

which might be discretely located in specialized regions or represented by coherent oscillations in 

large-scale distributed systems. 

 The brain evolved possibly for maximizing the efficiency and/or minimizing the information 

processing costs. The small-network topology is associated to global and local efficiency of parallel 

information processing, sparse connectivity and low wiring costs. Small-world networks are able to 

operate dynamically in critical states, facilitating the fast and adaptive resetting of the formations 

supporting the cognitive states changes. 

 

Since the discovery of small world networks, the study of complex systems from the networks 

perspective has obtained recognition and in the recent years, many important properties have been 

traced [31]. 

 

For structuring brain connectivity as something so difficult, a historical revision is necessary. During 

the last century, brain researches have been appointed for a peculiar dichotomy: while many neuro-

anatomists work diligently testing how different neuronal populations are connected to each other 

with the purpose of constitute networks, neurophysiologists are usually forced to register a neuron 

or neuronal assembly at the time, focus on try to determine the functional specialization of the 

register unity. This emphasis was introduced by neuropsychology, routing behavioral consequences 

of localized brain seizures [59]. Thenceforth, the modular specialization or function became the 

predominant paradigm for what we call at present cognitive neuroscience (e.g. [60]). 

 

Nevertheless, for each technique utilized for obtaining neurophysiological data, there are always 

some researches trying to obtain their data from two or more neuronal elements –or from two or 

more brain locations- simultaneously, or interpreting the data of neuronal interactivity. However, 

the way it has been achieved involves the evaluation of some kind of covariance or correlation 

among the multiple signals registered. An amount of more complicated measurements, going further 

the simple correlation, have been utilized on these studies (e.g. regression analysis, principal 

components analysis and multidimensional adjustment), But in a conceptual level, all this methods 

include the covariation notion along the activities. 

 

6.7 Techniques 

 

There are two kinds of techniques: 

 

6.7.1 Extraction 

 fMRI (Functional Magnetic Resonance Imaging): Graph theory might be utilized as a 

new approach to identify the functional clusterization in activated brain areas during a task. 

Initiating the brain activity BOLD (Blood Oxygenation Level Dependent), a correlation 



matrix among the time series is computed, and the matrix become a graph (undirected and 

unweighted) assigning the edges to all the suprathreshold correlations. From this 

perspective, it is possible to show different functional clusterizations as subgraphs i.e. while 

a typing task is performed. The threshold has a pivotal influence in the results and the 

criterion for choosing am optimal threshold has to be taken very seriously. 

 EEG/MEG (electroencephalography/magnetoencephalography): When brain networks 

are considered, the network edges ideally represent significate brain regions. The use of 

EEG/MEG sensors as edges is a common practice, but such results have to be carefully 

interpreted as the electromagnetic signals are collected due to its propensity to spatial 

superposition. 

Regarding the network links, these might represent functional or structural associations. In 

the structural networks, the links should represent anatomical connections between brain 

regions, and the different weights might represent the fiber tracks size, quantity or 

coherence. For functional and effective networks, the links represent some correlation 

measurements or casual influence respectively, among the connected edges activity [32, 

61].  

 

6.7.2 Analysis 

 Phase lag index (PLI): It is an asymmetry measure of the difference-phase distribution 

between two signals. PLI reflects the consistency between which signal is in the main phase 

or in the lag phase with regard to the other signal. PLI [19] performs at least as well as the 

probability of synchronization [62] detecting real changes in synchronization, but it is less 

affected by simple sources influence. 

Besides the global-weighted PLI computation, it is possible to use a more regional 

approximation. The MEG sensors might be clustered in 5 different regions: frontal, temporal, 

central, parietal, and occipital. An average PLI might be also calculated for all the sensors 

inside a region or between two regions (a long distance). 

 

6.8 Some Problems Studied using these Techniques 

 

A good amount of studies have study the nature of networks shifting in different kinds of brain 

pathologies. In the case of brain tumors, schizophrenia and interictal recordings of patients with 

pathological epileptic networks, characterized by smaller 𝐶 and 𝐿 [36, 63, 64]. 

Considering Watts and Strogatz model, where in a highly ordered network with grade 𝐾 are 

rewired randomly with a probability of certainly 𝑃, some smaller 𝐶 and 𝐿 might correspond to a 

higher rewiring probability value, and a more randomized network [19]. 

 

6.8.1 Schizophrenia 

 

The cognitive dysfunction is seen as the core of schizophrenia, a chronical psychotic disorder. 

The fMRI researches reveal abnormal brain activity in patients with schizophrenia during 

cognitive tasks involving language, memory and attention. The functional brain 



disconnectivity has been considered the symbol of schizophrenia. Recently, the brain activity 

exploration in absence of specific emotional or cognitive tasks has been the center of fMRI 

researches. 

The aberrant steady-state have been one of the more robust schizophrenia biomarkers, 

revealed often in the independent component analysis (ICA). ICA was developed for solving 

problems similar to the “cocktail party” scenario, applied to fMRI data determining a set of 

brain networks. The interrelation between many maximum neuronal networks especially 

independent where each one of them has time courses associated. This approaching is very 

useful for examining the cerebral activity during functional connectivity states between the 

time courses of ICA data components collected from fMRI steady states. 

The interrelations between multiple brain networks, also known as components, were definite 

as a functional network connectivity. Yu et al. [65] examined the differences between control 

subjects and schizophrenia patients and many other higher correlation occurrences among 

the schizophrenia patients’ networks. However, the topological properties of the connectivity 

relations in functional networks have not been studied yet. 

 

6.8.2 Alzheimer 

 

The large-scale structural changes in brain networks were examined in the steady state of 

Alzheimer patients compared to non-demential patients using graph-theory concepts. The 

MEG were recorded in 18 Alzheimer patients and 18 non-demential control subjects in a 

state were no task must be accomplished and their eyes were closed. For the main-bands 

frequencies, the synchronization between every MEG pair of channels was evaluated using 

a PLI (Phase-Locking Index), an intensive synchronization measure for the conduction 

volume. The weighted networks were calculated and characterized using a clustering 

coefficient and a trajectory length. The Alzheimer patients evidenced a medium PLI 

decreasing in the beta and lower alpha bands. In the lower alpha band, the clustering 

coefficient and the trajectory lengths decreased in Alzheimer patients. The network 

modifications for lower alpha might be explained better using a “Targeted Attack” model 

[66] instead of a “Random Failure” model [67]. In this way, Alzheimer patients show a lack 

of functional connectivity in a resting state for beta and lower alpha bands, even when a non-

sensitive measurement is utilized for volume conduction effects. Besides, in the lower alpha 

band, the functional networks big-scale structure is more randomized in Alzheimer patients, 

thus the modeling results suggest that in the neural network, the highly connected hubs might 

be at risk. 

Stam and Reijneveld [68] findings in the Alzheimer group occur as 𝐶 and 𝐿 decrease, and a 

more randomized network. Furthermore, the values are closer to one, indicating that the 

difference between real and random networks is too small. The only finding that does not fit 

among the other findings is the trajectory length increment in Alzheimer patients’ beta bands 

reported by Stam et al. [69] in a previously reported pilot study. This result was obtained just 

for some 𝐾values, using an identical 𝐾 value for both groups. An explanation might be that 

the unconnected points reduce or augment the trajectory length considerably. 



7 EEG Signals 

 

Electroencephalography is a neurophysiological exploration that records the bioelectrical activity 

along the scalp offering one of the best quality-price benefits and its fabrication is simple. 

 

Resulting from small ionic currents produced when a population of synchronized neurons fire. The 

information travelling via electric impulses is received from other neurons in the dendrites and pass 

through the neuron until it is driven by the axon to the  this is the electrochemical signaling sensed 

by electrodes placed on the scalp, obtaining as EEG signals as number of electrodes (discarding the 

reference electrodes) the EEG device has. 

 

These electrical activities from the brain, called brainwaves, are represented as waveforms of 

varying frequency and amplitude measured in microvolts. Brainwaves emit tiny electrochemical 

impulses classified according to its frequency in: 

 

 Delta (0-4 Hz): It is the slowest frequency, experienced in non-awareness. The Delta is 

rhythm emerges during very deep transcendental meditation and dreamless deep sleep. Abnormal 

Delta activity may evidence learning disabilities, difficulties for being conscious aware if any 

brain injury exists and severe ADHD. 

 Theta (4-8 Hz): It is experienced during meditation, creative states, REM sleep and peak 

experiences. Abnormal Theta activity may evidence ADHD, inattentiveness, hyperactivity, 

impulsivity and depression. 

 Alpha (8-12 Hz): It is experienced during all-senses visualization or relaxation states. 

Abnormal Alpha activity may evidence difficulty to focus and a lot of relaxation.  

 Beta (12-30 Hz): It is experienced during the awareness state, outward attention and 

analytical thinking. Abnormal Beta activity may evidence anxiety, inability to relax, panic, stress 

or high arousal. 

 Gamma (> 30 Hz): Gamma waves are difficult to detect. It is experienced during cognitive 

functioning and higher processing tasks. Abnormal Gamma activity may evidence high arousal, 

stress and anxiety. 

 

EEG counts with the advantage of having high temporal resolution in the order of milliseconds but 

the spatial resolution is however, of the order of centimeters and not millimeters. It is a non-

invasive technique which allows the estimation of the underlying electric sources of the brain [70]. 

This mechanism can be applied to study the dynamics of networks with high temporal resolution, 

enhancing our knowledge on neurophysiological substrates of behavioral disorders. 

 

7.1 Signal Filtering 

 

A Finite Impulse Response (FIR) filter is utilized instead an Infinite Impulse Response (IIR) filter 

because FIR filters filter the signal in time domain and IIR filters in the frequency domain.  



The correct number of coefficients, also known as the order of the filter, for setting up an FIR filter 

is determined by a rule of thumb, where the number of coefficients should be equal or greater to 

four times the sampling rate divided by the lower edge frequency. The FIR filter approaches to the 

ideal filter as the filter order increases, but at the same time the complexity and amount of time for 

processing input samples is increased. 

 

7.2 Hilbert Transformation 

 

The Hilbert Transform (HT) is a linear operator useful for analyzing nonstationary signals. It is 

possible by expressing the frequency as a rate of change in phase, making the frequency vary with 

time.  

 

Through the construction of the analytic signal, the Hilbert transformation (see Figure 7.1) gives 

the instantaneous phase for a signal, where the instantaneous phase is formulated as in 7.1 

 

 

The 

Hilbert transform is useful for analyzing nonstationary signals by expressing frequency as a rate of 

change in phase, so the frequency is able to vary with time. According to Pikovsky, Rosenblum 

and Kurths [71], the analytic signal is expressed as in 7.2 

 

𝜁(𝑡) = 𝑠(𝑡) + 𝑖𝑠𝐻(𝑡) = 𝐴(𝑡)𝑒
𝑖𝜙(𝑡). 7.2 

 

The analytic signal comprises the original signal and its Hilbert transform. The instantaneous 

amplitude obtained from the analytic signal is 𝐴(𝑡), the instantaneous phase is 𝜙(𝑡), and 𝑠𝐻(𝑡) is 

the Hilbert transform of the signal 𝑠(𝑡) as in 7.3 

 

𝑠𝐻(𝑡) =
1

𝜋
𝑝. 𝑣. ∫

𝑠(𝜏)

𝑡 − 𝜏
𝑑𝜏

+∞

−∞

  
7.3 

 

The application of the convolution theorem turns the equation into 7.4 

 

𝑠𝐻(𝑡) = −𝐹𝑇−𝑖 [𝐹𝑇[𝑠(𝑡)]𝑠𝑖𝑔𝑛(𝜔)] 7.4 

 

Where 𝐹𝑇 denotes the Fourier transformation and 𝐹𝑇−1 denotes the inverse Fourier 

transformation.  

 

The instantaneous phase of the Hilbert transformation is limited to [0,2𝜋] and is unwrapped before 

taking its derivative. 

𝜙(𝑡) = arctan (
𝑠𝐻(𝑡)

𝑠(𝑡)
). 7.1 



 

Figure 7.1. Left: The original signal s(t) collected from an electrode. Center: Hilbert 

transformation of the signal sH(t). Right: Instantaneous phase of the Hilbert transformation ϕ(t). 
 

If a signal is filtered in a particular band, then the data is forced to assume a sinusoidal oscillating 

state. Once it is filtered, it is possible to calculate the instantaneous phase at any given time point 

along the discrete signal. 

 

The further advantage of the HT is the sensitive access it gives to amplitude patterns of analytic 

amplitude that are correlated with intentional behaviors [72].  

 

The HT is an efficient and quick tool for extracting the phase values, and the Phase-Locking Value 

technique was initially formulated with this transform. 

 

7.3 Phase-Locking Value 

 

Synchronization is known as the rhythmic adjustment of self-sustained periodic generated by a weak 

interaction between them [73]. This phenomenon of adjustment is described as phase locking and 

frequency entrainment. Synchronization is widely explored in rotators, chaotic systems and studies 

of nonlinear dynamics systems. It is also widely incorporated in the modeling of biological systems 

demonstrating oscillating behavior, like physiological systems [74]. 

 

Phase-Locking value (PLV) is a statistical method for studying the synchronization phenomena 

measuring synchronized activation over different brain regions. The phase differences are utilized 

for analyze biological time series (irregular, non-stationary, non-linear and noisy) of the brain 

electrical activities. Its detection can provide an indication of short-range synchronies, commonly 

interpreted as subserving “perceptual binding” among adjacent or same brain regions. More 

interesting, it can describe long-range synchronization patterns between widely separated brain 

regions, thought to subserve cognitive mechanisms, such as memory, emotion and motor planning. 

 

PLV measures the synchronization between all electrode pairs, similarly to the cross spectrum 

technique. As 7.5 indicates, 𝑁 represents the total number of trials, ∆Φ(𝑡, 𝑛) is 𝜙𝑎(𝑡, 𝑛) − 𝜙𝑏(𝑡, 𝑛), 
the phase difference between two signals 𝑎 and 𝑏, and 𝑡 is the time of each period [75]. 



 

 

 

 

Then, for finding the synchronization between two signals obtained from the same subject, the mean 

phase coherence of an angular distribution is computed using 7.6 

 

 

 

 

Where 
1

𝛥𝑡
 is the sampling rate of the discrete time and 𝐶𝑉 is the circular variance of an angular 

distribution obtained after transforming the relative phase angles onto the unit circle in the complex 

plane [76].  

 

The 𝑅 value is going to be considered from this point as the Phase Locking Value (PLV). 

 

7.4 Graph Construction 

 

The PLV value for each pair of signals is a number between 0 and 1, where 1 represents that one 

signal is perfectly following the other and 0 means that they are not associated at all. As the main 

interest is to understand how connectivity works in the children’s brains while performing the tasks, 

average graphs are constructed. The code developed in MATLAB for visualization can be found in 

Appendix C. 

 

The graphic interface was developed on MATLAB and based on the BCT toolbox measurements 

[32].  

 

 

Figure 7.2. Left: Weighted connectivity matrix. Center: Binarized connectivity matrix. Right: 

Resulting graph. 

 

As it is shown in Figure 7.2, after the weighted connectivity matrix is obtained, a threshold must be 

selected very carefully. According to the threshold, the matrix is filtered. The link values below the 

threshold are turned into zero and only those links representing the functional connectivity are the 

ones that remain in the matrix. Then, each remaining value is converted into 1, and the network 

properties are calculated from the binarized matrix. 

 

𝜑(𝑡) = 𝜙𝑎(𝑡) − 𝜙𝑏(𝑡) = arctan
𝑠𝐻𝑎(𝑡)𝑠𝑏(𝑡) − 𝑠𝑎(𝑡)𝑠𝐻𝑏(𝑡)

𝑠𝑎(𝑡)𝑠𝑏(𝑡) + 𝑠𝐻𝑎(𝑡)𝑠𝐻𝑏(𝑡)
 

7.5 

𝑅 = |
1

𝑁
∑ 𝑒𝑖

𝜑(𝑗𝛥𝑡)

𝑁−1

𝑗=0

| = 1 − 𝐶𝑉 

7.6 

0 0,5786 0,7249 0,6045 0,1789 0 0 0,1045 0,2439 0,3452 0,5374 0,6930 0,5764 0,7450

0,5786 0 0,3954 0,7145 0,4252 0 0,1220 0 0,2713 0,3813 0,4915 0,3771 0,5699 0,4573

0,7249 0,3954 0 0,5416 0,1026 0,1321 0 0 0,1884 0,2739 0,4286 0,7708 0,4046 0,5720

0,6045 0,7145 0,5416 0 0,3223 0 0,2089 0 0,2167 0,3296 0,4429 0,4421 0,4623 0,4625

0,1789 0,4252 0,1026 0,3223 0 0,2173 0,1220 0 0,2632 0,3695 0,2124 0,1365 0,3154 0,1760

0 0 0,1321 0 0,2173 0 0,4113 0,1706 0,2637 0,1715 0 0 0,1249 0

0 0,1220 0 0,2089 0,1220 0,4113 0 0,1998 0 0 0 0 0 0

0,1045 0 0 0 0 0,1706 0,1998 0 0,5374 0,2803 0,2483 0,1565 0,1981 0,1373

0,2439 0,2713 0,1884 0,2167 0,2632 0,2637 0 0,5374 0 0,6314 0,4574 0,2756 0,4604 0,2771

0,3452 0,3813 0,2739 0,3296 0,3695 0,1715 0 0,2803 0,6314 0 0,5862 0,3619 0,6244 0,3645

0,5374 0,4915 0,4286 0,4429 0,2124 0 0 0,2483 0,4574 0,5862 0 0,5824 0,7999 0,5705

0,6930 0,3771 0,7708 0,4421 0,1365 0 0 0,1565 0,2756 0,3619 0,5824 0 0,5098 0,6371

0,5764 0,5699 0,4046 0,4623 0,3154 0,1249 0 0,1981 0,4604 0,6244 0,7999 0,5098 0 0,5820

0,7450 0,4573 0,5720 0,4625 0,1760 0 0 0,1373 0,2771 0,3645 0,5705 0,6371 0,5820 0

0 1 1 1 1 0 0 1 1 1 1 1 1 1

1 0 1 1 1 0 1 0 1 1 1 1 1 1

1 1 0 1 1 1 0 0 1 1 1 1 1 1

1 1 1 0 1 0 1 0 1 1 1 1 1 1

1 1 1 1 0 1 1 0 1 1 1 1 1 1

0 0 1 0 1 0 1 1 1 1 0 0 1 0

0 1 0 1 1 1 0 1 0 0 0 0 0 0

1 0 0 0 0 1 1 0 1 1 1 1 1 1

1 1 1 1 1 1 0 1 0 1 1 1 1 1

1 1 1 1 1 1 0 1 1 0 1 1 1 1

1 1 1 1 1 0 0 1 1 1 0 1 1 1

1 1 1 1 1 0 0 1 1 1 1 0 1 1

1 1 1 1 1 1 0 1 1 1 1 1 0 1

1 1 1 1 1 0 0 1 1 1 1 1 1 0



With the aim of an intuitive visual interpretation, the electrodes have been placed according to the 

Emotiv Epoc disposition. The local efficiency value obtained for each channel, so the bigger the 

local efficiency value the bigger the circumference representing the electrode is. A color convention 

for the local efficiency value is also considered as it is shown in 7.7: 

 

𝑐𝑜𝑙𝑜𝑟(𝐺𝑖) =

{
 
 

 
 

𝑟𝑒𝑑, 𝑖𝑓 𝐸(𝐺𝑖) = 1,
𝑜𝑟𝑎𝑛𝑔𝑒, 𝑖𝑓 𝐸(𝐺𝑖) ≥ 0.95,
𝑦𝑒𝑙𝑙𝑜𝑤, 𝑖𝑓 𝐸(𝐺𝑖) ≥ 0.90,
𝑔𝑟𝑒𝑒𝑛, 𝑖𝑓 𝐸(𝐺𝑖) ≥ 0.85,

𝑏𝑙𝑢𝑒, 𝑖𝑓 𝐸(𝐺𝑖) ≥ 0.80,
𝑏𝑙𝑎𝑐𝑘, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 7.7 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



8 Psychological Test 
 

8.1 Neuroenergetics Theory (NeT) 

 

Neuroenergetic Theory (NeT) states that some psychiatric disorder may occur due to unstable 

functioning in the neurons feeding chain.  Specifically, for Attention Deficit Hyperactivity disorder 

(ADHD), it might be associated to hypocatecholamine function in subcortical and prefrontal 

cortical regions, regulated by cortical astrocytes. Astrocyte catecholamine receptors normally 

regulate energy availability during neuronal activation. Some forms of ADHD may be viewed as 

cortical energy-deficit syndromes, secondary to catecholamine-mediated hypofunctionality of 

astrocyte glucose and glycogen metabolism, providing activity-dependent energy to cortical 

neurons [77]. 

 

Recently, Killeen [78] has proposed an examination of this energy misbalance in neuronal circuits 

through an interactional model among neurons and glia. The most important function of neurons 

is the synapsis, the transmission of electrochemical information from one cell to another.  This 

process spends energy, major parts of the energy budget are postsynaptic processing and 

propagation of action potentials, and both are an increasing functions of the stimulation frequency. 

 

Some tasks lead to sustained synapsis in circuit of neurons, the human brain requires to process 

information continuously and in some cases, long lasting computational effort is required over the 

same event; after several seconds of firing the neuron relies on lactate provided by the astrocyte in 

the ANLS. Killeen’s hypothesis arguments that in ADHD the cost of transmission for action 

potentials (c) might be increased, or the rate of supply of lactate (s) might be compromised. 

 

Neurons are not able to produce their own energy, their mitochondria depend of glia cells 

(astrocytes) functioning, which extract glucose from sanguine vessels to produce lactate. Lactate 

is diffused into the extracellular space, to be absorbed by the neuron for ATP production, for the 

posterior restoration of ionic gradients and encapsulation of neurotransmitters. Neurotransmitters 

and ionic channels are responsible of the electric discharge (potential action) in synapsis.  

 

Glutamate is also converted into glutamine by the astrocytes (See Figure 1), which is shuttled to 

the neurons to restore their pools of neurotransmitters (yellow arrows). Glutamate, acting on 

AMPA receptors, stimulates norepinephrine release (red circles) from nearby noradrenergic 

varicosities. It acts on adrenoceptors, to further stimulate glucose uptake and glycolysis, causing 

astrocytes produce more lactate to support sustained neural firing. 

 

If astrocytes functioning fail by glutamate action or glucose uptake, the lactate provision for 

neurons will be compromised. Thereby, neurons will reduce their connectivity and the whole brain 

would not be able to sustain a continuous computation to response properly to lasting task in the 

environment. This is the so-called energy misbalance in the neural circuit. 

 



In this stage of low activation, the mind wandering states appear. This concept refers to the 

occurrence of task-unrelated and stimulus-independent thoughts [78, 79], a fundamental 

characteristic of inattentive states. It means that the thoughts do not remain on a single topic for a 

long time and it happens more frequently while an attention-demanding task is performed. 

 

Therefore, there is a clear correspondence between neurons circuits functioning and connectivity 

with psychological events. Furthermore, the brain’s hypoarousal might be indicated by 

electroencephalography (EEG), short EEG segments have been used to asses vigilance stages, 

which are corresponding to different states of global brain function [80]. 

 

The EEG segments are compared using likelihood measurements for get a probability of how 

related are the different regions on the brain in the task-related thoughts. From the resulting matrix 

a graph is constructed and its properties are studied for analyze the network organization. 

 

8.2 Sustained Attention to Response Task (SART) 

 

This test is widely used in psychology for studying attention in people [81] and has been employed 

in several age groups for studies in different diseases and disorders and has different adaptations. 

 

As this study is directed to ADHD, the adaptation of Johnson et. al. [82] is selected. This adaptation 

includes three additional masks and different times for displaying each one of them, including the 

cue. 

 
Figure 8.1. SART paradigm modified for ADHD and autistic children according to the work of  

K. Johnson et al. [82].  
 

In this test, numbers from 1 to 9 are presented in the screen one by time. As Figure 7.1 shows, the 

digit appears for 313 ms, then a mask for 125 ms, after that a bold mask for 63 ms, again the mask 

for 375 ms is displayed and finally a fixation mark for 563 ms. The participant has to press the space 



bar when they see numbers from 1 to 9, except when 3 is displayed because no key is supposed to 

be pressed. 

 

The SART of Inquisit Millisecond Software [83] is adapted according to these settings, including 

all the extra masks and modifying the times for each cue. 

The responses are classified in 5 different categories:  

 

(a) ambiguous: it is not clear if the response is anticipatory or successful; 

(b) anticipatory: the key is pressed before the digit is seen; 

(c) fail: the key is pressed when it is not supposed to be pressed; 

(d) omission: the key is not pressed when it has to be pressed, and  

(e) success: the key is pressed or not pressed in the right moment.  

 

(a), (b), (c) and are type Go trials and (d) and (e) are type No-Go trials. This information is 

summarized in Table 8.1. 

 

Category of 

the response 

Type of 

response 

Description 

Ambiguous Go trial It is not clear if it is anticipatory or successful 

Anticipatory Go trial The key is pressed before the digit is seen 

Fail Go trial The key is pressed when it is not supposed to be 

pressed 

Omission No-go trial The key is not pressed when it has to be pressed 

Success Go/No-go trial The key is pressed or not pressed in the right 

moment 

Table 8.1. Description of the different responses in SART. 
 

8.3 Neuroenergetics Model of Maintained Attention (NEMA) 

 

A Markov model by Killeen [84] is constructed with these responses for understand how the 

attention-inattention transition works for every group. Killeen reported a slowing and increasing 

neural in randomized blocks through the SART session.  

 

The author proposed the inclusion of the separate processes of attentional lapses; it has been named 

the Neuroenergetics of Maintained Attention (NEMA) model, and describes two different contexts: 

Stimulus-driven recapture and goal-driven recapture. In the first case, involving experimental 

procedures with conspicuous stimuli, set the probability of recovering attention (α; alpha) to 0 until 

a target presentation, and thereafter to a value close to 1.  



 
Figure 8.2. The Neuroenergetics of Mantained Attention (NEMA) model. 

 

In this model, Killeen proposed a “double” exponential process to lapse attention as the trials passes 

and to predict the delay to recapture attentional focus. The author proposes his Markov model for 

attention from a 2x2 transition matrix. The model follow the representation from Wiener diffusion 

process for times responses. The data distributions for error or successes are named Wald an Ex-

Gaussian distribution. For simple two-choice decisions, empirical RT distributions for humans are 

generally positively skewed. Increases in the difficulty of a decision lead to increases in mean RT 

and decreases in accuracy. Increases in difficulty also produce regular changes in RT distributions, 

changes in their spread but very little change in their shape. 

 

 

 
Figure 8.3. LEM code example using the formulated Markov model. 

 

 



It was intended to fit the NEMA for behavioral data in SART with ADHD and control children; it 

was calculated the latent class model with two latent variables denoted by X and Y, within the 

specific path proposed by Killeen, corresponding to attentional and mind wandering states, each 

one of them having two states.  Also, some observed variables were considered and measured 

through SART: the responses type, trial type, stages and the intra-subject variability.  

 

The Markov model was coded in LEM [85], and an example is given in Figure 8.3. 

 

There are two latent variables: inattention and attention, and four manifest variables: participant, 

stage, trial and response. The classification of the manifest variables is given in Table 8.2. 
 

Manifest 

Variable 

Dimensions of the variable 

Participant As many as participants are 

Stage Fixed SART and randomized SART 

Trial Go or No-go 

Response Ambiguous, anticipatory, omission, 

failure, success 

Table 8.2. Manifest variables and its respective dimensions. 
 



9 Procedure 

9.1 Participants 

 

A population of 10 ADHD children and 5 non-ADHD children in ages from 6 to 12 years old 

will be selected according to the DSM-V criteria. All the participants are students of a public 

school located in Pereira, Colombia. The data was recorded in each child separately and during 

the scholar day. The parents signed an informed consent. 

9.2 Apparatus 

 

During the whole procedure, every child utilized the Emotiv Epoc neuroheadset, a low cost EEG 

device created as a peripheral for gaming but also utilized as a researching tool [86, 87].  

 

It is based on the International 10-20 system and has 14+2 channels: AF3, AF4, F3, F4, F7, F8, 

FC5, FC6, P7, P8, T7, T8, O1 and O2, plus the references P3 (CMS) and P4 (DRL). The letters 

naming each electrode corresponds to the area of the brain was those have to be placed, as it is 

shown in Table 9.1. 

 

Electrode Lobe 

AF Anterior-frontal 

F Frontal 

FC Fronto-central 

P Parietal 

T Temporal 

O Occipital 

Table 9.1. The electrodes names and their correspondence to a certain region in the brain. 

 

This device have wireless transmission, making heavy filtering from the oversampling at 2048 

Hz per channel to a final sampling rate of 128 Hz, with a frequency response of 0.16-43 Hz.  

 

 

 

Figure 9.1. Emotiv Epoc (left) and positioning for each electrode (right). 

 



The children were sited back to a cushion and used an Emotiv Epoc neuroheadset during the 

whole procedure for recording the totality of the signals. They had a tea table in front of them 

for perform the test in a laptop. Another laptop was utilized for monitoring the EEG signals 

collected from their scalps. 

 

9.3 Protocol 

 

The experiment was designed in such way that the child had a more demanding task than the 

previous one while the time passes by. Before meeting the children, there was a meeting with 

their parents for explaining them what the protocol was and for making them sign an informed 

consent. The procedure was agreed to be performed during the school time and inside the school 

facilities. 

 

All the children were subjected to the same three-stage procedure: (1) Relaxing time with 

Meditation Music, (2) SART fixed version and (3) SART randomized version. See Figure 9.2. 

 

 Relaxation Fixed SART Randomized SART 

Control    

ADHD    

Figure 9.2. Classification of the data by type of participant and stage. 
 

 Relaxing time: The child uses headphones and closes their eyes for about 5 minutes while 

relaxing music is reproduced. As all the sessions were taken inside the public school and 

there were noise everywhere, this was the most appropriated method detected for creating a 

base state during the procedure due to the hyperactive and/or inattentive nature of the 

children (See Figure 9.2). 

 SART fixed version: The fixed version presents digits appearing in ascendant order from 1 

to 9. The number of trials is 225, were the 10% corresponds to No-Go and the 90% 

corresponds to Go. The child can anticipate the response action required based on the fact 

that the emergence of the digits always happens in the same order. A break of not less than 

a minute was given to every child before the next task. 

 SART randomized version: The randomized version presents digits appearing in disorder, 

following a pseudo-randomized distribution. The number of trials is 225, were the 10% 

corresponds to No-Go and the 90% corresponds to Go. See Figure 4. The child cannot 

anticipate the response action required based on the fact that the emergence of the digits is 

unpredictable, so the attention levels and velocity for responding have to be superior. 

 

The Phase-Locking Value [43], a measure for likelihood, was utilized for analyzing correlations 

among the signals collected by the electrodes. The paradigm computed using the phase of the 

signal is introducing by Winfree [88] for studying the coupled-oscillators synchronization and 

the first representation of neural behavior through the action potential or Local Field Potentials 

(LFP).  

 



The test responses introduced into the NEMA model for understanding the transitions between 

attentional and inattentional states. As EEG and behavioral data are collected and analyzed, 

these are also compared providing relevant information, regarding how neuroenergetics behave 

for both groups of children.  

 

9.4 Data Collection 

 

As there were plenty of limitations for working with the children, both instrumental and temporal, 

it is required to design an experiment capable of showing up important differences between both 

groups. The children’s confidentiality and anonymity was guaranteed and the collected data only 

may be used for academic purposes. This study did not represent any harm to the participants, all 

of them participated voluntarily and they might leave at any time; at least one parent and the child 

provided verbal assent prior to the session beginning.  

 

The study was conducted during the usual schooling time, implying standard conditions 

associated to the daily scholar tasks. 

 

Each children was treated separately. The attentional data was collected using a psychological 

test in a computer for sensing sustained attention in a performing task; meanwhile, their EEG 

signals were collected using the Emotiv Epoc neuroheadset. 

 

A standard positioning for the children was required for avoiding big differences in the 

electroencephalographic signal among stages. These differences might appear for electrode 

displacements on the scalp and also for a low transmission power of the Bluetooth connection. 

 

9.5 Classification of the Data and Signal Processing 

 

The data is clustered according to the group of study –control or ADHD- and the stage of the 

experiment –Relaxation, Fixed SART or Randomized SART- as it is shown in Figure 9.2.  

Following this, each set is filtered with EEGLAB [89]  FIR Butterworth filters in three different 

ranges of frequency: Theta (4-8 Hz) using a filter of order 78, SMR (12-15 Hz) and Beta (15-18 

Hz). The latter two using a filter of order 98. See Figure 9.3 for the spectral maps in each case. 



 

Figure 9.3. Spectral maps of EEG signals. Top left: Full signal. Top right: signal filtered in a 

4-8 Hz frequency. Down left: signal filtered in a 12-15 Hz frequency. Down right: signal 

filtered in a 15-18 Hz frequency. 

9.6 Graphs and Small-World Metrics 

 

For plotting each graph and starting from its correspondent PLV matrix, the small-world metrics 

are obtained according to the following procedure: 

 Thresholding: The threshold was set in a way that every node stayed connected in every 

network. All the values of the matrix below 0.15 (threshold) are transformed into 0.  

 Binarization: The values different to 0 are transformed into 1.Small-world metrics 

calculation: The clustering coefficient, the global efficiency and the local efficiency are 

calculated for each node and then for the whole network, while the characteristic path length 

is calculated directly for the whole network. The small-world metrics were obtained using 

the Brain Connectivity Toolbox (BCT) [32]. 

 Graph construction: The electrodes are represented by nodes, and the synchronizations 

between two channels are depicted as edges. The edges ratios and its colors vary according 

to the local efficiency of the node as shown in Figure 9.4.  𝐸(𝐺𝑖) is the efficiency of the 

subgraph 𝑖, which is the node 𝑖. 



 
Figure 9.4. A graph with its small-network measurements constructed from the EEG signals 

collected. 
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10 Results 

10.1 SART 

As Figure 10.1 shows, both groups have good levels of attention for responding to stimuli 

successfully to more than a half of the trials, but have a lower performance in the random version. 

For control participants, the omission responses are 25,8% for fixed SART and 28,5% for 

randomized SART, increasing omissions a 2,70%. For ADHD participants, the percentages are 

21,4% and 39,3% respectively, rising a 17,9%. This represents a gap between groups of 15,2%, 

pointing to a notable greater difficulty for ADHD children for transiting from the fixed test to the 

randomized test compared to control children.  

 

 
Figure 10.1. Classification of the SART responses for Control and ADHD participants. 

 

 

Figure 10.2. Markovian model from [78] included with the permission of the author. The 

outputs obtained for this experiment are written in blue for the control group and red for the 

ADHD group. 

Control ADHD Control ADHD

Fixed Fixed Random Random

Ambiguous 4,9% 9,6% 5,3% 1,3%

Anticipatory 2,2% 5,7% 1,4% 0,8%

Failure 1,6% 1,3% 7,1% 6,4%

Omission 25,8% 21,4% 28,5% 39,3%

Success 65,4% 62,0% 57,7% 52,2%
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In  

Figure 10.2, the Markovian model is depicted. The code developed in LEM for each group can 

be found in Appendix B. The observed and estimated frequencies and the standard residual, are 

given according to the different combinations among the manifest variables: participant, stage, 

trial and response. The pseudo R-squared measures are calculated along with the log-linear 

parameters. 

 

The conditional probabilities of P(Y|X) are the ones taken in consideration for representing the 

transitions between states in the model, due to X and Y are the latent variables. For each variable 

X (attention) and Y (inattention), two dimensions are correspondent: 1 is for transitioning to the 

other state and 2 is for transitioning to the same state. Thus, the transition 1|1 indicates that Y 

transitions to X, 2|1 indicates that Y transitions to itself, 1|2 indicates that X transitions to itself 

and 2|2 indicates that X transitions to Y. 

 

The higher differences are evidenced for 𝜆, where ADHD children have a probability of having 

a lapse of 51.93% and the 43.66% for control children. The probability of remaining in the 

attentional state is 48.07% and 56.34% for ADHD and control groups respectively. Between each 

pair of values a significant difference of 8.27% is noticed, which means that there is expected a 

higher chance of going from an attentional to an inattentional state for the ADHD group. 

 

In 𝛼, the probability of recovering, there is a 55.38% for ADHD and 57.37% for control, having 

a difference of 1.99%. It represents a higher chance, but not very significant, for transitioning 

from an inattentive state to an attentive state in control children. 

 

ADHD children have less probability to stay focus on SART trials, also they may stuck in mind 

wandering states with a lower probability for coming back to an attending state for an effective 

response. In the other hand, control children may leave the focus state but they are more likely to 

return to pay attention to the stimuli with less effort in comparison with ADHD children.  

10.2  Small-Metrics for the Brainwaves 
 

From the average PLV matrices obtained according to the group, stages and brainwaves, the 

small-world metrics are calculated. The clustering coefficient (C), characteristic path length (L) 

and global efficiency (E) are shown in Table 10.1 and Table 10.2. 

 

 

Control 

 Theta (4-8 Hz) SMR (12-15 Hz) Beta (15-18 Hz) 

 C L E C L E C L E 

Relax 0,8818 0,7802 0,8901 0,8836 0,7912 0,8956 0,9159 0,8242 0,9121 

Fixed 0,8766 0,8132 0,9066 0,8714 0,7912 0,8956 0,9627 0,956 0,978 

Random 0,9052 0,8681 0,9341 0,8965 0,8571 0,9286 0,9627 0,956 0,978 

Table 10.1. C, L and E calculated for Theta, SMR and Beta brainwaves  



for every stage of the protocol in the control group. 
 

 ADHD 

 Theta (4-8 Hz) SMR (12-15 Hz) Beta (15-18 Hz) 

 C L E C L E C L E 

Relax 0,9324 0,8901 0,9451 0,8917 0,8352 0,9176 0,9426 0,8901 0,9451 

Fixed 0,9799 0,978 0,989 0,9362 0,9231 0,9615 0,989 0,989 0,9945 

Random 0,9127 0,8791 0,9396 0,8981 0,8462 0,9231 0,989 0,989 0,9945 

Table 10.2. C, L and E calculated for Theta, SMR and Beta brainwaves for every  

stage of the protocol in the ADHD group. 

10.2.1 Theta 

Theta activity generally represents a more daydream like, fantasy prone rather spacey state 

of mind that is associated with mental inefficiency[90]. There are some significant 

differences for each group, as it is shown in Figure 10.3 and Table 10.3: 

 

 
Figure 10.3. Comparison of network metrics for the Theta (4-8Hz) brainwave. 

 

 

 Theta (4-8Hz) 

 Control ADHD 

 C-L Difference C-L Difference 

Relax 10,16% 3,82% 4,23% 4,04% 

Fixed 6,34% 2,63% 0,19% -3,17% 

Random 3,71%   3,36%   

Table 10.3. Percentual difference between C and L for each stage and the respective difference 

 between the stages for the Theta (4-8Hz) brainwave. 

 

 Control: The participants increase upwardly the quantity of resources placed at disposal, 

an expectable behavior for the ascendant requirement of abilities during the experiment. The 

difference between 𝐶and 𝐿 for the relaxation stage is 10,16%, while in the fixed stage it is 

6,34% and in the randomized stage it is a 3,71%, having a percentual difference of 3,82% 

between relaxed and fixed stages and 2,63% between fixed and randomized stages. 
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 ADHD: The quantity of resources placed at disposal increases as far as the fixed SART 

stage, but during the randomized SART, a decrement is evidenced in the three metrics despite 

the task difficulty. The difference between 𝐶and 𝐿 for the relaxation stage is 4,23%, while in 

the fixed stage it is 0,19% and in the randomized stage it is a 3,36%, having a percentual 

difference of 4,04% between relaxed and fixed stages and -3,17% between fixed and 

randomized stages. 

 

The connectivity in the ADHD group is always denser than the control group’s. Even so, the 

connectivity in the control group increases stage by stage, while in the ADHD group 

increases from the relaxed stage to the fixed stage, but reduces from the fixed stage to the 

randomized stage. The full graphs may be seen in Appendix A. 

 

10.2.2 SMR 

The sensorimotor rhythm refers to the movement planning, which is the readiness of the neural 

network for performing an action. The higher the values, the less prepared the network is, as it 

is shown in Figure 10.4 and Table 10.4:  

 

 
Figure 10.4. Comparison of network metrics for the SMR (12-15Hz) brainwave. 

 

 SMR (12-15 Hz) 

 Control ADHD 

 C-L Difference C-L Difference 

Relax 9,24% 1,22% 5,65% 4,34% 

Fixed 8,02% 4,08% 1,31% -3,88% 

Random 3,94%   5,19%   

Table 10.4. Percentual difference between C and L for each stage and the respective 

 difference between the stages for the SMR (12-15Hz) brainwave. 

 

 Control: For the relaxation and the fixed SART stages, the connectivity levels are very 

much alike. This is due to the relaxation does not have any performance instruction and the 

fixed SART is a monotonous task, but in the randomized SART the connectivity ascends on 
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account of its complexity, giving place again to a predictable tendency. The difference 

between 𝐶and 𝐿 for the relaxation stage is 9,24%, while in the fixed stage it is 8,02% and in 

the randomized stage it is a 3,94%, having a percentual difference of 1,22% between relaxed 

and fixed stages and 4,08% between fixed and randomized stages. 

 

 ADHD: The SMR metrics in fixed SART are much higher than in the previous stage, and 

again it is considerably reduced in randomized SART, implying a great lack of movement 

planning. The difference between 𝐶and 𝐿 for the relaxation stage is 5,65%, while in the fixed 

stage it is 1,31% and in the randomized stage it is a 5,19%, having a percentual difference of 

4,34% between relaxed and fixed stages and -3,88% between fixed and randomized stages. 

 

The connectivity in the ADHD group is always denser than the control group’s. Even so, the 

connectivity in the control group remains almost the same from the relaxed stage to the fixed 

stage and increases from the fixed stage to the randomized stage, while in the ADHD group 

increases from the relaxed stage to the fixed stage, but reduces from the fixed stage to the 

randomized stage. 

 

10.2.3 Beta 

Reflects how desynchronized the active brain tissue is as the values are increased. It is also 

higher while the eyes of the participant are open, as it is shown in Figure 10.5 and Table 10.5: 

 

Figure 10.5. Comparison of network metrics for the Beta (15-18Hz) brainwave. 
 

 

 Beta (15-18 Hz) 

 Control ADHD 

 C-L Difference C-L Difference 

Relax 9,17% 8,50% 5,25% 5,25% 

Fixed 0,67% 0,00% 0,00% 0,00% 

Random 0,67%   0,00%   

Table 10.5. Percentual difference between C and L for each stage and the respective  

difference between the stages for the Beta (15-18Hz) brainwave. 
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 Control: For the relaxation stage, the closed-eyes stage, the connectivity is superior in the 

remaining stages. The difference between 𝐶and 𝐿 for the relaxation stage is 9,17%, while in 

the fixed stage it is 0,67% and in the randomized stage it is a 0,67%, having a percentual 

difference of 8,50% between relaxed and fixed stages and 0,00% between fixed and 

randomized stages. 

 

 ADHD: A similar tendency is evidenced in the ADHD groups, but the metrics have values 

a little lower. The difference between 𝐶and 𝐿 for the relaxation stage is 5,25%, while in the 

fixed stage it is 0,00% and in the randomized stage it is a 0,00%, having a percentual 

difference of 5,25% between relaxed and fixed stages and 0,00% between fixed and 

randomized stages. 

 

For the three brainwaves analyzed corresponding to the control group, the characteristic path 

length tends to be lower than the clustering coefficient and the global efficiency, denoting an 

organization in these graphs closer to the small-world networks type than the ADHD group, 

whose graph organization is closer to the organized networks type. 

 

 

 



11 Discussion 

The Neuroenergetics of Maintained Attention (NEMA) implied in tasks as SART may be explained 

using a Markov model, assuming the probability of lapses of attention from 1 s to the next, and the 

probability of drifting back to the attentional state. Their values are affected by the fatigue of the 

brain units (neurons and glia cells) as they traffic chemical-electric signals between. Also it 

determines the probability of the individual being inattentive at any point in time over the long run 

[78]. 

 

Markov models may be calculated on the assumption of latent or uncovered variables.  Models of 

latent classes have been useful to identify and classify profiles of behavior according to  internal 

syndromes, external syndromes and problems of the dream [91] and capabilities [92].  By the same 

procedure, it would be possible to characterize EEG brain functioning (latent) from manifest 

behavioral data [93, 94].  

 

Despite ADHD does not have a unique profile nor a single explanation [95], as brain networks do 

not have an unique activation, few researchers report intra-subject variability [84].  Recently de 

Zeeuw, et al. [96] suggest at least three independent pathways involved in ADHD: a dorsal front 

striatal pathway involved in cognitive control, a ventral front striatal pathway involved in reward 

processing and a front cerebellar pathway related to temporal processing.  

 

That finding should correspond to neural activations according with NET assumptions; also it 

would be expected different patterns of connectivity within ADHD and non-diagnosed children.  

Rhythms are activated in a deviated manner in ADHD, in easy tasks brain response with high 

activation and exaggerate energetic spending, passing the time the circuits do not have enough 

resources to maintain all frequencies activation, then brain deploy lower rhythms for keeping the 

rate activity in higher bands as it was demonstrated in [97]. 

 

We observed higher connectivity in Beta (15-18 Hz), then SMR (12-15 Hz) and lately in Theta (4-

8 Hz). In theta, the declining of resources placed for disposal at the randomized SART stage might 

imply an issue regulating the production of required resources for the tasks fulfillment. In SMR, 

the metrics in fixed SART are higher than in relaxation, the previous stage. According to Killeen 

(2013) monotonous tasks are more demanding for these children due their susceptibility to keep 

moving between tasks. Surely, another pattern would be observed if the SART was a decreased 

difficulty test. 

 

Synchronous activity of oscillating network is critical for coordinate behavior [98]; the level of 

interregional functional connectivity seems to be related to local band power as well as distance, 

long distance communication is mainly supported by synchronization in low frequency bands, like 

theta, while short distance local communication depends upon synchronization higher rhythms, as 

beta [99]. 



Neuroimaging techniques suggest that ADHD brains have lower connectivity between the bilateral 

VLPFC, the anterior cingulate cortex, the superior parietal lobule and the cerebellum during a 

working memory task compared to healthy controls [100]. Inattention and 

hyperactivity/impulsivity in ADHD are related to altered intrinsic connectivity in orbitofrontal-

temporal-occipital and front-amygdala-occipital networks [101]. 

 

The enhanced connectivity at short-range within reward-motivation regions and their decreased 

connectivity with regions in long-range suggest impaired interactions between control and reward 

pathways in ADHD that might underlie attention and motivation deficits in ADHD [102]. ADHD 

might derive from deregulated modulation of cortical plasticity in the developing brain [103, 104]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



12 Conclusions 

 

The functional connectivity differences between ADHD children and control children were 

analyzed using an electroencephalographic low-cost neuroheadset. After the connectivity matrices 

and its respective network properties were computed through PLV, the data was transformed into 

functional connectivity graphs. 

 

It was possible to evidence graphically and numerically the differences for each group and stage 

of the procedure in theta, SMR and beta brainwaves. For the limitations related to the number of 

channels and the resolution of the Emotiv Epoc, it was pivotal to make a comparative analysis with 

the results obtained from another source. In this case, the other source was the SART, which is a 

behavioral test for identifying omission responses, among others.  

 

The NeT [78] stated a feeding neural circuit issue, but graphs and the small-world metrics suggest 

that it is originated due to energetic management: there is energy available but for some reason, the 

ADHD brain gamble all its resources in the first opportunity instead of save energy for later. It 

leads to build solid neural grids too early for learning the meaningful facts of the task, ADHD 

children invest more neural resources in the fixed SART stage and did not adjust brain rhythms in 

response to the randomized SART stage. 

 

A study examining the power EEG [105], reported that ADHD subjects showed elevated coherence 

in the lower alpha (8 Hz) band and reduced coherence in the upper alpha (10–11 Hz) band; also 

the 8-Hz ADHD elevation and a 2- to 6-Hz control group coherence elevation were independent 

of stimulus presentation. 

 

ADHD score was positively correlated with both the frequencies and mind-wandering responses 

[106]. It is suggested that the binding in mind wandering states and the misbalanced brain 

connectivity over time is on the administration (i.e. over-communication) of the transitions between 

bands according to environment challenges. The encoding approach leads to assume that an ADHD 

brain has difficulties to filter stimuli and controlling resources owing to a more deficient 

management of resources compared to a Control brain. 

 

With clustering coefficient and characteristic path length metrics, it is possible identify to which 

kind of networks the graphs obtained are much alike. In this case, the control graphs for Theta and 

SMR brainwaves are closer to the small-world networks than other graphs obtained during the 

procedure. It might be because of the matrices obtained through the PLV had synchronizations in 

less nodes than in other cases, suggesting that probably these participants transited less times to the 

inattention state, as the Markov model explains. 

 

 

 



13 Future Works 

 

 “Sustained Attention in ADHD and Control Children using Event-Related Potential in a 

SART for Characterizing EEG Omission Responses in Both Groups”: A synchronization 

between the behavioral test performance and the recording of the signal is required for 

getting the connectivity representations in each response.  

A mark has to be sent at the beginning and the end of each stages: relaxation, fixed SART 

and randomized SART. The synchronization has to be made using an extra application sub 

serving as a controller. 

Thus, it will make possible to ensure a characterization of the relevant responses in time 

represented through the graph theory measurements, and explained with the NeT. 

 

 “Validation of the methodology using the Emotiv Epoc+ for the children in the Integral 

Audiology Institute in Pereira”: A comparative study using an Emotiv Epoc neuroheadset 

with better resolution. This study is necessary for supporting the current results and give 

them a stronger background, by using a more representative sample and equipment more 

sophisticated.  

The children were diagnosed already and the contact with their parents is constant, making 

easier their monitoring.  

 

 “A Low-cost Visualization Model for Sustained Attention in Real Time”: A model for 

detecting in real time the capability of a subject for maintaining the sustained attention 

given a task. For being able to generating standard conditions, it is necessary to have a prior 

sample of both groups: ADHD and control for characterizing each group. The sample has 

to be big enough for being representative.  

According to the representative sample, it would be possible to generate an standard 

representation. 
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A. Appendix 
 

 

Figure A.1. Average graphs for the Theta (4-8Hz) brainwave. (1) Top left: Relaxation stage for 

control group. (2) Top Right: Relaxation stage for ADHD group. (3) Center left: Fixed SART 

stage for control group. (4) Center right: Fixed SART for ADHD group. (5) Down left: 

Randomized SART for control group. (6) Down right: Randomized SART for ADHD group. 



 

Figure A.2. Average graphs for the SMR (12-15Hz) brainwave. (1) Top left: Relaxation 

stage for control group. (2) Top Right: Relaxation stage for ADHD group. (3) Center left: 

Fixed SART stage for control group. (4) Center right: Fixed SART for ADHD group. (5) 

Down left: Randomized SART for control group. (6) Down right: Randomized SART for 

ADHD group. 
 

 



 

 

 

Figure A.3. Average graphs for the Beta (15-18Hz) brainwave. (1) Top left: Relaxation stage 

for control group. (2) Top Right: Relaxation stage for ADHD group. (3) Center left: Fixed 

SART stage for control group. (4) Center right: Fixed SART for ADHD group. (5) Down left: 

Randomized SART for control group. (6) Down right: Randomized SART for ADHD group. 



B. Appendix 

B.1. LEM output for the ADHD  group 

using the Markovian model
*** STATISTICS *** 

 

  Number of iterations = 56 

  Converge criterion   = 0.0000006802 

  Seed random values   = 1030 

 

  X-squared            = 471.9072 (0.0000) 

  L-squared            = 462.7508 (0.0000) 

  Cressie-Read         = 456.9670 (0.0000) 

  Dissimilarity index  = 0.1709 

  Degrees of freedom   = 173 

  Log-likelihood       = -9538.18808 

  Number of parameters = 23 (+4) 

  Sample size          = 2260.0 

  BIC(L-squared)       = -873.3490 

  AIC(L-squared)       = 116.7508 

  BIC(log-likelihood)  = 19254.0079 

  AIC(log-likelihood)  = 19122.3762 

 

  Eigenvalues information matrix 

    1809.6032   158.1929    82.8692    32.2581     5.0532     1.3585 

       0.4973     0.2371     0.1214     0.0000    -0.0000    -0.0001 

      -0.0003    -0.0007 

 

WARNING: 5 (nearly) boundary or non-identified (log-linear) 

parameters 

 

 

 

*** FREQUENCIES *** 

 

   P S T R     observed  estimated  std. res. 

   1 1 1 1       3.050      3.545     -0.263 

   1 1 1 2       1.050      1.748     -0.528 

   1 1 1 3       0.050      0.045      0.023 

   1 1 1 4      59.050     36.665      3.697 

   1 1 1 5      36.050     57.306     -2.808 

   1 1 2 1       0.050      0.050      0.001 

   1 1 2 2       0.050      0.049      0.003 

   1 1 2 3       0.050      4.418     -2.078 

   1 1 2 4       0.050      0.050      0.001 

   1 1 2 5      13.050      8.625      1.507 

   1 2 1 1       7.050      3.523      1.879 

   1 2 1 2       0.050      1.738     -1.280 

   1 2 1 3       0.050      0.278     -0.433 

   1 2 1 4      24.050     36.410     -2.048 

   1 2 1 5      68.050     57.359      1.412 

   1 2 2 1       0.050      0.050      0.001 

   1 2 2 2       0.050      0.049      0.003 

   1 2 2 3       3.050      4.418     -0.651 

   1 2 2 4       0.050      0.050      0.001 

   1 2 2 5      10.050      8.625      0.485 

   2 1 1 1       4.050      3.545      0.268 

   2 1 1 2       3.050      1.748      0.985 

   2 1 1 3       0.050      0.045      0.023 

   2 1 1 4      30.050     36.665     -1.092 

   2 1 1 5      62.050     57.306      0.627 

   2 1 2 1       0.050      0.050      0.001 

   2 1 2 2       0.050      0.049      0.003 

   2 1 2 3       3.050      4.418     -0.651 

   2 1 2 4       0.050      0.050      0.001 

   2 1 2 5      10.050      8.625      0.485 

   2 2 1 1       5.050      3.523      0.813 

   2 2 1 2       1.050      1.738     -0.522 

   2 2 1 3       0.050      0.278     -0.433 

   2 2 1 4      28.050     36.410     -1.386 

   2 2 1 5      65.050     57.359      1.016 

   2 2 2 1       0.050      0.050      0.001 

   2 2 2 2       0.050      0.049      0.003 

   2 2 2 3       3.050      4.418     -0.651 

   2 2 2 4       0.050      0.050      0.001 

   2 2 2 5      10.050      8.625      0.485 

   3 1 1 1       6.050      3.545      1.330 

   3 1 1 2       3.050      1.748      0.985 

   3 1 1 3       0.050      0.045      0.023 

   3 1 1 4      16.050     36.665     -3.405 

   3 1 1 5      74.050     57.306      2.212 

   3 1 2 1       0.050      0.050      0.001 

   3 1 2 2       0.050      0.049      0.003 

   3 1 2 3       1.050      4.418     -1.602 

   3 1 2 4       0.050      0.050      0.001 

   3 1 2 5      12.050      8.625      1.166 

   3 2 1 1      16.050      3.523      6.674 

   3 2 1 2       8.050      1.738      4.788 

   3 2 1 3       0.050      0.278     -0.433 

   3 2 1 4      15.050     36.410     -3.540 

   3 2 1 5      60.050     57.359      0.355 

   3 2 2 1       0.050      0.050      0.001 

   3 2 2 2       0.050      0.049      0.003 

   3 2 2 3       3.050      4.418     -0.651 

   3 2 2 4       0.050      0.050      0.001 

   3 2 2 5      10.050      8.625      0.485 

   4 1 1 1       0.050      3.545     -1.856 

   4 1 1 2       3.050      1.748      0.985 

   4 1 1 3       0.050      0.045      0.023 

   4 1 1 4      55.050     36.665      3.036 

   4 1 1 5      41.050     57.306     -2.147 

   4 1 2 1       0.050      0.050      0.001 

   4 1 2 2       0.050      0.049      0.003 

   4 1 2 3       3.050      4.418     -0.651 

   4 1 2 4       0.050      0.050      0.001 

   4 1 2 5      10.050      8.625      0.485 

   4 2 1 1       1.050      3.523     -1.318 

   4 2 1 2       0.050      1.738     -1.280 

   4 2 1 3       0.050      0.278     -0.433 

   4 2 1 4      22.050     36.410     -2.380 

   4 2 1 5      76.050     57.359      2.468 

   4 2 2 1       0.050      0.050      0.001 

   4 2 2 2       0.050      0.049      0.003 

   4 2 2 3       1.050      4.418     -1.602 

   4 2 2 4       0.050      0.050      0.001 

   4 2 2 5      12.050      8.625      1.166 

   5 1 1 1      13.050      3.545      5.048 

   5 1 1 2       6.050      1.748      3.255 

   5 1 1 3       0.050      0.045      0.023 

   5 1 1 4      12.050     36.665     -4.065 

   5 1 1 5      68.050     57.306      1.419 

   5 1 2 1       0.050      0.050      0.001 

   5 1 2 2       0.050      0.049      0.003 

   5 1 2 3       0.050      4.418     -2.078 



   5 1 2 4       0.050      0.050      0.001 

   5 1 2 5      13.050      8.625      1.507 

   5 2 1 1       0.050      3.523     -1.850 

   5 2 1 2       0.050      1.738     -1.280 

   5 2 1 3       0.050      0.278     -0.433 

   5 2 1 4      28.050     36.410     -1.386 

   5 2 1 5      71.050     57.359      1.808 

   5 2 2 1       0.050      0.050      0.001 

   5 2 2 2       0.050      0.049      0.003 

   5 2 2 3       1.050      4.418     -1.602 

   5 2 2 4       0.050      0.050      0.001 

   5 2 2 5      12.050      8.625      1.166 

   6 1 1 1       1.050      3.577     -1.336 

   6 1 1 2       1.050      1.763     -0.537 

   6 1 1 3       0.050      0.046      0.021 

   6 1 1 4      66.050     36.991      4.778 

   6 1 1 5      32.050     57.815     -3.389 

   6 1 2 1       0.050      0.050     -0.001 

   6 1 2 2       0.050      0.050      0.001 

   6 1 2 3       3.050      4.457     -0.667 

   6 1 2 4       0.050      0.050     -0.001 

   6 1 2 5      10.050      8.701      0.457 

   6 2 1 1       0.050      3.555     -1.859 

   6 2 1 2       0.050      1.753     -1.286 

   6 2 1 3       2.050      0.281      3.340 

   6 2 1 4      59.050     36.734      3.682 

   6 2 1 5      39.050     57.869     -2.474 

   6 2 2 1       0.050      0.050     -0.001 

   6 2 2 2       0.050      0.050      0.001 

   6 2 2 3      10.050      4.457      2.649 

   6 2 2 4       0.050      0.050     -0.001 

   6 2 2 5       3.050      8.701     -1.916 

   7 1 1 1       2.050      3.577     -0.807 

   7 1 1 2       1.050      1.763     -0.537 

   7 1 1 3       0.050      0.046      0.021 

   7 1 1 4      40.050     36.991      0.503 

   7 1 1 5      57.050     57.815     -0.101 

   7 1 2 1       0.050      0.050     -0.001 

   7 1 2 2       0.050      0.050      0.001 

   7 1 2 3       9.050      4.457      2.175 

   7 1 2 4       0.050      0.050     -0.001 

   7 1 2 5       4.050      8.701     -1.577 

   7 2 1 1       1.050      3.555     -1.328 

   7 2 1 2       1.050      1.753     -0.531 

   7 2 1 3       0.050      0.281     -0.435 

   7 2 1 4      51.050     36.734      2.362 

   7 2 1 5      47.050     57.869     -1.422 

   7 2 2 1       0.050      0.050     -0.001 

   7 2 2 2       0.050      0.050      0.001 

   7 2 2 3       3.050      4.457     -0.667 

   7 2 2 4       0.050      0.050     -0.001 

   7 2 2 5      10.050      8.701      0.457 

   8 1 1 1       1.050      3.577     -1.336 

   8 1 1 2       0.050      1.763     -1.290 

   8 1 1 3       0.050      0.046      0.021 

   8 1 1 4      43.050     36.991      0.996 

   8 1 1 5      56.050     57.815     -0.232 

   8 1 2 1       0.050      0.050     -0.001 

   8 1 2 2       0.050      0.050      0.001 

   8 1 2 3       7.050      4.457      1.228 

   8 1 2 4       0.050      0.050     -0.001 

   8 1 2 5       6.050      8.701     -0.899 

   8 2 1 1       3.050      3.555     -0.268 

   8 2 1 2       1.050      1.753     -0.531 

   8 2 1 3       0.050      0.281     -0.435 

   8 2 1 4      25.050     36.734     -1.928 

   8 2 1 5      71.050     57.869      1.733 

   8 2 2 1       0.050      0.050     -0.001 

   8 2 2 2       0.050      0.050      0.001 

   8 2 2 3       9.050      4.457      2.175 

   8 2 2 4       0.050      0.050     -0.001 

   8 2 2 5       4.050      8.701     -1.577 

   9 1 1 1       6.050      3.577      1.308 

   9 1 1 2       5.050      1.763      2.475 

   9 1 1 3       0.050      0.046      0.021 

   9 1 1 4      53.050     36.991      2.640 

   9 1 1 5      36.050     57.815     -2.862 

   9 1 2 1       0.050      0.050     -0.001 

   9 1 2 2       0.050      0.050      0.001 

   9 1 2 3       9.050      4.457      2.175 

   9 1 2 4       0.050      0.050     -0.001 

   9 1 2 5       4.050      8.701     -1.577 

   9 2 1 1       0.050      3.555     -1.859 

   9 2 1 2       0.050      1.753     -1.286 

   9 2 1 3       0.050      0.281     -0.435 

   9 2 1 4      53.050     36.734      2.692 

   9 2 1 5      47.050     57.869     -1.422 

   9 2 2 1       0.050      0.050     -0.001 

   9 2 2 2       0.050      0.050      0.001 

   9 2 2 3       5.050      4.457      0.281 

   9 2 2 4       0.050      0.050     -0.001 

   9 2 2 5       8.050      8.701     -0.221 

  10 1 1 1       1.050      3.577     -1.336 

  10 1 1 2       0.050      1.763     -1.290 

  10 1 1 3       0.050      0.046      0.021 

  10 1 1 4      18.050     36.991     -3.114 

  10 1 1 5      81.050     57.815      3.056 

  10 1 2 1       0.050      0.050     -0.001 

  10 1 2 2       0.050      0.050      0.001 

  10 1 2 3       9.050      4.457      2.175 

  10 1 2 4       0.050      0.050     -0.001 

  10 1 2 5       4.050      8.701     -1.577 

  10 2 1 1       0.050      3.555     -1.859 

  10 2 1 2       0.050      1.753     -1.286 

  10 2 1 3       0.050      0.281     -0.435 

  10 2 1 4      36.050     36.734     -0.113 

  10 2 1 5      64.050     57.869      0.813 

  10 2 2 1       0.050      0.050     -0.001 

  10 2 2 2       0.050      0.050      0.001 

  10 2 2 3       6.050      4.457      0.754 

  10 2 2 4       0.050      0.050     -0.001 

  10 2 2 5       7.050      8.701     -0.560 

 

 

 

*** PSEUDO R-SQUARED MEASURES *** 

 

* P(X|ST) * 

                         baseline   fitted   R-squared 

  entropy                 0.3700    0.0259    0.9300 

  qualitative variance    0.1068    0.0043    0.9601 

  classification error    0.1215    0.0043    0.9647 

  -2/N*log-likelihood     0.7400    0.0518    0.9300/0.4077 

  likelihood^(-2/N)       2.0959    1.0531    0.4975/0.9515 

 

* P(Y|X) * 

                         baseline   fitted   R-squared 

  entropy                 0.6929    0.6918    0.0016 

  qualitative variance    0.2499    0.2493    0.0023 

  classification error    0.4896    0.4765    0.0267 



  -2/N*log-likelihood     1.3859    1.3836    0.0016/0.0023 

  likelihood^(-2/N)       3.9983    3.9891    0.0023/0.0030 

 

* P(R|X) * 

                         baseline   fitted   R-squared 

  entropy                 0.9844    0.8550    0.1315 

  qualitative variance    0.2738    0.2603    0.0494 

  classification error    0.4137    0.4137   -0.0000 

  -2/N*log-likelihood     1.9688    1.7099    0.1315/0.2056 

  likelihood^(-2/N)       7.1622    5.5287    0.2281/0.2651 

 

* P(P) * 

                         baseline   fitted   R-squared 

  entropy                 2.3026    2.3026   -0.0000 

  qualitative variance    0.4500    0.4500    0.0000 

  classification error    0.8996    0.8996    0.0000 

  -2/N*log-likelihood     4.6052    4.6052    0.0000/0.0000 

  likelihood^(-2/N)      99.9980   99.9980    0.0000/0.0000 

 

 

 

*** LOG-LINEAR PARAMETERS *** 

 

* TABLE XST [or P(X|ST)] * 

 

  effect           beta  std err  z-value   exp(beta)     Wald  df  prob 

  X  

   1            -0.0000                        1.0000  

   2             6.6018   1.4174    4.658    736.3962    21.69   1 0.000 

  XS  

   1 1           0.0000                        1.0000  

   1 2           0.0000                        1.0000  

   2 1           0.0000                        1.0000  

   2 2          -1.8262   1.5510   -1.177      0.1610     1.39   1 0.239 

  XT  

   1 1           0.0000                        1.0000  

   1 2          -0.0000                        1.0000  

   2 1           0.0000                        1.0000  

   2 2         -18.5959   ******    *****  8.39E-0009     0.00   1 1.000 

  XST  

   1 1 1         0.0000                        1.0000  

   1 1 2         0.0000                        1.0000  

   1 2 1         0.0000                        1.0000  

   1 2 2        -0.0000                        1.0000  

   2 1 1         0.0000                        1.0000  

   2 1 2        -0.0000                        1.0000  

   2 2 1         0.0000                        1.0000  

   2 2 2         1.7227   ******    *****      5.5994     0.00   1 1.000 

 

* TABLE XY [or P(Y|X)] * 

 

  effect           beta  std err  z-value   exp(beta)     Wald  df  prob 

  Y  

   1             0.0000                        1.0000  

   2            -0.2160   ******    *****      0.8057     0.00   1 1.000 

  XY  

   1 1           0.0000                        1.0000  

   1 2           0.0000                        1.0000  

   2 1           0.0000                        1.0000  

   2 2           0.2933   ******    *****      1.3408     0.00   1 1.000 

 

* TABLE XR [or P(R|X)] * 

 

  effect           beta  std err  z-value   exp(beta)     Wald  df  prob 

  R  

   1             0.0000                        1.0000  

   2            -0.0075   1.4107   -0.005      0.9925  

   3             4.4873   1.0020    4.478     88.8824  

   4            -0.0009   1.4099   -0.001      0.9991  

   5             5.1562   0.9993    5.160    173.5102    98.23   4 0.000 

  XR  

   1 1           0.0000                        1.0000  

   1 2           0.0000                        1.0000  

   1 3           0.0000                        1.0000  

   1 4           0.0000                        1.0000  

   1 5           0.0000                        1.0000  

   2 1          -0.0000                        1.0000  

   2 2          -0.7001   1.4266   -0.491      0.4965  

   2 3         -72.8744   ******    *****  2.24E-0032  

   2 4           2.3371   1.4157    1.651     10.3516  

   2 5          -2.3749   1.0073   -2.358      0.0930    29.91   4 0.000 

 

 

 

*** (CONDITIONAL) PROBABILITIES *** 

 

* P(X|ST) * 

 

  1 | 1 1        0.0014  (0.0019) 

  1 | 1 2        1.0000  (0.0000) 

  1 | 2 1        0.0084  (0.0053) 

  1 | 2 2        1.0000  (0.0000) 

  2 | 1 1        0.9986  (0.0019) 

  2 | 1 2        0.0000  (0.0000) 

  2 | 2 1        0.9916  (0.0053) 

  2 | 2 2        0.0000  (0.0000) 

 

* P(Y|X) * 

 

  1 | 1          0.5538  (0.0000) 

  2 | 1          0.4462  (0.0000) 

  1 | 2          0.4807  (0.0000) 

  2 | 2          0.5193  (0.0000) 

 

* P(R|X) * 

 

  1 | 1          0.0038  (0.0037) 

  2 | 1          0.0037  (0.0037) 

  3 | 1          0.3349  (0.0291) 

  4 | 1          0.0038  (0.0038) 

  5 | 1          0.6538  (0.0293) 

  1 | 2          0.0357  (0.0042) 

  2 | 2          0.0176  (0.0030) 

  3 | 2          0.0000  (0.0000) * 

  4 | 2          0.3697  (0.0109) 

  5 | 2          0.5769  (0.0111) 

 

* P(P) * 

 

  1              0.0996 

  2              0.0996 

  3              0.0996 

  4              0.0996 

  5              0.0996 

  6              0.1004 

  7              0.1004 

  8              0.1004 

  9              0.1004 

  10             0.1004 

 



 

 

*** LATENT CLASS OUTPUT *** 

 

          X  1    X  1    X  2    X  2 

          Y  1    Y  2    Y  1    Y  2 

         0.0673  0.0542  0.4223  0.4562 

  P  1   0.0996  0.0996  0.0996  0.0996 

  P  2   0.0996  0.0996  0.0996  0.0996 

  P  3   0.0996  0.0996  0.0996  0.0996 

  P  4   0.0996  0.0996  0.0996  0.0996 

  P  5   0.0996  0.0996  0.0996  0.0996 

  P  6   0.1004  0.1004  0.1004  0.1004 

  P  7   0.1004  0.1004  0.1004  0.1004 

  P  8   0.1004  0.1004  0.1004  0.1004 

  P  9   0.1004  0.1004  0.1004  0.1004 

  P 10   0.1004  0.1004  0.1004  0.1004 

  S  1   0.4873  0.4873  0.5018  0.5018 

  S  2   0.5127  0.5127  0.4982  0.4982 

  T  1   0.0353  0.0353  1.0000  1.0000 

  T  2   0.9647  0.9647  0.0000  0.0000 

  R  1   0.0038  0.0038  0.0357  0.0357 

  R  2   0.0037  0.0037  0.0176  0.0176 

  R  3   0.3349  0.3349  0.0000  0.0000 

  R  4   0.0038  0.0038  0.3697  0.3697 

  R  5   0.6538  0.6538  0.5769  0.5769 

 

E = 0.4781, lambda = 0.1209 

 

 

 

B.2. LEM output for the control  group 

using the Markovian model

 

 

*** STATISTICS *** 

 

  Number of iterations = 151 

  Converge criterion   = 0.0000009321 

  Seed random values   = 4377 

 

  X-squared            = 546.1794 (0.0000) 

  L-squared            = 547.5519 (0.0000) 

  Cressie-Read         = 533.7574 (0.0000) 

  Dissimilarity index  = 0.2853 

  Degrees of freedom   = 78 

  Log-likelihood       = -4113.79533 

  Number of parameters = 18 (+4) 

  Sample size          = 1130.0 

  BIC(L-squared)       = -0.7860 

  AIC(L-squared)       = 391.5519 

  BIC(log-likelihood)  = 8354.1302 

  AIC(log-likelihood)  = 8263.5907 

 

  Eigenvalues information matrix 

     788.1846   149.6064    53.5485    33.0836     0.7239     0.5295 

       0.1970     0.1075     0.0497     0.0337     0.0000     0.0000 

      -0.0000    -0.0000 

 

WARNING: 5 (nearly) boundary or non-identified (log-linear) 

parameters 

 

 

 

*** FREQUENCIES *** 

 

  P S T R     observed  estimated  std. res. 

  1 1 1 1      12.050      8.400      1.259 

  1 1 1 2       8.050      4.026      2.005 

  1 1 1 3       0.050      0.068     -0.070 

  1 1 1 4       8.050     27.981     -3.768 

  1 1 1 5      71.050     58.732      1.607 

  1 1 2 1       0.050      0.055     -0.020 

  1 1 2 2       0.050      0.052     -0.009 

  1 1 2 3       1.050      4.705     -1.685 

  1 1 2 4       0.050      0.070     -0.076 

  1 1 2 5      12.050      8.310      1.297 

  1 2 1 1      22.050      8.424      4.695 

  1 2 1 2      14.050      4.038      4.983 

  1 2 1 3       0.050      0.039      0.055 

  1 2 1 4      14.050     28.060     -2.645 

  1 2 1 5      49.050     58.847     -1.277 

  1 2 2 1       0.050      0.046      0.020 

  1 2 2 2       0.050      0.048      0.010 

  1 2 2 3       2.050      4.745     -1.237 

  1 2 2 4       0.050      0.039      0.058 

  1 2 2 5      11.050      8.314      0.949 

  2 1 1 1      16.050      8.400      2.639 

  2 1 1 2       5.050      4.026      0.510 

  2 1 1 3       0.050      0.068     -0.070 

  2 1 1 4       2.050     27.981     -4.902 

  2 1 1 5      76.050     58.732      2.260 

  2 1 2 1       0.050      0.055     -0.020 

  2 1 2 2       0.050      0.052     -0.009 

  2 1 2 3       3.050      4.705     -0.763 

  2 1 2 4       0.050      0.070     -0.076 

  2 1 2 5      10.050      8.310      0.604 

  2 2 1 1       2.050      8.424     -2.196 

  2 2 1 2       1.050      4.038     -1.487 

  2 2 1 3       0.050      0.039      0.055 

  2 2 1 4      80.050     28.060      9.815 

  2 2 1 5      16.050     58.847     -5.579 

  2 2 2 1       0.050      0.046      0.020 

  2 2 2 2       0.050      0.048      0.010 

  2 2 2 3       1.050      4.745     -1.696 

  2 2 2 4       0.050      0.039      0.058 

  2 2 2 5      12.050      8.314      1.296 

  3 1 1 1       2.050      8.438     -2.199 

  3 1 1 2       4.050      4.044      0.003 

  3 1 1 3       0.050      0.069     -0.071 

  3 1 1 4      16.050     28.106     -2.274 

  3 1 1 5      77.050     58.993      2.351 

  3 1 2 1       0.050      0.055     -0.021 

  3 1 2 2       0.050      0.052     -0.010 

  3 1 2 3       0.050      4.726     -2.151 

  3 1 2 4       0.050      0.070     -0.077 

  3 1 2 5      13.050      8.347      1.628 

  3 2 1 1       4.050      8.461     -1.517 

  3 2 1 2       0.050      4.055     -1.989 

  3 2 1 3       0.050      0.039      0.054 

  3 2 1 4      13.050     28.185     -2.851 

  3 2 1 5      83.050     59.109      3.114 

  3 2 2 1       0.050      0.046      0.019 

  3 2 2 2       0.050      0.048      0.009 

  3 2 2 3       9.050      4.766      1.962 

  3 2 2 4       0.050      0.039      0.057 

  3 2 2 5       4.050      8.351     -1.488 



  4 1 1 1       4.050      8.475     -1.520 

  4 1 1 2       1.050      4.062     -1.495 

  4 1 1 3       0.050      0.069     -0.072 

  4 1 1 4       9.050     28.230     -3.610 

  4 1 1 5      86.050     59.255      3.481 

  4 1 2 1       0.050      0.055     -0.022 

  4 1 2 2       0.050      0.052     -0.011 

  4 1 2 3       8.050      4.747      1.516 

  4 1 2 4       0.050      0.071     -0.078 

  4 1 2 5       5.050      8.384     -1.151 

  4 2 1 1      19.050      8.499      3.619 

  4 2 1 2       5.050      4.073      0.484 

  4 2 1 3       0.050      0.040      0.053 

  4 2 1 4       6.050     28.310     -4.184 

  4 2 1 5      70.050     59.370      1.386 

  4 2 2 1       0.050      0.046      0.018 

  4 2 2 2       0.050      0.048      0.008 

  4 2 2 3      12.050      4.787      3.319 

  4 2 2 4       0.050      0.039      0.056 

  4 2 2 5       1.050      8.388     -2.534 

  5 1 1 1       3.050      8.475     -1.864 

  5 1 1 2       2.050      4.062     -0.998 

  5 1 1 3       0.050      0.069     -0.072 

  5 1 1 4      64.050     28.230      6.742 

  5 1 1 5      31.050     59.255     -3.664 

  5 1 2 1       0.050      0.055     -0.022 

  5 1 2 2       0.050      0.052     -0.011 

  5 1 2 3       5.050      4.747      0.139 

  5 1 2 4       0.050      0.071     -0.078 

  5 1 2 5       8.050      8.384     -0.115 

  5 2 1 1       0.050      8.499     -2.898 

  5 2 1 2       0.050      4.073     -1.993 

  5 2 1 3       0.050      0.040      0.053 

  5 2 1 4      69.050     28.310      7.657 

  5 2 1 5      31.050     59.370     -3.675 

  5 2 2 1       0.050      0.046      0.018 

  5 2 2 2       0.050      0.048      0.008 

  5 2 2 3       6.050      4.787      0.577 

  5 2 2 4       0.050      0.039      0.056 

  5 2 2 5       7.050      8.388     -0.462 

 

 

 

*** PSEUDO R-SQUARED MEASURES *** 

 

* P(X|ST) * 

                         baseline   fitted   R-squared 

  entropy                 0.3631    0.0128    0.9648 

  qualitative variance    0.1041    0.0018    0.9825 

  classification error    0.1181    0.0018    0.9845 

  -2/N*log-likelihood     0.7262    0.0256    0.9648/0.4120 

  likelihood^(-2/N)       2.0672    1.0259    0.5037/0.9757 

 

* P(Y|X) * 

                         baseline   fitted   R-squared 

  entropy                 0.6848    0.6847    0.0000 

  qualitative variance    0.2458    0.2458    0.0000 

  classification error    0.4353    0.4353    0.0000 

  -2/N*log-likelihood     1.3695    1.3695    0.0000/0.0000 

  likelihood^(-2/N)       3.9335    3.9333    0.0000/0.0001 

 

* P(R|X) * 

                         baseline   fitted   R-squared 

  entropy                 1.1037    0.9726    0.1188 

  qualitative variance    0.2866    0.2753    0.0394 

  classification error    0.4035    0.4035   -0.0000 

  -2/N*log-likelihood     2.2075    1.9452    0.1188/0.2078 

  likelihood^(-2/N)       9.0929    6.9952    0.2307/0.2592 

 

* P(P) * 

                         baseline   fitted   R-squared 

  entropy                 1.6094    1.6094   -0.0000 

  qualitative variance    0.4000    0.4000    0.0000 

  classification error    0.7991    0.7991   -0.0000 

  -2/N*log-likelihood     3.2189    3.2189   -0.0000/-0.0000 

  likelihood^(-2/N)      24.9996   24.9996   -0.0000/-0.0000 

 

 

 

*** LOG-LINEAR PARAMETERS *** 

 

* TABLE XST [or P(X|ST)] * 

 

  effect           beta  std err  z-value   exp(beta)     Wald  df  prob 

  X  

   1             0.0000                        1.0000  

   2             6.2564   1.8649    3.355    521.3239    11.26   1 0.001 

  XS  

   1 1           0.0000                        1.0000  

   1 2           0.0000                        1.0000  

   2 1           0.0000                        1.0000  

   2 2           0.5593   2.7269    0.205      1.7494     0.04   1 0.837 

  XT  

   1 1           0.0000                        1.0000  

   1 2           0.0000                        1.0000  

   2 1           0.0000                        1.0000  

   2 2         -11.0134   ******    *****  1.65E-0005     0.00   1 1.000 

  XST  

   1 1 1         0.0000                        1.0000  

   1 1 2         0.0000                        1.0000  

   1 2 1         0.0000                        1.0000  

   1 2 2         0.0000                        1.0000  

   2 1 1         0.0000                        1.0000  

   2 1 2         0.0000                        1.0000  

   2 2 1         0.0000                        1.0000  

   2 2 2       -17.1966   ******    *****  3.40E-0008     0.00   1 1.000 

 

* TABLE XY [or P(Y|X)] * 

 

  effect           beta  std err  z-value   exp(beta)     Wald  df  prob 

  Y  

   1             0.0000                        1.0000  

   2            -0.2971   ******    *****      0.7429     0.00   1 1.000 

  XY  

   1 1           0.0000                        1.0000  

   1 2           0.0000                        1.0000  

   2 1           0.0000                        1.0000  

   2 2           0.0420   ******    *****      1.0429     0.00   1 1.000 

 

* TABLE XR [or P(R|X)] * 

 

  effect           beta  std err  z-value   exp(beta)     Wald  df  prob 

  R  

   1             0.0000                        1.0000  

   2             0.0464   2.1367    0.022      1.0475  

   3             4.6443   1.5588    2.979    103.9923  

   4            -0.1663   2.3454   -0.071      0.8468  

   5             5.2051   1.5536    3.350    182.2043    39.25   4 0.000 

  XR  

   1 1           0.0000                        1.0000  



   1 2           0.0000                        1.0000  

   1 3          -0.0000                        1.0000  

   1 4           0.0000                        1.0000  

   1 5           0.0000                        1.0000  

   2 1          -0.0000                        1.0000  

   2 2          -0.7819   2.1464   -0.364      0.4575  

   2 3         -85.9915   ******    *****  4.51E-0038  

   2 4           1.3696   2.3495    0.583      3.9340  

   2 5          -3.2624   1.5585   -2.093      0.0383    13.41   4 0.009 

 

 

 

*** (CONDITIONAL) PROBABILITIES *** 

 

* P(X|ST) * 

 

  1 | 1 1        0.0019  (0.0036) 

  1 | 1 2        0.9915  (0.0157) 

  1 | 2 1        0.0011  (0.0022) 

  1 | 2 2        1.0000  (0.0000) 

  2 | 1 1        0.9981  (0.0036) 

  2 | 1 2        0.0085  (0.0157) 

  2 | 2 1        0.9989  (0.0022) 

  2 | 2 2        0.0000  (0.0000) 

 

* P(Y|X) * 

 

  1 | 1          0.5737  (0.0000) 

  2 | 1          0.4263  (0.0000) 

  1 | 2          0.5634  (0.0000) 

  2 | 2          0.4366  (0.0000) 

 

* P(R|X) * 

 

  1 | 1          0.0035  (0.0054) 

  2 | 1          0.0036  (0.0054) 

  3 | 1          0.3597  (0.0422) 

  4 | 1          0.0029  (0.0052) 

  5 | 1          0.6303  (0.0422) 

  1 | 2          0.0848  (0.0088) 

  2 | 2          0.0407  (0.0063) 

  3 | 2          0.0000  (0.0000) * 

  4 | 2          0.2826  (0.0143) 

  5 | 2          0.5919  (0.0156) 

 

* P(P) * 

 

  1              0.1991 

  2              0.1991 

  3              0.2000 

  4              0.2009 

  5              0.2009 

 

 

 

*** LATENT CLASS OUTPUT *** 

 

          X  1    X  1    X  2    X  2 

          Y  1    Y  2    Y  1    Y  2 

         0.0678  0.0503  0.4969  0.3850 

  P  1   0.1991  0.1991  0.1991  0.1991 

  P  2   0.1991  0.1991  0.1991  0.1991 

  P  3   0.2000  0.2000  0.2000  0.2000 

  P  4   0.2009  0.2009  0.2009  0.2009 

  P  5   0.2009  0.2009  0.2009  0.2009 

  S  1   0.4994  0.4994  0.4996  0.4996 

  S  2   0.5006  0.5006  0.5004  0.5004 

  T  1   0.0112  0.0112  0.9994  0.9994 

  T  2   0.9888  0.9888  0.0006  0.0006 

  R  1   0.0035  0.0035  0.0848  0.0848 

  R  2   0.0036  0.0036  0.0407  0.0407 

  R  3   0.3597  0.3597  0.0000  0.0000 

  R  4   0.0029  0.0029  0.2826  0.2826 

  R  5   0.6303  0.6303  0.5919  0.5919 

 

E = 0.4361, lambda = 0.1331 



C. Appendix 

 

Fragment of the code for the visualization tool developed using the BCT toolbox [32]. 

 
sizeImage=2500; 
standardSize=500; 
numElectrodes=14; 
  

  
for j=1:1%7 
    for i=1:1%3 
    Graph(i,j).W=PhaseLockingValue1(i,j).NBT_theta.PLV; 
  

  
for x=1:14 
     for y=1:14 
         if x==y 
             Graph(i,j).W(x,y)=0; 
         else if x>y 
             Graph(i,j).W(x,y)=Graph(i,j).W(y,x); 
             end 
         end 
     end 
 end 
  
 Graph(i,j).threshold=0.15 
 Graph(i,j).CIJ_RAND=Graph(i,j).W; 
 Graph(i,j).WIJ=threshold_absolute(Graph(i,j).CIJ_RAND,Graph(i).threshold); 
 Graph(i,j).BIJ=weight_conversion(Graph(i,j).WIJ,'binarize'); 
    [Graph(i,j).lambda,Graph(i,j).efficiency,Graph(i,j).ecc,Graph(i,j).radius,Graph(i,j).diameter] = 

charpath(Graph(i,j).BIJ); 
  
   Graph(i,j).ClusteringCoef = clustering_coef_bu(Graph(i,j).BIJ); 
   Graph(i,j).LocalEfficiency=efficiency_bin(Graph(i,j).BIJ,1); 
   Graph(i,j).GlobalEfficiency=efficiency_bin(Graph(i,j).BIJ,0); 
  
  Graph(i,j).ClusteringGlobal=sum(Graph(i,j).ClusteringCoef(1:14))/14; 
  
figure  
  
Coord1(1:14,1)=[3;1;4;2;0;2;4;6;8;10;8;6;9;7]*100+175;%+50;%+100.5; 
Coord1(1:14,2)=(sizeImage/2.5)-[0;1;1;2;3;5;6;6;5;3;2;1;1;0]*150;%-50;%+150.5; 
Electrodes=[1;2;3;4;5;6;7;8;9;10;11;12;13;14]; 
Electrodes=['AF3';'F7 ';'F3 ';'FC5';'T7 ';'P7 ';'O1 ';'O2 ';'P8 ';'T8 ';'FC6';'F4 ';'F8 ';'AF4']; 
Electrodes=cellstr(Electrodes); 
  
rectangle('Position',[0,0,1500,1200],'Curvature',[0,0],... 
          'FaceColor','w') 
daspect([1,1,1]) 
  
for k=1:numElectrodes 



 if (Graph(1,i).LocalEfficiency(k)==1) 
         colores='r'; 
     elseif (Graph(1,i).LocalEfficiency(k)>0.95) 
         colores=[1 .5 0]; 
     elseif  (Graph(1,i).LocalEfficiency(k)>0.9) 
         colores='y'; 
     elseif (Graph(1,i).LocalEfficiency(k)>0.85) 
         colores='g'; 
     elseif (Graph(1,i).LocalEfficiency(k)>0.8) 
         colores='b'; 
     else 
         colores='black'; 
 end 
  
 rectangle('Position',[Coord1(k,1),Coord1(k,2),standardSize*0.3,standardSize*0.3],'Curvature',[1,1],... 
          'FaceColor',colores)%'g') 
  
daspect([1,1,1]) 
if (k<8) 
    text(Coord1(k,1)-50,Coord1(k,2)-25,strcat(' 

',num2str(Graph(i,j).ClusteringCoef(k))),'FontWeight','bold','FontSize',11) 
    text(Coord1(k,1)-100,Coord1(k,2)+50,Electrodes(k),'Color','b','FontWeight','bold','FontSize',11) 
else 
    text(Coord1(k,1)+50,Coord1(k,2)-25,strcat(' 
',num2str(Graph(i,j).ClusteringCoef(k))),'FontWeight','bold','FontSize',11) 
    text(Coord1(k,1)+200,Coord1(k,2)+50,Electrodes(k),'Color','r','FontWeight','bold','FontSize',11) 
end 
end 
axis off 
hold on 
  
title('Brain Connectivity using Clustering Coefficients'); 
hold on; 
  
[X,Y]=adjacency_plot_und(Graph(i,j).BIJ,Coord1+50); 
  
plot(X,Y); 
 hold off 
 labelgraph=legend([stages{i} ' ' subjects{j}]);%[type(subject)]); 
 text(15,1150,strcat('CharPath=',num2str(Graph(i,j).lambda)),'FontSize',11); 
 
 

text(1010,25,strcat('ClustCoeff=',num2str(sum(Graph(i,j).ClusteringCoef(1:14))/14)),'Color','b','FontWeight','bold','F

ontSize',12); 
    end 
end 
 

 


