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ABSTRACT

Asymptotic properties of two-group supervised classification rules designed for problems with

much more variables than observations are discussed. Two types of asymptotic bounds on expected

error rates are considered: (i) bounds that assume consistent mean estimators and focus on the impact

of the covariance matrix estimation. (ii) bounds that consider the errors in mean and covariance

estimation. Known results for independence-based classification rules are generalized to correlation-

adjusted linear rules.

1. Introduction

The classical theory of Linear Discriminant Analysis assumes the existence of a non-singular

empirical covariance matrix. However, nowadays many applications work with data bases where the

number of variables (p) is larger than the number of observations (n). Although there are classification

rules specifically designed to tackle these problems (e.g. Tibshirani, Hastie, Narismhan, and Chu

(2003), Fan and Fan (2008), Duarte Silva (forthcoming)), their theoretical properties are often not

well known. In this paper, assuming that both n and p go to infinity at appropriate rates, asymptotic

bounds on expected error rates for some linear classifiers will be reviewed and extended.

In one of the first attempts to study theoretical properties of classification rules in the large p,

smaller n setting, Bickel and Levina (2004) proposed an asymptotic framework that allows the number

of variables to grow faster than the number of observations. Under the assumption that the vector of

mean differences can be estimated consistently as the number of variables grows without limit, these

authors have shown that the expected error of the Naive rule that ignores all sample correlations can

approach a constant close to the expected error of the optimal Bayes rule. These results were extended

by Duarte Silva (forthcoming) for the case of classification rules based on well-conditioned covariance

matrix estimators derived from factor models. In this paper, a framework will be proposed that allows

the identification of general conditions in which results of this type can be generalized, and tighter

asymptotic bounds can be derived.

The analysis discussed in the previous paragraph focus on the impact of estimating covariances

by estimators belonging to some restricted class of well-conditioned matrices, while conveniently as-

suming that the estimation error in the vector of mean differences is vanishingly small. However, this

property does not hold for the vector of sample mean differences without any form or regularization of

variable selection. Without making the former, somehow restrictive, assumption, Fan and Fan (2008)

derived new asymptotic bounds for the error rate of linear classification rules employing diagonal

covariance matrix estimators. Here, it will be shown how Fan and Fan results can be generalized to

classification rules based on well-conditioned, but not necessarily diagonal, covariance estimators.

The remainder of this paper is organized as follows. Section 2 reviews and generalizes asymptotic

error bounds of the type studied by Bickel and Levina. Section 3 generalizes error bounds similar to

those considered by Fan and Fan. Section 4 concludes the paper.
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2. Asymptotic error bounds of the first kind

Consider the two-group homoscedastic Gaussian model where entities are represented by binary

pairs (X,Y );X ∈ <p;Y ∈ {0, 1} and the distribution of X conditioned on Y is the multivariate

normal Np(µ(Y ),Σ). The classical discriminant problem deals with the development of rules capable

of predicting unknown Y values (class labels) given X observations. When the parameters µ(0), µ(1),Σ

are known, and the a-priori probabilities P (Y = 0), P (Y = 1) are equal, the classification rule that

minimizes the expected misclassification error is the theoretical Bayes rule, given by

(1) Y = δB(X) = 1(∆TΣ−1(X − µ.) > 0),

where ∆ = µ(1) − µ(0) , µ. = 1
2(µ(0) + µ(1)) , and 1(.) is the indicator function.

In this section we will discuss the asymptotic performance of empirical rules that try to approx-

imate δB when n, p→∞, and n/p→ d <∞. In particular, we will be concerned with the conditions

for convergence, and the limit, of the worst case expected misclassification error

(2) WΓ1(δE) = maxθ∈Γ1 [Pθ(δE(X) = 1|Y = 0)] ,

where θ = (µ.,∆,Σ), δE is an empirical rule given by

(3) Y = δE(X) = 1(∆̂T Σ̂−1(X − µ̂.) > 0,

and Γ1 is some parameter space statisfying

Γ1(c, k1, k2) =


θ :

∆TΣ−1∆ ≥ c2

k1 ≤ λmin(Σ) ≤ λmax(Σ) ≤ k2

∆ ∈ B


with λmin(Σ) and λmax(Σ) being the smallest and largest eigenvalues of Σ, and B a compact subset

of l2(N), the set of real number sequences with convergent square sums.

The condition ∆TΣ−1∆ ≥ c2 establishes the minimum degree of group separation on Γ1. It is

well known that for fixed θ, the expected error rate of the optimal Bayes rule equals 1−Φ(1
2

√
∆TΣ−1∆)

with Φ(.) being the cumulative probability of a standardized Gaussian random variable. Therefore,

this condition implies that for all θ ∈ Γ1, the optimal misclassification rate is bounded from above

by 1− Φ(c/2), which then becomes a useful benchmark against which the asymptotic rate of δE can

be assessed. Condition k1 ≤ λmin(Σ) ≤ λmax(Σ) ≤ k2 ensures that Σ is always non-singular and

well-conditioned. Condition ∆ ∈ B is a technical requirement necessary to allow the possibility of

estimating ∆ consistently. Known results in the theory of countable Gaussian sequences (see Johnstone

(2002) and Lemma 1 in Bickel and Levina (2004)) show that an estimator such that Eθ||∆̂ −∆||2 =

op(1) exists if and only if ∆ is restricted to lie on a compact subset of l2(N).

Furthermore, let

Υ1(k0) =


ΣR :

ΣR is a square symmetric matrix

λmin(ΣR) ≥ k0 > 0

. . .


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be a class of restricted covariance matrices that, by construction, are forced to be non-singular. The

non-singularity of the covariance estimator used in (3) is central for all the results presented in this

paper. We note that for p ≥ n this restriction is not satisfied for the unbiased sample covariance,

S = 1
n−2

[∑
Yi=0 (Xi − X̄0)(Xi − X̄0)T +

∑
Yi=1 (Xi − X̄1)(Xi − X̄1)T

]
, that being one of the main

reasons why traditional linear discriminant analysis breaks down in large p, smaller n, classification

problems.

The main result of this section is presented in Theorem 1, below

Theorem 1

Assume thatP (Y = 0) = P (Y = 1) =
1

2
, and (θ1,ΣR1, δE1), (θ2,ΣR2, δE2), . . . , (θp,ΣRp, δEp), . . .

is a sequence of true parameters, restricted covariance matrices, and empirical classification rules,

indexed by dimensionality, satisfying

(i) ∃p0 ∈ N : p > p0 ⇒ θp ∈ Γ1 ; ΣRp ∈ Υ1

(ii) maxj,l

∣∣∣Σ̂−1
p (j, l)− Σ−1

Rp(j, l)
∣∣∣ P→ 0 uniformly over Γ1 when p→∞

(iii) Eθ||∆̂−∆||2 = op(1)

(iv) log(p) = o(n)

Then

limp→∞ sup WΓ1(δEp) ≤ 1− Φ

( √
K0Υ1

1 +K0Υ1

c

)
where

K0Υ1 = limp→∞ maxΥ1

λmax(Σ0Rp)

λmin(Σ0Rp)
; Σ0Rp = Σ

− 1
2

Rp Σp

(
Σ
− 1

2
Rp

)T

Theorem 1 generalizes the asymptotic error bounds derived in Bickel and Levina (2004) and

Duarte Silva (forthcoming), respectively for the Naive, and correlation factor model, classification

rules. The proof follows from a direct adaptation of Duarte Silva (forthcoming, 2011) proof of the

equivalent result for factor model classification rules. When Υ1 is the class of diagonal positive-definite

matrices, K0Υ1 becomes a majorant on ratios of correlation eigenvalues, and Theorem 1 replicates

the classical result originally proved by Bickel and Levina. Likewise, when Υ1 is a class of covariance

matrices derived from q-factor models with strictly positive specific variances, K0Υ1 becomes a constant

that measures the distance between the true data generating process and the postulated model that,

as shown by Duarte Silva (forthcoming), for some data conditions can lead to much lower asymptotic

error bounds. In theorem 1 above, even more general classes of well-conditioned covariance matrices

are allowed.

3. Asymptotic error bounds of the second kind

The results presented in the previous section rely on the assumption that rule (3) employs an ∆

estimator, ∆̂, such that

(4) Eθ||∆̂−∆||2 = op(1).
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While such estimators are known to exist whenever ∆ ∈ l2(N) , property (4) requires some form

of regularization and is not satisfied for the simple vector of sample mean differences, X̄1 − X̄0 =
1
n1

∑
Yi=1Xi − 1

n0

∑
Yi=0Xi when n = O(p), because of error accumulation in the components of

X̄1 − X̄0 (see Johnstone 2002). The most common form of regularization is simple truncation, which

leads to the estimators

∆̂ = [∆̂(1), ∆̂(2), · · · , ∆̂(j), · · · ] ; ∆̂(j) =

{
X̄1(j)− X̄0(j), j ≤ m
0, j > m

for somem < p.

This is equivalent of performing a preliminary step of variable selection, keeping only the m variables

considered to be the most important. In his approach, the relative importance of the different variables

is almost always assessed by their standardized difference of univariate differences in sample group

means. However the choice the choice of m does not have one unique established solution. One

possibility is to minimize an estimate of an upper bound on the expected error rate of δE . Fan and

Fan (2008) followed this route for the case on the Naive classification rule, and derived the following

asymptotic bound.

(5) limp→∞ sup WΓ2(δEp) ≤ 1− Φ


√

n0 n1
p n ∆TD−1∆ +

√
p

nn0 n1
(n1 − n0)

2
√
λmax(R)(1 + n0 n1

p n )∆TD−1∆


where n0, n1 are the number of training observations in each group, D = diag(Σ), andR = D−1/2ΣD−1/2

is the true correlation matrix.

The bound (5) holds when the following conditions are satisfied

θ ∈ Γ2(b0) =


θ :

∆TD−1∆ ≥ Cp
λmax(R) ≤ b0
minj σ

2
j > 0

 log(p) = o(n)

where σ2
j is the variance of the jth variable and Cp is a sequence of constants satisfying nCp → ∞

when n, p→∞.

Here, we will be interested in deriving and minimizing similar bounds for classification rules based

on well-conditioned, but not necessarily diagonal, covariance estimators. In particular, a careful

inspection of Fan and Fan proof reveals it can be readily adapted to show that for rules of the form

(3), with Σ̂R ∈ Υ2(k0) such that

Υ2(k0) =



ΣR :

ΣR is a square symmetric matrix

λmin(ΣR) ≥ k0 > 0

||ΣR − Σ̂R|| → 0 ||Σ−1
R − Σ̂−1

R || → 0 when n, p→∞
. . .


it follows that when such a covariance estimator is used and
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θ ∈ Γ3(k1, k2, b0) =


θ :

∆TΣ−1
R ∆ ≥ Cp

λmax(Σ0R) ≤ b0
k1 ≤ λmin(ΣR) ≤ λmax(ΣR) ≤ k2

 with Σ0R = Σ
− 1

2
R Σ Σ

− 1
2

R

and nCp →∞ ; log(p) = o(n)

Then

(6) limp→∞ sup WΓ3(δEp) ≤ 1− Φ


√

n0 n1
γ n ∆TΣ−1

R ∆ +
√

γ
nn0 n1

(n1 − n0)

2
√
λmax(Σ0R)(1 + n0 n1

γ n )∆TΣ−1
R ∆


where γ = trΣ0R

4. Conclusions and perspectives

We have generalized known large p asymptotic bounds on expected error rates of diagonal two-group

classification rules, to rules that take correlation information into account. Two types of bounds were

considered, the first kind concentrates of the lost of accuracy that is uniquely attributed by restricting

the class of covariance estimators, while the second also considers the error in mean estimation and

may be useful to find an appropriate number of predictors. In future research we intend to evaluate

numerically the proposed bounds for typical problems of high-dimensional supervised classification,

and compare them with estimates of the true error rates.
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