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  Abstract

Abstract

With the incorporation of wireless modules into mobile equipment, new 

opportunities for sensing people and offer them innovative services arise. In 

this  thesis  we  present  a  prototype  system that  uses  Bluetooth  to  perform 

proximity sensing and context-aware content dissemination.  After analysing 

the  sensed  data,  our  system disseminates  content  by  means  of  a  Service 

Specification Language (SSL) which can describe a set of rich context-aware 

services. Our results show the usefulness of our system, as we demonstrate 

that it  is  a low-cost  and flexible alternative to more expensive methods of 

proximity sensing and content dissemination.
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 1 Introduction

1 Introduction

With  the  advance  of  wireless  technologies  and  the  maturation  of 

ubiquitous  and  context-aware  computing,  researchers  are  becoming  more 

interested on the way these fields influence our daily lives. Although we are 

witnessing the widespread deployment of wireless technologies, still  the full 

exploitation of this  reality  requires for  the design and development of new 

infrastructures that exploit these technologies in favour of users.

One of the potential areas on which wireless technologies are useful is 

in the process of presence determination. Some of these technologies, such as 

Bluetooth, are termed ideal for this purpose, as they require no permission by 

users to establish low-level connections between equipment, therefore making 

the determination of people presence a non-intrusive process.

Effectively,  with  the  addition  of  wireless  components  into  mobile 

equipment, people carry with them components which can be sensed. As we 

lengthen the areas on which we deploy sensor nodes, we create the notion of 

a  omnipresent  sensing  infrastructure  capable  of  determining  people's 

presence, using this information for, among many other possibilities, providing 

users with a set of innovative context-aware services.

In this work we discuss a prototype system used for proximity sensing 

and context-aware content dissemination. The system is composed by several 

distributed  components,  on which  the mobile  ones  are  termed as stations. 

These may be installed at various locations, and are constituted mainly by two 

components: a device scanner and a content dissemination infrastructure. The 

system works by continuously scanning for nearby Bluetooth enabled devices, 

consequently  using  this  information  to  feed  the  content  dissemination 

infrastructure. The determination of whether content is to be disseminated is 

done through the analysis of a service queue. Also, the system makes use of 

Service  Specification Language  (SSL)  to  create  logical  representations  (e.g. 

services) with distinct types of content and restrictions associated with them. 

Services will  therefore hold the information necessary for the dissemination 

system  to  determine  to  which  destinations,  and  under  what  conditions,  is 

content to be delivered to.

1



 1  Introduction

The structure in which we present our work is as follows. In Section 2 

we discuss  the  factors  which  motivated  our  work,  and  exemplify  potential 

benefits of the system. Section 3 presents the opinions collected from public 

transportation  users,  and  the  results  and  analysis  which  influenced  some 

design aspects  of  our  system.  Section 4 shows the  fields  which  are  inter 

related with our work, as we first present a more broad perspective of related 

work,  before  moving  into  a  more  in-depth  description  of  specific  areas. 

Section 5 is where we describe our system. We use a top-down approach in 

this section, starting by a more abstract description, before moving into more 

detailed component definition. In Section 6 we have the results and analysis 

of  our  pilots,  and  also  present  test  subjects  opinions  of  a  sample  service. 

Finally, in  Section 7 we present our conclusions and discuss possible future 

directions of our work.
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2 Motivation

In this section we present the main factors of motivation that led to the 

development of our work. We start by discussing the importance of proximity 

sensing,  before  moving to content  dissemination.  We thereafter  present an 

overview of  our system,  and finalize the section with the demonstration of 

potential system benefits.

2.1 Proximity Sensing

Depending on the nature of  the information,  some types of  data are 

inherently  difficult  to  be  automatically  determined.  An  example  is  seen  in 

public transit companies, that to this day still rely on manual observation and 

incomplete data derivation for the determination of passengers' entry and exit 

points. These methods, used to determine important transportation analysis 

structures,  lead  to  poor  results,  as  both  freshness  and  quality  of  data  are 

undermined [Kostakos 08].

With the advent of technologies such as the Global Positioning System 

(GPS),  the  determination  of  positioning  information  has  been  facilitated. 

Nowadays, many vehicles, and even mobile equipment, have an incorporated 

GPS module that provides reliable localization determination. Still, long range 

satellite  and  terrestrial  positioning  systems  are  not  suitable  for  all 

environments. Technologies such as GPS, Loran, and Omega are inadequate 

for both indoor and pin-point positioning, and therefore the diversity of fields 

on which they may be used is limited [TC 03].

Furthermore, there are times that the localization information that we 

wish to capture is in relation to another object. In this type of situation, we are 

not interested in the global position, but only in the relative one. This type of 

sensing that determines if two objects are close to each other is referred to as 

proximity sensing, and technologies such as infra reds or radio-frequency may 

be used to accomplish it. 

As  radio-frequency  based  wireless  technologies  continue  to  spread 

throughout mobile equipment, new fields of opportunity for proximity sensing 
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arise. Bluetooth, for example, is seen as a good low-cost and reliable choice to 

determine  if  two objects  are  in  the vicinity  of  each  other.  The widespread 

adoption  of  the  technology  has  potentiate  the  sensing  of  Bluetooth 

discoverable equipment. If we deploy scanners throughout a target area, the 

inquiry mechanism of the technology allows us to determine the existence of 

nearby  Bluetooth  enabled  devices.  Furthermore,  additional  positioning 

determination  is  possible,  as  the  technology  allows  for  approximation  of 

relative distance by means of signal strength measurement. All of this is done 

non-intrusively, as these operations dispense human intervention.

The array of opportunities that advent from the determination of relative 

localization  of  mobile  equipment  using  such  a  low-cost  technology  are 

manifold,  as it  can be used for simulation purposes,  environment affluence 

classification, passenger counting, and context-aware content dissemination.

2.2 Content Dissemination

Usually, content dissemination happens in a non-personalized manner. 

For  example,  the  information  that  is  passed  to  people  by  means  of  an 

electronic board is not personalized. These dissemination components, present 

in many types of settings, broadcast information in a very restricted manner. 

Not only the content that is disseminated is limited, but also the way content 

is presented is restricted by the hardware limitations. This fact is not related 

solely  to  electronic  boards,  as  many  other  dissemination  systems  lack 

flexibility. The PORTAL system [BCG 05], a city-wide network which provides 

public  transit  bus  information  access,  is  another  example  of  a  content 

dissemination system which uses specialized components. The system works 

by installing several  dedicated machines throughout the city,  so users may 

query for  public  transit  related  information.  The need to have  a high-cost, 

static  components  installed  at  a  city-wide  levels,  solely  for  presentation 

purposes, challenges the real advantage of such system.

The use of wireless technologies for disseminating content is seen as 

advantageous. People already carry with them mobile equipment that hold the 

capability for presenting various kinds of information. As users are the ones 

that own the components on which content is stored and accessed upon, we 

delegate the presentation and personalization aspects to users, removing the 
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necessity of specialized dissemination components. We exploit the capabilities 

of users' devices, and establish the infrastructure on which a set of innovative 

and personalized services may be created and offered to users.

Given the ideas of  proximity  sensing and content  dissemination,  and 

how they can be used to better serve users, we proceed with an overview of 

our system, and how it relates to these two subjects.

2.3 System Overview

In this work we describe a system that performs proximity sensing for 

enabling context-aware content dissemination. The system, composed by a set 

of elements,  works by installing several  stations in areas of interest.  These 

stations are usually small computers (but not restricted to) and are equipped 

with two Bluetooth dongles. One dongle, the  scanner, is responsible for the 

capture  of  surrounding  Bluetooth  enabled  devices,  as  the  other  has  the 

responsibility  to deliver  content  to  end-users.  A configuration with  multiple 

delivery dongles is also supported by the system, as it is a configuration with 

solely one dongle.

The  scanner  feeds  the  information  to  the  service  scheduler,  the 

component  which  has  the  responsibility  to  determine  if  a  service  is  to  be 

executed.  The  scheduler  holds  a  queue  of  service  objects  and,  by  using 

contextual data received from the scanner, analyses services to determine if 

the constrains on which they were built upon are met. When such happens the 

scheduler will  order for service execution, and consequent dissemination of 

content to the destination.

Service objects are composed by a set of  flags,  which determine the 

restrains and content associated with the object. Flags include date and time 

of execution,  location,  content location, class  of device,  time in range, and 

destination. All the indicated flags upon creation must be in conformity so that 

the scheduler triggers a service for execution.

Stations  are  installed  at  arbitrary  locations,  and  use  a  wireless 

connection to access the Internet. Upon initialization the stations contact the 

broker component, so they register themselves with the system. This is done 

so  we  refer  to  stations  by  name,  removing  the  burden  of  numerical  IP 
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addressing. This is also done because the broker is present as an intermediary 

element on all connections to and from stations.

Also, a central infrastructure exists. Composed by several components, 

it holds a database containing information which is partially replicated locally 

at  the  stations.  The  central  infrastructure  also  provides  for  station 

synchronization and overall remote management.

Given  the  overall  description  of  our  system,  it  is  now  pertinent  to 

discuss the potential gained benefits of deploying it.

2.4 Potential System Benefits

Basically,  our  system has  two  objectives:  1)  sense  nearby  Bluetooth 

enabled devices, and 2) disseminate content according to contextual data. The 

process  of  automatically  sensing  devices  has  uses  in  many  situations. 

Depending on the installation environment,  stations may use the proximity 

sensing information to achieve objectives other than feeding the dissemination 

infrastructure.

For example, Bluetooth technology is useful for counting public transit 

passengers.  With the installation of our system on public transit  buses,  we 

may exploit  passengers'  Bluetooth enabled devices to determine entry and 

exit points, as defined in [Kostakos 08]. Furthermore, the collected data would 

be useful for other related purposes, such as bus travel time estimation [SF

03].

Another  possibility  is  to implement  stations  at  environments  such as 

commercial areas or public transit bus stops. The collected information could 

then be used to perform estimations on the number of people in the area. This 

information  would  also  be  useful  for  area  assignment  according  to  its 

affluence, or for determining how much time people spend in the area.

Furthermore,  the  installation  of  the  system  enables  for  a  rich 

infrastructure  that  enables  the  creation  of  context-aware  services.  Several 

kinds of settings are allowed, as it is possible to construct services which can 

be personalized according to contextual  information, individual  preferences, 

and even equipment details.
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As data is fed by the scanner, the system has the ability to determine if 

action is to be taken. For example, if one device is seen continuously for a long 

time in a commercial area, maybe that person is doubtful on what to buy. The 

system would “sense” this indecision and send a recommendation to the user. 

Another  possible  application  would  be  to  offer  a  service  that  disseminates 

news headlines to users while they wait for a bus to arrive, or are sitting in a 

café.

In sum, the advantages of our system are considerable, as we enable for 

a low-cost and reliable method of proximity sensing and context-aware service 

offering. The settings on which the system may be installed are unlimited, as 

its flexibility frees the system from environmental restrains.

One  of  the  many  areas  of  interest  in  which  our  system  is  seen  as 

potentially  beneficial  is  public  transit.  In  order  to  gain  insight  on  people's 

interests of content dissemination at public transit infrastructures, we devised 

a  questionnaire  and  distributed  it  to  public  transit  users.  The  results  and 

conclusions draw from this questionnaire is what we discuss in the ensuing 

section.
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3 Public Transit Passengers' Opinions

As people daily commute from work and school to their homes, many 

use public transportation. Accounting for the time people both wait for and use 

this kind of transport, passengers can actually spend hours each day at public 

transit  infrastructures.  It  is  this  premise  that  makes  the  deployment  of  a 

heterogeneous  information  dissemination  system  at  these  infrastructures 

interesting.

From the beginning of our work we recognized public transit as an area 

of great interest and potential, on which our system could be helpful. As such, 

and before  we delved into the design and development of  our system,  we 

devised  a  questionnaire  and  distributed  along  public  transit  users.  The 

objective was to understand their habits, the kind of equipment they use, and 

their personal preferences.

In this section we present the questionnaire, its results, and the inferred 

conclusions  obtained  through  our  analysis.  Several  interesting  facts  were 

brought  to  our  attention,  some  of  them  already  corroborated  by  previous 

research.  More importantly,  the questionnaire  helped us validate  important 

aspects of our system.

3.1 Data Summary

We  begin  this  section  by  presenting  the  collected  data.  Starting 

15/10/2008,  data  was  collected  until  21/10/2008.  Questionnaires  were 

distributed at several locations and times, as it is seen in Table 1. Our sample 

size is 105 respondets, 51 are female (48.5%), and 54 are male (51.5%). The 

age distribution of the individuals is depicted in Figure 2, where the 20-30 age 

group is the most common.

The  questionnaire  collected  demographic  data,  public  transit  usage 

habits, mobile equipment usage and Bluetooth related information, services of 

possible interest to users, and the preferred way users would like to access 

content.
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The  majority  of  the  respondents  were  regular  users  of  public 

transportation (59%), as is seen in  Figure 1. Most respondents (73%) reported 

they wait between 5 and 15 minutes for the bus arrive (Figure 3). Therefore, 

we can state, with 95% of certainty, that between 64.5% and 81.5% of public 

transportation passengers must wait 5 to 15 minutes for the bus to arrive.

More than 80% of  respondents  reported that they use their  portable 

communication equipment while waiting for the bus. Thus, we can state that 

between 73.5% and 88.5% of public transportation users occupy some of their 

waiting time by operating their devices. Also, it seems that often respondents 

use their devices for messaging purposes (60%). On the other hand, accessing 

on-line content doesn't seem popular among the respondents (4.8%).

About  73% of  respondents  reported  that  they  have  a  mobile  device 

which supports Bluetooth (Figure 4). Based on this data, we can state (with 

95% of certainty) that 64.8% to 81.8% of public transportation users have a 

Bluetooth capable mobile device.

Nevertheless,  only about 11.5% of  users  stated  that  they have their 

Bluetooth mode enabled (Figure 5). This suggests that 5.3% to 17.5% of public 

transportation  users  have  their  devices'  Bluetooth  enabled.  This  data  is 

coherent with previously obtained percentages [OKKSPFJ 06]. Security (35%) 

and power consumption (27%) are the main reasons for disabling Bluetooth 

discoverable mode, as is seen in Table 3.

Data  about  the  preferred  way  of  accessing  Bluetooth  service  was 

inconclusive, as depicted in Figure 6. Respondents made clear that they don't 

want to be pushed uninteresting information unconditionally (3.8%), but are 

receptive to receive pushed content if it is or their interest (33.6%). They were 

also split  between being pushed content with previous registration (31.7%), 

and retrieving the content for themselves (i.e. pulling content) (30.7%).

Given the presentation of the collected raw data, we now proceed to the 

discussion of the results.
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Day (October 2008)

15 16 17 18 19 20 21 Totals

T

i

m

e

of

D

a

y

10:00 0 4 0 0 0 5 0 9

11:00 3 0 0 0 5 0 0 8

12:00 0 0 0 0 0 1 0 1

13:00 8 0 5 0 0 0 0 13

14:00 0 0 0 6 0 0 0 6

15:00 10 0 4 0 0 0 0 14

16:00 14 7 5 0 0 0 0 26

17:00 1 0 3 4 0 0 6 14

19:00 0 3 6 0 0 0 2 11

20:00 0 0 0 0 0 0 3 3

Totals 36 14 23 10 5 6 11 105

Table 1: Answered questionnaires distribution

Phone Calls Messages Entertainment Internet Other

Replied 43

(41%)

63

(60%)

37

(35%)

5

(4,8%)

0

(0%)

Table 2: Respondents' device usage at bus stops

Security Power Consumption No reason Other

Replied 37

(35%)

28

(27%)

10

(9,5%)

0

(0%)

Table 3: Reasons for disabling Bluetooth

Bus 

Schedules

Buses 

Arrival 

Times

Entertainm

ent

Nearby bus 

stops 

locations

News Other

Replied 68

(64,7%)

75

(71,4%)

37

(35,2%)

35

(33,3%)

32

(30,4%)

2

(0,02%)

Table 4:  Respondents services preferences at bus stops
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Bus 

Schedules

Buses 

Arrival 

Times

Entertainme

nt

Nearby 

bus stops 

locations

News Other

Replied 20

(19%)

61

(58%)

39

(37%)

33

(31%)

45

(43%)

1

(0,009%)

Table 5: Respondents services preferences while traveling

11

Figure 1: Respondents bus usage frequency

Figure 2: Respondents age distribution
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12

Figure 4: Devices' Bluetooth support

Figure 6: Respondents preferred way of service 

access
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Figure 3: Respondents waiting time at bus stops
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3.2 Discussion

In this section we present the discussion of the previous results. We use 

as basis for this discussion the variables associations presented at Appendix 

A2.  By describing associations and stating their major influence factors,  we 

dervied  useful  information  that  aided  us  in  the  design  and  development 

processes of our system. Images and tables reffered along this sections are 

located at Appendix A3.

3.2.1 Location

• A  relationship  between  the  location  where  the  questionnaire  was 

delivered and the choice of a service that indicates nearby bus stops 

exists. Our analysis shows people that answered the questionnaire at 

UMa location are more inclined to want a service that indicates nearby 

bus stops localizations. By looking at Figure 71, we see a standardized 

value of 2.23 and a percentage of nearly 48%, clearly indicating that 

such an association exists. This could be due the fact that more that 

50% of the respondents at UMa said that they wait between 10 to 30 

minutes for the bus the arrive, possibly leaving them more interested in 

catching an alternative bus at a nearby bus stop.

3.2.2 Demographics

• Sex and device usage for messaging purposes are related.  Figure 72 

indicates that women seem more inclined to send/receive messages. 

Almost  73%  of  the  female  respondents  claimed  that  they  use  their 

device for this specific purpose. An hypothesis that explains this is that 

women are more prone to use this kind of service than men.

• An association exists between sex and wanting a service that indicates 

nearby bus stops. Almost 33% of the males stated that a service of this 

kind interests them (Figure 73). Therefore, it seems that men are more 

prone  to  know  nearby  bus  stops  localizations.  This  again  could  be 

related to the time that male respondents wait for the bus. As 50% of 

males wait between 10 and more than 30 minutes, this could lead them 

to look for alternative bus stops.

13
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• Age and device usage at bus stops are related.  Table 8 shows us that 

respondents of 10-20 and 20-30 age groups make constant use of their 

mobile  equipment  while  they  wait  for  the  bus.  More  than  50%  of 

respondents of the 10-20 age group wait between 10 and more than 30 

minutes.  Also,  around  39%  of  respondents  of  20-30  age  group  wait 

between 10 and 30 minutes. An hypothesis that time is an influencing 

factor on device usage can be raised to explain this.

• Additionally, age and the use of mobile equipment to send messages 

are related. By observing Table 9, we verify that standardized residuals 

of -2.88 and 2.35 indicate that respondents that belong to the 10-20 age 

group are more inclined to use their equipment for messaging purposes. 

We  could  state  that  younger  people  tend  to  have  less  disposable 

income,  therefore  using  messaging  as  a  more  economic  way  of 

communication.

• Our analysis showed us that age and wanting to access a news service 

while at the bus stop are related. By looking at Table 10 we observe that 

younger  respondents  are  disinterested  in  a  service  as  this.  On  the 

contrary, older respondents saw this as of interest to them. We could 

argue that, in general, younger users are less interested in certain kind 

of services, such as news.

3.2.3 Bus Usage and Waiting Time

• An association exists between usage frequency of public transportation 

and to disable Bluetooth for no concrete reason. Looking at Table 13 we 

observe  a  standardized  residual  of  3.05,  which  indicates  that 

respondents that use the bus 1 to 5 times a week, are more prone to 

disable their equipment' Bluetooth for no specific reason. Maybe these 

respondents simply disable Bluetooth as they see no purpose in it.

• Our analysis showed that waiting time and device usage are related. 

Our statistical  data show us that people who wait between 5 and 10 

minutes are less prone to use their mobile equipment. Also, there is a 

tendency for device usage as waiting time increases (Table 12). This 

data comes to substantiate previous results which indicated that device 

usage is influenced by waiting time.

14
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• Waiting time is also related to device usage for messaging purposes. 

Our data indicates that people who wait between 5 to 10 minutes are 

less prone to use their device to send/receive messages (Table 11). This 

could be age related, since only 25% of the respondents of the 10-20 

age group wait 5 to 10 minutes for the bus.

3.2.4 Mobile Devices Practices

• Device usage and wanting to access a news service at bus stops are 

related. Concretely,  people who use their equipment to make/receive 

phone calls  are more prone to want a news service (Figure 74). This 

could be related to age, because about 70% of respondents who use 

their equipment to phone have ages raging between 20 and 50+ years.

• Also, device usage is related to wanting a news service while travelling. 

Again, we see that users who use the device for phoning purposes are 

more prone to select  the news service (Figure 75), which indicates a 

age related factor.

• People who use their device for messaging are also interested in using it 

for entertainment purposes.  Figure 76 show us that indeed there is a 

tendency for those who don't use the device for messaging purposes to 

not  use  it  for  entertainment  purposes.  As  seen  previously,  younger 

respondents tend to send more messages (Table 9), therefore we can 

assume  that  these  same  respondents  are  more  prone  to  use  their 

device for entertainment purposes.

• Device usage and disabling Bluetooth for security are related. This is 

seen in  Figure 77, where people who send more messages are more 

prone to disable their devices' Bluetooth discoverable mode for security 

reasons.  Again  recalling  Table  9,  we  can  assume  that  this  could  be 

related to age, as younger people are more security-aware in regard to 

Bluetooth.

• Sending  messages  while  at  the  bus  stop  relates  to  wanting  a  news 

service in the same situation.  Figure 78 data indicates that those who 

use their device for messaging are less interested in a news service at 

the bus stops. Again, and recalling  Table 8 and  Table 9, we can state 
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that this is related to age, where younger users are less interested in 

this kind of service.

• Disabling Bluetooth for power consumption reasons is related to device 

usage. More concretely,  those respondents who used their  device for 

entertainment  purposes  are  more  inclined  to  disable  Bluetooth  for 

power  consumption  reasons  (Figure  79).  We  can  assume  that 

entertainment software tends to make devices' battery consume faster, 

therefore  alerting  users  of  the  implications  of  Bluetooth  on  power 

consumption.

3.2.5 Types of Services

• Wanting to access detailed bus schedules while at bus stops is related 

to wanting to know the arrival time at the destination stop. By looking at 

Figure 80, we observe that people who don't chose to know detailed bus 

schedules also seem less interested in knowing the arrival time at the 

destination stop. Furthermore  Figure 81 shows that people who don't 

want to access detailed bus schedules at bus stops, also don't want to 

access while travelling. We can only assume that these people aren't 

interested at all with time issues.

• Wanting to know nearby bus stop locations is related to wanting the 

same service while travelling (Figure 82).  We could argue that these 

people  are  cautious  and  would  like  to  know  where  they  could 

alternatively take a bus in case they need it.

• Wanting to know bus stops localizations while at bus stops is related to 

wanting  a  news  service  while  travelling.  Figure  83 show us  that  an 

association  between  these  two  variables  exists,  as  people  tend  to 

choose both of these services. An hypothesis is that these are people 

who like to be informed.

• Wanting  a news service while waiting for the bus is related to wanting 

the same service while travelling. Data indicates that those who chose 

one are likely to chose the other (Figure 84). Looking back at Figure 82, 

we could argue that people like to have access to similar services both 

in bus stops and while they travel.
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• Those who want to know detailed bus schedules while travelling also 

seem interested in knowing their  destination arrival  time (Figure 85). 

We could argue that these people are interested in time and schedule 

issues (contrary to what we saw in Figure 80 and Figure 81).

3.3 Implications

Having presented the data and its analysis, we now present the design 

implications that were inferred from the questionnaire.

As verified in  Section 3.1, respondents demonstrated their interest in 

knowing  buses  time  related  information.  Specifically,  71.4%  of  the 

respondents viewed this as an important factor. Also, 64.7% stated that having 

access to detailed bus schedules is a useful feature. Therefore, it seems  that 

such services would be of interest to users.

Additionally, respondents also seemed interested in specific services as 

they travel. The data demonstrates that there is a preference for accessing 

services that help time pass as passengers travel. Such tendency is justified 

by the percentage of respondents who stated their interest in having access to 

news (43%) and entertainment (37%) services. There was also a preference by 

the majority of the respondents (58%) for knowing the time remaining until 

they  reached  their  destination.  It  seems  clear  that  the  system  should  be 

flexible enough to support various kinds of services.

Interesting, and with direct relation to the previous inference, is the fact 

that in Section 3.2.5 we demonstrated that there is an association between 

wanting the same types of services both while waiting for the vehicle as while 

inside it. Such particularity leads us to take special attention in the flexibility of 

our  system,  as  we  believe  that  the  implementation  and  specification  of 

services should be sheltered from contextual factors.

Section  3.1 also demonstrates that respondents aren't interested on 

being  pushed  information  unconditionally,  a  fact  already  confirmed  by 

previous research [AGKO 04,  PHJ 02]. On the other hand, respondents seem 

indecisive  as  to  the  actual  preferred  way  of  information  access.  The  data 

indicates  there  is  a  split  preference  (of  about  30%  each)  between  user 

initiation  (i.e.  a  pull  method),  service  registration  (i.e.  pull  method  with 

previous  registration),  and  simply  not  caring  (as  long  content  is  of 
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interest).This indicates that various methods of content dissemination should 

be supported.

Given the implications  that  the questionnaire  had in our  system,  we 

proceed to the review of the state of the art and related work.
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4 State of The Art & Related Work

Throughout this section we present and review a number of fields that 

relate with our work. The purpose is to review concrete subjects, identify their 

foundations, and specify why they are important to us.

We  begin  with  a  horizontal  review  directed  at  more  encompassing 

areas.  Information  Capture  &  Dissemination,  Intelligent  Transportation 

Systems,  and  Distributed  Systems  are  example  themes  we  present.  The 

purpose is to first contextualize our work at a higher abstraction level, before 

drilling into more specific subjects.

Thereafter, our discussion will be directed at the areas of Bluetooth and 

Context-Aware Computing. Aspects will be reviewed more thoroughly, as our 

work is more closely related to these areas.

4.1 Broad View

By first providing a broad view we hope to better contextualize our work. 

As several fields contribute to our system specification, we fell that multiple 

aspects of dissimilar nature need to be discussed.

4.1.1 Information Capture & Dissemination

The capture or collection of information has always been viewed as of 

extreme importance. Possessing data about a subject is what enables us to 

study and better understand it. Without it, our view of specific subjects would 

be limited and incomplete, as the ability to perceive possible implications, and 

determine the influence of external factors would be diminished. The field of 

statistics is the most well know example of this. Information collection is the 

pillar  that  supports  statistical  analysis  and  inferences.  For  obtaining 

conclusions about a survey, for example, data must be collected and analysed.

Historically, information collection has been done by means of human 

intervention. The most common situation is when specialized individuals are 

responsible for collecting other individuals' information. Optionally, it can be 
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the own individual on which information needs to collected that reports back 

to specialized personnel, as is common in several types of studies. Or, taking 

another example, there may be a manual observation of some phenomenon, 

as there is when manual methods are used for counting passengers that alight 

a bus.

Problems associated with manual methods of information capture and 

collection  are  mainly  associated  to  their  cost,  and  to  some  point  to  their 

limited nature. Hiring individuals to collect information of thousands of persons 

is  an  expensive  process.  First,  it  is  expensive  at  an  operational  level,  as 

individuals are usually hired externally to the company. Secondly, information 

is  easily  outdated,  as  manual  collection  is  done  sporadically  and with  pre-

determined goals in mind, and therefore fails to provide both an up-to-date 

view on the subject on which information was collected, as well as using it on 

other  subjects.  Thirdly,  it  lacks accuracy,  as  the sample size obtained with 

manual data collection tends to be significantly smaller than with automatic 

methods.  Finally,  manual  information  capture  is  limited  in  its  scope,  as  it 

unsuitable for several types of activities, such as localization.

The  term  automatic  information  capture  is  defined  as  the  action  of 

identifying objects and collecting data about them in an automated way [VK

07]. Naturally, and contrary to manual methods, automatic techniques utilize 

computers to accomplish this task. The information is collected and posteriorly 

manipulated using electronic means, therefore dismissing human intervention 

altogether. The objective is to improve the efficiency of data collection as a 

process, which translates to reduced costs, more accurate results and overall 

is seen as beneficial to organizations. Automation of data capture is already 

seen  as  paramount  in  civilized  countries,  as  several  fields  such  as  health 

informatics depend heavily on it [Norris 02]. 

Another common function for which information systems are used is for 

content  dissemination.  Although  some  authors  define  information 

dissemination solely as the act of pushing data to users, in this document we 

define  information  dissemination  as  the  act  of  delivering  content, 

independently of the way this is accomplished. Tan & Ooi [TO 00] share this 

view, as they define information dissemination as a process achieved either by 

the user's request (e.g. pull), or by the source's own initiative (e.g. push). Both 
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these methods have their peculiarities, as each one of them is more suitable 

for delivering content under different contexts.

Reportedly, the push model is more efficient when a large number of 

clients is present, and the pull model is more indicated for a small number of 

clients [TO 00, AFZ 97]. The justification is that the pull model depends heavily 

on the client-server model,  and therefore is, at an architectural  level, more 

prone to efficiency problems due to the fact that it must potentially handle a 

large number of requests simultaneously. The push model is sheltered from 

this  limitation,  as  it  is  independent  of  the  number  of  clients  listening  for 

content.  The  content  is  disseminated  using  broadcasting  protocols  and 

algorithms,   and  therefore  the  efficiency  of  the  process  is  shielded  from 

eventual misses that may occur. Of course this last assumption is made by 

with  the  presupposition  that  we  are  using  technologies  that  support 

broadcasting, which is not always the case. Also, it is not always suitable to 

use unreliable methods for content delivery, as important information such as 

delivery success rates are very difficult to collect.

It is currently known that it is beneficial to conjugate the two described 

models of information dissemination. This is easily understandable, as each 

one works better when certain conditions are met. Therefore, it seems only 

logical  to assume that merging the two of them would be advantageous. A 

generic  architecture  of  this  kind is  present  by Tan & Ooi  [TO 00],  as they 

define it as an integrated dissemination model. Acharya et al. also proposes an 

integrated model  based on the  Broad-Cast Disk approach [AFZ 95].  It  uses 

both push channels and a point-to-point pull channel that they define as a pull-

based backchannel  [AFZ 97]. This pull channel would then be used to send 

requests to the content distribution source.

Our work relates to the notions here presented. The system functions by 

installing stations at target areas, automatically capturing Bluetooth enabled 

devices. Furthermore, the system uses this information to feed the content 

dissemination infrastructure that uses a push-only method to deliver content 

to users.

One of the many areas where our system can be useful is in the field of 

public  transportation.  In  fact,  information  capture  and  dissemination  using 

technological innovations in transports is a field that gathers much interest, 
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and  may  be  seen  as  being  part  of  the  broader  field  of  Intelligent 

Transportation Systems  (ITS). For this reason, we discuss ITS in the ensuing 

section.

4.1.2 Intelligent Transportation Systems

ITS is a set of interrelated fields whose purposes are, among others, to 

achieve  better  transportation  efficiency  and  diminish  the  environmental 

impact  that  self-propelling  vehicles  have  [FJMFC  01].  ITS  is  of  particular 

sensitivity to scientific and technological innovations, which can be exploited 

advantageously  in  transportation  related  areas.  It  is  usually  said  that  the 

global purpose of ITS is to use appropriate technology to add “intelligence” to 

infrastructures, vehicles and their users [FJMFC 01]. ITS does gather enormous 

worldwide  interest  both  from  transportation  professionals,  the  automotive 

industry and from governmental entities alike.

Usually  we can divide the number of  fields  that  constitute  ITS in  six 

distinct  categories,  which  may be further  sub-divided into other  categories 

[Shibata 99]. A field of special interest to us within ITS is that of  Advanced 

Public  Transportation  Systems (APTS)  and  its  sub-fields  Automatic  Vehicle 

Location (AVL) and  Automatic Passenger Counting (APC). Many public transit 

companies already employ the referred APTS techniques, being very common 

to achieve AVL using Differential Global Positioning Systems (DGPS) [Zhao 00, 

LHHR 00]. The vehicles are usually equipped with GPS modules that estimate 

positioning. Posterior differential GPS [MOJ 95] correction is applied, and this 

positioning data is then uploaded to a central  infrastructure by means of a 

wireless communication channel, such as General Packet Radio Service (GPRS) 

link  [Zhao  00].  Subsequent  data  manipulation  usually  happens,  as  the 

received information serves as input for systems whose purpose may be to 

track down vehicles and provide times of arrival estimations. An example is 

the BUSVIEW graphical  system [MD 01].  Also,  and with the propagation of 

electronic  travelling  titles,  most  public  transit  companies  employ  APC  by 

simply reading passengers' tickets or travelling cards. Such method of APC is 

considered infeasible in public transit vehicles such as buses and trains, simply 

because exit points are not usually captured. As a solution for this problem, 

other  techniques  such  as  pressure  sensors  and  light  beams  [HQR  94]  or 

passenger  count  through  image  interpretation  [Wilson  06]  may  be 
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implemented.  Another  option  is  to  enforce  passengers  to  present  their 

travelling titles at exit points. These solutions are far from optimal, as forcing 

title presentation is considered to be non-practical,  and use of sensors and 

cameras  is  bound  to  have  a  large  operational  cost.  A  valid  low-cost  and 

reliable  solution  is  that  presented  by  Kostakos  [Kostakos  08].  A  Bluetooth 

scanner  is  implemented  aboard  a  bus,  as  it  perpetually  scans  for  nearby 

devices. Posteriorly, the gathered data is interpolated with the public transit 

AVL data, and both passengers' entry and exit points are successfully inferred. 

Results are representative, and intrusiveness is non-existent.

Our system is somewhat related to the concepts previously described. 

We could possibly install the system both inside public transports, as in public 

transit infrastructure, such as bus stops. The installation in public bus stops 

would be interesting, as it would give us the ability of studying passengers' 

waiting habits, as well enable for the dissemination of a rich set of context-

aware  services,  such  as  estimated  transport  arrival  time,  real-time  vehicle 

position determination, among many others. Additionally, installing the system 

inside public transportations, such as buses would provide for the derivation of 

O/D matrices, as described in [Kostakos 08].

With this in mind, it becomes interesting to present and describe O/D 

matrices and their importance.

4.1.3 Origin-Destination Matrices

Origin-Destination (O/D) Matrices are an essential tool in transportation 

analysis. This structure has strategical importance in transit agencies due its 

relevance in both analysis and planning activities. O/D Matrices used in public 

transportations  are  simply  structures  that  contain  information  about  the 

passengers' flow along the various nodes that constitute the network.

The  difficulty  of  estimating  O/D  Matrices  for  public  transportation  is 

particularly related to the kind of vehicle. Some types of transports such as 

subways make the derivation of O/D Matrices easier, as we can capture entry 

and  exit  points  automatically  through  Automated  Fare  Collection (AFC) 

mechanisms.  On  other  kinds  of  transports  such  as  buses  and  trains,  this 

derivation is not as straightforward and reliable as we would like it to be.
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What is usually observed in such type of public transit vehicles is the 

use  of  manual  methodologies  to  perform  O/D  Matrix  estimation.  Data  is 

collected through the execution of a survey, and by applying one of several 

possible statistical techniques the O/D Matrix is inferred. An overview on the 

kind of statistic methods normally used is seen in [Ben-Akiva 87]. The main 

issues with this kind of estimation are related to the high operational costs of 

executing the surveys. For this reason, and for the fact that surveys are not 

actually executed with O/D Matrix derivation in mind, these tend to happen 

very  sporadically,  and  fail  to  reflect  fluctuations  that  possibly  happen in  a 

timely manner [Cui 06].

Additionally, and when entry points are automatically collected, there is 

the possibility  of  O/D Matrix estimation using only passengers'  entry points 

information.  This  kind  of  situation  (e.g.  exclusive  automatic  entry  point 

collection)  is  widely  seen  both  in  trains  and  buses,  as  usually  these 

transportations  enforce  title  presentation  at  or  before  vehicle  boarding. 

Systems that perform O/D Matrix estimation using solely origin-only data have 

already been proposed for both rail systems [ZRW 07] as well as public transit 

buses [Cui 06]. Independently on the the quality of the obtained results with 

these mechanisms, it is well known that the determination of both entry and 

exit points leads to more accurate and representative O/D Matrices [Gordillo

06].  This affirmation is understandable because if we automate passengers' 

entry and exit points capture, we remove the need for human interference, 

and turn  the derivation  process  solely  a  matter  of  electronic  manipulation. 

Costs  are  reduced,  results  more  accurate,  and  the  frequency  on  which 

derivation is obtained attenuated [Cui 06].

O/D matrices estimation is one of the possible uses of our system. By 

deploying Bluetooth sensing nodes within buses,  we lay the foundations on 

which up-to-date and low-cost O/D matrices may be inferred. This notion of 

sensing nodes leads us to another interesting subject to our work – sensor 

networks. The relation that this subject has with our work is what we discuss 

next.
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4.1.4 Sensor Networks

As ubiquitous  computing  [Weiser  93]  sees  widespread  use,  everyday 

objects  gain  the  potential  in  becoming  artefacts  with  computational  and 

sensing capabilities. Hence, the notion of a set of interconnected sensors gains 

wider  acceptance.  A sensor  network may be seen as a set  of  small  nodes 

which have limited computational power and memory, and a sensing module. 

Several particularities must be met in order for a set of sensors to be classified 

as a network. One of the most important is the small computations that each 

sensor  usually  performs,  so  that  centralized  computation  efforts  may  be 

relieved  [ASSC  02].  Also,  it  is  very  common  for  these  nodes  to  perform 

cooperative  work,  therefore  augmenting  the  accuracy  and  overall  sensing 

capacity achievable by means of individual sensors [HKB 99].

In  order  for  the  individual  sensors  to  form  a  network  they  must  be 

interconnected. Wireless technologies are seen as ideal  for this purpose as 

they require no direct physical connection, therefore retaining the unobtrusive 

nature of ubiquitous computing [HKB 99]. Naturally, several technologies can 

be  used  to  achieve  this,  as  some  of  them  are  inappropriate  due  to  their 

inherent  complex  stack  protocol  [LDB 03].  Each  node  in  a  sensor  network 

maintains its functionality as if they were independent of all other nodes. This 

allows, among other things to increase resistance to failure, as the network 

functionality  is  unbounded  to  any  specific  component.  Each  node  has  a 

respective mission and collects its own contextual data. Naturally many types 

of data may be gathered by sensors, being one of them individuals/equipment 

sensing.

Our system cannot be seen as a real sensor network, as for example is 

defined in [ASSC 02]. Our nodes are in fact more than simple sensing nodes, 

as  they  hold  the  capability  of  performing  high  demanding  computations. 

Furthermore, our nodes do not have the need to communicate between them 

directly.  In  reality,  if  we  were  to  enable  such  facility,  our  overall  system 

performance  would  probably  be  undermined.  Also,  our  nodes  energy 

consumptions are high compared to what is usually seen with small sensing 

nodes, and therefore don't have the capability of working autonomously for 

high periods of time.  Finally,  the environments on which our nodes can be 
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deployed  are  restricted  to  non-extreme  settings,  as  they  don't  hold  the 

capability of enduring such hazardous environments.

With the previous assertions in mind, there are some characteristics of 

our system common to sensor networks:

• The system performs sensing through the use of Bluetooth. All stations 

have this capability, as the information is posteriorly stored centrally.

• The system is fault tolerant. It has the capacity of enduring individual 

node failure, ensuring overall functionality even when individual nodes 

fail [SSJ 01, HSA 00].

• The  nodes  exchange  information  with  each  other  and  execute 

cooperative labour, although indirectly. This is done using the central 

infrastructure, which queries individual nodes, and posteriorly delivers 

relevant information to the remaining nodes, ensuring synchronization 

and that no redundant information dissemination is done. Curiously, we 

use  this  synchronization  approach  to  resolve  a  common  problem  of 

sensor networks – sensor overlap [HKB 99], in which is very common 

that  two  nodes  overlap  their  sensing  activities,  therefore  sending 

replicated data to another node.

As we presented the similarities that bound sensor networks with our 

work,  it  is  now opportune to refer  to  another  relevant  field  on our  work  – 

Distributed Systems (DS).

4.1.5 Distributed Systems

A DS can be thought of as a logical grouping of a set of functionalities 

when the components that constitute the system are physically separated. In 

other words, a DS is a set of inter-connected components – by means of a 

network – that work together in order to achieve specific common goals [CDK

05]. Various subjects such as CORBA [Bolton 01] may be discussed within the 

field of DS, but to our work we are mainly interested in three specific topics:

(a) The characteristics that define a DS

(b) The notion of a distributed database

(c) The relationship with mobile and ubiquitous computing
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For  a  system to  be  though of  as  a  DS it  must  conform to  a  set  of 

characteristics like autonomous component functionality. The components that 

constitute the system have only a limited and restricted view of the system as 

a whole, as they have no specific domain knowledge of other components, and 

therefore perceive the system in a very restricted way [CDK 05].  Also,  the 

ability to endure component failure is a common particularity of DS. Recalling 

the definition of sensor networks (which is a particular kind of DS), it was seen 

that functionality should be unarmed even when individual components,  for 

some reason, cease to function to their full potential.

Also, and relation to point (b), the notion of DS is also extended to data 

repositories.  As  the  volume  of  information  exponentially  grows,  it  is  very 

common to see repositories that spawn over several physical locations. The 

simplest  architecture  used  in  distributed  databases  is  that  of  multiple-

client/single-server  [OV  99].  The  server  holds  the  actual  Database 

Management System (DBMS) which maintains system wide information. When 

needed, the clients proceed to remote repository access (which can be direct 

or  indirect)  storing and/or  retrieving information accordingly.  Naturally,  this 

way of data distribution has associated particularities. Namely, replication is 

achieved [OV 99, CDK 05]. We have the system wide data in the server, but a 

percentage of that data is replicated locally at the clients. This allows, among 

other  things,  to gain additional  access  speed,  since the need to constantly 

contact  the  server  for  database  related  actions  is  removed.  Further,  using 

distributed  databases  schemes  such  as  this  allows  for  easy  information 

recovery.  In  case  of  local  data corruption  we may proceed to recovery  by 

querying the  database.  Finally,  concurrent  access  to  the  database  is  fairly 

straightforward, since only the server entity is preoccupied with such issues.

We  also  highlight  the  continuously  common  introduction  of  mobile 

devices  in  distributed  systems  [Kleinrock  95].  As  these  gain  the  ability  to 

communicate  using  different  wireless  means,  they  are  in  fact  turning 

themselves  part  of  larger  and  more  complex  systems.  As  always  with 

distributed systems, this equipment has no knowledge of the complexity of the 

system as it functions autonomously from the remaining components. It is now 

common to verify small mobile equipment having access to certain services 

when  they  are  in  specific  locations.  This  particular  method  of  information 
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access is known as location-aware computing and it plays a major role in the 

specification of our system. We discuss this subject latter in our work.

Our  system  is  perceived  as  a  distributed  system.  It  is  composed  of 

several physically dispersed components that work with each other to achieve 

global  goals.  Also,  the  system  is  not  strictly  dependent  on  any  of  these 

individual components to maintain functionality, as it can handle failure. In the 

individual nodes we make use of a DBM [BN 92] engine in order to achieve 

local replication and persistence. A central component with a RDBMS exists, as 

it holds information related to all  individual components. Finally, and as we 

disseminate information to mobile equipment, these may be seen as nodes 

that are part of a more complex and distributed system.

After this overview of distributed systems we proceed to the description 

of the mechanism that actually makes distributed systems a reality. For this 

reason  we  present  a  discussion  about  Inter  Process  Communication  (IPC) 

methods in the following section.

4.1.6 Inter Process Communication

A process is the execution of a program and consists of a set of bytes 

which  a  CPU  interprets  [Bach  86].  In  typical  UNIX  and  UNIX-like  systems, 

processes are loaded in memory and have several types of information related 

to  them,  including  the  text  segment  (e.g.  machine  instructions),  initialized 

data, uninitialized data, the stack and the heap [Bach 86, SR 05]. A process is 

then an instance of a program which has associated to it a set of resources. As 

processes  are  forbidden  of  accessing  each  own  resources  directly,  a 

mechanism for allowing inter-communication is required.

IPC  is  a  mechanism  which  allows  for  unrelated  processes  to  inter-

exchange information. Many kinds of IPC mechanisms exist, as some of them 

are indicated for local IPC and others for remote IPC. Some examples of IPC 

include signals, named and unnamed pipes, shared memory, UNIX domain and 

Internet sockets, and message passing. IPC mechanisms are not restricted to 

be used exclusively between them, as they can be combined in order to obtain 

a higher degree of expressiveness. A typical example is to use both Internet 

sockets and message passing for achieving remote communication between 

processes.  Also,  some  types  of  IPC  are  inherently  designed  to  handle 
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asynchronous events (signals), as others are designed to handle synchronous 

events (named pipes).  Still,  others have the ability to handle both types of 

events. The most known example is that of sockets, where modern operating 

systems  and  programming  languages  define  an  Application  Programming 

Interface (API)  that  supports  both  blocking  (synchronous)  and  non-blocking 

(asynchronous) versions of these.

Sockets  – more concretely  Internet sockets – are one of the building 

foundations of inter-network communications. An Internet socket is in fact a 

pair formed by two entities: the IP address of the target host and the port on 

which a process is listening to. Virtually all modern operating system provide a 

TCP/IP  implementation  in  their  kernel  which  is  composed  by three  distinct 

layers [WS 95]: the socket layer, the protocol layer and the interface layer. As 

the socket layer – and consequently sockets – is situated the nearest of the 

application  layer,  it  provides  for  an  abstraction  between  applications  and 

underlying transportation layers such as TCP and UDP. Processes therefore use 

specific  function  low-level  invocations  (e.g.  system calls)  so  that  IPC  using 

sockets can happen in a transparent and compatible way between processes, 

that can be separated by different networks,  different underlying protocols, 

different operating systems and even different applications.

In sum, IPC mechanisms are  essential  to our  system because of  the 

following reasons:

(a) Our  system  is  a  distributed  system  composed  by  three  separate 

entities:  nodes  situated  at  public  transit  infrastructures;  a  broker 

responsible  for  name  lookup  and  connection  establishment;  a 

centralized infrastructure

(b) All  entities  described above need,  at  some point,  to execute several 

operations  simultaneous.  By  using  a  multi-process  paradigm we can 

fulfil the system's needs.

As demonstrated, IPC represents an important aspect of our system. We use 

several of the techniques described in this chapter, as IPC is executed both 

locally and remotely. A working “protocol” for communication is defined, so 

that  different  components  can  request  for  concrete  actions  from  other 

elements.
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The discussion of IPC mechanisms marks the end of our broad view of 

related work. Throughout this section several issues were discussed, as they 

where used to lay the foundations on which the ensuing chapter and included 

subjects are built upon.

4.2 In-Depth View

In this section a more meticulous review and discussion is performed. 

The subjects  discussed within  are  less  far-reaching  than those  seen  in the 

previous  section,  but  the  contribution  they  have  in  defining  and 

contextualizing  our  work  is  greater.  For  this  reason,  a  more  through 

scrutinization  is  made.  In  concrete  two  subjects  are  discussed:  Bluetooth 

wireless technology and Context-Aware computing. 

4.2.1 Bluetooth Wireless Technology

Bluetooth is a radio wireless technology whose development started in 

the mid 1990s.  It  has  over  the years  gained increasing  acceptance,  as  its 

presence is noticed in virtually all recent electronic equipment, such as PDAs, 

mobile  phones  and  personal  computers.  The  world-wide  adhesiveness  of 

Bluetooth technology is demonstrated by the estimated 520 million devices 

that supported it in 20061.

Several  particular  characteristics  differentiate  Bluetooth  from  other 

wireless  technologies.  Its  low cost  and  low power  consumption  justify  why 

there is such a widespread integration on electronic equipment. Furthermore, 

and comparing for  example  with  Infra Reds (IR),  which are  also commonly 

present in mobile equipment, Bluetooth works by transmitting and receiving 

the radio signal in a omnidirectional manner, therefore dismissing the need for 

having line of sight or antenna directionality.

More  technically,  Bluetooth  is  composed  by  a  set  of  interconnected 

layers.  This  layer  oriented  specification  is  much  common  in  networking 

communication stacks, as the most known examples are the TCP/IP and OSI 

models [SFR 03]. The purpose for dividing communication stacks into several 

layers is to allow for heterogeneous host systems to communicate using solely 

1http://www.economist.com/sciencetechnology/tq/displayStory.cfm?story_id=7001843
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common logical agreements – the protocols [Stevens 94].  Figure 8 shows the 

disposition of the layers and the belonging protocols [Bisdikan 01].

4.2.1.1 Bluetooth Lower-Levels

The  Bluetooth  radio  operates  at  the  2.4GHz  unlicensed  Industry 

Scientific and Medical (ISM) band. As this is a free band, many components 

potentially operate at the same frequencies. In fact, the IEEE 802.11x family of 

wireless  technologies  uses  this  specific  band.  This  leads  to  situations  of 

interference  when  both  technologies  are  in  the  same  operating  range. 

Manufacturers are aware of this, as the devices which operate at this band 

must  be  able  to  share  frequencies  and  tolerate  interference.  By  using  a 

Frequency Hopping Spread Spectrum (FHSS) technique, Bluetooth manages to 

reduce  interference,  as  well  improve  security  measures  of  the  technology 

[Wang  01].  The  radio  therefore  employs  a  pseudo-random  algorithm, 

executing 1600 hops/sec over a bandwidth of 79 one-megahertz channels. The 

frequencies  on  which  Bluetooth  operates  are  therefore  specified  by  the 

following expression:

f=2,402k MHz ,0≤k≤78

Even  though  FHSS  and  error  coding  techniques  are  used  for  minimizing 

interference, Bluetooth inter-operability with WLAN (e.g. IEEE 802.11x) leads 

to  higher  packet  lost  probability,  and  consequently  to  undermined 

performance for both of these technologies [GCR 03].

Bluetooth has three distinct classes: class 1, 2, and 3. Class 1 devices 

are  the  most  powerful,  and  consequently  transceivers  of  this  type  can 

communicate within 100 meters of each other. Class 2 transceivers are the 

most commonly used, due to their balanced power consumption and range. 

These devices are present in virtually all commercial mobile equipment, and 

can establish connections up to 10 meters from each other. The less powerful 

devices  are  those  which  belong  to  class  3.  Their  power  consumption  is 

minimum, and for that reason wireless communication can only be established 

if  devices  are  up  to  1  meter  from each  other.  Figure  7 demonstrates  the 

differences that exist between range radius of Bluetooth classes.

A word on the fact that if we use two dongles, one class 1 and other 

class 2, the maximum range will not be of 100 meters. This is due the fact that 
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range is limited by the class 2 transceiver lower power output. On the other 

hand,  using  such  configuration  allow  us  to  extend  the  class  2  transceiver 

beyond the 10 meters limit, but nowhere near 100 meters. Nevertheless, it is 

possible to use specialized hardware such as high gain antennas, so that long 

range Bluetooth communication is possible.

Moving to the baseband protocol,  it  is  situated just  above the actual 

physical radio transmission medium. Baseband defines how Bluetooth links are 

established, how Bluetooth networks are created, how transmission medium is 

32

Figure 8: Bluetooth Protocol Specification

Figure 7: Bluetooth classes 

range



 4   State of The Art & Related Work

shared, and also define the structure of the low-level packets [Bisdikan 01]. 

Each  Bluetooth  device  has  associated  with  it  a  unique  48-bit  address 

(BD_ADDR),  which  can  be though off  as  the equivalent  of  a  Ethernet  MAC 

address. Individual identification becomes possible due to this feature, as no 

two addresses are equal. Associated to each Bluetooth device is also a 28-bit 

clock value. For communication to be initiated between two Bluetooth devices, 

interventionists  must  exchange  both  the  BD_ADDR  and  clock  values.  A 

network of Bluetooth devices is  formally  defined as a  piconet,  and in each 

piconet there must be only one master and up to 7 slaves. Optionally, there is 

the ability to inter-connect piconets, therefore forming a scatternet. No direct 

communication between slaves within a piconet can exist, as the master unit 

acts as a routing element.  Also, for communication to be effective and full-

duplex supported (e.g. transmission and receiving happening simultaneously), 

a  Time-Division  Duplex (TDD)  technique  is  used for  sharing the bandwidth 

available. In practice this means that each device is allowed only to transmit 

for 625 µs at a time, in each channel (or frequency), although a packet can be 

separated along 1, 3 or 5 distinct channels [Wang 01]. It is the master's unit 

clock which identifies the frequency or channel on which transmission is going 

to happen.  For  this reason,  a Bluetooth device can only be master  on one 

piconet. Also, master units will transmit only on even-numbered slots (e.g. 625 

µs time units), and slaves will transmit only on odd-numbered slots.

For  a  piconet  to  be  created  some  steps  must  be  performed.  If  the 

master already knows the address of the slave, then the inquiry phase may be 

skipped. This phase consists of locating devices and obtaining their address 

and clock values.  It  works only if  the inquired device is  in  discoverable  (or 

inquiry scan) mode, and the inquiring device transmits inquiry messages. The 

discoverable  device  will  then  respond  by  sending  inquiry  reply  messages, 

which, among other things, contain the address and clock values. Naturally, 

the devices which are set to discoverable mode need to continuously check for 

inquiry  requests,  which  leads  to  increased  power  consumption,  even  when 

Bluetooth isn't actually being used by the user.

This is due the fact that Bluetooth discoverable devices remain in stand-

by mode, during which they listen to inquiry messages every 1.28 seconds, 

using one  of  the 32  pre-established  inquiry  frequencies.  As  such,  inquiring 

devices use periods multiples of 1.28 seconds to find Bluetooth devices in the 
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vicinity. The Bluetooth specification states that in an error-free environment, 

an inquiring device must spend 10.24 seconds (i.e. 8 * 1.28 seconds) in order 

to discoverable all surrounding Bluetooth enabled devices.

After the details regarding specific devices have been determined, the 

master can then proceed to invite elements to join the piconet. This process is 

known as the paging phase, and works similarly to the inquiry phase. First, a 

device must be set to connectable (or page scan) mode. Then, the device that 

wants  to  initiate  the  communication  –  the  paging  device  –  will  transmit  a 

paging message to the connectable device. This later device will  then reply 

with a  page response message, sending its details over the communication 

channel.  After  this,  the  piconet  can  be  created.  A  device  that  is  set  to 

connectable mode also needs to perform periodical scans, and therefore also 

contributes to increased power consumption, although less than those devices 

in discoverable mode.

Devices  actually  communicate  through  the  exchange  of  baseband 

packets. Each packet has a 72-bit Access Code (AC) field, a 54-bits header and 

a 2746-bit payload. Although this is the base structure of baseband packets, 

several packet configurations can be made. The only field that is required to 

be present at all times is the AC, which is used exclusively when we have a 

baseband  packet  of  type  ID  [Bisdikan  01].  In  order  for  packets  to  be 

exchanged a link must be established. Two kinds of links can be established 

when using Bluetooth.  Asynchronous Connectionless (ACL) links are the most 

used type, and provide no Quality of Service (QoS) mechanisms. On the other 

hand, this Best-Effort link does provide for integrity using retransmissions, and 

uses error correcting techniques. Also, there is the possibility of establishing 

Synchronous Connection-Oriented (SCO) links. Although SCO does not allow for 

retransmission, its link symmetry and constant rates, make it ideal for voice 

communication between Bluetooth devices.

Moving up the protocol hierarchy, the Link Manager Protocol (LMP) is the 

component whose actually responsible for controlling the Bluetooth link. LMP 

takes  care  of  security  related  issues,  which  includes  authentication  and 

encryption. There is a large specification of LMP protocol data units (PDU), as 

some  of  them  are  related  to  security  issues,  and  others  to  information 

exchange,  crucial  for  connection  establishment.  Due  to  the  nature  of 

Bluetooth, asymmetric authentication methods do not apply, and therefore a 
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simple  challenge/response  mechanisms is  used for  authentication [Bisdikan

01, GPS 04]. The first time two devices met, it is necessary to use a Personal  

Identification Number (PIN) for initializing the authentication process. After PIN 

data has been correctly inserted,  the authentication process will  from then 

forward dispense the use of a PIN, as it will utilize a 128-bit authentication key. 

The authentication process can in reality be dismissed all together, as some 

application  profiles  don't  need  to  perform  authentication  for  exchanging 

information. Furthermore, upon link establishment encryption can be set using 

the previously known link key used for authentication. The LMP also allows for 

usage of low power modes. These are used to reduce ower consumption, but 

also to allow for multiple operations to happen simultaneously.  This is  why 

although the limit  for a piconet is of 7 slaves + 1 master,  by using power 

modes we can get up to 256 slaves (in parked mode) in a piconet. Also, it is  in 

this layer that friendly name requests are made, as each Bluetooth device may 

have a name associated with it. It is very common for mobile equipment to 

also  discover  friendly  names  upon  inquiry  requests,  but  this  delays  the 

procedure, as it is necessary to establish a connection between devices [AK

05].

The  Logical  Link Control  and Adaptation Protocol (L2CAP) is the layer 

most closely situated to the host system (an can in fact be implemented at the 

host). L2CAP takes care of care of datagram segmentation and reassembly, 

multiplexing of service streams, and QoS issues [GPS 04]. The main purpose of 

the L2CAP is to work as a translating unit between the higher-level Bluetooth 

protocols that run in the host, and the lower-level protocols that run in the 

Bluetooth device.

4.2.1.2 Bluetooth Middle-Levels

The Host Controller Interface (HCI) is defined as a mere interface so that 

hosts can access the lower-level protocols of Bluetooth modules. Since there is 

the possibility that lower and higher-level Bluetooth protocols are separated, 

there is a need for establishing an interface to control Bluetooth modules. This 

is usually the case when an external Bluetooth module is connected to a PC 

through an USB port. On the other hand, if the Bluetooth module is integrated 

into a larger device and the same microprocessor controls them both, then the 
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HCI firmware implementation can be neglected [GPS 04]. A common example 

of this is a Bluetooth headset.

The protocols included in the middleware layer are usually implemented 

at  the  host  level.  They  work  to  alleviate  the  higher  level  protocols  from 

Bluetooth concrete specifications, abstracting the communication process. An 

important protocol that lies within this layer is the Service Discovery Protocol 

(SDP). Its function is to determine the hosts' available services, and to collect 

information on how to use them. A Bluetooth service is defined by Universally 

Unique Identifiers (UUIDs),  which are used to describe services'  names and 

attributes.  The  RFCOMM  protocol  is  also  widely  used  in  Bluetooth 

communications. It is an emulation protocol that creates a virtual RS-232 (e.g. 

serial) link between devices. RFCOMM enables for several types of applications 

to work using Bluetooth. Examples include object exchange (OBEX) between 

devices, point-to-point connection establishment (PPP), and telephony control 

signalling (AT) commands.

4.2.1.3 Bluetooth Profiles

At the top of the Bluetooth stack reside the specifications that allow for 

construction  of  compatible  applications.  These  specifications  are  called 

profiles,  and  they  define  the  conditions  which  must  be  followed  for  inter-

communication between devices to happen. All profiles are extensions of the 

Generic  Access Profile (GAP),  as new profiles can be devised upon existing 

ones.  This allows for creation of profile  hierarchies,  as this the case of the 

Object Push Profile, which is based upon the Generic Object Exchange Profile, 

which in turn is based upon the Serial Port Profile [Bisdikan 01, GPS 04].

4.2.1.4 WAP over Bluetooth

Bluetooth  versatility  is  further  demonstrated  by  its  capability  of 

supporting  additional  networking  communication  stacks  on  top  of  the 

Bluetooth stack. It is possible,  for example, to use the  Wireless Application 

Protocol (WAP) suite over Bluetooth. WAP is an industry standard technology 

used  for  presenting  content  in  hand-held  mobile  equipment.  WAP  actually 

consists of several protocols, and therefore forms a networking communication 

stack.  Given that  many hand-held  devices  posses  a WAP browser  software 
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component, users can make use of it to access a set of services by means of a 

Bluetooth link. Figure 9 [AL 00] demonstrates the involved layers in order for 

this to be accomplished. Additional information on WAP over Bluetooth can be 

seen in [AL 00].

With this section we gave a detailed overview of the Bluetooth Wireless 

Technology.  We  described  the  stack  that  enables  for  Bluetooth  inter-

communication, and verified that it is common that higher-level layers to be 

implemented outside the actual Bluetooth device. Bluetooth profiles were also 

discussed, and the versatility of  the technology was mentioned, as we saw 

that is possible to combine external communication stacks with Bluetooth.

Bluetooth has great relevance on our work. First, our system uses the 

Bluetooth  inquiry  capabilities  to  continuously  scan  for  nearby  discoverable 

devices. Secondly, we utilize Bluetooth SDP and profiles to perform content 

delivery. As devices are discovered, the system determines if a pre-defined 

service  exists which has that address as destination.  If  it  does, the system 

tries and push – using OBEXPUSH – the content to the user. As usually we are 

interest in nearby devices, we limit our scanning capabilities with the use of a 
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class 2 dongle. On the other hand, as we are interested in maximizing delivery 

capability, we use a class 1 dongle for content delivery.

This  notion  of  using  a  wireless  technology  (Bluetooth)  to  delivery 

content at specific locations and under specific conditions, leads us to another 

crucial  notion in our work – Context-Aware Computing. What Context-Aware 

Computing is and how does it influence our work is what we describe in the 

ensuing section.

4.2.2 Context-Aware Computing

Multiple  aspects  must  be  taken  into  consideration  when  defining  an 

element's context.  Information like location, time, and weather are all  valid 

factors that contribute to the delineation of the context on which an element is 

inserted  into.  Context-Aware  computing  is  a  field  on  which  contextual 

information is the central element on defining the behaviour of hardware and 

software systems.

4.2.2.1 Location-Aware Computing

Historically, Context-Aware computing is an extension of the notion of 

Location-Aware  computing.  Aalto  et  al. [AGKO 04]  define  a Location-Aware 

service,  as  a  service  whose  behaviour  is  mostly  determined  by  location 

information. In their work, they developed a push-only dissemination system, 

entitled  B-MAD, which uses Bluetooth and WAP to perform content delivery. 

Users  must  pre-register  their  Bluetooth  address  and  phone  number  for 

receiving content.  Thereafter  when a user  is  in  the  vicinity  of  a  Bluetooth 

station, this element will flag a centralized ad server using a WAP connection. 

Consequently, the ad server will send the Bluetooth station information so that 

content  is  delivered  to the end user  using a Short  Message  Service  (SMS) 

message. The main problems with this approach are the need for disclosing 

phone numbers, and the constant communication with the centralized server 

leading to additional latency.

The Place Lab initiative [SLBGMLBHI 03] uses a component installed in 

end-user devices, known as Place Bar, to direct users to relevant web content, 

taking as a parameter the Wi-Fi Access Points location information. The goal is 

to create a positioning system, termed as a  Global Wi-Fi Positioning System, 
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analogous  to  GPS.  To  achieve  this,  the  unique  Basic  Service  Set  Identifier 

(BSSID) – which corresponds to an Ethernet MAC address – is used to create a 

database that associates Wi-Fi access points to a certain location. The Place 

Bar would then query the database for determining the current location, and 

thereafter direct the user accordingly. Although this is an interesting concept, 

the  current  proliferation  of  Wi-Fi  spots  makes  the  maintenance  of  this 

database  a  very  difficult  job.  Also,  users  would  need  to  download  specific 

software for this functionality to be enabled in their devices. Other interesting 

developments  in  Location-Aware  computing  include  the  creation  of  the 

Vehicular  Information  Transfer  Protocol  (VITP),  which  is  used  for  creating 

services  over  Vehicular  Ad-hoc  Networks  (VANETs)  [DFNI  07].  The  purpose 

would be to facilitate decision, by providing traffic related information such as 

traffic congestion points, therefore working as an enhancer of already common 

employed  technologies  such  as  on-board  GPS.  Harter  et  al. [HHSWW  99] 

developed a system which provided 3-D modelling and localization of users 

inside a building.  The usage of ultrasonic  transceivers,  referred to as  Bats, 

provided the information necessary to successfully locate users inside a closed 

space, a task usually made difficult due high interference levels which make 

radio-based  and  electromagnetic  techniques  non-optimal.  The  interesting 

point here is to note that these previously described applications are mostly 

driven solely by one contextual aspect – location.

4.2.2.2 Context-Aware Multidimensionality

Context-Aware  computing  introduced  new  dimensions  on  which 

applications  behaviour  could  be  specified.  Although  location  still  plays  an 

important role in defining context, other important factors such as temporal 

and physical aspects play an active role in specifying context. The own notion 

of  context  in  computing  is  far  from being  commonly  agreed  upon.  In  our 

opinion, the best notions which define Context-Aware are those mentioned by 

Schilit  et al. [SAW 94] and Chen & Kotz [CK 00],  where the authors define 

context in four distinct categories:

• Computing context – such as networking and connectivity

• User context – such as location and profile specification

• Physical context – such as weather and pollution levels
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• Time context – such as time, day of week and day of year

This multidimensional aspect of context is again mentioned by Schmidt et al.

[SBG 99], where additional dimensions are considered to influence contextual 

specification. Further, Dey & Abowd [DA 99] categorize contextual factors as 

being  primary  and  secondary.  They  argue  that  factors  as  location,  time, 

activity, and identity are to be considered primary aspects, as they convey the 

power for inferring additional types of information. The authors also provide a 

taxonomy of Context-Aware features, in which they define as being part of one 

of three categories:

• Presentation of information and services to a user

• Automatic execution of a service

• Tagging of context to information for later retrieval

In sum, it seems clear that defining context is not straightforward, as many 

aspects come into play due the dynamic nature of the environment.

4.2.2.3 Context-Aware Applications

Throughout  the  last  decade  and  a  half  many  research  efforts  have 

directed their efforts towards Context-Aware computing. The field of Context-

Aware  per  see  spawned  mainly  due  to  the  work  developed  at  Olivetti 

Research. The Active Badge prototype system was developed in 1992, and it 

consisted  of  using  a  IR  emitting  badge  for  locating  staff  within  a  building 

[WHFG 92].The novel contribution of this project was not due the localization 

technique  used,  but  to  the  fact  that  the  badges  would  respond  to 

environmental stimulus. Concretely, a light sensor was included in the badges. 

The absence of light would make the badge redefine its behaviour, reducing IR 

signal  emission frequency, and consequently saving power.  Also,  the active 

badge location information was used so that a receptionist would perform call 

forwarding to the staff's nearest available phone. Another work developed by 

Olivetti  Research,  and  with  direct  relation  with  the  Active  Badge,  was  the 

Teleporting system [BRH 94]. This applications worked by allowing users to 

access  X-server  sessions  by  using  computational  resources  most  nearly 

available to them. The Active Badge system would be used to perform user 

localization, and allow the application to “follow” the user around. Brown et al. 

also defined a system which used the Active Badge notion. The purpose would 
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be to route a message to a visitor which had an Active Badge, even if the user 

didn't  posses  a  pager.  In  that  case,  the  message  would  be  routed  to  the 

closest person of the required destination.

The  Cricket system is  defined as  location-support infrastructure  [PCB

00]. It works in a decentralized manner, using beacons to transmit signals to 

listeners,  that the latter can use to determine position within a building. It 

works  by  using  a  technological  combination  of  Radio-Frequency  (RF)  and 

ultrasonic signals. The beacons disseminate these signals periodically, and the 

listeners  use this  information  along with  an inference  engine to  determine 

current  position.  Contextual  location  related  information  (e.g.  position  and 

distance) are used to determine the possible position of users.

Rukzio  et al. [RSH 04] devised a system that uses physical posters for 

content  dissemination  purposes.  Encoded  images  are  embedded  into  the 

posters, as users utilize their mobile devices cameras to capture images, and 

consequently send them to a server located in the vicinity of the posters. This 

is  accomplished  through  a  Bluetooth  link.  The  server  will,  upon  image 

reception, use image recognition software to determine the correct content to 

send to the user. For the system to work, the user most download a Java based 

application, termed as a Simplicity Personal Assistant (SPA).

LeBrun  &  Chuah  [LC  06]  deployed  what  they  termed  as  Content 

Distribution  Stations at  public  transit  vehicles.  These  stations  are  content 

dissemination units that deliver information to public transit  passengers.  As 

users transit  between several  points of the transit  network, much idle time 

exists. The goal would be to take advantage of that idle time, and utilize an 

offer  an array  of  services,  raging  from news to  multimedia  download.  The 

content is local to the stations, as no direct networking connection exists with 

the  outside  world.  The  stations  would  therefore  need  to  synchronize 

periodically with servers located at, for example, major stations. This kind of 

concept introduces  the notion of  Delay Tolerant Networking (DTN), allowing 

for information routing and dissemination even when a direct connection to a 

network  does  not  exist.  Although  the  authors  state  that  both  Wi-Fi  and 

Bluetooth technologies can be used to access  the content,  the way this  is 

actually done is unclear.
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A content dissemination architecture that uses mobile devices as relay 

points is the issue of foci in [LLSFC 06]. The system is defined by three distinct 

components: fixed source nodes, mobile relay nodes, and data sinks. The goal 

is  to  use  the  mobile  relay  nodes  (and  also  data  sinks)  to  enhance  the 

information diffusion rate.  Data is  transmitted  using Bluetooth from source 

nodes to mobile and data sinks nodes, as these hold the capability of acting as 

a  forwarding  element,  disseminating  the  content  to  other  potentially 

interested  nodes.  User  interests  and  location  define  the  context  in  which 

content is to be delivered. This is also a form of DTN, as information is routed 

to  destination  nodes  without  previous  pre-established  structure.  Interesting 

results were obtained with almost 90% of delivery success. On the other hand, 

there  is  the  need  for  mobile  nodes  users  to  agree  to  act  as  forwarding 

elements.

Ravi  et al. [RSDI 05] use Bluetooth SDP facilities to create a protocol 

entitled  SDIPP.  The  goal  is  to  add  personalization  capabilities  so  that 

innovative services are implemented. Users would discover services located at 

specific  location  using  Bluetooth  discovery  capabilities.  Thereafter,  there 

would  be  a  need  to  initiate  a  GPRS  connection  with  a  centralized 

infrastructure, retrieving data for enabling usage of the service. Consequently 

the user would interact with the application using a Bluetooth connection. The 

authors demonstrate an interesting application of this system, where doors 

within  a  building  are  opened  according  to  users'  devices.  Still  the  grand 

limitation is related with the necessity of using a GPRS connection by the user, 

which has inherent costs associated to it.

Opportunity Knocks is a system aimed at providing cognitive assistance 

to mental  impaired individuals [PLGCLOWFK 04].  The system is directed at 

those  individuals  that  use  public  transportations,  but  due  their  declined 

cognitive  abilities  experience  problems  when  travelling  autonomously. 

Opportunity  Knocks  works  by using a GPS module,  a GPRS-enabled mobile 

phone,  and  a  central  inference  software.  The  GPS and  mobile  phones  are 

naturally carried by the user, and communicate through Bluetooth. The central 

inference engine uses location information and past history to determine, for 

example, the probability that individuals have board the wrong bus or missed 

their exit stop. By using this conjunction of location and temporal contextual 
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information, along with a sophisticated inference engine, Opportunity Knocks 

demonstrates the usefulness of context-aware computing.

By  using  location  information  and  users'  profiles  specifications,  the 

Social  Serendipity system exploits mobile devices capabilities for facilitating 

social interactions [EP 04]. The authors have developed an application, named 

BlueAware, which uses Bluetooth inquiry capabilities to scan for devices in the 

vicinity.  The  purpose  is  to  augment  the  notion  of  social  software,  which 

ironically  usually  require  users  to  be  in  direct  contact  with  computers  for 

interacting with other people. The Serendipity system consists of two distinct 

applications.  The  first  is  a  Bluetooth  scanner  termed  as  BlueAware.  This 

scanner,  that runs in the user's mobile device,  is continuously scanning for 

nearby  Bluetooth  devices,  and  also  maintains  a  proximity  log.  BlueAware 

collects  the  data  that  will  be  used  by  other  applications,  such  as  the 

Serendipity application. It also runs in the end-user mobile device, but must 

connect to a central service by using a GPRS connection. The objective is to 

search for matching profiles that may be in the vicinity, notifying accordingly 

the interested parts.

Very closely related to our work is the BlueMall application [SCCM 08]. 

This  Java-based system is  defined as a context-aware  ubiquitous Bluetooth 

advertising system, developed to be used in commercial  areas.  It  works by 

placing several  Access Points (AP) throughout the advertising area. When a 

device comes into range of an AP – which is constantly running a scanning 

program – the AP element will  contact a central  server to determine if any 

content is to be pushed to the user. The system does allow for time-related 

specification of content delivery, and also allows defining a list of addresses to 

ignore. BlueMall has the ability to recall which devices were already served, 

and therefore does not continuously tries to contact users. Nevertheless, the 

constant need for contacting the central  server,  and the use of Ethernet to 

inter-connect  components  seems  to  limit  the  scope  of  BlueMall  to  indoor 

environments.

Ubiqmuseum is  another  example  a  context-aware  advertisement 

system [CMT 06]. It was developed to augment museum visitors experiences. 

The  system  consists  of  three  different  components:  Museum  Information 

Points (MIPs), clients, and a central server. Museum visitors will need to have a 

Bluetooth enabled equipment along with a pre-downloaded Java application. 
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This Java application (which is the client) will give the opportunity for users to 

define  their  personal  preferences,  letting  them  choose  options  such  as 

language, type of device, and level of information detail. When the user wants 

to retrieve information from the MIPs, it will have to execute an inquiry and 

consequently connect to the MIP component. After this is accomplished, the 

MIP will contact the central server, sending it a code operation (codop) which 

the server will interpret and take the appropriate action. Finally, the MIP will 

receive the information from the server, and push it to the client application. 

Likewise  the  BlueMall  application,  Ubiqmuseum  restricts  itself  to  a  very 

concrete field, which in this case is museums settings.

OpenProximity2 is  an example  of  a  proximity  marketing  system.  It  is 

composed by several components and allows for remote web management. 

The  system  supports  the  use  of  a  dongle  for  scanning  and  another  for 

uploading  content,  which  can  maintain  up  to  7  simultaneous  connections. 

Administrators  of  the  system  will  have  to  create  campaigns in  order  to 

disseminate  content  to  users.  Associated with  these  campaigns  is  a  set  of 

rules that can be configured to indicate the method of delivery (OBEXPUSH, 

OBEXFTP, etc.), time settings, and address filtering. Although it is stated that 

OpenProximity  can  be  configured  to  have  a  central  component  controlling 

individual  stations,  it  is  not clear  how this  works.  Other  systems similar  to 

OpenProximity  exist,  such  as  BlueMagnet3 and  Fexmax4.  The method  of 

functionality  is  similar  to  OpenProximity,  where  campaigns  with  associated 

rules are created in order to schedule content delivery to users.

A  combination  of  hardware  and  software  components,  the  Bluegiga 

Access  Servers  are  also  commonly  used for  proximity  marketing,  but  their 

flexibility allows them to be used with broader objectives in mind, like context-

aware applications. Depending on the version, these systems can be equipped 

with  3  Bluetooth  radios,  supporting  up  to  18  simultaneous  connections. 

Although Bluegiga access servers work mainly by pushing content to users, 

they  can  be  configured  to  receive  input  requests  through  a  pull  channel, 

therefore  implementing  a  integrated  dissemination  model  (recall  Section 

4.1.1).  Additionally,  many  filtering  options  can  be  configured  for  content 

2http://sites.google.com/a/aircable.net/aircable/Home/openproximity-2-0
3http://www.bluemagnet.com/
4http://www.fexmax.com/
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dissemination,  including time,  type of  equipment,  brand of  equipment,  and 

distance.  Our work relates very closely to the Bluegiga Acccess  Servers,  in 

which it allows for creation of a set of services to disseminate content to users 

according to pre-established rules.  Nevertheless, our work deals solely with 

the software part, and for that reason is not restricted to any particular type of 

equipment.

Throughout this section we described in detail  the notion of  context-

aware computing. We verified that context-aware is indeed much more than 

just   location,  as  it  can  include  many  other  aspects,  such  as  personal 

preferences, time restrictions, and even physical particularities. Moreover, we 

viewed many examples of context-aware applications, and how these work in 

real-world environments. We saw that these types of applications can be used 

in  many  distinct  areas,  including  assistance  of  impaired  individuals,  social 

networking,  proximity  marketing,  and overall  content  distribution.  With  the 

presentation of both Bluetooth technology and context-aware computing we 

contextualized our work and now proceed to the technical description of the 

system.
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5 System Description

The purpose of this section is to technically describe our system using a 

top-down  approach.  First,  we  present  some  example  scenarios  to  help 

visualize system's potential. Secondly, we discuss system's main requirements 

so that a notion of functionality is obtained. Thirdly, we demonstrate a highly 

abstract view of the system, as we present the overall  system architecture. 

Thereafter, we focus our discussion on the presentation of individual system 

components,  and  finalize  this  section  with  the  demonstration  of  concrete 

particularities of the system, including configuration aspects, technical details, 

and algorithms.

5.1 Example Scenarios

The system may create a set of context-aware services to disseminate 

content  to  users.  Several  types  of  contextual  impositions  are  possible, 

including time and date of execution, location of device, and present nearby 

devices.

For example, it is possible to create a service that disseminates  static 

(i.e.  that  doesn't  change over  time)  content  to  John.  Imagining  that  John's 

birthday is on the 1st of July, a service can be created that indicates the system 

to try and deliver content at “Bus stop 1” when he sees John. Optionally, the 

service may be set to run all day, before expiring after midnight.

Another example is to create a simple textual content which the system 

broadcasts constantly to all Bluetooth devices in the vicinity. We could set this 

service to run for ever, but remembering the devices to whom content had 

been successfully delivered, so no duplicated dissemination happens.

Still, a more interesting example is to create a service which delivers a 

personalized image content to a set of  of  users.  The system is set so that 

delivery is triggered only when John, Mary, and Marc appear, together, at bus 

stop  “Bus  stop 10”.  Furthermore,  only  when these  three  devices  are  seen 

continuously for more than 5 minutes, will the system disseminate the content 

to all of them.
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It is also possible to fetch  dynamic content, i.e. content that changes 

over time. For example, if we have a web page that periodically refreshes its 

content output,  we can create a service  that points to that web page, and 

define it to delivery content to Suzie every two days, between 12:00 and 14:00 

at either “Bus stop1” or “Bus stop 2”.

In sum, our infrastructure allows us to specify a rich set of features that 

define the restrictions on which a service is to be executed. In order to better 

understand how this works, we proceed to the definition of the overall system 

requirements of the system.

5.2 Overall System Requirements

Since  the  beginning  of  our  work  we  knew  that  the  system's 

requirements would be ill-defined, and consequently subject to modifications 

along the software  development  cycle.  As  such,  it  was clear  that  the best 

alternative would be to adopt an agile software development methodology if 

we were to cope efficiently with the more than probable changes. The chosen 

method  was  the  Agile  Unified  Process5 (AUP),  a  simplified  version  of  the 

popular Rational  Unified Process (RUP).  AUP defines four phases and seven 

disciplines. Phases work in a serial manner, in which disciplines have different 

weights. Disciplines on the other hand work in a iterative manner and define 

the concrete activities that team members are suppose to perform. AUP also 

uses several common used agile techniques such as test-driven development, 

just-barely-enough  modelling,  and  stakeholders  communication 

encouragement.

Initially, the system's functional and non-functional requirements were 

unclear. To overcome this situation, research was done and the questionnaire 

present at Section 3 was issued. The result was the following initial functional 

requirements:

1. The  system  shall,  at  least,  be  composed  by  two  distinct  separated 

elements:  Blue  Stations,  which may be deployed at  several  types of 

environments, and a Central Infrastructure, which is deployed at a well 

known location.

5http://www.ambysoft.com/unifiedprocess/agileUP.html
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2. The  Central  Infrastructure  shall  be  responsible  for  storing  stations' 

contents,  be  responsible  for  synchronization,  maintain  a  central 

database, and allow for centralized control.

3. The  Blue  Stations  must  be  able  to  perceive  Bluetooth  discoverable 

devices in the vicinity and collect their information. This component will 

be termed a scanner.

4. The scanner  shall  be configurable,  as we may choose to change the 

time that a scanner searches for nearby devices (e.g. inquiry time), as 

well  the  time  that  a  scanner  sleeps  after  each  scan  (e.g.  scanning 

frequency).  Also,  we  may  choose  to  output  devices'  friendly  names, 

Class of Device (CoD), and the time stamp of the discovery.

5. The Blue Stations shall  offer  the possibility to deliver both static  and 

dynamic content to users.

6. Content will be offered in the form of services, in which each service is 

fully configurable. Options like date of delivery, time of delivery, and 

destination are to be specified upon service creation.

7. Content  will  be  delivered  using  a  push  model  of  information 

dissemination.

8. Several destinations can be specified in a service, being also possible to 

specify a broadcast address.

9. Services creation will be done through some kind of interface, that can 

be either a graphical interface, or a console application.

10.Blue Stations shall support the use of multiple Bluetooth dongles. If just 

one  dongle  is  used,  then  both  scanning  and  deliver  procedures  are 

executed by the same dongle. If more than one dongle is used, then the 

scanning  procedure  will  be  made  by  one  dongle,  and  the  delivery 

executed by the remaining ones.

Additionally, the following non-functional requirements were specified:

1. The  system  shall  function  uninterruptedly.  It  must  support  errors, 

individual component failure, and implement recovery mechanisms.
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2. The  system  must  be  designed  with  flexibility  in  mind.  Future 

functionality addition shall not influence overall architectural structure.

With this basic requirements in mind, our next step was to designed an overall 

architecture, which abstractly described our system.

5.3 Overal System Architecture

As  we  move  the  description  of  our  architecture  components,  it  is 

pertinent  to  define  a  list  of  keywords  so  understanding  of  the  system 

functionality is made simpler:

• Blue Station – The components that are installed at various locations, 

and  are  controlled  remotely.  The  stations  hold  the  capability  for 

performing scanning and content dissemination.

• Central Infrastructure – The set of components present at a central 

location. Its purpose is to provide for overall management of stations.

• Broker –  An  intermediary  component  that  provides  naming  lookup 

capabilities, and is involved in all connections to and from stations.

• Service –  The  logical  component  which  holds  information  about  the 

content to deliver, to whom content is to be delivered, and under which 

contextual setting.

• Command – These components are created from service objects, and 

can be seen as a stripped down version of services.  Commands hold 

only content, method of execution, and destination related information. 

They are posteriorly interpreted by handlers, that do the actual delivery 

to users.

• Flags – A set of configurable restrictions that can be set upon service 

creation. Its purpose is to define the context under which a service is to 

be executed.

• Service Scheduler – The component that holds a queue of services, 

and determines which of the individual components may be executed, 

and under which order. When a service is triggered for execution, the 

scheduler translates that object into a command, and passes it along 

the delivery system.
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• Delivery System –  The component  responsible  for  the execution of 

commands.  This  component  is  the  actual  responsible  for  content 

delivery to users, as it holds the classes that implement the logic for 

interpreting commands – the command handlers.

As keywords are defined, we proceed to the actual  description of the 

high-level architecture. Looking at Figure 10 we have the main components of 

the  system.  We  observe  the  existence  of  four  distinct  components:  Blue 

Stations, the Broker, the Central Infrastructure, and User Devices.

We  verify  that  the  broker  connects  both  stations  and  the  central 

infrastructure,  by  setting  between  them.  Although  not  restricted  too, 

connection between stations and the broker are usually done with the use of a 

GPRS/3G  connection.  Connection  type  between  central  infrastructure  and 

broker  usually  is  done  through  a  wired  connection.  Also,  end-users 

communicate with our system using Bluetooth.

Given the demonstration of the high-level system architecture, we now 

proceed to the discussion of individual system components.
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5.4 Component Description

Besides  the  stations,  the  central  infrastructure,  and  the  broker,  the 

system is composed by an additional component – the administration console. 

Being part of a distributed system, these components have the ability to work 

separately from each other, as long as a network connection exists that inter-

links them. The most important elements are the stations, which actually scan 

the vicinity for Bluetooth enabled devices, and further determine if content is 

to be disseminated. Let's then proceed to an individual description of these 

components.

5.4.1 Blue Stations

Blue stations are the mobile elements of the system, as they may be 

deployed at various environments. They are usually small computers with two 

Bluetooth  dongles  and  a  3G  modem  attached,  as  seen  in  Figure  11. 

Nevertheless,  stations  may use several  Bluetooth  dongle  configurations,  as 

well several types of Internet connections (Figure 12).

The basic element of the station is the scanner,  a Bluetooth dongle that 

permanently scans for nearby devices. The scanner normally is implemented 

using a class 2 Bluetooth dongle. The reason for using a class 2 dongle relates 

to scan range limiting, as we are interest in devices which are closer to the 

stations. Nevertheless, if interference is high, the use of a class 1 dongle may 

be justifiable.

On the other hand, we want to maximize our delivery range. For this 

reason  we  use  class  1  devices  as  delivery  dongles.  Theoretically,  many 

delivery  dongles  may  exist,  but  in  reality  constraints  such  as  USB  power 

consumption  play  an  important  role  in  determining  the  maximum  allowed 

devices running in simultaneous. Further, the more devices exist near each 

other, the greater the interference will be, and consequently signal quality and 

delivery success rates may be influenced. We raise attention to the fact that 

delivery dongles are optional, as blue stations have the capability to work with 

a single dongle. This situation is undesirable, since using a dongle for both 

scan and content delivery leads to poor results.
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The  WAN  modem  is  used  so  that  a  connection  with  the  Internet  is 

established. Actually, any technology is possible but due the mobile nature of 

the stations wireless technologies are more suitable.

The  Blue  Station  in  itself  is  a  computer  which  runs  a  GNU/Linux 

operating  system.  Our  current  configuration  uses  a  Slackware6 distribution 

along  with  the  BlueZ7 library  and  tools.  Additionally  we  also  use  the 

OpenOBEX8 package  for  sending  content  to  end-users  using  the  OBEX 

protocol. The language on which the major components are implemented is 

Perl, but several external utilities are used, and some components are written 

in Bash.

Regarding the software elements of the Blue Stations (Figure 13), six 

main components exist: the device reader, the publishing module, the service 

scheduler, the delivery system, the logging system, and the communication 

system.  Some  elements  communicate  bidirectionally  and  others 

unidirectionally.

6http://www.slackware.org
7http://www.bluez.org
8http://dev.zuckschwerdt.org/openobex
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5.4.1.1 Device Reader

The  device  reader,  written  in  both  Perl  and  Bash,  is  the  element 

responsible  for  scanning the vicinity,  and is  composed by several  different 

components (Figure 14). The scanner is encapsulated in a separate application 

named  btreader.sh.  This  tool  is  entirely  written  in  Bash,  and  is  simply  a 

configurable interface to an already existing BlueZ component named hcitool. 

By default the scanner outputs devices' Bluetooth addresses, the time stamp, 

and the clock and class hexadecimal values.

The scanner supports modification of various settings, including inquiry 

duration,  scanning  frequency,  device  friendly  name  retrieval,  and  the 

interface  to  use  in  the  inquiry  process.  If  only  one  Bluetooth  dongle  is 

available, then the scanner can be set to use a lock option, which translates 

into  having  exclusive  access  to  the  Bluetooth  dongle.  This  mechanism  of 
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locking works together with the delivery system, so that content delivery and 

inquiry are exclusive.

The  scanner  works  by  executing  hcitool  to  generate  output,  and 

posteriorly  performs  a  set  of  modifications  using  UNIX  standard  tools.  In 

particular,  sed and  AWK are  used  to  perform  these  transformations,  and 

consequently direct the generated content to a named pipe (FIFO) structure.

After the transformation, the content is forwarded through the FIFO to 

another  Perl  component  named  btdevread.pl.  This  component  receives  raw 

textual  content  and uses it  to  create  device  objects  and maintain  a list  of 

these elements. Upon list update, this component will send the device list to 

the publishing system using another form of IPC – UNIX domain sockets. The 

sequence of events described is depicted in Figure 15.
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5.4.1.2 Publishing System

Before content from the scanning process is sent to interested parties, it 

is  received  by  the  publishing  system.  We  use  this  publisher/subscriber 

architectural  pattern  to  decouple  the  device  reader  from  those  elements 

interested in the device related information. Five distinct channels are made 

available  by  the  publishing  system  for  subscription,  and  are  described  as 

follows:

• DEV_ENTRY refers only to those devices that enter the scan range, and 

have not been seen in the recent past by the scanner.

• DEV_EXIT refers to those devices that were in range of the scanner, but 

haven't been seen again for a specific amount of time, and therefore 

have been excluded of the device list.

• DEV_UPDATE refers to those devices that already existed in range scan.

• DEV_ENTRY_UPDATE conjugates both DEV_ENTRY and DEV_UPDATE.

• DEV_ALL refers to all  previous mentioned types of events (e.g. entry, 

exit and update).
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The publishing system is also written in Perl, and works by using a UNIX 

domain socket server. It will wait for the device reader to send content along 

this path, and as an after-effect will  proceed to channel content update and 

subscribed elements notification. The static structure of the publishing system 

is  observed  in  Figure  16,  where  we  see  that  many  subscribers  may  be 

connected to the publisher.

Using  this  structure  for  passing  information  along  the  interested 

elements  adds  flexibility  to  the  system,  as  we  easily  add  or  remove 

subscribing elements at run-time, and maintain the system functionality intact. 

For  example,  we  could  add  a  component  responsible  for  estimating  the 

number of people in the vicinity without any complications to the remaining 

components.  It  is  Important  to  note  that  although  the  publishing  system 

receives content through a UNIX domain socket, it passes the content along to 

subscribers using the most efficient method of IPC – shared memory segments 

[SR 05].

5.4.1.3 Service Scheduler

After published, the list of devices is used by the subscribers. Currently, 

we  have  only  one  component  which  subscribes  to  content,  using  the 

DEV_ENTRY_UPDATE  channel.  That  component  is  the  service  scheduler. 
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Responsibilities  associated  with  it  include  service  queue  management, 

translation  of  service  objects  into  command  objects,  and  maintenance  of 

blacklisted addresses. The class diagram of the service scheduler component 

is seen in Figure 17.

Service  objects  (Figure 18) are  composed of  a set  of  attributes,  and 

have another class associated with them – the ServiceFlag class. These latter 

objects are used so we can define the particularities of services using what we 

term as  flags. In reality these provide a rather flexible way to define service 

behaviours, as it is possible to specify and combine an array of these flags.

The service  scheduler  is  a  multi-process  program which uses  shared 

memory  segments  for  inter-communication  among  local  component 

processes. As it uses a DEV_ENTRY_UPDATE channel, the service scheduler will 

receive an updated list of devices every time a new device is seen, or when 

information  related  to  existing  devices  is  updated.  The  verification  of  this 

device  list  happens  synchronously,  as  the  main  process  is  accountable  for 

analysing both service queue and device list, and determining if any service 

needs  to  be  executed.  If  multiple  dongles  are  used,  the  system  supports 

multiple simultaneous service execution. Further, if only one multicast service 

is being executed, and multiple dongles are being used, the system has the 

capability  to  use  distinct  dongles  for  delivering  content  to  different 

destinations.

For  determining which  services  to  execute  the scheduler  performs  a 

series of tests on the service objects present in the queue. The component 

responsible for this is an instantiation of the ServiceReader class, and it works 

by verifying if  a service  conforms to the flags specified upon creation. The 

method used for flag verification is seen in  Figure 19. Only when a service 

passes all the tests is it marked by the ServiceScheduler for execution.

Although the ServiceScheduler class determines which services are to 

be executed, it is not its responsibility to do the actual execution. Instead, a 

new process is spawned and a class of type  ServiceHandler is created. The 

first step taken by this component is to verify if  there is the need to fetch 

content for the service.  This is only the case when the  TARGET  flag is set, 

indicating the URI where content is to be fetched from. On the other hand, the 

ServiceHandler will not worry to fetch content if content is static, which is the 
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case when content is directly embedded into the service object upon creation 

(an example is seen in Code 1). The ensuing step made by the ServiceHandler 

is to proceed to the translation of the service object into a command object. 

After  this  is  done,  the  ServiceHandler  opens  a  connection,  using  a  UNIX 

domain socket, with the delivery system, and instruct this component to add 

and execute the command. The ServiceHandler will then wait until completion, 

and update the Service object accordingly.

The actual update of the service is done by the ServiceScheduler class. 

This  class  implements  the  interface  for  actual  service  manipulation,  and 

therefore  all  service  related operations are  made by it.  Updating a service 

object will usually consist of updating the shared memory segments, but also 

the DBM file so that data persistence is maintained. Some updates, such as 

marking a service as non-active, are not (and should not be) reflected to the 

DBM file, as this will not only undermine performance, but as well make the 

service scheduler initialization process further complicated.

Further  important  is  the  fact  that  the  service  scheduler  component 

listens  for  outside  connections,  enabling  for  remote  control  over  the 

component.  This is  implemented by the  ServiceSchedulerProxy class,  which 

will create a UNIX domain socket and wait for connections to come in. When a 

remote request is made, the ServiceSchedulerProxy component will delegate 

execution to the ControllerRequestHandler, and thereafter will send the reply 

back  to  the  client  how  issued  the  request.  This  strategy  of  delegating  a 

request to other component was used throughout our system, and it is based 

on the object-oriented Proxy pattern [GHJV 95, Martin 03].
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my $service = BtService::Service->new(
CONTENT => 'Happy new year',
CONTENT_EXTENSION => 'txt',
FLAGS => {

SERVICE => {
EXECUTION_METHOD => 'OBEXPUSH',
STATEFULL => 1,

},
TRIGGER => {

DESTINATION => ['FF:FF:FF:FF:FF:FF'],
LOCATION => 'UMa',
DATE => '01/01/10',
TIME => '*;*',

}
}

);

Code 1: Creation of a service that broadcasts a “Happy new year” message on the 1st 

day of the year 2010, all day long at location “Uma”. The service is statefull and 

therefore remembers already served devices
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5.4.1.4 Delivery System

Delivering content to the end-user is the responsibility of the delivery 

system. After the service scheduler creates services and translates them to 

command  objects,  the  delivery  system  tries  to  execute  them,  and 

consequently disseminate content to the user.

The delivery system also works in a multi-process environment. Upon 

initialization two processes exist, and when a command has to be executed a 

new process  is  created.  The  inter-communication  done  inside  the  delivery 

system is, analogously to the service scheduler, done using shared memory 

segments.

When a command arrives to the delivery system, the first component to 

receive it is an object of type CommandListener. This component uses a UNIX 

domain socket to listen for command objects sent by the service scheduler. 

Upon  reception,  the  CommandListener  determines  the  local  operation  to 

execute, which is one of two: add the command to the queue, or mark it for 

execution.

For a command to be executed, it has to be passed to an object of type 

CommandDispatcher.  This  module  implements  all  the  logic  necessary  for 

determining which CommandHandler object needs to be instantiated, so that 

the actual execution of the command can proceed. The CommandDispatcher 

maintains  a  list  of  Bluetooth  interfaces,  marking  them accordingly  when a 

command execution is in place. Also, this component has the ability to work 

together with the device reader, by using a locking mechanism that ensures 

exclusive access to the Bluetooth dongle, if a single dongle is present.

The referred method of command execution is based in the Command 

Dispatcher pattern [DF 01]. By using this pattern we achieve greater flexibility 

for the delivery system. First, we enable for handler registration, removal and 

replacement  at  run-time,  without  the  need  for  component  reinitialization. 

Secondly, by putting the command execution logic into the CommandHandler 

objects,  we  gain  the  ability  of  creating  lightweight command  objects,  and 

therefore transmit these much more efficiently across processes.

In  Figure 21 we have depicted the sequence of events that basically 

happen  in  a  delivery  process.  The  content  is  received  by  the 

CommandListener,  and  by  consequence  the  method  handleCommand() is 

61



 5   System Description

issued to the CommandDispatcher. This later component then proceeds to the 

instantiation of the correct CommandHandler object and interface reservation 

(buildCommand() method), and finally demands for the delivery of the content 

to the end-user. The CommandDispatcher gets the operation status from the 

CommandHandler, and prints the information related to it. It also replies to the 

service  scheduler  component,  so that  the scheduler  can update its  service 

queue accordingly.
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5.4.1.5 Communication System

The component responsible for communicating with the outside world is 

the communication system. It  lies in the boundary of the Blue Station, and 

works  very  similarly  to  a  proxy.  The  device  reader,  service  scheduler  and 

delivery system all implement mechanisms for remote control, but they listen 

only for connections using UNIX domain sockets.

By  creating  a  component  whose  solely  responsible  for  inter-network 

communication,  we  never  expose  internal  elements  directly  to  the  outside 

world.  Instead,  all  communications  must  pass  through  the  communication 

system, as it decides to which local component a request is to be forwarded. 

This is better understood by looking at Figure 22, where we see that the only 

component that uses Internet sockets is the communication system. All other 

components are restricted to local communication.

Another  aspect  of  the communication  system is  that  it  accepts  both 

local and remote requests. In other words, local components can ask for the 

communication  system  to  forward  specific  requests  to  the  broker  (and 

consequently to the central),  but it  also accepts  remote requests  from the 

outside world. Forwarding local requests is straightforward, as the link with the 

outside  world  is  1-to-1.  On  the  other  hand,  forwarding  remote  requests 
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involves  determining  which  component  is  the  content  intended  too.  For 

achieving  this,  we  associate  each  operation  with  a  specific  component  by 

using a dispatch table, a technique utilized in many system's components. The 

components that constitute the communication system are seen in Figure 23.

Another aspect to mention is that local components can send buffered 

requests to the communication system. This way, requests are serialized and 

stored in a file,  as the communication system periodically  checks to see if 

content needs to be sent. Buffer is cleared when content is successfully sent to 

the destination.
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5.4.1.6 Logging System

The logging  system has  a  simple  structure  (Figure  24),  and  its  only 

responsibility is to collect the log files created by the remaining components 

(e.g. device reader,  service  scheduler,  delivery system, and communication 

system).

When the Blue Station is started, a script is responsible for scheduling 

execution of the logging system. It uses the user's crontab entry for instructing 

the operating system to run the logging system everyday at 23:59. Thereafter, 

the logging system fetches the content present in the log directory, creates a 

compressed file, names it accordingly, and finally sends a buffered request to 

the  communication  system,  so  that  the  log  content  is  transmitted  to  the 

central  infrastructure.   Code  2 shows  the  steps  taken  for  scheduling  the 

logging system. 
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#Schedule for logging content delivery to central
if [[ -z "$BLUE_HOME" ]]; then
  echo "BLUE_HOME variable is not set. Cannot set up crontab entry for 
content logging delivery. Quiting..."
  stopStation
fi
if [[ ! -e cron_command ]]; then
  echo "59 23 * * * $BLUE_HOME/LoggingSystem/exec_log.sh $BLUE_HOME" 
>cron_command
  #Error occured
  if [[ $? != 0 ]]; then
    echo "An error occured while schedulling for content sent to central 
server. This will need to be done manually"
  #Append created cron content to crontab
  else
    #Put existing cron tab entrys into temporary file
    crontab -l >orig_cron_tab
    #Append to cron_command file and add it to cron
    cat orig_cron_tab >>cron_command
    crontab cron_command
    if [[ $? != 0 ]]; then
      echo "Couldn't set up cron command set up. Logging System is not 
scheduled to send log content"
    fi
    #Clean up the recently created cron_command file
    rm cron_command
  fi
fi

Code 2: Code for schedulling logging system execution

With the discussion of the logging system we conclude our overview of 

the Blue Station component. Let's now proceed to the intermediary element – 

the Broker.

5.4.2 Broker

As  an  intermediary  component,  the  broker  is  involved  in  all 

communications between stations and the central infrastructure.  As such, the 

broker acts as a naming server,  but also as a request/reply forwarder.  The 

behaviour of the broker is similar to the communication system of the stations. 

In reality, the  BrokerConnectionHandler implements the same abstract class 

that  some  of  the  components  of  the  communication  system  –  the 

RequestForwarder (Figure 25).

The addition of the broker allows us to gain run-time name lookup, an 

important aspect if we consider that stations may have dynamic addresses, 

and that referring to them by a numerical IP would be problematic. Further, 
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the  broker  is  present  in  all  connections  to  and  from  the  stations.  This  is 

advantageous because if we assume that stations may not be able to listen 

directly for outside connections, the use of tunnelling techniques is necessary. 

With the existence of an intermediary component, we remove the burden of 

the stations and central infrastructure to implement concrete communication 

logic, as we need to worry only in implementing the code necessary for them 

to connect to the broker.

The broker  maintains a data structure  which allows it  to associate  a 

station's name with a concrete address. This structure is an hash table, and is 

termed as a server table. A station must register with the Broker before the 

remaining components are able to contact it. This is done when the station 

component  is  initialized,  where  there  is  a  direct  request  to  the  Broker  to 

perform registration. If the station is said to be already registered, the station 

will then request for replacement of the address, as there is a chance that the 

address has been modified.

Although security  is  not  one  of  our  main  concerns  at  this  point,  we 

implemented  a  simple  mechanism  for  making  sure  that  a  station  cannot 

camouflage as another. Upon the first registration, a station is given a random 

hash  code that  it  must  store  in  order  to  identify  itself  in  the  future.  By 

observing  Figure 26 we see the sequence of events that must take place in 

order for a remote operation to be executed.

In  order  to  support  multiple  connection  forwarding,  the  Broker 

component uses a multi-process strategy. When a new request comes in, a 

new child  process  will  be  spawned.  If  the request  is  to  be forwarded to a 

station or to the central infrastructure, the Broker will locate the component 

and  establish  a  connection  with  it.  The  process  is  independent  from  the 

registration type, as the Broker maintains only a simple string composed by 

address and port of the component.

As the overview of the Broker is made, we can proceed to the discussion 

of the remaining component of the system – the central infrastructure.
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Figure 25: Broker class diagram
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5.4.3 Central Infrastructure

Composed by several  different components,  the central  infrastructure 

has the responsibility to log content, manage the database, and provide the 

mean to control individual stations. Element disposition is seen in Figure 27.

The most important component is the station manager. Its objective is 

to provide the means for remote station management. It is a multi-process 

program, and it works by listening for requests using a UNIX domain socket. 

The  classes  that  constitute  this  component  are  shown  in  Figure  28.  As  is 

observed,  this  component  has  the  responsibility  of  database  management. 

When a client issues a request to the station manager, the  StationManager 

class  creates,  after  spawning  a  new  child  process,  a  new 
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StationControllerProxy object  to  handle  the  request.  This  element  has  the 

responsibility  of  performing  database  management  –  using  the 

DatabaseManager class  –  and  delegate  execution  to  the  StationController 

class, which implements all control station related methods.

Receiving  the  content  sent  by  the  stations'  logging  systems  is  the 

responsibility of the log manager. It listens for incoming local connections, and 

upon concrete request it  creates the log directories and files,  so that each 

station has a dedicated directory for storing log content.

Working  similarly  to  the  station  communication  system,  the  central 

infrastructure communication system will provide inter-network connectivity. 

Like the blue stations, the central infrastructure must execute a registration 

process with the Broker. The communication system has the responsibility of 

registring  with  the  Broker,  and  act  as  a  request  forwardered.  The  static 

structure of this element is seen in Figure 29.

Given  the  description  of  the  central  infrastructure  we  move  to  the 

discussion of the administration console.
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5.4.4 Administration Console

A component not discussed until now is the administration console. Its 

objective is to provide an interface so that station and service management is 

possible. The administration console also connects to the broker component, 

as  it  needs  the  broker  naming  capabilities  to  consequently  connect  to 

individual stations, and also to the central infrastructure.
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The administration console is built upon a Model-View-Controller (MVC) 

architectural  pattern.  This  is  done  so  that  we  may  easily  migrate  from  a 

console  based interface  to  a graphical  based one.  Using MVC we separate 

concerns  and  as  such  future  modification  of  interaction  method  is  made 

simpler,  as  we have only to modify the View classes.  Figure 30 shows the 

administration console composing elements.

With  the  use  of  the  administration  console  we  may  connect  to  any 

station registered with the broker. A list of commands is made available upon 

initialization of the console, as we indicate the name of server to which we 

wish to connect. After successfully establishing a connection to a station, the 

list of possible commands expands, as we are able to control all the elements 

that constitute the station (Figure 31). As an example, in Figure 32 we see the 

output  produced  by  the  ds command,  that  shows  the  details  related  to  a 

specific service.

Also,  it  is  possible  to  connect  to  the  central  infrastructure  using the 

administration  console.  Upon  successful  connection,  a  different  set  of 

commands is made available to the administration, as he gains the possibility 

of controlling individual stations, as well remove stations from the broker and 

database.

Overall, the administration console allows us to remotely manage both 

stations and the central  infrastructure by using the broker's  naming lookup 

capabilities.  It is possible to run the console in any location, as long as the 

minimum necessary modules are available.

With the discussion of the administration console we come to the end of 

our  system  overview.  In  this  section  we  presented  a  more  detailed 

specification  of  the  system  than  in  the  two  previous  sections.  For  further 

system understandability, and its functionality logic, we present in the ensuing 

section  a  more  detailed  scrutinization  of  several  important  aspects  of  the 

system.
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Figure 30: Administration console class diagram

Figure 31: Administration console help menu when connected to 

station 'UMa'
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5.5 System Particularities

In the previous section a detailed overview of the system was given. 

With it, we demonstrated the philosophy of the system and described, with a 

relative level of detail, its components. A complete detailed of the system is 

beyond the scope of this section, but it is still important to delve deeper into 

some  elements,  as  they  are  crucial  for  understanding  the  method  of 

functionality.

5.5.1 Blue Station Configuration

Because the Blue Station was developed to run in Linux, and possibly in 

other UNIX-like operating systems, there was the clear need to devise some 

mechanism for system configuration. As always, it is not desirable to embed 

configuration details into the source code. Users should not have to edit any 

source tree file for modifying the configurable system aspects. Instead a better 

way is to use a configuration file to achieve this.
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• The blue station component uses a shell variable and a configuration file 

for  option  specification.  After  unpacking  the  station  component,  the 

output content will include an installation file named install.sh. This file 

exports  to  the  user  profile the  BLUE_HOME variable.  This  variable  is 

used to determine the installation directory of the station component, 

where it is included the configuration file – bluestation.conf.

• Device reader options are the first to be presented, as the user has the 

ability to change the duration of the scan (SCAN_LENGTH), its frequency 

(SCAN_FREQUENCY),  if  friendly  names  should  be  output 

(SHOW_DEVICE_NAME),  and  if  a  time  stamp  should  also  be  output 

(SHOW_TIMESTAMP). By default these options are set to 8, 5, 0, and 1 

respectively.

• The delivery  system options  are  presented  next,  as  it  is  possible  to 

define the command types supported by the system (COMMAND_TYPE), 

and the respective handling class (COMMAND_HANDLER). A maximum 

up to 10 distinct pairs may be set. By default, the system only supports 

the type OBEXPUSH, and the handler BtCommand::ObexPushHandler.

• Service scheduler option include setting the name of service DBM file 

(SERVICE_DBM_FILE),  and  of  the  blacklisted  addresses 

(BLACK_LIST_DBM_FILE).

• The last set of options are overall settings. The administrator needs to 

set  the  name  of  the  station  correctly  (STATION_LOCATION)  so  that 

registration is possible with the broker, which location is specified by the 

NAMING_SERVER_LOCATION and  NAMING_SERVER_PORT options.  If  a 

SSH tunnel is to be used, then the option USE_SSH_TUNNEL needs to be 

enabled, and both SSH_TUNNEL_USERNAME and SSH_KEYFILE are used 

to specify SSH connection user name and private key authentication file. 

Also, the system currently makes use of the autossh9 application so that 

tunnel reliability is ensured. On the other hand, if no tunnel is used, then 

the  option  EXTERNAL_INTERFACE indicates  the  interface  used  to 

connect  to  the  outside  world.  The  communication  system  uses  this 

setting  to  monitor  the  interface  and  perform  address  replacement 

automatically  when the address changes.  The administrator  indicates 

9www.harding.motd.ca/autossh/
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that  multiple  dongles  are  to  be  used,  by  enabling  the 

USE_MULTIPLE_DONGLES, and by indicating the scanner (SCANNER) and 

delivery  dongles  (DELIVERY_1,  DELIVERY_2,  etc).  Also,  if  multiple 

connections per dongle are allowed, the administrator needs to specify 

the number with the modification of MAX_DONGLE_CONNECTIONS.

Components will read the configuration file upon initialization, and use 

the settings  throughout the process  life.  Processes  also have the ability  to 

modify the configuration file in run-time. This is easily  done in Perl,  as the 

dynamic and text-oriented nature of the language lets us treat text files as 

internal structures, facilitating the usage of the  regular expressions engine.  

Pertinent to say is that both reading and modification procedures are all 

done  transparently  to  users,  as  all  system  (including  the  Broker  and  the 

central infrastructure) components run in the  background, consequence of a 

procedure done upon initialization, known as daemonization.

5.5.2 Daemonization 

Programs  that  reside  in  memory  “permanently”  are  referred  to  as 

daemons. They are usually created upon operating system initialization, and 

are killed only when there is a shut down (e.g. restart or halt) procedure. One 

particularity  of  daemons  is  that  they  are  non-interactive,  autonomous 

programs that need no direct human intervention, and for that reason run in 

the  background.  Daemons  run  without  a  control  terminal  associated,  and 

therefore other means of communication are used to control these processes, 

being signals one of the most common.

In order for a process to be daemonized, it must conform to a set of 

coding rules. Stevens & Rago [SR 05] define the following steps that should be 

performed in order to correctly daemonize a process:

• Disable the umask value. Umask is used so permissions can be enforced 

upon file creation. It is not wise to use such restrictions on a daemon, as 

it may have the need to create several types of files.

• Call  fork to create a child process, and then call  exit to kill the parent. 

This  step  is  actually  responsible  for  sending  the  process  to  the 

background.
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• Call  setsid for making the first child process as the session and group 

leader.  This also allows for stating that the process needs no control 

terminal associated to it.

• Change the working directory.  This  could  be root  directory,  or  some 

other process related directory. What shouldn't be done is to chdir to a 

directory which can influence file system mounting operations.

• Close unnecessary file descriptors (or file handles in Perl), and redirect 

the standard streams. Many variations of standard stream redirection 

can be used here, as it all depends on the nature of the daemon. If for 

example a centralized log facility like syslog is being used, we'll want to 

redirect  all  standard  streams  to  /dev/null.  On  the  other  hand,  if  we 

maintain a separate log file for each daemon, we may want to void the 

standard input and output, and redirect the standard error to a log file.

Naturally, we followed these recommendations and implemented them 

in our system. Although these recommendations are made in reference to the 

C programming language, they can be easily transported to Perl.

As a form of exemplification let's consider the daemonization process of 

a blue station communication system. We start by using a set of constants 

that define the details of the daemon (Code 3). The first argument value is 

read  ($ARGV),  as  this  determines  the  need  to  proceed  to  daemonization. 

Furthermore,  the  process  ID  (PID),  log  file  (LOG_FILE),  and  the  component 

name (MODULE_NAME) are also defined.

Actual daemonization of the process happens after, as we first test for 

existence of a PID file to make sure that only one instance of the daemon 

exists. We then change the working directory, create the child and exit the 

parent, and finally make the child a session leader, redirect the streams, and 

create the PID file (Code 4).

Also  important  is  the  redefinition  of  signals  (Code  5).  We  use  Perl's 

special  hash  $SIG to define what kind of  action should be performed upon 

reception of specific types of signals. A common step to take here, besides 

those shown in Code 5, is to define the HUP signal, and instruct the program to 

proceed to verification of the configuration file. This is done in several other 

elements of the system, like the device reader. It allows us to modify system 
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settings, update them in the configuration file, and instruct the component to 

restart and read the configuration file again.

As referred,  the dameonization  procedure  dissociates  processes  from 

the  controlling  terminal.  There  is  no  need  to  allocate  a  terminal  if  no 

interaction  is  to  happen  between  user  and  process.  A  common  usage  for 

daemon processes is to use them as a  server components, that will wait for 

incoming  requests  made  by users.  This  client/server architecture  is  indeed 

adopted by many of the system's elements, being the most evident case the 

service scheduler. When a user wants to create a service, he must connect to 

this element, and instruct for service creation. Many options are available to 

the user in this process, as this is the foci of discussion of the next section.

use constant DAEMONIZE => ($ARGV[0] =~ /^(-d)|(--daemon)$/) ? 
1 : 0;
use constant PID_FILE => '/tmp/commsys.pid';
use constant MODULE_NAME => 'SysctlDaemon';
use constant LOG_FILE => $ENV{'BLUE_HOME'} . 
"/log/comm_sys.log";

Code 3: Constant definition for daemonization
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#Daemonize component
if (DAEMONIZE) {

#No two daemons can be running simultaneous
if (-e PID_FILE) {

print_ts(${\MODULE_NAME},
"A daemon of this type is already running. If not 

remove file '", PID_FILE,"'");
exit(1);

}

#Change working directory
chdir $WORKING_PATH;
open STDIN, '/dev/null';
open STDOUT, '>/dev/stdout';

#Create child and kill parent
defined(my $pid = fork) || die "Fatal: can't fork [$!]";
exit if $pid;

#Make child session leader, redirect standard error, and create 
PID file

setsid;
$PARENT_PID = $$;
open(STDERR, ">>", LOG_FILE);
open(PID_FH, ">", PID_FILE);
print PID_FH $$;
close(PID_FH);

}

Code 4: Daemonization procedure

#Set up signal handlers
$SIG{CHLD} = 'IGNORE';
$SIG{INT} = $SIG{TERM} = sub {

my $signal_type = shift;

print_ts(${\MODULE_NAME}, "Got $signal_type signal. Quiting...");
kill TERM => $_ for (@child_pids);
unlink(PID_FILE);
unlink(STATION_PROXY_SOCK);
$sysctl->cleanUp();
exit(0);

};

Code 5: Redifinition of signals

5.5.3 Service Specification Language

In order to offer greater flexibility to the user, our system supports the 

definition of a set of options upon service creation. These flags that we allow 

79



 5   System Description

the users to define, characterize the service, and therefore we see them as a 

service specification language (SSL).

Although  it  is  a  rather  rudimentary  language,  the  SSL  allows  for 

specification of diverse contextual  dimensions. The flags are separated into 

two distinct groups: service flags and trigger flags. The first set refers to the 

definition of the service, and the second is related to the context that must be 

observed in order for the service to be eligible for execution. All these flags 

are set in the ServiceFlags class (see Figure 18). Additionally, the Service class 

also allows for indication of several options. In both cases, some options are 

supposed to  be  set  directly  by  the  user,  and others  updated  according  to 

service execution. The following list presents the currently supported flags by 

the system:

• Main service flags

◦ CONTENT – If set directly, the service has static content. Note that 

only textual content can be set directly.

◦ CONTENT_EXTENSION – This flag indicates the type of content. If it is 

simple text, then it would indicate  .txt. On the other hand, if it is a 

jpeg image, it would indicate  .jpg. This is set automatically by the 

system.

◦ HASH_CODE  –  This  refers  to  the  fingerprint of  the  service.  It  is 

automatically  set  upon  service  creation.  A  MD5 hash  is  used  to 

generate a set of hexadecimal  digits that will  uniquely define a a 

service. We accomplish this by using  Data::Dumper module, which 

stringfies Perl's  internal  data  structures,  making  it  suitable  for 

applying the hash algorithm.

◦ SERVICE_NAME – This  defines the name of  the service.  It  is  used 

upon random file creation. End users will receive a name containing 

the string defined in this field, along with other random characters.

◦ ADDITION_DATE  –  The  date  of  addition  to  the  service  queue. 

Automatically set.

◦ RETRY_VALUE – How many times has the service  been executed? 

This is automatically set by the system

◦ ID – Defines the unique local number of a service. Set by the system.
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◦ CONTENT_STATIC -  The system automatically sets this flag to 1 if 

the service has static content.

• Service definition flags

◦ TARGET – This indicates the source where content is to be fetched 

from. When this is set, the content is said to be dynamic. The input 

must be in the form of a URI, and can be either local or remote.

◦ EXECUTION_METHOD – The method used to deliver content to end 

users. Currently only OBEXPUSH is supported.

◦ ACTIVE – This indicates if a service is currently active or not. This is 

automatically set by the system.

◦ STATEFULL – This flag indicates if a service maintains state. In other 

words,  if  this  is  set,  the  service  will  remember  the  addresses  to 

which content has already been delivered too, and will  not deliver 

the same content again.

◦ SERVED_DEVICES  –  An  array  of  devices  to  which  content  was 

successfully delivered. If a service maintains state, then it won't try 

to deliver content to those devices contained in this array. This is 

automatically managed by the system.

◦ LAST_EXECUTION – The date of the last service execution. This is set 

automatically by the system.

◦ LAST_CONTENT_CHECKSUM – If the service maintains state, and the 

content  is  dynamic,  then  the  system  will  periodically  check  the 

content  to  see  if  changes  occurred.  Analogously  to  the technique 

used for defining the service fingerprint, we use MD5 checksums to 

determine changes in the content. If the content has changed, then 

the system will clean the SERVED_DEVICES flag, and deliver content 

to  all  surrounding  devices.  This  is  automatically  managed  by  the 

system.

◦ BROADCAST – This flag is set to 1 if we want to deliver content to 

everyone. This is automatically set by the system.

• Service contextual flags
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◦ DESTINATION – This defines the address(es) to which content is to be 

delivered to. The special address FF:FF:FF:FF:FF:FF indicates that this 

is  a  broadcast  service.  Setting this  address will  make the system 

enable the BROADCAST flag.

◦ PRESENCE_RULE – This flag accepts two options:  ANY or  ALL. Either 

of this flags one makes sense if multiple destinations have been set. 

If  this  is  the  case,  then  ANY  indicates  that  the  service  is  to  be 

executed if  any of  the destination addresses comes into scanning 

range. On the other hand, if  ALL is set,  then the service will  only 

execute when all destinations have come into scanning range.

◦ LOCATION – The location where content is to be delivered. Indicating 

more than one location indicates that the service is to be added in 

more than one location.

◦ DATE  –  This  indicates  the  service's  date  of  execution.  Not  only 

concrete are supported, as wildcards are also acceptable. If we want 

a service to run forever we would indicate *;*. If we wanted a service 

with a start  date, but not an end date we would use  dd/mm/yy;*. 

Contrarily,  if  we  wanted a service  which  only  runs  for  a  day,  we 

would indicate a concrete date with the format dd/mm/yy.

◦ TIME  –  Indicates  the  time  of  execution.  The  same  wildcards 

supported in the DATE flag are also supported here.

◦ DISC_DURATION  –  The  minimum  time  that  a  destination  address 

must be in scanning range before service execution is tried.

◦ EXECUTION_FREQUENCY  –  This  flag  indicates  that  a  service, 

independently of other flags, is only to be executed if the defined 

amount of time has elapsed since the last execution.

◦ CLASS – An array which restricts  the classes of devices to deliver 

content to. We can indicate just the major class, or we can further 

specify the minor class. If we want to restrict our class of devices to 

just mobile equipment, we use the hexadecimal value 0x000200. It 

is advisable to impose this kind of restriction, as often we are only 

interested in delivering content to mobile equipment and personal 

computers.
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With the flags here described users can build several types of services. 

The  philosophy  is  simple:  define  the  type  of  content  a  service  uses,  and 

thereafter  define  on  which  context  should  the  service  be  executed.  As  an 

example, lets consider the creation of a news service. We want to fetch RSS 

headlines from a specific site, and transform and deliver them to public transit 

users. For accomplishing this task we do the follow:

• Create a server side script which fetches the content from a website. 

This script will then transform the content so that unnecessary text is 

filtered out.

• Create a service which points to the above script, that simply outputs 

the transformed content.

We start by building the script responsible for fetching and transforming 

the  news  content  (Code  6).  By  using  grep  and  sed  capabilities,  we  easily 

remove HTML related information, and shape the content for textual delivery. 

Thereafter,  a  simple  PHP  (Code  7)  will  be  responsible  for  outputting  the 

transformed content. Finally, we define a service with the options seen in Code

8. It is seen that we point to the PHP script hypothetical location, by defining 

the TARGET flag. Also, the service maintains state, and delivers only to mobile 

equipment, such as cellphones and PDAs.

This overview of the service specification language, and in particular the 

contextual  flags,  set  the  foundations  needed to  understand  the  process  of 

determining if a service is to be executed – the subject of the next section.

curl http://some_news_services.com/RSS/Feed/news/homepage  | grep 
"<title>" | sed 1d | sed -e 's/\&amp\;/\&/g' -e 's/<title>//g' -e 's/<\/
title>//g' -e 's/^ *//g' -e ' i\
\
'

Code 6: Script responsible for fetching and transforming news headlines
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<?php
echo "We're proud to present the news headlines for today\n";
echo "\n";
$news = shell_exec('./get_news.sh');
echo html_entity_decode($news, ENT_QUOTES,'UTF-8');
echo "\nFonte: NEWS PROVIDER";
?>

Code 7: Script responsible for outputing transformed content

my $service = {
FLAGS => {

SERVICE => {
EXECUTION_METHOD => 'OBEXPUSH',
TARGET => 'http://server.somewhere.com/news.php',
STATEFULL => 1

},
TRIGGER => {

DESTINATION => ['FF:FF:FF:FF:FF:FF'],
LOCATION => 'Bus_Stop',
DATE => '*;*',
TIME => '*;*',
CLASS => [

{
MAJOR => 0x000200,
MINOR => undef

}
] 

}
}

};

Code 8: Creation of the news services

5.5.4 Service Execution Process

After the creation and addition of services, it becomes the responsibility 

of the service scheduler to determine if the contextual scenario, defined by 

the services flags, has been met. As such, the scheduler constantly verifies the 

service queue, and analyses the objects included within.

Verification starts by first determining the number of Bluetooth dongles 

made available for delivery. If just one dongle is available, or one dongle is 

used for both scanning and delivery, then the system will conclude that just 

one service must be executed at a time. On the other hand, if two or more 

dongles are available, then the possibility of simultaneous service  execution 

exists.
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Only  those  services  marked  as  active  (e.g.  not  being executed)  are 

considered for addition into the execution list. Of that list, the system chooses 

those services who conform to current contextual settings. The sequence of 

verification has already been seen in  Figure 19.  Before services are actually 

verified, they are sorted by ascending order of creation. This sorting is done at 

insertion time,  and  the  objective  is  to  provide  higher  precedence  to  older 

services for flag conformity verification. The kind of sorting used is a simple 

straight insertion technique, as defined in [Knuth 98].

After determining the services to execute, the system again analyses 

the list, and gives priority to stateless services. The number of times a service 

has been tried to be delivered is also taken into account, as the system sorts 

by  ascending  order  of  retry.  This  same  procedure  is  repeated  for  stateful 

services.. In order to better understand the textual descriptions given, Figure

33 presents  an  activity  diagram,  that  illustrates  the  algorithm used  in  the 

process of selecting the services to execute.

Subsequently,  and after  the execution list  is  determined,  the system 

needs to identify to which devices content is to be disseminated. The first step 

of this process consists on the analysis of the target device list, created in the 

previous  step.  Since  the  system  doesn't  want  to  try  and  send  content  to 

devices to whom content is already being tried to be delivered to, it removes 

those devices from the target device list. Clearly, if the target device list is 

empty, then the service cannot be executed.

After  the  determination  of  the  target  device  list,  the  system  then 

proceeds  to  randomly  choosing  elements  of  that  list.  The  simplest  case  is 

when a service has only one destination, in which the system does not perform 

additional  computations.  On  the  other  hand,  if  the  service  has  multiple 

destinations,  then  the  maximum  number  of  random  devices  to  choose 

depends on the following factors:

• If  the  system  is  executing  solely  one  service,  then  the  maximum 

number of target devices is given by the number of available delivery 

dongles multiplying by the number of allowed simultaneous connections 

per dongle.
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• If the system is executing more than one service, then the maximum 

number  of  target  devices  is  given  by  the  number  of  allowed 

simultaneous connections per dongle.

Basically, this means that although the system limits the use of a dongle per 

service,  if  just  one  service  is  in  the  execution  list,  the  system  can  utilize 

multiple  dongles  to  broaden  the  number  of  target  devices  to  disseminate 

content  to.  This textual  description is  better comprehend by looking at the 

algorithm depicted in Figure 34.

Finally, and after marking all services in the execution list as inactive, 

the system executes the steps depicted in  Figure 35. A new child process is 

created for each service, and consequently the child has the responsibility to 

communicate with the delivery system, and wait for service execution reply. It 

then marks the service accordingly (e.g. failure or success), changes its active 

status, and finally upgrades the service queue.

As  we  detailed  the  process  of  service  execution,  we  saw  that  the 

scheduler is not the element responsible for actually delivering the content to 

the end-user. Instead, it simply translates from service to command objects, 

and passes them along to the delivery system. The actual process of delivery 

is what we detail in the next section.
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Figure 33: Determining the list of services to execute
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Figure 34: Device filtering and dongle availability determination
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5.5.5 Command Execution Process

It  is  the delivery  system the  component  responsible  for  sending  the 

actual  content  to  the  end-user.  It  waits  for  requests  from  the  service 

scheduler,  in which this later component instructs for command addition or 
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Figure 35: Translation from Service into 

Command object, and consequent transmission to 

delivery system
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execution.  Upon  request  for  execution,  the  delivery  system  analyses  the 

command queue,  and proceeds to command handling. To do so, it forks a new 

child process, and instructs this child to take care of command execution. After 

execution is finished, the child replies to the service scheduler, indicating the 

success or failure of the command. This process is depicted in Figure 36, but a 

more  detailed  description  is  necessary  for  understanding  the  command 

execution process.

After  the  child  is  forked,  the  first  thing  it  does  (besides  signal 

redefinition), is to get an available Bluetooth interface. Depending on the type 

of  command  handler,  the  system  may  reserve  more  than  one  interface. 

Recalling  Figure  20,  we  basically  have  two  types  of  handlers:  concrete 

handlers, like ObexPushHandler, and composite handlers. Composite handlers 

are implemented with the Composite pattern [GHJV 95, Martin 03], so that the 

details of using multiple dongles in simultaneous remain confined to a distinct 

class – the CompositeCommandHandler.  This class will  only be called when 

more than one Bluetooth interface is available, which is the case when the 

number of target devices of a command exceed the maximum simultaneous 

connections supported by one dongle.

Actual execution of the command always follows the same logic, as the 

composite handler implements the same abstract interface than the concrete 

handlers,  allowing for algorithm sharing.  When the interfaces are  reserved, 

and the handlers created, the system forks new child processes, giving them 

the responsibility of delivering content to individual destinations.  Each child 

therefore tries to deliver content, and reports back to the parent process the 

command execution status. The parent process waits until the completion of 

all spawned children, before sending the command status reply back to the 

service  scheduler.  This  description  is  better  comprehend  with  the  help  of 

Figure 37.

With this description we demonstrated the logic of the delivery system. 

A command is received from the service scheduler, and the delivery system 

creates the command handler necessary for execution. If multiple dongles are 

necessary  for  the execution  of  the command,  then a composite  handler  is 

created.  Finally,  the  delivery  system  sends  a  reply  back  to  the  service 

scheduler, indicating the success (or not) of the command, and consequently 

of the service.
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The discussion of the method used for command execution brings to an 

end our discussion of the various particularities of the system. Throughout this 

section we discussed several relevant aspects of our system, demonstrating 

how configuration is achieved, how we daemonize the individual components, 

how we use the specification language, and how the service and command 

execution processes are executed. We now proceed to the demonstration of 

our system in real-world environments, as we present the results of our pilots 

and tests.
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Figure 36: Command handling process



 5   System Description

92

Figure 37: Handler creation and content delivery to end-user
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6 Pilots & Test Results

One essential aspect when building software systems is to test them. 

This allows us to evaluate the system status, potentially finding problems and 

defects.  Mainly,  tests  ensure  that  the  system  is  working  as  expected  and 

enables us to determine its effectiveness and efficiency.

Let's start by mentioning the fact that throughout this  testing  section 

we use a categorization for differentiating testing environments.  As so,  we 

define the flow of an environment to be either static  or  dynamic. The metric 

utilized to determine this is based on the data regarding the continuous time 

that devices remain in range of the scanner. In Figure 44 we have an example 

of a graph which uses 5 arbitrary classes to group devices' continuous time in 

range.  We  use  the  following  formalization  to  determine  the  nature  of  the 

environment:

Let d be a device

Let t(x) be a function which receives a device as input, and calculates 
the seconds which a device was continuously scanned

Let A be the bag of all devices d, where 0≤t d 60

Let N denote the bag of all devices such as t d ∈[0,∞[

An environment E is said to be dynamic if and only if

0.55≤E≤1 :E=
∣A∣
∣N∣

,∣N∣≠0

An environment E is said to be static if and only if

0≤E0.55: E=
∣A∣
∣N∣

,∣N∣≠0

We use another metric to further define the environment, but in terms 

of  affluence.  Three  categories  are  used here:  low,  medium,  and  high.  The 

following formalization is used to described the parameters used to determine 

the level of affluence:
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Let d be the average number of devices seen in an environment, as defined 
by the following expression:

d=∑
i=1

n

∑
j=0

23 xij
n /24

Where n is the number of days on which data was collected, and x the 
total number of devices seen in day i at hour range j.

An environment E is said to have a low affluence if and only if

0≤d≤10

An environment E is said to have a medium affluence if and only if

10d≤30

An environment E is said to have a high affluence if and only if

d30

6.1 Results

In this section we present the results obtained from the pilots. Early on 

the project we adopted a testing philosophy, and as such tests were executed 

constantly. We separate our pilots in four distinct scenarios: university, mobile, 

information center, and public transit ticket vending kiosk. As each of these 

scenarios presents unique characteristics, we believe that testing on each of 

these environments contributed to a better examination of the system.
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6.1.1 University Pilots

We started our overall system testing early on the development stage. 

The computer  was positioned at the local  university near a entry/exit  point 

(Figure  43).  Overall  six  distinct  pilots  were  made,  contributing  to  problem 

identification, and consequently influencing several architectural decisions of 

our system.

Environment  characterization  is  defined  by  looking  at  Figure  45.  We 

verify that the average number of devices in the environment is of about 15 

devices,  and  therefore  we  state  that  this  is  a  medium  affluence  setting. 

Furthermore, Figure 44 indicates that around 40 % of all devices stay in range 

for less than a 1 minute. For that reason, and according to our pre-established 
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Figure 40: Percentages of seen target 
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Figure 42: Comparison between failed and successful delivery 

attempts
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Figure 41: Percentages comparison on 

the reason for content delivery failure
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metric, this environment is termed as static. Given the characterization of the 

environment, we proceed to individual pilot description.

(a) Installation location (b) Cafeteria near installation site

(c) Entry/Exit point

Figure 43: University environment
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Figure 44: Device continuous time in range for university pilots
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• University pilots overall settings

◦ Limited  functionality:  The  system  was  tested  with  only  the  blue 

station  component  working.  The  last  pilot  added  the  Broker 

component, but at a local level. No networking support was added 

during these trials, and no central infrastructure was used

◦ Service to test: A service with textual static content. The service was 

set to delivery a simple “hello” text message. Delivery was filtered 

so  that  only  mobile  equipment  and  personal  computers  would 

receive content

◦ Dongle configuration: Two dongles. One class 2 dongle for scanning 

and one class 1 dongle for content delivery

• Pilot 1

◦ Concurrency mechanism: Multi-threading

◦ Service and command execution: Many services, and consequently 

commands, can be run in simultaneous, not taking into account the 

available number of Bluetooth dongles

◦ Scanning  settings:  10.24  scan  frequency  and  5  seconds  sleep 

between every scan

◦ Multicast method: One thread responsible for creating a command, 

which would try and delivery content to all destinations sequentially.

◦ Running time: One day

Pilot 1 was a unsuccessful  test.  The system ran only for a few hours 

before crashing due memory leaking problems. The collected data was pretty 

much inconclusive, and for that reason discarded.

97

Figure 45: University pilots average devices in range
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• Pilot 2

◦ Concurrency mechanism: Multi-threading

◦ Service and command execution: Many services, and consequently 

commands, can be run in simultaneous, not taking into account the 

available number of Bluetooth dongles

◦ Scanning  settings:  10.24  scan  frequency  and  5  seconds  sleep 

between every scan

◦ Multicast method: One thread responsible for creating a command, 

which would try and delivery content to all destinations sequentially

◦ Running time: Two days

Pilot 2 showed some improvements over the previous test. The running 

time improved, and allowed for useful data collection. Starting at 20/04/2009 

around 13:00,  and ending the next day at about 16:00 (Figure 46),  pilot 2 

allowed for useful data collection. Only 0.82% of commands were successful 

(Figure 38), and the content delivery success rate was of 1.74% (Figure 39). 

Delivery robustness rate was 73.25% (Figure 40), and content was delivered to 

2 distinct devices (Figure 42).

The  main  issues  verified  during  pilot  execution  related  to  serious 

memory  leaking  problems.  This  inevitably  led  to  excessive  memory 

consumption and consequent system crash. Additionally, a bug nullified our 

delivery failure  report  system. For that reason, the system couldn't collect 

delivery failure reasons.

98

Figure 46: Pilot 2 scanned devices
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• Pilot 3

◦ Concurrency mechanism: Multi-process

◦ Service and command execution: Many services, and consequently 

commands, can be run in simultaneous, not taking into account the 

available number of Bluetooth dongles

◦ Scanning  settings:  10.24  scan  frequency  and 10  seconds  sleep 

between every scan

◦ Multicast method: One process responsible for delivering content to 

all destinations sequentially

◦ Running time: 2 days

A  significant  architectural  change  was  made  in  pilot  3.  As  we 

experienced unidentifiable memory leaking issues, we decided to switch from 

a multi-threading environment to a multi-process one. Naturally this involved a 

considerable amount of changes to the system, as several modules needed 

modification.

Running time of the pilot was again of two days. The pilot started around 

17:00 of day 29/04/2009, and ended the next day around 16:00 (Figure 48). 

Command  execution  success  rate  was  of  1.01%  (Figure  38),  and  delivery 

success  rate  of  7.14%  (Figure  39).  Delivery  robustness  rate  was  of  only 

25.45% (Figure 40), and content was delivered to only 2 devices (Figure 42). 

As the delivery failure report system was operational, we verified that an even 

distribution  between  no  OBEXPUSH  port,  connection  timeout,  and  delivery 

failed  existed  for  justifying  delivery  failure  (Figure  41).  Delivery  failure  for 

devices not being present wasn't still implemented at this time.
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Figure 47: Pilot 2 delivery distribution
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A serious  problem encountered in this  pilot  was the occurrence of  a 

deadlock  which  damaged  the  overall  system  functionality.  Concretely,  the 

delivery  system  was  halted,  and  consequently  the  content  dissemination 

infrastructure  was  made  unavailable.  As  this  moment  the  reasons  for  the 

occurrence of such issue couldn't be determined. We can verify the effect of 

this error on the system, as our delivery robustness rate was of only 25.45%.

• Pilot 4

◦ Concurrency mechanism: Multi-process

◦ Service and command execution: Many services, and consequently 

commands, can be run in simultaneous, not taking into account the 

available number of Bluetooth dongles

◦ Scanning settings: 10.24 seconds for scanning and 10 seconds sleep 

between every scan

◦ Multicast method: One process responsible for delivering content to 

all destinations sequentially

◦ Running time: 4 days
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Figure 48: Pilot 3 scanned devices

Figure 49: Pilot 3 content delivery distribution
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In  this  pilot  the  system run  without  interruption  for  4  days.  Starting 

around 12:00 of day 08/05/2009, the system halted 4 days latter around 11:00 

(Figure 50).  Command success rate was of 0.23% (Figure 38),  and content 

delivery success rate of 8.70% (Figure 39). The delivery robustness rate was of 

100%  (Figure  40),  as  the  system  executed  13  commands  (Figure  51), 

delivering content to 16 distinct devices (Figure 42). Main reasons for delivery 

failure were associated with connections timeout,  and rejection by the end 

user, as is seen in Figure 41.

The system was still negatively influenced by a deadlock situation. After 

further  analysis,  we  came  to  the  conclusion  that  the  problem  resided  in 

OpenOBEX  Perl  binding  libraries,  which  would  raise  a  segmentation  fault 

signal. This would kill off the child process responsible for command execution, 

and consequently the service scheduler would perpetually wait for a reply that 

would never arrive.
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Figure 50: Pilot 4 scanned devices
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Figure 51: Pilot 4 delivery distribution
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• Pilot 5

◦ Concurrency mechanism: Multi-process

◦ Service and command execution:  The number of services, and 

consequently commands, that can be run in simultaneous is limited 

to the number of available dongles. If  just one dongle is  used for 

both scanning and delivery, or if just one dongle is used for delivery, 

then only one service can be executed at a time.

◦ Scanning  settings:  10.24  seconds  for  scanning  and  sleep  for  3 

seconds between every scan.

◦ Multicast method: A process was responsible for delivering content 

to all devices sequentially.

First  aspect  to  mention  is  that  service  and  command  execution 

methodology was changed in this pilot.  We would now limit  the number of 

services to execute in simultaneous to the number of available dongles. This 

would reduce the number of spawned processes, and alleviate the need for 

using synchronization mechanisms.

The  system  ran  for  7  days   uninterruptedly,  starting  at  19/05/2009 

around 10:00, and ending around 12:00 at 25/05/2009 (Figure 52). Successful 

command  execution  rate  was  of  0.09%  (Figure  38),  and  content  delivery 

success rate of 8.69% (Figure 39). With a delivery robustness rate of 100% 

(Figure 40), the system executed 30 commands (Figure 53), delivering content 

to 34 distinct devices (Figure 42). Delivery failure reasons were mainly related 

with connections timing out (Figure 41).

As we diminished from 5 to 3 seconds the time that the scanner would 

sleep between scans, the device reader component started to complain that 

devices  were  constantly  busy.  The  deadlock  situation  was  resolved  in  this 

pilot, although segmentation faults were still getting raised due to OpenOBEX 

function bindings. Either way, the system maintained full  functionality even 

when errors occurred, being only stopped by manual intervention.
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• Pilot 6

◦ Concurrency mechanism: Multi-process

◦ Service and command execution: Number of simultaneous services, 

and consequently commands, is limited to the number of available 

dongles.

◦ Scanning  settings:  10.24  seconds  for  scanning  and  5  seconds 

interval between every scan

◦ Multicast method: The multicast method was changed in this pilot. 

Instead  of  trying  to  deliver  content,  sequentially,  to  all  present 

devices, the system will  now use a delivery dongle to disseminate 

content solely to a single device. Multicast support is them achieved 

by  using  N delivery  dongles,  where  each  dongle  would  try  and 

deliver content to a different device.

◦ Broker  component:  In  this  pilot  the  intermediary  component  was 

introduced, althougth no networking was still available.
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Figure 52: Pilot 5 scanned devices

Figure 53: Pilot 5 delivery distribution
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By changing the multicast method, our system would cease to deliver 

content to all nearby devices in a sequential manner. Now it would randomly 

choose a device from the list, and use a single dongle to deliver content to it. 

When the system was configured with just a dongle for scanning and delivery, 

content would be delivered to just one device at a time. This would be also the 

case when only a dongle would exist for delivery. On the other hand, if we had 

several  dongles  for  delivery,  then  the  system  would  try  and  disseminate 

content simultaneously.

The pilot started at 01/06/2009 around 12:00, and ended 5 days latter 

around 11:00 (Figure 54). The command success rate was of 0.20% (Figure

38), and delivery success rate of 10.91% (Figure 39). Delivery robustness rate 

was   of  100% (Figure  40),  as  the  system delivered  content  to  36  distinct 

devices (Figure 42), by executing the same number of commands (Figure 55). 

Failure on delivering content was mainly related to connection timeout and 

rejection by users, as is depicted in Figure 41.

Still  remaining  were  the  problems  related  to  OpenOBEX  library  Perl 

bindings. Due to this, and to the fact that these function bindings don't allow 

choosing the dongle to use, we decided to utilize OpenOBEX external  tools. 

Future versions of the system would therefore cease to use direct  function 

calls to perform dissemination, and instead would make use of obexput binary. 

Also, the introduction of the Broker component – although at a local level – 

didn't harness the overall system functionality. The next pilots would be tested 

in a distributed way, with the Broker, central infrastructure and blue stations 

all fully functional and separated physically from each other.
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Figure 54: Pilot 6 scanned devices
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 6   Pilots & Test Results

6.1.2 Mobile Pilot

At the time of the execution of this pilot, all components were already 

implemented,  and  network  available.  The  pilot  was  made  at  two  different 

festivals, separated apart by one day. The computer was set in a backpack and 

for that reason we termed this pilot as mobile. Since it was in the backpack, no 

electricity was available, which lead to battery consumption, and consequently 

to small  up-time. Nevertheless, this allowed us to test the system in highly 

concentrated and dynamic settings.

As  demonstrated  by  Figure  56,  we  are  in  presence  of  a  dynamic 

environment, since more than 60% of devices remained in range for less than 

1 minute.  Also,  we can term the settings where the pilot  was executed as 

being of high affluence, since we have an average of more than 50 devices 

(Figure 57).
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Figure 55: Pilot 6 delivery distribution
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 6   Pilots & Test Results

• Pilot settings

◦ System functionality: All components functional. Both the Broker 

and central infrastructure were fully deployed, and networking was 

available through a 3G connection

◦ Service to test: A service with textual static content

◦ Dongle configuration: Two dongles. One class 2 dongle for scanning 

and one class 1 dongle for content delivery

◦ Concurrency mechanism: Multi-process

◦ Service and command execution: Number of simultaneous services, 

and consequently commands, restricted to the number of available 

dongles

◦ Scanning settings: 10.24 seconds for scanning and 5 seconds sleep 

between scans

◦ Multicast method: A dongle could only deliver content to one device 

at a time

◦ Running time: 2 days non-continously
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Figure 57: Mobile pilot delivery distribution

Figure 56: Mobile pilot devices continuous time in range
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Due the nature of the testing, this pilot was the only one which was 

supposed to  be  run  non-continuously.  During  two days,  the  computer  was 

carried around, capturing and disseminating information in a backpack. This 

lead to natural  high battery consumption, and as such run-time was low in 

both days.

The pilot started at 31/07/2009 around 19:00, and ended the next day 

at about 23:00 (Figure 58). With a command execution rate of 0.73% (Figure

38), the system delivery success rate was of 2.68% (Figure 39). The delivery 

robustness percentage was of 68.15% (Figure 40), as we delivered content to 

7 distinct devices (Figure 42) through the execution of the same number of 

commands (Figure 57). Also, the main reason for delivery failure was related 

to devices not being present in the moment of delivery (Figure 41).

Although delivery success rates weren't too high, the pilot did allow us 

to  discover  and  resolve  several  issues  regarding  the  Broker  and  central 

infrastructure components.  Also,  executing this pilot  gave us the chance to 

test  station  remote  management,  and  how all  components  behaved  when 

working  in  a  cooperative  and  distributed  way.  Furthermore,  this  was  an 

opportunity to analyse the behaviour of the system on a more crowded and 

dynamic environment than the previous pilots.

6.1.3 Information Center Pilot

After completing our system structuring and initial tests, we proceeded 

to test the system in another environment.. We deployed the computer in a 

tourist information center, a point of high people flow (Figure 59).
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Figure 58: Pilot 7 scanned devices
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 6   Pilots & Test Results

The highly dynamic nature of the environment is observed by looking at 

Figure 60, where we verify that almost 90% of scanned devices spent less 

than  1  minute  in  range  of  the  scanner.  High  people  affluence  also 

characterizes this environment, as it is seen in Figure 61, where we have an 

average of about 100 devices.

Contrary to previous tests, in this pilot we decided to set up the system 

to  fetch  dynamic  content.  We  therefore  created  a  news  service,  which  is 

simply a service which fetched content from a PHP web page, situated in one 

of our servers, and disseminated the content to end-users.

(a) Installation location (b) View from outside

(c) Another outside perspective

Figure 59: Info center environment
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• Pilot Settings

◦ System functionality: All components were functional

◦ Service to test: A service with dynamic content. The system would 

retrieve content from a web page before disseminating it to users. 

Also, the service would only be delivered to mobile equipment

◦ Dongle configuration: 2 class 1 dongles. One for scanning and other 

for delivery. We decided to try and boost the scanning range, since 

the surroundings of the information center was surrounded by thick 

brick walls, damaging the signal range

◦ Concurrency mechanism: Multi-process

◦ Service and command execution: Number of simultaneous services 

and commands restricted to the number of available dongles

◦ Scanning settings: 10.24 seconds for scanning and 5 seconds sleep 

between scans

◦ Multicast method: A dongle could only deliver content to a device at 

a time
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Figure 60: Pilot 8 devices continuos time in range

Figure 61: Info center content delivery distribution
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 6   Pilots & Test Results

◦ Running-time: 3 days (with some interruptions)

The  pilot  started  at  18/08/2009  around  20:00,  ending  2  days  latter 

around 23:00, as is observed in Figure 62. Successful command execution rate 

was of 0.15% (Figure 38), and successful delivery rate of only 0.25% (Figure

39). Delivery robustness rate was of about 30% (Figure 40), and content was 

delivered to 2 distinct devices (Figure 42), by means of 3 commands (Figure

61). Virtually all content delivery failure was associated with devices not being 

present, as is seen in Figure 41.

Overall  this  pilot  was  considered  to  be unsuccessful.  First  we  had a 

power outrage problem which influenced the overall results. Looking at Figure

62 we verify  a  discontinuousness  on  the  last  of  the  pilot,  as  power  failed 

making the power run on battery, and consequently shut down. Also, an error 

on  the  process  of  remote  content  retrieval  led  to  further  performance 

degrade , as this error made the dissemination infrastructure unusable during 

much of the pilot's execution time. 

6.1.4 Public Transit Infrastructure Pilots

Our  last  two  pilots  were  made  at  a  public  transit  infrastructure.  We 

deployed  the  system  at  an  automatic  ticket  vending  kiosk,  situated  near 

several bus stops and a café (Figure 63). The type of content to deliver was 

the same as in the previous pilot, where a news service was created which 

fetched dynamic content from a web page. We placed the computer inside the 

kiosk's  celling,  but  this  wasn't  the  preferred  scenario  as  the  celling  was 

surrounded by metal, which contributes to interference of radio signals.
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Figure 62: Pilot 8 scanned devices
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 6   Pilots & Test Results

The number of scanned devices which remained in range for less than 1 

minute was of 55% (Figure 64). For that reason the environment is considered 

to be dynamic although marginally.  Figure 65 demonstrates that the average 

number of devices in range was about 15, and for that reason the environment 

is characterized as a medium affluence one. Let's now proceed to individual 

pilot description.

(a) Installation location (b) Nearby bus stops

(c) Outside perspective

Figure 63: Public transit infrastructure environment
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• Overall kiosk pilots settings

◦ System functionality: All components were functional

◦ Service to test: A service with dynamic content. The system would 

retrieve content from a web page before disseminating it to users. 

Also, the service would only be delivered to mobile equipment

◦ Dongle configuration: 2 class 1 dongles. One for scanning and other 

for delivery. This was an attempt to boost the Bluetooth radio signal, 

due the presence of metal in the kiosk

◦ Concurrency mechanism: Multi-process

◦ Service and command execution: Number of simultaneous services 

and commands restricted to the number of available dongles

◦ Scanning settings: 10.24 seconds for scanning and 5 seconds sleep 

between scans

• Pilot 9
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Figure 64: Public transit kiosk devices continuous time in range

Figure 65: Content delivery distribution for public transit kiosk 

pilots
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◦ Multicast method: A dongle could only deliver content to a device at 

a time

◦ Running-time: 5 days

The pilot started at 25/08/2009 around 11:00, ending 5 days latter at 

about 23:00 (Figure 66). With a command execution rate of 0.51% (Figure 39), 

the  system  managed  to  deliver  content  to  about  3%  of  the  target  group 

(Figure 67). Concretely, this means we had 27 successful deliveries (Figure 67) 

to 23 distinct devices (Figure 42). The dynamic labelling of the environment 

seems justified, as we verify in  Figure 41 that the major reason for delivery 

failure was related to devices  not being in range.  Also,  almost  37% of  the 

target devices weren't even contacted, as is seen by our delivery robustness 

rate of about 63% depicted in Figure 40.

During the  pilot  some issues  regarding  remote  content  retrieval  still 

remained.  For  this  reason,  overall  performance  was  negatively  influenced. 

After  analysis  we  came to  the  conclusion  that  the problem was  related  to 

excessive number of opened files. The system creates temporary files so it can 

store the remote content it fetches. An anomaly in the system was leaving file 

handles  open,  and  consequently  the  operating  system  would  eventually 

complain that an excessive number of files were being maintained opened by 

the process. Although not harnessing the scanning process, this would nullify 

the dissemination infrastructure. During the pilot we were already aware of 

this, and so steps to minimize the effects were taken.
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Figure 66: Pilot 9 scanned devices
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• Pilot 10

◦ Multicast  method:  A  dongle  could  deliver  content  to  several 

devices  at  a  time,  being the  maximum 7.  By default  we set  this 

option to allow for 4 simultaneous connections to be established by a 

dongle

◦ Running-time: 5 days

Pilot 10 was the last of our tests. Comparing to the previous pilot, the 

only  relevant  change  was  on  the  way  that  multicast  commands  were 

executed. Instead of limiting a dongle to deliver content to a device at a time, 

we  introduced  a  configurable  option  that  lets  the  administrator  choose  to 

deliver content up to 7 devices in simultaneous.

Running time was of 5 days.  The pilot  started at  30/08/2009  around 

00:00, and ended 03/09/2009 around 22:00 (Figure 68). Successful command 

execution rate was of 0.34% (Figure 38). With a value of 2.69% (Figure 39), 

the  content  delivery  success  rate  was  also  lower  than  the  previous  pilot. 

Nevertheless,  the system managed to diminished considerably  the delivery 

failure reason due devices not being present (Figure 41). Also, and comparing 

to  the  previous  pilot,  we  obtained  an  increase  of  more  than  30%  on  the 

delivery robustness rate (Figure 40). Furthermore, by looking at Figure 69 we 

verify  that  a  total  of  34  delivery  hits  were  successful.  These  34  hits 

consequently  translated into content  delivered to 29 distinct  devices,  as  is 

depicted in Figure 42.

This last pilot allowed us to confirm that all identified major issues until 

date were resolved. Moreover, it was the only pilot in which we tested content 

dissemination  using  simultaneous  connections.  Overall  the  pilot  was 
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Figure 67: Pilot 9 content distribution
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successful,  as  no  problems  were  identified,  and  the  system  behaved  as 

expected.

Now that the data regarding the pilots was presented, it is now time to 

proceed to the discussion of obtained results, and consequent presentation of 

the withdrawn conclusions.

6.2 Discussion

In this section we'll be presenting the conclusions which we came to by 

way of analysis of the content presented in the previous section. The objective 

here is to show how the execution of the pilots helped us identify problems, 

and how it allowed us to make informed modifications to the system.

6.2.1 University Pilots

University pilots were the first to be executed and, naturally, allowed us 

to  identify  several  issues.  Many aspects  of  the system were  influenced by 

analysis of these pilots, including architectural decisions.
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Figure 68: Pilot 10 scanned devices

Figure 69: Pilot 10 content distribution
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The  first  thing  to  note  is  that  we  decided  to  switch  from  a  multi-

threading environment to a multi-process one. Mainly, this was due to memory 

leaking issues, whose origins couldn't be determined. The result was a more 

stable and consistent system. There were some concerns regarding the overall 

performance and memory consumption in using multi  processes  instead of 

threads, but we concluded that both resource consumption and system speed 

weren't visibly undermined by this switch, which in part is explained by the 

fact  that  modern  UNIX  and  UNIX-like  systems  make  use  of  copy-on-write 

techniques to spawn new processes, as described in [Bach 86, WCO 00].

It was also determined that setting the frequency between scans to a 

low value may lead to excessive interference and problems on the scanning 

process.  This  was  what  happened  in  pilot  5,  where  we  set  the  frequency 

between scans to only 3 seconds, which lead to constant complains by the 

system.  Either  way,  throughout  our  pilots  we  couldn't  see  any  noticeable 

difference between the number of scanned devices either we used 3, 5, or 10 

seconds between scans. Also, it should be taken into account that setting this 

value to a too low of a value will  contribute to a more rapid device battery 

consumption.

More  importantly  is  the  fact  that  in  a  very  similar  configuration,  we 

obtained an increase of content delivery success rate by modifying the way 

multicast commands were executed. Comparing pilots 5 and 6 in  Figure 39, 

we  verify  that  an  increase  of  more  than  2%  in  the  delivery  success  rate 

happened. Furthermore, by looking at Figure 41 it is seen that delivery failure 

rate due devices not being present was diminished in pilot 6. Although both 

delivery robustness rates for pilot 5 and 6 were 100% (Figure 40), this value is 

misleading for pilot 5 as it worked sequentially, and therefore by the time the 

system would try to deliver content to a device, the device would probably be 

already out of range. In sum, it seems clear that performing multicast using a 

dongle for delivering content a time, in a static environment, is superior than 

trying to deliver content to all devices sequentially.

Another aspect to mention is that it seems that there is a tendency for 

delivering more content during times of greater affluence. By looking at Figure

45 we verify that a higher number of success delivery hits happened during 

peak times. This is a expected result in a static environment, since it seems 
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natural  that there is  a higher change of delivering content when a greater 

number of devices is present.

6.2.2 Mobile Pilot

The mobile pilot was executed in a more dynamic environment than the 

previous pilots. Basically, this pilot helped us understand that probably system 

efficiency would be heavily influenced by the nature of the environment. The 

high people affluence and mobility in the pilot's environment made the system 

behave below expected. This is substantiated by the delivery robustness rate 

of 68.15%, as is seen in  Figure 40. Content was only delivered to 7 distinct 

devices out of 254 (Figure 42), and the fact that more than 50% of delivery 

failures were due devices not being present, made evident that using a dongle 

to  deliver  content  to  a  device  at  a  time,  in  dynamic  environments,  would 

probably lead to impoverished results.

As content distribution goes, by looking at Figure 57 it seems that there 

is a proportional tendency for successfully delivering content as the number of 

devices in range raises. This has already been verified in the university pilots, 

but the lack of data depth on this pilot doesn't allow us to further substantiate 

this claim.

6.2.3 Information Center Pilot

Deploying the system at the information center allowed us to test it at a 

very dynamic environment. With more than 90% of devices staying in range 

for less than 1 minute, opportunities to successfully establish connections, and 

disseminate  content,  were  diminished.  If  doubts  existed  on  the  possible 

performance undermining of the system in dynamic environments, they were 

dissipated with the execution of this pilot. With a delivery robustness rate of 

only 30% (Figure 40), and a rate of delivery failure of more than 90% due 

devices  being  out  of  range  (Figure  41),  we  verified  that,  under  dynamic 

environments, trying to deliver content to a device at a time leads to poor 

results.

Interesting is the fact that although content delivery successful values 

are very small,  the majority of the delivery hits happened during peak time 

(Figure 61), which comes to reinforce previous statements.
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6.2.4 Public Transit Infrastructure Pilots

Being considered a dynamic environment, with 55% of devices staying 

in range for less than 1 minute, the kiosk pilots allowed us to test the use of 

simultaneous  content  dissemination  in  a  dynamic  setting.  Pilot  9  was  still 

executed with a dongle limited to delivery content to a device at a time, while 

pilot 10 used up to 4 simultaneous connections.

Comparing delivery robustness between these two pilots, we verify an 

increase of about 34% between pilot 9 and 10 (Figure 40). This, allied with a 

decrease of more than 30% on delivery failure due devices which were out of 

range (Figure 41), leads to the conclusion that much more devices were tried 

to be contacted in pilot 10. Although this didn't translate into a substantial 

increase on the number of delivery hits (Figure 69), or served devices (Figure

42),  it  seems that using simultaneous connections in dynamic environment 

leads to better results. Further data is necessary to substantiate this claim, as 

it is interesting to verify if results are influenced by the increase of allowed 

simultaneous connections.

After finishing our pilots we executed some interviews in order to gain a 

user's  perspective of  the system. The objective  was to collect  replies  from 

users  in order  to identify possible  flaws and areas on which improvements 

could be made.

6.3 Users Opinions

Due the nature of our application, gathering replies in a real-world test 

environment is difficult. It becomes almost impossible to detect and interview 

people how choose to accept the content disseminated by our system.

In an attempt to collect additional information about the system, from a 

user's  point  of  view,  we executed  several  small  qualitative  interviews.  The 

service to test was a news headline dissemination service, similar to that used 

in  the  pilots  tests.  Content  was fetched from a remote  web page,  and 10 

different news headlines were delivered to users using OBEXPUSH. We asked 6 

subjects  to  enable  their  devices'  Bluetooth,  and  accept  two  consecutive 

messages from our system. As stated previously, the system will only resend 

dynamic content to an already served device, only when the content changes.
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The  interview  was  semi-structured  and  composed  by  open-ended 

questions, described as follows:

• What  do  you  think  of  receiving  content  while  waiting,  through 

Bluetooth? Was the content of any interest to you?

• Did you have to wait long before receiving the content?

• What about the content's presentation? Were you happy to receive plain 

text, or would you prefer something else?

• What did you think of  the refresh rate  between the two consecutive 

messages?

• After you received the content, was is it easily accessible?

Overall,  subjects  thought the service  as useful.  Some subjects stated 

that  as  the  service  is  free-of-charge,  and  accessible  without  the  need  for 

additional software, is very advantageous. More related to public transit, some 

subjects  referred  that  it  would  be  interesting  to  implement  a  service  that 

warned  public  transit  users  when  a  bus  was  running  late.  Also,  speed  of 

dissemination was considered to be very good, although this would probably 

decline in more crowded environments.

On the other hand, subjects stated that the name of our dissemination 

dongle – Mobile, which appears on their mobile equipment screen, is of great 

importance on the decision of whether to accept content. Some even said that 

they  “would  disable  Bluetooth”  if  the  name  didn't  somehow  transmit 

confidence  to  them.  Also,  subjects  thought  that,  although  the  content 

disseminated was interesting, personalization of the content to receive was 

important, as “people have different preferences”.

Content  presentation  did  divide  opinions.  Some  subjects  felt  that 

receiving text was appropriate, as they could easily read it.  Others thought 

textual content was advantageous, as “text is better for compatibility”. Some 

people  also  mentioned that  adding  a  small  message  at  the  bottom of  the 

disseminated content would contribute to a more pleasing service.

On the contrary,  one participant,  that  owned a modern touch-screen 

mobile equipment, had difficulties viewing the textual content, as he had to 

perform zoom operations to clearly identify what was written. Others felt that 

textual  content  was  admissible,  but  that  it  would  be  “more  appealing”  to 
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present  it  as an image.  The majority  of  the subjects  also thought that the 

system should adapt its content presentation type in accordance to devices' 

capabilities.

Overall subjects thought that the refresh rate between two consecutive 

messages was too fast. A subject stated that the disseminated content was too 

“repetitive,  being very difficult  to understand the changes”.  Others thought 

that  time  restrictions  should  be imposed,  and still  others  thought  that  the 

content  should  only  be  resent  when  more  than  one  headline  changes.  A 

subject also stated that users should have the opportunity of “personalizing 

the refresh rate, according to the type of service”.

As  for  content  access,  overall  people  could  easily  view  it,  as  the 

equipment  would  ask  the  user  to  open  the  content  upon  reception,  as 

demonstrated in Figure 70. Still, two subjects experienced difficulties in finding 

the content, as their equipment would receive the content and store it without 

asking the user if he wanted to view it. This made users search for the content 

throughout the mobile equipment,  as the location where it  was stored was 

unclear.

Given the opinions of our test subjects, we proceed to the presentation 

of the implications that the pilot tests and qualitative interviews had in our 

present and future visioning of the system.
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(a) Phone asks permission from user (b) User has immediate access in some 

equipments

(c) One of the news headlines received by the user

Figure 70: Example content acceptance and access using a Nokia mobile phone

6.4 Implications

Here we present our inferred conclusions with regard to the pilot results 

and  the  replies  collected  from  the  qualitative  interviews.  Pilots  directly 

influenced some development aspects of the system, as they were executed 

when the prototype was still in active development. The qualitative interviews 

were made posteriorly to system development,  and as such the withdrawn 

conclusions will refer to possible future modifications.

The  first  thing  to  state  is  that  the  use  of  multiple  simultaneous 

connections in dynamic environments seems to lead to better dissemination 

results.  As we use various connections in parallel,  the number of contacted 
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devices raises, increasing the probability of successful content delivery. Also, 

it seems that using multiple connections in static environments may lead to 

insignificant differences on content delivery. This is substantiated by looking at 

Figure 40 and Figure 41, where we verify that pilot 6 had a delivery robustness 

rate of 100%, and a small delivery failure rate due devices being out of range, 

although  the  delivery  dongle  was  restricted  to  deliver  content  to  a  single 

device in each dissemination attempt.

The name we choose for the delivery dongle(s) also seems important. In 

our tests we choose to use the name Mobile, which really didn't transmit too 

much confidence to users, as some of them only accepted the content after 

we reassured  them that  it  was our  system disseminating the data.  This  is 

comprehensible  if  we relate  back to the questionnaire  distributed to public 

transit users, where about 35% of respondents stated that security was the 

reason for disabling Bluetooth (Table 3).

Furthermore,  both  content  and  presentation  personalization  seem 

important in convincing user adherence to the system. Some equipment lack 

support for more graphical content, while more modern equipment are better 

dealing  with  images.  Also,  people  interests  are  distinct,  and  as  such  the 

disseminated  content  should  be  chosen  by  them.  This  indicates  that  a 

registration process should be performed, in which the user sets preferences 

such as type of service, type of equipment, refresh rate, etc.

Also, the method currently used for determining if dynamic content has 

been  modified  is  inappropriate  for  all  situations.  As  we  use  a  MD5  hash 

function to determine if content has changed, this isn't desirable for all types 

of services. For example, if we use this method on a news service, users can 

receive very similar content, where the only difference may be a single news 

headline. On the other hand, this method is useful if we want, for example, to 

create a service that notifies users of changes in public transit bus schedules. 

Overall,  it  seems  that  the  system  has  to  support  several  methods  for 

determining content modification, as the use of hash functions isn't suitable 

for all services.

With these implications we finalize the presentation of pilots and tests 

results.  Along this section we showed the data collected by our pilots,  and 
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presented the conclusions inferred by them. We now proceed to conclusive 

commentaries and the indication of possible future work.
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7 Conclusion & Future Work

In this section we present our conclusive comments and possible future 

work orientation.  We summarize  the advantageous of using our system for 

both  proximity  sensing  and  content  dissemination,  and  point  out  how the 

system may be improved in the future with the support for additional features.

7.1 Conclusive Comments

In this work we presented a prototype system that enables for proximity 

sensing and context-aware service offering. We defended that our system is a 

viable  alternative  to  classical  methods  of  information  capture  and  content 

dissemination, as it offers a set of advantages over these.

We demonstrated that our system is suitable for proximity sensing, as it 

uses a scanning element for capture of Bluetooth enabled devices within the 

vicinity.  We showed that the components  responsible  for  scanning may be 

installed at many different settings, collecting data that is useful for several 

types of applications such as O/D matrices derivation. We also demonstrated 

that the Bluetooth data is useful for defining the environment on which the 

component is installed, as contextual  data regarding flow and affluence are 

derived from analysis.

Furthermore,  our  system  implements  an  infrastructure  for  the 

dissemination  of  context-aware  services.  With  the  usage  of  our  Service 

Specification Language (SSL), we enable the creation of a rich set of services 

that disseminate both static and dynamic content. With the implementation of 

our system we lower the need for specialized dissemination components, as 

presentation  is  delegated  to  users'  equipment.  Also,  we  make  our 

dissemination  infrastructure  flexible,  as  we  remove  hardware  dependency. 

Finally, we make content and presentation personalization possible, a feature 

that has been demonstrated important to users.
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7.2 Future Work

Our current infrastructure may be extended in several ways. First of all, 

our plans are to extend the system to support user registration and service 

creation.  Thereafter,  we  plan  to  expand  the  system  to  take  into  account 

equipment type, as content format should be adapted accordingly.

Moreover,  it  is  our  intention  to  extend  the  current  push-only 

dissemination  system  to  an  integrated  content  dissemination  system.  We 

would provide users  with the possibility  of  communication initiation,  where 

they would send requests to the stations using a pull back-channel. This would 

make ad-hoc registration and on-demand content dissemination possible. Also, 

our dissemination infrastructure current method of functionality only supports 

the use of a dongle per service. This means that if the system has only one 

delivery dongle, then it is bound to execute services sequentially, although it 

can  deliver  to  multiple  destinations  simultaneously.  An  interesting  addition 

would be to permit the usage of a dongle by distinct simultaneous services.

Additionally,  the  system  may  be  extended  to  collect  concrete 

localization information. With the use of Bluetooth radio signal strength, it is 

possible  to  calculate  devices'  relative  distance.  Also,  with  the  use  of 

triangulation concrete localization is possible, therefore adding new contextual 

dimensions to our system, enriching our specification language.

In conclusion, we refer that throughout our work security has not been a 

concern. For this reason, it is pertinent to state that attacks are made possible 

due  the  lack  of  implemented  security  mechanisms.  If  we  use  a  direct 

connection between stations and the broker,  for example,  an attacker  may 

easily  eavesdrop  the  content.  Also,  we  only  use  a  simple  hash  code  for 

recognition  of  stations,  a  method  far  from  secure.  These  examples 

demonstrate that security measures should be implemented in future versions 

of our system.
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Appendix A

In  this  section  we  present  several  informations  related  to 

thequestionnaire that was executed. Some general considerations are shown 

as well statistical formulas used, result tables and images, questions coding 

table and the actual questionnaire.

A.1 General Considerations

• General Population – A concrete number of users using  Horarios do 

Funchal public transportation service is needed. In the absence of such 

information, let's therefore assume that about one third of the general 

population residing in Madeira uses this service. This would correspond 

to about 100,000 users.

• Sample Size – The sample size is of 105 users.

• Data Type – The questions that where asked along the questionnaire 

captured  characteristics  and  preferences  about  the  individuals. 

Therefore, the data gathered by the questionnaires is categorical.

• Confidence Level  –  Assuming that we are  in  presence of  a normal 

distribution, our selected confidence level is 95%. Any assumption made 

in this section is done with 95% of certainty.

• Confidence Interval – Since we are working with categorical data, the 

formula used to calculate the error margin associated with a specific 

question is:

 C.I.=Z× p 1−pn

The meaning of the above variables is the following:

C.I – The Confidence Interval

Z – Z-Value for a confidence level of 95%. This corresponds to the  constant 

value of 1.96.

p – The sample proportion. This corresponds to the percentage of users that 

belong to a certain group.

n – The sample population



A.2 Statistical Formulas

The  Chi-Square  Test  of  Independence  is  used  in  order  to  discover 

associations between variables.  This test  is  commonly used when the data 

under analysis is categorical (e.g. it fits a specific group). The formula we used 

to calculate the Chi-Square value is the one that follows [Hayes 05]:


2
=∑
i=1

n

∑
j=1

m

Oij−E ij 
2
/E ij

• O – Represents the observed value on a given cell

• E – Represents the excepted value on a given cell

The Chi-Square is not a flawless independence test [Scheaffer 99, Hayes 05]. 

In fact when there exists one or more cells in a given contingency table with a 

excepted value (E) below 5 (e.g. E < 5) the tests becomes unreliable at best. 

To counter this problem we decided that in those contingency tables were E < 

5,  or  where  the  obtained 
2 raised  some  doubts,  we  would  use  the  Yates 

Corrected Chi-Square, which formula is given by the expression [Hayes 05]:


2
=∑
i=1

n

∑
j=1

m

[∣Oij−Eij ∣−0.5 ]2/E ij

Important  is  the  fact  that  after  applying  the  Yates  Correction  we  must 

recalculate  the  value  of 2 .  In  order  to  help  us  achieve  this  we  used  an 

external mechanism which can be found at [5].

Throughout  the  tests  we  assume  that =0,05 , where  represents  the  alpha 

level of significance. In order to better understand and compare the obtained 

results Table 7 was added.

It should also be noticed that although the above tests show us that a kind of 

association  exit  between  variables,  the  tests  themselves  cannot  clearly 

indicate  how  strong  is  that  association,  and  what  in  fact  the  factors  that 

influence such association. In order to obtain a more detailed data analysis we 

are going to make use of the standardized residuals (Section A.3) to unveil 

patterns that the Chi-Square tests cannot. As we are working with a normal 

distribution with a confidence level of 95%, then we are going to compare the 

obtained residuals to the constant Z-value of 1,96.



Alpha Significance Level ( )

0.5 0.10 0.05 0.02 0.01 0,001

Degrees 1 0.455 2,706 3.841  5,412 6.635 10,827

of 2 1,386 4,605 5,991 7,824 9,210 13,815

Freedom 3 2,366 6,251 7,815 9,837 11,345 16,268

(dF) 4 3,357 7,779 9,488 11,668 13,277 18,465

5 4,351 9,236 11,070 13,388 15,086 20,517

Table 6: Chi-Square Distribution Table



Question/Answer/I

nformation Code

Question/Answer/Information

I1 The date when the questionnaire was answered

I2 Time when the questionnaire was answered

I3 Location where the questionnaire was answered

Q1.A Sex

Q1.B Age (in years)

Q2 How frequently do you use public transport buses?

Q3 How much time do you spend waiting at the bus stop?

Q4 While waiting at the bus stop or while traveling do you 

usually  make  use  of  a  portable  communication  device 

(PDA, Cellphone, etc)?

Q5 If  you  answered  yes in  question  4,  please  indicate  in 

what ways you use your portable device:

Q5.A Making/Receiving Phone Calls

Q5.B Sending/Receiving SMS/MMS

Q5.C Entertainment(Music, Games, etc)

Q5.D Accessing On-line Content(Internet)

Q5.E Other

Q6 While  waiting  at  the  bus  stop,  is  there  any  kind  of 

information/service that you would like to have access to, 

but for some reason can't or won't?

Q7 Does  your  portable  communication  device  support  the 

Bluetooth wireless technology?

Q8 If you answered  yes  in question  7, do you usually keep 

your device with the Bluetooth option turned on?

Q9 If  you  answered  no in  Question  8,  please  indicate  the 

reason(s)  for not  enabling the Bluetooth option of  your 

device:

Q9.A Security

Q9.B Power Consumption

Q9.C No Particular Reason

Q9.D Other

Q10 Please indicate the type of services of more interest to 

you:

Q10.A While waiting at the bus stop

Q10.A1 Detailed bus schedules

Q10.A2 Buses arriving time

Q10.A3 Position indication of nearby bus stops

Q10.A4 Updated news headlines

Q10.A5 Entertainment(Games, Music, etc)



Q10.A6 Other

Q10.B While traveling

Q10.B1 Detailed bus schedules

Q10.A2 Arriving time on destination stop

Q10.A3 Position indication of nearby bus stops

Q10.A4 Updated news headlines

Q10.A5 Entertainment(Games, Music, etc)

Q10.A6 Other

Q11 Please  indicate  your  preferred  way  of  accessing  the 

services chosen at question 10:

Table 7: Question, Answers and Informations Coding

A.3 Variable Associations

As we applied the Chi-Square test, several hypothesis were tested. The 

concrete details regarding the used formula as well the questions' coding that 

is used in this section, is present in the previous section. Here we summarize 

the existing associations as we present them into categories.

Location

• An association between I3 and Q10.A3 exists. (2
=9.65 ,dF = 3, p < 0.05)

Demographics

• An association exists between Q1.A and Q5.B. (2
=6.507 ,dF = 1, p < 0.05)

• An association between Q1.A and Q10.A3 exists. (2
=5,559 ,dF = 1, p < 0.05)  

• Q1.B and Q4 are related. (2
=10.09 ,dF = 4, p < 0.05)

• An  association  between  Q1.B  and  Q5.B  was  obtained. 

(2
=21.69 ,dF = 4, p < 0.01)  

• Q1.B is related to Q10.A4. (2
=10.17 ,dF = 4, p < 0.05)

Bus Usage and Waiting Time

• An  association  was  obtained  between  Q2  and  Q9.C. 

(2
=12.87 ,dF = 4, p < 0.05)

• Q3 and Q4 are related to each other. (2
=12.83 ,dF = 4, p < 0.05)  

• An association between Q3 and Q5.B exists. (2
=11.04 ,dF = 4, p < 0.05)  

Mobile Devices Pratices



• An association exists between Q5.A and Q10.A4. (2
=11.59 ,dF = 1, p < 0.01)

• Q5.A is associated with Q10.B4. (2
=9.22 ,dF = 1, p < 0.01)  

• Q5.B and Q5.C are related to each other. (2
=5.85 ,dF = 1, p < 0.05)  

• Q5.B and Q9.A are related. (2
=8.041 ,dF = 1, p < 0.05)

• Q5.B and Q10.A4 are associated with each other. (2
=5.064 ,dF = 1, p < 0.05)  

• Q5.C  and  Q9.B  have  an  association  bounding  them. 

(2
=5.63 ,dF = 1, p < 0.05)

Types of Services

• An association exists  between Q10.A2 and both Q10.B1 and Q10.B2. 

(2
=6.726 ,dF = 1, p < 0.05)  

• An  association  exists  between  Q10.A3  and  Q10.B3. 

(2
=9.192 ,dF = 1, p < 0.01)

• Q10.A3 and Q10.B4 are related. (2
=8.47 ,dF = 1, p < 0.01)  

• An  association  exists  between  Q10.A4  and  Q10.B4. 

(2
=37.46 ,dF = 1, p < 0.01)

• Q10.B1 and Q10.B2 are related.  (2
=10.33 ,dF = 1, p < 0.01)

• Q10.B2 and Q11 are related. (2
=10.1 ,dF = 3, p < 0.05)  

• Q10.B3 and Q11 are associated. (2
=10.06 ,dF = 3, p < 0.05)

A.4 Result Tables and Images



Figure 71: Users that want the locations 

of nearby bus stops while waiting for the 

bus

Figure 72: Users that use their device 

for messaging



Figure 73: Female and Male users who 

wan't the location of nearby bus stops

Figure 74: Device usage for phone 

calling and news service at bus stops 

association



Figure 75: Device usage for phone 

calling and news service while 

traveling association

Figure 76: Device usage for 

messaging and entertainment 

association

Figure 77: Device usage for 

messaging and disconnecting 

Bluetooth for security reasons 

association

Figure 78: Device messaging usage 

and news service at bus stops 

associaiton

Figure 79: Turning off Bluetooth for 

power consumption reasons and using 

it for entertainment

Figure 80: Users that want to know 

the bus arrival time and the detailed 

bus schedules while traveling



Figure 81: Users that want the bus 

arrival time and the destiny arrival 

time

Figure 82: Bus stops locations both 

while waiting for the bus and traveling

Figure 83: Nearby bus stops locations 

while at the bus stop and news service 

while traveling association

Figure 84: Users that news service in 

bus stops and while traveling

Figure 85: Schedules while traveling 

and destiny arrival time association



10 – 20 20 – 30 30 – 40 40 – 50 50+

Uses Device 37

(0,72)

38

(-0,67)

8

(0,4)

2

(0,09)

0

(-0,88)

Doesn't use 

Device

3

(-1,49)

15

(1,38)

0

(-0,83)

0

(-0,19)

2

(1,82)

Table 8: Frequency and standardized residuals of age/device usage association

10 – 20 20 – 30 30 – 40 40 – 50 50+

Doesn't use  4

(-2,88)

28

(1,37)

6

(1,29)

2

(0,78)

2

(-0,78)

Uses  36

(2,35)

25

(-1,12)

2

(-1,05)

0

(-0,64)

2

(-0,64)

Table 9: Users that use their device for messaging purposes

10 – 20 20 – 30 30 – 40 40 – 50 50+

Doesn't Want  35

(1,27)

34

(-0,39)

3

(-0,87)

1

(-0,09)

0

(-0,75)

Wants  5

(-1,92)

19

(0,58)

5

(1,32)

1

(0,14)

2

(1,14)

Table 10: Users that want a news service at the bus stops

1 – 5 5 – 10 10 – 15 15 – 30 30+

Doesn't use  2

(-1,65)

23

(1,87)

13

(-0,53)

4

(0,05)

0

(-0,34)

Uses  15

(1,35)

15

(-1,53)

26

(0,43)

5

(-0,04)

2

(0,27)

Table 11: Waiting time and device usage for messaging purposes

1 – 5 min 5 – 10 min 10 – 15 min 15 – 30 min 30+ min

Uses Device 16

(0,47)

23

(-1,31)

36

(0,7)

8

(0,08)

2

(0,09)

Doesn't use 

device

1

(-0,97)

15

(2,7)

3

(-1,44)

1

(-0,16)

0

(-0,19)

Table 12: Waiting time and device usage association



2+ day 1 day 1 – 5 week 1 – 5  month Very rarely

Has  reason 60

(0,46)

7

(-0,1)

11

(-0,99)

9

(0,13)

8

(-0,13)

Doesn't have 

reason

2

(-1,4)

1

(0,3)

6

(3,05)

0

(-0,39)

1

(0,39)

Table 13:  Users frequency usage and reason for disabling Bluetooth discoverable 

mode



A.5 Questionnaire

Questionnaire about public transport-related services

v 0.4P – Out/08 – EN

As an effort to better understand the needs of users of public transports, and in hope to make your experience a better one 

while using them, please consider answering the following questions 

1. In order to comprehend and contextualize the gathered information, please indicate the following information:

a) Sex:

b) Age (in years):

2. How frequently do you use public transport buses?

3. How much time do you spend waiting at the bus stop?

4. While waiting at the bus stop do you usually make use of a portable communication device (PDA, Cellphone, 

etc)?

5. If you answered yes in question 4, please indicate in what ways you use your portable device:

________________________________________________________________________________

________________________________________________________________________________

6. While waiting at the bus stop, is there any kind of information/service that you would like to have access to,  

but for some reason can't or won't?

Feminine

10 - 20

30 - 40

50+

40 - 50

2 or more times a day

1 - 5 times a month

1 time a day

1 - 5 times a week

very rarely

10 - 15 minutes

1 - 5 minutes

30+ minutes

Yes

No

Making/Receiving phone calls

Sending/Recieving SMS/MMS

Entertainment (Music, Games, etc)

Accessing on-line content (Internet)

Other (Please specify)

Masculine

No

Yes (Please specify)

20 - 30

5 - 10 minutes

15 - 30 minutes



________________________________________________________________________________

________________________________________________________________________________

7. Does your portable communication device support the Bluetooth wireless technology?

8. If you answered yes in question 7, do you usually keep your device with the Bluetooth option turned on?

9. If you answered no in Question 8, please indicate the reason(s) for not enabling the Bluetooth option of your 

device:

________________________________________________________________________________

________________________________________________________________________________

10. Please indicate the type of services of more interest to you:

While waiting at the bus stop While traveling

____________________________________

____________________________________

____________________________________

____________________________________

11.  Please indicate your preferred way of accessing the services chosen at question 10:

Yes

No

I don't know

Yes

No

I don't know

Security

Power consumption

No specific reason

Other (Please specify)

Detailed bus schedules

Buses arriving time

Indiaction of nearby bus stops

Updated news headlines

Leisure (Games, Music, etc)

Others (Please specify)

Arriving time on destination stop

Indiaction of nearby bus stops

Updated news headlines

Leisure (Games, Music, etc)

Others (Please specify)

Detailed bus schedules

I want to be responsible for accessing the services

I want to register for the service, and then my device will automatically access it

My device will automatically access the service without my previous consent

I really don't care as long as the services are of any relevance to me
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