
Proximity Sensing and Context-Aware Content

Dissemination

in Partial Fulfilment of the Requirements for the Degree of

Master of Informatics Engineering

Presented to the Department of Mathematics and Engineering of the

University of Madeira, Portugal by

Tiago Alexandre D. Camacho

in September 2009

Supervisor: Prof. Vassilis Kostakos, PhD

Declaration

Hereby I declare that I wrote this thesis myself with the help of no more than

the mentioned literature and auxiliary means.

Up to now, this thesis was not published or presented to another examinations

office in the same or similar shape.

Tiago Alexandre Dias Camacho

 Abstract

Abstract

With the incorporation of wireless modules into mobile equipment, new

opportunities for sensing people and offer them innovative services arise. In

this thesis we present a prototype system that uses Bluetooth to perform

proximity sensing and context-aware content dissemination. After analysing

the sensed data, our system disseminates content by means of a Service

Specification Language (SSL) which can describe a set of rich context-aware

services. Our results show the usefulness of our system, as we demonstrate

that it is a low-cost and flexible alternative to more expensive methods of

proximity sensing and content dissemination.

iii

 Acknowledgments

Acknowledgments

I would like to start by thanking my supervisor, Professor Vassilis

Kostakos, for his support and inspiration throughout this thesis. He always

provided me with good advises, and was always available when needed. I

learned a great deal from him, and for that I will always be thankful.

I would also like to thank Claudio Mantero for his helpful comments and

advices, and for making infrastructures available for testing.

Finally, I would like to thank my family and close friends, with special

emphasis to my parents and brother. Without their help and support, both

psychological and financial, this thesis would never be completed.

iv

 Table of contents

Table of contents
Abstract...iii

Acknowledgments..iv

Table of contents..v

1 Introduction...1

2 Motivation..3
2.1 Proximity Sensing...3
2.2 Content Dissemination...4
2.3 System Overview..5
2.4 Potential System Benefits...6

3 Public Transit Passengers' Opinions...8
3.1 Data Summary ..8
3.2 Discussion..13
3.3 Implications..17

4 State of The Art & Related Work..19
4.1 Broad View...19
4.2 In-Depth View...30

5 System Description...46
5.1 Example Scenarios...46
5.2 Overall System Requirements..47
5.3 Overal System Architecture..49
5.4 Component Description..51
5.5 System Particularities...74

6 Pilots & Test Results..93
6.1 Results..94
6.2 Discussion..115
6.3 Users Opinions..118
6.4 Implications..121

7 Conclusion & Future Work...124
7.1 Conclusive Comments..124
7.2 Future Work..125

Bibliography...127

Appendix A...1
A.1 General Considerations...1
A.2 Statistical Formulas...2
A.3 Variable Associations..5
A.4 Result Tables and Images..6
A.5 Questionnaire...13

v

 1 Introduction

1 Introduction

With the advance of wireless technologies and the maturation of

ubiquitous and context-aware computing, researchers are becoming more

interested on the way these fields influence our daily lives. Although we are

witnessing the widespread deployment of wireless technologies, still the full

exploitation of this reality requires for the design and development of new

infrastructures that exploit these technologies in favour of users.

One of the potential areas on which wireless technologies are useful is

in the process of presence determination. Some of these technologies, such as

Bluetooth, are termed ideal for this purpose, as they require no permission by

users to establish low-level connections between equipment, therefore making

the determination of people presence a non-intrusive process.

Effectively, with the addition of wireless components into mobile

equipment, people carry with them components which can be sensed. As we

lengthen the areas on which we deploy sensor nodes, we create the notion of

a omnipresent sensing infrastructure capable of determining people's

presence, using this information for, among many other possibilities, providing

users with a set of innovative context-aware services.

In this work we discuss a prototype system used for proximity sensing

and context-aware content dissemination. The system is composed by several

distributed components, on which the mobile ones are termed as stations.

These may be installed at various locations, and are constituted mainly by two

components: a device scanner and a content dissemination infrastructure. The

system works by continuously scanning for nearby Bluetooth enabled devices,

consequently using this information to feed the content dissemination

infrastructure. The determination of whether content is to be disseminated is

done through the analysis of a service queue. Also, the system makes use of

Service Specification Language (SSL) to create logical representations (e.g.

services) with distinct types of content and restrictions associated with them.

Services will therefore hold the information necessary for the dissemination

system to determine to which destinations, and under what conditions, is

content to be delivered to.

1

 1 Introduction

The structure in which we present our work is as follows. In Section 2

we discuss the factors which motivated our work, and exemplify potential

benefits of the system. Section 3 presents the opinions collected from public

transportation users, and the results and analysis which influenced some

design aspects of our system. Section 4 shows the fields which are inter

related with our work, as we first present a more broad perspective of related

work, before moving into a more in-depth description of specific areas.

Section 5 is where we describe our system. We use a top-down approach in

this section, starting by a more abstract description, before moving into more

detailed component definition. In Section 6 we have the results and analysis

of our pilots, and also present test subjects opinions of a sample service.

Finally, in Section 7 we present our conclusions and discuss possible future

directions of our work.

2

 2 Motivation

2 Motivation

In this section we present the main factors of motivation that led to the

development of our work. We start by discussing the importance of proximity

sensing, before moving to content dissemination. We thereafter present an

overview of our system, and finalize the section with the demonstration of

potential system benefits.

2.1 Proximity Sensing

Depending on the nature of the information, some types of data are

inherently difficult to be automatically determined. An example is seen in

public transit companies, that to this day still rely on manual observation and

incomplete data derivation for the determination of passengers' entry and exit

points. These methods, used to determine important transportation analysis

structures, lead to poor results, as both freshness and quality of data are

undermined [Kostakos 08].

With the advent of technologies such as the Global Positioning System

(GPS), the determination of positioning information has been facilitated.

Nowadays, many vehicles, and even mobile equipment, have an incorporated

GPS module that provides reliable localization determination. Still, long range

satellite and terrestrial positioning systems are not suitable for all

environments. Technologies such as GPS, Loran, and Omega are inadequate

for both indoor and pin-point positioning, and therefore the diversity of fields

on which they may be used is limited [TC 03].

Furthermore, there are times that the localization information that we

wish to capture is in relation to another object. In this type of situation, we are

not interested in the global position, but only in the relative one. This type of

sensing that determines if two objects are close to each other is referred to as

proximity sensing, and technologies such as infra reds or radio-frequency may

be used to accomplish it.

As radio-frequency based wireless technologies continue to spread

throughout mobile equipment, new fields of opportunity for proximity sensing

3

 2 Motivation

arise. Bluetooth, for example, is seen as a good low-cost and reliable choice to

determine if two objects are in the vicinity of each other. The widespread

adoption of the technology has potentiate the sensing of Bluetooth

discoverable equipment. If we deploy scanners throughout a target area, the

inquiry mechanism of the technology allows us to determine the existence of

nearby Bluetooth enabled devices. Furthermore, additional positioning

determination is possible, as the technology allows for approximation of

relative distance by means of signal strength measurement. All of this is done

non-intrusively, as these operations dispense human intervention.

The array of opportunities that advent from the determination of relative

localization of mobile equipment using such a low-cost technology are

manifold, as it can be used for simulation purposes, environment affluence

classification, passenger counting, and context-aware content dissemination.

2.2 Content Dissemination

Usually, content dissemination happens in a non-personalized manner.

For example, the information that is passed to people by means of an

electronic board is not personalized. These dissemination components, present

in many types of settings, broadcast information in a very restricted manner.

Not only the content that is disseminated is limited, but also the way content

is presented is restricted by the hardware limitations. This fact is not related

solely to electronic boards, as many other dissemination systems lack

flexibility. The PORTAL system [BCG 05], a city-wide network which provides

public transit bus information access, is another example of a content

dissemination system which uses specialized components. The system works

by installing several dedicated machines throughout the city, so users may

query for public transit related information. The need to have a high-cost,

static components installed at a city-wide levels, solely for presentation

purposes, challenges the real advantage of such system.

The use of wireless technologies for disseminating content is seen as

advantageous. People already carry with them mobile equipment that hold the

capability for presenting various kinds of information. As users are the ones

that own the components on which content is stored and accessed upon, we

delegate the presentation and personalization aspects to users, removing the

4

 2 Motivation

necessity of specialized dissemination components. We exploit the capabilities

of users' devices, and establish the infrastructure on which a set of innovative

and personalized services may be created and offered to users.

Given the ideas of proximity sensing and content dissemination, and

how they can be used to better serve users, we proceed with an overview of

our system, and how it relates to these two subjects.

2.3 System Overview

In this work we describe a system that performs proximity sensing for

enabling context-aware content dissemination. The system, composed by a set

of elements, works by installing several stations in areas of interest. These

stations are usually small computers (but not restricted to) and are equipped

with two Bluetooth dongles. One dongle, the scanner, is responsible for the

capture of surrounding Bluetooth enabled devices, as the other has the

responsibility to deliver content to end-users. A configuration with multiple

delivery dongles is also supported by the system, as it is a configuration with

solely one dongle.

The scanner feeds the information to the service scheduler, the

component which has the responsibility to determine if a service is to be

executed. The scheduler holds a queue of service objects and, by using

contextual data received from the scanner, analyses services to determine if

the constrains on which they were built upon are met. When such happens the

scheduler will order for service execution, and consequent dissemination of

content to the destination.

Service objects are composed by a set of flags, which determine the

restrains and content associated with the object. Flags include date and time

of execution, location, content location, class of device, time in range, and

destination. All the indicated flags upon creation must be in conformity so that

the scheduler triggers a service for execution.

Stations are installed at arbitrary locations, and use a wireless

connection to access the Internet. Upon initialization the stations contact the

broker component, so they register themselves with the system. This is done

so we refer to stations by name, removing the burden of numerical IP

5

 2 Motivation

addressing. This is also done because the broker is present as an intermediary

element on all connections to and from stations.

Also, a central infrastructure exists. Composed by several components,

it holds a database containing information which is partially replicated locally

at the stations. The central infrastructure also provides for station

synchronization and overall remote management.

Given the overall description of our system, it is now pertinent to

discuss the potential gained benefits of deploying it.

2.4 Potential System Benefits

Basically, our system has two objectives: 1) sense nearby Bluetooth

enabled devices, and 2) disseminate content according to contextual data. The

process of automatically sensing devices has uses in many situations.

Depending on the installation environment, stations may use the proximity

sensing information to achieve objectives other than feeding the dissemination

infrastructure.

For example, Bluetooth technology is useful for counting public transit

passengers. With the installation of our system on public transit buses, we

may exploit passengers' Bluetooth enabled devices to determine entry and

exit points, as defined in [Kostakos 08]. Furthermore, the collected data would

be useful for other related purposes, such as bus travel time estimation [SF

03].

Another possibility is to implement stations at environments such as

commercial areas or public transit bus stops. The collected information could

then be used to perform estimations on the number of people in the area. This

information would also be useful for area assignment according to its

affluence, or for determining how much time people spend in the area.

Furthermore, the installation of the system enables for a rich

infrastructure that enables the creation of context-aware services. Several

kinds of settings are allowed, as it is possible to construct services which can

be personalized according to contextual information, individual preferences,

and even equipment details.

6

 2 Motivation

As data is fed by the scanner, the system has the ability to determine if

action is to be taken. For example, if one device is seen continuously for a long

time in a commercial area, maybe that person is doubtful on what to buy. The

system would “sense” this indecision and send a recommendation to the user.

Another possible application would be to offer a service that disseminates

news headlines to users while they wait for a bus to arrive, or are sitting in a

café.

In sum, the advantages of our system are considerable, as we enable for

a low-cost and reliable method of proximity sensing and context-aware service

offering. The settings on which the system may be installed are unlimited, as

its flexibility frees the system from environmental restrains.

One of the many areas of interest in which our system is seen as

potentially beneficial is public transit. In order to gain insight on people's

interests of content dissemination at public transit infrastructures, we devised

a questionnaire and distributed it to public transit users. The results and

conclusions draw from this questionnaire is what we discuss in the ensuing

section.

7

 3 Public Transit Passengers' Opinions

3 Public Transit Passengers' Opinions

As people daily commute from work and school to their homes, many

use public transportation. Accounting for the time people both wait for and use

this kind of transport, passengers can actually spend hours each day at public

transit infrastructures. It is this premise that makes the deployment of a

heterogeneous information dissemination system at these infrastructures

interesting.

From the beginning of our work we recognized public transit as an area

of great interest and potential, on which our system could be helpful. As such,

and before we delved into the design and development of our system, we

devised a questionnaire and distributed along public transit users. The

objective was to understand their habits, the kind of equipment they use, and

their personal preferences.

In this section we present the questionnaire, its results, and the inferred

conclusions obtained through our analysis. Several interesting facts were

brought to our attention, some of them already corroborated by previous

research. More importantly, the questionnaire helped us validate important

aspects of our system.

3.1 Data Summary

We begin this section by presenting the collected data. Starting

15/10/2008, data was collected until 21/10/2008. Questionnaires were

distributed at several locations and times, as it is seen in Table 1. Our sample

size is 105 respondets, 51 are female (48.5%), and 54 are male (51.5%). The

age distribution of the individuals is depicted in Figure 2, where the 20-30 age

group is the most common.

The questionnaire collected demographic data, public transit usage

habits, mobile equipment usage and Bluetooth related information, services of

possible interest to users, and the preferred way users would like to access

content.

8

 3 Public Transit Passengers' Opinions

The majority of the respondents were regular users of public

transportation (59%), as is seen in Figure 1. Most respondents (73%) reported

they wait between 5 and 15 minutes for the bus arrive (Figure 3). Therefore,

we can state, with 95% of certainty, that between 64.5% and 81.5% of public

transportation passengers must wait 5 to 15 minutes for the bus to arrive.

More than 80% of respondents reported that they use their portable

communication equipment while waiting for the bus. Thus, we can state that

between 73.5% and 88.5% of public transportation users occupy some of their

waiting time by operating their devices. Also, it seems that often respondents

use their devices for messaging purposes (60%). On the other hand, accessing

on-line content doesn't seem popular among the respondents (4.8%).

About 73% of respondents reported that they have a mobile device

which supports Bluetooth (Figure 4). Based on this data, we can state (with

95% of certainty) that 64.8% to 81.8% of public transportation users have a

Bluetooth capable mobile device.

Nevertheless, only about 11.5% of users stated that they have their

Bluetooth mode enabled (Figure 5). This suggests that 5.3% to 17.5% of public

transportation users have their devices' Bluetooth enabled. This data is

coherent with previously obtained percentages [OKKSPFJ 06]. Security (35%)

and power consumption (27%) are the main reasons for disabling Bluetooth

discoverable mode, as is seen in Table 3.

Data about the preferred way of accessing Bluetooth service was

inconclusive, as depicted in Figure 6. Respondents made clear that they don't

want to be pushed uninteresting information unconditionally (3.8%), but are

receptive to receive pushed content if it is or their interest (33.6%). They were

also split between being pushed content with previous registration (31.7%),

and retrieving the content for themselves (i.e. pulling content) (30.7%).

Given the presentation of the collected raw data, we now proceed to the

discussion of the results.

9

 3 Public Transit Passengers' Opinions

Day (October 2008)

15 16 17 18 19 20 21 Totals

T

i

m

e

of

D

a

y

10:00 0 4 0 0 0 5 0 9

11:00 3 0 0 0 5 0 0 8

12:00 0 0 0 0 0 1 0 1

13:00 8 0 5 0 0 0 0 13

14:00 0 0 0 6 0 0 0 6

15:00 10 0 4 0 0 0 0 14

16:00 14 7 5 0 0 0 0 26

17:00 1 0 3 4 0 0 6 14

19:00 0 3 6 0 0 0 2 11

20:00 0 0 0 0 0 0 3 3

Totals 36 14 23 10 5 6 11 105

Table 1: Answered questionnaires distribution

Phone Calls Messages Entertainment Internet Other

Replied 43

(41%)

63

(60%)

37

(35%)

5

(4,8%)

0

(0%)

Table 2: Respondents' device usage at bus stops

Security Power Consumption No reason Other

Replied 37

(35%)

28

(27%)

10

(9,5%)

0

(0%)

Table 3: Reasons for disabling Bluetooth

Bus

Schedules

Buses

Arrival

Times

Entertainm

ent

Nearby bus

stops

locations

News Other

Replied 68

(64,7%)

75

(71,4%)

37

(35,2%)

35

(33,3%)

32

(30,4%)

2

(0,02%)

Table 4: Respondents services preferences at bus stops

10

 3 Public Transit Passengers' Opinions

Bus

Schedules

Buses

Arrival

Times

Entertainme

nt

Nearby

bus stops

locations

News Other

Replied 20

(19%)

61

(58%)

39

(37%)

33

(31%)

45

(43%)

1

(0,009%)

Table 5: Respondents services preferences while traveling

11

Figure 1: Respondents bus usage frequency

Figure 2: Respondents age distribution

2+ times p/day
1 time p/day

1-5 times p/week
1-5 times p/month

very rarely

0

20

40

60

80
62

8
17

9 9

Respondents Travelling Habits
Bus usage frequency

Frequency

N
um

be
r

of
 r

es
po

nd
en

ts

10-20 20-30 30-40 40-50 50+

0

10

20

30

40

50

60

40

53

8
2 2

Respondents Age Information
Age distribution

Age range

N
um

be
r

of
 r

es
po

nd
en

ts

 3 Public Transit Passengers' Opinions

12

Figure 4: Devices' Bluetooth support

Figure 6: Respondents preferred way of service

access

30.77%

31.73%

3.85%

33.65%

Service Access

Preferred ways

Pull Method
Push with
registration
Push without
consent
Irrelevant if
information is of
interest

73.33%

24.76%

1.90%

Users' Devices

Bluetooth support

Yes
No
Don't know

Figure 3: Respondents waiting time at bus stops

1-5 5-10 10-15 15-30 30

0

10

20

30

40

50

Respondents Waitting Habits
Bus waitting time

Time (minutes)

N
um

be
r

of
 r

es
po

nd
en

ts

Figure 5: Enabled Bluetooh devices

15.58%

84.42%

Bluetooth capable devices

Bluetooth state

Enabled
Disabled

 3 Public Transit Passengers' Opinions

3.2 Discussion

In this section we present the discussion of the previous results. We use

as basis for this discussion the variables associations presented at Appendix

A2. By describing associations and stating their major influence factors, we

dervied useful information that aided us in the design and development

processes of our system. Images and tables reffered along this sections are

located at Appendix A3.

3.2.1 Location

• A relationship between the location where the questionnaire was

delivered and the choice of a service that indicates nearby bus stops

exists. Our analysis shows people that answered the questionnaire at

UMa location are more inclined to want a service that indicates nearby

bus stops localizations. By looking at Figure 71, we see a standardized

value of 2.23 and a percentage of nearly 48%, clearly indicating that

such an association exists. This could be due the fact that more that

50% of the respondents at UMa said that they wait between 10 to 30

minutes for the bus the arrive, possibly leaving them more interested in

catching an alternative bus at a nearby bus stop.

3.2.2 Demographics

• Sex and device usage for messaging purposes are related. Figure 72

indicates that women seem more inclined to send/receive messages.

Almost 73% of the female respondents claimed that they use their

device for this specific purpose. An hypothesis that explains this is that

women are more prone to use this kind of service than men.

• An association exists between sex and wanting a service that indicates

nearby bus stops. Almost 33% of the males stated that a service of this

kind interests them (Figure 73). Therefore, it seems that men are more

prone to know nearby bus stops localizations. This again could be

related to the time that male respondents wait for the bus. As 50% of

males wait between 10 and more than 30 minutes, this could lead them

to look for alternative bus stops.

13

 3 Public Transit Passengers' Opinions

• Age and device usage at bus stops are related. Table 8 shows us that

respondents of 10-20 and 20-30 age groups make constant use of their

mobile equipment while they wait for the bus. More than 50% of

respondents of the 10-20 age group wait between 10 and more than 30

minutes. Also, around 39% of respondents of 20-30 age group wait

between 10 and 30 minutes. An hypothesis that time is an influencing

factor on device usage can be raised to explain this.

• Additionally, age and the use of mobile equipment to send messages

are related. By observing Table 9, we verify that standardized residuals

of -2.88 and 2.35 indicate that respondents that belong to the 10-20 age

group are more inclined to use their equipment for messaging purposes.

We could state that younger people tend to have less disposable

income, therefore using messaging as a more economic way of

communication.

• Our analysis showed us that age and wanting to access a news service

while at the bus stop are related. By looking at Table 10 we observe that

younger respondents are disinterested in a service as this. On the

contrary, older respondents saw this as of interest to them. We could

argue that, in general, younger users are less interested in certain kind

of services, such as news.

3.2.3 Bus Usage and Waiting Time

• An association exists between usage frequency of public transportation

and to disable Bluetooth for no concrete reason. Looking at Table 13 we

observe a standardized residual of 3.05, which indicates that

respondents that use the bus 1 to 5 times a week, are more prone to

disable their equipment' Bluetooth for no specific reason. Maybe these

respondents simply disable Bluetooth as they see no purpose in it.

• Our analysis showed that waiting time and device usage are related.

Our statistical data show us that people who wait between 5 and 10

minutes are less prone to use their mobile equipment. Also, there is a

tendency for device usage as waiting time increases (Table 12). This

data comes to substantiate previous results which indicated that device

usage is influenced by waiting time.

14

 3 Public Transit Passengers' Opinions

• Waiting time is also related to device usage for messaging purposes.

Our data indicates that people who wait between 5 to 10 minutes are

less prone to use their device to send/receive messages (Table 11). This

could be age related, since only 25% of the respondents of the 10-20

age group wait 5 to 10 minutes for the bus.

3.2.4 Mobile Devices Practices

• Device usage and wanting to access a news service at bus stops are

related. Concretely, people who use their equipment to make/receive

phone calls are more prone to want a news service (Figure 74). This

could be related to age, because about 70% of respondents who use

their equipment to phone have ages raging between 20 and 50+ years.

• Also, device usage is related to wanting a news service while travelling.

Again, we see that users who use the device for phoning purposes are

more prone to select the news service (Figure 75), which indicates a

age related factor.

• People who use their device for messaging are also interested in using it

for entertainment purposes. Figure 76 show us that indeed there is a

tendency for those who don't use the device for messaging purposes to

not use it for entertainment purposes. As seen previously, younger

respondents tend to send more messages (Table 9), therefore we can

assume that these same respondents are more prone to use their

device for entertainment purposes.

• Device usage and disabling Bluetooth for security are related. This is

seen in Figure 77, where people who send more messages are more

prone to disable their devices' Bluetooth discoverable mode for security

reasons. Again recalling Table 9, we can assume that this could be

related to age, as younger people are more security-aware in regard to

Bluetooth.

• Sending messages while at the bus stop relates to wanting a news

service in the same situation. Figure 78 data indicates that those who

use their device for messaging are less interested in a news service at

the bus stops. Again, and recalling Table 8 and Table 9, we can state

15

 3 Public Transit Passengers' Opinions

that this is related to age, where younger users are less interested in

this kind of service.

• Disabling Bluetooth for power consumption reasons is related to device

usage. More concretely, those respondents who used their device for

entertainment purposes are more inclined to disable Bluetooth for

power consumption reasons (Figure 79). We can assume that

entertainment software tends to make devices' battery consume faster,

therefore alerting users of the implications of Bluetooth on power

consumption.

3.2.5 Types of Services

• Wanting to access detailed bus schedules while at bus stops is related

to wanting to know the arrival time at the destination stop. By looking at

Figure 80, we observe that people who don't chose to know detailed bus

schedules also seem less interested in knowing the arrival time at the

destination stop. Furthermore Figure 81 shows that people who don't

want to access detailed bus schedules at bus stops, also don't want to

access while travelling. We can only assume that these people aren't

interested at all with time issues.

• Wanting to know nearby bus stop locations is related to wanting the

same service while travelling (Figure 82). We could argue that these

people are cautious and would like to know where they could

alternatively take a bus in case they need it.

• Wanting to know bus stops localizations while at bus stops is related to

wanting a news service while travelling. Figure 83 show us that an

association between these two variables exists, as people tend to

choose both of these services. An hypothesis is that these are people

who like to be informed.

• Wanting a news service while waiting for the bus is related to wanting

the same service while travelling. Data indicates that those who chose

one are likely to chose the other (Figure 84). Looking back at Figure 82,

we could argue that people like to have access to similar services both

in bus stops and while they travel.

16

 3 Public Transit Passengers' Opinions

• Those who want to know detailed bus schedules while travelling also

seem interested in knowing their destination arrival time (Figure 85).

We could argue that these people are interested in time and schedule

issues (contrary to what we saw in Figure 80 and Figure 81).

3.3 Implications

Having presented the data and its analysis, we now present the design

implications that were inferred from the questionnaire.

As verified in Section 3.1, respondents demonstrated their interest in

knowing buses time related information. Specifically, 71.4% of the

respondents viewed this as an important factor. Also, 64.7% stated that having

access to detailed bus schedules is a useful feature. Therefore, it seems that

such services would be of interest to users.

Additionally, respondents also seemed interested in specific services as

they travel. The data demonstrates that there is a preference for accessing

services that help time pass as passengers travel. Such tendency is justified

by the percentage of respondents who stated their interest in having access to

news (43%) and entertainment (37%) services. There was also a preference by

the majority of the respondents (58%) for knowing the time remaining until

they reached their destination. It seems clear that the system should be

flexible enough to support various kinds of services.

Interesting, and with direct relation to the previous inference, is the fact

that in Section 3.2.5 we demonstrated that there is an association between

wanting the same types of services both while waiting for the vehicle as while

inside it. Such particularity leads us to take special attention in the flexibility of

our system, as we believe that the implementation and specification of

services should be sheltered from contextual factors.

Section 3.1 also demonstrates that respondents aren't interested on

being pushed information unconditionally, a fact already confirmed by

previous research [AGKO 04, PHJ 02]. On the other hand, respondents seem

indecisive as to the actual preferred way of information access. The data

indicates there is a split preference (of about 30% each) between user

initiation (i.e. a pull method), service registration (i.e. pull method with

previous registration), and simply not caring (as long content is of

17

 3 Public Transit Passengers' Opinions

interest).This indicates that various methods of content dissemination should

be supported.

Given the implications that the questionnaire had in our system, we

proceed to the review of the state of the art and related work.

18

 4 State of The Art & Related Work

4 State of The Art & Related Work

Throughout this section we present and review a number of fields that

relate with our work. The purpose is to review concrete subjects, identify their

foundations, and specify why they are important to us.

We begin with a horizontal review directed at more encompassing

areas. Information Capture & Dissemination, Intelligent Transportation

Systems, and Distributed Systems are example themes we present. The

purpose is to first contextualize our work at a higher abstraction level, before

drilling into more specific subjects.

Thereafter, our discussion will be directed at the areas of Bluetooth and

Context-Aware Computing. Aspects will be reviewed more thoroughly, as our

work is more closely related to these areas.

4.1 Broad View

By first providing a broad view we hope to better contextualize our work.

As several fields contribute to our system specification, we fell that multiple

aspects of dissimilar nature need to be discussed.

4.1.1 Information Capture & Dissemination

The capture or collection of information has always been viewed as of

extreme importance. Possessing data about a subject is what enables us to

study and better understand it. Without it, our view of specific subjects would

be limited and incomplete, as the ability to perceive possible implications, and

determine the influence of external factors would be diminished. The field of

statistics is the most well know example of this. Information collection is the

pillar that supports statistical analysis and inferences. For obtaining

conclusions about a survey, for example, data must be collected and analysed.

Historically, information collection has been done by means of human

intervention. The most common situation is when specialized individuals are

responsible for collecting other individuals' information. Optionally, it can be

19

 4 State of The Art & Related Work

the own individual on which information needs to collected that reports back

to specialized personnel, as is common in several types of studies. Or, taking

another example, there may be a manual observation of some phenomenon,

as there is when manual methods are used for counting passengers that alight

a bus.

Problems associated with manual methods of information capture and

collection are mainly associated to their cost, and to some point to their

limited nature. Hiring individuals to collect information of thousands of persons

is an expensive process. First, it is expensive at an operational level, as

individuals are usually hired externally to the company. Secondly, information

is easily outdated, as manual collection is done sporadically and with pre-

determined goals in mind, and therefore fails to provide both an up-to-date

view on the subject on which information was collected, as well as using it on

other subjects. Thirdly, it lacks accuracy, as the sample size obtained with

manual data collection tends to be significantly smaller than with automatic

methods. Finally, manual information capture is limited in its scope, as it

unsuitable for several types of activities, such as localization.

The term automatic information capture is defined as the action of

identifying objects and collecting data about them in an automated way [VK

07]. Naturally, and contrary to manual methods, automatic techniques utilize

computers to accomplish this task. The information is collected and posteriorly

manipulated using electronic means, therefore dismissing human intervention

altogether. The objective is to improve the efficiency of data collection as a

process, which translates to reduced costs, more accurate results and overall

is seen as beneficial to organizations. Automation of data capture is already

seen as paramount in civilized countries, as several fields such as health

informatics depend heavily on it [Norris 02].

Another common function for which information systems are used is for

content dissemination. Although some authors define information

dissemination solely as the act of pushing data to users, in this document we

define information dissemination as the act of delivering content,

independently of the way this is accomplished. Tan & Ooi [TO 00] share this

view, as they define information dissemination as a process achieved either by

the user's request (e.g. pull), or by the source's own initiative (e.g. push). Both

20

 4 State of The Art & Related Work

these methods have their peculiarities, as each one of them is more suitable

for delivering content under different contexts.

Reportedly, the push model is more efficient when a large number of

clients is present, and the pull model is more indicated for a small number of

clients [TO 00, AFZ 97]. The justification is that the pull model depends heavily

on the client-server model, and therefore is, at an architectural level, more

prone to efficiency problems due to the fact that it must potentially handle a

large number of requests simultaneously. The push model is sheltered from

this limitation, as it is independent of the number of clients listening for

content. The content is disseminated using broadcasting protocols and

algorithms, and therefore the efficiency of the process is shielded from

eventual misses that may occur. Of course this last assumption is made by

with the presupposition that we are using technologies that support

broadcasting, which is not always the case. Also, it is not always suitable to

use unreliable methods for content delivery, as important information such as

delivery success rates are very difficult to collect.

It is currently known that it is beneficial to conjugate the two described

models of information dissemination. This is easily understandable, as each

one works better when certain conditions are met. Therefore, it seems only

logical to assume that merging the two of them would be advantageous. A

generic architecture of this kind is present by Tan & Ooi [TO 00], as they

define it as an integrated dissemination model. Acharya et al. also proposes an

integrated model based on the Broad-Cast Disk approach [AFZ 95]. It uses

both push channels and a point-to-point pull channel that they define as a pull-

based backchannel [AFZ 97]. This pull channel would then be used to send

requests to the content distribution source.

Our work relates to the notions here presented. The system functions by

installing stations at target areas, automatically capturing Bluetooth enabled

devices. Furthermore, the system uses this information to feed the content

dissemination infrastructure that uses a push-only method to deliver content

to users.

One of the many areas where our system can be useful is in the field of

public transportation. In fact, information capture and dissemination using

technological innovations in transports is a field that gathers much interest,

21

 4 State of The Art & Related Work

and may be seen as being part of the broader field of Intelligent

Transportation Systems (ITS). For this reason, we discuss ITS in the ensuing

section.

4.1.2 Intelligent Transportation Systems

ITS is a set of interrelated fields whose purposes are, among others, to

achieve better transportation efficiency and diminish the environmental

impact that self-propelling vehicles have [FJMFC 01]. ITS is of particular

sensitivity to scientific and technological innovations, which can be exploited

advantageously in transportation related areas. It is usually said that the

global purpose of ITS is to use appropriate technology to add “intelligence” to

infrastructures, vehicles and their users [FJMFC 01]. ITS does gather enormous

worldwide interest both from transportation professionals, the automotive

industry and from governmental entities alike.

Usually we can divide the number of fields that constitute ITS in six

distinct categories, which may be further sub-divided into other categories

[Shibata 99]. A field of special interest to us within ITS is that of Advanced

Public Transportation Systems (APTS) and its sub-fields Automatic Vehicle

Location (AVL) and Automatic Passenger Counting (APC). Many public transit

companies already employ the referred APTS techniques, being very common

to achieve AVL using Differential Global Positioning Systems (DGPS) [Zhao 00,

LHHR 00]. The vehicles are usually equipped with GPS modules that estimate

positioning. Posterior differential GPS [MOJ 95] correction is applied, and this

positioning data is then uploaded to a central infrastructure by means of a

wireless communication channel, such as General Packet Radio Service (GPRS)

link [Zhao 00]. Subsequent data manipulation usually happens, as the

received information serves as input for systems whose purpose may be to

track down vehicles and provide times of arrival estimations. An example is

the BUSVIEW graphical system [MD 01]. Also, and with the propagation of

electronic travelling titles, most public transit companies employ APC by

simply reading passengers' tickets or travelling cards. Such method of APC is

considered infeasible in public transit vehicles such as buses and trains, simply

because exit points are not usually captured. As a solution for this problem,

other techniques such as pressure sensors and light beams [HQR 94] or

passenger count through image interpretation [Wilson 06] may be

22

 4 State of The Art & Related Work

implemented. Another option is to enforce passengers to present their

travelling titles at exit points. These solutions are far from optimal, as forcing

title presentation is considered to be non-practical, and use of sensors and

cameras is bound to have a large operational cost. A valid low-cost and

reliable solution is that presented by Kostakos [Kostakos 08]. A Bluetooth

scanner is implemented aboard a bus, as it perpetually scans for nearby

devices. Posteriorly, the gathered data is interpolated with the public transit

AVL data, and both passengers' entry and exit points are successfully inferred.

Results are representative, and intrusiveness is non-existent.

Our system is somewhat related to the concepts previously described.

We could possibly install the system both inside public transports, as in public

transit infrastructure, such as bus stops. The installation in public bus stops

would be interesting, as it would give us the ability of studying passengers'

waiting habits, as well enable for the dissemination of a rich set of context-

aware services, such as estimated transport arrival time, real-time vehicle

position determination, among many others. Additionally, installing the system

inside public transportations, such as buses would provide for the derivation of

O/D matrices, as described in [Kostakos 08].

With this in mind, it becomes interesting to present and describe O/D

matrices and their importance.

4.1.3 Origin-Destination Matrices

Origin-Destination (O/D) Matrices are an essential tool in transportation

analysis. This structure has strategical importance in transit agencies due its

relevance in both analysis and planning activities. O/D Matrices used in public

transportations are simply structures that contain information about the

passengers' flow along the various nodes that constitute the network.

The difficulty of estimating O/D Matrices for public transportation is

particularly related to the kind of vehicle. Some types of transports such as

subways make the derivation of O/D Matrices easier, as we can capture entry

and exit points automatically through Automated Fare Collection (AFC)

mechanisms. On other kinds of transports such as buses and trains, this

derivation is not as straightforward and reliable as we would like it to be.

23

 4 State of The Art & Related Work

What is usually observed in such type of public transit vehicles is the

use of manual methodologies to perform O/D Matrix estimation. Data is

collected through the execution of a survey, and by applying one of several

possible statistical techniques the O/D Matrix is inferred. An overview on the

kind of statistic methods normally used is seen in [Ben-Akiva 87]. The main

issues with this kind of estimation are related to the high operational costs of

executing the surveys. For this reason, and for the fact that surveys are not

actually executed with O/D Matrix derivation in mind, these tend to happen

very sporadically, and fail to reflect fluctuations that possibly happen in a

timely manner [Cui 06].

Additionally, and when entry points are automatically collected, there is

the possibility of O/D Matrix estimation using only passengers' entry points

information. This kind of situation (e.g. exclusive automatic entry point

collection) is widely seen both in trains and buses, as usually these

transportations enforce title presentation at or before vehicle boarding.

Systems that perform O/D Matrix estimation using solely origin-only data have

already been proposed for both rail systems [ZRW 07] as well as public transit

buses [Cui 06]. Independently on the the quality of the obtained results with

these mechanisms, it is well known that the determination of both entry and

exit points leads to more accurate and representative O/D Matrices [Gordillo

06]. This affirmation is understandable because if we automate passengers'

entry and exit points capture, we remove the need for human interference,

and turn the derivation process solely a matter of electronic manipulation.

Costs are reduced, results more accurate, and the frequency on which

derivation is obtained attenuated [Cui 06].

O/D matrices estimation is one of the possible uses of our system. By

deploying Bluetooth sensing nodes within buses, we lay the foundations on

which up-to-date and low-cost O/D matrices may be inferred. This notion of

sensing nodes leads us to another interesting subject to our work – sensor

networks. The relation that this subject has with our work is what we discuss

next.

24

 4 State of The Art & Related Work

4.1.4 Sensor Networks

As ubiquitous computing [Weiser 93] sees widespread use, everyday

objects gain the potential in becoming artefacts with computational and

sensing capabilities. Hence, the notion of a set of interconnected sensors gains

wider acceptance. A sensor network may be seen as a set of small nodes

which have limited computational power and memory, and a sensing module.

Several particularities must be met in order for a set of sensors to be classified

as a network. One of the most important is the small computations that each

sensor usually performs, so that centralized computation efforts may be

relieved [ASSC 02]. Also, it is very common for these nodes to perform

cooperative work, therefore augmenting the accuracy and overall sensing

capacity achievable by means of individual sensors [HKB 99].

In order for the individual sensors to form a network they must be

interconnected. Wireless technologies are seen as ideal for this purpose as

they require no direct physical connection, therefore retaining the unobtrusive

nature of ubiquitous computing [HKB 99]. Naturally, several technologies can

be used to achieve this, as some of them are inappropriate due to their

inherent complex stack protocol [LDB 03]. Each node in a sensor network

maintains its functionality as if they were independent of all other nodes. This

allows, among other things to increase resistance to failure, as the network

functionality is unbounded to any specific component. Each node has a

respective mission and collects its own contextual data. Naturally many types

of data may be gathered by sensors, being one of them individuals/equipment

sensing.

Our system cannot be seen as a real sensor network, as for example is

defined in [ASSC 02]. Our nodes are in fact more than simple sensing nodes,

as they hold the capability of performing high demanding computations.

Furthermore, our nodes do not have the need to communicate between them

directly. In reality, if we were to enable such facility, our overall system

performance would probably be undermined. Also, our nodes energy

consumptions are high compared to what is usually seen with small sensing

nodes, and therefore don't have the capability of working autonomously for

high periods of time. Finally, the environments on which our nodes can be

25

 4 State of The Art & Related Work

deployed are restricted to non-extreme settings, as they don't hold the

capability of enduring such hazardous environments.

With the previous assertions in mind, there are some characteristics of

our system common to sensor networks:

• The system performs sensing through the use of Bluetooth. All stations

have this capability, as the information is posteriorly stored centrally.

• The system is fault tolerant. It has the capacity of enduring individual

node failure, ensuring overall functionality even when individual nodes

fail [SSJ 01, HSA 00].

• The nodes exchange information with each other and execute

cooperative labour, although indirectly. This is done using the central

infrastructure, which queries individual nodes, and posteriorly delivers

relevant information to the remaining nodes, ensuring synchronization

and that no redundant information dissemination is done. Curiously, we

use this synchronization approach to resolve a common problem of

sensor networks – sensor overlap [HKB 99], in which is very common

that two nodes overlap their sensing activities, therefore sending

replicated data to another node.

As we presented the similarities that bound sensor networks with our

work, it is now opportune to refer to another relevant field on our work –

Distributed Systems (DS).

4.1.5 Distributed Systems

A DS can be thought of as a logical grouping of a set of functionalities

when the components that constitute the system are physically separated. In

other words, a DS is a set of inter-connected components – by means of a

network – that work together in order to achieve specific common goals [CDK

05]. Various subjects such as CORBA [Bolton 01] may be discussed within the

field of DS, but to our work we are mainly interested in three specific topics:

(a) The characteristics that define a DS

(b) The notion of a distributed database

(c) The relationship with mobile and ubiquitous computing

26

 4 State of The Art & Related Work

For a system to be though of as a DS it must conform to a set of

characteristics like autonomous component functionality. The components that

constitute the system have only a limited and restricted view of the system as

a whole, as they have no specific domain knowledge of other components, and

therefore perceive the system in a very restricted way [CDK 05]. Also, the

ability to endure component failure is a common particularity of DS. Recalling

the definition of sensor networks (which is a particular kind of DS), it was seen

that functionality should be unarmed even when individual components, for

some reason, cease to function to their full potential.

Also, and relation to point (b), the notion of DS is also extended to data

repositories. As the volume of information exponentially grows, it is very

common to see repositories that spawn over several physical locations. The

simplest architecture used in distributed databases is that of multiple-

client/single-server [OV 99]. The server holds the actual Database

Management System (DBMS) which maintains system wide information. When

needed, the clients proceed to remote repository access (which can be direct

or indirect) storing and/or retrieving information accordingly. Naturally, this

way of data distribution has associated particularities. Namely, replication is

achieved [OV 99, CDK 05]. We have the system wide data in the server, but a

percentage of that data is replicated locally at the clients. This allows, among

other things, to gain additional access speed, since the need to constantly

contact the server for database related actions is removed. Further, using

distributed databases schemes such as this allows for easy information

recovery. In case of local data corruption we may proceed to recovery by

querying the database. Finally, concurrent access to the database is fairly

straightforward, since only the server entity is preoccupied with such issues.

We also highlight the continuously common introduction of mobile

devices in distributed systems [Kleinrock 95]. As these gain the ability to

communicate using different wireless means, they are in fact turning

themselves part of larger and more complex systems. As always with

distributed systems, this equipment has no knowledge of the complexity of the

system as it functions autonomously from the remaining components. It is now

common to verify small mobile equipment having access to certain services

when they are in specific locations. This particular method of information

27

 4 State of The Art & Related Work

access is known as location-aware computing and it plays a major role in the

specification of our system. We discuss this subject latter in our work.

Our system is perceived as a distributed system. It is composed of

several physically dispersed components that work with each other to achieve

global goals. Also, the system is not strictly dependent on any of these

individual components to maintain functionality, as it can handle failure. In the

individual nodes we make use of a DBM [BN 92] engine in order to achieve

local replication and persistence. A central component with a RDBMS exists, as

it holds information related to all individual components. Finally, and as we

disseminate information to mobile equipment, these may be seen as nodes

that are part of a more complex and distributed system.

After this overview of distributed systems we proceed to the description

of the mechanism that actually makes distributed systems a reality. For this

reason we present a discussion about Inter Process Communication (IPC)

methods in the following section.

4.1.6 Inter Process Communication

A process is the execution of a program and consists of a set of bytes

which a CPU interprets [Bach 86]. In typical UNIX and UNIX-like systems,

processes are loaded in memory and have several types of information related

to them, including the text segment (e.g. machine instructions), initialized

data, uninitialized data, the stack and the heap [Bach 86, SR 05]. A process is

then an instance of a program which has associated to it a set of resources. As

processes are forbidden of accessing each own resources directly, a

mechanism for allowing inter-communication is required.

IPC is a mechanism which allows for unrelated processes to inter-

exchange information. Many kinds of IPC mechanisms exist, as some of them

are indicated for local IPC and others for remote IPC. Some examples of IPC

include signals, named and unnamed pipes, shared memory, UNIX domain and

Internet sockets, and message passing. IPC mechanisms are not restricted to

be used exclusively between them, as they can be combined in order to obtain

a higher degree of expressiveness. A typical example is to use both Internet

sockets and message passing for achieving remote communication between

processes. Also, some types of IPC are inherently designed to handle

28

 4 State of The Art & Related Work

asynchronous events (signals), as others are designed to handle synchronous

events (named pipes). Still, others have the ability to handle both types of

events. The most known example is that of sockets, where modern operating

systems and programming languages define an Application Programming

Interface (API) that supports both blocking (synchronous) and non-blocking

(asynchronous) versions of these.

Sockets – more concretely Internet sockets – are one of the building

foundations of inter-network communications. An Internet socket is in fact a

pair formed by two entities: the IP address of the target host and the port on

which a process is listening to. Virtually all modern operating system provide a

TCP/IP implementation in their kernel which is composed by three distinct

layers [WS 95]: the socket layer, the protocol layer and the interface layer. As

the socket layer – and consequently sockets – is situated the nearest of the

application layer, it provides for an abstraction between applications and

underlying transportation layers such as TCP and UDP. Processes therefore use

specific function low-level invocations (e.g. system calls) so that IPC using

sockets can happen in a transparent and compatible way between processes,

that can be separated by different networks, different underlying protocols,

different operating systems and even different applications.

In sum, IPC mechanisms are essential to our system because of the

following reasons:

(a) Our system is a distributed system composed by three separate

entities: nodes situated at public transit infrastructures; a broker

responsible for name lookup and connection establishment; a

centralized infrastructure

(b) All entities described above need, at some point, to execute several

operations simultaneous. By using a multi-process paradigm we can

fulfil the system's needs.

As demonstrated, IPC represents an important aspect of our system. We use

several of the techniques described in this chapter, as IPC is executed both

locally and remotely. A working “protocol” for communication is defined, so

that different components can request for concrete actions from other

elements.

29

 4 State of The Art & Related Work

The discussion of IPC mechanisms marks the end of our broad view of

related work. Throughout this section several issues were discussed, as they

where used to lay the foundations on which the ensuing chapter and included

subjects are built upon.

4.2 In-Depth View

In this section a more meticulous review and discussion is performed.

The subjects discussed within are less far-reaching than those seen in the

previous section, but the contribution they have in defining and

contextualizing our work is greater. For this reason, a more through

scrutinization is made. In concrete two subjects are discussed: Bluetooth

wireless technology and Context-Aware computing.

4.2.1 Bluetooth Wireless Technology

Bluetooth is a radio wireless technology whose development started in

the mid 1990s. It has over the years gained increasing acceptance, as its

presence is noticed in virtually all recent electronic equipment, such as PDAs,

mobile phones and personal computers. The world-wide adhesiveness of

Bluetooth technology is demonstrated by the estimated 520 million devices

that supported it in 20061.

Several particular characteristics differentiate Bluetooth from other

wireless technologies. Its low cost and low power consumption justify why

there is such a widespread integration on electronic equipment. Furthermore,

and comparing for example with Infra Reds (IR), which are also commonly

present in mobile equipment, Bluetooth works by transmitting and receiving

the radio signal in a omnidirectional manner, therefore dismissing the need for

having line of sight or antenna directionality.

More technically, Bluetooth is composed by a set of interconnected

layers. This layer oriented specification is much common in networking

communication stacks, as the most known examples are the TCP/IP and OSI

models [SFR 03]. The purpose for dividing communication stacks into several

layers is to allow for heterogeneous host systems to communicate using solely

1http://www.economist.com/sciencetechnology/tq/displayStory.cfm?story_id=7001843

30

 4 State of The Art & Related Work

common logical agreements – the protocols [Stevens 94]. Figure 8 shows the

disposition of the layers and the belonging protocols [Bisdikan 01].

4.2.1.1 Bluetooth Lower-Levels

The Bluetooth radio operates at the 2.4GHz unlicensed Industry

Scientific and Medical (ISM) band. As this is a free band, many components

potentially operate at the same frequencies. In fact, the IEEE 802.11x family of

wireless technologies uses this specific band. This leads to situations of

interference when both technologies are in the same operating range.

Manufacturers are aware of this, as the devices which operate at this band

must be able to share frequencies and tolerate interference. By using a

Frequency Hopping Spread Spectrum (FHSS) technique, Bluetooth manages to

reduce interference, as well improve security measures of the technology

[Wang 01]. The radio therefore employs a pseudo-random algorithm,

executing 1600 hops/sec over a bandwidth of 79 one-megahertz channels. The

frequencies on which Bluetooth operates are therefore specified by the

following expression:

f=2,402k MHz ,0≤k≤78

Even though FHSS and error coding techniques are used for minimizing

interference, Bluetooth inter-operability with WLAN (e.g. IEEE 802.11x) leads

to higher packet lost probability, and consequently to undermined

performance for both of these technologies [GCR 03].

Bluetooth has three distinct classes: class 1, 2, and 3. Class 1 devices

are the most powerful, and consequently transceivers of this type can

communicate within 100 meters of each other. Class 2 transceivers are the

most commonly used, due to their balanced power consumption and range.

These devices are present in virtually all commercial mobile equipment, and

can establish connections up to 10 meters from each other. The less powerful

devices are those which belong to class 3. Their power consumption is

minimum, and for that reason wireless communication can only be established

if devices are up to 1 meter from each other. Figure 7 demonstrates the

differences that exist between range radius of Bluetooth classes.

A word on the fact that if we use two dongles, one class 1 and other

class 2, the maximum range will not be of 100 meters. This is due the fact that

31

 4 State of The Art & Related Work

range is limited by the class 2 transceiver lower power output. On the other

hand, using such configuration allow us to extend the class 2 transceiver

beyond the 10 meters limit, but nowhere near 100 meters. Nevertheless, it is

possible to use specialized hardware such as high gain antennas, so that long

range Bluetooth communication is possible.

Moving to the baseband protocol, it is situated just above the actual

physical radio transmission medium. Baseband defines how Bluetooth links are

established, how Bluetooth networks are created, how transmission medium is

32

Figure 8: Bluetooth Protocol Specification

Figure 7: Bluetooth classes

range

 4 State of The Art & Related Work

shared, and also define the structure of the low-level packets [Bisdikan 01].

Each Bluetooth device has associated with it a unique 48-bit address

(BD_ADDR), which can be though off as the equivalent of a Ethernet MAC

address. Individual identification becomes possible due to this feature, as no

two addresses are equal. Associated to each Bluetooth device is also a 28-bit

clock value. For communication to be initiated between two Bluetooth devices,

interventionists must exchange both the BD_ADDR and clock values. A

network of Bluetooth devices is formally defined as a piconet, and in each

piconet there must be only one master and up to 7 slaves. Optionally, there is

the ability to inter-connect piconets, therefore forming a scatternet. No direct

communication between slaves within a piconet can exist, as the master unit

acts as a routing element. Also, for communication to be effective and full-

duplex supported (e.g. transmission and receiving happening simultaneously),

a Time-Division Duplex (TDD) technique is used for sharing the bandwidth

available. In practice this means that each device is allowed only to transmit

for 625 µs at a time, in each channel (or frequency), although a packet can be

separated along 1, 3 or 5 distinct channels [Wang 01]. It is the master's unit

clock which identifies the frequency or channel on which transmission is going

to happen. For this reason, a Bluetooth device can only be master on one

piconet. Also, master units will transmit only on even-numbered slots (e.g. 625

µs time units), and slaves will transmit only on odd-numbered slots.

For a piconet to be created some steps must be performed. If the

master already knows the address of the slave, then the inquiry phase may be

skipped. This phase consists of locating devices and obtaining their address

and clock values. It works only if the inquired device is in discoverable (or

inquiry scan) mode, and the inquiring device transmits inquiry messages. The

discoverable device will then respond by sending inquiry reply messages,

which, among other things, contain the address and clock values. Naturally,

the devices which are set to discoverable mode need to continuously check for

inquiry requests, which leads to increased power consumption, even when

Bluetooth isn't actually being used by the user.

This is due the fact that Bluetooth discoverable devices remain in stand-

by mode, during which they listen to inquiry messages every 1.28 seconds,

using one of the 32 pre-established inquiry frequencies. As such, inquiring

devices use periods multiples of 1.28 seconds to find Bluetooth devices in the

33

 4 State of The Art & Related Work

vicinity. The Bluetooth specification states that in an error-free environment,

an inquiring device must spend 10.24 seconds (i.e. 8 * 1.28 seconds) in order

to discoverable all surrounding Bluetooth enabled devices.

After the details regarding specific devices have been determined, the

master can then proceed to invite elements to join the piconet. This process is

known as the paging phase, and works similarly to the inquiry phase. First, a

device must be set to connectable (or page scan) mode. Then, the device that

wants to initiate the communication – the paging device – will transmit a

paging message to the connectable device. This later device will then reply

with a page response message, sending its details over the communication

channel. After this, the piconet can be created. A device that is set to

connectable mode also needs to perform periodical scans, and therefore also

contributes to increased power consumption, although less than those devices

in discoverable mode.

Devices actually communicate through the exchange of baseband

packets. Each packet has a 72-bit Access Code (AC) field, a 54-bits header and

a 2746-bit payload. Although this is the base structure of baseband packets,

several packet configurations can be made. The only field that is required to

be present at all times is the AC, which is used exclusively when we have a

baseband packet of type ID [Bisdikan 01]. In order for packets to be

exchanged a link must be established. Two kinds of links can be established

when using Bluetooth. Asynchronous Connectionless (ACL) links are the most

used type, and provide no Quality of Service (QoS) mechanisms. On the other

hand, this Best-Effort link does provide for integrity using retransmissions, and

uses error correcting techniques. Also, there is the possibility of establishing

Synchronous Connection-Oriented (SCO) links. Although SCO does not allow for

retransmission, its link symmetry and constant rates, make it ideal for voice

communication between Bluetooth devices.

Moving up the protocol hierarchy, the Link Manager Protocol (LMP) is the

component whose actually responsible for controlling the Bluetooth link. LMP

takes care of security related issues, which includes authentication and

encryption. There is a large specification of LMP protocol data units (PDU), as

some of them are related to security issues, and others to information

exchange, crucial for connection establishment. Due to the nature of

Bluetooth, asymmetric authentication methods do not apply, and therefore a

34

 4 State of The Art & Related Work

simple challenge/response mechanisms is used for authentication [Bisdikan

01, GPS 04]. The first time two devices met, it is necessary to use a Personal

Identification Number (PIN) for initializing the authentication process. After PIN

data has been correctly inserted, the authentication process will from then

forward dispense the use of a PIN, as it will utilize a 128-bit authentication key.

The authentication process can in reality be dismissed all together, as some

application profiles don't need to perform authentication for exchanging

information. Furthermore, upon link establishment encryption can be set using

the previously known link key used for authentication. The LMP also allows for

usage of low power modes. These are used to reduce ower consumption, but

also to allow for multiple operations to happen simultaneously. This is why

although the limit for a piconet is of 7 slaves + 1 master, by using power

modes we can get up to 256 slaves (in parked mode) in a piconet. Also, it is in

this layer that friendly name requests are made, as each Bluetooth device may

have a name associated with it. It is very common for mobile equipment to

also discover friendly names upon inquiry requests, but this delays the

procedure, as it is necessary to establish a connection between devices [AK

05].

The Logical Link Control and Adaptation Protocol (L2CAP) is the layer

most closely situated to the host system (an can in fact be implemented at the

host). L2CAP takes care of care of datagram segmentation and reassembly,

multiplexing of service streams, and QoS issues [GPS 04]. The main purpose of

the L2CAP is to work as a translating unit between the higher-level Bluetooth

protocols that run in the host, and the lower-level protocols that run in the

Bluetooth device.

4.2.1.2 Bluetooth Middle-Levels

The Host Controller Interface (HCI) is defined as a mere interface so that

hosts can access the lower-level protocols of Bluetooth modules. Since there is

the possibility that lower and higher-level Bluetooth protocols are separated,

there is a need for establishing an interface to control Bluetooth modules. This

is usually the case when an external Bluetooth module is connected to a PC

through an USB port. On the other hand, if the Bluetooth module is integrated

into a larger device and the same microprocessor controls them both, then the

35

 4 State of The Art & Related Work

HCI firmware implementation can be neglected [GPS 04]. A common example

of this is a Bluetooth headset.

The protocols included in the middleware layer are usually implemented

at the host level. They work to alleviate the higher level protocols from

Bluetooth concrete specifications, abstracting the communication process. An

important protocol that lies within this layer is the Service Discovery Protocol

(SDP). Its function is to determine the hosts' available services, and to collect

information on how to use them. A Bluetooth service is defined by Universally

Unique Identifiers (UUIDs), which are used to describe services' names and

attributes. The RFCOMM protocol is also widely used in Bluetooth

communications. It is an emulation protocol that creates a virtual RS-232 (e.g.

serial) link between devices. RFCOMM enables for several types of applications

to work using Bluetooth. Examples include object exchange (OBEX) between

devices, point-to-point connection establishment (PPP), and telephony control

signalling (AT) commands.

4.2.1.3 Bluetooth Profiles

At the top of the Bluetooth stack reside the specifications that allow for

construction of compatible applications. These specifications are called

profiles, and they define the conditions which must be followed for inter-

communication between devices to happen. All profiles are extensions of the

Generic Access Profile (GAP), as new profiles can be devised upon existing

ones. This allows for creation of profile hierarchies, as this the case of the

Object Push Profile, which is based upon the Generic Object Exchange Profile,

which in turn is based upon the Serial Port Profile [Bisdikan 01, GPS 04].

4.2.1.4 WAP over Bluetooth

Bluetooth versatility is further demonstrated by its capability of

supporting additional networking communication stacks on top of the

Bluetooth stack. It is possible, for example, to use the Wireless Application

Protocol (WAP) suite over Bluetooth. WAP is an industry standard technology

used for presenting content in hand-held mobile equipment. WAP actually

consists of several protocols, and therefore forms a networking communication

stack. Given that many hand-held devices posses a WAP browser software

36

 4 State of The Art & Related Work

component, users can make use of it to access a set of services by means of a

Bluetooth link. Figure 9 [AL 00] demonstrates the involved layers in order for

this to be accomplished. Additional information on WAP over Bluetooth can be

seen in [AL 00].

With this section we gave a detailed overview of the Bluetooth Wireless

Technology. We described the stack that enables for Bluetooth inter-

communication, and verified that it is common that higher-level layers to be

implemented outside the actual Bluetooth device. Bluetooth profiles were also

discussed, and the versatility of the technology was mentioned, as we saw

that is possible to combine external communication stacks with Bluetooth.

Bluetooth has great relevance on our work. First, our system uses the

Bluetooth inquiry capabilities to continuously scan for nearby discoverable

devices. Secondly, we utilize Bluetooth SDP and profiles to perform content

delivery. As devices are discovered, the system determines if a pre-defined

service exists which has that address as destination. If it does, the system

tries and push – using OBEXPUSH – the content to the user. As usually we are

interest in nearby devices, we limit our scanning capabilities with the use of a

37

Figure 9: Client/Server communication using

WAP over Bluetooth

 4 State of The Art & Related Work

class 2 dongle. On the other hand, as we are interested in maximizing delivery

capability, we use a class 1 dongle for content delivery.

This notion of using a wireless technology (Bluetooth) to delivery

content at specific locations and under specific conditions, leads us to another

crucial notion in our work – Context-Aware Computing. What Context-Aware

Computing is and how does it influence our work is what we describe in the

ensuing section.

4.2.2 Context-Aware Computing

Multiple aspects must be taken into consideration when defining an

element's context. Information like location, time, and weather are all valid

factors that contribute to the delineation of the context on which an element is

inserted into. Context-Aware computing is a field on which contextual

information is the central element on defining the behaviour of hardware and

software systems.

4.2.2.1 Location-Aware Computing

Historically, Context-Aware computing is an extension of the notion of

Location-Aware computing. Aalto et al. [AGKO 04] define a Location-Aware

service, as a service whose behaviour is mostly determined by location

information. In their work, they developed a push-only dissemination system,

entitled B-MAD, which uses Bluetooth and WAP to perform content delivery.

Users must pre-register their Bluetooth address and phone number for

receiving content. Thereafter when a user is in the vicinity of a Bluetooth

station, this element will flag a centralized ad server using a WAP connection.

Consequently, the ad server will send the Bluetooth station information so that

content is delivered to the end user using a Short Message Service (SMS)

message. The main problems with this approach are the need for disclosing

phone numbers, and the constant communication with the centralized server

leading to additional latency.

The Place Lab initiative [SLBGMLBHI 03] uses a component installed in

end-user devices, known as Place Bar, to direct users to relevant web content,

taking as a parameter the Wi-Fi Access Points location information. The goal is

to create a positioning system, termed as a Global Wi-Fi Positioning System,

38

 4 State of The Art & Related Work

analogous to GPS. To achieve this, the unique Basic Service Set Identifier

(BSSID) – which corresponds to an Ethernet MAC address – is used to create a

database that associates Wi-Fi access points to a certain location. The Place

Bar would then query the database for determining the current location, and

thereafter direct the user accordingly. Although this is an interesting concept,

the current proliferation of Wi-Fi spots makes the maintenance of this

database a very difficult job. Also, users would need to download specific

software for this functionality to be enabled in their devices. Other interesting

developments in Location-Aware computing include the creation of the

Vehicular Information Transfer Protocol (VITP), which is used for creating

services over Vehicular Ad-hoc Networks (VANETs) [DFNI 07]. The purpose

would be to facilitate decision, by providing traffic related information such as

traffic congestion points, therefore working as an enhancer of already common

employed technologies such as on-board GPS. Harter et al. [HHSWW 99]

developed a system which provided 3-D modelling and localization of users

inside a building. The usage of ultrasonic transceivers, referred to as Bats,

provided the information necessary to successfully locate users inside a closed

space, a task usually made difficult due high interference levels which make

radio-based and electromagnetic techniques non-optimal. The interesting

point here is to note that these previously described applications are mostly

driven solely by one contextual aspect – location.

4.2.2.2 Context-Aware Multidimensionality

Context-Aware computing introduced new dimensions on which

applications behaviour could be specified. Although location still plays an

important role in defining context, other important factors such as temporal

and physical aspects play an active role in specifying context. The own notion

of context in computing is far from being commonly agreed upon. In our

opinion, the best notions which define Context-Aware are those mentioned by

Schilit et al. [SAW 94] and Chen & Kotz [CK 00], where the authors define

context in four distinct categories:

• Computing context – such as networking and connectivity

• User context – such as location and profile specification

• Physical context – such as weather and pollution levels

39

 4 State of The Art & Related Work

• Time context – such as time, day of week and day of year

This multidimensional aspect of context is again mentioned by Schmidt et al.

[SBG 99], where additional dimensions are considered to influence contextual

specification. Further, Dey & Abowd [DA 99] categorize contextual factors as

being primary and secondary. They argue that factors as location, time,

activity, and identity are to be considered primary aspects, as they convey the

power for inferring additional types of information. The authors also provide a

taxonomy of Context-Aware features, in which they define as being part of one

of three categories:

• Presentation of information and services to a user

• Automatic execution of a service

• Tagging of context to information for later retrieval

In sum, it seems clear that defining context is not straightforward, as many

aspects come into play due the dynamic nature of the environment.

4.2.2.3 Context-Aware Applications

Throughout the last decade and a half many research efforts have

directed their efforts towards Context-Aware computing. The field of Context-

Aware per see spawned mainly due to the work developed at Olivetti

Research. The Active Badge prototype system was developed in 1992, and it

consisted of using a IR emitting badge for locating staff within a building

[WHFG 92].The novel contribution of this project was not due the localization

technique used, but to the fact that the badges would respond to

environmental stimulus. Concretely, a light sensor was included in the badges.

The absence of light would make the badge redefine its behaviour, reducing IR

signal emission frequency, and consequently saving power. Also, the active

badge location information was used so that a receptionist would perform call

forwarding to the staff's nearest available phone. Another work developed by

Olivetti Research, and with direct relation with the Active Badge, was the

Teleporting system [BRH 94]. This applications worked by allowing users to

access X-server sessions by using computational resources most nearly

available to them. The Active Badge system would be used to perform user

localization, and allow the application to “follow” the user around. Brown et al.

also defined a system which used the Active Badge notion. The purpose would

40

 4 State of The Art & Related Work

be to route a message to a visitor which had an Active Badge, even if the user

didn't posses a pager. In that case, the message would be routed to the

closest person of the required destination.

The Cricket system is defined as location-support infrastructure [PCB

00]. It works in a decentralized manner, using beacons to transmit signals to

listeners, that the latter can use to determine position within a building. It

works by using a technological combination of Radio-Frequency (RF) and

ultrasonic signals. The beacons disseminate these signals periodically, and the

listeners use this information along with an inference engine to determine

current position. Contextual location related information (e.g. position and

distance) are used to determine the possible position of users.

Rukzio et al. [RSH 04] devised a system that uses physical posters for

content dissemination purposes. Encoded images are embedded into the

posters, as users utilize their mobile devices cameras to capture images, and

consequently send them to a server located in the vicinity of the posters. This

is accomplished through a Bluetooth link. The server will, upon image

reception, use image recognition software to determine the correct content to

send to the user. For the system to work, the user most download a Java based

application, termed as a Simplicity Personal Assistant (SPA).

LeBrun & Chuah [LC 06] deployed what they termed as Content

Distribution Stations at public transit vehicles. These stations are content

dissemination units that deliver information to public transit passengers. As

users transit between several points of the transit network, much idle time

exists. The goal would be to take advantage of that idle time, and utilize an

offer an array of services, raging from news to multimedia download. The

content is local to the stations, as no direct networking connection exists with

the outside world. The stations would therefore need to synchronize

periodically with servers located at, for example, major stations. This kind of

concept introduces the notion of Delay Tolerant Networking (DTN), allowing

for information routing and dissemination even when a direct connection to a

network does not exist. Although the authors state that both Wi-Fi and

Bluetooth technologies can be used to access the content, the way this is

actually done is unclear.

41

 4 State of The Art & Related Work

A content dissemination architecture that uses mobile devices as relay

points is the issue of foci in [LLSFC 06]. The system is defined by three distinct

components: fixed source nodes, mobile relay nodes, and data sinks. The goal

is to use the mobile relay nodes (and also data sinks) to enhance the

information diffusion rate. Data is transmitted using Bluetooth from source

nodes to mobile and data sinks nodes, as these hold the capability of acting as

a forwarding element, disseminating the content to other potentially

interested nodes. User interests and location define the context in which

content is to be delivered. This is also a form of DTN, as information is routed

to destination nodes without previous pre-established structure. Interesting

results were obtained with almost 90% of delivery success. On the other hand,

there is the need for mobile nodes users to agree to act as forwarding

elements.

Ravi et al. [RSDI 05] use Bluetooth SDP facilities to create a protocol

entitled SDIPP. The goal is to add personalization capabilities so that

innovative services are implemented. Users would discover services located at

specific location using Bluetooth discovery capabilities. Thereafter, there

would be a need to initiate a GPRS connection with a centralized

infrastructure, retrieving data for enabling usage of the service. Consequently

the user would interact with the application using a Bluetooth connection. The

authors demonstrate an interesting application of this system, where doors

within a building are opened according to users' devices. Still the grand

limitation is related with the necessity of using a GPRS connection by the user,

which has inherent costs associated to it.

Opportunity Knocks is a system aimed at providing cognitive assistance

to mental impaired individuals [PLGCLOWFK 04]. The system is directed at

those individuals that use public transportations, but due their declined

cognitive abilities experience problems when travelling autonomously.

Opportunity Knocks works by using a GPS module, a GPRS-enabled mobile

phone, and a central inference software. The GPS and mobile phones are

naturally carried by the user, and communicate through Bluetooth. The central

inference engine uses location information and past history to determine, for

example, the probability that individuals have board the wrong bus or missed

their exit stop. By using this conjunction of location and temporal contextual

42

 4 State of The Art & Related Work

information, along with a sophisticated inference engine, Opportunity Knocks

demonstrates the usefulness of context-aware computing.

By using location information and users' profiles specifications, the

Social Serendipity system exploits mobile devices capabilities for facilitating

social interactions [EP 04]. The authors have developed an application, named

BlueAware, which uses Bluetooth inquiry capabilities to scan for devices in the

vicinity. The purpose is to augment the notion of social software, which

ironically usually require users to be in direct contact with computers for

interacting with other people. The Serendipity system consists of two distinct

applications. The first is a Bluetooth scanner termed as BlueAware. This

scanner, that runs in the user's mobile device, is continuously scanning for

nearby Bluetooth devices, and also maintains a proximity log. BlueAware

collects the data that will be used by other applications, such as the

Serendipity application. It also runs in the end-user mobile device, but must

connect to a central service by using a GPRS connection. The objective is to

search for matching profiles that may be in the vicinity, notifying accordingly

the interested parts.

Very closely related to our work is the BlueMall application [SCCM 08].

This Java-based system is defined as a context-aware ubiquitous Bluetooth

advertising system, developed to be used in commercial areas. It works by

placing several Access Points (AP) throughout the advertising area. When a

device comes into range of an AP – which is constantly running a scanning

program – the AP element will contact a central server to determine if any

content is to be pushed to the user. The system does allow for time-related

specification of content delivery, and also allows defining a list of addresses to

ignore. BlueMall has the ability to recall which devices were already served,

and therefore does not continuously tries to contact users. Nevertheless, the

constant need for contacting the central server, and the use of Ethernet to

inter-connect components seems to limit the scope of BlueMall to indoor

environments.

Ubiqmuseum is another example a context-aware advertisement

system [CMT 06]. It was developed to augment museum visitors experiences.

The system consists of three different components: Museum Information

Points (MIPs), clients, and a central server. Museum visitors will need to have a

Bluetooth enabled equipment along with a pre-downloaded Java application.

43

 4 State of The Art & Related Work

This Java application (which is the client) will give the opportunity for users to

define their personal preferences, letting them choose options such as

language, type of device, and level of information detail. When the user wants

to retrieve information from the MIPs, it will have to execute an inquiry and

consequently connect to the MIP component. After this is accomplished, the

MIP will contact the central server, sending it a code operation (codop) which

the server will interpret and take the appropriate action. Finally, the MIP will

receive the information from the server, and push it to the client application.

Likewise the BlueMall application, Ubiqmuseum restricts itself to a very

concrete field, which in this case is museums settings.

OpenProximity2 is an example of a proximity marketing system. It is

composed by several components and allows for remote web management.

The system supports the use of a dongle for scanning and another for

uploading content, which can maintain up to 7 simultaneous connections.

Administrators of the system will have to create campaigns in order to

disseminate content to users. Associated with these campaigns is a set of

rules that can be configured to indicate the method of delivery (OBEXPUSH,

OBEXFTP, etc.), time settings, and address filtering. Although it is stated that

OpenProximity can be configured to have a central component controlling

individual stations, it is not clear how this works. Other systems similar to

OpenProximity exist, such as BlueMagnet3 and Fexmax4. The method of

functionality is similar to OpenProximity, where campaigns with associated

rules are created in order to schedule content delivery to users.

A combination of hardware and software components, the Bluegiga

Access Servers are also commonly used for proximity marketing, but their

flexibility allows them to be used with broader objectives in mind, like context-

aware applications. Depending on the version, these systems can be equipped

with 3 Bluetooth radios, supporting up to 18 simultaneous connections.

Although Bluegiga access servers work mainly by pushing content to users,

they can be configured to receive input requests through a pull channel,

therefore implementing a integrated dissemination model (recall Section

4.1.1). Additionally, many filtering options can be configured for content

2http://sites.google.com/a/aircable.net/aircable/Home/openproximity-2-0
3http://www.bluemagnet.com/
4http://www.fexmax.com/

44

 4 State of The Art & Related Work

dissemination, including time, type of equipment, brand of equipment, and

distance. Our work relates very closely to the Bluegiga Acccess Servers, in

which it allows for creation of a set of services to disseminate content to users

according to pre-established rules. Nevertheless, our work deals solely with

the software part, and for that reason is not restricted to any particular type of

equipment.

Throughout this section we described in detail the notion of context-

aware computing. We verified that context-aware is indeed much more than

just location, as it can include many other aspects, such as personal

preferences, time restrictions, and even physical particularities. Moreover, we

viewed many examples of context-aware applications, and how these work in

real-world environments. We saw that these types of applications can be used

in many distinct areas, including assistance of impaired individuals, social

networking, proximity marketing, and overall content distribution. With the

presentation of both Bluetooth technology and context-aware computing we

contextualized our work and now proceed to the technical description of the

system.

45

 5 System Description

5 System Description

The purpose of this section is to technically describe our system using a

top-down approach. First, we present some example scenarios to help

visualize system's potential. Secondly, we discuss system's main requirements

so that a notion of functionality is obtained. Thirdly, we demonstrate a highly

abstract view of the system, as we present the overall system architecture.

Thereafter, we focus our discussion on the presentation of individual system

components, and finalize this section with the demonstration of concrete

particularities of the system, including configuration aspects, technical details,

and algorithms.

5.1 Example Scenarios

The system may create a set of context-aware services to disseminate

content to users. Several types of contextual impositions are possible,

including time and date of execution, location of device, and present nearby

devices.

For example, it is possible to create a service that disseminates static

(i.e. that doesn't change over time) content to John. Imagining that John's

birthday is on the 1st of July, a service can be created that indicates the system

to try and deliver content at “Bus stop 1” when he sees John. Optionally, the

service may be set to run all day, before expiring after midnight.

Another example is to create a simple textual content which the system

broadcasts constantly to all Bluetooth devices in the vicinity. We could set this

service to run for ever, but remembering the devices to whom content had

been successfully delivered, so no duplicated dissemination happens.

Still, a more interesting example is to create a service which delivers a

personalized image content to a set of of users. The system is set so that

delivery is triggered only when John, Mary, and Marc appear, together, at bus

stop “Bus stop 10”. Furthermore, only when these three devices are seen

continuously for more than 5 minutes, will the system disseminate the content

to all of them.

46

 5 System Description

It is also possible to fetch dynamic content, i.e. content that changes

over time. For example, if we have a web page that periodically refreshes its

content output, we can create a service that points to that web page, and

define it to delivery content to Suzie every two days, between 12:00 and 14:00

at either “Bus stop1” or “Bus stop 2”.

In sum, our infrastructure allows us to specify a rich set of features that

define the restrictions on which a service is to be executed. In order to better

understand how this works, we proceed to the definition of the overall system

requirements of the system.

5.2 Overall System Requirements

Since the beginning of our work we knew that the system's

requirements would be ill-defined, and consequently subject to modifications

along the software development cycle. As such, it was clear that the best

alternative would be to adopt an agile software development methodology if

we were to cope efficiently with the more than probable changes. The chosen

method was the Agile Unified Process5 (AUP), a simplified version of the

popular Rational Unified Process (RUP). AUP defines four phases and seven

disciplines. Phases work in a serial manner, in which disciplines have different

weights. Disciplines on the other hand work in a iterative manner and define

the concrete activities that team members are suppose to perform. AUP also

uses several common used agile techniques such as test-driven development,

just-barely-enough modelling, and stakeholders communication

encouragement.

Initially, the system's functional and non-functional requirements were

unclear. To overcome this situation, research was done and the questionnaire

present at Section 3 was issued. The result was the following initial functional

requirements:

1. The system shall, at least, be composed by two distinct separated

elements: Blue Stations, which may be deployed at several types of

environments, and a Central Infrastructure, which is deployed at a well

known location.

5http://www.ambysoft.com/unifiedprocess/agileUP.html

47

 5 System Description

2. The Central Infrastructure shall be responsible for storing stations'

contents, be responsible for synchronization, maintain a central

database, and allow for centralized control.

3. The Blue Stations must be able to perceive Bluetooth discoverable

devices in the vicinity and collect their information. This component will

be termed a scanner.

4. The scanner shall be configurable, as we may choose to change the

time that a scanner searches for nearby devices (e.g. inquiry time), as

well the time that a scanner sleeps after each scan (e.g. scanning

frequency). Also, we may choose to output devices' friendly names,

Class of Device (CoD), and the time stamp of the discovery.

5. The Blue Stations shall offer the possibility to deliver both static and

dynamic content to users.

6. Content will be offered in the form of services, in which each service is

fully configurable. Options like date of delivery, time of delivery, and

destination are to be specified upon service creation.

7. Content will be delivered using a push model of information

dissemination.

8. Several destinations can be specified in a service, being also possible to

specify a broadcast address.

9. Services creation will be done through some kind of interface, that can

be either a graphical interface, or a console application.

10.Blue Stations shall support the use of multiple Bluetooth dongles. If just

one dongle is used, then both scanning and deliver procedures are

executed by the same dongle. If more than one dongle is used, then the

scanning procedure will be made by one dongle, and the delivery

executed by the remaining ones.

Additionally, the following non-functional requirements were specified:

1. The system shall function uninterruptedly. It must support errors,

individual component failure, and implement recovery mechanisms.

48

 5 System Description

2. The system must be designed with flexibility in mind. Future

functionality addition shall not influence overall architectural structure.

With this basic requirements in mind, our next step was to designed an overall

architecture, which abstractly described our system.

5.3 Overal System Architecture

As we move the description of our architecture components, it is

pertinent to define a list of keywords so understanding of the system

functionality is made simpler:

• Blue Station – The components that are installed at various locations,

and are controlled remotely. The stations hold the capability for

performing scanning and content dissemination.

• Central Infrastructure – The set of components present at a central

location. Its purpose is to provide for overall management of stations.

• Broker – An intermediary component that provides naming lookup

capabilities, and is involved in all connections to and from stations.

• Service – The logical component which holds information about the

content to deliver, to whom content is to be delivered, and under which

contextual setting.

• Command – These components are created from service objects, and

can be seen as a stripped down version of services. Commands hold

only content, method of execution, and destination related information.

They are posteriorly interpreted by handlers, that do the actual delivery

to users.

• Flags – A set of configurable restrictions that can be set upon service

creation. Its purpose is to define the context under which a service is to

be executed.

• Service Scheduler – The component that holds a queue of services,

and determines which of the individual components may be executed,

and under which order. When a service is triggered for execution, the

scheduler translates that object into a command, and passes it along

the delivery system.

49

 5 System Description

• Delivery System – The component responsible for the execution of

commands. This component is the actual responsible for content

delivery to users, as it holds the classes that implement the logic for

interpreting commands – the command handlers.

As keywords are defined, we proceed to the actual description of the

high-level architecture. Looking at Figure 10 we have the main components of

the system. We observe the existence of four distinct components: Blue

Stations, the Broker, the Central Infrastructure, and User Devices.

We verify that the broker connects both stations and the central

infrastructure, by setting between them. Although not restricted too,

connection between stations and the broker are usually done with the use of a

GPRS/3G connection. Connection type between central infrastructure and

broker usually is done through a wired connection. Also, end-users

communicate with our system using Bluetooth.

Given the demonstration of the high-level system architecture, we now

proceed to the discussion of individual system components.

50

Figure 10: Updated high-level architecture

 5 System Description

5.4 Component Description

Besides the stations, the central infrastructure, and the broker, the

system is composed by an additional component – the administration console.

Being part of a distributed system, these components have the ability to work

separately from each other, as long as a network connection exists that inter-

links them. The most important elements are the stations, which actually scan

the vicinity for Bluetooth enabled devices, and further determine if content is

to be disseminated. Let's then proceed to an individual description of these

components.

5.4.1 Blue Stations

Blue stations are the mobile elements of the system, as they may be

deployed at various environments. They are usually small computers with two

Bluetooth dongles and a 3G modem attached, as seen in Figure 11.

Nevertheless, stations may use several Bluetooth dongle configurations, as

well several types of Internet connections (Figure 12).

The basic element of the station is the scanner, a Bluetooth dongle that

permanently scans for nearby devices. The scanner normally is implemented

using a class 2 Bluetooth dongle. The reason for using a class 2 dongle relates

to scan range limiting, as we are interest in devices which are closer to the

stations. Nevertheless, if interference is high, the use of a class 1 dongle may

be justifiable.

On the other hand, we want to maximize our delivery range. For this

reason we use class 1 devices as delivery dongles. Theoretically, many

delivery dongles may exist, but in reality constraints such as USB power

consumption play an important role in determining the maximum allowed

devices running in simultaneous. Further, the more devices exist near each

other, the greater the interference will be, and consequently signal quality and

delivery success rates may be influenced. We raise attention to the fact that

delivery dongles are optional, as blue stations have the capability to work with

a single dongle. This situation is undesirable, since using a dongle for both

scan and content delivery leads to poor results.

51

 5 System Description

The WAN modem is used so that a connection with the Internet is

established. Actually, any technology is possible but due the mobile nature of

the stations wireless technologies are more suitable.

The Blue Station in itself is a computer which runs a GNU/Linux

operating system. Our current configuration uses a Slackware6 distribution

along with the BlueZ7 library and tools. Additionally we also use the

OpenOBEX8 package for sending content to end-users using the OBEX

protocol. The language on which the major components are implemented is

Perl, but several external utilities are used, and some components are written

in Bash.

Regarding the software elements of the Blue Stations (Figure 13), six

main components exist: the device reader, the publishing module, the service

scheduler, the delivery system, the logging system, and the communication

system. Some elements communicate bidirectionally and others

unidirectionally.

6http://www.slackware.org
7http://www.bluez.org
8http://dev.zuckschwerdt.org/openobex

52

Figure 11: Asus EEE PC with two Bluetooth dongles and

a 3G modem

 5 System Description

5.4.1.1 Device Reader

The device reader, written in both Perl and Bash, is the element

responsible for scanning the vicinity, and is composed by several different

components (Figure 14). The scanner is encapsulated in a separate application

named btreader.sh. This tool is entirely written in Bash, and is simply a

configurable interface to an already existing BlueZ component named hcitool.

By default the scanner outputs devices' Bluetooth addresses, the time stamp,

and the clock and class hexadecimal values.

The scanner supports modification of various settings, including inquiry

duration, scanning frequency, device friendly name retrieval, and the

interface to use in the inquiry process. If only one Bluetooth dongle is

available, then the scanner can be set to use a lock option, which translates

into having exclusive access to the Bluetooth dongle. This mechanism of

53

Figure 12: Blue Station physical elements

Figure 13: Blue Station software elements

 5 System Description

locking works together with the delivery system, so that content delivery and

inquiry are exclusive.

The scanner works by executing hcitool to generate output, and

posteriorly performs a set of modifications using UNIX standard tools. In

particular, sed and AWK are used to perform these transformations, and

consequently direct the generated content to a named pipe (FIFO) structure.

After the transformation, the content is forwarded through the FIFO to

another Perl component named btdevread.pl. This component receives raw

textual content and uses it to create device objects and maintain a list of

these elements. Upon list update, this component will send the device list to

the publishing system using another form of IPC – UNIX domain sockets. The

sequence of events described is depicted in Figure 15.

54

Figure 14: Device Reader static view

 5 System Description

5.4.1.2 Publishing System

Before content from the scanning process is sent to interested parties, it

is received by the publishing system. We use this publisher/subscriber

architectural pattern to decouple the device reader from those elements

interested in the device related information. Five distinct channels are made

available by the publishing system for subscription, and are described as

follows:

• DEV_ENTRY refers only to those devices that enter the scan range, and

have not been seen in the recent past by the scanner.

• DEV_EXIT refers to those devices that were in range of the scanner, but

haven't been seen again for a specific amount of time, and therefore

have been excluded of the device list.

• DEV_UPDATE refers to those devices that already existed in range scan.

• DEV_ENTRY_UPDATE conjugates both DEV_ENTRY and DEV_UPDATE.

• DEV_ALL refers to all previous mentioned types of events (e.g. entry,

exit and update).

55

Figure 15: Device Reader sequence diagram

 5 System Description

The publishing system is also written in Perl, and works by using a UNIX

domain socket server. It will wait for the device reader to send content along

this path, and as an after-effect will proceed to channel content update and

subscribed elements notification. The static structure of the publishing system

is observed in Figure 16, where we see that many subscribers may be

connected to the publisher.

Using this structure for passing information along the interested

elements adds flexibility to the system, as we easily add or remove

subscribing elements at run-time, and maintain the system functionality intact.

For example, we could add a component responsible for estimating the

number of people in the vicinity without any complications to the remaining

components. It is Important to note that although the publishing system

receives content through a UNIX domain socket, it passes the content along to

subscribers using the most efficient method of IPC – shared memory segments

[SR 05].

5.4.1.3 Service Scheduler

After published, the list of devices is used by the subscribers. Currently,

we have only one component which subscribes to content, using the

DEV_ENTRY_UPDATE channel. That component is the service scheduler.

56

Figure 16: Publishing System static structure

 5 System Description

Responsibilities associated with it include service queue management,

translation of service objects into command objects, and maintenance of

blacklisted addresses. The class diagram of the service scheduler component

is seen in Figure 17.

Service objects (Figure 18) are composed of a set of attributes, and

have another class associated with them – the ServiceFlag class. These latter

objects are used so we can define the particularities of services using what we

term as flags. In reality these provide a rather flexible way to define service

behaviours, as it is possible to specify and combine an array of these flags.

The service scheduler is a multi-process program which uses shared

memory segments for inter-communication among local component

processes. As it uses a DEV_ENTRY_UPDATE channel, the service scheduler will

receive an updated list of devices every time a new device is seen, or when

information related to existing devices is updated. The verification of this

device list happens synchronously, as the main process is accountable for

analysing both service queue and device list, and determining if any service

needs to be executed. If multiple dongles are used, the system supports

multiple simultaneous service execution. Further, if only one multicast service

is being executed, and multiple dongles are being used, the system has the

capability to use distinct dongles for delivering content to different

destinations.

For determining which services to execute the scheduler performs a

series of tests on the service objects present in the queue. The component

responsible for this is an instantiation of the ServiceReader class, and it works

by verifying if a service conforms to the flags specified upon creation. The

method used for flag verification is seen in Figure 19. Only when a service

passes all the tests is it marked by the ServiceScheduler for execution.

Although the ServiceScheduler class determines which services are to

be executed, it is not its responsibility to do the actual execution. Instead, a

new process is spawned and a class of type ServiceHandler is created. The

first step taken by this component is to verify if there is the need to fetch

content for the service. This is only the case when the TARGET flag is set,

indicating the URI where content is to be fetched from. On the other hand, the

ServiceHandler will not worry to fetch content if content is static, which is the

57

 5 System Description

case when content is directly embedded into the service object upon creation

(an example is seen in Code 1). The ensuing step made by the ServiceHandler

is to proceed to the translation of the service object into a command object.

After this is done, the ServiceHandler opens a connection, using a UNIX

domain socket, with the delivery system, and instruct this component to add

and execute the command. The ServiceHandler will then wait until completion,

and update the Service object accordingly.

The actual update of the service is done by the ServiceScheduler class.

This class implements the interface for actual service manipulation, and

therefore all service related operations are made by it. Updating a service

object will usually consist of updating the shared memory segments, but also

the DBM file so that data persistence is maintained. Some updates, such as

marking a service as non-active, are not (and should not be) reflected to the

DBM file, as this will not only undermine performance, but as well make the

service scheduler initialization process further complicated.

Further important is the fact that the service scheduler component

listens for outside connections, enabling for remote control over the

component. This is implemented by the ServiceSchedulerProxy class, which

will create a UNIX domain socket and wait for connections to come in. When a

remote request is made, the ServiceSchedulerProxy component will delegate

execution to the ControllerRequestHandler, and thereafter will send the reply

back to the client how issued the request. This strategy of delegating a

request to other component was used throughout our system, and it is based

on the object-oriented Proxy pattern [GHJV 95, Martin 03].

58

 5 System Description

59

Figure 18: Service class

Figure 17: Service Scheduler class diagram

 5 System Description

my $service = BtService::Service->new(
CONTENT => 'Happy new year',
CONTENT_EXTENSION => 'txt',
FLAGS => {

SERVICE => {
EXECUTION_METHOD => 'OBEXPUSH',
STATEFULL => 1,

},
TRIGGER => {

DESTINATION => ['FF:FF:FF:FF:FF:FF'],
LOCATION => 'UMa',
DATE => '01/01/10',
TIME => '*;*',

}
}

);

Code 1: Creation of a service that broadcasts a “Happy new year” message on the 1st

day of the year 2010, all day long at location “Uma”. The service is statefull and

therefore remembers already served devices

60

Figure 19: Service flags verification

 5 System Description

5.4.1.4 Delivery System

Delivering content to the end-user is the responsibility of the delivery

system. After the service scheduler creates services and translates them to

command objects, the delivery system tries to execute them, and

consequently disseminate content to the user.

The delivery system also works in a multi-process environment. Upon

initialization two processes exist, and when a command has to be executed a

new process is created. The inter-communication done inside the delivery

system is, analogously to the service scheduler, done using shared memory

segments.

When a command arrives to the delivery system, the first component to

receive it is an object of type CommandListener. This component uses a UNIX

domain socket to listen for command objects sent by the service scheduler.

Upon reception, the CommandListener determines the local operation to

execute, which is one of two: add the command to the queue, or mark it for

execution.

For a command to be executed, it has to be passed to an object of type

CommandDispatcher. This module implements all the logic necessary for

determining which CommandHandler object needs to be instantiated, so that

the actual execution of the command can proceed. The CommandDispatcher

maintains a list of Bluetooth interfaces, marking them accordingly when a

command execution is in place. Also, this component has the ability to work

together with the device reader, by using a locking mechanism that ensures

exclusive access to the Bluetooth dongle, if a single dongle is present.

The referred method of command execution is based in the Command

Dispatcher pattern [DF 01]. By using this pattern we achieve greater flexibility

for the delivery system. First, we enable for handler registration, removal and

replacement at run-time, without the need for component reinitialization.

Secondly, by putting the command execution logic into the CommandHandler

objects, we gain the ability of creating lightweight command objects, and

therefore transmit these much more efficiently across processes.

In Figure 21 we have depicted the sequence of events that basically

happen in a delivery process. The content is received by the

CommandListener, and by consequence the method handleCommand() is

61

 5 System Description

issued to the CommandDispatcher. This later component then proceeds to the

instantiation of the correct CommandHandler object and interface reservation

(buildCommand() method), and finally demands for the delivery of the content

to the end-user. The CommandDispatcher gets the operation status from the

CommandHandler, and prints the information related to it. It also replies to the

service scheduler component, so that the scheduler can update its service

queue accordingly.

62

Figure 20: Delivery System structure

 5 System Description

5.4.1.5 Communication System

The component responsible for communicating with the outside world is

the communication system. It lies in the boundary of the Blue Station, and

works very similarly to a proxy. The device reader, service scheduler and

delivery system all implement mechanisms for remote control, but they listen

only for connections using UNIX domain sockets.

By creating a component whose solely responsible for inter-network

communication, we never expose internal elements directly to the outside

world. Instead, all communications must pass through the communication

system, as it decides to which local component a request is to be forwarded.

This is better understood by looking at Figure 22, where we see that the only

component that uses Internet sockets is the communication system. All other

components are restricted to local communication.

Another aspect of the communication system is that it accepts both

local and remote requests. In other words, local components can ask for the

communication system to forward specific requests to the broker (and

consequently to the central), but it also accepts remote requests from the

outside world. Forwarding local requests is straightforward, as the link with the

outside world is 1-to-1. On the other hand, forwarding remote requests

63

Figure 21: Sequence diagram for delivery process

 5 System Description

involves determining which component is the content intended too. For

achieving this, we associate each operation with a specific component by

using a dispatch table, a technique utilized in many system's components. The

components that constitute the communication system are seen in Figure 23.

Another aspect to mention is that local components can send buffered

requests to the communication system. This way, requests are serialized and

stored in a file, as the communication system periodically checks to see if

content needs to be sent. Buffer is cleared when content is successfully sent to

the destination.

64

Figure 22: Communication System methods of communication

Figure 23: Communication System class diagram

 5 System Description

5.4.1.6 Logging System

The logging system has a simple structure (Figure 24), and its only

responsibility is to collect the log files created by the remaining components

(e.g. device reader, service scheduler, delivery system, and communication

system).

When the Blue Station is started, a script is responsible for scheduling

execution of the logging system. It uses the user's crontab entry for instructing

the operating system to run the logging system everyday at 23:59. Thereafter,

the logging system fetches the content present in the log directory, creates a

compressed file, names it accordingly, and finally sends a buffered request to

the communication system, so that the log content is transmitted to the

central infrastructure. Code 2 shows the steps taken for scheduling the

logging system.

65

Figure 24: Logging System class diagram

 5 System Description

#Schedule for logging content delivery to central
if [[-z "$BLUE_HOME"]]; then
 echo "BLUE_HOME variable is not set. Cannot set up crontab entry for
content logging delivery. Quiting..."
 stopStation
fi
if [[! -e cron_command]]; then
 echo "59 23 * * * $BLUE_HOME/LoggingSystem/exec_log.sh $BLUE_HOME"
>cron_command
 #Error occured
 if [[$? != 0]]; then
 echo "An error occured while schedulling for content sent to central
server. This will need to be done manually"
 #Append created cron content to crontab
 else
 #Put existing cron tab entrys into temporary file
 crontab -l >orig_cron_tab
 #Append to cron_command file and add it to cron
 cat orig_cron_tab >>cron_command
 crontab cron_command
 if [[$? != 0]]; then
 echo "Couldn't set up cron command set up. Logging System is not
scheduled to send log content"
 fi
 #Clean up the recently created cron_command file
 rm cron_command
 fi
fi

Code 2: Code for schedulling logging system execution

With the discussion of the logging system we conclude our overview of

the Blue Station component. Let's now proceed to the intermediary element –

the Broker.

5.4.2 Broker

As an intermediary component, the broker is involved in all

communications between stations and the central infrastructure. As such, the

broker acts as a naming server, but also as a request/reply forwarder. The

behaviour of the broker is similar to the communication system of the stations.

In reality, the BrokerConnectionHandler implements the same abstract class

that some of the components of the communication system – the

RequestForwarder (Figure 25).

The addition of the broker allows us to gain run-time name lookup, an

important aspect if we consider that stations may have dynamic addresses,

and that referring to them by a numerical IP would be problematic. Further,

66

 5 System Description

the broker is present in all connections to and from the stations. This is

advantageous because if we assume that stations may not be able to listen

directly for outside connections, the use of tunnelling techniques is necessary.

With the existence of an intermediary component, we remove the burden of

the stations and central infrastructure to implement concrete communication

logic, as we need to worry only in implementing the code necessary for them

to connect to the broker.

The broker maintains a data structure which allows it to associate a

station's name with a concrete address. This structure is an hash table, and is

termed as a server table. A station must register with the Broker before the

remaining components are able to contact it. This is done when the station

component is initialized, where there is a direct request to the Broker to

perform registration. If the station is said to be already registered, the station

will then request for replacement of the address, as there is a chance that the

address has been modified.

Although security is not one of our main concerns at this point, we

implemented a simple mechanism for making sure that a station cannot

camouflage as another. Upon the first registration, a station is given a random

hash code that it must store in order to identify itself in the future. By

observing Figure 26 we see the sequence of events that must take place in

order for a remote operation to be executed.

In order to support multiple connection forwarding, the Broker

component uses a multi-process strategy. When a new request comes in, a

new child process will be spawned. If the request is to be forwarded to a

station or to the central infrastructure, the Broker will locate the component

and establish a connection with it. The process is independent from the

registration type, as the Broker maintains only a simple string composed by

address and port of the component.

As the overview of the Broker is made, we can proceed to the discussion

of the remaining component of the system – the central infrastructure.

67

 5 System Description

68

Figure 25: Broker class diagram

 5 System Description

5.4.3 Central Infrastructure

Composed by several different components, the central infrastructure

has the responsibility to log content, manage the database, and provide the

mean to control individual stations. Element disposition is seen in Figure 27.

The most important component is the station manager. Its objective is

to provide the means for remote station management. It is a multi-process

program, and it works by listening for requests using a UNIX domain socket.

The classes that constitute this component are shown in Figure 28. As is

observed, this component has the responsibility of database management.

When a client issues a request to the station manager, the StationManager

class creates, after spawning a new child process, a new

69

Figure 26: Broker component behaviour

 5 System Description

StationControllerProxy object to handle the request. This element has the

responsibility of performing database management – using the

DatabaseManager class – and delegate execution to the StationController

class, which implements all control station related methods.

Receiving the content sent by the stations' logging systems is the

responsibility of the log manager. It listens for incoming local connections, and

upon concrete request it creates the log directories and files, so that each

station has a dedicated directory for storing log content.

Working similarly to the station communication system, the central

infrastructure communication system will provide inter-network connectivity.

Like the blue stations, the central infrastructure must execute a registration

process with the Broker. The communication system has the responsibility of

registring with the Broker, and act as a request forwardered. The static

structure of this element is seen in Figure 29.

Given the description of the central infrastructure we move to the

discussion of the administration console.

70

Figure 27: Central

Infrastructure elements

 5 System Description

5.4.4 Administration Console

A component not discussed until now is the administration console. Its

objective is to provide an interface so that station and service management is

possible. The administration console also connects to the broker component,

as it needs the broker naming capabilities to consequently connect to

individual stations, and also to the central infrastructure.

71

Figure 28: Station Manager class diagram

Figure 29: Central infrastructure communication system

 5 System Description

The administration console is built upon a Model-View-Controller (MVC)

architectural pattern. This is done so that we may easily migrate from a

console based interface to a graphical based one. Using MVC we separate

concerns and as such future modification of interaction method is made

simpler, as we have only to modify the View classes. Figure 30 shows the

administration console composing elements.

With the use of the administration console we may connect to any

station registered with the broker. A list of commands is made available upon

initialization of the console, as we indicate the name of server to which we

wish to connect. After successfully establishing a connection to a station, the

list of possible commands expands, as we are able to control all the elements

that constitute the station (Figure 31). As an example, in Figure 32 we see the

output produced by the ds command, that shows the details related to a

specific service.

Also, it is possible to connect to the central infrastructure using the

administration console. Upon successful connection, a different set of

commands is made available to the administration, as he gains the possibility

of controlling individual stations, as well remove stations from the broker and

database.

Overall, the administration console allows us to remotely manage both

stations and the central infrastructure by using the broker's naming lookup

capabilities. It is possible to run the console in any location, as long as the

minimum necessary modules are available.

With the discussion of the administration console we come to the end of

our system overview. In this section we presented a more detailed

specification of the system than in the two previous sections. For further

system understandability, and its functionality logic, we present in the ensuing

section a more detailed scrutinization of several important aspects of the

system.

72

 5 System Description

73

Figure 30: Administration console class diagram

Figure 31: Administration console help menu when connected to

station 'UMa'

 5 System Description

5.5 System Particularities

In the previous section a detailed overview of the system was given.

With it, we demonstrated the philosophy of the system and described, with a

relative level of detail, its components. A complete detailed of the system is

beyond the scope of this section, but it is still important to delve deeper into

some elements, as they are crucial for understanding the method of

functionality.

5.5.1 Blue Station Configuration

Because the Blue Station was developed to run in Linux, and possibly in

other UNIX-like operating systems, there was the clear need to devise some

mechanism for system configuration. As always, it is not desirable to embed

configuration details into the source code. Users should not have to edit any

source tree file for modifying the configurable system aspects. Instead a better

way is to use a configuration file to achieve this.

74

Figure 32: Accessing service details using the administration

console

 5 System Description

• The blue station component uses a shell variable and a configuration file

for option specification. After unpacking the station component, the

output content will include an installation file named install.sh. This file

exports to the user profile the BLUE_HOME variable. This variable is

used to determine the installation directory of the station component,

where it is included the configuration file – bluestation.conf.

• Device reader options are the first to be presented, as the user has the

ability to change the duration of the scan (SCAN_LENGTH), its frequency

(SCAN_FREQUENCY), if friendly names should be output

(SHOW_DEVICE_NAME), and if a time stamp should also be output

(SHOW_TIMESTAMP). By default these options are set to 8, 5, 0, and 1

respectively.

• The delivery system options are presented next, as it is possible to

define the command types supported by the system (COMMAND_TYPE),

and the respective handling class (COMMAND_HANDLER). A maximum

up to 10 distinct pairs may be set. By default, the system only supports

the type OBEXPUSH, and the handler BtCommand::ObexPushHandler.

• Service scheduler option include setting the name of service DBM file

(SERVICE_DBM_FILE), and of the blacklisted addresses

(BLACK_LIST_DBM_FILE).

• The last set of options are overall settings. The administrator needs to

set the name of the station correctly (STATION_LOCATION) so that

registration is possible with the broker, which location is specified by the

NAMING_SERVER_LOCATION and NAMING_SERVER_PORT options. If a

SSH tunnel is to be used, then the option USE_SSH_TUNNEL needs to be

enabled, and both SSH_TUNNEL_USERNAME and SSH_KEYFILE are used

to specify SSH connection user name and private key authentication file.

Also, the system currently makes use of the autossh9 application so that

tunnel reliability is ensured. On the other hand, if no tunnel is used, then

the option EXTERNAL_INTERFACE indicates the interface used to

connect to the outside world. The communication system uses this

setting to monitor the interface and perform address replacement

automatically when the address changes. The administrator indicates

9www.harding.motd.ca/autossh/

75

 5 System Description

that multiple dongles are to be used, by enabling the

USE_MULTIPLE_DONGLES, and by indicating the scanner (SCANNER) and

delivery dongles (DELIVERY_1, DELIVERY_2, etc). Also, if multiple

connections per dongle are allowed, the administrator needs to specify

the number with the modification of MAX_DONGLE_CONNECTIONS.

Components will read the configuration file upon initialization, and use

the settings throughout the process life. Processes also have the ability to

modify the configuration file in run-time. This is easily done in Perl, as the

dynamic and text-oriented nature of the language lets us treat text files as

internal structures, facilitating the usage of the regular expressions engine.

Pertinent to say is that both reading and modification procedures are all

done transparently to users, as all system (including the Broker and the

central infrastructure) components run in the background, consequence of a

procedure done upon initialization, known as daemonization.

5.5.2 Daemonization

Programs that reside in memory “permanently” are referred to as

daemons. They are usually created upon operating system initialization, and

are killed only when there is a shut down (e.g. restart or halt) procedure. One

particularity of daemons is that they are non-interactive, autonomous

programs that need no direct human intervention, and for that reason run in

the background. Daemons run without a control terminal associated, and

therefore other means of communication are used to control these processes,

being signals one of the most common.

In order for a process to be daemonized, it must conform to a set of

coding rules. Stevens & Rago [SR 05] define the following steps that should be

performed in order to correctly daemonize a process:

• Disable the umask value. Umask is used so permissions can be enforced

upon file creation. It is not wise to use such restrictions on a daemon, as

it may have the need to create several types of files.

• Call fork to create a child process, and then call exit to kill the parent.

This step is actually responsible for sending the process to the

background.

76

 5 System Description

• Call setsid for making the first child process as the session and group

leader. This also allows for stating that the process needs no control

terminal associated to it.

• Change the working directory. This could be root directory, or some

other process related directory. What shouldn't be done is to chdir to a

directory which can influence file system mounting operations.

• Close unnecessary file descriptors (or file handles in Perl), and redirect

the standard streams. Many variations of standard stream redirection

can be used here, as it all depends on the nature of the daemon. If for

example a centralized log facility like syslog is being used, we'll want to

redirect all standard streams to /dev/null. On the other hand, if we

maintain a separate log file for each daemon, we may want to void the

standard input and output, and redirect the standard error to a log file.

Naturally, we followed these recommendations and implemented them

in our system. Although these recommendations are made in reference to the

C programming language, they can be easily transported to Perl.

As a form of exemplification let's consider the daemonization process of

a blue station communication system. We start by using a set of constants

that define the details of the daemon (Code 3). The first argument value is

read ($ARGV), as this determines the need to proceed to daemonization.

Furthermore, the process ID (PID), log file (LOG_FILE), and the component

name (MODULE_NAME) are also defined.

Actual daemonization of the process happens after, as we first test for

existence of a PID file to make sure that only one instance of the daemon

exists. We then change the working directory, create the child and exit the

parent, and finally make the child a session leader, redirect the streams, and

create the PID file (Code 4).

Also important is the redefinition of signals (Code 5). We use Perl's

special hash $SIG to define what kind of action should be performed upon

reception of specific types of signals. A common step to take here, besides

those shown in Code 5, is to define the HUP signal, and instruct the program to

proceed to verification of the configuration file. This is done in several other

elements of the system, like the device reader. It allows us to modify system

77

 5 System Description

settings, update them in the configuration file, and instruct the component to

restart and read the configuration file again.

As referred, the dameonization procedure dissociates processes from

the controlling terminal. There is no need to allocate a terminal if no

interaction is to happen between user and process. A common usage for

daemon processes is to use them as a server components, that will wait for

incoming requests made by users. This client/server architecture is indeed

adopted by many of the system's elements, being the most evident case the

service scheduler. When a user wants to create a service, he must connect to

this element, and instruct for service creation. Many options are available to

the user in this process, as this is the foci of discussion of the next section.

use constant DAEMONIZE => ($ARGV[0] =~ /^(-d)|(--daemon)$/) ?
1 : 0;
use constant PID_FILE => '/tmp/commsys.pid';
use constant MODULE_NAME => 'SysctlDaemon';
use constant LOG_FILE => $ENV{'BLUE_HOME'} .
"/log/comm_sys.log";

Code 3: Constant definition for daemonization

78

 5 System Description

#Daemonize component
if (DAEMONIZE) {

#No two daemons can be running simultaneous
if (-e PID_FILE) {

print_ts(${\MODULE_NAME},
"A daemon of this type is already running. If not

remove file '", PID_FILE,"'");
exit(1);

}

#Change working directory
chdir $WORKING_PATH;
open STDIN, '/dev/null';
open STDOUT, '>/dev/stdout';

#Create child and kill parent
defined(my $pid = fork) || die "Fatal: can't fork [$!]";
exit if $pid;

#Make child session leader, redirect standard error, and create
PID file

setsid;
$PARENT_PID = $$;
open(STDERR, ">>", LOG_FILE);
open(PID_FH, ">", PID_FILE);
print PID_FH $$;
close(PID_FH);

}

Code 4: Daemonization procedure

#Set up signal handlers
$SIG{CHLD} = 'IGNORE';
$SIG{INT} = $SIG{TERM} = sub {

my $signal_type = shift;

print_ts(${\MODULE_NAME}, "Got $signal_type signal. Quiting...");
kill TERM => $_ for (@child_pids);
unlink(PID_FILE);
unlink(STATION_PROXY_SOCK);
$sysctl->cleanUp();
exit(0);

};

Code 5: Redifinition of signals

5.5.3 Service Specification Language

In order to offer greater flexibility to the user, our system supports the

definition of a set of options upon service creation. These flags that we allow

79

 5 System Description

the users to define, characterize the service, and therefore we see them as a

service specification language (SSL).

Although it is a rather rudimentary language, the SSL allows for

specification of diverse contextual dimensions. The flags are separated into

two distinct groups: service flags and trigger flags. The first set refers to the

definition of the service, and the second is related to the context that must be

observed in order for the service to be eligible for execution. All these flags

are set in the ServiceFlags class (see Figure 18). Additionally, the Service class

also allows for indication of several options. In both cases, some options are

supposed to be set directly by the user, and others updated according to

service execution. The following list presents the currently supported flags by

the system:

• Main service flags

◦ CONTENT – If set directly, the service has static content. Note that

only textual content can be set directly.

◦ CONTENT_EXTENSION – This flag indicates the type of content. If it is

simple text, then it would indicate .txt. On the other hand, if it is a

jpeg image, it would indicate .jpg. This is set automatically by the

system.

◦ HASH_CODE – This refers to the fingerprint of the service. It is

automatically set upon service creation. A MD5 hash is used to

generate a set of hexadecimal digits that will uniquely define a a

service. We accomplish this by using Data::Dumper module, which

stringfies Perl's internal data structures, making it suitable for

applying the hash algorithm.

◦ SERVICE_NAME – This defines the name of the service. It is used

upon random file creation. End users will receive a name containing

the string defined in this field, along with other random characters.

◦ ADDITION_DATE – The date of addition to the service queue.

Automatically set.

◦ RETRY_VALUE – How many times has the service been executed?

This is automatically set by the system

◦ ID – Defines the unique local number of a service. Set by the system.

80

data::Dumper

 5 System Description

◦ CONTENT_STATIC - The system automatically sets this flag to 1 if

the service has static content.

• Service definition flags

◦ TARGET – This indicates the source where content is to be fetched

from. When this is set, the content is said to be dynamic. The input

must be in the form of a URI, and can be either local or remote.

◦ EXECUTION_METHOD – The method used to deliver content to end

users. Currently only OBEXPUSH is supported.

◦ ACTIVE – This indicates if a service is currently active or not. This is

automatically set by the system.

◦ STATEFULL – This flag indicates if a service maintains state. In other

words, if this is set, the service will remember the addresses to

which content has already been delivered too, and will not deliver

the same content again.

◦ SERVED_DEVICES – An array of devices to which content was

successfully delivered. If a service maintains state, then it won't try

to deliver content to those devices contained in this array. This is

automatically managed by the system.

◦ LAST_EXECUTION – The date of the last service execution. This is set

automatically by the system.

◦ LAST_CONTENT_CHECKSUM – If the service maintains state, and the

content is dynamic, then the system will periodically check the

content to see if changes occurred. Analogously to the technique

used for defining the service fingerprint, we use MD5 checksums to

determine changes in the content. If the content has changed, then

the system will clean the SERVED_DEVICES flag, and deliver content

to all surrounding devices. This is automatically managed by the

system.

◦ BROADCAST – This flag is set to 1 if we want to deliver content to

everyone. This is automatically set by the system.

• Service contextual flags

81

 5 System Description

◦ DESTINATION – This defines the address(es) to which content is to be

delivered to. The special address FF:FF:FF:FF:FF:FF indicates that this

is a broadcast service. Setting this address will make the system

enable the BROADCAST flag.

◦ PRESENCE_RULE – This flag accepts two options: ANY or ALL. Either

of this flags one makes sense if multiple destinations have been set.

If this is the case, then ANY indicates that the service is to be

executed if any of the destination addresses comes into scanning

range. On the other hand, if ALL is set, then the service will only

execute when all destinations have come into scanning range.

◦ LOCATION – The location where content is to be delivered. Indicating

more than one location indicates that the service is to be added in

more than one location.

◦ DATE – This indicates the service's date of execution. Not only

concrete are supported, as wildcards are also acceptable. If we want

a service to run forever we would indicate *;*. If we wanted a service

with a start date, but not an end date we would use dd/mm/yy;*.

Contrarily, if we wanted a service which only runs for a day, we

would indicate a concrete date with the format dd/mm/yy.

◦ TIME – Indicates the time of execution. The same wildcards

supported in the DATE flag are also supported here.

◦ DISC_DURATION – The minimum time that a destination address

must be in scanning range before service execution is tried.

◦ EXECUTION_FREQUENCY – This flag indicates that a service,

independently of other flags, is only to be executed if the defined

amount of time has elapsed since the last execution.

◦ CLASS – An array which restricts the classes of devices to deliver

content to. We can indicate just the major class, or we can further

specify the minor class. If we want to restrict our class of devices to

just mobile equipment, we use the hexadecimal value 0x000200. It

is advisable to impose this kind of restriction, as often we are only

interested in delivering content to mobile equipment and personal

computers.

82

 5 System Description

With the flags here described users can build several types of services.

The philosophy is simple: define the type of content a service uses, and

thereafter define on which context should the service be executed. As an

example, lets consider the creation of a news service. We want to fetch RSS

headlines from a specific site, and transform and deliver them to public transit

users. For accomplishing this task we do the follow:

• Create a server side script which fetches the content from a website.

This script will then transform the content so that unnecessary text is

filtered out.

• Create a service which points to the above script, that simply outputs

the transformed content.

We start by building the script responsible for fetching and transforming

the news content (Code 6). By using grep and sed capabilities, we easily

remove HTML related information, and shape the content for textual delivery.

Thereafter, a simple PHP (Code 7) will be responsible for outputting the

transformed content. Finally, we define a service with the options seen in Code

8. It is seen that we point to the PHP script hypothetical location, by defining

the TARGET flag. Also, the service maintains state, and delivers only to mobile

equipment, such as cellphones and PDAs.

This overview of the service specification language, and in particular the

contextual flags, set the foundations needed to understand the process of

determining if a service is to be executed – the subject of the next section.

curl http://some_news_services.com/RSS/Feed/news/homepage | grep
"<title>" | sed 1d | sed -e 's/\&\;/\&/g' -e 's/<title>//g' -e 's/<\/
title>//g' -e 's/^ *//g' -e ' i\
\
'

Code 6: Script responsible for fetching and transforming news headlines

83

 5 System Description

<?php
echo "We're proud to present the news headlines for today\n";
echo "\n";
$news = shell_exec('./get_news.sh');
echo html_entity_decode($news, ENT_QUOTES,'UTF-8');
echo "\nFonte: NEWS PROVIDER";
?>

Code 7: Script responsible for outputing transformed content

my $service = {
FLAGS => {

SERVICE => {
EXECUTION_METHOD => 'OBEXPUSH',
TARGET => 'http://server.somewhere.com/news.php',
STATEFULL => 1

},
TRIGGER => {

DESTINATION => ['FF:FF:FF:FF:FF:FF'],
LOCATION => 'Bus_Stop',
DATE => '*;*',
TIME => '*;*',
CLASS => [

{
MAJOR => 0x000200,
MINOR => undef

}
]

}
}

};

Code 8: Creation of the news services

5.5.4 Service Execution Process

After the creation and addition of services, it becomes the responsibility

of the service scheduler to determine if the contextual scenario, defined by

the services flags, has been met. As such, the scheduler constantly verifies the

service queue, and analyses the objects included within.

Verification starts by first determining the number of Bluetooth dongles

made available for delivery. If just one dongle is available, or one dongle is

used for both scanning and delivery, then the system will conclude that just

one service must be executed at a time. On the other hand, if two or more

dongles are available, then the possibility of simultaneous service execution

exists.

84

 5 System Description

Only those services marked as active (e.g. not being executed) are

considered for addition into the execution list. Of that list, the system chooses

those services who conform to current contextual settings. The sequence of

verification has already been seen in Figure 19. Before services are actually

verified, they are sorted by ascending order of creation. This sorting is done at

insertion time, and the objective is to provide higher precedence to older

services for flag conformity verification. The kind of sorting used is a simple

straight insertion technique, as defined in [Knuth 98].

After determining the services to execute, the system again analyses

the list, and gives priority to stateless services. The number of times a service

has been tried to be delivered is also taken into account, as the system sorts

by ascending order of retry. This same procedure is repeated for stateful

services.. In order to better understand the textual descriptions given, Figure

33 presents an activity diagram, that illustrates the algorithm used in the

process of selecting the services to execute.

Subsequently, and after the execution list is determined, the system

needs to identify to which devices content is to be disseminated. The first step

of this process consists on the analysis of the target device list, created in the

previous step. Since the system doesn't want to try and send content to

devices to whom content is already being tried to be delivered to, it removes

those devices from the target device list. Clearly, if the target device list is

empty, then the service cannot be executed.

After the determination of the target device list, the system then

proceeds to randomly choosing elements of that list. The simplest case is

when a service has only one destination, in which the system does not perform

additional computations. On the other hand, if the service has multiple

destinations, then the maximum number of random devices to choose

depends on the following factors:

• If the system is executing solely one service, then the maximum

number of target devices is given by the number of available delivery

dongles multiplying by the number of allowed simultaneous connections

per dongle.

85

 5 System Description

• If the system is executing more than one service, then the maximum

number of target devices is given by the number of allowed

simultaneous connections per dongle.

Basically, this means that although the system limits the use of a dongle per

service, if just one service is in the execution list, the system can utilize

multiple dongles to broaden the number of target devices to disseminate

content to. This textual description is better comprehend by looking at the

algorithm depicted in Figure 34.

Finally, and after marking all services in the execution list as inactive,

the system executes the steps depicted in Figure 35. A new child process is

created for each service, and consequently the child has the responsibility to

communicate with the delivery system, and wait for service execution reply. It

then marks the service accordingly (e.g. failure or success), changes its active

status, and finally upgrades the service queue.

As we detailed the process of service execution, we saw that the

scheduler is not the element responsible for actually delivering the content to

the end-user. Instead, it simply translates from service to command objects,

and passes them along to the delivery system. The actual process of delivery

is what we detail in the next section.

86

 5 System Description

87

Figure 33: Determining the list of services to execute

 5 System Description

88

Figure 34: Device filtering and dongle availability determination

 5 System Description

5.5.5 Command Execution Process

It is the delivery system the component responsible for sending the

actual content to the end-user. It waits for requests from the service

scheduler, in which this later component instructs for command addition or

89

Figure 35: Translation from Service into

Command object, and consequent transmission to

delivery system

 5 System Description

execution. Upon request for execution, the delivery system analyses the

command queue, and proceeds to command handling. To do so, it forks a new

child process, and instructs this child to take care of command execution. After

execution is finished, the child replies to the service scheduler, indicating the

success or failure of the command. This process is depicted in Figure 36, but a

more detailed description is necessary for understanding the command

execution process.

After the child is forked, the first thing it does (besides signal

redefinition), is to get an available Bluetooth interface. Depending on the type

of command handler, the system may reserve more than one interface.

Recalling Figure 20, we basically have two types of handlers: concrete

handlers, like ObexPushHandler, and composite handlers. Composite handlers

are implemented with the Composite pattern [GHJV 95, Martin 03], so that the

details of using multiple dongles in simultaneous remain confined to a distinct

class – the CompositeCommandHandler. This class will only be called when

more than one Bluetooth interface is available, which is the case when the

number of target devices of a command exceed the maximum simultaneous

connections supported by one dongle.

Actual execution of the command always follows the same logic, as the

composite handler implements the same abstract interface than the concrete

handlers, allowing for algorithm sharing. When the interfaces are reserved,

and the handlers created, the system forks new child processes, giving them

the responsibility of delivering content to individual destinations. Each child

therefore tries to deliver content, and reports back to the parent process the

command execution status. The parent process waits until the completion of

all spawned children, before sending the command status reply back to the

service scheduler. This description is better comprehend with the help of

Figure 37.

With this description we demonstrated the logic of the delivery system.

A command is received from the service scheduler, and the delivery system

creates the command handler necessary for execution. If multiple dongles are

necessary for the execution of the command, then a composite handler is

created. Finally, the delivery system sends a reply back to the service

scheduler, indicating the success (or not) of the command, and consequently

of the service.

90

 5 System Description

The discussion of the method used for command execution brings to an

end our discussion of the various particularities of the system. Throughout this

section we discussed several relevant aspects of our system, demonstrating

how configuration is achieved, how we daemonize the individual components,

how we use the specification language, and how the service and command

execution processes are executed. We now proceed to the demonstration of

our system in real-world environments, as we present the results of our pilots

and tests.

91

Figure 36: Command handling process

 5 System Description

92

Figure 37: Handler creation and content delivery to end-user

 6 Pilots & Test Results

6 Pilots & Test Results

One essential aspect when building software systems is to test them.

This allows us to evaluate the system status, potentially finding problems and

defects. Mainly, tests ensure that the system is working as expected and

enables us to determine its effectiveness and efficiency.

Let's start by mentioning the fact that throughout this testing section

we use a categorization for differentiating testing environments. As so, we

define the flow of an environment to be either static or dynamic. The metric

utilized to determine this is based on the data regarding the continuous time

that devices remain in range of the scanner. In Figure 44 we have an example

of a graph which uses 5 arbitrary classes to group devices' continuous time in

range. We use the following formalization to determine the nature of the

environment:

Let d be a device

Let t(x) be a function which receives a device as input, and calculates
the seconds which a device was continuously scanned

Let A be the bag of all devices d, where 0≤t d 60

Let N denote the bag of all devices such as t d ∈[0,∞[

An environment E is said to be dynamic if and only if

0.55≤E≤1 :E=
∣A∣
∣N∣

,∣N∣≠0

An environment E is said to be static if and only if

0≤E0.55: E=
∣A∣
∣N∣

,∣N∣≠0

We use another metric to further define the environment, but in terms

of affluence. Three categories are used here: low, medium, and high. The

following formalization is used to described the parameters used to determine

the level of affluence:

93

 6 Pilots & Test Results

Let d be the average number of devices seen in an environment, as defined
by the following expression:

d=∑
i=1

n

∑
j=0

23 xij
n /24

Where n is the number of days on which data was collected, and x the
total number of devices seen in day i at hour range j.

An environment E is said to have a low affluence if and only if

0≤d≤10

An environment E is said to have a medium affluence if and only if

10d≤30

An environment E is said to have a high affluence if and only if

d30

6.1 Results

In this section we present the results obtained from the pilots. Early on

the project we adopted a testing philosophy, and as such tests were executed

constantly. We separate our pilots in four distinct scenarios: university, mobile,

information center, and public transit ticket vending kiosk. As each of these

scenarios presents unique characteristics, we believe that testing on each of

these environments contributed to a better examination of the system.

94

Figure 38: Percentages of commands

which delivered content to users

2
3
4
5
6
7
8
9

10

0.00%0.50%1.00%1.50%

0.82%

1.01%

0.23%

0.09%

0.20%

0.73%

0.15%

0.51%

0.34%

Executed commands

Overall success rates

Success %

Percentage

P
ilo

t
#

Figure 39: Percentages of seen

target devices to which content was

successfully delivered

2
3
4
5
6
7
8
9

10

0.00% 10.00% 20.00%

1.74%

7.14%

8.70%

8.65%

10.91%

2.68%

0.25%

3.03%

2.69%

Content delivery

Overall success rates

Success %

Percentage

P
ilo

t
#

 6 Pilots & Test Results

6.1.1 University Pilots

We started our overall system testing early on the development stage.

The computer was positioned at the local university near a entry/exit point

(Figure 43). Overall six distinct pilots were made, contributing to problem

identification, and consequently influencing several architectural decisions of

our system.

Environment characterization is defined by looking at Figure 45. We

verify that the average number of devices in the environment is of about 15

devices, and therefore we state that this is a medium affluence setting.

Furthermore, Figure 44 indicates that around 40 % of all devices stay in range

for less than a 1 minute. For that reason, and according to our pre-established

95

Figure 40: Percentages of seen target

devices to which content was tried to be

delivered to

2
3
4
5
6
7
8
9

10

0.00% 50.00% 100.00%

73.25%

25.45%

100.00%

100.00%

100.00%

68.15%

30.07%

62.83%

96.34%

Delivery robustness

Overal results

Delivery
robustness

Percentage

P
ilo

t
#

Figure 42: Comparison between failed and successful delivery

attempts

2 3 4 5 6 7 8 9 10

0

500

1000

1500

0

40

80

120

160

200

113 26
168

359 294 254

783 736

1049

2 2 16 34 36 7 2 23 29

Content delivery attempts
Overall results

Devices which
didn't receive
content
Devices which
received content

Pilot #

N
u

m
b

e
r

o
f

d
e

vi
ce

s

Figure 41: Percentages comparison on

the reason for content delivery failure

3 4 5 6 7 8 9 10

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

Delivery failure reasons

Overall results

Delivery Failed
Connection
Timeout
No OBEXPUSH
Device not
present

Pilot #

P
e

rc
e

n
ta

g
e

 6 Pilots & Test Results

metric, this environment is termed as static. Given the characterization of the

environment, we proceed to individual pilot description.

(a) Installation location (b) Cafeteria near installation site

(c) Entry/Exit point

Figure 43: University environment

96

Figure 44: Device continuous time in range for university pilots

0-1 1-5 5-10 10-15 15-30 30+

0.00

0.10

0.20

0.30

0.40

0.50

Devices Continuous Time in Range
University pilots

Relative Frequency

Time (minutes)

D
ev

ic
es

 6 Pilots & Test Results

• University pilots overall settings

◦ Limited functionality: The system was tested with only the blue

station component working. The last pilot added the Broker

component, but at a local level. No networking support was added

during these trials, and no central infrastructure was used

◦ Service to test: A service with textual static content. The service was

set to delivery a simple “hello” text message. Delivery was filtered

so that only mobile equipment and personal computers would

receive content

◦ Dongle configuration: Two dongles. One class 2 dongle for scanning

and one class 1 dongle for content delivery

• Pilot 1

◦ Concurrency mechanism: Multi-threading

◦ Service and command execution: Many services, and consequently

commands, can be run in simultaneous, not taking into account the

available number of Bluetooth dongles

◦ Scanning settings: 10.24 scan frequency and 5 seconds sleep

between every scan

◦ Multicast method: One thread responsible for creating a command,

which would try and delivery content to all destinations sequentially.

◦ Running time: One day

Pilot 1 was a unsuccessful test. The system ran only for a few hours

before crashing due memory leaking problems. The collected data was pretty

much inconclusive, and for that reason discarded.

97

Figure 45: University pilots average devices in range

00:00
02:00

04:00
06:00

08:00
10:00

12:00
14:00

16:00
18:00

20:00
22:00

0

10

20

30

40

0
4
8
12
16
20

4
1 2

7
5 6

11

2

10

5
2

4

10
8

1 2 2 2

Content delivery distribution
University pilots

Number of devices
which received
content
Average number of
devices in range

Time range

N
u

m
b

e
r

o
f

d
e

vi
ce

s

 6 Pilots & Test Results

• Pilot 2

◦ Concurrency mechanism: Multi-threading

◦ Service and command execution: Many services, and consequently

commands, can be run in simultaneous, not taking into account the

available number of Bluetooth dongles

◦ Scanning settings: 10.24 scan frequency and 5 seconds sleep

between every scan

◦ Multicast method: One thread responsible for creating a command,

which would try and delivery content to all destinations sequentially

◦ Running time: Two days

Pilot 2 showed some improvements over the previous test. The running

time improved, and allowed for useful data collection. Starting at 20/04/2009

around 13:00, and ending the next day at about 16:00 (Figure 46), pilot 2

allowed for useful data collection. Only 0.82% of commands were successful

(Figure 38), and the content delivery success rate was of 1.74% (Figure 39).

Delivery robustness rate was 73.25% (Figure 40), and content was delivered to

2 distinct devices (Figure 42).

The main issues verified during pilot execution related to serious

memory leaking problems. This inevitably led to excessive memory

consumption and consequent system crash. Additionally, a bug nullified our

delivery failure report system. For that reason, the system couldn't collect

delivery failure reasons.

98

Figure 46: Pilot 2 scanned devices

00
01

02
03

04
05

06
07

08
09

10
11

12
13

14
15

16
17

18
19

20
21

22
23

0

20

40

60

80

Scanned devices

Pilot 2

20/04/09 (Monday)
21/04/09 (Tuesday)

Time range

N
u

m
b

e
r

o
f

d
e

v
ic

e
s

 6 Pilots & Test Results

• Pilot 3

◦ Concurrency mechanism: Multi-process

◦ Service and command execution: Many services, and consequently

commands, can be run in simultaneous, not taking into account the

available number of Bluetooth dongles

◦ Scanning settings: 10.24 scan frequency and 10 seconds sleep

between every scan

◦ Multicast method: One process responsible for delivering content to

all destinations sequentially

◦ Running time: 2 days

A significant architectural change was made in pilot 3. As we

experienced unidentifiable memory leaking issues, we decided to switch from

a multi-threading environment to a multi-process one. Naturally this involved a

considerable amount of changes to the system, as several modules needed

modification.

Running time of the pilot was again of two days. The pilot started around

17:00 of day 29/04/2009, and ended the next day around 16:00 (Figure 48).

Command execution success rate was of 1.01% (Figure 38), and delivery

success rate of 7.14% (Figure 39). Delivery robustness rate was of only

25.45% (Figure 40), and content was delivered to only 2 devices (Figure 42).

As the delivery failure report system was operational, we verified that an even

distribution between no OBEXPUSH port, connection timeout, and delivery

failed existed for justifying delivery failure (Figure 41). Delivery failure for

devices not being present wasn't still implemented at this time.

99

Figure 47: Pilot 2 delivery distribution

00
01

02
03

04
05

06
07

08
09

10
11

12
13

14
15

16
17

18
19

20
21

22
23

0

20

40

60

80

0
1
2
3
4
5

1 1

Content delivery distribution
Pilot 2

Number of devices
which received content
Average number of
devices in range

Time range

N
um

be
r

of
 d

ev
ic

es

 6 Pilots & Test Results

A serious problem encountered in this pilot was the occurrence of a

deadlock which damaged the overall system functionality. Concretely, the

delivery system was halted, and consequently the content dissemination

infrastructure was made unavailable. As this moment the reasons for the

occurrence of such issue couldn't be determined. We can verify the effect of

this error on the system, as our delivery robustness rate was of only 25.45%.

• Pilot 4

◦ Concurrency mechanism: Multi-process

◦ Service and command execution: Many services, and consequently

commands, can be run in simultaneous, not taking into account the

available number of Bluetooth dongles

◦ Scanning settings: 10.24 seconds for scanning and 10 seconds sleep

between every scan

◦ Multicast method: One process responsible for delivering content to

all destinations sequentially

◦ Running time: 4 days

100

Figure 48: Pilot 3 scanned devices

Figure 49: Pilot 3 content delivery distribution

Time range
01

03
05

07
09

11
13

15
17

19
21

0

10

20

30

Scanned devices
Pilot 3

Total
Average number of
devices in range

Time range

N
um

b
er

 o
f

de
vi

c
es

00
01

02
03

04
05

06
07

08
09

10
11

12
13

14
15

16
17

18
19

20
21

22
23

0

10

20

30

0
1
2
3
4
5

1 1

Content delivery times

Pilot 2

Number of devices which
received content
Average number of
devices in range

Time range

N
um

be
r

of
 d

ev
ic

es

 6 Pilots & Test Results

In this pilot the system run without interruption for 4 days. Starting

around 12:00 of day 08/05/2009, the system halted 4 days latter around 11:00

(Figure 50). Command success rate was of 0.23% (Figure 38), and content

delivery success rate of 8.70% (Figure 39). The delivery robustness rate was of

100% (Figure 40), as the system executed 13 commands (Figure 51),

delivering content to 16 distinct devices (Figure 42). Main reasons for delivery

failure were associated with connections timeout, and rejection by the end

user, as is seen in Figure 41.

The system was still negatively influenced by a deadlock situation. After

further analysis, we came to the conclusion that the problem resided in

OpenOBEX Perl binding libraries, which would raise a segmentation fault

signal. This would kill off the child process responsible for command execution,

and consequently the service scheduler would perpetually wait for a reply that

would never arrive.

101

Figure 50: Pilot 4 scanned devices

00:00
02:00

04:00
06:00

08:00
10:00

12:00
14:00

16:00
18:00

20:00
22:00

0
10
20
30
40
50

Scanned devices
Pilot 4

08/05/2009 (Friday)
09/05/2009 (Saturday)
10/05/2009 (Sunday)
11/05/2009 (Monday)

Time range

N
u

m
b

e
r

o
f

d
e

vi
ce

s

Figure 51: Pilot 4 delivery distribution

00
01

02
03

04
05

06
07

08
09

10
11

12
13

14
15

16
17

18
19

20
21

22
23

0
5

10
15
20
25

0
2
4
6
8

1 1
2

3

1

3

1 1 1 1 1

Content delivery times
Pilot 4

Number of devices
which received content
Average number of
devices in range

Time range

N
u

m
b

e
r

o
f

d
e

v
ic

e
s

 6 Pilots & Test Results

• Pilot 5

◦ Concurrency mechanism: Multi-process

◦ Service and command execution: The number of services, and

consequently commands, that can be run in simultaneous is limited

to the number of available dongles. If just one dongle is used for

both scanning and delivery, or if just one dongle is used for delivery,

then only one service can be executed at a time.

◦ Scanning settings: 10.24 seconds for scanning and sleep for 3

seconds between every scan.

◦ Multicast method: A process was responsible for delivering content

to all devices sequentially.

First aspect to mention is that service and command execution

methodology was changed in this pilot. We would now limit the number of

services to execute in simultaneous to the number of available dongles. This

would reduce the number of spawned processes, and alleviate the need for

using synchronization mechanisms.

The system ran for 7 days uninterruptedly, starting at 19/05/2009

around 10:00, and ending around 12:00 at 25/05/2009 (Figure 52). Successful

command execution rate was of 0.09% (Figure 38), and content delivery

success rate of 8.69% (Figure 39). With a delivery robustness rate of 100%

(Figure 40), the system executed 30 commands (Figure 53), delivering content

to 34 distinct devices (Figure 42). Delivery failure reasons were mainly related

with connections timing out (Figure 41).

As we diminished from 5 to 3 seconds the time that the scanner would

sleep between scans, the device reader component started to complain that

devices were constantly busy. The deadlock situation was resolved in this

pilot, although segmentation faults were still getting raised due to OpenOBEX

function bindings. Either way, the system maintained full functionality even

when errors occurred, being only stopped by manual intervention.

102

 6 Pilots & Test Results

• Pilot 6

◦ Concurrency mechanism: Multi-process

◦ Service and command execution: Number of simultaneous services,

and consequently commands, is limited to the number of available

dongles.

◦ Scanning settings: 10.24 seconds for scanning and 5 seconds

interval between every scan

◦ Multicast method: The multicast method was changed in this pilot.

Instead of trying to deliver content, sequentially, to all present

devices, the system will now use a delivery dongle to disseminate

content solely to a single device. Multicast support is them achieved

by using N delivery dongles, where each dongle would try and

deliver content to a different device.

◦ Broker component: In this pilot the intermediary component was

introduced, althougth no networking was still available.

103

Figure 52: Pilot 5 scanned devices

Figure 53: Pilot 5 delivery distribution

00:00
02:00

04:00
06:00

08:00
10:00

12:00
14:00

16:00
18:00

20:00
22:00

0

20

40

60

Scanned devices
Pilot 5

19/05/2009 (Tuesday)
20/05/2009 (Wednesday)
21/05/2009 (Thursday)
22/05/2009 (Friday)
23/05/2009 (Saturday)
24/05/2009 (Sunday)
25/05/2009 (Monday)

Time range

N
u

m
b

e
r

o
f

d
e

v
ic

e
s

00
01

02
03

04
05

06
07

08
09

10
11

12
13

14
15

16
17

18
19

20
21

22
23

0

10

20

30

40

0
2
4
6
8
10

2 2
3

4
5

1 1
2

1 1

4
5

1
2

Content delivery times
Pilot 5

Number of devices
which received content
Average number of
devices in range

Time range

N
um

be
r

of
 d

ev
ic

es

 6 Pilots & Test Results

By changing the multicast method, our system would cease to deliver

content to all nearby devices in a sequential manner. Now it would randomly

choose a device from the list, and use a single dongle to deliver content to it.

When the system was configured with just a dongle for scanning and delivery,

content would be delivered to just one device at a time. This would be also the

case when only a dongle would exist for delivery. On the other hand, if we had

several dongles for delivery, then the system would try and disseminate

content simultaneously.

The pilot started at 01/06/2009 around 12:00, and ended 5 days latter

around 11:00 (Figure 54). The command success rate was of 0.20% (Figure

38), and delivery success rate of 10.91% (Figure 39). Delivery robustness rate

was of 100% (Figure 40), as the system delivered content to 36 distinct

devices (Figure 42), by executing the same number of commands (Figure 55).

Failure on delivering content was mainly related to connection timeout and

rejection by users, as is depicted in Figure 41.

Still remaining were the problems related to OpenOBEX library Perl

bindings. Due to this, and to the fact that these function bindings don't allow

choosing the dongle to use, we decided to utilize OpenOBEX external tools.

Future versions of the system would therefore cease to use direct function

calls to perform dissemination, and instead would make use of obexput binary.

Also, the introduction of the Broker component – although at a local level –

didn't harness the overall system functionality. The next pilots would be tested

in a distributed way, with the Broker, central infrastructure and blue stations

all fully functional and separated physically from each other.

104

Figure 54: Pilot 6 scanned devices

00
01

02
03

04
05

06
07

08
09

10
11

12
13

14
15

16
17

18
19

20
21

22
23

0
10
20
30
40
50

Scanned devices
Pilot 6

01/06/2009 (Monday)
02/06/2009 (Tuesday)
03/06/2009 (Wednesday)
04/06/2009 (Thursday)
05/06/2009 (Friday)

Time range

N
um

be
r o

f d
ev

ic
es

 6 Pilots & Test Results

6.1.2 Mobile Pilot

At the time of the execution of this pilot, all components were already

implemented, and network available. The pilot was made at two different

festivals, separated apart by one day. The computer was set in a backpack and

for that reason we termed this pilot as mobile. Since it was in the backpack, no

electricity was available, which lead to battery consumption, and consequently

to small up-time. Nevertheless, this allowed us to test the system in highly

concentrated and dynamic settings.

As demonstrated by Figure 56, we are in presence of a dynamic

environment, since more than 60% of devices remained in range for less than

1 minute. Also, we can term the settings where the pilot was executed as

being of high affluence, since we have an average of more than 50 devices

(Figure 57).

105

Figure 55: Pilot 6 delivery distribution

00
01

02
03

04
05

06
07

08
09

10
11

12
13

14
15

16
17

18
19

20
21

22
23

0

10
20
30

40

0

3

6

9

2
1

4

1 1

5

1

5

2 2

5
4

1 1 1

Content delivery distribution
Pilot 6

Number of devices
which received content
Average number of
devices in range

Time range

N
u

m
b

e
r

o
f

d
e

vi
ce

s

 6 Pilots & Test Results

• Pilot settings

◦ System functionality: All components functional. Both the Broker

and central infrastructure were fully deployed, and networking was

available through a 3G connection

◦ Service to test: A service with textual static content

◦ Dongle configuration: Two dongles. One class 2 dongle for scanning

and one class 1 dongle for content delivery

◦ Concurrency mechanism: Multi-process

◦ Service and command execution: Number of simultaneous services,

and consequently commands, restricted to the number of available

dongles

◦ Scanning settings: 10.24 seconds for scanning and 5 seconds sleep

between scans

◦ Multicast method: A dongle could only deliver content to one device

at a time

◦ Running time: 2 days non-continously

106

Figure 57: Mobile pilot delivery distribution

Figure 56: Mobile pilot devices continuous time in range

19 20 21 22 23

0

50

100

150

200

0
2
4
6
8
10

1
2

3

1

Delivery distribution
Mobile pilot

Number of devices
which received
content
Average number of
devices in range

Time range

N
u

m
b

e
r

o
f

d
e

vi
ce

s

0-1 1-5 5-10 10-15 15-30 30+

0

0.2

0.4

0.6

0.8

Devices Continous Time in Range
Pilot 7

Relative Frequency

Time (minutes)

N
u

m
b

e
r

o
f

D
e

v
ic

e
s

 6 Pilots & Test Results

Due the nature of the testing, this pilot was the only one which was

supposed to be run non-continuously. During two days, the computer was

carried around, capturing and disseminating information in a backpack. This

lead to natural high battery consumption, and as such run-time was low in

both days.

The pilot started at 31/07/2009 around 19:00, and ended the next day

at about 23:00 (Figure 58). With a command execution rate of 0.73% (Figure

38), the system delivery success rate was of 2.68% (Figure 39). The delivery

robustness percentage was of 68.15% (Figure 40), as we delivered content to

7 distinct devices (Figure 42) through the execution of the same number of

commands (Figure 57). Also, the main reason for delivery failure was related

to devices not being present in the moment of delivery (Figure 41).

Although delivery success rates weren't too high, the pilot did allow us

to discover and resolve several issues regarding the Broker and central

infrastructure components. Also, executing this pilot gave us the chance to

test station remote management, and how all components behaved when

working in a cooperative and distributed way. Furthermore, this was an

opportunity to analyse the behaviour of the system on a more crowded and

dynamic environment than the previous pilots.

6.1.3 Information Center Pilot

After completing our system structuring and initial tests, we proceeded

to test the system in another environment.. We deployed the computer in a

tourist information center, a point of high people flow (Figure 59).

107

Figure 58: Pilot 7 scanned devices

19 20 21 22 23

0

50

100

150

200

Scanned devices
Pilot 7

31/07/2009 (Friday)
01/08/2009 (Saturday)

Time range

N
u

m
b

e
r

o
f

d
e

v
ic

e
s

 6 Pilots & Test Results

The highly dynamic nature of the environment is observed by looking at

Figure 60, where we verify that almost 90% of scanned devices spent less

than 1 minute in range of the scanner. High people affluence also

characterizes this environment, as it is seen in Figure 61, where we have an

average of about 100 devices.

Contrary to previous tests, in this pilot we decided to set up the system

to fetch dynamic content. We therefore created a news service, which is

simply a service which fetched content from a PHP web page, situated in one

of our servers, and disseminated the content to end-users.

(a) Installation location (b) View from outside

(c) Another outside perspective

Figure 59: Info center environment

108

 6 Pilots & Test Results

• Pilot Settings

◦ System functionality: All components were functional

◦ Service to test: A service with dynamic content. The system would

retrieve content from a web page before disseminating it to users.

Also, the service would only be delivered to mobile equipment

◦ Dongle configuration: 2 class 1 dongles. One for scanning and other

for delivery. We decided to try and boost the scanning range, since

the surroundings of the information center was surrounded by thick

brick walls, damaging the signal range

◦ Concurrency mechanism: Multi-process

◦ Service and command execution: Number of simultaneous services

and commands restricted to the number of available dongles

◦ Scanning settings: 10.24 seconds for scanning and 5 seconds sleep

between scans

◦ Multicast method: A dongle could only deliver content to a device at

a time

109

Figure 60: Pilot 8 devices continuos time in range

Figure 61: Info center content delivery distribution

0-1 1-5 5-10 10-15 15-30 30+

0.0

0.2

0.4

0.6

0.8

1.0

Devices Continuous Time in Range
Pilot 8

Relative frequency

Time (minutes)

D
e

v
ic

e
s

00
01

02
03

04
05

06
07

08
09

10
11

12
13

14
15

16
17

18
19

20
21

22
23

0
50

100
150
200
250

0
1
2
3
4
5

2

1

Delivery distribution
Info center pilot

Number of devices
which received
content
Average number of
devices in range

Time range

N
um

be
r

of
 d

ev
ic

es

 6 Pilots & Test Results

◦ Running-time: 3 days (with some interruptions)

The pilot started at 18/08/2009 around 20:00, ending 2 days latter

around 23:00, as is observed in Figure 62. Successful command execution rate

was of 0.15% (Figure 38), and successful delivery rate of only 0.25% (Figure

39). Delivery robustness rate was of about 30% (Figure 40), and content was

delivered to 2 distinct devices (Figure 42), by means of 3 commands (Figure

61). Virtually all content delivery failure was associated with devices not being

present, as is seen in Figure 41.

Overall this pilot was considered to be unsuccessful. First we had a

power outrage problem which influenced the overall results. Looking at Figure

62 we verify a discontinuousness on the last of the pilot, as power failed

making the power run on battery, and consequently shut down. Also, an error

on the process of remote content retrieval led to further performance

degrade , as this error made the dissemination infrastructure unusable during

much of the pilot's execution time.

6.1.4 Public Transit Infrastructure Pilots

Our last two pilots were made at a public transit infrastructure. We

deployed the system at an automatic ticket vending kiosk, situated near

several bus stops and a café (Figure 63). The type of content to deliver was

the same as in the previous pilot, where a news service was created which

fetched dynamic content from a web page. We placed the computer inside the

kiosk's celling, but this wasn't the preferred scenario as the celling was

surrounded by metal, which contributes to interference of radio signals.

110

Figure 62: Pilot 8 scanned devices

00
01

02
03

04
05

06
07

08
09

10
11

12
13

14
15

16
17

18
19

20
21

22
23

0
50

100
150
200
250

Scanned devices
Pilot 8

18/08/2009 (Tuesday)
19/08/2009 (Wednesday)
20/08/2009 (Thursday)

Time range

N
um

be
r o

f d
ev

ic
es

 6 Pilots & Test Results

The number of scanned devices which remained in range for less than 1

minute was of 55% (Figure 64). For that reason the environment is considered

to be dynamic although marginally. Figure 65 demonstrates that the average

number of devices in range was about 15, and for that reason the environment

is characterized as a medium affluence one. Let's now proceed to individual

pilot description.

(a) Installation location (b) Nearby bus stops

(c) Outside perspective

Figure 63: Public transit infrastructure environment

111

 6 Pilots & Test Results

• Overall kiosk pilots settings

◦ System functionality: All components were functional

◦ Service to test: A service with dynamic content. The system would

retrieve content from a web page before disseminating it to users.

Also, the service would only be delivered to mobile equipment

◦ Dongle configuration: 2 class 1 dongles. One for scanning and other

for delivery. This was an attempt to boost the Bluetooth radio signal,

due the presence of metal in the kiosk

◦ Concurrency mechanism: Multi-process

◦ Service and command execution: Number of simultaneous services

and commands restricted to the number of available dongles

◦ Scanning settings: 10.24 seconds for scanning and 5 seconds sleep

between scans

• Pilot 9

112

Figure 64: Public transit kiosk devices continuous time in range

Figure 65: Content delivery distribution for public transit kiosk

pilots

0-1 1-5 5-10 10-15 15-30 30+

0

0.2

0.4

0.6

Devices continuous time in range
Kiosk pilots

Relative frequency

Time (minutes)

D
ev

ic
es

00
01

02
03

04
05

06
07

08
09

10
11

12
13

14
15

16
17

18
19

20
21

22
23

0
10
20
30
40
50

0

5

10

15

1 1 2 2
4 4 5 4

9

3 3

6

3

6

1 1

6

Content delivery distribution
Public transit kiosk pilots

Number of devices
which received
content
Average # of
devices in range

Time range

N
u

m
b

e
r

o
f

d
e

vi
ce

s

 6 Pilots & Test Results

◦ Multicast method: A dongle could only deliver content to a device at

a time

◦ Running-time: 5 days

The pilot started at 25/08/2009 around 11:00, ending 5 days latter at

about 23:00 (Figure 66). With a command execution rate of 0.51% (Figure 39),

the system managed to deliver content to about 3% of the target group

(Figure 67). Concretely, this means we had 27 successful deliveries (Figure 67)

to 23 distinct devices (Figure 42). The dynamic labelling of the environment

seems justified, as we verify in Figure 41 that the major reason for delivery

failure was related to devices not being in range. Also, almost 37% of the

target devices weren't even contacted, as is seen by our delivery robustness

rate of about 63% depicted in Figure 40.

During the pilot some issues regarding remote content retrieval still

remained. For this reason, overall performance was negatively influenced.

After analysis we came to the conclusion that the problem was related to

excessive number of opened files. The system creates temporary files so it can

store the remote content it fetches. An anomaly in the system was leaving file

handles open, and consequently the operating system would eventually

complain that an excessive number of files were being maintained opened by

the process. Although not harnessing the scanning process, this would nullify

the dissemination infrastructure. During the pilot we were already aware of

this, and so steps to minimize the effects were taken.

113

Figure 66: Pilot 9 scanned devices

00
01

02
03

04
05

06
07

08
09

10
11

12
13

14
15

16
17

18
19

20
21

22
23

0

20

40

60

80

Scanned devices

Pilot 9

25/08/2009 (Tuesday)
26/08/2009 (Wednesday)
27/08/2009 (Thursday)
28/08/2009 (Friday)
29/08/2009 (Saturday)

Time range

N
um

be
r o

f d
ev

ic
es

 6 Pilots & Test Results

• Pilot 10

◦ Multicast method: A dongle could deliver content to several

devices at a time, being the maximum 7. By default we set this

option to allow for 4 simultaneous connections to be established by a

dongle

◦ Running-time: 5 days

Pilot 10 was the last of our tests. Comparing to the previous pilot, the

only relevant change was on the way that multicast commands were

executed. Instead of limiting a dongle to deliver content to a device at a time,

we introduced a configurable option that lets the administrator choose to

deliver content up to 7 devices in simultaneous.

Running time was of 5 days. The pilot started at 30/08/2009 around

00:00, and ended 03/09/2009 around 22:00 (Figure 68). Successful command

execution rate was of 0.34% (Figure 38). With a value of 2.69% (Figure 39),

the content delivery success rate was also lower than the previous pilot.

Nevertheless, the system managed to diminished considerably the delivery

failure reason due devices not being present (Figure 41). Also, and comparing

to the previous pilot, we obtained an increase of more than 30% on the

delivery robustness rate (Figure 40). Furthermore, by looking at Figure 69 we

verify that a total of 34 delivery hits were successful. These 34 hits

consequently translated into content delivered to 29 distinct devices, as is

depicted in Figure 42.

This last pilot allowed us to confirm that all identified major issues until

date were resolved. Moreover, it was the only pilot in which we tested content

dissemination using simultaneous connections. Overall the pilot was

114

Figure 67: Pilot 9 content distribution

00
01

02
03

04
05

06
07

08
09

10
11

12
13

14
15

16
17

18
19

20
21

22
23

0
10
20
30
40
50

0

5

10

15

1
3 2

4

1

8

3 2 2 1

Content distribution
Pilot 9

Number of devices
which received
content
Average number of
devices in range

Time range

N
u

m
b

e
r

o
f

d
e

vi
ce

s

 6 Pilots & Test Results

successful, as no problems were identified, and the system behaved as

expected.

Now that the data regarding the pilots was presented, it is now time to

proceed to the discussion of obtained results, and consequent presentation of

the withdrawn conclusions.

6.2 Discussion

In this section we'll be presenting the conclusions which we came to by

way of analysis of the content presented in the previous section. The objective

here is to show how the execution of the pilots helped us identify problems,

and how it allowed us to make informed modifications to the system.

6.2.1 University Pilots

University pilots were the first to be executed and, naturally, allowed us

to identify several issues. Many aspects of the system were influenced by

analysis of these pilots, including architectural decisions.

115

Figure 68: Pilot 10 scanned devices

Figure 69: Pilot 10 content distribution

00
01

02
03

04
05

06
07

08
09

10
11

12
13

14
15

16
17

18
19

20
21

22
23

0

10

20

30

40

0

5

10

15

1 1
2

1 1
2

1
3

1 1

4 3

6

1 1

5

Content distribution

Pilot 10

Number of devices which received
content
Average number of devices in range

Time range

N
um

be
r

of
 d

ev
ic

es

00
01

02
03

04
05

06
07

08
09

10
11

12
13

14
15

16
17

18
19

20
21

22
23

0

20

40

60

Scanned devices
Pilot 10 30/08/2009

(Sunday)
31/08/2009
(Monday)
01/09/2009
(Tuesday)
02/09/2009
(Tuesday)
03/09/2009
(Tuesday)

Time range

N
u

m
be

r
o

f
d

e
v

ic
e

s

 6 Pilots & Test Results

The first thing to note is that we decided to switch from a multi-

threading environment to a multi-process one. Mainly, this was due to memory

leaking issues, whose origins couldn't be determined. The result was a more

stable and consistent system. There were some concerns regarding the overall

performance and memory consumption in using multi processes instead of

threads, but we concluded that both resource consumption and system speed

weren't visibly undermined by this switch, which in part is explained by the

fact that modern UNIX and UNIX-like systems make use of copy-on-write

techniques to spawn new processes, as described in [Bach 86, WCO 00].

It was also determined that setting the frequency between scans to a

low value may lead to excessive interference and problems on the scanning

process. This was what happened in pilot 5, where we set the frequency

between scans to only 3 seconds, which lead to constant complains by the

system. Either way, throughout our pilots we couldn't see any noticeable

difference between the number of scanned devices either we used 3, 5, or 10

seconds between scans. Also, it should be taken into account that setting this

value to a too low of a value will contribute to a more rapid device battery

consumption.

More importantly is the fact that in a very similar configuration, we

obtained an increase of content delivery success rate by modifying the way

multicast commands were executed. Comparing pilots 5 and 6 in Figure 39,

we verify that an increase of more than 2% in the delivery success rate

happened. Furthermore, by looking at Figure 41 it is seen that delivery failure

rate due devices not being present was diminished in pilot 6. Although both

delivery robustness rates for pilot 5 and 6 were 100% (Figure 40), this value is

misleading for pilot 5 as it worked sequentially, and therefore by the time the

system would try to deliver content to a device, the device would probably be

already out of range. In sum, it seems clear that performing multicast using a

dongle for delivering content a time, in a static environment, is superior than

trying to deliver content to all devices sequentially.

Another aspect to mention is that it seems that there is a tendency for

delivering more content during times of greater affluence. By looking at Figure

45 we verify that a higher number of success delivery hits happened during

peak times. This is a expected result in a static environment, since it seems

116

 6 Pilots & Test Results

natural that there is a higher change of delivering content when a greater

number of devices is present.

6.2.2 Mobile Pilot

The mobile pilot was executed in a more dynamic environment than the

previous pilots. Basically, this pilot helped us understand that probably system

efficiency would be heavily influenced by the nature of the environment. The

high people affluence and mobility in the pilot's environment made the system

behave below expected. This is substantiated by the delivery robustness rate

of 68.15%, as is seen in Figure 40. Content was only delivered to 7 distinct

devices out of 254 (Figure 42), and the fact that more than 50% of delivery

failures were due devices not being present, made evident that using a dongle

to deliver content to a device at a time, in dynamic environments, would

probably lead to impoverished results.

As content distribution goes, by looking at Figure 57 it seems that there

is a proportional tendency for successfully delivering content as the number of

devices in range raises. This has already been verified in the university pilots,

but the lack of data depth on this pilot doesn't allow us to further substantiate

this claim.

6.2.3 Information Center Pilot

Deploying the system at the information center allowed us to test it at a

very dynamic environment. With more than 90% of devices staying in range

for less than 1 minute, opportunities to successfully establish connections, and

disseminate content, were diminished. If doubts existed on the possible

performance undermining of the system in dynamic environments, they were

dissipated with the execution of this pilot. With a delivery robustness rate of

only 30% (Figure 40), and a rate of delivery failure of more than 90% due

devices being out of range (Figure 41), we verified that, under dynamic

environments, trying to deliver content to a device at a time leads to poor

results.

Interesting is the fact that although content delivery successful values

are very small, the majority of the delivery hits happened during peak time

(Figure 61), which comes to reinforce previous statements.

117

 6 Pilots & Test Results

6.2.4 Public Transit Infrastructure Pilots

Being considered a dynamic environment, with 55% of devices staying

in range for less than 1 minute, the kiosk pilots allowed us to test the use of

simultaneous content dissemination in a dynamic setting. Pilot 9 was still

executed with a dongle limited to delivery content to a device at a time, while

pilot 10 used up to 4 simultaneous connections.

Comparing delivery robustness between these two pilots, we verify an

increase of about 34% between pilot 9 and 10 (Figure 40). This, allied with a

decrease of more than 30% on delivery failure due devices which were out of

range (Figure 41), leads to the conclusion that much more devices were tried

to be contacted in pilot 10. Although this didn't translate into a substantial

increase on the number of delivery hits (Figure 69), or served devices (Figure

42), it seems that using simultaneous connections in dynamic environment

leads to better results. Further data is necessary to substantiate this claim, as

it is interesting to verify if results are influenced by the increase of allowed

simultaneous connections.

After finishing our pilots we executed some interviews in order to gain a

user's perspective of the system. The objective was to collect replies from

users in order to identify possible flaws and areas on which improvements

could be made.

6.3 Users Opinions

Due the nature of our application, gathering replies in a real-world test

environment is difficult. It becomes almost impossible to detect and interview

people how choose to accept the content disseminated by our system.

In an attempt to collect additional information about the system, from a

user's point of view, we executed several small qualitative interviews. The

service to test was a news headline dissemination service, similar to that used

in the pilots tests. Content was fetched from a remote web page, and 10

different news headlines were delivered to users using OBEXPUSH. We asked 6

subjects to enable their devices' Bluetooth, and accept two consecutive

messages from our system. As stated previously, the system will only resend

dynamic content to an already served device, only when the content changes.

118

 6 Pilots & Test Results

The interview was semi-structured and composed by open-ended

questions, described as follows:

• What do you think of receiving content while waiting, through

Bluetooth? Was the content of any interest to you?

• Did you have to wait long before receiving the content?

• What about the content's presentation? Were you happy to receive plain

text, or would you prefer something else?

• What did you think of the refresh rate between the two consecutive

messages?

• After you received the content, was is it easily accessible?

Overall, subjects thought the service as useful. Some subjects stated

that as the service is free-of-charge, and accessible without the need for

additional software, is very advantageous. More related to public transit, some

subjects referred that it would be interesting to implement a service that

warned public transit users when a bus was running late. Also, speed of

dissemination was considered to be very good, although this would probably

decline in more crowded environments.

On the other hand, subjects stated that the name of our dissemination

dongle – Mobile, which appears on their mobile equipment screen, is of great

importance on the decision of whether to accept content. Some even said that

they “would disable Bluetooth” if the name didn't somehow transmit

confidence to them. Also, subjects thought that, although the content

disseminated was interesting, personalization of the content to receive was

important, as “people have different preferences”.

Content presentation did divide opinions. Some subjects felt that

receiving text was appropriate, as they could easily read it. Others thought

textual content was advantageous, as “text is better for compatibility”. Some

people also mentioned that adding a small message at the bottom of the

disseminated content would contribute to a more pleasing service.

On the contrary, one participant, that owned a modern touch-screen

mobile equipment, had difficulties viewing the textual content, as he had to

perform zoom operations to clearly identify what was written. Others felt that

textual content was admissible, but that it would be “more appealing” to

119

 6 Pilots & Test Results

present it as an image. The majority of the subjects also thought that the

system should adapt its content presentation type in accordance to devices'

capabilities.

Overall subjects thought that the refresh rate between two consecutive

messages was too fast. A subject stated that the disseminated content was too

“repetitive, being very difficult to understand the changes”. Others thought

that time restrictions should be imposed, and still others thought that the

content should only be resent when more than one headline changes. A

subject also stated that users should have the opportunity of “personalizing

the refresh rate, according to the type of service”.

As for content access, overall people could easily view it, as the

equipment would ask the user to open the content upon reception, as

demonstrated in Figure 70. Still, two subjects experienced difficulties in finding

the content, as their equipment would receive the content and store it without

asking the user if he wanted to view it. This made users search for the content

throughout the mobile equipment, as the location where it was stored was

unclear.

Given the opinions of our test subjects, we proceed to the presentation

of the implications that the pilot tests and qualitative interviews had in our

present and future visioning of the system.

120

 6 Pilots & Test Results

(a) Phone asks permission from user (b) User has immediate access in some

equipments

(c) One of the news headlines received by the user

Figure 70: Example content acceptance and access using a Nokia mobile phone

6.4 Implications

Here we present our inferred conclusions with regard to the pilot results

and the replies collected from the qualitative interviews. Pilots directly

influenced some development aspects of the system, as they were executed

when the prototype was still in active development. The qualitative interviews

were made posteriorly to system development, and as such the withdrawn

conclusions will refer to possible future modifications.

The first thing to state is that the use of multiple simultaneous

connections in dynamic environments seems to lead to better dissemination

results. As we use various connections in parallel, the number of contacted

121

 6 Pilots & Test Results

devices raises, increasing the probability of successful content delivery. Also,

it seems that using multiple connections in static environments may lead to

insignificant differences on content delivery. This is substantiated by looking at

Figure 40 and Figure 41, where we verify that pilot 6 had a delivery robustness

rate of 100%, and a small delivery failure rate due devices being out of range,

although the delivery dongle was restricted to deliver content to a single

device in each dissemination attempt.

The name we choose for the delivery dongle(s) also seems important. In

our tests we choose to use the name Mobile, which really didn't transmit too

much confidence to users, as some of them only accepted the content after

we reassured them that it was our system disseminating the data. This is

comprehensible if we relate back to the questionnaire distributed to public

transit users, where about 35% of respondents stated that security was the

reason for disabling Bluetooth (Table 3).

Furthermore, both content and presentation personalization seem

important in convincing user adherence to the system. Some equipment lack

support for more graphical content, while more modern equipment are better

dealing with images. Also, people interests are distinct, and as such the

disseminated content should be chosen by them. This indicates that a

registration process should be performed, in which the user sets preferences

such as type of service, type of equipment, refresh rate, etc.

Also, the method currently used for determining if dynamic content has

been modified is inappropriate for all situations. As we use a MD5 hash

function to determine if content has changed, this isn't desirable for all types

of services. For example, if we use this method on a news service, users can

receive very similar content, where the only difference may be a single news

headline. On the other hand, this method is useful if we want, for example, to

create a service that notifies users of changes in public transit bus schedules.

Overall, it seems that the system has to support several methods for

determining content modification, as the use of hash functions isn't suitable

for all services.

With these implications we finalize the presentation of pilots and tests

results. Along this section we showed the data collected by our pilots, and

122

 6 Pilots & Test Results

presented the conclusions inferred by them. We now proceed to conclusive

commentaries and the indication of possible future work.

123

 7 Conclusion & Future Work

7 Conclusion & Future Work

In this section we present our conclusive comments and possible future

work orientation. We summarize the advantageous of using our system for

both proximity sensing and content dissemination, and point out how the

system may be improved in the future with the support for additional features.

7.1 Conclusive Comments

In this work we presented a prototype system that enables for proximity

sensing and context-aware service offering. We defended that our system is a

viable alternative to classical methods of information capture and content

dissemination, as it offers a set of advantages over these.

We demonstrated that our system is suitable for proximity sensing, as it

uses a scanning element for capture of Bluetooth enabled devices within the

vicinity. We showed that the components responsible for scanning may be

installed at many different settings, collecting data that is useful for several

types of applications such as O/D matrices derivation. We also demonstrated

that the Bluetooth data is useful for defining the environment on which the

component is installed, as contextual data regarding flow and affluence are

derived from analysis.

Furthermore, our system implements an infrastructure for the

dissemination of context-aware services. With the usage of our Service

Specification Language (SSL), we enable the creation of a rich set of services

that disseminate both static and dynamic content. With the implementation of

our system we lower the need for specialized dissemination components, as

presentation is delegated to users' equipment. Also, we make our

dissemination infrastructure flexible, as we remove hardware dependency.

Finally, we make content and presentation personalization possible, a feature

that has been demonstrated important to users.

124

 7 Conclusion & Future Work

7.2 Future Work

Our current infrastructure may be extended in several ways. First of all,

our plans are to extend the system to support user registration and service

creation. Thereafter, we plan to expand the system to take into account

equipment type, as content format should be adapted accordingly.

Moreover, it is our intention to extend the current push-only

dissemination system to an integrated content dissemination system. We

would provide users with the possibility of communication initiation, where

they would send requests to the stations using a pull back-channel. This would

make ad-hoc registration and on-demand content dissemination possible. Also,

our dissemination infrastructure current method of functionality only supports

the use of a dongle per service. This means that if the system has only one

delivery dongle, then it is bound to execute services sequentially, although it

can deliver to multiple destinations simultaneously. An interesting addition

would be to permit the usage of a dongle by distinct simultaneous services.

Additionally, the system may be extended to collect concrete

localization information. With the use of Bluetooth radio signal strength, it is

possible to calculate devices' relative distance. Also, with the use of

triangulation concrete localization is possible, therefore adding new contextual

dimensions to our system, enriching our specification language.

In conclusion, we refer that throughout our work security has not been a

concern. For this reason, it is pertinent to state that attacks are made possible

due the lack of implemented security mechanisms. If we use a direct

connection between stations and the broker, for example, an attacker may

easily eavesdrop the content. Also, we only use a simple hash code for

recognition of stations, a method far from secure. These examples

demonstrate that security measures should be implemented in future versions

of our system.

125

 Bibliography

Bibliography
 [Kostakos 08] Kostakos, V.. Using Bluetooth to Capture Trips on Public

Transport Buses. LabUSE, University of Madeira (2008) : .

 [TC 03] Thapa, K. and Case, S. An Indoor Positioning Service for Bluetooth

Ad Hoc Networks. In: Midewest Instruction and Computing Symposium. Duluth,

MN, USA. 2003: .

 [BCG 05] Bruno, R., Conti, M. and Gregori, E. Mesh Networks: Commodity

Multihop Ad Hoc Networks. IEEE Communications Magazine (2005) Vol. 43

Num. 3: 123-131.

 [SF 03] Shalaby, A. and Farhan, A. Bus Travel Time Prediction Model for

Dynamic Operations Control and Passenger Information Systems. In: TRB 82nd

Annual Meeting. . 2003: .

 [OKKSPFJ 06] O’Neill, E., Kostakos V., Kindberg, T., Schieck, A., Penn A.,

Fraser, D., and Jones, T.. Instrumenting the City: Developing Methods for

Observing and Understanding the Digital Cityscape. In: UbiComp 2006: 8th

Int'l Conf. on Ubiquitous Computing. . 2006: 315-332.

 [AGKO 04] Aalto, L., Gothlin, N., Korthonen, J. and Ojala, T.. Bluetooth and

WAP Push Based Location-Aware Mobile Advertising System. In: Proc. of the

2nd International Conference on Mobile Systems, applications and services. .

2004: 49 - 58.

 [PHJ 02] Podnar, J., Hauswrith, M., Jazayeri, M.. Mobile Push: Delivering

Content to Mobile Users. In: 22nd International Conference on Distributed

Computing Systems Workshop. Vienna, Austria. 2002: 563 - 570.

 [VK 07] Vishik, C. and Kartha, G. Intelligent RFID Information Management

System. US Patent App. 11/855,478, Google Patents (2007) : .

 [Norris 02] Norris, A. Current Trends and Challenges in Health Informatics.

In: iSHIMR: Proceedings of the 7th International Symposium on Health

Information Management Research. Sheffield. 2002: 2-15.

 [TO 00] Tan, K. and Ooi, B.. Data Dissemination in Wireless Computing

Environments (Advances in Database Systems) . Springer. July 2000.

127

 Bibliography

 [AFZ 97] Acharya, S., Franklin, M. and Zdonik, S. Balacing Push and Pull for

Data Broadcast. In: Proceedings of the ACM SIGMOD Conference on

Management of Data. Tucson, AZ. May 1997: 183-194.

 [AFZ 95] Acharya, S., Franklin, M and Zdonik, S. Dissemination-Based Data

Delivery Using Broadcast Disks. IEEE Personal Communications (December,

1995) : 50-60.

 [FJMFC 01] Figueiredo, L., Jesus, I., Machado, J., Ferreira, J. and Carvalho, M.

Towards the Development of Intelligent Transportation Systems. In: Proc. 4th

IEEE Intelligent Transportation Systems. Oakland, CA. January 2001: 1206-

1211.

 [Shibata 99] Shibata, J. Progress in Intelligent Transportation Systems in

the US, Europe and Japan. ISATA Magazine (1999) : 27-29.

 [Zhao 00] Zhao, Y. Mobile Phone Location Determination and Its Impact on

Intelligent Transportation Systems. IEEE Transactions on Intelligent

Transportation Systems (March 2000) Vol. 1 Num. 1: 55-67.

 [LHHR 00] Levine, J., Hong, Q., Hug, G. and Rodriguez, D. Impacts of an

Advanced Public Transportation System - Demonstration Project.

Transportation Research Record: Journal of the Transportation Research Board

(2000) Num. 1735: 169-177.

 [MOJ 95] Morgan-Owen, J. and Johson, G. Differential GPS Positioning.

Electronics & Communication Engineering Journal (February 1995) Vol. 7 : 11-

21.

 [MD 01] Maclean, M. and Dailey, D. Busview: a graphical transit information

system. In: Intelligent Transportation Systems, Proceedings. 2001 IEEE.

Oakland, CA, USA. 2001: 1073-1078.

 [HQR 94] Hansen, M., Qureshi, M. and Rydzewski, D. Improving Transit

Performance With Advanced Public Transportation Systems Technologies.

Insitute of Transportation Studies (1994) : .

 [Wilson 06] Wilson, N. Public Transporation Service and Operations

Planning Lecture Notes. (2006) : .

 [Ben-Akiva 87] Ben-Akiva, M. Methods to Combine Different Data Sources

and Estimate Origin-Destination Matrices. Transportation and Traffic Theory,

N.H. Gartner and N.H.M. Wilson (eds) (1987) : 459-481.

128

 Bibliography

 [Cui 06] Cui, A. Bus Passenger Origin-Destination Matrix Estimation Using

Automated Data Collection Systems. Massachusetts Institute of Technology.

September 2006. Master thesis

 [ZRW 07] Zhao, J., Rahbee, A. and Wilson, N. Estimating a Rail Passenger

Trip Origin Destination Matrix Using Automatic Data Collection Systems.

Computer-Aided Civil and Infrastructure Engineering (2007) 22 : 376-378.

 [Gordillo 06] Gordillo, F. The Value of Automated Fare Collection Data for

Transit Planning: An Example of Rail Transit OD Matrix Estimation.

Massachusetts Institute of Technology. September 2006. Master thesis

 [Weiser 93] Weiser, M.. Some Computer Science Issues in Ubiquitous

Computing. Communications of the ACM (July 1993) Vol. 36 Num. 7: 91-102.

 [ASSC 02] Akyildiz, I., Su, W., Sankarasubramaniam Y. and Cayirci E.. A

Survey on Sensor Networks. IEEE Communications Magazine (August, 2002)

Vol. 40 Num. 8: 102-114.

 [HKB 99] Heinzelman, W., Kulik, J. and Balakrishnan, H. Adaptive Protocols

for Information Dissemination in Wireless Sensor Networks. In: Proc. of the 5th

Annual ACM/IEEE International Conference on Mobile Computing (MobiCom'

99). Seattle, WA. 1999: 174-185.

 [LDB 03] Leopold, M., Dydensborg, M. and Bonnet, P.. Bluetooth and Sensor

Networks: A Reality Check. In: SenSys' 03, Los Angels, California. . November

2003: 103-133.

 [SSJ 01] Shen, C., Srisathapornphat, C. and Jaikaeo, C. Sensor Information

Networking Architecture and Applications. IEEE Peers. Commun. (August 2001)

: 52-59.

 [HSA 00] Hoblos, G., Staroswiecki, M. and Aitouche A. Optimal Design of

Fault Tolerant Sensor Networks. In: IEEE Int’l. Conf.Cont. Apps.. Anchorage, AK.

September 2000: 467-472.

 [CDK 05] Dollimore, J., Kindberg, T. and Coulouris, G.. Distributed Systems:

Concepts and Design, 4th Edition . Addison Wesley. June 2005.

 [Bolton 01] Bolton, F.. Pure CORBA . Sams. July 2001.

 [OV 99] Oszu, M. and Valduriez, P. Principles of Distributed Databases

Systems, 2nd Edition . Prentice Hall. February 1999.

129

 Bibliography

 [Kleinrock 95] Kleinrock, L.. Nomadic Computing - An Opportunity. ACM

SIGCOMM Computer Communication Review (January 1995) Vol. 25 Num. 1:

36-40.

 [BN 92] Brachman, B. Neufeld, G. TDBM: A DBM Library with Atomic

Transactions. Dept. Of Computer Science, University of British Columbia

(1992) : . Technical Report

 [Bach 86] Bach, M.. The Design of The UNIX Operating System . Prentice-

Hall, Inc.. 1986.

 [SR 05] Stevens, W. and Rago, S.. Advanced Programming in the UNIX

Environment . Addison-Wesley . 2005.

 [WS 95] Wright, G. and Stevens, W. TCP/IP Illustrated, Volume 2: The

Implementation . Addison Wesley. January 1995.

 [SFR 03] Stevens, W., Fenner, B. and Rudoff, A. UNIX Network Programming

Volume 1, 3rd Edition: The Sockets Networking API . Addison-Wesley.

November 2003.

 [Stevens 94] Stevens, W. TCP/IP Illustrated: Protocols, Volume 1 . Addison-

Wesley. February 1994.

 [Bisdikan 01] Bisdikan, C. An Overview of the Bluetooth Wireless

Technology. IBM Research Divison (June 2001) : . Technical Report

 [Wang 01] Wang, H. Overview of Bluetooth Technology. Penn State, Dept.

of Electrical Engineering (July 2001) : . Technical Report

 [GCR 03] Golmie, N., Chevrollier, N. and Rebala, O. Bluetooth and WLAN

Coexistence: Challenges and Solutions. IEEE Wireless Communications

(December 2003) Vol. 10 Num. 6: 22-29.

 [GPS 04] Gehrmann, C., Persson, J. and Smeets, B. Bluetooth Security

(Artech House Computer Security Series) . Artech House. June 2004.

 [AK 05] Asthana, S. and Kalofonos, D. The Problem of Bluetooth Pollution

and Accelerating Connectivity in Bluetooth Ad-Hoc Networks. In: 3rd IEEE

Pervasive Computing and Communications (PerCom). Kauai Island, HI. March,

2005: 200-207.

 [AL 00] Andersson, H. and Lundgren, L. WAP Over Bluetooth. Lund Institute

of Technology, Lund University. 2000. Master Thesis

130

 Bibliography

 [SLBGMLBHI 03] Schilit, N., LaMarca, A., Borriello, G., Griswold, G.,

McDonald, D., Lazowska, E., Balachandran, A., Hong, J. and Iverson V.

Challenge: Ubiquitous Location-Aware Computing and the "Place Lab"

Initiative. In: Proceedings of the 1st ACM International Workshop on Wireless

Mobile Applications and Services on WLAN. . 2003: 29-35.

 [DFNI 07] Dikaiakos, M., Florides, A., Nadeem, T., Iftode, L. Location-Aware

Services Over Vehicular Ad-hoc Networks Using Car-to-Car Communication.

IEEE Journal on Selected Areas in Communication (2007) Vol. 25 Num. 8: 1590-

1602.

 [HHSWW 99] Harter, A., Hopper, A., Steggles, P., Ward, A. and Webster, P.

The Anatomy of a Context-Aware Application. In: Proc. 5th ACM MOBICOM

Conference. Seattle, WA, USA. August, 1999: 59-68.

 [SAW 94] Schilit, B., Adams, N. and Want, R. Context-Aware Computing

Applications. In: Proceedings of IEEE Workshop on Mobile Computing Systems

and Applications. Santa Cruz, California, USA. 1994: 85-90.

 [CK 00] Chen, G. and Kotz, D. A Survey on Context-Aware Mobile Computing

Research. (2000) : . Technical Report

 [SBG 99] Schmidt, A., Beigl, M. and Gellersen, H. There is More to Context

Than Location. Computers & Graphics (1999) Vol. 23 Num. 6: 893-901.

 [DA 99] Dey, A. and Abowd, G. Towards a Better Understanding of Context

and Context-Awareness. Georgia Institue of Technology, College of Computing

(June, 1999) : . Technical Report

 [WHFG 92] Want, R., Hopper, A., Falcão, V. and Gibbons, J. The Active

Badge Location System. ACM Transcations on Information Systems (1992) :

91-102.

 [BRH 94] Bennet, F., Richardson, T. and Harter, A. Teleporting - Making

Applications Mobile. In: Proceedings of IEEE Workshop on Mobile Computing

Systems and Applications. Santa Cruz, California, USA. Decemeber, 1994: 82-

84.

 [PCB 00] Priyantha, N., Chakraborty, A. and Balakrishnan, H. The Cricket

Location-Support System. In: 6th ACM International Conference on Mobile

Computing and Networking (ACM MOBICOM. Boston, MA, USA. August, 2000:

32-43.

131

 Bibliography

 [RSH 04] Rukzio, E., Schmidt, A. and Hussmann, H. Physical Posters as

Gateways to Context-Aware Services for Mobile Devices. In: 6th IEEE Workshop

on Mobile Computing Systems and Applications . English Lake District, UK.

2004: 10-19.

 [LC 06] LeBrun, J. and Chuah, C. Bluetooth Content Distribution Stations on

Public Transit. In: ACM MobiShare' 06. Los Angels, CA, USA. September 2006:

63-65.

 [LLSFC 06] Leguay, J., Lindgren, A., Scott, J., Friedman, T. and Crowcroft, J.

Opportunistic Content Distribution in an Urban Setting. In: Proceedings of the

ACM CHANTS. . 2006: 205-212.

 [RSDI 05] Ravi, N., Stern, P., Desai, N. and Iftode, L. Accessing Ubiquitous

Services Using Smart Phones. In: Proceeding of the 3rd International

Conference on Pervasive Computing and Communications. . 2005: 383-393.

 [PLGCLOWFK 04] Patterson. D., Liao, L., Gajos, K., Collier, M., Livic, N.,

Olson, K., Wang, S., Fox, D. and Kautz H. Opportunity Knocks: a System to

Provide Cognitive Assistance with Transportation Services. In: Proceedings of

UBICOMP 2004: The Sixth International Conference on Ubiquitous Computing. .

2004: .

 [EP 04] Eagle, N. and Pentland, A. Social Serendipity: Proximity Sensing and

Cueing. MIT Media Laboratory (May 2004) : . Technical Report

 [SCCM 08] Sánchez, J., Cano, J., Calafate. C. and Manzoni, P. BlueMall: A

Bluetooth-based Advertisement System for Commercial Areas. In: Proc. of the

3rd ACM workshop on Performance monitoring and measurement of

heterogeneous wireless and wired. Vancouver, British Columbia, Canada.

2008: 17-22.

 [CMT 06] Cano, J., Manzoni, P. and Toh, C. Ubiqmuseum: A Bluetooth and

Java Based Context-Aware System for Ubiquitous Computing. Wireless

Personal Communications, Springer (2006) : . Accepted for publication

 [GHJV 95] Gamma, E., Helm, R., Johnson, R. and Vlissidies, J. Design

Patterns: Ellements of Reusable Object-Oriented Software . Addison-Wesley.

1995.

 [Martin 03] Fowler, M. Agile Software Development: Principles, Patterns,

and Practices . Prentice Hall. 2003.

132

 Bibliography

 [DF 01] Dupire, B. and Fernandez, E. The Command Dispatcher Pattern.

Department of Computer Science and Engineering, Florida Atlantic University

(2001) : .

 [Knuth 98] Knuth, D. The Art of Computer Programming. Volume 3: Sorting

and Searching. 2nd Edition . Addison Wesley. June 1998.

 [WCO 00] Wall, L., Christiansen, T. and Orwant, J. Programming Perl, 3rd

Edition . O'Reilly Media, Inc.. July 2000.

 [Hayes 05] Hayes, A.. Statistical Methods for Communication Science .

Routledge. 2005.

 [Scheaffer 99] Scheaffer, R.. Categorical Data Analysis. NCSSM Statistics

Leadership Institute (July 1999) : .

133

Appendix A

In this section we present several informations related to

thequestionnaire that was executed. Some general considerations are shown

as well statistical formulas used, result tables and images, questions coding

table and the actual questionnaire.

A.1 General Considerations

• General Population – A concrete number of users using Horarios do

Funchal public transportation service is needed. In the absence of such

information, let's therefore assume that about one third of the general

population residing in Madeira uses this service. This would correspond

to about 100,000 users.

• Sample Size – The sample size is of 105 users.

• Data Type – The questions that where asked along the questionnaire

captured characteristics and preferences about the individuals.

Therefore, the data gathered by the questionnaires is categorical.

• Confidence Level – Assuming that we are in presence of a normal

distribution, our selected confidence level is 95%. Any assumption made

in this section is done with 95% of certainty.

• Confidence Interval – Since we are working with categorical data, the

formula used to calculate the error margin associated with a specific

question is:

 C.I.=Z× p 1−pn

The meaning of the above variables is the following:

C.I – The Confidence Interval

Z – Z-Value for a confidence level of 95%. This corresponds to the constant

value of 1.96.

p – The sample proportion. This corresponds to the percentage of users that

belong to a certain group.

n – The sample population

A.2 Statistical Formulas

The Chi-Square Test of Independence is used in order to discover

associations between variables. This test is commonly used when the data

under analysis is categorical (e.g. it fits a specific group). The formula we used

to calculate the Chi-Square value is the one that follows [Hayes 05]:

2
=∑
i=1

n

∑
j=1

m

Oij−E ij
2
/E ij

• O – Represents the observed value on a given cell

• E – Represents the excepted value on a given cell

The Chi-Square is not a flawless independence test [Scheaffer 99, Hayes 05].

In fact when there exists one or more cells in a given contingency table with a

excepted value (E) below 5 (e.g. E < 5) the tests becomes unreliable at best.

To counter this problem we decided that in those contingency tables were E <

5, or where the obtained
2 raised some doubts, we would use the Yates

Corrected Chi-Square, which formula is given by the expression [Hayes 05]:

2
=∑
i=1

n

∑
j=1

m

[∣Oij−Eij ∣−0.5]2/E ij

Important is the fact that after applying the Yates Correction we must

recalculate the value of 2 . In order to help us achieve this we used an

external mechanism which can be found at [5].

Throughout the tests we assume that =0,05 , where represents the alpha

level of significance. In order to better understand and compare the obtained

results Table 7 was added.

It should also be noticed that although the above tests show us that a kind of

association exit between variables, the tests themselves cannot clearly

indicate how strong is that association, and what in fact the factors that

influence such association. In order to obtain a more detailed data analysis we

are going to make use of the standardized residuals (Section A.3) to unveil

patterns that the Chi-Square tests cannot. As we are working with a normal

distribution with a confidence level of 95%, then we are going to compare the

obtained residuals to the constant Z-value of 1,96.

Alpha Significance Level ()

0.5 0.10 0.05 0.02 0.01 0,001

Degrees 1 0.455 2,706 3.841 5,412 6.635 10,827

of 2 1,386 4,605 5,991 7,824 9,210 13,815

Freedom 3 2,366 6,251 7,815 9,837 11,345 16,268

(dF) 4 3,357 7,779 9,488 11,668 13,277 18,465

5 4,351 9,236 11,070 13,388 15,086 20,517

Table 6: Chi-Square Distribution Table

Question/Answer/I

nformation Code

Question/Answer/Information

I1 The date when the questionnaire was answered

I2 Time when the questionnaire was answered

I3 Location where the questionnaire was answered

Q1.A Sex

Q1.B Age (in years)

Q2 How frequently do you use public transport buses?

Q3 How much time do you spend waiting at the bus stop?

Q4 While waiting at the bus stop or while traveling do you

usually make use of a portable communication device

(PDA, Cellphone, etc)?

Q5 If you answered yes in question 4, please indicate in

what ways you use your portable device:

Q5.A Making/Receiving Phone Calls

Q5.B Sending/Receiving SMS/MMS

Q5.C Entertainment(Music, Games, etc)

Q5.D Accessing On-line Content(Internet)

Q5.E Other

Q6 While waiting at the bus stop, is there any kind of

information/service that you would like to have access to,

but for some reason can't or won't?

Q7 Does your portable communication device support the

Bluetooth wireless technology?

Q8 If you answered yes in question 7, do you usually keep

your device with the Bluetooth option turned on?

Q9 If you answered no in Question 8, please indicate the

reason(s) for not enabling the Bluetooth option of your

device:

Q9.A Security

Q9.B Power Consumption

Q9.C No Particular Reason

Q9.D Other

Q10 Please indicate the type of services of more interest to

you:

Q10.A While waiting at the bus stop

Q10.A1 Detailed bus schedules

Q10.A2 Buses arriving time

Q10.A3 Position indication of nearby bus stops

Q10.A4 Updated news headlines

Q10.A5 Entertainment(Games, Music, etc)

Q10.A6 Other

Q10.B While traveling

Q10.B1 Detailed bus schedules

Q10.A2 Arriving time on destination stop

Q10.A3 Position indication of nearby bus stops

Q10.A4 Updated news headlines

Q10.A5 Entertainment(Games, Music, etc)

Q10.A6 Other

Q11 Please indicate your preferred way of accessing the

services chosen at question 10:

Table 7: Question, Answers and Informations Coding

A.3 Variable Associations

As we applied the Chi-Square test, several hypothesis were tested. The

concrete details regarding the used formula as well the questions' coding that

is used in this section, is present in the previous section. Here we summarize

the existing associations as we present them into categories.

Location

• An association between I3 and Q10.A3 exists. (2
=9.65 ,dF = 3, p < 0.05)

Demographics

• An association exists between Q1.A and Q5.B. (2
=6.507 ,dF = 1, p < 0.05)

• An association between Q1.A and Q10.A3 exists. (2
=5,559 ,dF = 1, p < 0.05)

• Q1.B and Q4 are related. (2
=10.09 ,dF = 4, p < 0.05)

• An association between Q1.B and Q5.B was obtained.

(2
=21.69 ,dF = 4, p < 0.01)

• Q1.B is related to Q10.A4. (2
=10.17 ,dF = 4, p < 0.05)

Bus Usage and Waiting Time

• An association was obtained between Q2 and Q9.C.

(2
=12.87 ,dF = 4, p < 0.05)

• Q3 and Q4 are related to each other. (2
=12.83 ,dF = 4, p < 0.05)

• An association between Q3 and Q5.B exists. (2
=11.04 ,dF = 4, p < 0.05)

Mobile Devices Pratices

• An association exists between Q5.A and Q10.A4. (2
=11.59 ,dF = 1, p < 0.01)

• Q5.A is associated with Q10.B4. (2
=9.22 ,dF = 1, p < 0.01)

• Q5.B and Q5.C are related to each other. (2
=5.85 ,dF = 1, p < 0.05)

• Q5.B and Q9.A are related. (2
=8.041 ,dF = 1, p < 0.05)

• Q5.B and Q10.A4 are associated with each other. (2
=5.064 ,dF = 1, p < 0.05)

• Q5.C and Q9.B have an association bounding them.

(2
=5.63 ,dF = 1, p < 0.05)

Types of Services

• An association exists between Q10.A2 and both Q10.B1 and Q10.B2.

(2
=6.726 ,dF = 1, p < 0.05)

• An association exists between Q10.A3 and Q10.B3.

(2
=9.192 ,dF = 1, p < 0.01)

• Q10.A3 and Q10.B4 are related. (2
=8.47 ,dF = 1, p < 0.01)

• An association exists between Q10.A4 and Q10.B4.

(2
=37.46 ,dF = 1, p < 0.01)

• Q10.B1 and Q10.B2 are related. (2
=10.33 ,dF = 1, p < 0.01)

• Q10.B2 and Q11 are related. (2
=10.1 ,dF = 3, p < 0.05)

• Q10.B3 and Q11 are associated. (2
=10.06 ,dF = 3, p < 0.05)

A.4 Result Tables and Images

Figure 71: Users that want the locations

of nearby bus stops while waiting for the

bus

Figure 72: Users that use their device

for messaging

Figure 73: Female and Male users who

wan't the location of nearby bus stops

Figure 74: Device usage for phone

calling and news service at bus stops

association

Figure 75: Device usage for phone

calling and news service while

traveling association

Figure 76: Device usage for

messaging and entertainment

association

Figure 77: Device usage for

messaging and disconnecting

Bluetooth for security reasons

association

Figure 78: Device messaging usage

and news service at bus stops

associaiton

Figure 79: Turning off Bluetooth for

power consumption reasons and using

it for entertainment

Figure 80: Users that want to know

the bus arrival time and the detailed

bus schedules while traveling

Figure 81: Users that want the bus

arrival time and the destiny arrival

time

Figure 82: Bus stops locations both

while waiting for the bus and traveling

Figure 83: Nearby bus stops locations

while at the bus stop and news service

while traveling association

Figure 84: Users that news service in

bus stops and while traveling

Figure 85: Schedules while traveling

and destiny arrival time association

10 – 20 20 – 30 30 – 40 40 – 50 50+

Uses Device 37

(0,72)

38

(-0,67)

8

(0,4)

2

(0,09)

0

(-0,88)

Doesn't use

Device

3

(-1,49)

15

(1,38)

0

(-0,83)

0

(-0,19)

2

(1,82)

Table 8: Frequency and standardized residuals of age/device usage association

10 – 20 20 – 30 30 – 40 40 – 50 50+

Doesn't use 4

(-2,88)

28

(1,37)

6

(1,29)

2

(0,78)

2

(-0,78)

Uses 36

(2,35)

25

(-1,12)

2

(-1,05)

0

(-0,64)

2

(-0,64)

Table 9: Users that use their device for messaging purposes

10 – 20 20 – 30 30 – 40 40 – 50 50+

Doesn't Want 35

(1,27)

34

(-0,39)

3

(-0,87)

1

(-0,09)

0

(-0,75)

Wants 5

(-1,92)

19

(0,58)

5

(1,32)

1

(0,14)

2

(1,14)

Table 10: Users that want a news service at the bus stops

1 – 5 5 – 10 10 – 15 15 – 30 30+

Doesn't use 2

(-1,65)

23

(1,87)

13

(-0,53)

4

(0,05)

0

(-0,34)

Uses 15

(1,35)

15

(-1,53)

26

(0,43)

5

(-0,04)

2

(0,27)

Table 11: Waiting time and device usage for messaging purposes

1 – 5 min 5 – 10 min 10 – 15 min 15 – 30 min 30+ min

Uses Device 16

(0,47)

23

(-1,31)

36

(0,7)

8

(0,08)

2

(0,09)

Doesn't use

device

1

(-0,97)

15

(2,7)

3

(-1,44)

1

(-0,16)

0

(-0,19)

Table 12: Waiting time and device usage association

2+ day 1 day 1 – 5 week 1 – 5 month Very rarely

Has reason 60

(0,46)

7

(-0,1)

11

(-0,99)

9

(0,13)

8

(-0,13)

Doesn't have

reason

2

(-1,4)

1

(0,3)

6

(3,05)

0

(-0,39)

1

(0,39)

Table 13: Users frequency usage and reason for disabling Bluetooth discoverable

mode

A.5 Questionnaire

Questionnaire about public transport-related services

v 0.4P – Out/08 – EN

As an effort to better understand the needs of users of public transports, and in hope to make your experience a better one

while using them, please consider answering the following questions

1. In order to comprehend and contextualize the gathered information, please indicate the following information:

a) Sex:

b) Age (in years):

2. How frequently do you use public transport buses?

3. How much time do you spend waiting at the bus stop?

4. While waiting at the bus stop do you usually make use of a portable communication device (PDA, Cellphone,

etc)?

5. If you answered yes in question 4, please indicate in what ways you use your portable device:

__

__

6. While waiting at the bus stop, is there any kind of information/service that you would like to have access to,

but for some reason can't or won't?

Feminine

10 - 20

30 - 40

50+

40 - 50

2 or more times a day

1 - 5 times a month

1 time a day

1 - 5 times a week

very rarely

10 - 15 minutes

1 - 5 minutes

30+ minutes

Yes

No

Making/Receiving phone calls

Sending/Recieving SMS/MMS

Entertainment (Music, Games, etc)

Accessing on-line content (Internet)

Other (Please specify)

Masculine

No

Yes (Please specify)

20 - 30

5 - 10 minutes

15 - 30 minutes

__

__

7. Does your portable communication device support the Bluetooth wireless technology?

8. If you answered yes in question 7, do you usually keep your device with the Bluetooth option turned on?

9. If you answered no in Question 8, please indicate the reason(s) for not enabling the Bluetooth option of your

device:

__

__

10. Please indicate the type of services of more interest to you:

While waiting at the bus stop While traveling

11. Please indicate your preferred way of accessing the services chosen at question 10:

Yes

No

I don't know

Yes

No

I don't know

Security

Power consumption

No specific reason

Other (Please specify)

Detailed bus schedules

Buses arriving time

Indiaction of nearby bus stops

Updated news headlines

Leisure (Games, Music, etc)

Others (Please specify)

Arriving time on destination stop

Indiaction of nearby bus stops

Updated news headlines

Leisure (Games, Music, etc)

Others (Please specify)

Detailed bus schedules

I want to be responsible for accessing the services

I want to register for the service, and then my device will automatically access it

My device will automatically access the service without my previous consent

I really don't care as long as the services are of any relevance to me

	Declaration
	Abstract
	Acknowledgments
	Table of contents
	1 Introduction
	2 Motivation
	2.1 Proximity Sensing
	2.2 Content Dissemination
	2.3 System Overview
	2.4 Potential System Benefits

	3 Public Transit Passengers' Opinions
	3.1 Data Summary	
	3.2 Discussion
	3.2.1 Location
	3.2.2 Demographics
	3.2.3 Bus Usage and Waiting Time
	3.2.4 Mobile Devices Practices
	3.2.5 Types of Services

	3.3 Implications

	4 State of The Art & Related Work
	4.1 Broad View
	4.1.1 Information Capture & Dissemination
	4.1.2 Intelligent Transportation Systems
	4.1.3 Origin-Destination Matrices
	4.1.4 Sensor Networks
	4.1.5 Distributed Systems
	4.1.6 Inter Process Communication

	4.2 In-Depth View
	4.2.1 Bluetooth Wireless Technology
	4.2.1.1 Bluetooth Lower-Levels
	4.2.1.2 Bluetooth Middle-Levels
	4.2.1.3 Bluetooth Profiles
	4.2.1.4 WAP over Bluetooth

	4.2.2 Context-Aware Computing
	4.2.2.1 Location-Aware Computing
	4.2.2.2 Context-Aware Multidimensionality
	4.2.2.3 Context-Aware Applications

	5 System Description
	5.1 Example Scenarios
	5.2 Overall System Requirements
	5.3 Overal System Architecture
	5.4 Component Description
	5.4.1 Blue Stations
	5.4.1.1 Device Reader
	5.4.1.2 Publishing System
	5.4.1.3 Service Scheduler
	5.4.1.4 Delivery System
	5.4.1.5 Communication System
	5.4.1.6 Logging System

	5.4.2 Broker
	5.4.3 Central Infrastructure
	5.4.4 Administration Console

	5.5 System Particularities
	5.5.1 Blue Station Configuration
	5.5.2 Daemonization
	5.5.3 Service Specification Language
	5.5.4 Service Execution Process
	5.5.5 Command Execution Process

	6 Pilots & Test Results
	6.1 Results
	6.1.1 University Pilots
	6.1.2 Mobile Pilot
	6.1.3 Information Center Pilot
	6.1.4 Public Transit Infrastructure Pilots

	6.2 Discussion
	6.2.1 University Pilots
	6.2.2 Mobile Pilot
	6.2.3 Information Center Pilot
	6.2.4 Public Transit Infrastructure Pilots

	6.3 Users Opinions
	6.4 Implications

	7 Conclusion & Future Work
	7.1 Conclusive Comments
	7.2 Future Work

	Bibliography
	[Kostakos 08] Kostakos, V.. Using Bluetooth to Capture Trips on Public Transport Buses. LabUSE, University of Madeira (2008) : .
	[TC 03] Thapa, K. and Case, S. An Indoor Positioning Service for Bluetooth Ad Hoc Networks. In: Midewest Instruction and Computing Symposium. Duluth, MN, USA. 2003: .
	[BCG 05] Bruno, R., Conti, M. and Gregori, E. Mesh Networks: Commodity Multihop Ad Hoc Networks. IEEE Communications Magazine (2005) Vol. 43 Num. 3: 123-131.
	[SF 03] Shalaby, A. and Farhan, A. Bus Travel Time Prediction Model for Dynamic Operations Control and Passenger Information Systems. In: TRB 82nd Annual Meeting. . 2003: .
	[OKKSPFJ 06] O’Neill, E., Kostakos V., Kindberg, T., Schieck, A., Penn A., Fraser, D., and Jones, T.. Instrumenting the City: Developing Methods for Observing and Understanding the Digital Cityscape. In: UbiComp 2006: 8th Int'l Conf. on Ubiquitous Computing. . 2006: 315-332.
	[AGKO 04] Aalto, L., Gothlin, N., Korthonen, J. and Ojala, T.. Bluetooth and WAP Push Based Location-Aware Mobile Advertising System. In: Proc. of the 2nd International Conference on Mobile Systems, applications and services. . 2004: 49 - 58.
	[PHJ 02] Podnar, J., Hauswrith, M., Jazayeri, M.. Mobile Push: Delivering Content to Mobile Users. In: 22nd International Conference on Distributed Computing Systems Workshop. Vienna, Austria. 2002: 563 - 570.
	[VK 07] Vishik, C. and Kartha, G. Intelligent RFID Information Management System. US Patent App. 11/855,478, Google Patents (2007) : .
	[Norris 02] Norris, A. Current Trends and Challenges in Health Informatics. In: iSHIMR: Proceedings of the 7th International Symposium on Health Information Management Research. Sheffield. 2002: 2-15.
	[TO 00] Tan, K. and Ooi, B.. Data Dissemination in Wireless Computing Environments (Advances in Database Systems) . Springer. July 2000.
	[AFZ 97] Acharya, S., Franklin, M. and Zdonik, S. Balacing Push and Pull for Data Broadcast. In: Proceedings of the ACM SIGMOD Conference on Management of Data. Tucson, AZ. May 1997: 183-194.
	[AFZ 95] Acharya, S., Franklin, M and Zdonik, S. Dissemination-Based Data Delivery Using Broadcast Disks. IEEE Personal Communications (December, 1995) : 50-60.
	[FJMFC 01] Figueiredo, L., Jesus, I., Machado, J., Ferreira, J. and Carvalho, M. Towards the Development of Intelligent Transportation Systems. In: Proc. 4th IEEE Intelligent Transportation Systems. Oakland, CA. January 2001: 1206-1211.
	[Shibata 99] Shibata, J. Progress in Intelligent Transportation Systems in the US, Europe and Japan. ISATA Magazine (1999) : 27-29.
	[Zhao 00] Zhao, Y. Mobile Phone Location Determination and Its Impact on Intelligent Transportation Systems. IEEE Transactions on Intelligent Transportation Systems (March 2000) Vol. 1 Num. 1: 55-67.
	[LHHR 00] Levine, J., Hong, Q., Hug, G. and Rodriguez, D. Impacts of an Advanced Public Transportation System - Demonstration Project. Transportation Research Record: Journal of the Transportation Research Board (2000) Num. 1735: 169-177.
	[MOJ 95] Morgan-Owen, J. and Johson, G. Differential GPS Positioning. Electronics & Communication Engineering Journal (February 1995) Vol. 7 : 11-21.
	[MD 01] Maclean, M. and Dailey, D. Busview: a graphical transit information system. In: Intelligent Transportation Systems, Proceedings. 2001 IEEE. Oakland, CA, USA. 2001: 1073-1078.
	[HQR 94] Hansen, M., Qureshi, M. and Rydzewski, D. Improving Transit Performance With Advanced Public Transportation Systems Technologies. Insitute of Transportation Studies (1994) : .
	[Wilson 06] Wilson, N. Public Transporation Service and Operations Planning Lecture Notes. (2006) : .
	[Ben-Akiva 87] Ben-Akiva, M. Methods to Combine Different Data Sources and Estimate Origin-Destination Matrices. Transportation and Traffic Theory, N.H. Gartner and N.H.M. Wilson (eds) (1987) : 459-481.
	[Cui 06] Cui, A. Bus Passenger Origin-Destination Matrix Estimation Using Automated Data Collection Systems. Massachusetts Institute of Technology. September 2006. Master thesis
	[ZRW 07] Zhao, J., Rahbee, A. and Wilson, N. Estimating a Rail Passenger Trip Origin Destination Matrix Using Automatic Data Collection Systems. Computer-Aided Civil and Infrastructure Engineering (2007) 22 : 376-378.
	[Gordillo 06] Gordillo, F. The Value of Automated Fare Collection Data for Transit Planning: An Example of Rail Transit OD Matrix Estimation. Massachusetts Institute of Technology. September 2006. Master thesis
	[Weiser 93] Weiser, M.. Some Computer Science Issues in Ubiquitous Computing. Communications of the ACM (July 1993) Vol. 36 Num. 7: 91-102.
	[ASSC 02] Akyildiz, I., Su, W., Sankarasubramaniam Y. and Cayirci E.. A Survey on Sensor Networks. IEEE Communications Magazine (August, 2002) Vol. 40 Num. 8: 102-114.
	[HKB 99] Heinzelman, W., Kulik, J. and Balakrishnan, H. Adaptive Protocols for Information Dissemination in Wireless Sensor Networks. In: Proc. of the 5th Annual ACM/IEEE International Conference on Mobile Computing (MobiCom' 99). Seattle, WA. 1999: 174-185.
	[LDB 03] Leopold, M., Dydensborg, M. and Bonnet, P.. Bluetooth and Sensor Networks: A Reality Check. In: SenSys' 03, Los Angels, California. . November 2003: 103-133.
	[SSJ 01] Shen, C., Srisathapornphat, C. and Jaikaeo, C. Sensor Information Networking Architecture and Applications. IEEE Peers. Commun. (August 2001) : 52-59.
	[HSA 00] Hoblos, G., Staroswiecki, M. and Aitouche A. Optimal Design of Fault Tolerant Sensor Networks. In: IEEE Int’l. Conf.Cont. Apps.. Anchorage, AK. September 2000: 467-472.
	[CDK 05] Dollimore, J., Kindberg, T. and Coulouris, G.. Distributed Systems: Concepts and Design, 4th Edition . Addison Wesley. June 2005.
	[Bolton 01] Bolton, F.. Pure CORBA . Sams. July 2001.
	[OV 99] Oszu, M. and Valduriez, P. Principles of Distributed Databases Systems, 2nd Edition . Prentice Hall. February 1999.
	[Kleinrock 95] Kleinrock, L.. Nomadic Computing - An Opportunity. ACM SIGCOMM Computer Communication Review (January 1995) Vol. 25 Num. 1: 36-40.
	[BN 92] Brachman, B. Neufeld, G. TDBM: A DBM Library with Atomic Transactions. Dept. Of Computer Science, University of British Columbia (1992) : . Technical Report
	[Bach 86] Bach, M.. The Design of The UNIX Operating System . Prentice-Hall, Inc.. 1986.
	[SR 05] Stevens, W. and Rago, S.. Advanced Programming in the UNIX Environment . Addison-Wesley . 2005.
	[WS 95] Wright, G. and Stevens, W. TCP/IP Illustrated, Volume 2: The Implementation . Addison Wesley. January 1995.
	[SFR 03] Stevens, W., Fenner, B. and Rudoff, A. UNIX Network Programming Volume 1, 3rd Edition: The Sockets Networking API . Addison-Wesley. November 2003.
	[Stevens 94] Stevens, W. TCP/IP Illustrated: Protocols, Volume 1 . Addison-Wesley. February 1994.
	[Bisdikan 01] Bisdikan, C. An Overview of the Bluetooth Wireless Technology. IBM Research Divison (June 2001) : . Technical Report
	[Wang 01] Wang, H. Overview of Bluetooth Technology. Penn State, Dept. of Electrical Engineering (July 2001) : . Technical Report
	[GCR 03] Golmie, N., Chevrollier, N. and Rebala, O. Bluetooth and WLAN Coexistence: Challenges and Solutions. IEEE Wireless Communications (December 2003) Vol. 10 Num. 6: 22-29.
	[GPS 04] Gehrmann, C., Persson, J. and Smeets, B. Bluetooth Security (Artech House Computer Security Series) . Artech House. June 2004.
	[AK 05] Asthana, S. and Kalofonos, D. The Problem of Bluetooth Pollution and Accelerating Connectivity in Bluetooth Ad-Hoc Networks. In: 3rd IEEE Pervasive Computing and Communications (PerCom). Kauai Island, HI. March, 2005: 200-207.
	[AL 00] Andersson, H. and Lundgren, L. WAP Over Bluetooth. Lund Institute of Technology, Lund University. 2000. Master Thesis
	[SLBGMLBHI 03] Schilit, N., LaMarca, A., Borriello, G., Griswold, G., McDonald, D., Lazowska, E., Balachandran, A., Hong, J. and Iverson V. Challenge: Ubiquitous Location-Aware Computing and the "Place Lab" Initiative. In: Proceedings of the 1st ACM International Workshop on Wireless Mobile Applications and Services on WLAN. . 2003: 29-35.
	[DFNI 07] Dikaiakos, M., Florides, A., Nadeem, T., Iftode, L. Location-Aware Services Over Vehicular Ad-hoc Networks Using Car-to-Car Communication. IEEE Journal on Selected Areas in Communication (2007) Vol. 25 Num. 8: 1590-1602.
	[HHSWW 99] Harter, A., Hopper, A., Steggles, P., Ward, A. and Webster, P. The Anatomy of a Context-Aware Application. In: Proc. 5th ACM MOBICOM Conference. Seattle, WA, USA. August, 1999: 59-68.
	[SAW 94] Schilit, B., Adams, N. and Want, R. Context-Aware Computing Applications. In: Proceedings of IEEE Workshop on Mobile Computing Systems and Applications. Santa Cruz, California, USA. 1994: 85-90.
	[CK 00] Chen, G. and Kotz, D. A Survey on Context-Aware Mobile Computing Research. (2000) : . Technical Report
	[SBG 99] Schmidt, A., Beigl, M. and Gellersen, H. There is More to Context Than Location. Computers & Graphics (1999) Vol. 23 Num. 6: 893-901.
	[DA 99] Dey, A. and Abowd, G. Towards a Better Understanding of Context and Context-Awareness. Georgia Institue of Technology, College of Computing (June, 1999) : . Technical Report
	[WHFG 92] Want, R., Hopper, A., Falcão, V. and Gibbons, J. The Active Badge Location System. ACM Transcations on Information Systems (1992) : 91-102.
	[BRH 94] Bennet, F., Richardson, T. and Harter, A. Teleporting - Making Applications Mobile. In: Proceedings of IEEE Workshop on Mobile Computing Systems and Applications. Santa Cruz, California, USA. Decemeber, 1994: 82-84.
	[PCB 00] Priyantha, N., Chakraborty, A. and Balakrishnan, H. The Cricket Location-Support System. In: 6th ACM International Conference on Mobile Computing and Networking (ACM MOBICOM. Boston, MA, USA. August, 2000: 32-43.
	[RSH 04] Rukzio, E., Schmidt, A. and Hussmann, H. Physical Posters as Gateways to Context-Aware Services for Mobile Devices. In: 6th IEEE Workshop on Mobile Computing Systems and Applications . English Lake District, UK. 2004: 10-19.
	[LC 06] LeBrun, J. and Chuah, C. Bluetooth Content Distribution Stations on Public Transit. In: ACM MobiShare' 06. Los Angels, CA, USA. September 2006: 63-65.
	[LLSFC 06] Leguay, J., Lindgren, A., Scott, J., Friedman, T. and Crowcroft, J. Opportunistic Content Distribution in an Urban Setting. In: Proceedings of the ACM CHANTS. . 2006: 205-212.
	[RSDI 05] Ravi, N., Stern, P., Desai, N. and Iftode, L. Accessing Ubiquitous Services Using Smart Phones. In: Proceeding of the 3rd International Conference on Pervasive Computing and Communications. . 2005: 383-393.
	[PLGCLOWFK 04] Patterson. D., Liao, L., Gajos, K., Collier, M., Livic, N., Olson, K., Wang, S., Fox, D. and Kautz H. Opportunity Knocks: a System to Provide Cognitive Assistance with Transportation Services. In: Proceedings of UBICOMP 2004: The Sixth International Conference on Ubiquitous Computing. . 2004: .
	[EP 04] Eagle, N. and Pentland, A. Social Serendipity: Proximity Sensing and Cueing. MIT Media Laboratory (May 2004) : . Technical Report
	[SCCM 08] Sánchez, J., Cano, J., Calafate. C. and Manzoni, P. BlueMall: A Bluetooth-based Advertisement System for Commercial Areas. In: Proc. of the 3rd ACM workshop on Performance monitoring and measurement of heterogeneous wireless and wired. Vancouver, British Columbia, Canada. 2008: 17-22.
	[CMT 06] Cano, J., Manzoni, P. and Toh, C. Ubiqmuseum: A Bluetooth and Java Based Context-Aware System for Ubiquitous Computing. Wireless Personal Communications, Springer (2006) : . Accepted for publication
	[GHJV 95] Gamma, E., Helm, R., Johnson, R. and Vlissidies, J. Design Patterns: Ellements of Reusable Object-Oriented Software . Addison-Wesley. 1995.
	[Martin 03] Fowler, M. Agile Software Development: Principles, Patterns, and Practices . Prentice Hall. 2003.
	[DF 01] Dupire, B. and Fernandez, E. The Command Dispatcher Pattern. Department of Computer Science and Engineering, Florida Atlantic University (2001) : .
	[Knuth 98] Knuth, D. The Art of Computer Programming. Volume 3: Sorting and Searching. 2nd Edition . Addison Wesley. June 1998.
	[WCO 00] Wall, L., Christiansen, T. and Orwant, J. Programming Perl, 3rd Edition . O'Reilly Media, Inc.. July 2000.
	[Hayes 05] Hayes, A.. Statistical Methods for Communication Science . Routledge. 2005.
	[Scheaffer 99] Scheaffer, R.. Categorical Data Analysis. NCSSM Statistics Leadership Institute (July 1999) : .

	Appendix A

	CheckBox: Off
	CheckBox1: Off
	CheckBox2: Off
	CheckBox3: Off
	CheckBox4: Off
	CheckBox5: Off
	CheckBox6: Off
	CheckBox7: Off
	CheckBox8: Off
	CheckBox9: Off
	CheckBox10: Off
	CheckBox11: Off
	CheckBox12: Off
	CheckBox13: Off
	CheckBox14: Off
	CheckBox15: Off
	CheckBox16: Off
	CheckBox17: Off
	CheckBox18: Off
	CheckBox19: Off
	CheckBox20: Off
	CheckBox21: Off
	CheckBox22: Off
	CheckBox23: Off
	CheckBox24: Off
	CheckBox25: Off
	CheckBox_2: Off
	CheckBox1_2: Off
	CheckBox2_2: Off
	CheckBox3_2: Off
	CheckBox4_2: Off
	CheckBox5_2: Off
	CheckBox6_2: Off
	CheckBox7_2: Off
	CheckBox8_2: Off
	CheckBox9_2: Off
	CheckBox10_2: Off
	CheckBox11_2: Off
	CheckBox12_2: Off
	CheckBox13_2: Off
	CheckBox14_2: Off
	CheckBox15_2: Off
	CheckBox16_2: Off
	CheckBox17_2: Off
	CheckBox18_2: Off
	CheckBox19_2: Off
	CheckBox20_2: Off
	CheckBox21_2: Off
	CheckBox22_2: Off
	CheckBox23_2: Off
	CheckBox24_2: Off
	CheckBox25_2: Off

