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Abstract

Underwater acoustic signal processing aims to reconstruct the shallow
water acoustic channel from both direct arrival and delayed multipath re-
flections. This enables accurate acoustic communications in shallow water,
such as between underwater autonomous vehicles (UAVs), which are es-
sential for coastal surveillance and other applications. In this work, we
take a previously implemented algorithm for channel estimation and ap-
ply practical constraints motivated by shallow water acoustic physics. We
base our estimation constraints on the physical properties of the rapidly
fluctuating reflections from the moving sea surface and rough sea bottom.
Our work aims to reduce the computation time and prediction error in
the channel estimation using our constraints for real time applications.
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1 Introduction

Underwater acoustic signal communication requires real-time solutions. As
such, optimization in channel estimation methods for sparse reconstruction
opens the door for lower estimation delays and lower prediction error. In this
work, we attempt to demonstrate the potential in applying channel constraints
to a mixed norm channel estimate [3] to achieve this. For comparison, the chan-
nel constraints are also applied to a popular sparse-sensing l1-regularized least
squares estimation method [2].

We’ll be considering a shallow-water system with a transmitter-receiver distance
of 200 meters and a depth of 15 meters. Figure 1 shows the mixed-norm chan-
nel estimation applied a sample of our experimental data collected during the
SPACE08 experiment (courtesy of James Preisig, Woods Hole Oceanographic
Institution), also used in [1]. It shows the banding structure created by the
physical system of the ocean, wherein the number of surface bounces increase
the delay along the y-xis. The x-axis represents the time snapshot of the data
samples.

The band with the lowest delay is the narrow, bright direct arrival, which has
no surface bounces whatsoever. From bottom to top, there is also a band which
represents a single-surface bounce delay band and a faint band with the highest
delay which represents multi-surface bounces. The surface is moving and this
leads to fluctuations in arrival times, as can be seen in Figure 1.

Figure 1: Delay incurred in experimental field data collected
at 15 meters depth and 200 meters range under moderate sea
conditions during SPACE08 experiment. Multipath bands from
bottom to top: (i) direct arrival, (ii) single surface reflection, and
(iii) multi-surface reflection between moving sea surface and sea
bottom.
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2 Foundations

The literature covering different channel estimation methods are extensive, but
in this work we focus on the mixed norm optimization method as presented by
Professor Ananya Sen Gupta [4]. Other channel estimation methods [2] will be
mentioned alongside their relevance to future work.

2.1 Mixed Norm Optimization

The mixed norm optimization models the multiple arrivals in the following form,
as:

y(i) =

K−1∑
k=0

h(i, k)x(i− k) + n(i) (1)

where y(i) represents our current received signal at time instant i, while x(i)
represents our current transmitted signal. K is the number of delay taps, and
x(i − k),K > 0 gives us the past transmitted signals with their corresponding
channel impulse response, {h(i, k)}K−1

k=0 . This delay is caused by both reflection
as well as refraction.

While [4] also considers the frequency shifting in the form of the Doppler spread
with L Doppler frequencies, this work only considers the K time delay taps when
L=1.

The signals are stacked over an averaging window of M where the u vector of
coefficients to be estimated are assumed constant. C represents the matrix of
time delayed and frequency-shifted versions of the transmitted data. n is the
observational noise modeled statistically as n ∼ N (0, σ2I). The receiver signal
may also be expressed as

y = Cu + n (2)

The optimization algorithm described in [3] can be best described with the
equation

uopt = ((1− λ)||u||1 + λ||Cu− y||22) (3)

It is implemented as a Non-Convex Mixed Norm Solver (NCMNS) solver with
design parameter λ in MATLAB c©. The code setup for the estimation methods
as written in conjunction with [4] and [3], the mathematical premise of which
is detailed above. The constraints were added within the code.

Figure 1 above is a plot of the delay spread of the u coefficients calculated by
NCMNS over about 3.5 seconds of samples, where our sample rate is 6510.4
samples/sec. The number of delay taps, K, is 200. We constrain these delay
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taps according to our knowledge of the physical model, which expects the banded
structure visible in 1.

2.2 Boyd L1-Least Squares Optimization

While the NCMNS optimization varies the λ design parameter, we compare this
to a L1-Least Squares solver presented by [2]. We use this solver for comparison
because it is not built to take physical properties of the system into account. It
emphasizes using the overall channel taps for estimation while NCMNS considers
each separately, and will be impacted by channel delay tap masking differently.

3 Methodology

The research methodology focuses on visualization of data for analysis. Meteo-
rological cloud reflection points were the starting point, used as a toy data set for
analyzing the way things change with time through frequency analysis. Figure
2 highlights examples of this analysis through use of more advanced plotting
techniques. They were created in addition to GIFs which more fully showed
change over time or frequency.

Figure 2: Frequency analysis of cloud movement using low-
pass, high-pass, and band-pass filters. Cloud reflection Fourier
energy summed over filtered frequencies.

After creating a basis in visualization practices, we shifted into underwater
acoustic signal processing with a visualization of the delay taps to find the
non-zero coefficients. Figure 3 shows a bar graph of the absolute value of the
coefficients across the 200 delay taps, and is one of a larger set used for quanti-
fying the behavior of the delay response.

The image shows that the main delay activity occurs between L = 1 and L = 80,
which we took advantage of when first designing constraints and will be further
discussed in the following section.

Before implementing constraints, we wanted to simulate our shallow-water ocean
system. The signal paths within the ocean system are modeled as a linear
combination of multipath reflections. They are traced by different eigenrays
bouncing off the moving sea surface and stationary sea bottom. The ocean
surface itself is a combination of surface waves such that each point of reflection
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Figure 3: Bar graph representing absolute valued channel delay
tap coefficients with K = 200.

on the ocean surface can be modeled as linear combinations of one or more
simple harmonic motions induced by waves.

Figure 4: Model of possible signal channel paths with varying
number of bounces between transmitter and receiver.

Fig 4 shows potential paths that a signal could take to incur different delays.
The straight path from transmitted to receiver is the direct arrival.

To further our understanding of the channel paths, we also modeled the channel
by creating ray traced paths. Their arrival times are geometrically described
by the types of paths they take from transmitter to receiver and whether they
bounce on the surface waves or along the ocean bottom. These can include:

• Direct arrival (no bounces)
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• Single surface bounce

• Single bottom bounce

• Surface to bottom bounce

• Surface to bottom to surface bounce

This list can be extended onwards, but this will suffice for our model. After
modelling the paths mathematically, we were able to simulate arrival times and
create Figure 5. This too shows the banding structure of the channel paths
in an underwater system, and though a simplified system, describes it in a
mathematical way.

Figure 5: Model of direct arrival and up to four surface bounces. Number
of surface bounces is represented with n. Simulated with three waves of time
periods 11, 9, and 10 seconds, amplitudes 2, 1.5 and 1 meters and wave numbers
100, 110 and 90 radians/meter.

Figure 5 shows that the delay banding happens with respect to the number of
surface bounces, without regard for bottom bounces. After gaining a better
understanding of the system itself, we began designing our various constraints
for lower prediction error in estimating the channels.

4 Constraint Implementations

A challenge in creating constraints is keeping track of their effect across a vari-
ation of external parameters such as observation window and the number of
samples which the algorithm runs over. We attempt to vary these as well to
view their impact on the constraint methods.

The constraints are created such that they mask out channel taps by multiplying
their initial channel coefficients for the delay tap by 0 before estimation.
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4.1 Static Single-Band Mask

Figure 3 best represents the usefulness of the one-piece mask. Most of the
activity in the 200 channel delay taps exist between taps 1 though 80. The
one-piece mask imposes a single band on the channel structure from Figure 1.

4.2 Static Multi-Band (Three-Piece) Mask

Observation of the time-varying channel delay characteristics in Figure 1 reveal
a tri-banded structure. To incorporate this tri-banded physical structure of
the delay response, we refined the mask to capture the nature of the delays
occurring from different bounce patterns. Figure 1 illustrates the delay spread
of the experimental data taken across about 500 milliseconds. The lowest part of
the delay spread represents the direct arrival, which manifest as a narrow bright
band at the bottom of Figure 1. The middle primary multipath band represents
the delay spread due to multipath arrivals from single surface bounce, and the
top secondary multipath band represents multipath arrivals due to multiple
bounces between the moving sea surface and static bottom.

4.3 Threshold Mask

While the static mask gave improved results as compared to not using a mask,
in reality, the sparsity of the channel response may also vary dynamically . To
account for this variability, we created a threshold-driven mask which tracks all
high-amplitude taps of channel activity. It leaves unchanged the locations of
the top 35% preliminary estimated channel values and zero out the rest. As
each estimation was made, it would update the mask again with the updated
locations of the 35% value threshold. As such, a shift in the behavior of the
waves over time would also create a shift in the mask and keep low prediction
errors in the results. Although it will be affected by random noise, it will not
be limited by the static boundaries of the masks.

4.4 Dynamic Mask

Due to changing surface wave dynamics, the boundaries of the multipath bands
themselves may also change with time. As a comparison, we created a dynamic
mask which would use the banding structure of the channel and adapt to changes
over time. In particular, we designed the mask to adapt to the activity in the
primary interference band. It tracks the prediction error of the estimate at the
end of each averaging window. If the error has increased, the boundaries of the
band are shifted. The intent is to respond to change over time by tracking the
performance to show its relationship to the locations of the masking boundaries.

The algorithm was designed in two ways - one which used a round robin tech-
nique for switching the boundaries and another which checks whether coefficients
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higher than 0 exists near the edges and adjusts. The first allows the boundary
shift to be arbitrary and changes to new boundary values when the prediction
error worsens. It is marked as Dynamic in the results. By comparison, the other
method, marked as Dynamic 2, checks the edges to decide whether to shift.

5 Results

To test the impact of our constraints, they are run over the experimental data
also from the SPACE08 experiment over 200 samples. We vary the observation
windows to analyze how short-term fluctuations in the channels impact the
results of our constraints.

Figure 6 below contains four graphs to compare the observation windows. Each
sub-figure is a plot of the varying design factor and the prediction error com-
puted from comparing the received signal to the original transmitted signal to
see how accurate the channel estimation’s reconstruction is.

Figure 6: These results are run over the experimental data with
15, 30, 60 and 90 ms observation windows. They were run over
200 samples with K=200 delay taps. It is meant to compare
the performance of the constraints over two different estimation
methods.

Our results show that, as predicted, the Boyd solver will not perform as well
when constrained. It is negatively impacted by the constraints since it considers
the entire set of channel delay taps for estimation. By comparison, NCMNS is
able to take advantage of the masking of the delay taps in which noise was
present for better prediction error.

Overall, the static one-piece mask outperformed the rest. This can be explained
by the activity viewable in Figure 3 for the first 80 delay taps. It also is also
immune to the shifting boundaries of the interference paths and the noise present
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in high-delay paths.

The constraints are impacted by the observation window as high observation
windows mean that rapid fluctuations are averaged out. The threshold mask is
indifferent to the banding structure and did well. This indicates that though the
banding-based constraints have potential, the possibility of overlapping bands
and relevant channel information also being zeroed out negatively impact the
prediction error.

6 Future Directions

Our results show promise in the premise of constrained estimation but there is
more investigation to be done. This would include a comparison of applying
our constraints to other popular sparse sensing channel estimation algorithms,
as well further analysis of constraint implementations which can adapt to fluc-
tuations. We would also like to extend our work into Doppler spread analysis
for L > 1 Doppler frequencies to see their impact on prediction error.
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