

| Title               | Nonlinear force dependence on optically bound micro-particle arrays in   |
|---------------------|--------------------------------------------------------------------------|
|                     | the evanescent fields of fundamental and higher order microfibre modes   |
| Author(s)           | Maimaiti, Aili; Holzmann, Daniela; Truong, Viet Giang; Ritsch, Helmut;   |
|                     | Nic Chormaic, Síle                                                       |
| Publication date    | 2016-07-25                                                               |
| Original citation   | Maimaiti, A., Holzmann, D., Truong, V. G., Ritsch, H. and Nic            |
|                     | Chormaic, S. (2016) 'Nonlinear force dependence on optically bound       |
|                     | micro-particle arrays in the evanescent fields of fundamental and higher |
|                     | order microfibre modes', Scientific Reports, 6, 30131 (10pp). doi:       |
| Type of publication | Article (peer-reviewed)                                                  |
| Link to publisher's | https://www.nature.com/articles/srep30131                                |
| version             | http://dx.doi.org/10.1038/srep30131                                      |
|                     | Access to the full text of the published version may require a           |
|                     | subscription.                                                            |
| Rights              | © 2016, Maimaiti, A. et al. This work is licensed under a Creative       |
|                     | Commons Attribution 4.0 International License. The images or             |
|                     | other third party material in this article are included in the article's |
|                     | Creative Commons license, unless indicated otherwise in the credit       |
|                     | line; if the material is not included under the Creative Commons         |
|                     | license, users will need to obtain permission from the license holder    |
|                     | to reproduce the material. To view a copy of this license, visit         |
|                     | http://creativecommons.org/licenses/by/4.0/                              |
|                     | https://creativecommons.org/licenses/by/4.0/                             |
| Item downloaded     | http://hdl.handle.net/10468/4165                                         |
| from                |                                                                          |
|                     |                                                                          |

Downloaded on 2017-09-05T01:02:03Z



## Nonlinear force dependence on optically bound micro-particle arrays in the evanescent fields of fundamental and higher order microfibre modes

Aili Maimaiti<sup>1,2</sup>, Daniela Holzmann<sup>3</sup>, Viet Giang Truong<sup>1</sup>, Helmut Ritsch<sup>3</sup> & Síle Nic Chormaic\*<sup>1</sup>

<sup>1</sup>Light-Matter Interactions Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495, Japan 

<sup>2</sup>Physics Department, University College Cork, Cork, Ireland 
<sup>3</sup>Institute for Theoretical Physics, University of Innsbruck, Technikerstrasse 25, A-6020, Innsbruck, Austria

\*Correspondence to: sile.nicchormaic@oist.jp

## **Description for the supplementary movies:**

Supplementary Movie S1. Propulsion of bounded three polystyrene particles in the evanescent fields of the fundamental mode (FM) of a 2  $\mu$ m fibre. The power at the fibre waist is 30 mW.

Supplementary Movie S2. Propulsion of bounded four polystyrene particles in the evanescent fields of the fundamental mode (FM) of a 2  $\mu$ m fibre. The power at the fibre waist is 30 mW.

Supplementary Movie S3. Propulsion of bounded three polystyrene particles in the evanescent fields of the higher order modes (HOMs) of a 2 µm fibre. The power at the fibre waist is 30 mW.

Supplementary Movie S4. Propulsion of bounded four polystyrene particles in the evanescent fields of the higher order modes (HOMs) of a 2 µm fibre. The power at the fibre waist is 30 mW.