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Abstract  

In this study, ultrasound was employed to enhance the diffusion of microencapsulated fatty 

acids into pork meat. Nanovesicles of fish oil composed of 42% EPA (eicosapentanoic acid) 

and 16% DHA (docosahexanoic acid) were prepared using two different commercial 

Pronanosome preparations (Lipo-N and Lipo-CAT; which yield cationic and non-cationic 

nanovesicles, respectively). The thin film hydration methodology was employed for 

encapsulation. Pork meat (Musculus semitendinosus) was submerged in the nanovesicles 

suspension and subjected to ultrasound (US) treatment at 25 kHz for either 30 or 60 min. 

Samples were analysed for fatty acid composition using gas chromatography-flame ionisation 

(GC-FID). The content of long-chain PUFAs, especially omega-3, was found to increase 

following the US treatment which was higher for Lipo-CAT compared to Lipo-N 

nanovesicles. Samples subjected to Lipo-N had higher atherogenic and thrombogenic indices, 

indicating higher levels of saturated fatty acids compared to the Lipo-CAT. The omega-

6/omega-3 ratio in pork meat was significantly reduced following the US treatment, thus 

indicating an improved fatty acid profile of pork.  

 

1. Introduction 

 

Pork is a rich source of proteins, possessing high biological value and a number of bioactive 

molecules, including taurine, B vitamins and minerals. However, pork also contains high 

levels of lipids, which have been a topic of discussion for meat consumers due to their 

associated health implications. Relationships between dietary fat intake and incidence of 

various lifestyle disorders, including cardiovascular diseases, is well established and several 

health agencies have specific guidelines in this regard (Dugan, Vahmani, Turner, Mapiye, 

Juárez, Prieto, et al., 2015; Troy, Tiwari, & Joo, 2016). For instance, the World Health 
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Organisation, recommends that various dietary fat fractions should contribute <15–30%, 

<10%, <5–8%, <1–2% and <1% of the total energy intake from total fat, saturated fatty acids, 

n(6)-polyunsaturated fatty acids, n(3)-polyunsaturated fatty acids and trans fatty acids, 

respectively (WHO, 2003). Lipid content of pork generally varies from 4-15% on a fresh 

basis, depending on several factors, including; geographical origin, genotype, feeding regime 

and meat cut (Park, Kim, Lee, Jang, Kim, Lee, et al., 2012; Wood, Enser, Fisher, Nute, 

Sheard, Richardson, et al., 2008).  

According to Jiménez-Colmenero, Cofrades, Herrero, Fernández-Martín, Rodríguez-

Salas, and Ruiz-Capillas (2012) and Olmedilla-Alonso, Jiménez-Colmenero, and Sánchez-

Muniz (2013), the nutritional quality of meat products can be improved towards the reduction 

of caloric value and fat content, enhancement of fatty acid profile (e.g. reduction of saturated 

fatty acids and increase in MUFAs and PUFAs), reduction of cholesterol content, increase of 

amino acid quality, enrichment with minerals, vitamins and antioxidants, and reduction of 

sodium, nitrite and phosphate contents.  

Genetic and environmental factors largely affect meat quality. Animal tissues vary in 

composition according to species, breed, age, sex, feeding, climate, rearing and slaughtering 

conditions (Bonneau & Lebret, 2010). According to Żak and Pieszka (2009), genomic 

manipulation may result in improved carcass and meat quality (lean and fat content). Carcass 

and meat quality are influenced simultaneously by genes known as quantitative trait loci 

(QTLs) and environment. Additionally, animal feeding composition and portion affects 

growth rate, hormone metabolism and quantity and quality of fat within porcine muscles. The 

fatty acid profile of pork meat can also be modified by changing the dietary composition of 

fatty acids, either by adding vegetable oils or supplementing conjugated linoleic acid (CLA) 

to the pigs’ diet, which improves feed conversion (Bonneau & Lebret, 2010; Rosenvold & 
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Andersen, 2003). Studies have shown that the alteration of feeding regime e.g. grass fed vs 

grain fed can improve meat fatty acid profile (Daley, Abbott, Doyle, Nader, & Larson, 2010).  

In the last decade, specific strategies for increasing the level of fatty acids with 

beneficial health effects, while reducing the content of saturated fatty acids, have been a 

subject of active research (Horcada, Polvillo, Juárez, Avilés, Martínez, & Peña, 2016; 

Mapiye, Vahmani, Mlambo, Muchenje, Dzama, Hoffman, et al., 2015; Pouzo, Fanego, 

Santini, Descalzo, & Pavan, 2015; Xu, He, Liang, McAllister, & Yang, 2014). Different 

strategies have also been adopted to particularly focus on intramuscular fat (Scollan, 

Hocquette, Nuernberg, Dannenberger, Richardson, & Moloney, 2006). One such approach is 

the incorporation of encapsulated polyunsaturated omega-3 fatty acids into meat to enhance 

its fatty acid profile, while oils are preserved from oxidation and further degradation. Studies 

have shown that microencapsulated omega-3 fatty acids from a range of sources, such as fish, 

can be achieved successfully. Several techniques are available in order to encapsulate 

targeted fatty acids; the most popularly employed approaches being; coacervation, spray 

drying, spray chilling, extrusion coating and liposome entrapment by thin film hydration 

(TFH) (Kaushik, Dowling, Barrow, & Adhikari, 2015; Martín, Varona, Navarrete, & Cocero, 

2010). Incorporation of microencapsulated oils have been carried out in a range of food 

matrices for various potential health benefits (Bilia, Guccione, Isacchi, Righeschi, Firenzuoli, 

& Bergonzi, 2014; Gallardo, Guida, Martinez, López, Bernhardt, Blasco, et al., 2013; 

Jiménez-Colmenero, 2013). However, incorporation of encapsulated ingredients in solid 

foods such as meat is challenging compared to liquid foods, since diffusion rates are low and 

the oil is not effectively dispersed into a solidfood matrix. Among the techniques investigated 

to date, ultrasound has shown its potential for use in the assisted diffusion of a number of 

ingredients within food matrices. For example, the application of ultrasound can enhance 

NaCl diffusion rates, thereby allowing for faster and more uniform diffusion of NaCl into 
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meat tissues (Carcel, Benedito, Bon, & Mulet, 2007; Jayasooriya, Torley, D’Arcy, & 

Bhandari, 2007; Ojha, Keenan, Bright, Kerry, & Tiwari, 2016; Ozuna, Puig, García-Pérez, 

Mulet, & Cárcel, 2013). However, the application of ultrasound for enhancing diffusion of 

microencapsulated ingredients has not been investigated to date. The objectives of this study 

were (a) to assess the potential for ultrasound application to improve the diffusion of 

encapsulated oils into a pork meat matrix, in terms of fatty acid profile of cooked and 

uncooked pork meat using a chemometric approach and (b) characterise both cationic (Lipo-

CAT) and non-cationic (Lipo-N) nanoencapsulated fatty acids.  

 

2. Material and methods 

2.1 Preparation of nanovesicles  

Fish oil for encapsulation was purchased from Neoalgae (Oviedo, Spain). EPA 

(eicosapentanoic acid) and DHA (docosahexanoic acid) contents were 42% and 16%, 

respectively. Two different nanovesicles were prepared using the Pronanosome Lipo-N and 

Pronanosome Lipo-cat blend techniques. The first one was employed to generate non-cationic 

nanovesicles, while the second one yielded cationic nanovesicles. Although both 

formulations are confidential, all ingredients employed were of food grade. The nanovesicles 

were generated by means of the TFH  method (Martín, Varona, Navarrete, & Cocero, 2010). 

Briefly, specific amounts of fish oil and the selected Pronanosome (Lipo-N or Lipo-cat) 

formulation were solubilized in chloroform; then the solvent was evaporated firstly using a 

rotatory evaporator and finally under nitrogen stream. The dried films obtained were 

rehydrated for 20 min using ultrapure water at 55ºC. Subsequently, the samples were 

homogenised at 15000 rpm for 15 min using a SilentCrusher M homogenizer (Heidolph). 

Finally, in order to obtain a homogenous size distribution, a further extrusion step (Avesting, 

LiposoFast LF50) was employed using a 500 nm pore size cellulose filter (Millipore). Non-
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encapsulated fish oil was removed using two purification steps. Firstly, samples were 

centrifuged at 5000 rpm for 1h and the supernatant, which contained the non-encapsulated 

oil, was carefully decanted. Following this step, the pellets were dialysed as follows: samples 

were filled into 10k MWCO SnakeSkin dialysis tubing (Thermo Fischer) and submerged in 

ultrapure water for 24h. The final composition of the nanovesicles was 100 mg/mL of 

Pronanosome formulation and 10 mg/mL of fish oil, respectively, for both cationic and non-

cationic nanovesicles.  

 

2.2. Nanovesicles characterisation 

 

Vesicle characterisation was carried out according to the protocol described by Pando, 

Beltran, Gerone, Matos, and Pazos (2015). Measurement of size and determination of 

Polidispersity Index (PDI) of the samples were carried out using Dynamic Light Scattering 

(DLS) (Zetasizer NanoZS90, Malvern Instruments). Ten microliters of the sample was 

diluted into 990 μL of ultrapure water and the measurements were carried out in triplicate. 

Zeta potential was determined using the Mixed Measurement Mode-Phase Analysis Light 

Scattering technology (M3-PALS) (ZetaSizer NanoZS90, Malvern Instruments). The particle 

concentration of the sample was determined using Nanoparticle Track Analysis (NTA) in a 

Nanosight LM10 device (Malvern Instruments). The samples were diluted at 1:200 using 

ultrapure water and three video captures were recorded to calculate the particle concentration 

of samples.  

 

2.3 Sample preparation and ultrasound treatment 

Meat used for all treatments was porcine M. semitendinosus which was obtained from 

a local supplier (Dublin Meat Company, Blanchardstown, Co. Dublin, Ireland) at 6 days post-
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mortem. The muscles were derived from Large White crosses, slaughtered at approx. 96 kg 

live weight. All visible fat was manually removed from each muscle, prior to slicing and 

subsequent treatments. Samples were cut into slices of approximately similar weight and size 

(4 x 4 x4 mm, length x width x height). Meat cubes were subjected to treatments immediately 

after slicing.  

Pork meat pieces were submerged in the corresponding nanovesicles suspension in a 

glass beaker and were placed in an ultrasonic bath operating at a frequency of 25 kHz (Elma 

Schmidbauer GmbH, Germany) for either 30 or 60 min. Control (no US treatment) samples 

were placed in a beaker containing nanovesicles suspension. During the experiments, 

temperature was kept constant at 4.0±1.0°C by circulation of cold water using a temperature-

controlled refrigerated water bath. After treatment, samples were removed, blot-dried and 

vacuum packed in high gas barrier laminated pouches. Control, ultrasound treated and raw 

pork samples were cooked in hot water bath (90 
o
C) to a core temperature of 70ºC for 10 min. 

The cooked and uncooked samples were cooled, vacuum packed and stored at -80 
o
C for fatty 

acid analysis. 

 

2.5 Microwave- assisted preparation of fatty acid methyl esters (FAMEs) 

 

Microwave-assisted FAME preparation was conducted using a MARS 6 Express 40 

position Microwave Reaction System (CEM Corporation, Matthews, NC, USA). Reactions 

took place in PFA 55 mL reaction vessels. For FAME preparation, 1.0 g of pork samples was 

added to the reaction vessel containing a 10 mm stir bar. To this, 10 mL of potassium 

hydroxide (2.5%, w/v) in methanol was added along with 100 µL of internal standard (ISTD) 

(C23:0 methyl ester; final concentration following extraction is 0.1 mg/mL in pentane), and 

the reaction vessel was heated in the MARS 6 Express system to 130°C within 4 min and 
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held at this temperature for 4 min. The reaction vessels were then removed from the carousel 

and cooled on ice for 5 min, or until they had reached room temperature before being opened. 

Derivatisation was then carried out by adding 15 mL of 5% (v/v) acetyl chloride in MeOH 

solution and heated to 120°C within 4 min and holding at this temperature for 2 min. The 

reaction tubes were removed again and cooled on ice to room temperature. To the cooled 

tubes, 10 mL of pentane was added, and the reaction tubes were shaken to extract the FAMEs 

into the upper pentane layer. Subsequently, 15 mL of a saturated salt solution was added, and 

the solution was mixed again. Following separation of the layers, the top pentane layer was 

removed and aliquoted into amber GC vials (1.5 mL). 

 

2.6 Gas chromatography-flame ionisation detector (GC-FID) analysis 

 

Gas chromatography was carried out using a Clarus 580 Gas Chromatograph fitted with a 

flame ionisation detector. A CP-Sil 88 capillary column (Agilent, Santa Clara, California, 

USA) with a length of 100 m x 0.25 mm ID and 0.2 µm film was used for the separation. The 

injection volume was 0.5 μL, and the injection port was set to 250°C. The oven was set to 

80°C with an initial temperature ramp of 6.2°C/min to 220°C which was held for 3.2 min. A 

second temperature ramp of 6.3°C/min to 240°C followed and was held for 6.5 min (total 

runtime was 35 min for each sample). The carrier gas was hydrogen at a flow of 1.25 

mL/min, and the split ratio was set at 10:1. The FID was set at 270°C. Compounds were 

identified by comparing their retention times with those obtained from the Supelco 37 FAME 

standard (Sigma Aldrich, Wicklow, Ireland). The content of each fatty acid was calculated 

using the following equation (Eq. 1). 

 

            
                

                
   

           

             
                                         (Eq. 1), 
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where, FA content is the content of fatty acid in the sample (mg/g), 10 is the dilution factor 

and 0.96 is the conversion factor for the internal standard. 

 

2.7 Lipid quality factors 

 

Atherogenic index (AI) and thrombogenic index (TI) were calculated as per Ghaeni, 

Ghahfarokhi, and Zaheri (2013): 

 

AI = [(4 × C14:0) + C16:0 + C18:0]/ [ΣMUFA +ΣPUFA n6 +ΣPUFAn3]                     (Eq. 2) 

TI = (C14:0+C16:0+C18:0)/(0.5MUFA+0.5PUFAn6+3PUFAn3+ PUFAn3/PUFAn6) (Eq. 3) 

 

2.8 Statistical analysis 

 

Experiments were carried out as per experimental design shown in Table 1. Four 

parameters (cooking, ultrasound treatment, nanovesicles’ formulation and sonication time) 

were investigated at two different levels. Principal Component Analysis (PCA) and Analysis 

of Variance (ANOVA) were performed using the software Statistica (StatSoft, ver 7.0). 

Means were separated using Tukey’s test. Samples were considered significant at 95% 

confidence level (p<0.05). Factor loadings analysis was performed and graphs containing the 

experimental treatments were constructed using the first three principal components (PC1, 

PC2 and PC3).  

 

3. Results and discussion 

3.1 Nanovesicles characterisation 
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 The properties of the nanovesicles suspensions are shown in Table 2. The appearance 

of the suspension was white homogeneous liquid. There was no statistical difference (p>0.05) 

regarding the average size of the vesicles. Similarly, the PDI values were not statistically 

different as a result of the formulation employed.  

 On the other hand, zeta potential was significantly affected by nanovesicle 

formulation (p<0.05). This value is an indication of suspension stability: absolute values 

closer to 0 are found in low-stable suspensions and consequently, prone to aggregation and 

precipitation, while higher absolute values are found in highly-stable suspensions. In this 

case, Lipo-N can be considered as having incipient stability, while Lipo-Cat suspension 

possessed a good stability (American Society for Testing and Materials, 1985). Finally, 

particle concentration is placed in the same order of magnitude, supporting the fact that minor 

differences can be found based on formulation pertaining to fatty acid content.Thus, it can be 

assumed that size and size distribution did not impact upon the results obtained in this study. 

On the contrary, zeta potential is the one factor that might have an impact on the performance 

of the vesicles in terms of lipid contents in treated meats. 

 

 

3.2. Principal component analysis 

 

Similarities and differences between samples were analysed by Principal Component 

Analysis, as illustrated in Figures 1 and 2. According to the scatterplot of the loading factors, 

while most of the fatty acids remained unchanged after treatment, PUFAn3, PUFAn6 and AI, 

TI and N6/N3 were affected by the process variables (Figure 1a). In fact, several omega-3 

and omega-6 fatty acids (e.g.  C18:3n3, C20:5n3, C22:6n3 and C20:4n6) are located in the 
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same quarter as total PUFAn3 and PUFAn6, confirming the consistency of this PCA analysis. 

Since most of the samples were located in the second and third quarters of the PC1 X PC2 

plot, the samples could be further differentiated based on spectral details described by the 

second (PC2) and third (PC3) principal components. The PC1 × PC2 scatterplot of the 

principal component scores (Figure 1b) allowed identification of a slight separation between 

cooked and uncooked samples by P2, and between Lipo-N and Lipo-CAT nanovesicles also 

by P2. 

Although PC1 and PC2 represented around 85% of the data variance, the similarities 

and differences between samples were better evidenced by PC2 and PC3 (Figure 2), 

indicating that the data are explained only in the details. The scatterplot of the loading factors 

(Figure 2a) showed four clear distinct groups, as indicated in green. Samples subjected to 

CAT emulsion are clustered in the region correspondent to higher levels of PUFAn3 and 

PUFAn6 (1
st 

and 4
th

 quarters), PUFAn3 prevailing over PUFAn6. These samples showed, in 

particular, high levels of C18:3n3/α-linolenic acid, C22:6n3 (DHA), C22:2 (cis-13,16- 

docosadienoic acid methyl ester) and C20:5n3 (EPA). On the other hand, samples subjected 

to N emulsion have higher atherogenic and thrombogenic indices (AI and TI, respectively), 

meaning that they have greater amounts of saturated fatty acids. These samples also had 

higher ratios between omega-6 and omega-3 fatty acids.  

PC3 clearly separated cooked from non-cooked samples (Figure2b), as previously 

represented by the PC1 × PC2 scatterplot (Figure 1b). The slight differentiation between 

samples which were and were not subjected to ultrasound by PC2 in Figure 2b indicates that 

ultrasound enhanced the content of unsaturated over saturated fatty acids. Differences 

between samples could be clearly observed after the introduction of a third PC (PC3), which 

accounted for 7.33% of the data variance. This means that the differences ascribed to the 
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process variables are only subtle, which is in agreement with the results found by the 

Pareto/ANOVA analysis presented in the following section.  

 

3.3 Effects of process variables on the fatty acid profile of pork meat 

 

The effect of process variables was evaluated in 33 responses related to the fatty acid 

composition (Table 3), including individual fatty acids, AI and TI indices, and the ratio 

between n6/n3, following a Pareto analysis at a 95% confidence interval. The detailed results 

presented in Figure 3 are summarized in Table 3. 

 It was found that the total fatty acids (TFA) were not affected by any of the treatments 

at the confidence interval aforementioned. This means that the overall fat content of the meat 

samples remained constant following the ultrasound treatment. However, it was found that 

the level of PUFA3 was positively affected by the treatment, regardless of the nanovesicle 

formulation. This effect is mainly ascribed to the increased amount of EPA (C20:5n3), which 

was the main component of the fish oil employed for encapsulation, and DHA (C22:6n3), 

which was the second fatty acid of importance in the fish oil studied. These two fatty acids 

were primarily affected by ultrasound treatment and time. Longer treatments significantly 

increased (p<0.05) the amount of n3 fatty acids present in the final product. In general terms, 

all long chain PUFAs (which are present in the encapsulated fish oil), experienced a positive 

effect following ultrasound treatment. These results indicate that ultrasound has a positive 

effect on the fatty acid profile of pork meat, enhancing the mass transfer of encapsulated oil 

into the meat samples. However, it has been reported that ultrasound had a negative effect on 

the fatty acid composition of edible oils (Chemat, Grondin, Sing, & Smadja, 2004). In 

addition, cooking resulted in higher contents of certain fatty acids (Figure 3), probably owing 

to the water loss incurred during cooking. 
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 No significant differences (p>0.05) were found regarding the type of formulation 

employed for oil encapsulation. It means that both, cationic and non-cationic nanovesicles, 

can be successfully employed to increase the levels of MUFAs and PUFAs in pork meat. 

  

3.4 Lipid quality indices 

 

To further characterise the fatty acid profile, two lipid quality factors were studied. 

The atherogenic index (AI) indicates the relationship between the sum of the main saturated 

fatty acids and that of the main classes of unsaturated, the former being considered pro-

atherogenic (favouring the adhesion of lipids to cells of the immunological and circulatory 

system), and the latter anti-atherogenic (inhibiting the aggregation of plaque and diminishing 

the levels of esterified fatty acid, cholesterol, and phospholipids, thereby preventing the 

appearance of micro- and macro-coronary diseases). The second factor analysed was the 

thrombogenic index (TI), which represents the tendency to form clots in the blood vessels. 

This is defined as the relationship between the pro-thrombogenetic (saturated) and the anti-

thrombogenetic fatty acids (MUFAs, PUFAs-n6 and PUFAs-n3). 

No statistical differences were determined when the AI was analysed (Table 3). The 

values of AI ranged from 0.41±0.01 to 0.49±0.00 (Table 4). These values are similar to those 

found in rabbit meat (Dal Bosco, Castellini, Bianchi, & Mugnai, 2004) and fermented pork 

sausages (Stajić, Živković, Perunović, Šobajić, & Vranić, 2011). On the other hand, the 

reduction of TI ascribed to the ultrasound treatment and the effect of time (Table 4) were 

statistically significant (Table 3), which means that the pork obtained showed a better 

relationship between pro-thrombogenic and anti-thrombogenetic fatty acids. The values for 

this index ranged from 1.07±0.05 (when ultrasound was not applied) to 0.81±0.16 (after 60 

minutes of ultrasound treatment using cationic nanocapsules). These results suggest that 
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healthier pork meat results from the novel technique applied here. In the same way, the ratio 

of n6/n3was found to decrease with ultrasound treatment, as shown in Table 3 and Figure 3. 

This ratio is of key importance for well-balanced and healthy diets. In western diets this ratio 

is around 15-20/1, when it should be closer to 1/1 (Simopoulos, 2008). As the ratio n6/n3 in 

pork meat was reduced from 9.1±1.4 to 8.5±1.6 after the US treatment (Table 4), it resulted 

in a more balanced and healthier product. Compared to other studies (Kasprzyk, Tyra, & 

Babicz, 2015; Peiretti, Gai, Brugiapaglia, Mussa, & Meineri, 2015), the lipid quality indices 

of treated samples were found to have similar values of atherogenic index (0.42-0.47), higher 

(thus unwanted) values of thrombogenic index (1.01-1.15) and considerably higher (thus 

undesirable) n6/n3 ratios (12.61-35.32). 

 

Conclusions 

 

A combination of novel technologies e.g. nanoencapsulation and ultrasound, has been 

applied in order to improve the lipid profile of pork meat. This study has demonstrated the 

positive effect that ultrasound application had in increasing the amount of healthy fatty acids 

in pork meat. It was found that, regardless of the type of formulation employed, there was an 

increase in the content of DHA and EPA fatty acids. This increase was more noticeable as the 

length of ultrasound treatment was extended. The higher content of these fatty acids 

improved the lipid quality indices. Although the AI remained constant after treatment, TI and 

n3/n6 ratio values were beneficially modified.  

 

References 

 

American Society for Testing and Materials (1985) Zeta Potential of Colloids in Water and 

Waste Water. ASTM Standard D 4187–4182. 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 
Bilia, A. R., Guccione, C., Isacchi, B., Righeschi, C., Firenzuoli, F., & Bergonzi, M. C. (2014). Essential 

oils loaded in nanosystems: a developing strategy for a successful therapeutic approach. 
Evidence-Based Complementary and Alternative Medicine, 2014. 

Bonneau, M., & Lebret, B. (2010). Production systems and influence on eating quality of pork. Meat 
Science, 84(2), 293-300. 

Carcel, J. A., Benedito, J., Bon, J., & Mulet, A. (2007). High intensity ultrasound effects on meat 
brining. Meat Sci, 76(4), 611-619. 

Chemat, F., Grondin, I., Sing, A. S. C., & Smadja, J. (2004). Deterioration of edible oils during food 
processing by ultrasound. Ultrasonics Sonochemistry, 11(1), 13-15. 

Dal Bosco, A., Castellini, C., Bianchi, L., & Mugnai, C. (2004). Effect of dietary α-linolenic acid and 
vitamin E on the fatty acid composition, storage stability and sensory traits of rabbit meat. 
Meat Sci, 66(2), 407-413. 

Daley, C. A., Abbott, A., Doyle, P. S., Nader, G. A., & Larson, S. (2010). A review of fatty acid profiles 
and antioxidant content in grass-fed and grain-fed beef. Nutrition Journal, 9, 10-10. 

Dugan, M. E., Vahmani, P., Turner, T. D., Mapiye, C., Juárez, M., Prieto, N., Beaulieu, A. D., Zijlstra, R. 
T., Patience, J. F., & Aalhus, J. L. (2015). Pork as a Source of Omega-3 (n-3) Fatty Acids. 
Journal of clinical medicine, 4(12), 1999-2011. 

Gallardo, G., Guida, L., Martinez, V., López, M. C., Bernhardt, D., Blasco, R., Pedroza-Islas, R., & 
Hermida, L. G. (2013). Microencapsulation of linseed oil by spray drying for functional food 
application. Food Research International, 52(2), 473-482. 

Ghaeni, M., Ghahfarokhi, K. N., & Zaheri, L. (2013). Fatty acids profile, atherogenic (IA) and 
thrombogenic (IT) health lipid indices in Leiognathusbindus and Upeneussulphureus. Journal 
of Marine Science. Research & Development, 3(4), 1. 

Horcada, A., Polvillo, O., Juárez, M., Avilés, C., Martínez, A. L., & Peña, F. (2016). Influence of feeding 
system (concentrate and total mixed ration) on fatty acid profiles of beef from three lean 
cattle breeds. Journal of Food Composition and Analysis, 49, 110-116. 

Jayasooriya, S. D., Torley, P. J., D’Arcy, B. R., & Bhandari, B. R. (2007). Effect of high power ultrasound 
and ageing on the physical properties of bovine Semitendinosus and Longissimus muscles. 
Meat science, 75(4), 628-639. 

Jiménez-Colmenero, F. (2013). Potential applications of multiple emulsions in the development of 
healthy and functional foods. Food Research International, 52(1), 64-74. 

Jiménez-Colmenero, F., Cofrades, S., Herrero, A. M., Fernández-Martín, F., Rodríguez-Salas, L., & 
Ruiz-Capillas, C. (2012). Konjac gel fat analogue for use in meat products: Comparison with 
pork fats. Food Hydrocolloids, 26(1), 63-72. 

Kasprzyk, A., Tyra, M., & Babicz, M. (2015). Fatty acid profile of pork from a local and a commercial 
breed. Archiv fuer Tierzucht, 58(2), 379. 

Kaushik, P., Dowling, K., Barrow, C. J., & Adhikari, B. (2015). Microencapsulation of omega-3 fatty 
acids: A review of microencapsulation and characterization methods. Journal of Functional 
Foods, 19, Part B, 868-881. 

Mapiye, C., Vahmani, P., Mlambo, V., Muchenje, V., Dzama, K., Hoffman, L. C., & Dugan, M. E. R. 
(2015). The trans-octadecenoic fatty acid profile of beef: Implications for global food and 
nutrition security. Food Research International, 76, Part 4, 992-1000. 

Martín, Á., Varona, S., Navarrete, A., & Cocero, M. J. (2010). Encapsulation and co-precipitation 
processes with supercritical fluids: applications with essential oils. Open Chemical 
Engineering Journal, 4(1), 31-41. 

Ojha, K. S., Keenan, D. F., Bright, A., Kerry, J. P., & Tiwari, B. K. (2016). Ultrasound assisted diffusion 
of sodium salt replacer and effect on physicochemical properties of pork meat. International 
Journal of Food Science & Technology, 51(1), 37-45. 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

Olmedilla-Alonso, B., Jiménez-Colmenero, F., & Sánchez-Muniz, F. J. (2013). Development and 
assessment of healthy properties of meat and meat products designed as functional foods. 
Meat Science, 95(4), 919-930. 

Ozuna, C., Puig, A., García-Pérez, J. V., Mulet, A., & Cárcel, J. A. (2013). Influence of high intensity 
ultrasound application on mass transport, microstructure and textural properties of pork 
meat (Longissimus dorsi) brined at different NaCl concentrations. Journal of Food 
Engineering, 119(1), 84-93. 

Pando, D., Beltran, M., Gerone, I., Matos, M., & Pazos, C. (2015). Resveratrol entrapped niosomes as 
yoghurt additive. Food Chem, 170, 281-287. 

Park, J., Kim, S., Lee, S., Jang, H., Kim, N., Lee, S., Jung, H., Kim, I., Seong, H., & Choi, B.-H. (2012). 
Effects of dietary fat types on growth performance, pork quality, and gene expression in 
growing-finishing pigs. Asian-Australasian journal of animal sciences, 25(12), 1759. 

Peiretti, P. G., Gai, F., Brugiapaglia, A., Mussa, P. P., & Meineri, G. (2015). Fresh meat quality of pigs 
fed diets with different fatty acid profiles and supplemented with red wine solids. Food 
Science and Technology (Campinas), 35(4), 633-642. 

Pouzo, L., Fanego, N., Santini, F. J., Descalzo, A., & Pavan, E. (2015). Animal performance, carcass 
characteristics and beef fatty acid profile of grazing steers supplemented with corn grain and 
increasing amounts of flaxseed at two animal weights during finishing. Livestock Science, 
178, 140-149. 

Rosenvold, K., & Andersen, H. J. (2003). Factors of significance for pork quality—a review. Meat 
Science, 64(3), 219-237. 

Scollan, N., Hocquette, J.-F., Nuernberg, K., Dannenberger, D., Richardson, I., & Moloney, A. (2006). 
Innovations in beef production systems that enhance the nutritional and health value of 
beef lipids and their relationship with meat quality. Meat Science, 74(1), 17-33. 

Simopoulos, A. P. (2008). The omega-6/omega-3 fatty acid ratio, genetic variation, and 
cardiovascular disease. Asia Pacific journal of clinical nutrition, 17(S1), 131-134. 

Stajić, S., Živković, D., Perunović, M., Šobajić, S., & Vranić, D. (2011). Cholesterol content and 
atherogenicity of fermented sausages made of pork meat from various breeds. Procedia 
Food Science, 1, 568-575. 

Troy, D. J., Tiwari, B. K., & Joo, S.-T. (2016). Health Implications of Beef Intramuscular Fat 
Consumption. Korean Journal for Food Science of Animal Resources, 36(5), 577. 

Wood, J., Enser, M., Fisher, A., Nute, G., Sheard, P., Richardson, R., Hughes, S., & Whittington, F. 
(2008). Fat deposition, fatty acid composition and meat quality: A review. Meat Science, 
78(4), 343-358. 

Xu, L., He, M. L., Liang, R. F., McAllister, T. A., & Yang, W. Z. (2014). Effects of grain source and 
monensin level on growth performance, carcass traits and fatty acid profile in feedlot beef 
steers. Animal Feed Science and Technology, 198, 141-150. 

Żak, G., & Pieszka, M. (2009). Improving pork quality through genetics and nutrition. Annals of 
Animal Science, 9(4), 327-339. 

 

  

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 

 

 
Figure 1 – PCA (PC1 X PC2) showing the differences between samples of pork meat treated 

according to the experimental design outlined in Table 1: (a) Loadings and (b) Scores. 

(Cooked samples are marked with*) 
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Figure 2 – PCA (PC2 X PC3) showing the differences between samples of pork meat treated 

according to the experimental design outlined in Table 1: (a) Loadings and (b) Scores. 

(Cooked samples are marked with*) 
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Figure 3 – Pareto charts of the main effects of treatments. All fatty acids and indices analysed 

that were significantly affected (p> 0.05) by one or more of the four parameters studied are 

represented. Only 12 out of 33 responses analysed were affected: (a) PUFAn3; (b) n6/n3; (c) 

TI; (d) C17:1; (e) C18:1n9; (f) C18:3n6; (g) C20:3n6; (h) C20:4n6; (i) C22:2; (j) C20:5n3; 

(k) C22:5n3; (l) C22:6n3. Those remained unaffected are not represented.  

  

i)                                   j) 
  

k)                                   i) 
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Table 1 – Experimental design (factorial 2
4
). 

Variable Code Level 

-1 +1 

Cooking X1 No Yes 

Ultrasound X2 No Yes 

Emulsion X3 N CAT 

Immersion time (min) X4 60 120 
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Table 2 – Characteristics of nanovesicles employed for fish oil encapsulation based on their 

formulation. 

Emulsion Average size 

(nm) 

Polidispersity 

index 

Zeta potential 

(mV) 

Particle concentration 

(vesicles/mL) 

Lipo-N 352.8±8.5
a
 0.266±0.037

a
 14.4±0.1

b
 5.8 x 10

12a
 

Lipo-Cat 345.9±5.1
a
 0.319±0.010

a
 51.3±1.0

a
 7.2 x 10

12a
 

a,b
 Values followed by same superscript are not significantly different (p<0.05). 
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Table 3 – Effects of process variables on the fatty acid profile of pork meat. 

 Response Effect(s) 

 

MUFA Not affected by any variables 

PUFAn3 Positively affected by US treatment 

PUFAn6 Not affected by any variables 

SFA Not affected by any variables 

TFA Not affected by any variables 

AI Not affected by any variables 

n6/n3 Affected by US treatment and time(-), and cooking (+) 

TI Affected by US treatment (-) and cooking (+) 

SFA 

C10:0 Not affected by any variables 

C12:0 Not affected by any variables 

C14:0 Not affected by any variables 

C15:0 Not affected by any variables 

C16:0 Not affected by any variables 

C16:1 Not affected by any variables 

C17:0 Not affected by any variables 

C17:1 Affected by cooking (+) and emulsion (-) 

C18:0 Not affected by any variables 

C20:0 Not affected by any variables 

PUFAs 

and 

MUFAs 

C18:1n9t Positively affected by cooking 

C18:1n9c Not affected by any variables 

C18:1n7 Not affected by any variables 

C18:2n6c Not affected by any variables 

C18:3n6 Positively affected by cooking 

C20:1n9 Not affected by any variables 

C18:3n3 Not affected by any variables 

C20:2 Not affected by any variables 

C20:3n6 Positively affected by cooking 

C20:3n3 Not affected by any variables 

C20:4n6 Positively affected by cooking and US treatment 

C22:2 Positively affected by US treatment and time 

C20:5n3 Positively affected by US treatment and time 

C22:5n3 Positively affected by US treatment and cooking 

C22:6n3 Positively affected by US treatment and time 
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Table 4 – Lipid quality factors in pork meat submerged in nanovesicles after different 

treatments. 

Treat Emulsion US Time (min) n6/n3 AI TI 

C
o
o
k
ed

 

Control Control Control 10.75±0.00 0.49±0.00 1.06±0.00 

N NOUS 60 10.59±0.02 0.43±0.01 0.95±0.02 

N NOUS 120 10.72±0.11 0.49±0.5 1.07±0.11 

cat NOUS 60 9.41±0.04 0.47±0.02 1.01±0.04 

cat NOUS 120 7.24±0.10 0.45±0.03 0.90±0.10 

N US 60 10.89±0.02 0.43±0.01 0.93±0.02 

N US 120 9.42±0.01 0.45±0.01 0.96±0.01 

cat US 60 9.53±0.05 0.45±0.01 0.95±0.05 

cat US 120 7.74±0.03 0.46±0.01 0.93±0.03 

       

U
n
co

o
k
ed

 

Control Control Control 9.41±0.04 0.45±0.01 0.95±0.04 

N NOUS 60 9.69±0.01 0.47±0.01 1.00±0.01 

N NOUS 120 8.93±0.05 0.45±0.02 0.93±0.05 

cat NOUS 60 7.39±0.02 0.44±0.01 0.87±0.02 

cat NOUS 120 7.21±0.05 0.41±0.01 0.82±0.05 

N US 60 9.55±0.16 0.45±0.07 0.97±0.16 

N US 120 7.80±0.07 0.46±0.02 0.92±0.07 

cat US 60 7.05±0.10 0.42±0.03 0.83±0.10 

cat US 120 5.87±0.16 0.42±0.06 0.81±0.16 
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Highlights 

 

 Ultrasound can enhance diffusion of encapsulated fatty acids in pork meat 

 Nanovesicles can be employed for improved nutritional profile of meat 

 Lipid quality indices were significantly influenced by cooking 
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