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Abstract 

 

Process optimisation techniques increasingly need to be used early on in Research and 

Development of processes for new ingredients. There are different approaches and this paper 

illustrates the main issues at stake with a method that is an industry best practice, the Taguchi 

method, suggesting a procedure to assess the potential impact of its drawbacks. The Taguchi 

method has been widely used in various industrial sectors because it minimises the experimental 

requirements to define an optimum region of operation, which is particularly relevant when 

minimising variability is a target. However, it also has drawbacks, especially the intricate 

confoundings generated by the experimental designs used.  

This work reports a process optimisation of the synthesis of red pigments by a fungal strain, 

Talaromyces spp. using the Taguchi methodology and proposes an approach to assess from 

validation trials whether the conclusions can be accepted with confidence.  

The work focused on optimising the inoculum characteristics, the studied factors were spore age 

and concentration, agitation speed and incubation time. It was concluded that spore age was the 

most important factor for both responses, with optimum results at 5 days old, with the best other 

conditions being spores concentration, 100,000 (spores/mL); agitation 200 rpm, and incubation 

time 84 h. The interactive effects can be considered negligible and therefore this is an example 

where a simple experimental design approach was successful in speedily indicating conditions 

able to increase pigment production by 63 % compared to an average choice of settings.  

 

Keywords: confounding, design of experiments, process performance, spore age 
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1. Introduction 

1.1. Bioproduction of natural pigments 

Research on new sources of natural pigments has increased due to the toxicity of synthetic 

colorants used in foods, pharmaceuticals and cosmetic preparations 
1–3

. Fungi provide a readily 

available alternative source of natural pigments. Dufossé et al. (2014) 
4
 emphasised the crucial 

role that filamentous fungi are currently playing and are likely to continue to play in the future as 

microbial cell factories for the production of food grade pigments due to the versatility in their 

pigment colour and chemical profile, amenability for easy large scale cultivation, and a long-

term history of well-studied production strains. Bioprocessing routes for producing natural red 

pigments have been established using Monascus spp., but this strain also produces a mycotoxin 

called citrinin 
5
. Recently, Talaromyces spp. (formerly Penicillium spp.) has been proposed as a 

potential pigment producing strain because capable to reach high productivity levels 
6
.  

Development of new bioprocess to obtain value-added compounds usually follows a 

conventional approach where the produced compounds need to be characterised (physical and 

chemical), approved and then its industrial production is optimised. This approach can be a time 

consuming and expensive process. Therefore, the efficiency of the product development cycle 

now requires that the process potential and economics be assessed early on, so that process 

conditions that do not meet stringent productivity requirements are eliminated. This brings 

forward process optimisation targets.  

Fermentation processes depend on a large number of operating variables (medium composition, 

pH, inoculum, temperature, aeration rate, etc.) that may interact strongly between themselves and 

with the specific characteristics and properties of both growth medium and microorganisms, 

creating a unique environment that results in a particular final yield of the process. For this 
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reason it would be economically unfeasible to find the optimum conditions that lead to the best 

production yields with a comprehensive experimental plan for every bioprocess.  

The production of pigments by Talaromyces spp. (Previously cited as Penicillium 

purpurogenum GH2) has been previously optimised in terms of process conditions such as pH 

and temperature 
7
 and culture media 

8
. Moreover, the effect of the inoculum type on the 

production of pigments was also reported 
9
. However, despite the fact that process, nutrient and 

microbial conditions were optimised, a high variability of the production was obtained batch to 

batch. Therefore, it is necessary to analyse the inoculum factors comprehensively prior to scale 

up of the process. It is noted that in modern Quality by Design approaches, consistency of 

performance is a critical aspect of quality. That is, an optimum performance has to include the 

metric of a consistent performance. It is known that seed culture development (inoculum) is an 

important factor in the successful performance of a fungal process for the production of any 

metabolite in both laboratory and industrial scale 
10,11

. 

Thus, the objective of the present study was to optimise the inoculum preparation 

conditions of spore age, seed culture incubation, inoculum level and agitation to enhance 

pigment production by Talaromyces spp. It was further desired to establish the optimum 

potential in a rapid fashion, illustrating the advantages (and addressing the drawbacks) of the 

Taguchi method, which has been proposed as an effective way of establishing best conditions.  

 

1.2. Process optimisation tools 

The Taguchi method applies statistical designs that have maximum efficiency with minimum 

experimental requirements and it does not require fitting mathematical models to experimental 

data, which would add lack of fit of the model to the error of conclusions and predictions. This 
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efficiency in minimising experimental requirements without relying on model fitting comes at 

the cost of using designs that might lead to results where the effect of factors and of interactions 

between factors are confounded, ending in erroneous predictions and sub-optimal regions when 

interactive effects have a significant impact.  

A major outcome of this method that is particularly important in many industrial problems is the 

ability to integratedly search for an optimum that considers not only the average result of the 

process but also its consistency, minimising variability and thus providing a result that minimises 

the waste associated with product and process variability 
12

. Thus, it is not surprising that this 

method and the overall concept of Quality by Design that it enables (and that Taguchi placed at 

the centre of his philosophy) has become a cornerstone of manufacturing excellence, and a very 

important tool in modern industrial processing strategies (such as lean 6-sigma).  

Given the need to bring upstream process optimisation techniques to be more efficient in 

evaluating process potential early on, this strategy has been employed in various bioprocessing 

lab studies, such as in the optimisation of the production of enzymes 
13–17

 and of process 

conditions to improve production yield of microbial added-value compounds 
18–20

. However, the 

reported studies tend to stress the advantages of the method while ignoring the drawbacks and 

limitations that have been pointed out in statistical literature 
21

. It is very important to be clear 

about what the Taguchi method does and does not do, and why there is in fact no perfect method, 

as others that mitigate Taguchi’s drawbacks bring their own disadvantages too.  

The most important end result therefore must be, as suggested by Taguchi, a validation of the 

predictions of optimum processing conditions. Very often that validation will provide evidence 

for a region of optimum to have been found, even if not the absolute optimum, but when this is 

not the case, it is important to know what to do to disentangle the confoundings between factors 
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and interactions. This fits exactly the modern thinking of manufacturing excellence, in particular 

as designated by DMAIC (Design, Measure, Analyse, Improve and Control), as well as 

continuous process improvement (also known by its Japanese term Kaizen). 

Therefore, the objective of finding optimum conditions in terms of pigment specific production 

and extracellular pigment production of natural red pigments was served by a two-stage 

approach: first, applying an orthogonal array design, which will reveal which process factors are 

more influential and what settings of those lead to best results with maximum consistency 

(minimum variability), provided that interactions are negligible. Second, validating with further 

trials that the conclusions and predictions are verified within the acceptable margin of 

confidence.  

A method is proposed to verify the underlying assumption of the first-stage Taguchi predictions 

(that interactive effects are negligible). 

 

2. Materials and methods 

 

2.1 Microorganism 

Talaromyces spp. was used for production of red pigments (DIA-UAdeC). The purified strain 

had been previously isolated and characterised as Penicillium purpurogenum GH2 
22,23

. 

Penicillium purpurogenum has however been transferred to Talaromyces spp.
24

. According to 

the morphological characterisation, the strain used in this study presents the characteristics of T. 

atroroseus due to the diffusible red pigments and the dark green thick walled ellipsoidal conidia 

produced 
24

, but a definite characterisation with gene sequencing and extrolite metabolites 
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analyses is not yet available, hence Penicillium purpurogenum GH2 is designated here 

generically as Talaromyces spp. 

The strain was maintained on PDA (Potato dextrose agar) slants at 4
o
C and sub-cultured 

periodically. 

 

2.2 Culture Media 

A Potato Dextrose Broth (PDB, ATCC medium: 336) was prepared by boiling 0.3 kg of finely 

diced potatoes in 500 mL of water until thoroughly cooked; the potatoes were then filtered 

through cheesecloth and water was added to the filtrate to complete a volume of 1.0 L. Finally, 

20.0 g of glucose were added before sterilisation. Potato Dextrose Agar was prepared equally to 

PDB medium but with the addition of agar (15 g/L). The Czapek-dox modified medium reported 

by Mendez-Zavala (2011)
8
 for the production of pigments consisted in (g/L): D-xylose 15.0, 

NaNO3 3.0, MgSO4· 7H2O 0.5, FeSO4· 7H2O 0.1, K2HPO4 1.0, KCl 1.0 and ethanol 20.0.  

 

2.3 Experimental design  

The experimental designs recommended by Taguchi are a particular case of fractional factorial 

designs defined by orthogonal arrays. The method will only make predictions for combinations 

of the settings defined by these arrays, avoiding interpolations which would require models, and 

hence, be prone to model bias and lack of fit. Therefore, if one were to use a full factorial design, 

the Taguchi method would offer no benefit at all in terms of experimental efficiency, its benefits 

in minimising experimental requirements are particularly strong when using many factors, and/or 

many levels, where by testing only some combinations one can infer the best of all. The Taguchi 

method, just like its alternatives (e.g. response surface analysis with experimental designs 
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without confoundings) are black-box methods and thus the results will always be specific of the 

range of values of the factor used in the experiments, and apply only to the actual equipment 

used. These are not first-principle approaches enabling scale-up; the conclusions only apply to 

the scale and range of variables covered in the experiments. Thus, the first step of the process 

(the D in DMAIC) is really critical. The smallest advisable experimental design to use for 

optimisation is the L-9 array, which permits analysing the effect of up to 4 factors (operating 

variables), and where each is tested at 3 different levels (values of the operating variables).  

Process steps needed for the production of pigments are shown in Figure 1: a) pre-culture step 

(Inoculum), b) production step and c) pigment recovery. 

Optimising a process performance implies maximising its consistency and therefore 

experimental plans must be repeated a minimum numbers of times which implies that 

experimental designs that can minimise requirements are important. This may require 

preliminary studies to assess relevant factors and ranges of values of interest to be sure of 

covering the solution space well. Focusing on the inoculum preparation parameters that 

significantly affect a fermentation process 
25

, preliminary tests were made (data not shown) to 

assess the un-controlled factors previously used for preparation of inoculum 
8
, this means that, 

using Taguchi’s nomenclature, the focus is now on what were previously noise factors, 

responsible for a too high variability, in order to further minimise it. The preliminary data 

allowed to select only 4 factors for a more comprehensive study (namely, a 2-level design 

indicated that pH was not a relevant factor influencing the variability of the process in the range 

studied, contrasted against spore concentration and agitation), and hence a L-9 design could be 

used (control factors: spores age, spores concentration, agitation speed and incubation time). 
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Due to the natural variability of fermentations, it would not make sense to study the process 

without replicates, as it is critical to define best conditions overall, that is, those that provide the 

best results with consistency (and not something which can be excellent some times and very 

poor in others). Regardless of how tightly one controls the processing factors of importance, 

there are always uncontrolled factors (termed noise factors), which are responsible for process 

and product variability, which also include the errors of the methods of measurement.  

  

2.4 Preparation of inoculum 

The variables, their levels, and the combinations tested with the experimental design are given in 

Table 1. 

To control spores age, the strain was inoculated on PDA medium in petri dishes before the 

medium was solidified and the plate was gently agitated to ensure that the microorganism grew 

homogeneously all over the plate. The plates were incubated at 30 
o
C and after the desired spores 

age level (Table 1) was reached, 10 mL of Tween 80 solution (0.01 % v/v) was poured onto the 

cultured agar plate, the spores were gently removed using a sterile glass rod and transferred to a 

sterile slant tube. Spores were homogenised and their concentration was estimated by using a 

haemocytometer (Neubauer cell). Dilutions were prepared to achieve the desired concentration 

level (Table 1). 

 

Erlenmeyer flasks (125 mL of capacity) containing 25 mL of PDB medium were sterilised and 

inoculated with the spore suspension previously prepared to achieve the desired initial 

concentration of spores presented in Table 1. 
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Inoculum was incubated at 30 
o
C and conditions were varied according to the L-9 combination 

of levels given in Table 1. 

 

2.4 Cultivation conditions 

The initial pH of the Czapek-dox modified medium was adjusted to 5 before sterilising by using 

0.22 m sterile membranes (Millipore, USA). A mycelial suspension was inoculated at 10% (v/v) 

in 125 mL Erlenmeyer flasks containing 25 mL of medium. The inoculated flasks were 

incubated at 30 
o
C on an orbital shaker (Inova 94, New Brunswick Scientific, USA) at 200 rpm 

for 8 days. 

 

2.5 Analytical methods 

The pigment recovery was performed according to the methodology reported by Méndez-Zavala 

et al. (2011) 
26

.  

Briefly, each sample was centrifuged at 10000 x g for 20 min at 4
o
C (Sorball, Primo R Biofuge 

Centrifugation Thermo, USA). The supernatant was then filtered through a 0.45 µm cellulose 

filter (Millipore, USA). 

 

Concentration of red pigments produced by Talaromyces spp. (formerly Penicillium spp.) has 

been expressed by various authors as optical density units 
27–31

 measured at 490-500 nm (a 

wavelength that represent the maximum adsorption for red colourants), and therefore pigment 

concentration was quantified indirectly by simply measuring the optical density at 500 nm using 

a spectrophotometer (Cary 50, UV-Visible Varian, USA).  
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The biomass concentration was determined using the gravimetric method. All analyses were 

replicated.  

Pigment specific production (Ps, OD500nm/gL
-1

) was defined as the extracellular pigment per 

biomass 
32

: 

�� = �/�                                                                                                                                  (1) 

where Y is extracellular pigment (OD500nm) and B is the biomass (g/L).  

 

3. Theory/Calculation 

3.1 Optimisation targets 

It is desired to achieve both a high extracellular pigment concentration and a high pigment 

specific production (Ps). Pigments produced by this fungus are synthesized under certain stress 

conditions, and therefore the production is not related necessarily to cellular growth. The 

microorganism could rapidly adapt to the stress conditions and use the available substrate for its 

growth by synthesis inhibition of other metabolites. A high extracellular pigment concentration 

could be obtained with low Ps but high biomass growth, but this would increase downstream 

processing costs due to removal of excess of biomass. On the other hand, high Ps levels could 

also be obtained with low extracellular pigment concentration due to minor formation of 

biomass.  

Therefore, this is an example of a multiple response problem where more than one performance 

indicator needs to be considered to reach an integrated improvement of the process: to maximise 

the total pigment production but also the pigment per cell obtained.  

Most studies in the bioprocessing area where the Taguchi method was applied consider single 

response processes 
33,34

, although in fermentation it is common to have to consider multiple 
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responses. A desirability function can be used to integrate the responses into a single objective 
35

, 

and a simple un-weighted combination of the normalised responses was used. Overall 

extracellular pigment and pigment specific production are both responses where the larger the 

better, so the normalised functions (��	,��
) are: 

 

��	,��
 = � 0,����,��
��������,��
��������,��
���������,��
�1, , ���	,��
 ≤ � !���	,��
�� !���	,��
� ≤ ���	,��
 ≤ �"#���	,��
����	,��
 ≥ �"#���	,��
�                            (2) 

 

where ���	,��
 is the value obtained in each experiment, �"#���	,��
� represents the maximum 

value in the whole set of data and � !���	,��
� the minimum value in the whole set of data. The 

subscript Y denotes extracellular pigment and Ps the pigment specific production. The global 

desirability function (DG) giving equal weight to both responses is defined as a geometric mean 

of the individual desirabilities 
35

: 

%& = '�	 ∗ ���)�*/+

                                                                                                               (3) 

where �	 and ��� are the normalised response for extracellular pigment production and pigment 

specific production, respectively.  

If both responses achieve their ideal values (max) each normalized function is equal to one, thus 

the global desirability function is also one. If any fails to reach its ideal value, the global 

desirability is less than one, and if a compromise is the best overall result, the global desirability 

gives equal weight to the two performance indicators. 
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3.2 Data analysis 

The main drawback of the experimental designs used by Taguchi, the orthogonal arrays, is that 

the effect of each variable is confounded with interactive effects. Alas, the literature cited in the 

introduction regarding the application of the Taguchi method to optimise fermentations has not 

been clear about this, and largely ignored the potential problems. As the main benefit of the 

Taguchi method is expediency (inferring many conclusions with confidence out of a limited 

amount of data), there is a tendency for saturated designs (such as the one in this work with 4 

factors used in the L-9 array). Azmi et al. (2013) 
18

, optimising yeast fermentation, used a simple 

L-8 with 7 factors at 2 levels, whereas Hwang et al. (2012) 
19

 optimising a bacterial fermentation 

and Chung et al. (2007) 
20

 optimising a fungal one used a modified L-16 (also known as M-16), 

testing 5 factors at 4 levels each. All these designs are saturated, that is, they use all columns of 

the array and thus all interactions are confounded with a factor. Furthermore, interactions 

between factors with 3 or 4 levels are very intricate because different components of the 

interaction are confounded in different columns of the design (hence, each factor is confounded 

with parts of many interactions, and each interaction is present in several confoundings 
21

). 

Confounding between a factor and an interaction implies that if an interaction is relevant, then 

the effect attributed to the factor is overestimated, while the impact of a factor involved in the 

interaction may be wrongly assessed from considering only its average effect. This could lead to 

very erroneous predictions for any combination of settings of the factors that is not part of the 

fractional design.  

Hence, it is critical to analyse the data, predict the outcome of combinations not used in the 

design (specially the one considered to be the best, if it is not one of those used) and the 
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confidence interval of the prediction, and then run a validation test with those conditions. If the 

experimental outcome of the validation trial is within the confidence interval of the prediction, 

the assumption of neglecting interactive effects is accepted, within the margin of error of the 

confidence interval.  

The data is analysed first with a two-way Analysis of Variance (ANoVA), and by attributing all 

effect of one design column to the factor assigned to it, the relative importance and statistical 

significance of each can be assessed. It is also possible, if desired, to break down this average 

effect of each factor in a linear and quadratic effect with a 3-level design (as used in this work). 

The response for any combination of settings of the factors is estimated with simple marginal 

means addition.  

If all interactions are negligible, then the best setting for each factor can be chosen 

independently, and it will be the one with the subset of data giving the best average response 

(maximum pigment production, maximum pigment specific production, or maximum 

desirability). 

An estimate using marginal means addition is given by: 

,-�.,�- = ,/ + ∑ ',/�2,3 − ,/)�536*                                                                                                 (4) 

where yest,me is the estimated value of the response (considering only main effects and neglecting 

all interactions), ,/�2,3 is the average of the data points obtained with factor j at the chosen setting 

ic, and nf is the number of factors. It is noted that eq. 4 is mathematically equal to a polynomial 

model with linear and quadratic terms of each factor and no interactive terms. 

The confidence interval of the predictions for 90% confidence level (c.int) is given by: 

7.  !9 = :;<==>=×@A.B,C,BD�<55                                                                                                             (5) 
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where Verror is the variance attributed to the error from the ANoVA, F0.1,2,18 is the F-distribution 

value for 90% confidence level and 2 (number of levels minus 1) by 18 (number of degrees of 

freedom of the error) and  neff, the so-called number of effective data points, is equal to: 

!-EE = �*F∑ '�G,H�*)I5HJB                                                                                                                 (6) 

In this case, with 3 replicates giving 27 points for 4 factors with 3 levels each, neff = 3. It is noted 

that the confidence level used for the F distribution was 90%, because this is a two-sided 

distribution, and 0.95 x 0.95 ≈ 0.9, so this corresponds roughly to a 95% confidence in one-sided 

distributions. 

 

3.3 Consequences of confounding 

As previously discussed, if the validation trial is successful, then a region of optimum 

performance was found. Further fine tuning may lead to better results still, but just like the law 

of diminishing returns in economics, further improvements are likely to require much more effort 

for lesser marginal benefits. At the stage of screening potentially promising bioprocesses, this 

suffices. 

However, if validation is not confirmed, then the most likely reason is that one or more 

interactive effects are significant and confoundings must be disentangled. Taguchi method 

literature suggests utilising severity indexes to assess which interactions are potentially more 

relevant 
36

. However, the authors experience in analysing many systems with easy to assess 

interactions (2-level designs) suggests that severity indexes tend to be high for interactions that 

are confounded with factors that are important (and vice versa) just because of the confounding 

itself, and thus their use is not recommended. At this stage it would be more useful to follow the 

advice of critics of the Taguchi method and apply a design that does not generate confoundings 
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21
. The most commonly used ones are Box-Benkhen and Central Composite Designs. Indeed, 

Hwang et al. (2012) 
19

 applies a good practice to the optimisation of bacterial fermentation: in a 

first step orthogonal arrays were used with a modified L-16 revealing the 3 most important 

factors out of 5 and the potential region of optimum for all 5, then in a second step a Box-

Benkhen design of the most relevant 3 factors was used, with the data analysed with a quadratic 

surface to pinpoint optimum conditions. It is noted that when the region of the solution space of 

the potential optimum is identified with a first step, it is likelier that the range of variability of 

the factors in the second step will be sufficiently small that a simple quadratic surface might 

provide a suitable model. 

While Box-Benkhen and Central Composite Designs obviate the problem of confounding 

between factors and interactions, they also have drawbacks compared to the Taguchi method, 

namely that the predictions rely on a fit between a model and the data. If the fit is good (as in the 

case of Hwang et al. 2012 
19

), this is fine, otherwise there are two problems: the lack of fit of the 

model increases the error of conclusions and predictions, and more worryingly, quadratic 

surfaces have a particular shape (parabolic), which is symmetrical, and that tends to predict 

points of minimum or maximum that do not really exist. In many cases curvatures are due to a 

region of lower influence and another of higher influence in the range of the dependent variable 

(with a gradual evolution to a constant, like in an exponential variation), and in such cases a fit to 

a parabola with only 3 points will usually predict a maximum or minimum that actually does not 

exist (it is a mathematical artefact due to the shape of a parabola). Another limitation of 

quadratic surfaces is that the interactive effects are reduced to their linear by linear component, 

so even though interactions are considered, they are not quantified fully. 
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3.4 Suggested procedure to analyse validation trials 

One of the reasons for the popularity of the Taguchi method and its widespread use in many 

industrial sectors is that industrial practice has often found that the application of the method 

provides significant gains in process or product targets 
37

. It follows from the previous 

discussions that this must mean that not many interactive effects influence results significantly to 

negate benefits in practical applications. However, even when benefits are obtained, it is possible 

that one is being misled to suboptimal regions by the erroneous predictions obtained by 

neglecting interactions that are relevant. Thus, while Taguchi’s method does provide follow-up 

strategies to handle interactions, it may become too cumbersome to continue using confounded 

designs. Thus, the procedure applied by Hwang et al. (2012) 
19

 is a good approach: using the 

Taguchi method first and a response surface analysis with an un-confounded design later 

(although it would have been better to analyse all data in the end integratedly; Hwang et al. 

(2012) 
19

, accept the prediction of the quadratic response surface as optimum, but this is not 

necessarily the case, as discussed previously, due to the bias induced by the model caused by the 

shape of parabolic surfaces drawn out of only 3 levels.  

However, if practice shows that often interactive effects, compared to main effects, are 

negligible, why doing more work than needed? The main target is expediency, being able to 

speedily identify best process performances to assess economic potential, and therefore if in 

many cases the outcome of the Taguchi method with a saturated design is valid, there is no need 

to continue. 

Taguchi’s method recommends a final validation trial using the factor settings that were found to 

be the best. However, this does not necessarily prove that the predictions are correct, because if 

the best combination happens to be one of those tested there is no real validation (for instance, in 
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this case the probability of that occurring is 11%). Thus, while a validation trial with the 

recommended best settings should obviously be run, if necessary, it should be supplemented by 

another run that challenges the predictive ability of the marginal means addition estimates. There 

should be at least one run in the validation phase where the predictions would be erroneous if 

interactive effects are not negligible. 

It is suggested to determine the potential impact of interactive effects just with some further 

analysis of the saturated design data by defining scenarios of extremes: the original estimates 

with marginal means addition are one extreme scenario, where all interactions are assumed 

negligible and all the results are assigned to main effects. Another extreme would be that only 

two factors are significant, the other two are not, and hence the effect attributed to them in the 

initial main effects ANoVA would actually be due to the components of the interactions between 

the others that are confounded in that column. Thus, it is possible to do several estimates, 

depending on what are the extreme interpretations of the causes of the results. These estimates 

are very easy to do, for every pair of parameters, they come from analysing the data as if it was 

the result of a full factorial design to obtain the full surface model, which is then used for the 

estimate of the conditions in the validation trial, that is: 

,-�.,�,� = "K,�,� + "*,�,� 7� + "+,�,� 7� + "L,�,� 7�+ + "M,�,� 7�+ + "N,�,� 7� 7� +
"O,�,� 7�+ 7� + "P,�,� 7� 7�+ + "Q,�,� 7�+ 7�+ + RSSTS                                                    (7) 

where yest,m,n is the estimate obtained by assigning the results exclusively to the main and 

interactive effects of factors m and n (assuming the other factors to be negligible), icm and icm are 

the settings used for factors m and n, respectively, in the chosen combination of the validation 

trial and the coefficients a are obtained from the analysis of the L-9 data as a full factorial design 

of factors m and n. The error terms incorporates the actual effect of the other 2 factors. 
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It is noted that, just like with the marginal means addition (eq. 4), all these models fit 9 different 

setting combinations with 9 model parameters and therefore there is no lack of fit for the set of 

27 data points; the error is totally due to white noise. 

Analysing the estimate obtained with the marginal means addition (yest,me) and those of all pairs 

yest,m,n reveals how challenging the validation trial actually is to ensure that interactive effects are 

indeed negligible. In case the prediction of the performance (pigment specific production, 

extracellular pigment, desirability function) at the optimum conditions suggested by the main 

effects analysis (eq. 4) does not differ significantly from other extreme justifications of the data 

(eqs. 7 for all pairs), then more runs are needed with at least one ensuring that the validation 

trial(s) is significantly challenging. 

 

4. Results and discussion 

4.1. L-9 results and main effects ANoVA 

Table 2 shows the experimental design and the average results of the 3 replicates for each 

response. It can be seen that the range of values chosen for the factors was sufficient to cause a 

variation in extracellular pigment from 4 to almost 10 (as measured by colour intensity with the 

OD at 500 nm) and the pigment specific production from 1.6 to 4.8 (OD/g.L). The extracellular 

pigment and pigment specific production at the average values of the inoculum conditions were 

8.2 and 4.1, respectively, showing a good potential for optimisation by finding best conditions: 

even just from these 9 trials, choosing the best of the 9 would mean an improvement of 22% and 

17%, respectively, on the responses compared to an average choice. There is however only an 

11% probability that this would indeed be the best combination of all 81 possible.  
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It can be seen that runs 2, 3 and 4 gave maximum extracellular pigment with no significant 

difference between them, that is, it would appear that similar titers are being obtained even 

though different conditions are used. On the other hand, the biomass production was lower in 

comparison with runs 3 and 4. Therefore, the highest specific production was obtained in run 2, 

which is nearly 18% higher than those obtained in runs 3 and 4.  

This indicates that the factors studied have a different effect on production, biomass growth and 

the pigment per biomass obtained and the full Analysis of Variance must be considered; it is not 

possible to take simple conclusions just from a subset of the data. 

The appropriate method of analysis is to determine the relative importance of each factor, the 

best choice of setting for each, and then infer the best of the 81.  

Table 3 shows the results of the main effects ANoVA, which attributes all system variability to 

the independent effects of the 4 variables and the error (due to noise factors, experimental 

variability, etc.). It can be seen that the error explains just a very small portion of the system 

variability (2% or less of the total sum of squares), that is, the 4 control factors dominate the 

system performance. If all interactive effects are negligible, then Table 3 shows that spores age is 

by far the most important effect on extracellular pigment and pigment specific production, 

accounting for more than half and more than two thirds of the sum of squares, respectively.  

However, the other 3 factors have clear statistical significance (p<0.05), but with a different 

relative importance: while spores concentration is the least important of the other 3 for the 

extracellular pigment, it is the most relevant of the 3 for pigment specific production, and the 

reverse occurs for incubation time. 

Figure 2 shows the means plots (averages of all data obtained with each level of each factor), 

from where the identification of the optimum conditions is straightforward: in each case, the best 
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level is the one with highest mean. Thus, the lowest spores age (5 days) is the best for 

extracellular pigment and pigment specific production, as well as the lowest spore concentration 

(10
6
 spores/mL) and the intermediate agitation speed of 200 rpm. However, the best setting for 

the incubation time would be the maximum (84 hrs) for the extracellular pigment, but the 

intermediate (72 hrs) for the pigment specific production. As Figure 2 shows that incubation time 

is more important for the extracellular pigment than it is for the pigment specific production, this 

would suggest that the highest incubation time would be the best overall. The more objective 

way of deciding is to use the global desirability function, giving equal weight to the importance 

of optimising the two responses. As Fig. 1 shows, the maximum desirability is indeed obtained 

with the maximum incubation time.  

 

4.2. Phenomenological interpretation of the results 

It was concluded that spores age was the most dominant effect on pigment production and 

pigment specific production, which were significantly higher with the lower spore age level used 

(5 days). Many studies have stated that spores age (slant age) has a remarkable effect on the 

production of any metabolites in bioprocesses 
11,38,39

. Spores age might influence the mycelial 

morphology in submerged fermentations affecting the final yield of the process 
40

.  

Regarding the effect of spore’s age on biomass, this factor showed relatively low influence 

(~10% of the total sum of squares explained by this factor) on the growth presented by the 

microorganism. 

It was also found that both responses (Y and Ps) decreased with increasing spores concentration. 

Many studies have related spores concentration to final morphology in fungal fermentations 
40–42

. 

It was observed that pellets were formed at the lower level (1x10
5
 spores/mL). Fungal 

morphology can determine the final pigment specific production of a fermentation process. It has 
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been stated that pellets are formed at inoculum levels below 10
11

 spores/m
3
 in fungal 

fermentation 
40

.  

Formation of mycelial pellets is known to be an important factor for production of certain 

metabolites 
41,42

, however, in this study spores concentration showed a very small influence on 

pigment production (explaining less than 7 % of the total sum of squares). 

The agitation speed showed an optimum effect at the intermediate level (200 rpm), especially for 

the extracellular pigment, suggesting that lower or higher agitations are detrimental. Many 

reports have stated that the morphological changes occurring during fermentation are due to 

agitation or mechanical forces 
25,43

.  

Agitation is an important control parameter in aerobic fermentations due to it is correlation with 

the oxygen transfer rate. The strain showed its maximum growth at an intermediate setting. This 

may be a consequence of two effects with reverse consequences: mechanical stress suffered by 

the cells at higher levels of agitation and poor oxygen supply at the lowest level, giving a 

maximum at an intermediate setting. 

The optimal levels of inoculum age (incubation time) were different for extracellular pigment 

and pigment specific production, while higher incubation times provided bigger yields, the 

pigment specific production shows a maximum, decreasing beyond a too high incubation time. 

The pigment is a secondary metabolite, and therefore its pigment specific production is not a 

linear relation of growth (the microorganism could grow significantly and yet produce little 

pigment).  

Higher biomass levels were obtained using the highest level of incubation time, this result 

indicates that the microorganism was in an active phase and thus it kept growing, which led to 

higher biomass accumulation and thus obtaining less pigment production per cell.  
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4.3. Validation trial 

The best conditions according to the Taguchi method and the L-9 results (Fig. 3) are lowest age 

and concentration of spores, intermediate agitation speed and higher incubation time (coded 

values -1, -1, 0 and 1). This is not one of the 9 combinations tried, but in order to assess if a 

validation trial with this combination alone is sufficiently challenging to assess whether the 

results could be explained by significant interactive effects (which would mean that the 

conclusions taken earlier could be wrong), the L-9 data (27 points) were fitted to full factorial 

surfaces (eq. 7) for every pair of factors, resulting in models that could be used to predict what 

the extracellular pigment and pigment specific production should be with the chosen 

combination of settings. The model fit results and the respective predictions, compared to the 

Taguchi method estimate using marginal means addition (eq. 4), are shown in Table 4.  

Considering first whether such a trial is sufficiently challenging, it is noted that the extracellular 

pigment predicted with marginal means addition for the optimum settings is significantly 

different from all other predictions, whereas in the case of pigment specific production there is 

no statistically significant difference between the prediction with marginal means or with a full 

factorial polynomial (eq. 7) considering that the results are due just to the effect of spores age 

and agitation speed and its full interaction (eq. 7 with factors A and C only). Thus, the optimum 

combination of settings will not be sufficiently challenging regarding pigment specific 

production. Of the 81 possible combinations, only 19 generated predictions of the marginal 

means addition that are statistically different from all models with the 6 pairs of factors (eq. 7) 

for both extracellular pigment and pigment specific production. One of those was the same 

settings for concentration, agitation and incubation time, but maximum spores age (coded values 
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1,-1,0,1). Thus, one more validation run was needed to ensure that the validation trials were 

sufficiently challenging. The predictions of values of this additional run are also given in Table 

4. It can be seen that the marginal means estimates are actually the only that predicted the 

experimental outcome of the validation trial for the optimum combination of settings 

successfully. Thus, the conclusions of the main effects ANoVA could be accepted just with this 

trial and there is no evidence that interactive effects could be sufficiently relevant to affect the 

final result. However, that could not have been known prior to the outcome, so the other 

experiment with settings 1, -1, 0, 1 needs to be considered. In this case, marginal means addition 

was again the only model that provided an estimate that agrees with the experimental results for 

extracellular pigment and the two-factor model prediction that was statistically similar for the 

optimum conditions is now completely different and too far from the experimental results. The 

average pigment specific production of the 4 experimental runs under these conditions was 

however outside the interval of the marginal means addition plus or minus its error. However, 

given that the validation trial had 4 repeats, a t-test with the standard deviations given in Table 4 

would give a 94.8% probability of the null hypothesis which is just marginally outside the usual 

95% confidence level. The model with eq. 7 for factors A and C only would give very poor 

estimates for this combination of settings. 

For the purpose of establishing the potential of this process, this result suffices, as further 

improvements are unlikely to be so dramatic. The grand average of the extracellular pigments 

was 6.96 and that of the pigment specific production was 3.21, these are the values obtained at 

the centre of the solution space, and thus have the highest probability of being selected by simple 

random choice of values for the 4 factors. The best conditions gave an extracellular pigment 
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production that was 63% higher and a pigment specific production 44% higher by moving to a 

more favourable region of the solution space.  

Several batches have been carried out with these conditions, which prove that selected settings 

also provide the best robustness. Figure 3 shows a distribution of the quality criterion (Pigment 

and Pigment specific production) of the performance of the studied system for a large number of 

batches (54 batches) before and after the improvement of the inoculum preparation conditions. It 

can be seen that before the inoculum optimisation, there is an increased spread of unacceptable 

batches. After the optimisation, the average performance has been improved and also the 

performance distribution is narrower for both responses. 

This illustrates well the significant benefits that can be speedily obtained with the Taguchi 

method when interactions are negligible. The process optimisation outcome of a Taguchi 

analysis of a set of data like this is which of the 81 possible combinations of 3 values in each of 4 

variables provides the best result with the maximum consistency.  

While not promising to be an absolute optimum (fine tuning within the range may reveal better 

specific values), it suffices to provide a fair assessment of optimum productivities potentially 

achievable, and with just 3 repeats of 9 trials, the scanning efficiency is evident. 

 

 

4.4. Further fermentation experiments on the effect of spores age 

As the age of spores is the most significant factor affecting the inoculum for the production of 

pigments, and there was no evidence of significant interactive effects, this factor was further 

studied over a wider range of values. This is important in the case of an optimum setting being 

an extreme (as in this case, where it was the lowest), because it is conceivable that a better 
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setting could be found outside of the range originally considered. Fermentation experiments were 

carried out by setting factors B, C and D at the optimum levels determined (10
5
 spores/mL 

spores concentration, 200 rpm and 84 hrs of incubation time) and the age of spores was studied 

from 3 to 11 days (3 days being the lowest time where spores are formed, 11 days being the 

highest level previously used 
8
). 

Four replicates were performed in each case (the value for 5 days of age being the validation 

trial). Results of extracellular pigment are shown in Figure 4. It can be seen that production of 

pigments reaches a maximum precisely with 5-day-old spores (11.45±0.17 OD500nm).  

These results are higher than those previously reported for the production of pigments by 

Talaromyces purpurogenus (formerly Penicillium purpurogenum)
29,30

, however, mycelial disks 

and spores were used as inoculum on those studies. 

In order to identify which is the growth phase of the microorganism at 5 days old (where 

maximum production can be obtained) and acquire a better understanding of the decrease in 

pigment production by using older spores, the biomass growth kinetics of the spores used was 

studied. The microorganism was grown in PDA plates and the biomass dry weight was analysed 

from 0 to 11 days every 24 h. Results are shown in Figure 5, typical microorganism growth 

phases (lag, exponential, stationary and death) are highlighted in the figure.  

When the microorganism is 3-4 days old it is still in an active growing phase and it uses the 

substrate primarily to grow and not to produce pigments. The maximum pigment production 

occurs when using spores that are at the beginning of the stationary phase, when they are no 

longer growing significantly. On the other hand, with older spores (6-11 days) there is a 

decrease, which could be attributed to microorganisms entering their death phase.  
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Similar findings have been reported in a different bioprocess production process, determining the 

effect of spore’s age on the production of citric acid by Aspergillus niger 
44

. 

 

5. Conclusions 

The inoculum preparation conditions have a significant effect on the pigments production 

process by Talaromyces spp. (previously cited as Penicillium purpurogenum GH2). Spores age 

was the most important effect, with an optimum at 5 days old. The Taguchi method including a 

validation trial in conditions deemed challenging to test the relevance of interactive effects 

allowed to establish overall optimum conditions with confidence as all interactions indeed 

proved to be negligible, and these were: spores age (days), 5; spores concentration (spores/mL), 

10
5
, agitation (rpm), 200 and incubation time (h), 84. Compared to the extracellular pigment and 

pigment specific production that would be obtained with average settings of these factors, the 

optimum settings thus identified with only 9 combinations of the 4 factors represented at increase 

of 63% in extracellular pigment and 44% in pigment specific production.  
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List of Figures. 

 

Figure 1. Process steps needed for the production of pigments produced by Talaromyces spp.: a) 

pre-culture step (Inoculum), b) production step and c) pigment recovery. 

Figure 2. Means plots of extracellular pigment, pigment specific production and global 

desirability.  

The points indicate the averages of all data obtained with the respective setting of the factor, the error bars the 

standard deviation caused by the 3 other factors and the error, and the horizontal dotted line is the global average 

of all data 

Figure 3. Distribution of a) Pigment and b) Pigment specific production of 54 batches produced 

before (pattern bars) and after (full bars) inoculum improvement. 

Figure 4. Extracellular pigment obtained with different age of spores (3-11 days). 

Figure 5. Spores biomass kinetics and growth phases. 
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Table 1. Inoculum preparation conditions and levels for the L-9 experimental design. 

Factor Process Variable 
Low level 

(-1 coded) 

Intermediate level 

(0 coded) 

High level 

(1 coded) 

A Spores age (days) 5 7 9 

B Spores concentration (spores/mL) 10
5 10

6 10
7 

C Agitation (rpm) 150 200 250 

D Incubation time (hrs) 60 72 84 
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Table 2. Experimental Design and average results (3 replicates) of extracellular pigment and pigment specific production by 

Talaromyces spp. 

Run 

Coded values Actual Experimental results 

A B C D 

Spores 

Age 

(days) 

Spores 

Concentration 

(spores/mL) 

Agitation 

Speed 

(rpm) 

Incubation 

Time 

(h) 

Biomass 

(g/L) 

Extracellular 

pigment  

(OD500nm) 

Pigment specific 

production 

(OD500nm/g.L
-1

) 

1 -1 -1 -1 -1 5 10
5
 150 60 

1.96 ± 

0.20 
7.20 ± 0.73 3.67 ± 0.06 

2 -1 0 0 0 5 10
6
 200 72 

2.08 ± 

0.10 
9.92 ± 0.30 4.76 ± 0.08 

3 -1 1 1 1 5 10
7
 250 84 

2.43 ± 

0.13 
9.50 ± 0.68 3.90 ± 0.08 

4 0 -1 0 1 7 10
5
 200 84 

2.53 ± 

0.04 
9.93 ± 0.20 3.92 ± 0.04 

5 0 0 1 -1 7 10
6
 250 60 

1.68 ± 

0.03 
6.07 ± 0.37 3.61 ± 0.28 

6 0 1 -1 0 7 10
7
 150 72 

2.09 ± 

0.24 
5.63 ± 0.91 2.69 ± 0.27 

7 1 -1 1 0 9 10
5
 250 72 

2.19 ± 

0.22 
6.07 ± 0.37 2.78 ± 0.16 

8 1 0 -1 1 9 10
6
 150 84 

2.25 ± 

0.34 
4.32 ± 0.52 1.92 ± 0.12 

9 1 1 0 -1 9 10
7
 200 60 

2.52 ± 

0.08 
4.00 ± 0.30 1.59 ± 0.15 
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Table 3. Analysis of variance with main effects (all interactions deemed negligible). The p-value gives the probability of the 

null hypothesis (factors with values below 5% are statistically significant).  

 

Cause of  

variability 

Degrees  

of freedom 

Raw Sum of Squares Relative importance* Variance explained p-value 

Y Ps Y Ps Y Ps Y Ps 

Spores age 2 78.225 18.317 56.8% 71.5% 39.113 9.159 0.0000% 0.0000% 

Spores concentration 2 6.786 3.388 4.9% 13.2% 3.393 1.694 0.0015% 0.0000% 

Agitation 2 18.944 2.547 13.8% 9.9% 9.472 1.274 0.0000% 0.0000% 

Incubation time 2 24.937 0.904 18.1% 3.5% 12.469 0.452 0.0000% 0.0067% 

Error 18 2.797 0.473 2.0% 1.8% 0.155 0.026 
  

Total 26 137.691 25.632 
      

*The relative importance of each term is the percentage of the total sum of squares explained by the raw sum of squares attributed to the factor 

 

 

 

 

 

 

 

Page 35 of 41

John Wiley & Sons

Biotechnology Progress

This article is protected by copyright. All rights reserved.



36 

 

 

 

 

Table 4. Experimental results (average of 4 replicates) for different age of spores (A, minimum 5 and maximum 9 days) with factors 

B, C and D at the optimum levels (10
5
 spores/mL, with 82 hrs incubation and 200 rpm) and predictions with marginal means additions 

and with full factorial combinations with 2 factors only (eqs. 7) 

Responses 
Confidence 

intervals 
A Experimental 

Marginal 

means 

A and B 

only 

A and C 

only 

A and D 

only 

B and C 

only 

B and D 

only 

C and D 

only 

Extracellular 

pigment 

(OD500nm) 

0.54 
-1 11.45±0.17 11.59 7.20 9.92 9.50 9.93 9.93 9.93 

1 7.12±0.50 7.52 6.07 4.00 4.32 9.93 9.93 9.93 

Pigment 

Specific 

Production 

(OD500nm/gL
-1

) 

0.16 

-1 4.51±0.42 4.63 3.67 4.76 3.90 3.92 3.92 3.92 

1 3.01±0.20 2.61 2.78 1.59 1.92 3.92 3.92 3.92 

 

 

Page 36 of 41

John Wiley & Sons

Biotechnology Progress

This article is protected by copyright. All rights reserved.



37 

 

 

Figure 1 
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Figure 2 
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Figure 3 
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Figure 4 
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Figure 5 
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